WO2018066204A1 - アルカリ乾電池 - Google Patents

アルカリ乾電池 Download PDF

Info

Publication number
WO2018066204A1
WO2018066204A1 PCT/JP2017/025862 JP2017025862W WO2018066204A1 WO 2018066204 A1 WO2018066204 A1 WO 2018066204A1 JP 2017025862 W JP2017025862 W JP 2017025862W WO 2018066204 A1 WO2018066204 A1 WO 2018066204A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
terephthalic acid
separator
battery
positive electrode
Prior art date
Application number
PCT/JP2017/025862
Other languages
English (en)
French (fr)
Inventor
高橋 康文
聡 藤吉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780026478.3A priority Critical patent/CN109075314B/zh
Priority to US16/314,767 priority patent/US10847786B2/en
Priority to JP2018543744A priority patent/JP6667148B2/ja
Publication of WO2018066204A1 publication Critical patent/WO2018066204A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/023Gel electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an alkaline dry battery provided with a gelled negative electrode.
  • Alkaline batteries (alkali manganese batteries) are widely used because they have a larger capacity than a manganese battery and can extract a large current.
  • the alkaline dry battery includes a positive electrode, a gelled negative electrode, a separator disposed between the positive electrode and the negative electrode, a positive electrode, a negative electrode, and an alkaline electrolyte contained in the separator.
  • the negative electrode includes a negative electrode active material containing zinc.
  • alkaline dry batteries equipped with a gelled negative electrode when a strong impact or vibration is applied to the battery when the battery is dropped or transported, the gelled negative electrode flows (scatters) to the positive electrode side, causing an internal short circuit. May generate heat.
  • the separator buckles as the negative electrode flows (spatters). And the outflow to the positive electrode side of the negative electrode is likely to occur.
  • An object of the present disclosure is to increase the capacity and output of an alkaline battery including a gelled negative electrode, and to suppress the occurrence of an internal short circuit due to the flow of the negative electrode toward the positive electrode and the accompanying heat generation of the battery. That is.
  • One aspect of the present disclosure includes a positive electrode, a gelled negative electrode, a separator disposed between the positive electrode and the negative electrode, and a positive electrode, a negative electrode, and an alkaline electrolyte contained in the separator.
  • the negative electrode relates to an alkaline battery that includes a negative electrode active material containing zinc and particulate terephthalic acid, and the average particle diameter of terephthalic acid is 25 to 210 ⁇ m.
  • an alkaline dry battery including a gelled negative electrode it is possible to increase the capacity and output, and to generate an internal short circuit due to the flow of the negative electrode to the positive electrode side, and the accompanying heat generation of the battery. Can be suppressed.
  • FIG. 1 is a front view of a cross section of a part of an alkaline battery according to an embodiment of the present invention.
  • An alkaline dry battery includes a positive electrode, a gelled negative electrode, a separator disposed between the positive electrode and the negative electrode, a positive electrode, a negative electrode, and an alkaline electrolyte contained in the separator.
  • the negative electrode includes a negative electrode active material containing zinc.
  • the negative electrode contains particulate terephthalic acid (para). Unlike phthalic acid (ortho form) and isophthalic acid (meta form), terephthalic acid is difficult to dissolve in a gelled negative electrode. When particulate terephthalic acid is included in the negative electrode, the surface of the terephthalic acid particles dissolves very slightly in the negative electrode, and most of them are present without being dissolved. Therefore, when particulate terephthalic acid is included in the negative electrode, the negative electrode becomes cloudy. Such a phenomenon is not observed when the negative electrode contains phthalic acid or isophthalic acid.
  • the average particle size of terephthalic acid in the negative electrode is 25 to 210 ⁇ m, elasticity is imparted to the negative electrode with appropriate viscosity, so even when a large impact or vibration is applied to the battery when the battery is dropped or transported, The flow (scattering) of the negative electrode to the positive electrode side is sufficiently suppressed. As a result, the occurrence of an internal short circuit and the accompanying heat generation of the battery can be prevented.
  • the buckling of the separator accompanying the flow (scattering) of the negative electrode is suppressed, and the outflow of the negative electrode to the positive electrode side can be sufficiently suppressed.
  • the discharge performance is improved.
  • high-load discharge performance is improved, and high capacity and high output can be achieved.
  • the terephthalic acid having a specific average particle size as described above can sufficiently serve as a dispersant in the gelled negative electrode. That is, by dispersing the terephthalic acid in the gelled negative electrode, it is possible to suppress the aggregation of the particulate negative electrode active material and the aggregation of the gelling agent. Since the negative electrode active material and the gelling agent are uniformly mixed in the gelled negative electrode, discharge unevenness is suppressed, so that the discharge performance is improved.
  • the gelled negative electrode is sufficiently homogenized, the reliability of the negative electrode flow suppression effect can be increased.
  • the average particle diameter of terephthalic acid in the negative electrode is less than 25 ⁇ m, the effect of improving the dispersibility of the negative electrode by terephthalic acid becomes insufficient. Moreover, the negative electrode active material is easily covered with small particles of terephthalic acid, and the surface (reaction active surface) where the negative electrode active material comes into contact with the electrolytic solution is reduced. Therefore, the discharge performance is not improved.
  • the average particle size of terephthalic acid in the negative electrode exceeds 210 ⁇ m, the large particles of terephthalic acid have a large breaking force, so that the negative electrode active material and the gelling agent are damaged when they come into contact with the large particles of terephthalic acid. It becomes easy to do. Moreover, the improvement effect of the dispersibility of the negative electrode by a terephthalic acid becomes inadequate. Therefore, the discharge performance is not improved.
  • the average particle diameter of terephthalic acid in the negative electrode is preferably 100 to 210 ⁇ m because the negative electrode flow suppressing effect and the discharge performance improving effect can be further enhanced.
  • the average particle diameter of terephthalic acid in the negative electrode is obtained, for example, by the following method.
  • the negative electrode active material is removed from the negative electrode by centrifugation to obtain a mixture of gelling agent and terephthalic acid particles.
  • the resulting mixture is dried and then observed using an optical microscope to randomly select ten terephthalic acid particles.
  • the particle size of each particle is measured, two measured values are deleted in order from the largest measured value, and the two measured values are deleted in order from the smallest measured value.
  • the average value of the remaining six measured values is determined as terephthalic acid in the negative electrode.
  • the average particle diameter can be obtained.
  • the gel electrolyte contained in the negative electrode contains terephthalic acid having an average particle size of 25 to 210 ⁇ m
  • the gel electrolyte becomes cloudy and the transmittance of the gel electrolyte at this time Is 1% or less.
  • the transmittance of the gel electrolyte is obtained by the following method. First, the battery is disassembled and the negative electrode is taken out. Thereafter, the negative electrode is centrifuged and separated into a transparent upper layer containing a gel electrolyte, a cloudy intermediate layer containing the gel electrolyte and terephthalic acid particles, and a lower layer containing the negative electrode active material. And the transmittance
  • the content of terephthalic acid in the negative electrode is preferably 0.01 to 0.5 parts by mass per 100 parts by mass of the negative electrode active material.
  • the content of terephthalic acid in the negative electrode is within the above range, the effect of suppressing the flow of the negative electrode and the effect of improving the discharge performance can be further enhanced.
  • the negative electrode has good elasticity and good viscosity, so the negative electrode into the hollow part of the positive electrode The filling property is improved.
  • the negative electrode preferably contains 0.1 to 1.0 part by mass of potassium halide as an additive per 100 parts by mass of the negative electrode active material.
  • terephthalic acid with a specific average particle size and a specific amount of potassium halide in the negative electrode, while maintaining the effect of suppressing the flow of the negative electrode by terephthalic acid, further improving the dispersibility of the negative electrode By increasing it, the discharge performance can be further improved.
  • the content of potassium halide in the negative electrode is more preferably 0.1 to 0.5 parts by mass per 100 parts by mass of the negative electrode active material.
  • the separator preferably contains 50 to 70% by mass of polyvinyl alcohol.
  • Polyvinyl alcohol is contained in the fiber (nonwoven fabric) or microporous film constituting the separator, for example.
  • the strength of the separator can be sufficiently increased, so that the outflow of the negative electrode to the positive electrode side can be further suppressed.
  • the outflow of the negative electrode to the positive electrode side due to the buckling of the separator can be further suppressed.
  • the liquid absorption speed of the separator can be sufficiently increased, so that the high-load discharge performance can be further enhanced.
  • the thickness of the separator is preferably 220 to 390 ⁇ m.
  • the thickness of the separator refers to the total thickness of the thicknesses of the wound (overlapped) sheets.
  • the thickness of the separator refers to the thickness of a portion other than the overlapping portion.
  • the thickness of the separator is 220 to 390 ⁇ m, the strength of the separator can be sufficiently secured, so that the outflow to the positive electrode side of the negative electrode due to the buckling of the separator can be further suppressed.
  • the filling amount (negative electrode capacity) of the negative electrode into the hollow portion of the positive electrode can be sufficiently ensured, and the internal resistance of the battery can be sufficiently reduced. Therefore, the discharge performance can be further enhanced.
  • the thickness of the separator is more preferably 220 to 260 ⁇ m.
  • Examples of the alkaline dry battery according to an embodiment of the present invention include a cylindrical battery and a coin battery.
  • FIG. 1 is a front view of a cross section of a horizontal half of an alkaline battery according to an embodiment of the present invention.
  • FIG. 1 shows an example of a cylindrical battery having an inside-out type structure.
  • the alkaline battery includes a hollow cylindrical positive electrode 2, a negative electrode 3 disposed in the hollow portion of the positive electrode 2, a separator 4 disposed therebetween, and an alkaline electrolyte (not shown).
  • a bottomed cylindrical battery case 1 that also serves as a positive electrode terminal.
  • the positive electrode 2 is arranged in contact with the inner wall of the battery case 1.
  • the positive electrode 2 contains manganese dioxide and an alkaline electrolyte.
  • the hollow portion of the positive electrode 2 is filled with a gelled negative electrode 3 via a separator 4.
  • the negative electrode 3 usually contains an alkaline electrolyte and a gelling agent in addition to the negative electrode active material containing zinc and terephthalic acid.
  • the separator 4 has a bottomed cylindrical shape and contains an electrolytic solution.
  • the separator 4 includes a cylindrical separator 4a and a bottom paper 4b.
  • the separator 4 a is disposed along the inner surface of the hollow portion of the positive electrode 2 and separates the positive electrode 2 and the negative electrode 3. Therefore, the separator disposed between the positive electrode and the negative electrode means the cylindrical separator 4a.
  • the bottom paper 4 b is disposed at the bottom of the hollow portion of the positive electrode 2 and separates the negative electrode 3 and the battery case 1.
  • the opening of the battery case 1 is sealed by a sealing unit 9.
  • the sealing unit 9 includes a gasket 5, a negative electrode terminal plate 7 that also serves as a negative electrode terminal, and a negative electrode current collector 6.
  • the negative electrode current collector 6 is inserted into the negative electrode 3.
  • the negative electrode current collector 6 has a nail-like shape having a head portion and a body portion, and the body portion is inserted into a through hole provided in the central cylinder portion of the gasket 5, so that the negative electrode current collector 6
  • the head is welded to the flat portion at the center of the negative terminal plate 7.
  • the opening end portion of the battery case 1 is caulked to the flange portion of the peripheral edge portion of the negative electrode terminal plate 7 via the outer peripheral end portion of the gasket 5.
  • the outer surface of the battery case 1 is covered with an exterior label 8.
  • the negative electrode 3 includes terephthalic acid particles having an average particle diameter of 25 to 210 ⁇ m. Thereby, moderate viscosity and elasticity are imparted to the negative electrode 3, and the flow of the negative electrode 3 is sufficiently suppressed. For this reason, it becomes difficult for the negative electrode 3 to flow (scatter) to the gasket 5 side due to impact or vibration applied to the battery when the battery is dropped or transported. Therefore, the outflow to the positive electrode 2 side of the negative electrode 3 due to the buckling of the separator 4a (the end portion on the gasket 5 side) accompanying the flow (scattering) of the negative electrode 3 to the gasket 5 side is sufficiently suppressed.
  • the average particle diameter of terephthalic acid contained in the negative electrode 3 is 25 to 210 ⁇ m, good discharge performance (particularly high load discharge performance) can be obtained.
  • Examples of the negative electrode active material include zinc and zinc alloys.
  • the zinc alloy may contain at least one selected from the group consisting of indium, bismuth and aluminum from the viewpoint of corrosion resistance.
  • the indium content in the zinc alloy is, for example, 0.01 to 0.1% by mass, and the bismuth content is, for example, 0.003 to 0.02% by mass.
  • the aluminum content in the zinc alloy is, for example, 0.001 to 0.03% by mass.
  • the proportion of elements other than zinc in the zinc alloy is preferably 0.025 to 0.08 mass% from the viewpoint of corrosion resistance.
  • the negative electrode active material is usually used in a powder form.
  • the average particle diameter (D50) of the negative electrode active material powder is, for example, 100 to 200 ⁇ m, preferably 110 to 160 ⁇ m.
  • the average particle diameter (D50) is a median diameter in a volume-based particle size distribution.
  • the average particle diameter can be obtained, for example, using a laser diffraction / scattering particle distribution measuring apparatus.
  • the negative electrode is obtained, for example, by mixing negative electrode active material particles containing zinc, terephthalic acid particles, a gelling agent, and an alkaline electrolyte.
  • the average particle diameter (D50) of the terephthalic acid powder added to the negative electrode is preferably 25 to 210 ⁇ m, more preferably 100 to 210 ⁇ m. In this case, it is possible to suppress the outflow of the negative electrode to the positive electrode side due to the buckling of the separator due to the flow of the negative electrode due to the impact or vibration applied to the battery at the time of dropping or transporting the battery, and the discharge performance can be enhanced.
  • the average particle diameter (D50) P1 of the negative electrode active material powder used in the production of the negative electrode and the average particle diameter (D50) P2 of the terephthalic acid powder are related to the following formula: 0.5 ⁇ P1 / P2 ⁇ 5.0 It is preferable to satisfy.
  • P1 / P2 is within the above range, the negative electrode flow suppression effect and the discharge performance improvement effect can be further enhanced. More preferably, P1 / P2 is 0.6 to 1.3.
  • a known gelling agent used in the field of alkaline batteries is used without particular limitation, and for example, a water-absorbing polymer can be used.
  • a gelling agent include polyacrylic acid and sodium polyacrylate.
  • the amount of gelling agent added is, for example, 0.5 to 2.5 parts by mass per 100 parts by mass of the negative electrode active material.
  • a surfactant such as a polyoxyalkylene group-containing compound or a phosphate ester may be used to adjust the viscosity.
  • phosphate esters or alkali metal salts thereof are preferable.
  • the surfactant is preferably added in advance to the alkaline electrolyte used in preparing the negative electrode.
  • a compound containing a metal having a high hydrogen overvoltage such as indium or bismuth may be appropriately added to the negative electrode.
  • a slight amount of silicic acid compound such as silicic acid or a potassium salt thereof may be appropriately added to the negative electrode.
  • the negative electrode current collector examples of the material of the negative electrode current collector inserted into the gelled negative electrode include metals and alloys.
  • the negative electrode current collector preferably contains copper, and may be made of an alloy containing copper and zinc such as brass, for example.
  • the negative electrode current collector may be subjected to a plating treatment such as tin plating, if necessary.
  • the positive electrode usually contains a conductive agent and an alkaline electrolyte in addition to manganese dioxide, which is a positive electrode active material. Moreover, the positive electrode may further contain a binder as necessary.
  • manganese dioxide electrolytic manganese dioxide is preferable.
  • crystal structure of manganese dioxide include ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, and ramsdellite-type.
  • Manganese dioxide is used in the form of powder. From the viewpoint of easily ensuring the filling property of the positive electrode and the diffusibility of the electrolytic solution in the positive electrode, the average particle diameter (D50) of manganese dioxide is, for example, 25 to 60 ⁇ m.
  • the BET specific surface area of manganese dioxide may be, for example, in the range of 20 to 50 m 2 / g.
  • the BET specific surface area is obtained by measuring and calculating the surface area using the BET formula, which is a theoretical formula for multimolecular layer adsorption.
  • the BET specific surface area can be measured, for example, by using a specific surface area measuring apparatus by a nitrogen adsorption method.
  • the conductive agent examples include carbon black such as acetylene black and conductive carbon materials such as graphite. As graphite, natural graphite, artificial graphite and the like can be used.
  • the conductive agent may be fibrous or the like, but is preferably powdery.
  • the average particle diameter (D50) of the conductive agent is, for example, 3 to 20 ⁇ m.
  • the content of the conductive agent in the positive electrode is, for example, 3 to 10 parts by mass, preferably 5 to 9 parts by mass with respect to 100 parts by mass of manganese dioxide.
  • the positive electrode can be obtained, for example, by pressure-molding a positive electrode active material, a conductive agent, an alkaline electrolyte, and, if necessary, a positive electrode mixture containing a binder into a pellet form.
  • the positive electrode mixture may be once formed into flakes or granules, classified as necessary, and then pressed into pellets.
  • pellets are accommodated in the battery case, they are secondarily pressurized using a predetermined instrument so as to be in close contact with the inner wall of the battery case.
  • the separator examples include cellulose and polyvinyl alcohol.
  • the separator may be a non-woven fabric mainly using fibers of the above materials, or may be a cellophane or polyolefin microporous film. You may use a nonwoven fabric and a microporous film together.
  • the nonwoven fabric preferably contains polyvinyl alcohol fibers.
  • a non-woven fabric is obtained, for example, by mixing polyvinyl alcohol fibers and other fibers.
  • a nonwoven fabric mainly composed of cellulose fibers and polyvinyl alcohol fibers, and a nonwoven fabric mainly composed of rayon fibers and polyvinyl alcohol fibers can be exemplified.
  • the content of the polyvinyl alcohol fiber in the nonwoven fabric is preferably 50 to 70% by mass.
  • a cylindrical separator 4 with a bottom is formed by using a cylindrical separator 4a and a bottom paper 4b.
  • the bottomed cylindrical separator is not limited to this, and a known separator used in the field of alkaline batteries may be used.
  • the separator may be constituted by a single sheet, or may be constituted by overlapping a plurality of sheets if the sheet constituting the separator is thin.
  • the cylindrical separator may be configured by winding a thin sheet a plurality of times.
  • the alkaline electrolyte is contained in the positive electrode, the negative electrode, and the separator.
  • an alkaline aqueous solution containing potassium hydroxide is used as the alkaline electrolyte.
  • the concentration of potassium hydroxide in the alkaline electrolyte is preferably 30 to 50% by mass.
  • the alkaline aqueous solution may further contain zinc oxide.
  • the concentration of zinc oxide in the alkaline electrolyte is, for example, 1 to 5% by mass.
  • Battery case For example, a bottomed cylindrical metal case is used as the battery case. For example, a nickel-plated steel plate is used for the metal case. In order to improve the adhesion between the positive electrode and the battery case, it is preferable to use a battery case in which the inner surface of the metal case is covered with a carbon film.
  • Example 1 AA-type cylindrical alkaline batteries (LR6) shown in FIG. 1 were produced according to the following procedures (1) to (3).
  • the flaky positive electrode mixture was pulverized into granules and classified with a sieve.
  • Two positive electrode pellets were produced by pressure forming 11 g of 10-100 mesh granules into a predetermined hollow cylindrical shape having an outer diameter of 13.65 mm.
  • the separator 4 was configured using a cylindrical separator 4a and a bottom paper 4b.
  • a non-woven sheet (basis weight 28 g / m 2 ) mainly composed of rayon fibers and polyvinyl alcohol fibers having a mass ratio of 1: 1 was used.
  • the thickness of the nonwoven fabric sheet used for the bottom paper 4b was 0.27 mm.
  • Separator 4a (thickness 206 ⁇ m before swelling) was constituted by wrapping a nonwoven fabric sheet having a thickness of 103 ⁇ m twice. At this time, the part which one end part of the winding start of a nonwoven fabric sheet and the other edge part of the winding end of a nonwoven fabric sheet mutually overlap was provided. In the cross section perpendicular to the axial direction (X direction in FIG. 1) of the positive electrode of the separator, the length of the overlapping portion was 3 mm.
  • the negative electrode current collector 6 was obtained by pressing a general brass (Cu content: about 65% by mass, Zn content: about 35% by mass) into a nail mold and then performing tin plating on the surface. .
  • the diameter of the body part of the negative electrode current collector 6 was 1.15 mm.
  • the head of the negative electrode current collector 6 was electrically welded to a negative electrode terminal plate 7 made of a nickel-plated steel plate. Thereafter, the body of the negative electrode current collector 6 was press-fitted into the through hole at the center of the gasket 5 containing polyamide 6 and 12 as a main component. In this manner, a sealing unit 9 including the gasket 5, the negative electrode terminal plate 7, and the negative electrode current collector 6 was produced.
  • the sealing unit 9 was installed in the opening of the battery case 1.
  • the body of the negative electrode current collector 6 was inserted into the negative electrode 3.
  • the opening end of the battery case 1 was caulked to the peripheral edge of the negative electrode terminal plate 7 via the gasket 5 to seal the opening of the battery case 1.
  • the outer surface of the battery case 1 was covered with the exterior label 8. In this manner, an alkaline battery was produced.
  • Examples 2 to 4 An alkaline dry battery was produced in the same manner as in Example 1 except that the average particle diameter of terephthalic acid in the negative electrode was changed to the value shown in Table 1.
  • Comparative Example 1 In the production of the negative electrode, an alkaline dry battery was produced in the same manner as in Example 1 except that terephthalic acid was not used.
  • Comparative Examples 2 to 4 An alkaline dry battery was produced in the same manner as in Example 1 except that the average particle diameter of terephthalic acid in the negative electrode was changed to the value shown in Table 1.
  • Comparative Example 5 An alkaline dry battery was produced in the same manner as in Example 1 except that in producing the negative electrode, phthalic acid (ortho) powder was used instead of terephthalic acid (para) powder.
  • Comparative Example 6 An alkaline dry battery was produced in the same manner as in Example 1 except that in preparing the negative electrode, isophthalic acid (meta) powder was used instead of terephthalic acid (para) powder.
  • Measured points when rotated 90 degrees around the battery axis (the remaining three points excluding the portion where one end of winding and the other end of winding overlap each other) The same measurement was performed for. Of the four measured values, the average value of the remaining two measured values excluding the maximum and minimum values was determined.
  • the average particle diameters of terephthalic acid in the negative electrodes of Examples 1 to 4 were about 26 ⁇ m, about 100 ⁇ m, about 130 ⁇ m, and about 204 ⁇ m, respectively.
  • the average particle diameters of terephthalic acid in the negative electrodes of Comparative Examples 2 to 4 were about 2 ⁇ m, about 24 ⁇ m, and about 217 ⁇ m, respectively.
  • the thickness of the separators (after swelling) in Examples 1 to 4 and Comparative Examples 1 to 6 was about 260 ⁇ m.
  • Example 1 to 4 and Comparative Examples 3 to 4 since the negative electrode contained particles of terephthalic acid having an average particle size of more than 20 ⁇ m, the negative electrode became cloudy.
  • Comparative Examples 5 to 6 phthalic acid and isophthalic acid were dissolved in the negative electrode during the production process of the negative electrode, and the negative electrode did not become cloudy and was colorless.
  • Comparative Example 2 since the particles of terephthalic acid contained in the negative electrode were very small, the negative electrode did not become cloudy.
  • Examples 1 to 4 high-load discharge performance was improved. This is considered to be because the negative electrode active material and the gelling agent were uniformly mixed in the negative electrode by containing terephthalic acid having a specific average particle diameter in the negative electrode, and discharge unevenness was suppressed. In Examples 2 to 4 in which the average particle diameter of terephthalic acid in the negative electrode was 100 to 210 ⁇ m, excellent high-load discharge performance was obtained.
  • Comparative Example 1 since the negative electrode did not contain terephthalic acid having a specific average particle size, the flow of the negative electrode could not be suppressed, and there was a battery that generated heat. In Comparative Example 1, since the negative electrode did not contain terephthalic acid having a specific average particle diameter, the discharge performance was not improved.
  • Comparative Examples 5 and 6 in which phthalic acid or isophthalic acid was added to the negative electrode, there was a battery that generated heat because the flow of the negative electrode was not suppressed. In Comparative Examples 5 and 6, the discharge performance was lower than that in Comparative Example 1.
  • Examples 5 to 8 In the production of the negative electrode, an alkaline dry battery was produced and evaluated in the same manner as in Example 3 except that the content of terephthalic acid (amount per 100 parts by mass of the negative electrode active material) was changed to the values shown in Table 2.
  • Example 11 In the production of the negative electrode, an alkaline dry battery was produced and evaluated in the same manner as in Example 3 except that 0.1 part by mass of KF was added per 100 parts by mass of the negative electrode active material.
  • Examples 12 to 14 In the production of the negative electrode, an alkaline dry battery was produced and evaluated in the same manner as in Example 3 except that KBr was added in an amount of 0.1, 0.5, or 1.0 part by mass per 100 parts by mass of the negative electrode active material.
  • Table 4 shows the evaluation results.
  • Example 11 to 14 no exothermic battery was observed, and the high-load discharge performance was improved. In particular, in Examples 11 to 13, a significant improvement in high-load discharge performance of about 20% or more was observed.
  • the present invention can be used for any device that uses a dry cell as a power source.
  • a dry cell as a power source.
  • it is suitable for portable audio equipment, electronic games, lights, toys and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Cell Separators (AREA)

Abstract

アルカリ乾電池は、正極と、ゲル状の負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータ中に含まれるアルカリ電解液とを備える。負極は、亜鉛を含む負極活物質と、粒子状のテレフタル酸とを含む。負極中に含まれるテレフタル酸の平均粒径は、25~210μmである。

Description

アルカリ乾電池
 本発明は、ゲル状の負極を備えるアルカリ乾電池に関する。
 アルカリ乾電池(アルカリマンガン乾電池)は、マンガン乾電池に比べて容量が大きく、大きな電流を取り出すことができるため、広く利用されている。アルカリ乾電池は、正極と、ゲル状の負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータ中に含まれるアルカリ電解液とを備える。負極は、亜鉛を含む負極活物質を含む。このようなアルカリ乾電池について、様々な検討が行われている。
 例えば、負極に、負極活物質の防食剤としてテレフタル酸を添加することが提案されている(特許文献1参照)。防食剤としての効果を発揮するためには、負極活物質の表面を、粒子サイズが非常に小さい(例えば、粒径2μm以下の)テレフタル酸で覆う必要がある。
特開平2-194103号公報
 ゲル状の負極を備えるアルカリ乾電池では、電池の落下や輸送時に、電池に強い衝撃や振動が付与されると、ゲル状の負極が正極側へ流動(飛散)して、内部短絡が生じ、電池が発熱することがある。特に、中空円筒形の正極と、正極の中空部内に配されたゲル状の負極とを備える、インサイドアウト型の構造を有するアルカリ乾電池では、負極の流動(飛散)に伴ってセパレータが座屈することがあり、負極の正極側への流出が生じ易い。
 また、アルカリ乾電池を電源とする電子機器などの高性能化に伴い、アルカリ乾電池の更なる高容量化および高出力化が求められている。
 本開示の目的は、ゲル状の負極を備えるアルカリ乾電池において、高容量化および高出力化を図るとともに、負極の正極側への流動による内部短絡の発生と、これに伴う電池の発熱を抑制することである。
 本開示の一局面は、正極と、ゲル状の負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータ中に含まれるアルカリ電解液とを備える。負極は、亜鉛を含む負極活物質と、粒子状のテレフタル酸とを含み、テレフタル酸の平均粒径は、25~210μmである、アルカリ乾電池に関する。
 本開示によれば、ゲル状の負極を備えるアルカリ乾電池において、高容量化および高出力化が可能であるとともに、負極の正極側への流動による内部短絡の発生と、これに伴う電池の発熱を抑制することができる。
図1は、本発明の一実施形態におけるアルカリ乾電池の一部を断面とする正面図である。
 本発明の一実施形態に係るアルカリ乾電池は、正極と、ゲル状の負極と、正極と負極との間に配されたセパレータと、正極、負極、およびセパレータ中に含まれるアルカリ電解液とを備える。負極は、亜鉛を含む負極活物質を含む。
 負極は、粒子状のテレフタル酸(パラ体)を含む。テレフタル酸は、フタル酸(オルト体)やイソフタル酸(メタ体)とは異なり、ゲル状の負極に溶解し難い。負極に粒子状のテレフタル酸を含ませると、負極中では、テレフタル酸の粒子は、その表面がごく僅かに溶解するだけであり、その殆どは溶解せずに存在する。よって、負極に粒子状のテレフタル酸を含ませると、負極が白濁する。このような現象は、負極にフタル酸やイソフタル酸を含ませる場合には見られない。
 負極中のテレフタル酸の平均粒径が25~210μmである場合、負極に適度な粘性とともに弾性が付与されるため、電池の落下や輸送時に、電池に大きな衝撃や振動が加えられた場合でも、負極の正極側への流動(飛散)が十分に抑制される。その結果、内部短絡の発生と、それに伴う電池の発熱を防ぐことができる。インサイドアウト型の構造を有するアルカリ乾電池では、負極の流動(飛散)に伴うセパレータの座屈が抑制され、負極の正極側への流出を十分に抑制することができる。
 上記の負極の白濁現象および負極の流動の抑制効果は、負極中のテレフタル酸の平均粒径が20μm以下では殆どみられない。
 また、負極中のテレフタル酸の平均粒径が25~210μmである場合、放電性能が向上する。特に、高負荷放電性能が向上し、高容量化および高出力化を図ることができる。上記のような特定の平均粒径を有するテレフタル酸は、ゲル状の負極において分散剤としての役割を十分に果たすことができる。すなわち、上記のテレフタル酸をゲル状の負極に分散させることにより、粒子状の負極活物質が凝集したり、ゲル化剤が凝集したりすることを抑制することができる。ゲル状の負極内において負極活物質およびゲル化剤が均一に混ざり合うことで、放電ムラが抑制されるため、放電性能が向上する。
 また、ゲル状の負極が十分に均質化されるため、負極の流動の抑制効果に対する信頼性を高めることができる。
 負極中のテレフタル酸の平均粒径が25μm未満であると、テレフタル酸による負極の分散性の向上効果が不十分となる。また、負極活物質がテレフタル酸の小さな粒子で覆われ易くなり、負極活物質が電解液と接触する面(反応活性面)が減少する。よって、放電性能は向上しない。
 一方、負極中のテレフタル酸の平均粒径が210μm超であると、テレフタル酸の大きな粒子は破断力が大きいため、負極活物質やゲル化剤が、テレフタル酸の大きな粒子と接触した際に損傷し易くなる。また、テレフタル酸による負極の分散性の向上効果が不十分となる。よって、放電性能は向上しない。
 負極の流動の抑制効果および放電性能の向上効果を更に高めることができることから、負極中のテレフタル酸の平均粒径は、100~210μmであることが好ましい。
 負極中のテレフタル酸の平均粒径は、例えば、以下の方法により求められる。
 まず、電池を解体してゲル状の負極を取り出した後、遠心分離して負極から負極活物質を除去し、ゲル化剤とテレフタル酸の粒子の混合物を得る。得られた混合物を乾燥した後、光学顕微鏡を用いて観察し、テレフタル酸の粒子の10個を無作為に選び出す。そして、各粒子の粒径を測定し、測定値の大きいものから順に2つ、小さいものから順に2つの測定値をそれぞれ削除し、残りの6つの測定値の平均値を、負極中のテレフタル酸の平均粒径として求めることができる。
 負極に含まれるゲル状電解液(電解液およびゲル化剤の混合物)が平均粒径25~210μmのテレフタル酸を含む場合、ゲル状電解液は白濁し、この時のゲル状電解液の透過率は1%以下である。
 なお、上記のゲル状電解液の透過率は、以下の手法により求められる。まず、電池を解体して負極を取り出す。その後、この負極を、遠心分離し、ゲル状電解液を含む透明な上層と、ゲル状電解液とテレフタル酸の粒子とを含む白濁する中間層と、負極活物質を含む下層とに分離する。そして、吸光光度法を用いて中間層の透過率をゲル状電解液の透過率として求めることができる。
 負極中のテレフタル酸の含有量は、負極活物質100質量部当たり0.01~0.5質量部であることが好ましい。負極中のテレフタル酸の含有量が上記範囲内である場合、負極の流動の抑制効果および放電性能の向上効果を更に高めることができる。
 なお、負極中のテレフタル酸の含有量が負極活物質100質量部当たり0.5質量部以下であると、負極は良好な弾性を有するとともに良好な粘性を有するため、正極の中空部内への負極の充填性が良好になる。
 負極は、添加剤としてハロゲン化カリウムを負極活物質100質量部当たり0.1~1.0質量部含むことが好ましい。特定の平均粒径のテレフタル酸と、特定量のハロゲン化カリウムとを組み合わせて負極に含ませることで、テレフタル酸による負極の流動抑制の効果を維持しつつ、負極の分散性の向上効果を更に高めることにより、放電性能を更に高めることができる。ハロゲン化カリウムとして、KFおよびKBrの少なくとも一方を用いることが好ましい。
 負極中のハロゲン化カリウムの含有量は、負極活物質100質量部当たり0.1~0.5質量部であることがより好ましい。
 セパレータは、ポリビニルアルコールを50~70質量%含むことが好ましい。ポリビニルアルコールは、例えば、セパレータを構成する繊維(不織布)または微多孔質フィルムに含まれる。
 セパレータ中のポリビニルアルコールの含有量が上記範囲内である場合、セパレータの強度を十分に高めることができるため、負極の正極側への流出を更に抑制することができる。特に、インサイドアウト型の構造を有するアルカリ乾電池では、セパレータの座屈による負極の正極側への流出を更に抑制することができる。
 また、セパレータ中のポリビニルアルコールの含有量が上記範囲内である場合、セパレータの吸液速度を十分に高めることができるため、高負荷放電性能を更に高めることができる。
 インサイドアウト型の構造を有するアルカリ乾電池では、セパレータの厚みは、220~390μmであることが好ましい。
 なお、本明細書中、単に、セパレータの厚みと記載されている場合、これは、電解液を含んで膨潤した状態のセパレータの厚みを意味する。また、1枚のシートを多重に巻いたり、複数枚のシートを重ね合わせたりしてセパレータを構成する場合、セパレータの厚みは、巻いた(重ね合わせた)シートの厚みを合計した総厚みを指す。1枚のシートを1重または多重に巻いて円筒型セパレータを構成する場合において、その強度向上のために、シートの巻き始めの一方の端部と、巻き終わりの他方の端部とを重ね合わせる場合、セパレータの厚みとは、上記の重ね合わせる部分以外の部分の厚みを指す。
 セパレータの厚みが220~390μmである場合、セパレータの強度を十分に確保することができるため、セパレータの座屈による負極の正極側への流出を更に抑制することができる。また、正極の中空部内への負極の充填量(負極容量)を十分に確保することができるとともに、電池の内部抵抗を十分に小さくすることができる。よって、放電性能を更に高めることができる。セパレータの厚みは、220~260μmであることがより好ましい。
 本発明の一実施形態に係るアルカリ乾電池としては、円筒形電池、コイン形電池などが挙げられる。
 以下、本実施形態に係るアルカリ乾電池を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 図1は、本発明の一実施形態におけるアルカリ乾電池の横半分を断面とする正面図である。図1は、インサイドアウト型の構造を有する円筒形電池の一例を示す。図1に示すように、アルカリ乾電池は、中空円筒形の正極2と、正極2の中空部内に配された負極3と、これらの間に配されたセパレータ4と、アルカリ電解液(図示せず)とを含み、これらが、正極端子を兼ねた有底円筒形の電池ケース1内に収容されている。
 正極2は、電池ケース1の内壁に接して配されている。正極2は、二酸化マンガンとアルカリ電解液とを含む。
 正極2の中空部内には、セパレータ4を介して、ゲル状の負極3が充填されている。負極3は、亜鉛を含む負極活物質とテレフタル酸に加え、通常、アルカリ電解液とゲル化剤とを含む。
 セパレータ4は、有底円筒形であり、電解液を含む。セパレータ4は、円筒型のセパレータ4aと、底紙4bとで構成されている。セパレータ4aは、正極2の中空部の内面に沿って配され、正極2と負極3とを隔離している。よって、正極と負極との間に配されたセパレータとは、円筒型のセパレータ4aを意味する。底紙4bは、正極2の中空部の底部に配され、負極3と電池ケース1とを隔離している。
 電池ケース1の開口部は、封口ユニット9により封口されている。封口ユニット9は、ガスケット5、負極端子を兼ねる負極端子板7、および負極集電体6からなる。負極集電体6は負極3内に挿入されている。負極集電体6は、頭部と胴部とを有する釘状の形態を有しており、胴部はガスケット5の中央筒部に設けられた貫通孔に挿入され、負極集電体6の頭部は負極端子板7の中央部の平坦部に溶接されている。電池ケース1の開口端部は、ガスケット5の外周端部を介して負極端子板7の周縁部の鍔部にかしめつけられている。電池ケース1の外表面には外装ラベル8が被覆されている。
 負極3は、平均粒径が25~210μmのテレフタル酸の粒子を含む。これにより、負極3に適度な粘性および弾性が付与され、負極3の流動が十分に抑制される。このため、電池の落下や輸送時に電池に加えられる衝撃や振動により負極3がガスケット5側へ流動(飛散)しにくくなる。よって、負極3のガスケット5側への流動(飛散)に伴うセパレータ4a(ガスケット5側の端部)の座屈による負極3の正極2側への流出が十分に抑制される。その結果、負極3の正極2側への流出による内部短絡の発生と、それに伴う電池の発熱を防ぐことができる。また、負極3に含ませるテレフタル酸の平均粒径が25~210μmである場合、良好な放電性能(特に、高負荷放電性能)が得られる。
 以下、アルカリ乾電池の詳細について説明する。
 (負極)
 負極活物質としては、亜鉛、亜鉛合金などが挙げられる。亜鉛合金は、耐食性の観点から、インジウム、ビスマスおよびアルミニウムからなる群より選択される少なくとも一種を含んでもよい。亜鉛合金中のインジウム含有量は、例えば、0.01~0.1質量%であり、ビスマス含有量は、例えば、0.003~0.02質量%である。亜鉛合金中のアルミニウム含有量は、例えば、0.001~0.03質量%である。亜鉛合金中において亜鉛以外の元素が占める割合は、耐食性の観点から、0.025~0.08質量%であるのが好ましい。
 負極活物質は、通常、粉末状の形態で使用される。負極の充填性および負極内でのアルカリ電解液の拡散性の観点から、負極活物質粉末の平均粒径(D50)は、例えば、100~200μm、好ましくは110~160μmである。なお、本明細書中、平均粒径(D50)とは、体積基準の粒度分布におけるメジアン径である。平均粒径は、例えば、レーザ回折/散乱式粒子分布測定装置を用いて求められる。
 負極は、例えば、亜鉛を含む負極活物質粒子、テレフタル酸粒子、ゲル化剤およびアルカリ電解液を混合することにより得られる。負極に添加するテレフタル酸粉末の平均粒径(D50)は、好ましくは25~210μm、より好ましくは100~210μmである。この場合、電池の落下や輸送時に電池に加えられる衝撃や振動による負極の流動に伴うセパレータの座屈による負極の正極側への流出を抑制することができるとともに、放電性能を高めることができる。
 負極の作製で用いられる負極活物質粉末の平均粒径(D50)P1と、テレフタル酸粉末の平均粒径(D50)P2とは、関係式:
  0.5≦P1/P2≦5.0
を満たすことが好ましい。P1/P2が上記範囲内である場合、負極の流動の抑制効果および放電性能の向上効果を更に高めることができる。より好ましくは、P1/P2は0.6~1.3である。
 ゲル化剤としては、アルカリ乾電池の分野で使用される公知のゲル化剤が特に制限なく使用され、例えば、吸水性ポリマーなどが使用できる。このようなゲル化剤としては、例えば、ポリアクリル酸、ポリアクリル酸ナトリウムが挙げられる。
 ゲル化剤の添加量は、負極活物質100質量部あたり、例えば、0.5~2.5質量部である。
 負極には、粘度の調整等のために、ポリオキシアルキレン基含有化合物やリン酸エステル等の界面活性剤を用いてもよい。中でも、リン酸エステルまたはそのアルカリ金属塩等が好ましい。負極中に界面活性剤をより均一に分散させる観点から、界面活性剤は、負極作製時に用いられるアルカリ電解液に予め添加しておくことが好ましい。
 負極には、耐食性を向上させるために、インジウムやビスマス等の水素過電圧の高い金属を含む化合物を適宜添加してもよい。亜鉛等のデンドライトの成長を抑制するために、負極に、微量のケイ酸やそのカリウム塩などのケイ酸化合物を適宜添加してもよい。
 (負極集電体)
 ゲル状負極に挿入される負極集電体の材質としては、例えば、金属、合金などが挙げられる。負極集電体は、好ましくは、銅を含み、例えば、真鍮などの銅および亜鉛を含む合金製であってもよい。負極集電体は、必要により、スズメッキなどのメッキ処理がされていてもよい。
 (正極)
 正極は、通常、正極活物質である二酸化マンガンに加え、導電剤およびアルカリ電解液を含む。また、正極は、必要に応じて、さらに結着剤を含有してもよい。
 二酸化マンガンとしては、電解二酸化マンガンが好ましい。二酸化マンガンの結晶構造としては、α型、β型、γ型、δ型、ε型、η型、λ型、ラムスデライト型が挙げられる。
 二酸化マンガンは粉末の形態で用いられる。正極の充填性および正極内での電解液の拡散性などを確保し易い観点からは、二酸化マンガンの平均粒径(D50)は、例えば、25~60μmである。
 成形性や正極の膨張抑制の観点から、二酸化マンガンのBET比表面積は、例えば、20~50m2/gの範囲であってもよい。なお、BET比表面積とは、多分子層吸着の理論式であるBET式を用いて、表面積を測定および計算したものである。BET比表面積は、例えば、窒素吸着法による比表面積測定装置を用いることにより測定できる。
 導電剤としては、例えば、アセチレンブラックなどのカーボンブラックの他、黒鉛などの導電性炭素材料が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛などが使用できる。導電剤は、繊維状などであってもよいが、粉末状であることが好ましい。導電剤の平均粒径(D50)は、例えば、3~20μmである。
 正極中の導電剤の含有量は、二酸化マンガン100質量部に対して、例えば、3~10質量部、好ましくは5~9質量部である。
 正極は、例えば、正極活物質、導電剤、アルカリ電解液、必要に応じて結着剤を含む正極合剤をペレット状に加圧成形することにより得られる。正極合剤を、一旦、フレーク状や顆粒状にし、必要により分級した後、ペレット状に加圧成形してもよい。
 ペレットは、電池ケース内に収容された後、所定の器具を用いて、電池ケース内壁に密着するように二次加圧される。
 (セパレータ)
 セパレータの材質としては、例えば、セルロース、ポリビニルアルコールなどが例示できる。セパレータは、上記材料の繊維を主体として用いた不織布であってもよく、セロファンやポリオレフィン系などの微多孔質フィルムであってもよい。不織布と微多孔質フィルムとを併用してもよい。
 セパレータとしては、不織布を用いるのが好ましい。セパレータの強度向上の観点から、不織布は、ポリビニルアルコール繊維を含むことが好ましい。このような不織布は、例えば、ポリビニルアルコール繊維とそれ以外の他の繊維とを混抄して得られる。具体的には、セルロース繊維およびポリビニルアルコール繊維を主体として混抄した不織布、レーヨン繊維およびポリビニルアルコール繊維を主体として混抄した不織布が例示できる。セパレータの座屈による負極の正極側への流出を抑制するとともに放電性能を向上させる観点から、不織布中のポリビニルアルコール繊維の含有量は、50~70質量%であることが好ましい。
 図1では、円筒型のセパレータ4aと、底紙4bとを用いて、有底円筒形のセパレータ4を構成している。有底円筒形のセパレータは、これに限らず、アルカリ乾電池の分野で使用される公知の形状のセパレータを用いればよい。セパレータは、1枚のシートで構成してもよく、セパレータを構成するシートが薄ければ、複数のシートを重ね合わせて構成してもよい。円筒型のセパレータは、薄いシートを複数回巻いて構成してもよい。
 (アルカリ電解液)
 アルカリ電解液は、正極、負極およびセパレータ中に含まれる。アルカリ電解液としては、例えば、水酸化カリウムを含むアルカリ水溶液が用いられる。アルカリ電解液中の水酸化カリウムの濃度は、30~50質量%が好ましい。アルカリ水溶液に、さらに酸化亜鉛を含ませてもよい。アルカリ電解液中の酸化亜鉛の濃度は、例えば、1~5質量%である。
 (電池ケース)
 電池ケースには、例えば、有底円筒形の金属ケースが用いられる。金属ケースには、例えば、ニッケルめっき鋼板が用いられる。正極と電池ケースとの間の密着性を良くするためには、金属ケースの内面を炭素被膜で被覆した電池ケースを用いるのが好ましい。
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1》
 下記の(1)~(3)の手順に従って、図1に示す単3形の円筒形アルカリ乾電池(LR6)を作製した。
 (1)正極の作製
 正極活物質である電解二酸化マンガン粉末(平均粒径(D50)35μm)に、導電剤である黒鉛粉末(平均粒径(D50)8μm)を加え、混合物を得た。電解二酸化マンガン粉末および黒鉛粉末の質量比は92.4:7.6とした。なお、電解二酸化マンガン粉末は、比表面積が41m2/gであるものを用いた。混合物に電解液を加え、充分に攪拌した後、フレーク状に圧縮成形して、正極合剤を得た。混合物および電解液の質量比は100:1.5とした。電解液には、水酸化カリウム(濃度35質量%)および酸化亜鉛(濃度2質量%)を含むアルカリ水溶液を用いた。
 フレーク状の正極合剤を粉砕して顆粒状とし、これを篩によって分級した。10~100メッシュの顆粒11gを、外径13.65mmの所定の中空円筒形に加圧成形して、正極ペレットを2個作製した。
 (2)負極の作製
 負極活物質である亜鉛合金粉末(平均粒径(D50)130μm)と、テレフタル酸粉末(平均粒径(D50)26μm)と、上記の電解液と、ゲル化剤とを混合し、ゲル状の負極3を得た。亜鉛合金としては、0.02質量%のインジウムと、0.01質量%のビスマスと、0.005質量%のアルミニウムとを含む亜鉛合金を用いた。ゲル化剤には、架橋分岐型ポリアクリル酸および高架橋鎖状型ポリアクリル酸ナトリウムの混合物を用いた。負極活物質と、電解液と、ゲル化剤との質量比は、100:50:1とした。テレフタル酸は、負極活物質100質量部当たり0.2質量部で用いた。
 (3)アルカリ電池の組立て
 ニッケルめっき鋼板製の有底円筒形の電池ケース(外径13.80mm、円筒部の肉厚0.15mm、高さ50.3mm)の内面に、日本黒鉛(株)製のバニーハイトを塗布して厚み約10μmの炭素被膜を形成し、電池ケース1を得た。電池ケース1内に正極ペレットを縦に2個挿入した後、加圧して、電池ケース1の内壁に密着した状態の正極2を形成した。有底円筒形のセパレータ4を正極2の内側に配置した後、上記の電解液を注入し、セパレータ4に含浸させた。この状態で所定時間放置し、電解液をセパレータ4から正極2へ浸透させた。その後、6gのゲル状負極3を、セパレータ4の内側に充填した。
 セパレータ4は、円筒型のセパレータ4aおよび底紙4bを用いて構成した。円筒型のセパレータ4aおよび底紙4bには、質量比が1:1であるレーヨン繊維およびポリビニルアルコール繊維を主体として混抄した不織布シート(坪量28g/m2)を用いた。底紙4bに用いた不織布シートの厚みは0.27mmであった。
 セパレータ4a(膨潤前の厚み206μm)は、厚み103μmの不織布シートを二重に巻いて構成した。このとき、不織布シートの巻き始めの一方の端部と、不織布シートの巻き終わりの他方の端部とが互いに重なり合う部分を設けた。セパレータの正極の軸方向(図1のX方向)と垂直な断面において、重なり合う部分の長さは、3mmとした。
 負極集電体6は、一般的な真鍮(Cu含有量:約65質量%、Zn含有量:約35質量%)を、釘型にプレス加工した後、表面にスズめっきを施すことにより得た。負極集電体6の胴部の径は1.15mmとした。ニッケルめっき鋼板製の負極端子板7に負極集電体6の頭部を電気溶接した。その後、負極集電体6の胴部を、ポリアミド6,12を主成分とするガスケット5の中心の貫通孔に圧入した。このようにして、ガスケット5、負極端子板7、および負極集電体6からなる封口ユニット9を作製した。
 次に、封口ユニット9を電池ケース1の開口部に設置した。このとき、負極集電体6の胴部を、負極3内に挿入した。電池ケース1の開口端部を、ガスケット5を介して、負極端子板7の周縁部にかしめつけ、電池ケース1の開口部を封口した。外装ラベル8で電池ケース1の外表面を被覆した。このようにして、アルカリ乾電池を作製した。
 《実施例2~4》
 負極中のテレフタル酸の平均粒径を表1に示す値とした以外は、実施例1と同様にしてアルカリ乾電池を作製した。
 《比較例1》
 負極の作製において、テレフタル酸を用いなかったこと以外は、実施例1と同様にしてアルカリ乾電池を作製した。
 《比較例2~4》
 負極中のテレフタル酸の平均粒径を表1に示す値とした以外は、実施例1と同様にしてアルカリ乾電池を作製した。
 《比較例5》
 負極の作製において、テレフタル酸(パラ体)粉末の代わりにフタル酸(オルト体)粉末を用いた以外は、実施例1と同様にしてアルカリ乾電池を作製した。
 《比較例6》
 負極の作製において、テレフタル酸(パラ体)粉末の代わりにイソフタル酸(メタ体)粉末を用いた以外は、実施例1と同様にしてアルカリ乾電池を作製した。
 [評価]
 得られたアルカリ乾電池を用いて、下記の評価を行った。
 (i)安全性の評価
 実施例および比較例の電池を20個ずつ準備した。各電池の2個を直列に配置してテープで固定し、負極側(図1の負極端子板7側)を下向きにして1mの高さからコンクリートの床面に落下させた。落下させる工程を3回繰り返し行った。この時、40℃以上に発熱した電池の個数を求め、発熱した電池の発生率を求めた。
 (ii)高負荷パルス放電性能の評価
 20±2℃の環境下、1.5Wで2秒間の放電と、0.65Wで28秒間の放電とを交互に10回繰り返すパルス放電を行った後、55分間休止する工程を、電池の閉路電圧が1.05Vに達するまで繰り返し行った。この時、電池の閉路電圧が1.05Vに達するまでの時間を測定し、比較例1の放電時間を100とした指数として表した。
 (iii)負極中のテレフタル酸の平均粒径の測定
 電池を解体してゲル状の負極を取り出した後、遠心分離して負極から負極活物質を除去し、ゲル化剤とテレフタル酸の粒子の混合物を得た。得られた混合物を乾燥した後、光学顕微鏡を用いて観察し、テレフタル酸の粒子の10個を無作為に選び出した。そして、各粒子の粒径を測定し、測定値の大きいものから順に2つ、小さいものから順に2つの測定値をそれぞれ削除し、残りの6つの測定値の平均値を、負極中のテレフタル酸の平均粒径として求めた。
 (iv)セパレータ(膨潤後)の厚みの測定
 正極端子面から電池の軸方向(図1のX方向)に20mmの個所の横断面(図1のX方向と垂直な断面)像を、CTスキャンを用いて観察し、正極と負極との間の距離(径方向の長さ)を、セパレータ4a(電解液を含んで膨潤した状態)の厚みとして測定した。正極と負極との間の円筒型のセパレータ4aが配された任意の1点(巻き始めの一方の端部と、巻き終わりの他方の端部とが互いに重なり合う部分を除く)を決めて、まず測定を行い、電池の軸を中心にして90°ずつ回転させたときの点(巻き始めの一方の端部と、巻き終わりの他方の端部とが互いに重なり合う部分を除く、残りの3点)についても、同様に測定を行った。4点の測定値のうち最大値および最小値を除いた残りの2点の測定値の平均値を求めた。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4の負極中のテレフタル酸の平均粒径は、それぞれ約26μm、約100μm、約130μm、約204μmであった。比較例2~4の負極中のテレフタル酸の平均粒径は、それぞれ約2μm、約24μm、および約217μmであった。
 実施例1~4および比較例1~6のセパレータ(膨潤後)の厚みは、約260μmであった。
 実施例1~4および比較例3~4では、負極は平均粒径20μm超のテレフタル酸の粒子を含むため、負極が白濁した。比較例5~6では、負極の作製過程において、フタル酸およびイソフタル酸は負極中に溶解し、負極は白濁せず無色であった。比較例2では、負極に含まれるテレフタル酸の粒子が非常に小さいため、負極は白濁しなかった。
 実施例1~4では、特定の平均粒径のテレフタル酸を負極に含ませることで、負極の流動が抑制されたため、発熱した電池はみられなかった。
 実施例1~4では、高負荷放電性能が向上した。これは、特定の平均粒径のテレフタル酸を負極に含ませることで、負極内において負極活物質およびゲル化剤が均一に混ざり合い、放電ムラが抑制されたためであると考えられる。負極中のテレフタル酸の平均粒径が100~210μmである実施例2~4では、優れた高負荷放電性能が得られた。
 比較例1では、負極が特定の平均粒径のテレフタル酸を含まないため、負極の流動を抑制することができず、発熱した電池があった。また、比較例1では、負極が特定の平均粒径のテレフタル酸を含まないため、放電性能は向上しなかった。
 比較例2では、テレフタル酸の粒子が非常に小さいため、負極の流動を抑制する効果が得られず、発熱した電池があった。
 比較例2および3では、放電性能は向上しなかった。これは、テレフタル酸の粒子が小さく、負極の分散性の向上効果が十分に得られなかったためであると考えられる。また、負極活物質がテレフタル酸の小さな粒子で覆われる度合いが大きくなり、負極活物質が電解液と接触する面(反応活性面)が減少したためであると考えられる。
 比較例4では、負極活物質およびゲル化剤がテレフタル酸の大きな粒子と接触することにより損傷したため、放電性能は向上しなかった。
 負極にフタル酸やイソフタル酸を添加した比較例5および6では、負極の流動が抑制されなかったため、発熱した電池があった。また、比較例5および6では、比較例1と比べて、放電性能が低下した。
 ここで、テレフタル酸の負極活物質に対する防食効果を評価した結果に関して説明する。テレフタル酸を添加しなかった比較例1の電池、平均粒径2μmのテレフタル酸を添加した比較例2の電池、平均粒径100μmのテレフタル酸を添加した実施例2の電池を、60℃で28日保管した後、水上置換法で電池を開封することで、捕集したガス量を測定した。比較例1の電池は0.65ml、比較例2の電池は0.55ml、実施例2の電池は0.80mlであった。従って、平均粒径が100μmと大きいテレフタル酸は、放電性能や安全性は向上した一方、防食効果を有さないことがわかった。
 《実施例5~8》
 負極の作製において、テレフタル酸の含有量(負極活物質100質量部あたりの量)を、表2に示す値とした以外は、実施例3と同様にしてアルカリ乾電池を作製し、評価した。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 テレフタル酸の含有量が負極活物質100質量部あたり0.01~0.5質量部である実施例3、6、および7では、発熱した電池はみられなかった。また、実施例3、6、および7では、約10%以上の大幅な高負荷放電性能の向上がみられた。
 《実施例9~10》
 セパレータの作製において、セパレータ中のポリビニルアルコールの含有量(不織布中のポリビニルアルコール繊維の含有量)を、表3に示す値とした以外は、実施例3と同様にしてアルカリ乾電池を作製し、評価した。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 セパレータ中のポリビニルアルコールの含有量が50~70質量%である実施例3、9、および10では、発熱した電池はみられなかった。実施例3、9、および10では、約10%以上の大幅な高負荷放電性能の向上がみられた。
 《実施例11》
 負極の作製において、KFを負極活物質100質量部当たり0.1質量部添加した以外は、実施例3と同様にしてアルカリ乾電池を作製し、評価した。
 《実施例12~14》
 負極の作製において、KBrを負極活物質100質量部当たり0.1、0.5、または1.0質量部添加した以外は、実施例3と同様にしてアルカリ乾電池を作製し、評価した。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例11~14では、発熱した電池はみられず、高負荷放電性能が向上した。特に、実施例11~13では、約20%以上の大幅な高負荷放電性能の向上がみられた。
 本発明の一実施形態によれば、乾電池を電源とするあらゆる機器に使用できる。例えば、ポータブルオーディオ機器、電子ゲーム、ライト、おもちゃなどに好適である。
 1 電池ケース
 2 正極
 3 負極
 4 有底円筒形のセパレータ
 4a 円筒型のセパレータ
 4b 底紙
 5 ガスケット
 6 負極集電体
 7 負極端子板
 8 外装ラベル
 9 封口ユニット

Claims (5)

  1.  正極と、ゲル状の負極と、前記正極と前記負極との間に配されたセパレータと、前記正極、前記負極、および前記セパレータ中に含まれるアルカリ電解液とを備え、
     前記負極は、亜鉛を含む負極活物質と、粒子状のテレフタル酸とを含み、
     前記テレフタル酸の平均粒径は、25~210μmである、アルカリ乾電池。
  2.  前記負極中の前記テレフタル酸の含有量は、前記負極活物質100質量部当たり0.01~0.5質量部である、請求項1に記載のアルカリ乾電池。
  3.  前記テレフタル酸の平均粒径は、100~210μmである、請求項1または2に記載のアルカリ乾電池。
  4.  前記セパレータは、ポリビニルアルコールを50~70質量%含む、請求項1~3のいずれか1項に記載のアルカリ乾電池。
  5.  前記負極は、ハロゲン化カリウムを前記負極活物質100質量部当たり0.1~1.0質量部含む、請求項1~4のいずれか1項に記載のアルカリ乾電池。
PCT/JP2017/025862 2016-10-03 2017-07-18 アルカリ乾電池 WO2018066204A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780026478.3A CN109075314B (zh) 2016-10-03 2017-07-18 碱性干电池
US16/314,767 US10847786B2 (en) 2016-10-03 2017-07-18 Alkaline dry battery
JP2018543744A JP6667148B2 (ja) 2016-10-03 2017-07-18 アルカリ乾電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016196038 2016-10-03
JP2016-196038 2016-10-03

Publications (1)

Publication Number Publication Date
WO2018066204A1 true WO2018066204A1 (ja) 2018-04-12

Family

ID=61831718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025862 WO2018066204A1 (ja) 2016-10-03 2017-07-18 アルカリ乾電池

Country Status (4)

Country Link
US (1) US10847786B2 (ja)
JP (1) JP6667148B2 (ja)
CN (1) CN109075314B (ja)
WO (1) WO2018066204A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021152932A1 (ja) * 2020-01-29 2021-08-05 パナソニックIpマネジメント株式会社 アルカリ乾電池
WO2021186805A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 アルカリ乾電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281278A (en) * 1963-10-28 1966-10-25 Union Carbide Corp Corrosion inhibitors
JPS49119127A (ja) * 1973-03-20 1974-11-14
JPS61208753A (ja) * 1985-03-13 1986-09-17 Toshiba Corp アルカリ電池
JPH05135770A (ja) * 1991-11-13 1993-06-01 Toshiba Battery Co Ltd アルカリ電池
JP2003086163A (ja) * 2001-06-29 2003-03-20 Toshiba Battery Co Ltd アルカリ乾電池
WO2017056491A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 アルカリ乾電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240793A (en) 1988-12-07 1993-08-31 Grillo-Werke Ag Alkaline batteries containing a zinc powder with indium and bismuth
DE3841068C2 (de) 1988-12-07 1997-09-04 Grillo Werke Ag Zinkpulver für alkalische Batterien und Verfahren zur Herstellung desselben
CA2377065A1 (en) * 2001-03-15 2002-09-15 Powergenix Systems Inc. Alkaline cells having low toxicity rechargeable zinc electrodes
JP2009259706A (ja) * 2008-04-18 2009-11-05 Panasonic Corp 単3形アルカリ乾電池
JP5366490B2 (ja) 2008-09-30 2013-12-11 Fdkエナジー株式会社 アルカリ電池
WO2013159948A1 (en) * 2012-04-26 2013-10-31 Lenzing Aktiengesellschaft Battery separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281278A (en) * 1963-10-28 1966-10-25 Union Carbide Corp Corrosion inhibitors
JPS49119127A (ja) * 1973-03-20 1974-11-14
JPS61208753A (ja) * 1985-03-13 1986-09-17 Toshiba Corp アルカリ電池
JPH05135770A (ja) * 1991-11-13 1993-06-01 Toshiba Battery Co Ltd アルカリ電池
JP2003086163A (ja) * 2001-06-29 2003-03-20 Toshiba Battery Co Ltd アルカリ乾電池
WO2017056491A1 (ja) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 アルカリ乾電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021152932A1 (ja) * 2020-01-29 2021-08-05 パナソニックIpマネジメント株式会社 アルカリ乾電池
JPWO2021152932A1 (ja) * 2020-01-29 2021-08-05
JP7304564B2 (ja) 2020-01-29 2023-07-07 パナソニックIpマネジメント株式会社 アルカリ乾電池
WO2021186805A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 アルカリ乾電池

Also Published As

Publication number Publication date
US10847786B2 (en) 2020-11-24
US20190157662A1 (en) 2019-05-23
CN109075314B (zh) 2021-04-27
JPWO2018066204A1 (ja) 2019-01-31
CN109075314A (zh) 2018-12-21
JP6667148B2 (ja) 2020-03-18

Similar Documents

Publication Publication Date Title
CN101882679B (zh) 活性物质、电池以及用于制造电极的方法
RU2403654C1 (ru) Катодный активный материал для литиевых вторичных батарей с высокой безопасностью, способ приготовления этого материала и литиевые вторичные батареи, содержащие этот материал
JP5076316B2 (ja) 二次電池用負極および二次電池
TW201312840A (zh) 負極合劑或凝膠電解質、及使用該負極合劑或凝膠電解質之電池
JP2018106879A (ja) 絶縁層付き負極
WO2004038835A1 (ja) 負極および電池、並びにそれらの製造方法
JP2010129471A (ja) 正極活物質および非水電解質電池
JP6706823B2 (ja) アルカリ乾電池
WO2012023199A1 (ja) 非水電解液二次電池
CN107851809B (zh) 碱性干电池
JP2015197976A (ja) 亜鉛電極用合剤
US9312568B2 (en) Lithium secondary battery
WO2018066204A1 (ja) アルカリ乾電池
JP2002056896A (ja) 非水電解質電池
JP6868794B2 (ja) アルカリ乾電池
JP6443815B2 (ja) アルカリ乾電池
WO2019181029A1 (ja) アルカリ乾電池
WO2020166138A1 (ja) アルカリ乾電池
JP2013045524A (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2022046834A (ja) アルカリ乾電池
JP2016181414A (ja) 非水電解質二次電池用電極、非水電解質二次電池、及び電池パック
JP6948629B2 (ja) アルカリ乾電池
JP2018142516A (ja) アルカリ乾電池およびその製造方法
WO2020066846A1 (ja) 非水電解質二次電池
CN115280548A (zh) 碱性干电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018543744

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858044

Country of ref document: EP

Kind code of ref document: A1