WO2018066197A1 - Pressure reducing valve for gas - Google Patents

Pressure reducing valve for gas Download PDF

Info

Publication number
WO2018066197A1
WO2018066197A1 PCT/JP2017/025419 JP2017025419W WO2018066197A1 WO 2018066197 A1 WO2018066197 A1 WO 2018066197A1 JP 2017025419 W JP2017025419 W JP 2017025419W WO 2018066197 A1 WO2018066197 A1 WO 2018066197A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
pressure
valve
passage
reducing valve
Prior art date
Application number
PCT/JP2017/025419
Other languages
French (fr)
Japanese (ja)
Inventor
将之 鈴木
竜円 繁人
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Priority to US16/339,178 priority Critical patent/US11072523B2/en
Priority to DE112017005092.8T priority patent/DE112017005092T5/en
Publication of WO2018066197A1 publication Critical patent/WO2018066197A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/406Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/36Arrangements of flow- or pressure-control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/10Control of fluid pressure without auxiliary power the sensing element being a piston or plunger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7781With separate connected fluid reactor surface
    • Y10T137/7793With opening bias [e.g., pressure regulator]
    • Y10T137/7809Reactor surface separated by apertured partition
    • Y10T137/7812Valve stem passes through the aperture
    • Y10T137/7814Reactor is an inverted cup having liquid seal
    • Y10T137/7816Valve head in inlet chamber

Definitions

  • the present invention relates to a pressure reducing valve for gas, and more particularly, to a pressure reducing valve used for supplying gas fuel for automobiles.
  • Patent Document 1 discloses an automotive gas fuel supply system.
  • the gas fuel is supplied to the primary pressure reducing valve with a high tank pressure (10 MPa to 30 MPa), reduced to an intermediate pressure (1 MPa to 3 MPa) with the primary pressure reducing valve, and further injected with the secondary pressure reducing valve.
  • the supply pressure (300 kPa to 1.2 MPa) is controlled. Since the reduced intermediate pressure acts on the electromagnetic solenoid used in the secondary pressure reducing valve instead of the high tank pressure, the driving force of the electromagnetic solenoid may be small. Therefore, miniaturization of the electromagnetic solenoid is realized.
  • Patent Document 1 the gas that has passed through the valve seat of the primary pressure reducing valve is led to a downstream device (injector) through a passage in the valve body.
  • the valve body slides in the guide hole of the housing via the seal member.
  • the inside of the valve body serves as a main passage through which the gas cooled between the valve seat and the valve body flows to the downstream device, so that the seal member is cooled together with the valve body.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas pressure reducing valve capable of suppressing problems due to a temperature drop of the pressure reducing valve.
  • the high pressure chamber formed in the body, the valve body accommodated in the high pressure chamber, the valve seat on which the valve body can be seated, and the valve seat open to the high pressure chamber.
  • a passage having one end and communicating with an injector at the other end; and a piston chamber coupled to the valve body and accommodated in a piston chamber defined in the body; and the spring chamber on the high pressure chamber side and the high pressure chamber
  • a piston separated from the pressure acting chamber on the opposite side, a connection passage connecting the passage and the pressure acting chamber is formed in the valve body, and the high pressure chamber is coaxially connected to the passage in the body
  • the spring chamber is connected to the high pressure chamber and a guide hole is formed between the spring chamber and the high pressure chamber to guide the movement of the valve body.
  • the guide hole is connected to the piston to open the valve body.
  • a spring urging in the direction is provided in the spring chamber, and the guide hole and the valve body During the gas pressure-reducing valve to place a seal member for sealing between said spring chamber and said high pressure chamber is provided.
  • the high-pressure gas in the high-pressure chamber flows into the passage through the space between the valve seat and the valve body of the pressure reducing valve.
  • the guide hole extends from the high pressure chamber in a direction away from the passage. Accordingly, the cooling effect of the gas in the passage is not easily transmitted to the guide hole.
  • the seal member the temperature drop based on the cooling effect of the gas in the passage can be suppressed. In this way, deterioration of the function of the seal member is prevented. A reliable seal is achieved.
  • the seal member is exposed to a temperature decrease, there is a concern that the function of the seal member is deteriorated.
  • FIG. 1 is a conceptual diagram schematically showing the configuration of a gas fuel supply system according to an embodiment of the present invention.
  • FIG. 2 is an enlarged vertical sectional view schematically showing the configuration of the pressure reducing valve unit.
  • FIG. 3 is a horizontal sectional view taken along line 3-3 in FIG. (First embodiment)
  • FIG. 1 schematically shows a configuration of a gas fuel supply system according to an embodiment of the present invention.
  • the gas fuel supply system 11 is mounted on the body of an automobile and is connected to an in-vehicle engine 12.
  • the engine 12 generates driving force at a rotational speed corresponding to the flow rate (pressure) of the supplied gas fuel.
  • the driving force of the engine 12 is transmitted to wheels that are rotatably supported by the vehicle body and roll on the ground.
  • the rotational speed of the engine 12 is controlled in accordance with, for example, an operation of an accelerator pedal installed in the driver's seat.
  • a radiator 13 is connected to the engine 12. Cooling water circulates between the engine 12 and the radiator 13. The radiator 13 contributes to cooling of the engine 12 through heat radiation of the cooling water.
  • the gas fuel supply system 11 includes an injector 21 and a pressure reducing valve unit (gas pressure reducing valve) 22.
  • the injector 21 is individually coupled to each cylinder of the engine 12.
  • a pressure reducing valve unit 22 is connected to the injector 21 via a distribution pipe 23 in common. The gas fuel is distributed from the distribution pipe 23 to the individual injectors 21.
  • the gas fuel supply system 11 includes a gas fuel tank 24.
  • the gas fuel tank 24 is connected to the pressure reducing valve unit 22.
  • the gas fuel tank 24 stores gas fuel having a tank pressure (10 MPa to 30 MPa). The gas fuel at the tank pressure is reduced to the supply pressure of the injector 21 by the pressure reducing valve unit 22.
  • a filling port 26 is connected to the gas fuel tank 24 via a check valve 25.
  • the filling port 26 is disposed so as to be accessible from the outside of the vehicle body.
  • the gas fuel can be filled into the gas fuel tank 24 from the filling port 26.
  • the filling port 26 may be covered with a lid constituting the surface of the vehicle body.
  • the car is equipped with an ECU (electronic control unit) 27.
  • the ECU 27 includes a vehicle speed sensor 28 that detects the rotation speed of the wheel and outputs a vehicle speed signal that specifies the detection value, and a rotation speed sensor that detects the rotation speed of the engine 12 and outputs a rotation speed signal that specifies the detection value.
  • an operation amount of the accelerator pedal that is, an opening degree is detected, an opening degree sensor 31 that outputs an opening degree signal that specifies a detected value, and a distribution pipe pressure connected to the distribution pipe 23 to detect a detection value
  • a first pressure sensor 32 that outputs a pipe pressure signal is connected to a second pressure sensor 33 that is connected to the pressure-reducing valve unit 22 and detects a tank pressure and outputs a tank pressure signal that specifies a detected value.
  • the ECU 27 calculates the injection pressure of the injector 21 from the vehicle speed, the engine speed, the accelerator opening, the tank pressure, and the like based on the vehicle speed signal, the rotation speed signal, the opening degree signal, and the tank pressure signal, and obtains the calculated injection pressure.
  • a control signal for feedback control of the operation of the pressure reducing valve unit 22 is generated.
  • the pressure reducing valve unit 22 includes a body (unit body) 35.
  • a primary pressure reducing valve 36 and a secondary pressure reducing valve 37 are incorporated in the body 35.
  • the primary pressure reducing valve 36 includes a valve seat (hereinafter “first valve seat”) 38 and a valve body (hereinafter “first valve body”) 39 that faces the first valve seat 38.
  • the secondary pressure reducing valve 37 includes a valve seat (hereinafter “second valve seat”) 41 and a valve body (hereinafter “second valve body”) 42 that faces the second valve seat 41.
  • a passage 43 having one end opened by the first valve seat 38 and the other end opened by the second valve seat 41 is defined in the body 35. The passage 43 extends linearly from one end to the other end.
  • the body 35 includes a primary pressure-reducing valve body (first body) 35a and a secondary pressure-reducing valve body (second body) 35b that are coupled to each other at joint surfaces 45a and 45b.
  • the joint surfaces 45 a and 45 b extend in a virtual plane VL that is orthogonal to the axis Xis of the passage 43.
  • Concave and convex shapes are formed coaxially with the axis Xis on the first body 35a and the second body 35b at the joint surfaces 45a and 45b.
  • the convex shape 46 of the first body 35a is fitted into the concave shape 47 of the second body 35b.
  • Relative displacement (slip) along the joint surfaces 45a and 45b is prevented between the first body 35a and the second body 35b in accordance with the fitting of the uneven shape.
  • the passage 43 is divided into the first body 35a side and the second body 35b side at the joint surfaces 45a and 45b.
  • the high pressure chamber 48 that houses the first valve seat 38 is defined in the first body 35a.
  • the high pressure chamber 48 forms a cylindrical space coaxial with the axis Xis.
  • a fuel inlet 49 is connected to the high pressure chamber 48.
  • the fuel inlet 49 is formed by a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis.
  • a pipe 51 extending from the gas fuel tank 24 is connected to the fuel inlet 49.
  • the high pressure gas is introduced into the high pressure chamber 48.
  • a sensor port 52 is connected to the high pressure chamber 48.
  • the sensor port 52 is formed of a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis.
  • the second pressure sensor 33 is inserted into the sensor port 52.
  • Tank pressure acts on the second pressure sensor 33 from the high pressure chamber 48.
  • the first valve body 39 is connected to a first driving force generating portion 53 that drives the first valve body 39 in a direction approaching and separating from the first valve seat 38.
  • the first driving force generator 53 has a piston 54 that is coupled to the first valve body 39.
  • the piston 54 is formed of a cylindrical body coaxial with the axis Xis.
  • the piston 54 is accommodated in a piston chamber 55 defined in the first body 35a.
  • the piston 54 separates the piston chamber 55 from a spring chamber 56 on the high pressure chamber 48 side and a pressure acting chamber 57 on the opposite side.
  • the first valve body 39 is formed with a connection passage 58 that connects the space in the passage 43 and the pressure acting chamber 57 to each other when seated.
  • the pressure in the passage 43 is introduced into the pressure working chamber 58.
  • the pressure in the passage 43 acts on the pressure receiving surface 54 a of the piston 54. Therefore, the piston 54 receives the pressure on the pressure receiving surface 54a and drives the first valve body 39 in the closing direction.
  • a string spring 59 is accommodated in the spring chamber 56.
  • the string spring 59 is disposed between the wall surface of the spring chamber 56 and the piston 54.
  • the string spring 59 is connected to the piston 54 and exerts an elastic force that drives the first valve body 39 in the opening direction.
  • the piston 54 is displaced in the direction of the axis Xis in accordance with the magnitude relationship between the force in the closing direction based on the pressure acting on the pressure receiving surface 54a and the elastic force of the coiled spring 59.
  • the displacement of the piston 54 determines the opening of the primary pressure reducing valve 36.
  • a guide hole 61 for connecting the high-pressure chamber 48 to the piston chamber 55 is defined in the first body 35a.
  • the guide hole 61 forms an elongated cylindrical space coaxial with the axis Xis.
  • the first valve body 39 is guided in the guide hole 61.
  • the guide hole 61 guides the movement of the first valve body 39 in the direction of the axis Xis.
  • a seal member 62 that seals between the high pressure chamber 48 and the spring chamber 56 is disposed.
  • the seal member 62 is attached to the first valve body 39 and is in close contact with the inner wall surface of the guide hole 61.
  • the high pressure chamber 48 moves the seal member 62 away from the first valve seat 38.
  • the spring chamber 56 is connected to the external space through a through hole 63 formed in the first body 35a. As a result, the inside of the spring chamber 56 is maintained at atmospheric pressure.
  • the low pressure chamber 64 for accommodating the second valve seat 41 is defined in the second body 35b.
  • the low pressure chamber 64 forms a cylindrical space coaxial with the axis Xis.
  • a fuel outlet 65 is connected to the low pressure chamber 64.
  • the fuel outlet 65 is formed in a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis.
  • a pipe 66 extending toward the distribution pipe 23 is connected to the fuel outlet 65.
  • the second valve body 42 is connected to a second drive generator SD that drives the second valve body 42 in a direction approaching and separating from the second valve seat 41.
  • the second driving force generator SD is composed of an electromagnetic solenoid 67 that drives the second valve element 42 based on electromagnetic force.
  • the electromagnetic solenoid 67 includes a movable core 68 coupled to the second valve body 42 and a fixed core 69 surrounding the movable core 68.
  • the movable core 68 is made of a magnetic material.
  • the fixed core 69 generates a magnetic force according to the current supplied to the coil 70.
  • An equal pressure generating chamber 71 is formed between the second valve body 42 and the second body 35b on the opposite side of the low pressure chamber 64.
  • a connection passage 72 that connects the low pressure chamber 64 and the equal pressure generation chamber 71 to each other is formed in the second valve body 42.
  • the pressure of the low pressure chamber 64 acts on the uniform pressure generating chamber 71.
  • a spring 73 is accommodated in the uniform pressure generating chamber 71.
  • the spring 73 is disposed between the wall surface of the uniform pressure generating chamber 71 and the second valve body 42.
  • the spring 73 is connected to the second valve body 42 and exerts an elastic force that biases the second valve body 42 in the closing direction.
  • the moving amount of the movable core 68 can be set based on the current value supplied to the coil 70.
  • a heating medium 74 is disposed along a virtual plane VL that crosses the passage 43.
  • the cooling water of the engine 12 is used for the heating medium 74.
  • grooves 75 and 76 are formed in the joint surface 45a of the first body 35a and the joint surface 45b of the second body 35b, respectively.
  • An inlet passage 77 and an outlet passage 78 are connected to the groove 76 in the second body 35b.
  • the inlet passage 77 and the outlet passage 78 are each formed by a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis.
  • a cooling water pipe 79 extending from the engine 12 is connected to the inlet passage 77, and a cooling water pipe 81 extending to the radiator 13 is connected to the outlet passage 78. As shown in FIG. 3, the cooling water is arranged to draw a circle or an arc on the virtual plane VL.
  • the opening of the secondary pressure reducing valve 37 is determined by the action of the electromagnetic solenoid 67.
  • the current value of the electromagnetic solenoid 67 is specified by a control signal supplied from the ECU 27.
  • the second valve body 42 approaches the second valve seat 41 or moves away from the second valve seat 41.
  • the pressure in the low pressure chamber 64 is determined according to the distance between the second valve body 42 and the second valve seat 41.
  • the supply pressure of the injector 21 is adjusted based on the control of the electromagnetic solenoid 67.
  • the gas fuel is supplied to the primary pressure reducing valve 36 at a high pressure (10 MPa to 30 MPa) tank pressure, reduced to an intermediate pressure (1 MPa to 3 MPa) by the primary pressure reducing valve 36, and further subjected to secondary pressure reduction.
  • the supply pressure (300 kPa to 1.2 MPa) of the injector 21 is controlled by the valve 37.
  • the primary pressure reducing valve 36 uses a mechanical first driving force generator 53 that receives pressure on the pressure receiving surface 54a to drive the first valve body 39.
  • the secondary pressure reducing valve 37 uses the second valve based on electromagnetic force.
  • An electromagnetic solenoid 67 that drives the body 42 is used. Since the reduced intermediate pressure acts on the electromagnetic solenoid 67 used in the secondary pressure reducing valve 37 instead of the high tank pressure, the driving force of the electromagnetic solenoid 67 may be small. Therefore, miniaturization of the electromagnetic solenoid 67 is realized.
  • the heat energy of the heating medium 74 is efficiently transmitted through the body 35 to the first valve seat 38 and the first valve body 39 of the primary pressure reducing valve 36 and the second valve seat 41 and the second valve body 42 of the secondary pressure reducing valve 37. Heat. Therefore, freezing of the valve seats 38 and 41 and the valve bodies 39 and 42 can be avoided.
  • the seating performance of the valve bodies 39, 42 is maintained well, and the valve bodies 39, 42 can be prevented from sticking to the valve seats 38, 41. In particular, since the primary pressure reducing valve 36 that is exposed to cooling due to a large pressure reduction is efficiently heated, a temperature drop of the whole pressure reducing valve unit 22 can be effectively avoided.
  • the body 35 is divided into a first body 35a of the primary pressure reducing valve 36 and a second body 35b of the secondary pressure reducing valve 37.
  • Grooves 75 and 76 are formed in the joint surface 45a of the first body 35a and the joint surface 45b of the second body 35b, and the heating medium 74 is disposed in the grooves 75 and 76. According to such a structure, the processing of the grooves 75 and 76 can be easily realized in the first body 35a and the second body 35b. Therefore, the heating medium 74 can be easily introduced (arranged) in the body 35.
  • the heating medium 74 is in direct contact with the metallic first body 35a and the second body 35b having high thermal conductivity, the thermal energy of the heating medium 74 is efficiently transferred to the first body 35a and the first body 35a. 2 is transmitted to the body 35b and efficiently transmitted from the first body 35a and the second body 35b to the valve seats 38 and 41. The temperature drop of the valve seats 38 and 41 can be effectively prevented.
  • the passage 43 extends linearly in the direction perpendicular to the virtual plane VL.
  • the passage 43 between the primary pressure reducing valve 36 and the secondary pressure reducing valve 37 can be shortened as much as possible. Therefore, the heating medium 74 can be as close as possible to the two valve seats 38 and 41 and the valve bodies 39 and 42. Efficient heating is achieved.
  • the gas fuel decompressed by the primary pressure reducing valve 36 is decompressed again by the secondary pressure reducing valve 37. Therefore, the passage 43 functions as an intermediate pressure passage.
  • the intermediate pressure passage and the gas fuel flowing therethrough can be effectively heated.
  • the passage configuration is simple, and at the same time, the entire pressure reducing valve unit 22 can be downsized.
  • the first valve body 39 of the primary pressure reducing valve 36, the second valve body 42 of the secondary pressure reducing valve 37, and the passage 43 are coaxially arranged on the axis Xis.
  • the components of the pressure reducing valve unit 22 can be packed in a narrow range toward the axis Xis of the valve bodies 39 and 42 and the passage 43. The size is reduced toward the axis Xis.
  • the grooves 75 and 76 of the joint surfaces 45 a and 45 b are arranged so as to draw a circular arc coaxially in the passage 43.
  • An inlet passage 77 and an outlet passage 78 are connected to both ends of the grooves 75 and 76.
  • the inlet passage 77 and the outlet passage 78 are arranged as close to each other as possible in the circumferential direction around the axis Xis. Therefore, the passage 43 is surrounded by the heating medium 74.
  • the heating medium 74 is uniformly arranged around the passage 43, and the passage 43 can be effectively heated.
  • the high pressure gas in the high pressure chamber 48 flows between the first valve seat 38 and the first valve body 39 of the primary pressure reducing valve 36 and flows into the intermediate pressure passage 43.
  • the guide hole 61 extends from the high pressure chamber 48 in a direction away from the passage 43. Therefore, the cooling effect of the intermediate pressure gas is not easily transmitted to the guide hole 61.
  • the sealing member 62 the temperature drop based on the cooling effect of the intermediate pressure gas can be suppressed. In this way, the function deterioration of the seal member 62 is prevented. A reliable seal is achieved. On the other hand, when the seal member is exposed to a temperature decrease, there is a concern that the function of the seal member is deteriorated.
  • heating fluid such as engine oil or the like may be used as the heating medium, or an electric heater or other heater may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

Provided is a pressure reducing valve for gas, the pressure reducing valve being configured such that: a valve body (39) has formed therein a connection passage (58) for connecting a passage (43) and a pressure action chamber (57); a guide hole (61) for guiding the movement of the valve body (39) between a spring chamber (56) and a high-pressure chamber (48) is formed in a body (35a); a spring (59) connected to a piston (54) and pressing the valve body (39) in an opening direction is provided in the spring chamber (56); and a seal member (62) for providing sealing between the high-pressure chamber (48) and the spring chamber (56) is disposed between the guide hole (61) and the valve body (39). Thus, in the provided pressure reducing valve for gas, problems caused by a reduction in the temperature of the pressure reducing valve can be prevented.

Description

ガス用減圧弁Gas pressure reducing valve
 本発明は、ガス用減圧弁に関し、特に、自動車のガス燃料供給に利用される減圧弁に関する。 The present invention relates to a pressure reducing valve for gas, and more particularly, to a pressure reducing valve used for supplying gas fuel for automobiles.
 特許文献1は自動車用ガス燃料供給システムを開示する。このガス燃料供給システムでは、ガス燃料は、高圧(10MPa~30MPa)のタンク圧で一次減圧弁に供給され、一次減圧弁で中間圧(1MPa~3MPa)に減圧され、さらに二次減圧弁でインジェクターの供給圧(300kPa~1.2MPa)に制御される。二次減圧弁で利用される電磁ソレノイドには高圧のタンク圧ではなく減圧された中間圧が作用することから、電磁ソレノイドの駆動力は小さくて済む。したがって、電磁ソレノイドの小型化は実現される。 Patent Document 1 discloses an automotive gas fuel supply system. In this gas fuel supply system, the gas fuel is supplied to the primary pressure reducing valve with a high tank pressure (10 MPa to 30 MPa), reduced to an intermediate pressure (1 MPa to 3 MPa) with the primary pressure reducing valve, and further injected with the secondary pressure reducing valve. The supply pressure (300 kPa to 1.2 MPa) is controlled. Since the reduced intermediate pressure acts on the electromagnetic solenoid used in the secondary pressure reducing valve instead of the high tank pressure, the driving force of the electromagnetic solenoid may be small. Therefore, miniaturization of the electromagnetic solenoid is realized.
独国特許出願公開第102008034581号明細書German Patent Application No. 102008034581
 特許文献1では、一次減圧弁の弁座を通過したガスは、弁体内の通路を通り下流側の機器(インジェクター)へと導かれる。弁体はハウジングのガイド孔内をシール部材を介して摺動する。弁体内部は、弁座と弁体との間で冷却されたガスが下流側機器へと流れるメイン通路となっているため、弁体とともにシール部材は冷却される。その結果、シール部材のシール性の低下が懸念される。シール部材は外部に連通するばね室と高圧室とをシールするものであるので、この部分のシール性低下は外部リークを引き起こし深刻である。 In Patent Document 1, the gas that has passed through the valve seat of the primary pressure reducing valve is led to a downstream device (injector) through a passage in the valve body. The valve body slides in the guide hole of the housing via the seal member. The inside of the valve body serves as a main passage through which the gas cooled between the valve seat and the valve body flows to the downstream device, so that the seal member is cooled together with the valve body. As a result, there is a concern about the deterioration of the sealing performance of the sealing member. Since the sealing member seals the spring chamber and the high-pressure chamber communicating with the outside, the deterioration of the sealing performance at this portion causes external leakage and is serious.
 本発明は、上記実状に鑑みてなされたもので、減圧弁の温度低下に基づく不具合を抑制することができるガス用減圧弁を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gas pressure reducing valve capable of suppressing problems due to a temperature drop of the pressure reducing valve.
 本発明の第1側面によれば、ボディ内に形成された高圧室と、高圧室内に収容される弁体と、前記弁体が着座可能な弁座と、前記弁座で高圧室に開口する一端を有し、他端側でインジェクターへと連通する通路と、前記弁体に結合され、前記ボディ内に区画されるピストン室に収容され前記ピストン室を高圧室側のばね室と高圧室と反対側の圧力作用室とに隔てるピストンとを備え、前記弁体内には、前記通路と圧力作用室とを接続する接続通路が形成され、前記ボディ内には、前記通路に同軸に前記高圧室に開口して前記高圧室に前記ばね室を接続し、前記ばね室と前記高圧室との間で弁体の移動を案内するガイド孔が形成され、前記ピストンに連結されて前記弁体を開き方向に付勢するばねをばね室内に設け、前記ガイド孔と前記弁体との間に、前記高圧室と前記ばね室との間をシールするシール部材を配置するガス用減圧弁は提供される。 According to the first aspect of the present invention, the high pressure chamber formed in the body, the valve body accommodated in the high pressure chamber, the valve seat on which the valve body can be seated, and the valve seat open to the high pressure chamber. A passage having one end and communicating with an injector at the other end; and a piston chamber coupled to the valve body and accommodated in a piston chamber defined in the body; and the spring chamber on the high pressure chamber side and the high pressure chamber A piston separated from the pressure acting chamber on the opposite side, a connection passage connecting the passage and the pressure acting chamber is formed in the valve body, and the high pressure chamber is coaxially connected to the passage in the body The spring chamber is connected to the high pressure chamber and a guide hole is formed between the spring chamber and the high pressure chamber to guide the movement of the valve body. The guide hole is connected to the piston to open the valve body. A spring urging in the direction is provided in the spring chamber, and the guide hole and the valve body During the gas pressure-reducing valve to place a seal member for sealing between said spring chamber and said high pressure chamber is provided.
 第1側面によれば、高圧室の高圧ガスは減圧弁の弁座および弁体の間を通って通路に流入する。ガイド孔は、通路から遠ざかる方向に高圧室から延びる。したがって、通路のガスの冷却効果はガイド孔まで伝わりにくい。シール部材では通路のガスの冷却効果に基づく温度低下は抑制されることができる。こうしてシール部材の機能低下は防止される。確実なシールは実現される。その一方で、シール部材が温度低下に曝されると、シール部材の機能低下は懸念される。 According to the first aspect, the high-pressure gas in the high-pressure chamber flows into the passage through the space between the valve seat and the valve body of the pressure reducing valve. The guide hole extends from the high pressure chamber in a direction away from the passage. Accordingly, the cooling effect of the gas in the passage is not easily transmitted to the guide hole. In the seal member, the temperature drop based on the cooling effect of the gas in the passage can be suppressed. In this way, deterioration of the function of the seal member is prevented. A reliable seal is achieved. On the other hand, when the seal member is exposed to a temperature decrease, there is a concern that the function of the seal member is deteriorated.
図1は本発明の一実施形態に係るガス燃料供給システムの構成を概略的に示す概念図である。(第1の実施の形態)FIG. 1 is a conceptual diagram schematically showing the configuration of a gas fuel supply system according to an embodiment of the present invention. (First embodiment) 図2は減圧弁ユニットの構成を概略的に示す拡大垂直断面図である。(第1の実施の形態)FIG. 2 is an enlarged vertical sectional view schematically showing the configuration of the pressure reducing valve unit. (First embodiment) 図3は図2の3-3線に沿った水平断面図である。(第1の実施の形態)FIG. 3 is a horizontal sectional view taken along line 3-3 in FIG. (First embodiment)
22…ガス用減圧弁(減圧弁ユニット)
35…ボディ(ユニット本体)
35a…一次減圧弁ボディ(第1ボディ)
35b…二次減圧弁ボディ(第2ボディ)
36…一次減圧弁
37…二次減圧弁
38…弁座(第1弁座)
39…弁体(第1弁体)
41…弁座(第2弁座)
42…弁体(第2弁体)
43…通路
48…高圧室
53…第1駆動力発生部
54…ピストン
54a…受圧面
55…ピストン室
56…ばね室
59…ばね(弦巻ばね)
61…ガイド孔
62…シール部材
67…電磁ソレノイド
74…加熱媒体
SD…第2駆動力発生部
VL…仮想平面
22 ... Gas pressure reducing valve (pressure reducing valve unit)
35 ... Body (unit body)
35a ... Primary pressure reducing valve body (first body)
35b ... Secondary pressure reducing valve body (second body)
36 ... Primary pressure reducing valve 37 ... Secondary pressure reducing valve 38 ... Valve seat (first valve seat)
39 ... Valve body (first valve body)
41 ... Valve seat (second valve seat)
42 ... Valve body (second valve body)
43 ... passage 48 ... high pressure chamber 53 ... first driving force generator 54 ... piston 54a ... pressure receiving surface 55 ... piston chamber 56 ... spring chamber 59 ... spring (string wound spring)
61 ... Guide hole 62 ... Seal member 67 ... Electromagnetic solenoid 74 ... Heating medium SD ... Second driving force generator VL ... Virtual plane
 以下、添付図面を参照しつつ本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
第1の実施の形態First embodiment
 図1は本発明の一実施形態に係るガス燃料供給システムの構成を概略的に示す。ガス燃料供給システム11は、自動車の車体に搭載されて、車載のエンジン12に接続される。エンジン12は、供給されるガス燃料の流量(圧力)に応じた回転数で駆動力を生成する。エンジン12の駆動力は、車体に回転自在に支持されて地面を転がる車輪に伝達される。エンジン12の回転数は例えば運転席に設置されるアクセルペダルの操作に応じて制御される。エンジン12にはラジエーター13が接続される。エンジン12およびラジエーター13の間で冷却水は循環する。ラジエーター13は冷却水の放熱を通じてエンジン12の冷却に寄与する。 FIG. 1 schematically shows a configuration of a gas fuel supply system according to an embodiment of the present invention. The gas fuel supply system 11 is mounted on the body of an automobile and is connected to an in-vehicle engine 12. The engine 12 generates driving force at a rotational speed corresponding to the flow rate (pressure) of the supplied gas fuel. The driving force of the engine 12 is transmitted to wheels that are rotatably supported by the vehicle body and roll on the ground. The rotational speed of the engine 12 is controlled in accordance with, for example, an operation of an accelerator pedal installed in the driver's seat. A radiator 13 is connected to the engine 12. Cooling water circulates between the engine 12 and the radiator 13. The radiator 13 contributes to cooling of the engine 12 through heat radiation of the cooling water.
 ガス燃料供給システム11はインジェクター21および減圧弁ユニット(ガス用減圧弁)22を備える。インジェクター21は個々にエンジン12の各気筒に結合される。インジェクター21には共通に分配管23を介して減圧弁ユニット22が接続される。ガス燃料は分配管23から個々のインジェクター21に分配される。 The gas fuel supply system 11 includes an injector 21 and a pressure reducing valve unit (gas pressure reducing valve) 22. The injector 21 is individually coupled to each cylinder of the engine 12. A pressure reducing valve unit 22 is connected to the injector 21 via a distribution pipe 23 in common. The gas fuel is distributed from the distribution pipe 23 to the individual injectors 21.
 ガス燃料供給システム11はガス燃料タンク24を備える。ガス燃料タンク24は減圧弁ユニット22に接続される。ガス燃料タンク24にはタンク圧(10MPa~30MPa)のガス燃料が貯蔵される。タンク圧のガス燃料は減圧弁ユニット22でインジェクター21の供給圧まで減圧される。 The gas fuel supply system 11 includes a gas fuel tank 24. The gas fuel tank 24 is connected to the pressure reducing valve unit 22. The gas fuel tank 24 stores gas fuel having a tank pressure (10 MPa to 30 MPa). The gas fuel at the tank pressure is reduced to the supply pressure of the injector 21 by the pressure reducing valve unit 22.
 ガス燃料タンク24には逆止弁25を介して充填口26が接続される。充填口26は車体の外側からアクセス可能に配置される。充填口26からガス燃料タンク24にガス燃料は充填されることができる。充填口26は車体の表面を構成するリッドで覆われればよい。 A filling port 26 is connected to the gas fuel tank 24 via a check valve 25. The filling port 26 is disposed so as to be accessible from the outside of the vehicle body. The gas fuel can be filled into the gas fuel tank 24 from the filling port 26. The filling port 26 may be covered with a lid constituting the surface of the vehicle body.
 自動車はECU(電子制御ユニット)27を備える。ECU27には、車輪の回転速度を検出し、検出値を特定する車速信号を出力する車速センサー28と、エンジン12の回転数を検出し、検出値を特定する回転数信号を出力する回転数センサー29と、アクセルペダルの操作量すなわち開度を検出し、検出値を特定する開度信号を出力する開度センサー31と、分配管23に接続されて分配管圧を検出し、検出値を特定する分配管圧信号を出力する第1圧力センサー32と、減圧弁ユニット22に接続されてタンク圧を検出し、検出値を特定するタンク圧信号を出力する第2圧力センサー33とが接続される。ECU27は、車速信号、回転数信号、開度信号およびタンク圧信号に基づき、車速、エンジンの回転数、アクセル開度およびタンク圧等からインジェクター21の噴射圧を算出し、算出された噴射圧に向けて減圧弁ユニット22の動作をフィードバック制御する制御信号を生成する。 The car is equipped with an ECU (electronic control unit) 27. The ECU 27 includes a vehicle speed sensor 28 that detects the rotation speed of the wheel and outputs a vehicle speed signal that specifies the detection value, and a rotation speed sensor that detects the rotation speed of the engine 12 and outputs a rotation speed signal that specifies the detection value. 29, an operation amount of the accelerator pedal, that is, an opening degree is detected, an opening degree sensor 31 that outputs an opening degree signal that specifies a detected value, and a distribution pipe pressure connected to the distribution pipe 23 to detect a detection value A first pressure sensor 32 that outputs a pipe pressure signal is connected to a second pressure sensor 33 that is connected to the pressure-reducing valve unit 22 and detects a tank pressure and outputs a tank pressure signal that specifies a detected value. . The ECU 27 calculates the injection pressure of the injector 21 from the vehicle speed, the engine speed, the accelerator opening, the tank pressure, and the like based on the vehicle speed signal, the rotation speed signal, the opening degree signal, and the tank pressure signal, and obtains the calculated injection pressure. A control signal for feedback control of the operation of the pressure reducing valve unit 22 is generated.
 図2に示されるように、減圧弁ユニット22はボディ(ユニット本体)35を備える。ボディ35には一次減圧弁36および二次減圧弁37が組み込まれる。一次減圧弁36は、弁座(以下「第1弁座」)38と、当該第1弁座38に向き合わせられる弁体(以下「第1弁体」)39とを備える。二次減圧弁37は、弁座(以下「第2弁座」)41と、当該第2弁座41に向き合わせられる弁体(以下「第2弁体」)42とを備える。ボディ35には、第1弁座38で開口する一端と、第2弁座41で開口する他端とを有する通路43が区画される。通路43は一端から他端まで線形に延びる。 As shown in FIG. 2, the pressure reducing valve unit 22 includes a body (unit body) 35. A primary pressure reducing valve 36 and a secondary pressure reducing valve 37 are incorporated in the body 35. The primary pressure reducing valve 36 includes a valve seat (hereinafter “first valve seat”) 38 and a valve body (hereinafter “first valve body”) 39 that faces the first valve seat 38. The secondary pressure reducing valve 37 includes a valve seat (hereinafter “second valve seat”) 41 and a valve body (hereinafter “second valve body”) 42 that faces the second valve seat 41. A passage 43 having one end opened by the first valve seat 38 and the other end opened by the second valve seat 41 is defined in the body 35. The passage 43 extends linearly from one end to the other end.
 ボディ35は、接合面45a、45bで相互に結合される一次減圧弁ボディ(第1ボディ)35aおよび二次減圧弁ボディ(第2ボディ)35bを備える。接合面45a、45bは通路43の軸心Xisに直交する仮想平面VL内に広がる。接合面45a、45bで第1ボディ35aおよび第2ボディ35bには軸心Xisに同軸に凹凸形状が形成される。第1ボディ35aの凸形状46は第2ボディ35bの凹形状47にはめ込まれる。こうした凹凸形状の嵌め合いに応じて第1ボディ35aおよび第2ボディ35bの間で接合面45a、45bに沿って相対的な変位(滑り)は防止される。接合面45a、45bで通路43は第1ボディ35a側と第2ボディ35b側とに分割される。 The body 35 includes a primary pressure-reducing valve body (first body) 35a and a secondary pressure-reducing valve body (second body) 35b that are coupled to each other at joint surfaces 45a and 45b. The joint surfaces 45 a and 45 b extend in a virtual plane VL that is orthogonal to the axis Xis of the passage 43. Concave and convex shapes are formed coaxially with the axis Xis on the first body 35a and the second body 35b at the joint surfaces 45a and 45b. The convex shape 46 of the first body 35a is fitted into the concave shape 47 of the second body 35b. Relative displacement (slip) along the joint surfaces 45a and 45b is prevented between the first body 35a and the second body 35b in accordance with the fitting of the uneven shape. The passage 43 is divided into the first body 35a side and the second body 35b side at the joint surfaces 45a and 45b.
 第1ボディ35aには第1弁座38を収容する高圧室48が区画される。高圧室48は軸心Xisに同軸の円柱空間を形成する。高圧室48には燃料入口49が接続される。燃料入口49は、軸心Xisに直交する仮想平面VL内に中心軸線を有する円柱空間で形成される。燃料入口49にガス燃料タンク24から延びる配管51は接続される。こうして高圧室48には高圧ガスが導入される。 The high pressure chamber 48 that houses the first valve seat 38 is defined in the first body 35a. The high pressure chamber 48 forms a cylindrical space coaxial with the axis Xis. A fuel inlet 49 is connected to the high pressure chamber 48. The fuel inlet 49 is formed by a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis. A pipe 51 extending from the gas fuel tank 24 is connected to the fuel inlet 49. Thus, the high pressure gas is introduced into the high pressure chamber 48.
 高圧室48にはセンサー口52が接続される。センサー口52は、軸心Xisに直交する仮想平面VL内に中心軸線を有する円柱空間で形成される。センサー口52には第2圧力センサー33が挿入される。第2圧力センサー33には高圧室48からタンク圧が作用する。 A sensor port 52 is connected to the high pressure chamber 48. The sensor port 52 is formed of a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis. The second pressure sensor 33 is inserted into the sensor port 52. Tank pressure acts on the second pressure sensor 33 from the high pressure chamber 48.
 第1弁体39には、第1弁座38に対して離隔接近する方向に第1弁体39を駆動する第1駆動力発生部53が連結される。第1駆動力発生部53は、第1弁体39に結合されるピストン54を有する。ピストン54は軸心Xisに同軸の円柱体で形成される。ピストン54は、第1ボディ35a内に区画されるピストン室55に収容される。ピストン54は高圧室48側のばね室56と反対側の圧力作用室57とにピストン室55を隔てる。 The first valve body 39 is connected to a first driving force generating portion 53 that drives the first valve body 39 in a direction approaching and separating from the first valve seat 38. The first driving force generator 53 has a piston 54 that is coupled to the first valve body 39. The piston 54 is formed of a cylindrical body coaxial with the axis Xis. The piston 54 is accommodated in a piston chamber 55 defined in the first body 35a. The piston 54 separates the piston chamber 55 from a spring chamber 56 on the high pressure chamber 48 side and a pressure acting chamber 57 on the opposite side.
 第1弁体39には、着座時に通路43内の空間と圧力作用室57とを相互に接続する接続通路58が形成される。こうして圧力作用室58には通路43内の圧力が導入される。通路43内の圧力はピストン54の受圧面54aに作用する。したがって、ピストン54は、受圧面54aに圧力を受けて閉じ方向に第1弁体39を駆動する。 The first valve body 39 is formed with a connection passage 58 that connects the space in the passage 43 and the pressure acting chamber 57 to each other when seated. Thus, the pressure in the passage 43 is introduced into the pressure working chamber 58. The pressure in the passage 43 acts on the pressure receiving surface 54 a of the piston 54. Therefore, the piston 54 receives the pressure on the pressure receiving surface 54a and drives the first valve body 39 in the closing direction.
 ばね室56には弦巻ばね59が収容される。弦巻ばね59はばね室56の壁面とピストン54との間に配置される。こうして弦巻ばね59は、ピストン54に連結されて開き方向に第1弁体39を駆動する弾性力を発揮する。受圧面54aに作用する圧力に基づく閉じ方向の力と、弦巻ばね59の弾性力との大小関係に応じてピストン54は軸心Xisの方向に変位する。ピストン54の変位は一次減圧弁36の開度を決定する。 A string spring 59 is accommodated in the spring chamber 56. The string spring 59 is disposed between the wall surface of the spring chamber 56 and the piston 54. Thus, the string spring 59 is connected to the piston 54 and exerts an elastic force that drives the first valve body 39 in the opening direction. The piston 54 is displaced in the direction of the axis Xis in accordance with the magnitude relationship between the force in the closing direction based on the pressure acting on the pressure receiving surface 54a and the elastic force of the coiled spring 59. The displacement of the piston 54 determines the opening of the primary pressure reducing valve 36.
 第1ボディ35aにはピストン室55に高圧室48を接続するガイド孔61が区画される。ガイド孔61は軸心Xisに同軸の細長い円柱空間を形成する。ガイド孔61には第1弁体39が案内される。ガイド孔61は軸心Xisの方向に第1弁体39の移動を案内する。 A guide hole 61 for connecting the high-pressure chamber 48 to the piston chamber 55 is defined in the first body 35a. The guide hole 61 forms an elongated cylindrical space coaxial with the axis Xis. The first valve body 39 is guided in the guide hole 61. The guide hole 61 guides the movement of the first valve body 39 in the direction of the axis Xis.
 ガイド孔61内には、高圧室48およびばね室56の間をシールするシール部材62が配置される。ここでは、シール部材62は第1弁体39に装着されてガイド孔61の内壁面に密着する。高圧室48は第1弁座38からシール部材62を遠ざける。ばね室56は、第1ボディ35aに形成される貫通孔63で外部空間に接続され、その結果、ばね室56内は大気圧に維持される。 In the guide hole 61, a seal member 62 that seals between the high pressure chamber 48 and the spring chamber 56 is disposed. Here, the seal member 62 is attached to the first valve body 39 and is in close contact with the inner wall surface of the guide hole 61. The high pressure chamber 48 moves the seal member 62 away from the first valve seat 38. The spring chamber 56 is connected to the external space through a through hole 63 formed in the first body 35a. As a result, the inside of the spring chamber 56 is maintained at atmospheric pressure.
 第2ボディ35bには第2弁座41を収容する低圧室64が区画される。低圧室64は軸心Xisに同軸の円柱空間を形成する。低圧室64には燃料出口65が接続される。燃料出口65は、軸心Xisに直交する仮想平面VL内に中心軸線を有する円柱空間で形成される。燃料出口65に、分配管23に向かって延びる配管66は接続される。こうして低圧室64から低圧のガス燃料は排出される。 The low pressure chamber 64 for accommodating the second valve seat 41 is defined in the second body 35b. The low pressure chamber 64 forms a cylindrical space coaxial with the axis Xis. A fuel outlet 65 is connected to the low pressure chamber 64. The fuel outlet 65 is formed in a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis. A pipe 66 extending toward the distribution pipe 23 is connected to the fuel outlet 65. Thus, the low pressure gas fuel is discharged from the low pressure chamber 64.
 第2弁体42には、第2弁座41に対して離隔接近する方向に第2弁体42を駆動する第2駆動発生部SDが連結される。第2駆動力発生部SDは、電磁力に基づき第2弁体42を駆動する電磁ソレノイド67で構成される。電磁ソレノイド67は、第2弁体42に結合される可動コア68と、可動コア68を囲む固定コア69とを備える。可動コア68は磁性材で形成される。固定コア69は、コイル70に供給される電流に応じて磁力を生成する。 The second valve body 42 is connected to a second drive generator SD that drives the second valve body 42 in a direction approaching and separating from the second valve seat 41. The second driving force generator SD is composed of an electromagnetic solenoid 67 that drives the second valve element 42 based on electromagnetic force. The electromagnetic solenoid 67 includes a movable core 68 coupled to the second valve body 42 and a fixed core 69 surrounding the movable core 68. The movable core 68 is made of a magnetic material. The fixed core 69 generates a magnetic force according to the current supplied to the coil 70.
 低圧室64の反対側で第2弁体42と第2ボディ35bとの間には均等圧生成室71が形成される。第2弁体42には、低圧室64と均等圧生成室71とを相互に接続する接続通路72が形成される。こうして均等圧生成室71には低圧室64の圧力が作用する。均等圧生成室71にはばね73が収容される。ばね73は均等圧生成室71の壁面と第2弁体42との間に配置される。ばね73は、第2弁体42に連結されて閉じ方向に第2弁体42を付勢する弾性力を発揮する。その結果、可動コア68の移動量はコイル70に供給される電流値に基づき設定されることができる。 An equal pressure generating chamber 71 is formed between the second valve body 42 and the second body 35b on the opposite side of the low pressure chamber 64. A connection passage 72 that connects the low pressure chamber 64 and the equal pressure generation chamber 71 to each other is formed in the second valve body 42. Thus, the pressure of the low pressure chamber 64 acts on the uniform pressure generating chamber 71. A spring 73 is accommodated in the uniform pressure generating chamber 71. The spring 73 is disposed between the wall surface of the uniform pressure generating chamber 71 and the second valve body 42. The spring 73 is connected to the second valve body 42 and exerts an elastic force that biases the second valve body 42 in the closing direction. As a result, the moving amount of the movable core 68 can be set based on the current value supplied to the coil 70.
 ボディ35内には通路43を横切る仮想平面VLに沿って加熱媒体74が配置される。ここでは、加熱媒体74にはエンジン12の冷却水が利用される。冷却水の利用にあたって第1ボディ35aの接合面45aおよび第2ボディ35bの接合面45bにはそれぞれ溝75、76が形成される。第2ボディ35bで溝76には入口通路77および出口通路78が接続される。入口通路77および出口通路78はそれぞれ軸心Xisに直交する仮想平面VL内に中心軸線を有する円柱空間で形成される。入口通路77にはエンジン12から延びる冷却水配管79が接続され、出口通路78にはラジエーター13に向かって延びる冷却水配管81が接続される。図3に示されるように、冷却水は仮想平面VL上に円または円弧を描くように配置される。 In the body 35, a heating medium 74 is disposed along a virtual plane VL that crosses the passage 43. Here, the cooling water of the engine 12 is used for the heating medium 74. In using the cooling water, grooves 75 and 76 are formed in the joint surface 45a of the first body 35a and the joint surface 45b of the second body 35b, respectively. An inlet passage 77 and an outlet passage 78 are connected to the groove 76 in the second body 35b. The inlet passage 77 and the outlet passage 78 are each formed by a cylindrical space having a central axis in a virtual plane VL orthogonal to the axis Xis. A cooling water pipe 79 extending from the engine 12 is connected to the inlet passage 77, and a cooling water pipe 81 extending to the radiator 13 is connected to the outlet passage 78. As shown in FIG. 3, the cooling water is arranged to draw a circle or an arc on the virtual plane VL.
 次に減圧弁ユニット22の動作を説明する。一次減圧弁36では、圧力作用室57内の圧力が高まってピストン54の駆動力が弦巻ばね59の弾性力を上回ると、第1弁体39は第1弁座38に着座する。中間圧の通路43は高圧室48から分離される。したがって、インジェクター21からエンジン12へ燃料が噴射されると、通路43内の圧力は低下していく。その結果、弦巻ばね59の付勢力がピストン54の駆動力を上回ると、第1弁体39は第1弁座38から離れる。通路43には高圧室48から圧力が導入される。通路43内の圧力は高まっていく。これに伴って圧力作用室57内の圧力は高まっていく。再びピストン54の駆動力が弦巻ばね59の付勢力を上回る。こうした動作が繰り返される結果、通路43内の圧力は目標値に維持されることができる。 Next, the operation of the pressure reducing valve unit 22 will be described. In the primary pressure reducing valve 36, when the pressure in the pressure acting chamber 57 increases and the driving force of the piston 54 exceeds the elastic force of the string spring 59, the first valve body 39 is seated on the first valve seat 38. The intermediate pressure passage 43 is separated from the high pressure chamber 48. Therefore, when fuel is injected from the injector 21 to the engine 12, the pressure in the passage 43 decreases. As a result, when the biasing force of the string spring 59 exceeds the driving force of the piston 54, the first valve body 39 moves away from the first valve seat 38. Pressure is introduced into the passage 43 from the high pressure chamber 48. The pressure in the passage 43 increases. Along with this, the pressure in the pressure acting chamber 57 increases. Again, the driving force of the piston 54 exceeds the biasing force of the string spring 59. As a result of repeating these operations, the pressure in the passage 43 can be maintained at the target value.
 二次減圧弁37では電磁ソレノイド67の働きで開度が決定される。電磁ソレノイド67の電流値はECU27から供給される制御信号で特定される。電磁ソレノイド67の作用に応じて第2弁体42は第2弁座41に近づいたり第2弁座41から遠ざかったりする。第2弁体42および第2弁座41の距離に応じて低圧室64内の圧力は決定される。こうして電磁ソレノイド67の制御に基づきインジェクター21の供給圧は調整される。このガス燃料供給システム11では、ガス燃料は、高圧(10MPa~30MPa)のタンク圧で一次減圧弁36に供給され、一次減圧弁36で中間圧(1MPa~3MPa)に減圧され、さらに二次減圧弁37でインジェクター21の供給圧(300kPa~1.2MPa)に制御される。一次減圧弁36では、受圧面54aで圧力を受けて第1弁体39を駆動する機械式の第1駆動力発生部53が用いられ、二次減圧弁37では、電磁力に基づき第2弁体42を駆動する電磁ソレノイド67が用いられる。二次減圧弁37で利用される電磁ソレノイド67には高圧のタンク圧ではなく減圧された中間圧が作用することから、電磁ソレノイド67の駆動力は小さくて済む。したがって、電磁ソレノイド67の小型化は実現される。 The opening of the secondary pressure reducing valve 37 is determined by the action of the electromagnetic solenoid 67. The current value of the electromagnetic solenoid 67 is specified by a control signal supplied from the ECU 27. In response to the action of the electromagnetic solenoid 67, the second valve body 42 approaches the second valve seat 41 or moves away from the second valve seat 41. The pressure in the low pressure chamber 64 is determined according to the distance between the second valve body 42 and the second valve seat 41. Thus, the supply pressure of the injector 21 is adjusted based on the control of the electromagnetic solenoid 67. In this gas fuel supply system 11, the gas fuel is supplied to the primary pressure reducing valve 36 at a high pressure (10 MPa to 30 MPa) tank pressure, reduced to an intermediate pressure (1 MPa to 3 MPa) by the primary pressure reducing valve 36, and further subjected to secondary pressure reduction. The supply pressure (300 kPa to 1.2 MPa) of the injector 21 is controlled by the valve 37. The primary pressure reducing valve 36 uses a mechanical first driving force generator 53 that receives pressure on the pressure receiving surface 54a to drive the first valve body 39. The secondary pressure reducing valve 37 uses the second valve based on electromagnetic force. An electromagnetic solenoid 67 that drives the body 42 is used. Since the reduced intermediate pressure acts on the electromagnetic solenoid 67 used in the secondary pressure reducing valve 37 instead of the high tank pressure, the driving force of the electromagnetic solenoid 67 may be small. Therefore, miniaturization of the electromagnetic solenoid 67 is realized.
 加熱媒体74の熱エネルギーはボディ35を伝って効率的に一次減圧弁36の第1弁座38および第1弁体39並びに二次減圧弁37の第2弁座41および第2弁体42を加熱する。したがって、弁座38、41および弁体39、42の凍結は回避されることができる。弁体39、42の着座性能は良好に維持され、弁座38、41に対して弁体39、42の固着は防止されることができる。特に、大きい減圧による冷却に曝される一次減圧弁36が効率的に加温されることから、減圧弁ユニット22全体の温度低下も効果的に回避されることができる。 The heat energy of the heating medium 74 is efficiently transmitted through the body 35 to the first valve seat 38 and the first valve body 39 of the primary pressure reducing valve 36 and the second valve seat 41 and the second valve body 42 of the secondary pressure reducing valve 37. Heat. Therefore, freezing of the valve seats 38 and 41 and the valve bodies 39 and 42 can be avoided. The seating performance of the valve bodies 39, 42 is maintained well, and the valve bodies 39, 42 can be prevented from sticking to the valve seats 38, 41. In particular, since the primary pressure reducing valve 36 that is exposed to cooling due to a large pressure reduction is efficiently heated, a temperature drop of the whole pressure reducing valve unit 22 can be effectively avoided.
 加熱媒体74の配置にあたってボディ35は一次減圧弁36の第1ボディ35aおよび二次減圧弁37の第2ボディ35bに分割される。第1ボディ35aの接合面45aおよび第2ボディ35bの接合面45bに溝75、76が形成され、当該溝75、76内に加熱媒体74は配置される。こうした構造によれば、第1ボディ35aおよび第2ボディ35bに対して溝75、76の加工は簡単に実現されることができる。したがって、ボディ35内に加熱媒体74は簡単に導入され(配置され)ることができる。しかも、加熱媒体74は、高い熱伝導性を有する金属性の第1ボディ35aおよび第2ボディ35bにそれぞれ直接に接触することから、加熱媒体74の熱エネルギーは効率的に第1ボディ35aおよび第2ボディ35bに伝達され、第1ボディ35aおよび第2ボディ35bから効率的に弁座38、41に伝わる。弁座38、41の温度低下は効果的に防止されることができる。 In disposing the heating medium 74, the body 35 is divided into a first body 35a of the primary pressure reducing valve 36 and a second body 35b of the secondary pressure reducing valve 37. Grooves 75 and 76 are formed in the joint surface 45a of the first body 35a and the joint surface 45b of the second body 35b, and the heating medium 74 is disposed in the grooves 75 and 76. According to such a structure, the processing of the grooves 75 and 76 can be easily realized in the first body 35a and the second body 35b. Therefore, the heating medium 74 can be easily introduced (arranged) in the body 35. Moreover, since the heating medium 74 is in direct contact with the metallic first body 35a and the second body 35b having high thermal conductivity, the thermal energy of the heating medium 74 is efficiently transferred to the first body 35a and the first body 35a. 2 is transmitted to the body 35b and efficiently transmitted from the first body 35a and the second body 35b to the valve seats 38 and 41. The temperature drop of the valve seats 38 and 41 can be effectively prevented.
 減圧弁ユニット22では通路43は仮想平面VLの垂直方向に線形に延びる。一次減圧弁36および二次減圧弁37の間で通路43はできる限り短縮されることができる。したがって、加熱媒体74は2つの弁座38、41および弁体39、42にできる限り近づけられることができる。効率的な加熱は実現される。減圧弁ユニット22では一次減圧弁36で減圧されたガス燃料は二次減圧弁37で再び減圧される。したがって、通路43は中間圧通路として機能する。中間圧通路およびそこを流通するガス燃料は効果的に加温されることができる。しかも、通路構成が簡単で、同時に減圧弁ユニット22全体の小型化は実現される。 In the pressure reducing valve unit 22, the passage 43 extends linearly in the direction perpendicular to the virtual plane VL. The passage 43 between the primary pressure reducing valve 36 and the secondary pressure reducing valve 37 can be shortened as much as possible. Therefore, the heating medium 74 can be as close as possible to the two valve seats 38 and 41 and the valve bodies 39 and 42. Efficient heating is achieved. In the pressure reducing valve unit 22, the gas fuel decompressed by the primary pressure reducing valve 36 is decompressed again by the secondary pressure reducing valve 37. Therefore, the passage 43 functions as an intermediate pressure passage. The intermediate pressure passage and the gas fuel flowing therethrough can be effectively heated. In addition, the passage configuration is simple, and at the same time, the entire pressure reducing valve unit 22 can be downsized.
 減圧弁ユニット22では、一次減圧弁36の第1弁体39、二次減圧弁37の第2弁体42および通路43は軸心Xis上で同軸に配置される。弁体39、42および通路43の軸心Xisに向かって狭小な範囲に減圧弁ユニット22の構成要素は詰め込まれることができる。軸心Xisに向かってサイズは縮小される。 In the pressure reducing valve unit 22, the first valve body 39 of the primary pressure reducing valve 36, the second valve body 42 of the secondary pressure reducing valve 37, and the passage 43 are coaxially arranged on the axis Xis. The components of the pressure reducing valve unit 22 can be packed in a narrow range toward the axis Xis of the valve bodies 39 and 42 and the passage 43. The size is reduced toward the axis Xis.
 図3に示されるように、接合面45a、45bの溝75、76は通路43に同軸に円弧を描くように配置される。溝75、76の両端に入口通路77および出口通路78は接続される。ここでは、できる限り入口通路77および出口通路78は軸心Xis回りの円周方向に相互に接近して配置される。したがって、通路43は加熱媒体74で囲まれる。こうして加熱媒体74の内側の領域は効果的に保温されることができる。加熱媒体74は通路43の周囲に満遍なく配置され、通路43は効果的に加温されることができる。 As shown in FIG. 3, the grooves 75 and 76 of the joint surfaces 45 a and 45 b are arranged so as to draw a circular arc coaxially in the passage 43. An inlet passage 77 and an outlet passage 78 are connected to both ends of the grooves 75 and 76. Here, the inlet passage 77 and the outlet passage 78 are arranged as close to each other as possible in the circumferential direction around the axis Xis. Therefore, the passage 43 is surrounded by the heating medium 74. Thus, the area inside the heating medium 74 can be effectively kept warm. The heating medium 74 is uniformly arranged around the passage 43, and the passage 43 can be effectively heated.
 高圧室48の高圧ガスは一次減圧弁36の第1弁座38および第1弁体39の間を通って中間圧の通路43に流入する。ガイド孔61は、通路43から遠ざかる方向に高圧室48から延びる。したがって、中間圧ガスの冷却効果はガイド孔61まで伝わりにくい。シール部材62では中間圧ガスの冷却効果に基づく温度低下は抑制されることができる。こうしてシール部材62の機能低下は防止される。確実なシールは実現される。その一方で、シール部材が温度低下に曝されると、シール部材の機能低下は懸念される。 The high pressure gas in the high pressure chamber 48 flows between the first valve seat 38 and the first valve body 39 of the primary pressure reducing valve 36 and flows into the intermediate pressure passage 43. The guide hole 61 extends from the high pressure chamber 48 in a direction away from the passage 43. Therefore, the cooling effect of the intermediate pressure gas is not easily transmitted to the guide hole 61. In the sealing member 62, the temperature drop based on the cooling effect of the intermediate pressure gas can be suppressed. In this way, the function deterioration of the seal member 62 is prevented. A reliable seal is achieved. On the other hand, when the seal member is exposed to a temperature decrease, there is a concern that the function of the seal member is deteriorated.
 なお、加熱媒体にはエンジン12の冷却水のほかエンジンオイルその他の加熱流体が用いられてもよく、電気ヒーターその他の加熱器が用いられてもよい。
 
In addition to the cooling water of the engine 12, heating fluid such as engine oil or the like may be used as the heating medium, or an electric heater or other heater may be used.

Claims (1)

  1.  ボディ(35a)内に形成された高圧室(48)と、
     高圧室(48)内に収容される弁体(39)と、
     前記弁体(39)が着座可能な弁座(38)と、
     前記弁座(38)で高圧室に開口する一端を有し、他端側でインジェクター(21)へと連通する通路(43)と、
     前記弁体(39)に結合され、前記ボディ(35a)内に区画されるピストン室(55)に収容され前記ピストン室(55)を高圧室側のばね室(56)と高圧室と反対側の圧力作用室(57)とに隔てるピストン(54)とを備え、
     前記弁体(39)内には、前記通路(43)と圧力作用室(57)とを接続する接続通路(58)が形成され、
     前記ボディ(35a)内には、前記通路(43)に同軸に前記高圧室(48)に開口して前記高圧室(48)に前記ばね室(56)を接続し、前記ばね室(56)と前記高圧室(48)との間で弁体(39)の移動を案内するガイド孔(61)が形成され、
     前記ピストン(54)に連結されて前記弁体(39)を開き方向に付勢するばね(59)をばね室(56)内に設け、
     前記ガイド孔(61)と前記弁体(39)との間に、前記高圧室(48)と前記ばね室(56)との間をシールするシール部材(62)を配置する
    ことを特徴とするガス用減圧弁。
     
     
    A high pressure chamber (48) formed in the body (35a);
    A valve body (39) housed in the high pressure chamber (48);
    A valve seat (38) on which the valve body (39) can be seated;
    A passage (43) having one end opening into the high pressure chamber at the valve seat (38) and communicating with the injector (21) at the other end;
    The piston chamber (55), which is coupled to the valve body (39) and is defined in the body (35a), is accommodated in the piston chamber (55) on the side opposite to the high pressure chamber side spring chamber (56). A piston (54) separated from the pressure action chamber (57) of
    A connection passage (58) for connecting the passage (43) and the pressure working chamber (57) is formed in the valve body (39),
    In the body (35a), the spring chamber (56) is connected to the high pressure chamber (48) by opening to the high pressure chamber (48) coaxially with the passage (43), and the spring chamber (56). And a guide hole (61) for guiding the movement of the valve body (39) between the high pressure chamber (48) and the high pressure chamber (48),
    A spring (59) connected to the piston (54) and biasing the valve body (39) in the opening direction is provided in the spring chamber (56),
    A seal member (62) for sealing between the high pressure chamber (48) and the spring chamber (56) is disposed between the guide hole (61) and the valve body (39). Gas pressure reducing valve.

PCT/JP2017/025419 2016-10-06 2017-07-12 Pressure reducing valve for gas WO2018066197A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/339,178 US11072523B2 (en) 2016-10-06 2017-07-12 Pressure reducing valve for gas
DE112017005092.8T DE112017005092T5 (en) 2016-10-06 2017-07-12 PRESSURE REDUCTION VALVE FOR GAS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016198097A JP6300877B2 (en) 2016-10-06 2016-10-06 Gas pressure reducing valve
JP2016-198097 2016-10-06

Publications (1)

Publication Number Publication Date
WO2018066197A1 true WO2018066197A1 (en) 2018-04-12

Family

ID=59396102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025419 WO2018066197A1 (en) 2016-10-06 2017-07-12 Pressure reducing valve for gas

Country Status (4)

Country Link
US (1) US11072523B2 (en)
JP (1) JP6300877B2 (en)
DE (1) DE112017005092T5 (en)
WO (1) WO2018066197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307347A (en) * 2019-07-19 2019-10-08 永嘉企达知识产权咨询有限公司 A kind of high sealing pressure reducing valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020939A (en) * 1996-07-08 1998-01-23 Yutaka:Kk Two stages pressure reducing-type pressure adjusting unit
EP0908807A1 (en) * 1997-10-06 1999-04-14 Messer Griesheim Schweisstechnik GmbH + Co. Gas withdrawing system
JPH11327655A (en) * 1998-05-08 1999-11-26 Yutaka:Kk Two-step pressure reduction type pressure adjuster
DE102008034581A1 (en) * 2007-07-24 2009-01-29 Ventrex Automotive Gmbh Tank and fuel supply system for internal combustion engine of motor vehicle, has short low-pressure gas supply line guided to fuel-gas-distributor for supplying engine with actual required amount of low-pressure fuel gas e.g. natural gas
JP2015140814A (en) * 2014-01-27 2015-08-03 川崎重工業株式会社 Pressure reduction valve

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1032052A (en) * 1910-04-07 1912-07-09 Ernest W Evans Pressure-regulator.
US1408926A (en) * 1920-05-24 1922-03-07 Charles L Bastian Fluid-pressure-regulating valve
US2147850A (en) * 1935-02-20 1939-02-21 Pittsburgh Equitable Meter Co Gas pressure regulator
US2720887A (en) * 1952-11-21 1955-10-18 New York Air Brake Co Pressure reducing valve with over pressure relief
US2761464A (en) * 1953-06-08 1956-09-04 Norgren Co C A Pilot controlled regulator
US3181559A (en) * 1960-10-19 1965-05-04 American Brake Shoe Co Electromagnetic and fluid pressure operated valve and anti-hysteresis control circuit therefor
US3251376A (en) * 1964-03-06 1966-05-17 Donald A Worden Pressure regulator and pneumatic noise filter
US4173986A (en) * 1977-04-18 1979-11-13 American Safety Equipment Corporation Pressurized gas flow control valve and assembly thereof with reducer regulator
US4226257A (en) * 1978-03-30 1980-10-07 Sherwood-Selpac Corporation Scuba regulator
US5899221A (en) * 1995-06-30 1999-05-04 Holt; Daniel A. Fluid pressure regulator
US6257275B1 (en) * 2000-04-17 2001-07-10 Liberty Group Pressure reducing valve
US7401622B2 (en) * 2006-06-09 2008-07-22 Nelson Irrigation Corporation Modular pressure regulator
GB2447044B (en) * 2007-02-28 2011-09-21 Scion Sprays Ltd An injection system for an internal combustion engine
DK2166423T3 (en) * 2008-09-19 2018-03-12 Isomatic As Balanced fluid valve
JP6331645B2 (en) * 2014-04-22 2018-05-30 株式会社ジェイテクト Valve device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020939A (en) * 1996-07-08 1998-01-23 Yutaka:Kk Two stages pressure reducing-type pressure adjusting unit
EP0908807A1 (en) * 1997-10-06 1999-04-14 Messer Griesheim Schweisstechnik GmbH + Co. Gas withdrawing system
JPH11327655A (en) * 1998-05-08 1999-11-26 Yutaka:Kk Two-step pressure reduction type pressure adjuster
DE102008034581A1 (en) * 2007-07-24 2009-01-29 Ventrex Automotive Gmbh Tank and fuel supply system for internal combustion engine of motor vehicle, has short low-pressure gas supply line guided to fuel-gas-distributor for supplying engine with actual required amount of low-pressure fuel gas e.g. natural gas
JP2015140814A (en) * 2014-01-27 2015-08-03 川崎重工業株式会社 Pressure reduction valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110307347A (en) * 2019-07-19 2019-10-08 永嘉企达知识产权咨询有限公司 A kind of high sealing pressure reducing valve
CN110307347B (en) * 2019-07-19 2020-10-09 永嘉企达知识产权咨询有限公司 High-sealing pressure reducing valve

Also Published As

Publication number Publication date
US20200048070A1 (en) 2020-02-13
DE112017005092T5 (en) 2019-08-01
JP2017129114A (en) 2017-07-27
US11072523B2 (en) 2021-07-27
JP6300877B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US9074516B2 (en) Device for controlling supply of a system with a fluid
KR100658955B1 (en) Fuel injection valve
CN100453797C (en) Valve apparatus
US9151210B2 (en) Fluid control valve
US20110272048A1 (en) Arrangement of pulse-modulated quick-acting valves, tank system, method for preparing a required mass flow and use of a tank system
US9056602B2 (en) Vehicle brake device
US20170101966A1 (en) Fuel injector
WO2018066197A1 (en) Pressure reducing valve for gas
US9346351B2 (en) Valve device
JP2017129175A (en) Gas pressure reduction valve
KR102274134B1 (en) Pressure regulator
CN108475078B (en) Natural gas pressure regulator with adjustable valve seat
JP2018009676A (en) Solenoid type cutoff valve
US8272369B2 (en) Internal combustion engine gas fuel feed system, and relative electro-injector
CN104302523B (en) Cylinder apparatus
US11725737B2 (en) Fluid circulation valve and thermal treatment system for a vehicle comprising such a valve
WO2019230498A1 (en) Electromagnetic valve and brake control device
KR102046349B1 (en) Fuel injection valve
KR101966876B1 (en) Valve
JP5686118B2 (en) Solenoid valve device
JP5003338B2 (en) Fluid pressure detecting device and solenoid valve
US20180363725A1 (en) Magneto-rheological fluid damper
JP6209148B2 (en) Cylinder device and vehicle brake system
WO2017218148A1 (en) Non-return valve and cooling circuit and device for a vehicle incorporating such a valve
JP3909480B2 (en) Fuel pressure control device in fuel injection device

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858037

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17858037

Country of ref document: EP

Kind code of ref document: A1