WO2018064986A1 - 在多天线***中实现信道测量的方法、装置和存储介质 - Google Patents

在多天线***中实现信道测量的方法、装置和存储介质 Download PDF

Info

Publication number
WO2018064986A1
WO2018064986A1 PCT/CN2017/105404 CN2017105404W WO2018064986A1 WO 2018064986 A1 WO2018064986 A1 WO 2018064986A1 CN 2017105404 W CN2017105404 W CN 2017105404W WO 2018064986 A1 WO2018064986 A1 WO 2018064986A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
terminal
measurement
measurement result
frequency group
Prior art date
Application number
PCT/CN2017/105404
Other languages
English (en)
French (fr)
Inventor
李楠
张冬英
黄河
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018064986A1 publication Critical patent/WO2018064986A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to wireless communication technologies, and more particularly to a method, apparatus and storage medium for implementing channel measurement in a multi-antenna system.
  • a millimeter wave (milimeter-wave, mmW) with a high frequency band and a large bandwidth will be used as a wireless carrier for wireless propagation, compared with the existing low frequency band, due to the millimeter.
  • the wavelength of the wave is very short, so the millimeter wave penetration ability and diffraction ability are relatively poor.
  • Beamforming is the ability of the network to “energy concentrate” in a specific direction by weighting each antenna port to enhance the coverage and capability of millimeter waves.
  • the network side device (for example, the base station) needs to accurately weight the beamforming weight for each antenna port, so it is required
  • the user terminal measures the channel characteristics of each antenna port, and reports the measurement result to the network side, so that the network side performs accurate beamforming weight calculation.
  • the channel characteristics of the same antenna port in different frequency intervals of the entire bandwidth are different, so the user terminal needs to measure and report the channel characteristics of different antenna ports on different frequency resources.
  • the user terminal can measure all antennas on the entire bandwidth in one measurement cycle.
  • the number of antennas and the system bandwidth are multiplied, limited by the complexity of the user terminal and the capability of the user terminal, the user terminal cannot measure all the antennas in the entire bandwidth in one measurement period. After completion, the network side cannot accurately beamform the user terminal.
  • Embodiments of the present invention are directed to a method and apparatus for implementing channel measurement in a multi-antenna system, which can improve the accuracy of beamforming and improve resource utilization of the system.
  • the embodiment of the invention provides a method for implementing channel measurement in a multi-antenna system, which is applied to a device on the network side, and includes:
  • the embodiment of the invention provides a method for implementing channel measurement in a multi-antenna system, which is applied to a terminal, and includes:
  • the measurement result is reported to the device on the network side, and the measurement result includes corresponding frequency group information.
  • An embodiment of the present invention provides a device for implementing channel measurement in a multi-antenna system, which is applied to a device on the network side, and includes:
  • a frequency grouping module configured to divide a system bandwidth into a plurality of frequency packets, and send frequency group information to the terminal
  • An information receiving and processing module configured to receive one or more frequency packets reported by the terminal After the channel characteristic measurement results on the respective antenna ports in the range, corresponding beamforming is performed for each frequency group.
  • An embodiment of the present invention provides a device for implementing channel measurement in a multi-antenna system, which is applied to a terminal, and includes:
  • An information receiving and processing module configured to receive frequency group information sent by a device on the network side
  • a measurement module configured to measure channel characteristics on each antenna port within one or more frequency groupings within one measurement period
  • the reporting module is configured to report the measurement result to the device on the network side, where the measurement result includes corresponding frequency group information.
  • Embodiments of the present invention provide a computer storage medium, where the computer storage medium stores computer executable instructions for performing any of the foregoing methods for implementing channel measurement in a multi-antenna system.
  • the present invention provides a method for implementing channel measurement in a multi-antenna system, where devices on the network side group system bandwidth, and frequency positions measured by each terminal are spread over the entire system bandwidth, so that The terminal completes the measurement of the corresponding frequency group in one measurement period and reports the channel characteristic information on all the antenna ports, thereby ensuring scheduling flexibility and beamforming accuracy, and improving system resource utilization and system throughput. Volume and spectral efficiency.
  • the terminal completes measurement of the corresponding frequency group in one measurement period and reports channel characteristic information on all antenna ports, and completes collection and reporting of channel characteristic information on all antenna ports on part or all of the system bandwidth through multiple measurement periods. Therefore, the flexibility of scheduling and the accuracy of beamforming are ensured, and the resource utilization of the system can be improved, and the system throughput and spectrum efficiency are improved.
  • FIG. 1 is a flowchart of a method (network side) for implementing channel measurement in a multi-antenna system according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method (terminal side) for implementing channel measurement in a multi-antenna system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a device (terminal side) for implementing channel measurement in a multi-antenna system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of information interaction of a method for measuring a channel in a multi-antenna system according to Example 1 of the present invention.
  • the embodiment of the present invention proposes a solution for measuring a channel in a terminal in a multi-antenna system.
  • an embodiment of the present invention provides a method for measuring a channel in a multi-antenna system, which is applied to a network side, and includes:
  • the system bandwidth is divided into multiple frequency groups, and the frequency group information is sent to the terminal.
  • the network side may be a device on the network side, for example, the network side device may include: a base station, a mobility management entity (MME), and the like, and an access network and a core network formed by the terminal for transmitting and receiving data. And/or network devices that transmit networks.
  • MME mobility management entity
  • the frequency grouping information may be information describing the frequency grouping.
  • the frequency group information can be used by a communication device such as a terminal to learn information such as frequency points included in the frequency group based on the frequency group information.
  • the method may also include the following features:
  • the network side refers to: a base station side.
  • the base station side here may be a device on the base station side, and may be a device on the access network.
  • the access network may be a device for the terminal to connect to the network, and usually has a macro base station, a small base station, a home base station, or a network that can perform wireless signal interaction with the terminal.
  • sending the frequency group information to the terminal includes:
  • each frequency group includes at least one of the following: an identifier of the frequency group; wherein the identifier of the frequency group may be a number of the frequency group; for example, an identifier of the frequency group and each frequency Corresponding frequency points of the group have a corresponding relationship, and the relationship may be notified to the terminal in advance by the device on the network side, or may be written into the terminal in advance;
  • Each frequency group may include n frequency points in addition to the start frequency point and the end frequency point; n is greater than or equal to 1; the number of frequency points included in different frequency groups may be different;
  • the sending the frequency group information to the terminal further includes:
  • the frequency component of the initial measurement corresponding to the terminal is also determined, and the initially measured frequency group information corresponding to the terminal is sent to the terminal.
  • the sending the frequency group information to the terminal further includes:
  • the frequency component of the initial measurement corresponding to the terminal is also determined, and the initially measured frequency group information corresponding to the terminal is sent to the terminal.
  • the determining the frequency group of the initial measurement corresponding to the terminal includes:
  • performing corresponding beamforming on each frequency group including:
  • the effective measurement result refers to: the time when the network side receives the measurement report from the current time is less than or equal to the predetermined correlation time threshold;
  • the measurement result reported by the terminal includes: an identifier of the frequency packet and a channel measurement result corresponding to the frequency packet; wherein the identifier of the frequency packet may be a number of the frequency packet;
  • an embodiment of the present invention provides a method for measuring a channel in a multi-antenna system, which is applied to a terminal, including:
  • S210 Receive frequency group information sent by the network side.
  • the method may also include the following features:
  • the network side refers to: a base station side.
  • the frequency group information includes information of each frequency group on a system bandwidth
  • the information of each frequency group includes: an identifier of the frequency group, a starting frequency point of the frequency group, and an ending frequency point of the frequency group; wherein the identifier of the frequency group may be the frequency grouping Number
  • the measurement result reported by the terminal includes: a measurement result of each frequency group measured by the terminal in the current measurement period, and an identifier of the frequency group corresponding to the measurement result;
  • the method further includes:
  • the terminal determines a frequency grouping of the initial measurement
  • the method further includes:
  • an embodiment of the present invention provides a device for measuring a channel in a multi-antenna system, which is applied to a network side, and includes:
  • the frequency grouping module 301 is configured to divide the system bandwidth into multiple frequency groups, and send frequency group information to the terminal;
  • the information receiving and processing module 302 is configured to perform corresponding beamforming on each frequency group after receiving channel characteristic measurement results on each antenna port in the range of one or more frequency packets reported by the terminal.
  • the frequency grouping module 301 can correspond to a processor of a device on the network side.
  • the processor may be a central processing unit, a microprocessor, a digital signal processor, an application processor, an application specific integrated circuit or a programmable array, etc., and may perform frequency grouping by a computer program or the like and form the frequency grouping information.
  • the information receiving and processing module 302 can correspond to an antenna or an antenna array of a device on the network side, and can be used for transmitting and receiving wireless signals, and the wireless signals carry signal characteristic measurement results and/or other information.
  • the network side refers to: a base station side.
  • the frequency grouping module 301 is configured to send frequency group information to the terminal, including:
  • the information of each frequency group includes: an identifier of the frequency packet, a starting frequency point of the frequency packet, and an ending frequency point of the frequency packet.
  • the frequency grouping module 301 is further configured to determine a frequency packet of the initial measurement corresponding to the terminal, and send, to the terminal, frequency group information of the initial measurement corresponding to the terminal.
  • the frequency grouping module 301 is configured to: after transmitting the frequency group information to the terminal, determine a frequency packet of the initial measurement corresponding to the terminal, and send the initially measured frequency group information corresponding to the terminal to the terminal.
  • the frequency grouping module 301 is configured to determine a frequency group of the initial measurement corresponding to the terminal, including:
  • the information receiving and processing module 302 is configured to: after receiving the channel feature measurement result on each antenna port in the range of one or more frequency packets reported by the terminal, perform corresponding beamforming on each frequency group, including :
  • the effective measurement result refers to: the time when the network side receives the measurement report from the current time is less than or equal to the predetermined correlation time threshold.
  • the measurement result reported by the terminal includes: an identifier of the frequency packet and a channel measurement result corresponding to the frequency packet.
  • an embodiment of the present invention provides a device for measuring a channel in a multi-antenna system, which is applied to a terminal, and includes:
  • the information receiving and processing module 401 is configured to receive frequency group information sent by the network side;
  • the measuring module 402 is configured to measure channel characteristics on each antenna port within one or more frequency groupings in one measurement period;
  • the reporting module 403 is configured to report the measurement result to the network side, where the measurement result includes corresponding frequency group information.
  • the terminal may be a mobile device such as a mobile phone, or an in-vehicle device carried by a vehicle such as an automobile, or a communication device of the Internet of Things.
  • the information receiving and processing module 401 and the reporting module 403 can correspond to the antenna of the terminal, and can perform information interaction with the device on the network side.
  • the measurement module 402 can be a processor or the like connected to the antenna, and can perform channel measurement based on parameters such as signal strength received by the antenna, and generate measurement results of the channel characteristics.
  • the network side refers to: a base station side.
  • the frequency group information includes information of each frequency group on a system bandwidth
  • the information of each frequency group includes: an identifier of the frequency packet, a starting frequency point of the frequency packet, and an ending frequency point of the frequency packet.
  • the measurement result reported by the terminal includes: a measurement result of each frequency group measured by the terminal in the current measurement period, and an identifier of the frequency group corresponding to the measurement result.
  • the information receiving and processing module 401 is further configured to receive the initially measured frequency group information corresponding to the terminal sent by the network side, or determine the frequency component of the initial measurement.
  • the information receiving and processing module 401 is further configured to: after receiving the frequency group information sent by the network side, receive the initially measured frequency group information corresponding to the terminal sent by the network side, or determine the initial measurement. Frequency grouping.
  • the information receiving and processing module 401 is further configured to: after reporting the measurement result to the network side, select one or more frequency packets from all frequency groups on the system bandwidth as the frequency group corresponding to the next measurement period.
  • the present invention provides a method for measuring a channel in a terminal in a multi-antenna system. As shown in FIG. 5, the method includes:
  • the network side (base station side) groups the system bandwidth, and can be divided into K frequency packets;
  • the terminal can measure the channel characteristics on all antenna ports in one measurement time;
  • the frequency points of the respective frequency packets may be orthogonal or may have partial frequency overlap.
  • the division of each frequency group is as follows:
  • W 1 [f w1_start , f w1_end ), W 2 :[f w2_start , f w2_end ),..., W K :[f wK_start ,f wK_end );
  • f wi_start is the starting frequency of the frequency packet
  • f wi_end is the ending frequency of the frequency packet
  • f w1_start is the minimum frequency of the entire system bandwidth
  • f wK_end is the entire system bandwidth Maximum frequency point
  • the network side sends the frequency group information to the terminal.
  • the network side can transmit the frequency group information to the terminal by measuring the control information.
  • the frequency group information includes information of each frequency group, and the information of any one of the frequency groups includes: a frequency group number, a starting frequency point and a ending frequency point corresponding to the frequency group.
  • the format of the frequency packet information is as shown in Table 1 below.
  • the network side selects, for each terminal, a frequency packet that is initially measured.
  • the terminal can perform channel characteristic measurement on different frequency packets in different measurement times. Therefore, the network side may allocate a frequency packet to the terminal as the frequency component of the initial measurement, or the terminal may select one frequency packet as the frequency packet of the initial measurement.
  • the frequency packets of the initial measurement of different terminals are different as much as possible. Then, for any terminal, the network side or the terminal may be in the range of 1 to K. A frequency packet is randomly selected as the frequency component of the initial measurement of the terminal, or a frequency packet of the initial measurement of the terminal may be hashed according to the UE_id (user terminal identifier).
  • the network side sends the initially measured frequency group information to the terminal.
  • the frequency group of the initial measurement may be recorded as W init , and if the network side selects the frequency packet W init for the initial measurement for the terminal, the network side needs to notify the terminal of the frequency packet W init of the initial measurement by the measurement control message.
  • the terminal measures all antenna ports in a frequency range of the frequency group.
  • the terminal After the terminal obtains the frequency component W init of the initial measurement, the terminal performs channel feature measurement on all antenna ports in the frequency group W init range;
  • S106 The terminal reports the measurement result to the network side.
  • the terminal After each measurement, the terminal needs to report the measurement result to the network side.
  • the terminal can report the measurement result to the network side in the latest reporting opportunity.
  • the terminal may determine the next set of measured frequency packets according to the frequency ascending or descending order, and complete measurement of each frequency group on part or all of the system bandwidth by multiple measurements;
  • the network side After receiving the measurement result reported by the terminal side, the network side processes the measurement result reported by the terminal by using a sliding window. That is, a correlation time T cor is set on the network side, the current time is recorded as T now , and all measurement results received in the time range [T now -T cor , T now ] are valid if the measurement result is T now -T cor received before, then the network side will remove these received measurements. All measurements received within the time range [T now -T cor ,T now ] can be referred to as valid measurements.
  • the network side performs scheduling and resource allocation on the terminal within a frequency range of valid measurement results.
  • the network side schedules the terminal at the current time T now, the network allocates resources to the terminal within the frequency range corresponding to the effective measurement result. Moreover, the network side uses different beamforming weights on different frequency groups according to the channel characteristic information reported by the terminal in different frequency groups.
  • the network side sends the downlink scheduling information and the downlink data block to the terminal.
  • An embodiment of the present invention provides a computer storage medium, where the computer storage medium stores computer executable instructions for performing channel measurement performed in a multi-antenna system provided by a device applied to a network side.
  • the computer storage medium provided by the embodiment of the invention includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. Medium.
  • the computer storage medium can be a non-transitory storage medium.
  • the non-transitory storage medium herein may also be referred to as a non-volatile storage medium.
  • the embodiment of the present invention further provides a communication device, which may be the network side device or the terminal.
  • the communication device can include:
  • the processor 320 is coupled to the memory 310 and the transceiver 330, respectively, for performing a method for implementing channel measurement in a multi-antenna system provided by any one or more of the above technical solutions by executing the computer program.
  • the transceiver 330 in this embodiment may correspond to a transceiver antenna, and the transceiver antenna may be information interaction between the base station and the UE.
  • the memory 310 can include various types of storage media that can be used for data storage.
  • the storage medium included in the memory 310 is at least partially a non-volatile storage medium, and can be used to store computer-executable instructions such as the computer program.
  • the processor 320 can include a central processing unit, a microprocessor, a digital signal processor, an application processor, an application specific integrated circuit, or a programmable array, etc., which can be used by a computer program. The determination of the quality of the cell signal is performed.
  • the processor 320 can be connected to the transceiver 330 and the memory 310 via an in-device bus such as an integrated circuit bus.
  • the system bandwidth is divided into multiple frequency packets, and the frequency group information is sent to the terminal by the network side device, and the terminal can perform channel measurement based on the information of the frequency grouping of the entire system bandwidth, so that the channel can be made.
  • the terminal completes the measurement of the corresponding frequency group in one measurement period and reports the channel characteristic information on all the antenna ports, and the terminal completes the measurement of the corresponding frequency group in one measurement period and reports the channel characteristic information on all the antenna ports, through multiple
  • the measurement cycle completes the collection and reporting of channel characteristic information on all antenna ports on part or all of the system bandwidth; thus, it has a positive industrial effect; and has the characteristics of simple implementation, industrial achievability and easy promotion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种在多天线***中实现信道测量的方法,应用于网络侧的设备,包括:将***带宽划分为多个频率分组,向终端发送频率分组信息;接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。本发明还公开了一种在多天线***中实现信道测量的方法,应用于终端,包括:接收网络侧的设备发送的频率分组信息;在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;向网络侧的设备上报测量结果,所述测量结果包括对应的频率分组信息。本发明实施例还提供一种计算机存储介质。

Description

在多天线***中实现信道测量的方法、装置和存储介质
本申请基于申请号为201610886054.1、申请日为2016年10月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术,尤指一种在多天线***中实现信道测量的方法、装置和存储介质。
背景技术
在未来无线通信的5G(5th generation,第5代)***中,将采用高频段大带宽的毫米波(milimeter-wave,mmW)作为无线传播的无线载波,和现有低频段相比,由于毫米波的波长很短,所以毫米波的穿透能力、绕射能力等都比较差。为了增加毫米波的覆盖范围,需要在网络侧引入大规模多天线进行波束赋形。波束赋形是网络通过对各个天线端口进行赋形加权,能够在某个特定的方向进行“能量集中”,从而提升毫米波的覆盖范围和能力。
为了使网络能够准确地对某个UE(User Equipment,用户终端)进行波束赋形,网络侧的设备,(例如,基站)需要对每个天线端口进行准确地波束赋形权值加权,因此需要用户终端测量每个天线端口的信道特征,并将测量结果上报给网络侧,以便网络侧进行准确的波束赋形权值计算。同时,由于存在频率选择性衰落,同一天线端口在全带宽下的不同频率区间的信道特征是不同的,所以用户终端需要在不同的频率资源上对不同的天线端口进行信道特征测量并上报。
在现有***中,由于网络侧天线数比较少,比如为4根或8根天线, 同时***带宽也比较小,比如20Mhz,那么用户终端可以在一个测量周期内对整个带宽上的所有天线测量完毕。但是在未来5G无线通信***中,由于天线数和***带宽成倍增加,受限于用户终端的复杂度和用户终端的能力,用户终端无法在一个测量周期内对整个带宽上的所有天线都测量完毕,导致网络侧不能准确地对用户终端进行波束赋形。
发明内容
本发明实施例期望提供了一种在多天线***中实现信道测量的方法和装置,能够提高波束赋形的准确性,提升***的资源利用率。
本发明实施例提供了一种在多天线***中实现信道测量的方法,应用于网络侧的设备,包括:
将***带宽划分为多个频率分组,向终端发送频率分组信息;
接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。
本发明实施例提供了一种在多天线***中实现信道测量的方法,应用于终端,包括:
接收网络侧的设备发送的频率分组信息;
在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;
向网络侧的设备上报测量结果,所述测量结果包括对应的频率分组信息。
本发明实施例提供了一种在多天线***中实现信道测量的装置,应用于网络侧的设备,包括:
频率分组模块,配置为将***带宽划分为多个频率分组,向终端发送频率分组信息;
信息接收及处理模块,配置为接收到终端上报的一个或多个频率分组 范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。
本发明实施例提供了一种在多天线***中实现信道测量的装置,应用于终端,包括:
信息接收及处理模块,用于接收网络侧的设备发送的频率分组信息;
测量模块,配置为在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;
上报模块,配置为向网络侧的设备上报测量结果,所述测量结果包括对应的频率分组信息。
本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行前述任意一种在多天线***中实现信道测量的方法。
与现有技术相比,本发明提供的一种在多天线***中实现信道测量的方法,网络侧的设备对***带宽进行分组,各个终端测量的频率位置散布在整个***带宽上,这样能够使终端在一次测量周期内完成对应频率分组的测量并上报所有天线端口上的信道特征信息,从而保证了调度的灵活性和波束赋形的准确性,同时能够提升***的资源利用率,提升***吞吐量和频谱效率。
进一步地,终端在一次测量周期内完成对应频率分组的测量并上报所有天线端口上的信道特征信息,通过多个测量周期完成部分或全部***带宽上所有天线端口上的信道特征信息的收集和上报,从而保证了调度的灵活性和波束赋形的准确性,同时能够提升***的资源利用率,提升***吞吐量和频谱效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其 他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例提供的一种在多天线***中实现信道测量的方法(网络侧)流程图;
图2为本发明实施例提供的一种在多天线***中实现信道测量的方法(终端侧)流程图;
图3为本发明实施例提供的一种在多天线***中实现信道测量的装置(网络侧)示意图;
图4为本发明实施例提供的一种在多天线***中实现信道测量的装置(终端侧)示意图;
图5为本发明示例1提供的一种在多天线***中测量信道的方法的信息交互示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机***中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在多天线***中,发射端有多个天线,这些发射端天线可以通过波束赋形的方法,形成对准接收端的波束,从而提升接收端的接收增益,同时 降低对其他波束内用户的干扰。为了使网络侧的设备能更加精确的对用户终端进行波束赋形,网络侧的设备需要获知不同频段上各个天线端口的信道特征信息。当网络侧的设备收到用户终端上报的各个天线端口的信道特征信息后,网络侧的设备就可以根据各天线端口的信道特征信息计算波束赋形权值,从而实现对用户终端的波束赋形。但是由于终端的能力限制,在整个***带宽内,终端不能在一次测量时间内对所有天线端口的信道特征进行测量。在这种情况下,为了保证***性能,本发明实施例提出一种在多天线***中终端测量信道的解决方案。
如图1所示,本发明实施例提供了一种在多天线***中测量信道的方法,应用于网络侧,包括:
S110,将***带宽划分为多个频率分组,向终端发送频率分组信息;
S120,接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。
在本实施例中,所述网络侧可以泛指网络侧的设备,例如,所述网络侧的设备可包括:基站,移动管理实体(MME)等组成供终端收发数据的接入网、核心网和/或传输网络的网络设备。
所述频率分组信息可为所述描述频率分组的信息。所述频率分组信息可以用于终端等通信设备基于频率分组信息,了解到频率分组包括的频点等信息。
所述方法还可以包括下述特点:
其中,所述网络侧是指:基站侧。这里的基站侧可为基站侧的设备,可选为接入网的设备。所述接入网,可为供终端连接到网络的设备,通常有,宏基站、小基站、家庭基站,或者等可以与终端进行无线信号交互的网络。
可选地,不同频率分组之间有部分频率重叠,或者,不同频率分组之 间没有频率重叠;
可选地,向终端发送频率分组信息,包括:
向终端发送***带宽上所有频率分组的信息;
其中,每一个频率分组的信息包括以下至少之一:所述频率分组的标识;其中,所述频率分组的标识可以是所述频率分组的编号;例如,所述频率分组的标识与每一个频率分组的对应的频点具有对应关系,该关系可以有网络侧的设备预先告知终端,也可以预先写入到终端中;
所述频率分组的起始频点和所述频率分组的结束频点;
其中,每一个频率分组除了包括起始频点和结束频点外,还可以包括n个频点;n大于或等于1;不同频率分组包括的频点数目可以不同;
整个***带宽上的所有频点是预先约定的,因此,任意一个频率分组在确定了起始频点和结束频点后,该频率分组内的其他频点就确定下来了,网络侧无需将每一个频率分组内的所有频点逐个通知终端。
可选地,所述向终端发送频率分组信息,还包括:
在向终端发送***带宽上所有频率分组的信息后,还确定所述终端对应的起始测量的频率分组,向所述终端发送该终端对应的起始测量的频率分组信息。
在一些实施例中,所述向终端发送频率分组信息,还包括:
在向终端发送***带宽上所有频率分组的信息后,还确定所述终端对应的起始测量的频率分组,向所述终端发送该终端对应的起始测量的频率分组信息。
可选地,所述确定所述终端对应的起始测量的频率分组,包括:
从***带宽上所有的频率分组中随机选取一个或多个频率分组作为所述终端对应的起始测量的频率分组;或者
根据所述终端的编号在***带宽上所有频率分组的编号中进行哈希运 算,产生所述终端对应的起始测量的频率分组;
可选地,接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形,包括:
接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,判断每一个频率分组范围内的测量结果是否有效,对有效的测量结果对应的频率分组进行波束赋形;
其中,有效的测量结果是指:网络侧接收到测量报告的时刻距离当前时刻的时长小于或等于预定的相关时间阈值;
其中,终端上报的测量结果包括:频率分组的标识和频率分组对应的信道测量结果;其中,所述频率分组的标识可以是所述频率分组的编号;
如图2所示,本发明实施例提供了一种在多天线***中测量信道的方法,应用于终端,包括:
S210,接收网络侧发送的频率分组信息;
S220,在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;
S230,向网络侧上报测量结果,所述测量结果包括对应的频率分组信息;
所述方法还可以包括下述特点:
其中,所述网络侧是指:基站侧。
可选地,所述频率分组信息包括***带宽上每一个频率分组的信息;
其中,每一个频率分组的信息包括:所述频率分组的标识、所述频率分组的起始频点和所述频率分组的结束频点;其中,所述频率分组的标识可以是所述频率分组的编号;
可选地,不同频率分组之间有部分频率重叠,或者,不同频率分组之间没有频率重叠;
可选地,终端上报的测量结果包括:终端在本次测量周期内测量的每一个频率分组的测量结果以及该测量结果对应的频率分组的标识;
可选地,接收网络侧发送的频率分组信息后,所述方法还包括:
接收网络侧发送的所述终端对应的起始测量的频率分组信息;或者
终端确定起始测量的频率分组;
可选地,向网络侧上报测量结果后,所述方法还包括:
从***带宽上所有的频率分组中选取一个或多个频率分组作为下一个测量周期对应的频率分组;
如图3所示,本发明实施例提供了一种在多天线***中测量信道的装置,应用于网络侧,包括:
频率分组模块301,配置为将***带宽划分为多个频率分组,向终端发送频率分组信息;
信息接收及处理模块302,配置为接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。
所述频率分组模块301,可对应于网络侧的设备的处理器。所述处理器可为中央处理器、微处理器、数字信号处理器、应用处理器、专用集成电路或可编程阵列等,可以通过计算机程序等执行频率分组,并形成所述频率分组信息。
所述信息接收及处理模块302,可对应于网络侧的设备的天线或天线阵列,可以用于进行无线信号的收发,这些无线信号上承载有信号特征测量结果和/或其他信息。
其中,所述网络侧是指:基站侧。
可选地,频率分组模块301,配置为向终端发送频率分组信息,包括:
向终端发送***带宽上所有频率分组的信息;
其中,每一个频率分组的信息包括:所述频率分组的标识、所述频率分组的起始频点和所述频率分组的结束频点。
可选地,频率分组模块301,还配置为确定所述终端对应的起始测量的频率分组,向所述终端发送该终端对应的起始测量的频率分组信息。
可选地,频率分组模块301,配置为向终端发送频率分组信息后,还确定所述终端对应的起始测量的频率分组,向所述终端发送该终端对应的起始测量的频率分组信息。
可选地,频率分组模块301,配置为确定所述终端对应的起始测量的频率分组,包括:
从***带宽上所有的频率分组中随机选取一个或多个频率分组作为所述终端对应的起始测量的频率分组;或者
根据所述终端的编号在***带宽上所有频率分组的编号中进行哈希运算,产生所述终端对应的起始测量的频率分组。
可选地,信息接收及处理模块302,配置为接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形,包括:
接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,判断每一个频率分组范围内的测量结果是否有效,对有效的测量结果对应的频率分组进行波束赋形;
其中,有效的测量结果是指:网络侧接收到测量报告的时刻距离当前时刻的时长小于或等于预定的相关时间阈值。
可选地,终端上报的测量结果包括:频率分组的标识和频率分组对应的信道测量结果。
如图4所示,本发明实施例提供了一种在多天线***中测量信道的装置,应用于终端,包括:
信息接收及处理模块401,配置为接收网络侧发送的频率分组信息;
测量模块402,配置为在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;
上报模块403,配置为向网络侧上报测量结果,所述测量结果包括对应的频率分组信息。
所述终端可为手机等人载设备、或汽车等交通工具携带的车载设备,或者,是物联网的通信设备等。
所述信息接收及处理模块401及所述上报模块403,可对应于终端的天线,可与网络侧的设备进行信息交互。
所述测量模块402可为与天线连接的处理器等,可以基于天线接收的信号强度等参数,完成信道测量,并产生所述信道特征的测量结果。
其中,所述网络侧是指:基站侧。
可选地,所述频率分组信息包括***带宽上每一个频率分组的信息;
其中,每一个频率分组的信息包括:所述频率分组的标识、所述频率分组的起始频点和所述频率分组的结束频点。
可选地,终端上报的测量结果包括:终端在本次测量周期内测量的每一个频率分组的测量结果以及该测量结果对应的频率分组的标识。
可选地,信息接收及处理模块401,还配置为接收网络侧发送的所述终端对应的起始测量的频率分组信息,或者确定起始测量的频率分组。
可选地,信息接收及处理模块401,还配置为在接收到网络侧发送的频率分组信息后,接收网络侧发送的所述终端对应的起始测量的频率分组信息,或者确定起始测量的频率分组。
可选地,信息接收及处理模块401,还配置为在向网络侧上报测量结果后,从***带宽上所有的频率分组中选取一个或多个频率分组作为下一个测量周期对应的频率分组。
示例1
在大带宽多天线***中,***带宽比较大,天线数也非常多,比如:128天线、500Mhz带宽的***。但是由于终端的能力限制,在整个***带宽内,终端不能在一次测量时间内对所有天线端口的信道特征进行测量。在这种情况下,为了保证***性能,本发明示例提出一种在多天线***中终端测量信道的方法,如图5所示,所述方法包括:
S101,网络侧(基站侧)对***带宽进行分组,可以分为K个频率分组;
比如,假设***带宽为W,***天线数为N,网络侧将***带宽分为K组,记为W1,W2,…,WK,其中,W1∪W2∪...∪WK=W。对任意一组***带宽Wi,i=1,2,...,K,终端在一次测量时间内可以测量完毕所有天线端口上的信道特征;
其中,每一个频率分组Wi的所对应的带宽,可以由网络侧根据各个终端的能力进行分配,i=1,2,...,K;
其中,各个频率分组的频点之间可以是正交的,也可以是有部分的频率重叠,比如,各个频率分组的划分如下:
W1:[fw1_start,fw1_end),W2:[fw2_start,fw2_end),…,WK:[fwK_start,fwK_end);
其中,对于第i个频率分组,fwi_start是该频率分组的起始频点,fwi_end是该频率分组的结束频点;fw1_start是整个***带宽的最小频点,fwK_end是整个***带宽的最大频点;
其中,为了保证各个频率分组能够覆盖到***频率的各个频点,对于按照频率升序排列的各个频率分组,后一个频率分组的起始频点大于或等于前一个频率分组的结束频点,也即,fw(i+1)_start≤fwi_end,i=1,2,...,K;
S102,网络侧将频率分组信息发送给终端;
网络侧可以通过测量控制信息将频率分组信息发送给终端。
其中,频率分组信息包括每一个频率分组的信息,任意一个频率分组的信息包括:频率分组编号、频率分组对应的起始频点和结束频点。
其中,频率分组信息的格式如下表1所示。
Figure PCTCN2017105404-appb-000001
表1
S103,网络侧为每个终端选择一个起始测量的频率分组;
为了使得终端能够在整个***带宽内获得资源分配和波束赋形的机会,终端可以在不同的测量时间内对不同的频率分组进行信道特征测量。因此,网络侧可以为终端分配一个频率分组作为起始测量的频率分组,也可以是终端选择一个频率分组作为起始测量的频率分组。
由于***中的终端数比较多,为了使***的资源利用率最大化,不同终端的起始测量的频率分组尽量不同,那么,对于任何一个终端,网络侧或终端可以在1~K的范围内随机选择一个频率分组作为该终端的起始测量的频率分组,或者可以根据UE_id(用户终端标识)进行哈希产生该终端的起始测量的频率分组。
S104,网络侧将起始测量的频率分组信息发送给终端;
起始测量的频率分组可以记为Winit,如果是网络侧为终端选择起始测量的频率分组Winit,那么网络侧需要将起始测量的频率分组Winit通过测量控制消息通知给终端。
S105,终端在频率分组的频率范围内对所有天线端口进行测量;
当终端获得起始测量的频率分组Winit后,终端在频率分组Winit范围内对 所有天线端口进行信道特征测量;
S106,终端将测量结果上报给网络侧;
终端在每次测量完毕后,需要向网络侧上报测量结果。终端可以在最近的上报机会中把测量结果上报给网络侧。
特别地,对于能力比较强的终端,在一次测量时间内,可以对多个频率分组进行测量并上报测量结果。终端在上报测量结果时,需要携带该测量结果所在的频率分组信息,终端上报测量结果的格式如下表2所示:
Figure PCTCN2017105404-appb-000002
表2
终端在完成一组频率分组的测量后,可以根据频率升序或降序的方法确定下一组测量的频率分组,通过多次测量完成对部分或全部***带宽上各个频率分组的测量;
S107,网络侧对测量结果进行有效性判断;
当网络侧接收到终端侧上报的测量结果后,网络侧采用滑动窗的方法处理终端上报的测量结果。也即,在网络侧设置一个相关时间Tcor,当前时刻记为Tnow,在时间范围[Tnow-Tcor,Tnow]内接收到的所有测量结果都是有效的,如果测量结果是在Tnow-Tcor之前收到的,那么网络侧将移除这些收到的测量结果。在时间范围[Tnow-Tcor,Tnow]内接收到的所有测量结果可以称之为有效测量结果。
S108,网络侧在有效测量结果的频率范围内,对终端进行调度和资源分配;
网络侧在当前时刻Tnow调度终端时,在有效测量结果所对应的频率范围 内对该终端进行资源分配。并且,网络侧根据终端在不同频率分组上报的信道特征信息,在不同的频率分组上采用各自不同的波束赋形权值。
S109,网络侧将下行调度信息和下行数据块发送给终端。
本发明实施例提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行应用于网络侧的设备提供的在多天线***中实现信道测量的方法中的一个或多个;或者,执行应用于终端的在多天线***中实现信道测量的方法的一个或多个。
本发明实施例提供的计算机存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。可选为,所述计算机存储介质可为非瞬间存储介质。这里的非瞬间存储介质又可以称为非易失性存储介质。
本发明实施例还提供一种通信设备,该通信设备可为前述的网络侧的设备,或者,终端。所述通信设备可包括:
收发器330、存储器310及处理器320;
所述处理器320分别与所述存储器310及收发器330连接,用于通过执行所述计算机程序执行上述任意一个或多个技术方案提供的在多天线***中实现信道测量的方法。
本实施例中所述收发器330可对应于收发天线,所述收发天线可为基站和UE之间的信息交互。
所述存储器310可包括:各种类型的存储介质,可以用于数据存储。在本实施例中,所述存储器310包括的存储介质至少部分为非易失性存储介质,可以用于存储所述计算机程序等计算机可执行指令。
所述处理器320可包括:中央处理器、微处理器、数字信号处理器、应用处理器、专用集成电路或可编程阵列等,可以用于通过计算机程序的 执行小区信号质量的确定。在本实施例中,所述处理器320可通过集成电路总线等设备内总线,与所述收发器330及存储器310连接。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例中会将***带宽划分为多个频率分组,并由网络侧的设备将这些频率分组信息下发给终端,终端可以基于整***带宽的频率分组的信息进行信道测量,这样能够使终端在一次测量周期内完成对应频率分组的测量并上报所有天线端口上的信道特征信息,且终端在一次测量周期内完成对应频率分组的测量并上报所有天线端口上的信道特征信息,通过多个测量周期完成部分或全部***带宽上所有天线端口上的信道特征信息的收集和上报;从而具有积极的工业效果;且具有实现简单的在工业上可实现性强及容易推广的特点。

Claims (23)

  1. 一种在多天线***中实现信道测量的方法,应用于网络侧的设备,包括:
    将***带宽划分为多个频率分组,向终端发送频率分组信息;
    接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。
  2. 根据权利要求1所述的方法,其中,
    向终端发送频率分组信息,包括:
    向终端发送***带宽上所有频率分组的信息;
    其中,每一个频率分组的信息包括以下至少其中之一:
    所述频率分组的标识;
    所述频率分组的起始频点和所述频率分组的结束频点。
  3. 根据权利要求2所述的方法,其中,
    所述向终端发送频率分组信息,还包括:
    还确定所述终端对应的起始测量的频率分组,向所述终端发送该终端对应的起始测量的频率分组信息。
  4. 根据权利要求3所述的方法,其中,
    所述确定所述终端对应的起始测量的频率分组,包括:
    从***带宽上所有的频率分组中随机选取一个或多个频率分组作为所述终端对应的起始测量的频率分组;
    或者
    对所述终端的编号进行哈希运算,产生所述终端对应的起始测量的频率分组的编号。
  5. 根据权利要求1所述的方法,其中,
    接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道 特征测量结果后,对每一个频率分组进行对应的波束赋形,包括:
    接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,判断每一个频率分组范围内的测量结果是否有效,对有效的测量结果对应的频率分组进行波束赋形;
    其中,有效的测量结果是指:网络侧的设备接收到测量报告的时刻距离当前时刻的时长小于或等于预定的相关时间阈值。
  6. 根据权利要求1所述的方法,其中,
    终端上报的测量结果包括:频率分组的标识和频率分组对应的信道测量结果。
  7. 一种在多天线***中实现信道测量的方法,应用于终端,包括:
    接收网络侧的设备发送的频率分组信息;
    在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;
    向网络侧的设备上报测量结果,所述测量结果包括对应的频率分组信息。
  8. 根据权利要求7所述的方法,其中,
    所述频率分组信息包括***带宽上每一个频率分组的信息;
    其中,每一个频率分组的信息包括以下至少其中之一:
    所述频率分组的标识;
    所述频率分组的起始频点和所述频率分组的结束频点。
  9. 根据权利要求7所述的方法,其中,
    终端上报的测量结果包括:终端在本次测量周期内测量的每一个频率分组的测量结果以及该测量结果对应的频率分组的标识。
  10. 根据权利要求7所述的方法,其中,
    所述方法还包括:
    接收网络侧的设备发送的所述终端对应的起始测量的频率分组信息;或者
    终端确定起始测量的频率分组。
  11. 根据权利要求7所述的方法,其中,
    向网络侧的设备上报测量结果后,所述方法还包括:
    从***带宽上所有的频率分组中选取一个或多个频率分组作为下一个测量周期对应的频率分组。
  12. 一种在多天线***中实现信道测量的装置,应用于网络侧的设备,包括:
    频率分组模块,配置为将***带宽划分为多个频率分组,向终端发送频率分组信息;
    信息接收及处理模块,配置为接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对应的波束赋形。
  13. 根据权利要求12所述的装置,其中,
    频率分组模块,配置为向终端发送***带宽上所有频率分组的信息;
    其中,每一个频率分组的信息包括:所述频率分组的标识、所述频率分组的起始频点和所述频率分组的结束频点。
  14. 根据权利要求13所述的装置,其中,
    频率分组模块,配置为确定所述终端对应的起始测量的频率分组,向所述终端发送该终端对应的起始测量的频率分组信息。
  15. 根据权利要求14所述的装置,其中,
    频率分组模块,配置为从***带宽上所有的频率分组中随机选取一个或多个频率分组作为所述终端对应的起始测量的频率分组;或者
    对所述终端的编号进行哈希运算,产生所述终端对应的起始测量的频率分组的编号。
  16. 根据权利要求12所述的装置,其中,
    信息接收及处理模块,配置为接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,对每一个频率分组进行对 应的波束赋形,包括:
    接收到终端上报的一个或多个频率分组范围内各个天线端口上的信道特征测量结果后,判断每一个频率分组范围内的测量结果是否有效,对有效的测量结果对应的频率分组进行波束赋形;
    其中,有效的测量结果是指:网络侧的设备接收到测量报告的时刻距离当前时刻的时长小于或等于预定的相关时间阈值。
  17. 根据权利要求12所述的装置,其中,
    终端上报的测量结果包括:频率分组的标识和频率分组对应的信道测量结果。
  18. 一种在多天线***中实现信道测量的装置,应用于终端,包括:
    信息接收及处理模块,配置为接收网络侧的设备发送的频率分组信息;
    测量模块,配置为在一次测量周期内对一个或多个频率分组范围内各个天线端口上的信道特征进行测量;
    上报模块,配置为向网络侧的设备上报测量结果,所述测量结果包括对应的频率分组信息。
  19. 根据权利要求18所述的装置,其中,
    所述频率分组信息包括***带宽上每一个频率分组的信息;
    其中,每一个频率分组的信息包括:所述频率分组的标识、所述频率分组的起始频点和所述频率分组的结束频点。
  20. 根据权利要求18所述的装置,其中,
    终端上报的测量结果包括:终端在本次测量周期内测量的每一个频率分组的测量结果以及该测量结果对应的频率分组的标识。
  21. 根据权利要求18所述的装置,其中,
    信息接收及处理模块,还配置为接收网络侧的设备发送的所述终端对应的起始测量的频率分组信息,或者确定起始测量的频率分组。
  22. 根据权利要求18所述的装置,其中,
    信息接收及处理模块,还配置为在向网络侧的设备上报测量结果后,从***带宽上所有的频率分组中选取一个或多个频率分组作为下一个测量周期对应的频率分组。
  23. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至6任一项提供的方法,或者,7至11任一项提供的方法。
PCT/CN2017/105404 2016-10-09 2017-10-09 在多天线***中实现信道测量的方法、装置和存储介质 WO2018064986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610886054.1A CN107919926B (zh) 2016-10-09 2016-10-09 一种在多天线***中实现信道测量的方法和装置
CN201610886054.1 2016-10-09

Publications (1)

Publication Number Publication Date
WO2018064986A1 true WO2018064986A1 (zh) 2018-04-12

Family

ID=61830771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105404 WO2018064986A1 (zh) 2016-10-09 2017-10-09 在多天线***中实现信道测量的方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN107919926B (zh)
WO (1) WO2018064986A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114039820A (zh) * 2021-09-27 2022-02-11 广州慧睿思通科技股份有限公司 波束赋形的方法、装置、基站及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394213A (zh) * 2007-09-19 2009-03-25 中兴通讯股份有限公司 一种时分双工方式频分复用***的多天线通信方法
CN101505182A (zh) * 2009-03-18 2009-08-12 北京邮电大学 一种多天线***中基于波束赋形的数据传输方法和基站
US20090247171A1 (en) * 2008-03-31 2009-10-01 Fujitsu Limited Transmission method, wireless base station, and wireless communication method
CN101789816A (zh) * 2009-01-22 2010-07-28 北京信威通信技术股份有限公司 一种ofdma多天线***的符号检测方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079870B2 (en) * 2003-06-09 2006-07-18 Ipr Licensing, Inc. Compensation techniques for group delay effects in transmit beamforming radio communication
US8768264B2 (en) * 2009-03-03 2014-07-01 Qualcomm Incorporated Method and system for reducing feedback information in multicarrier-based communication systems based on temporal correlation
CN101848063B (zh) * 2010-05-21 2016-06-08 北京新岸线移动多媒体技术有限公司 支持子信道调制编码的数据传输方法及无线局域网***
CN105721113A (zh) * 2011-01-30 2016-06-29 广东新岸线计算机***芯片有限公司 一种在无线通信***中实现用户调度的方法和无线通信***
JP6306692B2 (ja) * 2013-09-27 2018-04-04 華為技術有限公司Huawei Technologies Co.,Ltd. 通信方法、基地局およびユーザ機器
CN104779986B (zh) * 2015-04-07 2018-07-17 西安交通大学 3d-mimo***中应用三维波束赋形的多小区间干扰协调方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394213A (zh) * 2007-09-19 2009-03-25 中兴通讯股份有限公司 一种时分双工方式频分复用***的多天线通信方法
US20090247171A1 (en) * 2008-03-31 2009-10-01 Fujitsu Limited Transmission method, wireless base station, and wireless communication method
CN101789816A (zh) * 2009-01-22 2010-07-28 北京信威通信技术股份有限公司 一种ofdma多天线***的符号检测方法及装置
CN101505182A (zh) * 2009-03-18 2009-08-12 北京邮电大学 一种多天线***中基于波束赋形的数据传输方法和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YIHENG ET AL.: "Low Rate CSI Feedback and Capacity Analysis in Multiuser-MIMO-OFDM System'', Journal of Electronics & Information Technology", MIMO-OFDM CSI, vol. 31, no. 9, 30 September 2009 (2009-09-30), pages 2188 - 2192 *

Also Published As

Publication number Publication date
CN107919926B (zh) 2022-02-18
CN107919926A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
EP3530056B1 (en) Methods, base station apparatus and user equipment for random access
WO2017140249A1 (en) Listen before talk channel access procedure for uplink laa
TWI694738B (zh) 新無線電系統的實體隨機存取通道前導碼重傳機制
WO2016044991A1 (zh) 终端、基站、基站控制器及毫米波蜂窝通信方法
KR102616768B1 (ko) 빔포밍 기반 무승인 비직교 다중 액세스 전송
US10985829B2 (en) Beam management systems and methods
US10454560B2 (en) Beam management systems and methods
JP7514875B2 (ja) 情報の送信方法、装置、および記憶媒体
CN111279627B (zh) 无线电节点设备、其操作方法以及载体介质设备
JP2020507949A (ja) 無線通信方法、端末デバイス、及びネットワークデバイス
WO2019047228A1 (en) INFORMATION TRANSMISSION SYSTEM
CN107005975B (zh) 在网络节点中使用的方法和链路的接收和发送节点以及相关联设备
WO2017219241A1 (zh) 传输信号的方法、网络设备和终端设备
TW201707492A (zh) 無線電節點及使用者設備中使用的方法,以及相關聯裝置
WO2020220243A1 (en) Receiver beam selection during uplink positioning
CN114982190A (zh) 载波聚集的波束相关性
WO2017143810A1 (zh) 一种波束间协同传输方法、装置及***、设备、存储介质
WO2018064986A1 (zh) 在多天线***中实现信道测量的方法、装置和存储介质
WO2022221995A1 (zh) 信道测量方法、装置、设备及可读存储介质
CN107079489B (zh) 信号传输方法和网络设备
CN111903150B (zh) 信道处理方法及相关设备
CN115189851B (zh) 频域资源位置确定方法与装置、终端和网络设备
EP4085697B1 (en) User equipment-autonomously triggered-sounding reference signals
CN110635828B (zh) 一种信道质量信息处理方法及装置
WO2023019466A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17857867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17857867

Country of ref document: EP

Kind code of ref document: A1