WO2018062128A1 - In-mold label, labelled container, and production apparatus and production method for labelled container - Google Patents

In-mold label, labelled container, and production apparatus and production method for labelled container Download PDF

Info

Publication number
WO2018062128A1
WO2018062128A1 PCT/JP2017/034638 JP2017034638W WO2018062128A1 WO 2018062128 A1 WO2018062128 A1 WO 2018062128A1 JP 2017034638 W JP2017034638 W JP 2017034638W WO 2018062128 A1 WO2018062128 A1 WO 2018062128A1
Authority
WO
WIPO (PCT)
Prior art keywords
label
mold
melting point
low melting
resin layer
Prior art date
Application number
PCT/JP2017/034638
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 本田
高広 座間
雄太 岩澤
孝 船戸
雅生 宇田川
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Publication of WO2018062128A1 publication Critical patent/WO2018062128A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/24Lining or labelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/20External fittings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/04Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps to be fastened or secured by the material of the label itself, e.g. by thermo-adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C2049/023Combined blow-moulding and manufacture of the preform or the parison using inherent heat of the preform, i.e. 1 step blow moulding

Definitions

  • This example relates to an in-mold label, a labeled container, a manufacturing apparatus and a manufacturing method for a labeled container.
  • an in-mold label having an adhesive layer made of polyethylene cannot be attached to the surface of a container obtained by blow molding a preform made of polyester resin represented by polyethylene terephthalate.
  • a stretched polypropylene film having a heat seal layer containing an ethylene-vinyl acetate copolymer, a label having an adhesive layer thickness of 25 to 50 ⁇ m, and the label as a polyester A labeled container obtained by sticking to a container is known (for example, see Patent Document 2).
  • a heat-sealable film having a thickness of 5 to 3 ⁇ m is disclosed (for example, see Patent Document 3).
  • the publication does not describe in-mold molding.
  • an in-mold label using a similar polar resin and having an adhesive layer having a thickness of 3 ⁇ m is attached to a polyester container (for example, see Patent Document 4).
  • the sticking surface toward the container is formed by a heat seal layer.
  • This heat seal layer is generally formed of a low melting point resin, and is melt-bonded to the container during in-mold molding.
  • PET polyethylene terephthalate
  • the label is adhered to the container unless a polar resin such as an ethylene-vinyl acetate copolymer or an alkyl acrylate copolymer is used in the low melting point resin layer of the label. Is difficult.
  • the polar resin when used for the low-melting point resin layer, it cannot be industrially produced unless it is co-extruded with the base material or molded by thermal lamination to the base material. Problems such as coloring due to thermal decomposition and curling due to the thickness may occur because the adhesive layer needs to be thicker.
  • the heat quantity of the parison original made of thermoplastic resin for use in blow molding
  • the heat quantity of the direct blow molding parison so select a resin that can be fused with less heat.
  • a polar resin having a melting point of 130 ° C. or lower is selected.
  • non-polar resin a resin containing almost no hetero atoms (atoms other than hydrogen atoms and carbon atoms) in the main chain or side chain in the adhesive layer.
  • non-polar resin a resin containing almost no hetero atoms (atoms other than hydrogen atoms and carbon atoms) in the main chain or side chain in the adhesive layer.
  • One of the objects of the present invention is to provide an in-mold label that is attached to a polar resin container in spite of being provided, and an in-mold label that does not easily peel off the label from the container even when the labeled container is brought into contact with water. did. That is, the problem to be solved by the present invention is that an in-mold label adhered to a polar resin container in spite of using a non-polar resin for the adhesive layer, and further bonded under low temperature bonding conditions of stretch blow molding.
  • Another object of the present invention is to provide a labeled container in which the label is attached to a polar resin container.
  • the present inventors have selected a nonpolar resin as the adhesive layer, and after laminating a low melting point resin that melts with the heat of stretch blow molding at a specific thickness, the surface of the low melting point resin layer It has been found that the above-mentioned object can be achieved and the above-mentioned problems can be solved by activating treatment.
  • the manufacturing apparatus and manufacturing method of a labeled container according to the present invention are intended to attach a label to a container made of a polar resin as a material while selecting a nonpolar resin for the low melting point resin layer of the label.
  • the present invention is not limited to the above-mentioned purpose, and is an operation and effect derived from each configuration shown in “Mode for Carrying Out the Invention” to be described later. Can be positioned as other purpose.
  • the in-mold label disclosed herein has a low melting point resin layer on one surface of a thermoplastic resin film, the low melting point resin layer contains a polyethylene resin, and the melting point of the polyethylene resin is 60.
  • the low melting point resin layer has a thickness of 1.5 to 15 ⁇ m, and the surface of the low melting point resin layer is activated.
  • the polyethylene-based resin is preferably a copolymer of 95 mol% or more and less than 100 mol% of ethylene and more than 0 mol% and 5 mol% or less of a monomer copolymerizable with ethylene.
  • corona discharge treatment traces exist on the surface of the low melting point resin layer.
  • thermoplastic resin film (A) has an ink receiving layer on the surface not having the low melting point resin layer.
  • the in-mold label according to any one of the above (1) to (4) is adhered to the surface of a polar resin container.
  • the polar resin is a polyester resin.
  • An apparatus for manufacturing a container with a label disclosed herein has an extraction part for taking out a label having a low melting point resin layer, and the label taken out by the extraction part with the low melting point resin layer facing inward.
  • An arrangement part arranged in a mold and a container in which a molding material is supplied into the mold, and the label arranged in the mold by the arrangement part is adhered to an outer wall with the low melting point resin layer
  • an activation processing unit that performs an activation process on the low-melting point resin layer before the label is arranged in the mold by the arrangement unit.
  • the said activation process part is a corona discharge process part which performs a corona discharge process.
  • a plurality of the labels are arranged on a long film in a longitudinal direction of the film, and further provided with a feeding part for feeding out the film, wherein the taking-out part is provided with the label from the film fed out by the feeding part. It is preferable that the activation processing unit performs the activation processing on the low-melting point resin layer of the label arranged on the film being fed from the feeding unit.
  • the method for manufacturing a labeled container disclosed herein includes an extraction step of taking out a label having a low melting point resin layer, and the label taken out by the extraction step with the low melting point resin layer facing inward.
  • the activation treatment step is a corona discharge treatment step for performing a corona discharge treatment.
  • the label is further arranged on a long film in the longitudinal direction of the film, and further includes a feeding step of feeding out the film, and in the taking out step, the label from the film fed out by the feeding step
  • the activation treatment is preferably performed on the low-melting point resin layer of the label arranged on the film being fed out from the feeding step.
  • the wettability of the low melting point resin layer is improved by performing the activation treatment on the low melting point resin layer of the label.
  • the adhesion between the container and the low melting point resin layer can be improved, and even when the container is a molded polar resin, a label using a nonpolar resin can be attached to the low melting point resin layer.
  • the warping of the label can be suppressed compared to the production method of taking out the stacked sheet-by-sheet labels one by one, static electricity etc.
  • the labels do not overlap and are not removed.
  • the quality of the labeled container can be improved. Furthermore, according to the in-mold label in which the type and physical properties of the resin contained in the low-melting point resin layer and the thickness of the low-melting point resin layer are controlled within a specific range, the adhesive strength and water peel resistance to the polar resin container are improved. .
  • FIG. It is a figure which shows a container with a label
  • (A) is a perspective view which shows a container with a label
  • (B) is a perspective view which expands and shows the area
  • (C) is (B)
  • FIG. It is a top view which shows typically the whole structure of a manufacturing apparatus. It is a perspective view which shows the film on a manufacturing apparatus, and its periphery. It is a perspective view which shows typically a mode that the deformed part of the label conveyed in a manufacturing apparatus is removed. It is a perspective view which shows typically the metal mold
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value, respectively.
  • “mainly contained” means containing most by mass ratio.
  • an organic substance having 2 carbon atoms such as ethane or ethylene may be represented by the number of carbon atoms such as C2.
  • the melting point of the thermoplastic resin is the melting peak temperature according to JIS K7121: 1987.
  • the upstream and downstream are defined based on the manufacturing process of the labeled container, the direction of gravity is defined as the downward direction, and the opposite direction is defined as the upward direction.
  • the low melting point resin layer (or heat seal layer) is placed in the mold facing inward means that the surface opposite to the low melting point resin layer (or heat seal layer) of the label is on the mold. It shows that it is arranged so that the surface of the low melting point resin layer side (or heat seal layer side) of the label is adhered to the container.
  • the labeled container manufactured with the apparatus and method of this embodiment is the hollow container 2 by which the label 10 is stuck on the outer wall 2a.
  • the state in which the label 10 is fused (welded) to the container 2 and integrated is included in the state in which the label 10 is adhered to the container 2.
  • the label 10 is stuck to the container 2 by in-mold labeling (in-mold molding). Therefore, at least a part of the label 10 in the thickness direction is buried in the outer wall 2 a of the container 2. Therefore, as shown in FIGS. 1B and 1C, the dimension in the thickness direction of the label 10 is set to “T 1 ”, and the height of the label 10 that forms a stepped portion on the outer side with respect to the outer surface 2b of the outer wall 2a. If the thickness dimension (thickness direction dimension) is set to “T 2 ”, the inequality “T 1 > T 2 ” is satisfied. In the case of a blow molding method using a preform, it is easy to satisfy the inequality “T 1 > T 2 ”.
  • the some label 10 (label group) is stuck on the outer wall 2a of the container 2 by the side view.
  • the label 10 before being attached to the container 2 has a heat seal layer 1a (see FIG. 3) in advance on the back surface (attachment surface).
  • labels 10 (simply referred to as “label 10”) including a first label 11 and a second label 12 are illustrated on the outer wall 2 a on the front side of the container 2.
  • a single label is attached to the outer wall on the back side of the container 2.
  • the labels 11 and 12 are formed in different shapes.
  • a circular first label 11 is illustrated, and a triangular second label 12 is illustrated.
  • Other examples of the contour shape of the labels 11 and 12 include various shapes in which the contour is composed only of a curve.
  • a shape whose contour is composed only of a curve includes a shape in which curved lines such as autumn leaves are abutted at corners.
  • a plurality of labels 10 are regularly arranged in the longitudinal direction of one main surface of the long (band-shaped) film 1. These labels 10 can be separated from the film 1 as will be described later.
  • the film 1 has at least three layers in the order of a heat seal layer 1a, a base layer 1b, and a printing layer 1c from the back side (the front side in FIG. 3) to the front side (the back side in FIG. 3). Formed.
  • the label 10 having a three-layer structure in which the heat seal layer 1a, the base layer 1b, and the print layer 1c are laminated in this order will be described.
  • the ink receiving layer corresponding to the print layer 1c is an arbitrary layer.
  • the heat seal layer 1a functions as an adhesive for joining the label 10 and the container 2 and is a low melting point resin layer formed of a low melting point resin. Therefore, hereinafter, the heat seal layer 1a is also referred to as a low melting point resin layer 1a.
  • the low melting point resin layer 1a is solid at normal temperature, but is activated by the heat of the molten resin when the adherend (container 2) is molded in the mold, and is melted and bonded to the adherend to cool. After that, it becomes solid again and exhibits strong adhesive strength.
  • the base layer 1b and the print layer 1c can be formed of various conventionally known materials. Moreover, the thickness of the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c is not particularly limited.
  • a part of the film 1 is a label 10 and the other part is a blank part 13. That is, the film 1 is cut along the contour shape of the label 10, and the label 10 and the blank portion 13 are partitioned through the cutting line.
  • the label 10 and the blank portion 13 are partially connected in the state where the film 1 is drawn out, and the label 10 and the blank portion 13 are completely separated.
  • a point-stopping process in which the label 10 and the blank portion 13 are connected in a dotted manner at a plurality or a single location is performed.
  • the above-mentioned cutting line may be formed in perforation shape.
  • the film 1 may be cut (half cut) in the depth (thickness) direction from the low melting point resin layer 1a side or the printing layer 1c side. At this time, at least one of the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c is configured to be connected without being completely cut. For example, half cutting is performed using a rotary die cutter or a pinnacle die. Moreover, the film 1 is drawn out in a state where the outline of the label 10 is not cut, and the label 10 can be cut by a die cutter having a blade portion corresponding to the outline shape of the label 10. Alternatively, the film 1 may be cut (laser cut) with a laser along the contour shape of the label 10.
  • the film 1 may be affixed to another transport film.
  • the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c are transport films different from the film 1 through a slightly sticky adhesive or adhesive. It may be attached so as to be removable.
  • the pressure-sensitive adhesive or the adhesive does not remain on the surface of the printing layer 1c. In this case, a complete punching process in which the label 10 and the blank portion 13 are completely separated may be performed.
  • all of the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c do not necessarily have to be attached to the transport film.
  • the labeled container manufacturing apparatus includes three feeding mechanisms (feeding portions) 20, a feeding mechanism (conveying portion) 50, and a forming mechanism (forming portion) 90 provided from the upstream side to the downstream side. Broadly divided into two mechanisms.
  • the feeding mechanism 20 feeds the film 1 on which the labels 10 are arranged, and the transport mechanism 50 transports the label 10 from the fed film 1 until it is placed in the mold 91.
  • the molding mechanism 90 supplies the molding material into the mold 91, and sticks the label 10 disposed inside the mold 91 to the outer wall 2a (see FIG. 1) to mold the container 2.
  • the feeding mechanism 20 is provided with an activation processing unit 200 which is a major feature of the present invention.
  • the feeding mechanism 20 may be provided with an inspection unit 40 that inspects the printed state of the pattern of the printed label 10.
  • a pattern, a pattern, a character, or the like (simply referred to as “pattern”) of the label 10 is printed on the film 1 in advance.
  • a printing unit 30 (indicated by a two-dot chain line in FIG. 2) for printing the design of the label 10 on the surface of the printing layer 1 c in the film 1 may be attached to the feeding mechanism 20. That is, the printing unit 30 for preparing the film 1 on which the labels 10 are arranged may be incorporated in the labeled container manufacturing apparatus.
  • the transport mechanism 50 is provided with an arm part (extraction part, placement part) 60 that separates and holds the transported label 10 from the film 1 and places the transported label 10 inside the mold 91.
  • a charging unit 80 for charging the label 10 being transported is attached to the transport mechanism 50.
  • a shaping unit 70 that shapes the label 10 being conveyed may be attached to the conveyance mechanism 50.
  • the manufacturing apparatus described here is provided with a mold 91 composed of two split molds 91a and 91b. Specifically, the first split mold 91a is disposed on one side (upper in FIG. 2) and the second split mold 91b is disposed on the other side (lower in FIG. 2). In addition to increasing the processing efficiency, the molding efficiency of the container 2 is also improved.
  • the labeled container has a front side molded by the first split mold 91a and a back side molded by the second split mold 91b.
  • the manufacturing apparatus is provided symmetrically in the horizontal direction (vertical symmetry in FIG. 2).
  • two systems of manufacturing processes can be performed simultaneously.
  • the label 10 attached to the outer wall 2a on the front side of the container 2 is handled on one side of the apparatus, and at the same time, the label attached to the outer wall on the back side of the container 2 is handled on the other side of the apparatus.
  • a manufacturing apparatus that is provided with two sets of molds 91 and simultaneously molds two labeled containers is illustrated. In the following description, description will be given mainly focusing on one side of the apparatus.
  • the feeding mechanism 20 is a mechanism that feeds the label 10 to a predetermined position by feeding the film 1.
  • the feeding mechanism 20 is provided with two rotating shafts 21 and 22. Of these rotary shafts 21 and 22, the first rotary shaft 21 arranged on the upstream side is pulled out from the state in which the film 1 before separating the label 10 is wound, and the second rotation arranged on the downstream side. On the shaft 22, the film 1 (remaining part) after the label 10 is separated is taken up. Here, the second rotating shaft 22 is rotationally driven. Furthermore, the intermediate part of the film 1 wound around the rotating shafts 21 and 22 is stretched in a planar shape.
  • the feeding mechanism 20 may be provided with a positioning mechanism (positioning portion) 25 for stopping the fed label 10 at the separation position as indicated by a two-dot chain line in FIG.
  • a positioning mechanism positioning portion 25 for stopping the fed label 10 at the separation position as indicated by a two-dot chain line in FIG.
  • the marking 14 such as an eye mark or a registration mark attached to the blank portion 13 of the film 1, and an optical device that images or scans the marking 14 (hereinafter simply referred to as “imaging”). 26 can be used.
  • imaging optical device that images or scans the marking 14
  • the printing unit 30 is a printer that prints a pattern on a portion that becomes the label 10 of the film 1. That is, the label 10 is formed by performing required printing on the surface of the film 1.
  • various printing methods such as a printing plate method, an electrophotographic method, an ink jet method, and a thermal transfer method can be adopted as long as they can be printed on the label 10.
  • variable information such as a serial number, date, and name can be printed on demand.
  • the inspection unit 40 inspects whether or not the label 10 fed out by the feeding mechanism 20 is in a predetermined state.
  • predetermined state means that the state of the label 10 is good (passed).
  • not in a predetermined state means that the state of the label 10 is defective (failed). Therefore, it can be said that the inspection unit 40 detects the defective label 10.
  • Examples of the inspection target by the wrinkle inspection unit 40 include the printing state and surface state of the label 10. If the object to be inspected is a print state, the position or color of the image printed on the label 10 is inspected in a predetermined print state (predetermined state), that is, whether or not a desired print is being performed. If the inspection target is a surface state, it is inspected whether or not the label 10 is in a predetermined surface state (predetermined state) in which no foreign matter is attached.
  • the inspection unit 40 includes a detection unit 41 that detects the state of the label 10 and a determination unit 42 that determines whether the label 10 is in a predetermined state based on the detection result of the detection unit 41.
  • the detection unit 41 various known devices that can detect the state of the label 10 can be used.
  • an optical device such as a camera or a scanner that images the label 10 is used for the detection unit 41.
  • a CCD area camera or a line sensor is employed as the detection unit 41.
  • a device that irradiates the label 10 with visible light or laser light may be attached to the detection unit 41.
  • the activation processing unit 200 is arranged on the low melting point resin layer 1a (see FIG. 3) side of the label 10.
  • the activation processing unit 200 performs an activation process on a bonding surface to be bonded to the container 2 of the low melting point resin layer 1a, that is, a surface facing inward of the mold 91 when disposed in the mold 91.
  • the low melting point resin layer 1a is activated and wettability is improved.
  • the position of the activation processing unit 200 is not limited to the illustrated position as long as the low melting point resin layer 1a can be activated before the label 10 is placed on the mold 91.
  • the activation processing unit 200 may be disposed at a position where the activation process can be performed on the label 10 before. Further, the activation processing unit 200 may perform the activation process only during a period in which the label 10 passes the processing position where the activation process is performed. Or you may make it perform an activation process continuously. When the activation process is continuously performed, not only the label 10 but also the entire film 1 including the blank portion 13 (see FIG. 3) is activated.
  • the surface of the low melting point resin layer 1a is activated during in-molding, whereby the adhesion between the low melting point resin layer 1a and the container 2 is improved.
  • the label adhesive strength of the labeled container 2 can be increased.
  • a corona discharge treatment can be mainly exemplified, but a flame treatment and a plasma treatment can also be exemplified.
  • corona discharge treatment and plasma treatment are preferred from the viewpoint of treatment effects, and corona discharge treatment and flame treatment are preferred from the viewpoint of using simple equipment.
  • specific configurations of a corona discharge processing unit that performs corona discharge processing, a frame processing unit that performs frame processing, and a plasma processing unit that performs plasma processing will be described.
  • the corona discharge treatment section includes a discharge electrode provided on the low melting point resin layer 1a side and a counter electrode roll disposed on the opposite side of the discharge electrode with the film 1 interposed therebetween. That is, the discharge electrode and the counter electrode roll are opposed to each other through the film 1.
  • the discharge electrode is not particularly limited, and examples thereof include a prismatic shape, a wire shape, a blade shape, and the like, and an electrode that is intended to stably discharge from a peak portion by providing a valley portion on the electrode.
  • the counter roll is preferably coated with an insulator. Examples of the insulator include various rubbers and ceramics.
  • the surface of the film 1 can be modified by exposing the traveling film 1 to an arc discharge region generated between the discharge electrode and the counter electrode roll while contacting the counter electrode roll. Moreover, it is preferable to apply a DC voltage between the discharge electrode and the counter electrode roll.
  • the flame frame processing unit includes a burner provided on the low melting point resin layer 1 a side and having a nozzle row parallel to the film 1.
  • Activation treatment can be carried out by spraying ionized plasma in a flame generated when combustible gas such as natural gas or propane is burned by a burner onto the surface of the low melting point resin layer 1a.
  • the soot plasma processing unit includes a pair of counter electrodes provided on the low melting point resin layer 1a side, and a counter electrode roll disposed to face these counter electrodes with the film 1 interposed therebetween.
  • the electrode include a flat plate shape, a convex surface on the opposite surface, and a roll shape that can rotate.
  • the counter roll is preferably coated with an insulator.
  • a gas in which hydrogen, oxygen, nitrogen, air or the like is mixed with a gas mainly composed of an inert gas such as argon, helium, or neon is passed through a glow discharge region generated between the discharge electrode and the counter electrode roll.
  • an excited inert gas which is excited electronically, removes charged particles, and is electrically neutral is sprayed on the film surface.
  • the activation treatment amount in the case of corona discharge treatment is preferably 600 to 12,000 J / m 2 (10 to 200 W ⁇ min / m 2 ), from the viewpoint of obtaining the effect of corona discharge treatment, and is preferably 1,200 to 9,000 J / M 2 (20 to 150 W ⁇ min / m 2 ) is more preferable.
  • the amount of activation treatment is preferably 8,000 to 200,000 J / m 2 and more preferably 20,000 to 100,000 J / m 2 from the viewpoint of obtaining the effect of the activation treatment.
  • the processing amount is within this range, the label adhesive strength is unlikely to decrease.
  • the processing amount can be controlled by the applied power, the interval between the discharge electrode and the film, the processing speed (label transport speed), and the like. Moreover, if the corona discharge treatment is sufficiently performed on the surface after the corona discharge treatment, it is usually preferable that a corona discharge treatment trace is present. Corona discharge treatment traces include surface pinholes due to arcing, processing unevenness due to uneven distribution of streamers (surface tension varies depending on location), and post-treatment charging. Charging due to corona discharge can be confirmed by sprinkling a mixture of two types of toners having different polarities and colors on the surface, so that the toners having different polarities are unevenly distributed on the surface, resulting in a mottled pattern of two colors. If there is a corona discharge treatment mark on the surface of the low melting point resin layer 1a, it can be confirmed that the low melting point resin layer 1a has been activated by the corona discharge treatment.
  • the surface tension obtained using the test mixture according to JIS K6768: 1999 “Plastic-Film and Sheet-Wetting Tension Test Method” is 40 mN / m. That's it.
  • the surface tension of the low melting point resin layer 1a is preferably 40 to 75 mN / m, more preferably 45 to 70 mN / m, and further preferably 50 to 65 mN / m. This increases the adhesive strength of the labeled container. It is presumed that the wetting and spreading of the resin composition (for example, the thermoplastic resin composition) constituting the low melting point resin layer 1a with respect to the parison is not good whether the surface tension is high or low outside the above range.
  • This increases the adhesive strength of the labeled container.
  • Any O / C ratio within the above range is presumed to have good wetting and spreading of the resin composition (for example, thermoplastic resin composition) constituting the low melting point resin layer 1a with respect to the parison.
  • the activation treatment effect may gradually decrease over time, the activation treatment may be performed immediately before in-mold molding from the viewpoint of suppressing variations in the adhesive strength of the labeled container for each label production lot. .
  • the transport mechanism 50 is provided with a slide rail 51 that extends so as to straddle the feeding mechanism 20 and the forming mechanism 90, and a chassis unit 52 that slides along the slide rail 51.
  • the slide rail 51 is laid horizontally along the middle portion of the film 1, and the chassis 52 moves horizontally.
  • the direction in which the slide rail 51 extends is the “X direction” (left and right direction in FIG. 2), and the direction orthogonal to the X direction is the “Y direction” (up and down direction in FIG. 2).
  • one of the X directions (left side in FIG. 2) is “X1” and the other is “X2”
  • one of the Y directions (upward in FIG. 2) is “Y1” and the other is “Y2”.
  • a slide rail 51 and a chassis part 52 are provided on the Y2 direction side of the film 1 and the first split mold 91a.
  • the slide rail 51 and the chassis 52 are provided on the Y1 direction side of the film 1 and the second split mold 91b.
  • the chassis 52 on the slide rail 51 has an origin position P1 for separating the label 10 from the X1 direction to the X2 direction, a charging position P3 for charging the label 10 by the charging unit 80, and the label 10 for the first split mold 91a.
  • the shaping position P2 at which the label 10 is shaped by the shaping unit 70 is located between the origin position P1 and the charging position P3, and the chassis 52 has the origin position P1,
  • the shaping position P2, the charging position P3, and the molding position P4 are moved forward in this order, and the molding position P4, the charging position P3, the shaping position P2, and the origin position P1 are moved back in this order.
  • the chassis portion 52 is provided with the arm portion 60 described above.
  • the arm unit 60 is driven in the Y direction so as to expand and contract. Specifically, an insertion / extraction position where the tip end portion 60a of the arm portion 60 protrudes so as to contact the film 1 or the first split die 91a, and conveyance where the tip end portion 60a is separated from the film 1 or the first split die 91a.
  • the arm portion 60 is driven in and out (reciprocating drive) from the chassis portion 52 so as to switch between the two positions.
  • a suction mechanism suction cup that sucks the label 10 to be held is provided at the distal end portion 60 a of the arm portion 60.
  • the two labels 10 are separated simultaneously. Therefore, two sets of arm portions 60 are provided side by side in the X direction corresponding to each of the two labels 10. Furthermore, since one label 10 is provided with two labels 11, 12, the set of arm portions 60 corresponds to the first arm portion 61 corresponding to the first label 11 and the second label 12. And a second arm portion 62 is provided. In other words, a number of arm portions 61 and 62 corresponding to the number of labels 11 and 12 in one label 10 are provided in the chassis portion 52. In the following description, the description will be given focusing on the pair of arm portions 60. Next, the transport mechanism 50 when the chassis unit 52 is located at each of the positions P1, P2, P3, and P4 will be described in order.
  • the arm part 60 of the chassis part 52 functions as an extraction part that separates the label 10 from the film 1 and takes it out.
  • the chassis section 52 at this time is stopped at the origin position P1.
  • the arm portion 60 is driven to project from the transport position to the insertion / extraction position, and the tip end portion 60 a contacts the label 10.
  • the suction mechanism is activated and the label 10 is sucked to the tip 60a.
  • the arm unit 60 is driven into the transport position from the insertion / extraction position.
  • the label 10 sucked on the leading end 60 a is separated from the film 1.
  • a dotted portion that connects the label 10 and the blank portion 13 is torn off.
  • a stopper 29 that presses the blank portion 13 in a direction opposite to the separation direction of the label 10 is provided.
  • a plate 29 a erected on the chassis 52 side with respect to the film 1 or a pin 29 b protruding from the plate 29 a to the film 1 side can be used.
  • the chassis 52 is provided with an extraction mechanism (extraction portion) provided with the arm portion 60 and its drive mechanism, suction mechanism, stopper 29 and the like.
  • the separated label 10 is accompanied by a minute protrusion-like deformed portion 11 a or a beard-like or burr-like deformed portion 12 a due to, for example, a joint to the blank portion 13 or a defective cutting. Can be formed. Therefore, as described above, the manufacturing apparatus may be provided with the shaping unit 70 described below.
  • the shaping unit 70 shapes the label 10 by removing the deformed portions 11 a and 12 a attached to the label 10.
  • an air gun (fountain unit) 71 that blows off the deformed portion 11a with jetted air and removes it from the label 10, or a burner (flame radiation) that melts the deformed portion 12a with a radiated flame and removes it from the label 10. Part) 72 can be adopted.
  • the deformed portions 11a and 12a of the label 10 are exposed to air and flame continuously discharged from the shaping portion 70, whereby the deformed portions 11a and 12a are removed, and the label 10 being conveyed is shaped.
  • a manufacturing apparatus that employs a method of charging the label 10 is illustrated.
  • the chassis unit 52 when the chassis unit 52 is located at the charging position P ⁇ b> 3, the label 10 being conveyed held by the arm unit 60 passes in the vicinity of the charging unit 80. Thereby, the label 10 is charged. Thereby, after the label 10 is arranged inside the first split mold 91a, the state where the label 10 is stuck to the first split mold 91a is held by Coulomb force.
  • a charging device such as a charging bar or a charging gun can be employed. If the manufacturing apparatus is provided with a suction mechanism for vacuum suction of the label 10 to the mold 91, the charging unit 80 may be stopped or the charging unit 80 may be omitted.
  • the arm part 60 of the chassis part 52 functions as an arrangement part that arranges the label 10 inside the first split mold 91a.
  • the chassis section 52 at this time is stopped at the molding position P4 so as to face the inside of the first split mold 91a.
  • the arm part 60 is driven to project from the transport position to the insertion / extraction position, and the label 10 held at the tip part 60a is inserted into the first split mold 91a and pressed.
  • the operation of the suction mechanism of the arm unit 60 is stopped, and the charged label 10 is stuck inside the first split mold 91a.
  • the first label 11 and the second label 12 forming the label 10 are stuck to predetermined positions inside the first split mold 91a while maintaining the relative arrangement. Therefore, the relative arrangement of the labels 11 and 12 on the film 1 is set in accordance with the relative arrangement of the labels 11 and 12 inside the first split mold 91a of the mold 91. That is, the chassis part 52 is provided with an arrangement mechanism (arrangement part) provided with the arm part 60, its drive mechanism, a suction mechanism, and the like.
  • the arm portion 60 is driven into the transport position from the insertion / extraction position, and the chassis portion 52 moves to the origin position P1.
  • the feeding mechanism 20 feeds the film 1 again, and the labels 10 are fed by two.
  • the molding mechanism 90 supplies the molding material into the mold 91 and attaches the label 10 to the outer wall 2a by in-mold labeling, thereby molding the container 2 in-mold.
  • the container 2 with the label 10 attached thereto is formed by blow molding.
  • a labeled container is formed by injection molding, direct blow molding, stretch blow molding, or the like.
  • the label is placed in the cavity of the molding die so that the low melting point resin layer 1a side of the label faces the cavity side of the die (contacts with the resin of the container material), and then suction is performed. Fix to the inner wall of the mold by static electricity. Next, a resin parison serving as a container molding material is guided between the molds, clamped and then hollow molded by a conventional method, and the mold is opened to form a labeled container in which the label is fused to the surface of the plastic container. .
  • an in-mold label is disposed in a cavity of a female mold so that the low-melting point resin layer 1a side of the label faces the mold cavity side (in contact with the resin of the container material), and then suction or After being fixed to the inner wall of the mold by static electricity and clamped, a resin melt as a container molding material was injected into the mold to form a container, and the mold was opened and the label was fused to the surface of the plastic container. A labeled container is formed. Further, in the differential pressure molding, the in-mold label faces the low melting point resin layer 1a side of the label in the lower female mold cavity of the differential pressure molding mold so as to face the mold cavity side (contact with the resin of the container material).
  • each set of molds 91 is composed of split molds 91a and 91b divided in two in the Y direction, a slide rail 92 extending in the Y direction so as to connect the split molds 91a and 91b is formed by a forming mechanism 90. Will be laid. The split molds 91a and 91b move along the slide rail 92 so as to approach or separate from each other.
  • a supply port 93 for supplying a molten pipe-shaped molding material (plastic raw material, so-called “parison” or “preform”) to the mold 91, and a mold when the mold is closed.
  • An air inlet 94 for blowing air into the mold 91 is provided.
  • These supply port 93 and blow-in port 94 are disposed above the mold 91 (in a direction orthogonal to the X direction and the Y direction, for example, on the front side in FIG. 2).
  • the split molds 91a and 91b may be provided with a suction mechanism for sucking the label 10 to be arranged.
  • the labeled container is formed by the following procedure.
  • a molding material is introduced into the split molds 91a and 91b from the supply port 93, the split molds 91a and 91b are brought close to each other, and the mold is closed to perform blow molding. Then, the cooled split molds 91a and 91b are separated from each other and opened, and the molded labeled container is taken out. Thereafter, a deburring process may be performed on the labeled container.
  • the control unit 100 includes a CPU (Central Processing Unit) 110, a memory 111 such as a ROM (Read Only Memory) and a RAM (Random Access Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), and an optical drive. , An external storage device 112 such as a flash memory and a reader / writer, an input device 113 such as a keyboard and a mouse, an output device (display unit) 114 such as a display and a printer, and a communication device 115 that transmits and receives wirelessly or by wire.
  • These devices 110 to 115 are communicably connected to each other via a bus 116 such as a control bus or a data bus provided in the control unit 100.
  • the control unit 100 is a general-purpose computer that can execute the program 117.
  • This program 117 is installed in the external storage device 112.
  • the program 117 may be recorded in a recording medium 118 that can be read by an optical drive, a flash memory, a reader / writer, or the like.
  • the program 117 may be recorded in an online storage on a network to which the control unit 100 can be connected. In any case, it is only necessary that the program 117 can be executed by downloading the program 117 to the external storage device 112 of the control unit 100 or reading the program 117 into the CPU 110 or the memory 111.
  • This manufacturing method is a method of manufacturing a labeled container by the manufacturing apparatus described above.
  • a preparation process step A10) for preparing the film 1 on which the labels 10 are arranged
  • an activation process process step A14
  • Each process is carried out in the order of a transport process (step A20) for transporting 10 and a molding process (step A30) for molding the container 2 using the label 10 transported in the transport process.
  • each process is performed in the order of an extraction process (step A22), a charging process (step A26), and an arrangement process (step A28).
  • the activation process (step A14) when the corona discharge process is performed, it may be performed before the extraction process (step A22), and when the plasma process is performed, before the arrangement process (step A28). It only has to be done.
  • the corona discharge treatment is performed before the removal step (step A22). In the corona discharge treatment, since the treatment is difficult unless the label 10 is in a stable state, the arm portion 60 is taken out. This is because the process is difficult in the unstable state being conveyed by 60.
  • Step A10 printing is performed on the portion of the film 1 that becomes the label 10 in the printing process of Step A12.
  • the labels 10 printed in this manner are fed out as the film 1 is fed out, and are arranged in the longitudinal direction. In this way, the label 10 arranged in the film 1 is prepared.
  • Step A14 the low melting point resin layer 1a of the printed label 10 is activated to improve the wettability of the low melting point resin layer 1a.
  • Step A20 the label 10 is transported by the arm unit 60 of the transport mechanism 50.
  • the label 10 conveyed in the conveyance process is separated from the film 1 by the arm unit 60 in the take-out process of Step A22.
  • the label 10 is charged by the charging unit 80.
  • the charging unit 80 can be omitted.
  • the container 2 with the label 10 attached thereto is molded by the molding mechanism 90.
  • the activation process is performed to give a printing function to the outer surface of the label
  • the activation process Care was taken to ensure that the effect did not affect the sticking surface.
  • the container 2 is formed by molding a polar resin like a plastic bottle
  • the inventor has a parison at the time of attaching the low melting point resin layer 1a of the label 10, that is, in-mold molding. It was discovered that by performing an activation treatment on the surface facing the surface, the sticking surface can be activated to improve the wettability, thereby improving the adhesion between the container 2 and the low melting point resin layer 1a. .
  • the in-mold label of this embodiment has a low melting point resin layer on one surface of a thermoplastic resin film, the low melting point resin layer contains a polyethylene resin, and the melting point of the polyethylene resin is 60 to 110 ° C.
  • the low melting point resin layer has a thickness of 1.5 to 15 ⁇ m, and the surface of the low melting point resin layer is activated.
  • the label 10 used for the manufacturing apparatus of a labeled container mentioned above and the manufacturing method of a labeled container is not limited to the in-mold label of this embodiment, A conventionally well-known various label can be used.
  • fusing point etc.) of resin contained in the low melting point resin layer 1a of the label 10 mentioned above, and the thickness of the low melting point resin layer 1a are not specifically limited.
  • the base layer 1b, the heat seal layer 1a, and the printing layer 1c in the label 10 are sequentially formed of a thermoplastic resin film and a low melting point in the in-mold label of this embodiment.
  • resin layer and ink receiving layer corresponds to resin layer and ink receiving layer.
  • the in-mold label of the present embodiment is used as the label 10
  • the characteristics of the labeled container are relatively improved.
  • a thermoplastic resin film, a low melting point resin layer, an optional ink receiving layer, and the like constituting the in-mold label will be described.
  • thermoplastic resin film is a base layer serving as a support in the in-mold label, and is not particularly limited. It is preferable that the thermoplastic resin film gives the in-mold label a rigidity (stiffness) that allows handling such as printing and insertion in a mold.
  • thermoplastic resin examples include olefin resins such as polypropylene resin, polymethyl-1-pentene, and ethylene-cyclic olefin copolymer; polyester resins such as polyethylene terephthalate resin and polybutylene terephthalate resin; Polyvinyl chloride resin; polyamide resins such as nylon-6, nylon-6,6, nylon-6,10, nylon-6,12; polystyrene; polycarbonate and the like.
  • a polypropylene resin and a polyethylene terephthalate resin are mainly included from the viewpoint of ease of production.
  • the thermoplastic resin contained in the thermoplastic resin film is a polyethylene contained in the low melting point resin layer.
  • a thermoplastic resin having a melting point higher by 15 ° C. or more than the melting point of the base resin is preferable.
  • a thermoplastic resin having a melting point in the range of 130 to 280 ° C. is preferable. Two or more of these thermoplastic resins can be mixed and used.
  • the content ratio of the thermoplastic resin contained in the thermoplastic resin film is not particularly limited, but is usually 55% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more with respect to the total mass of the thermoplastic resin film. It is usually 100% by mass or less, preferably 98% by mass or less, more preferably 95% by mass or less. If the content rate of a thermoplastic resin is the said range, it will be excellent in the moldability of a thermoplastic resin film, and it has the effect of improving moderate adhesiveness and raising the adhesive strength of a labeled container.
  • the thermoplastic resin film may contain an inorganic fine powder or an organic filler.
  • the thermoplastic resin film By stretching a thermoplastic resin film containing inorganic fine powder, the thermoplastic resin film can be made white opaque. As a result, the visibility of printing provided on the in-mold label can be improved.
  • the label does not stand out in the container with the label and can be displayed as if it was printed directly on the container, so depending on the design of the container and the label Thus, a thermoplastic resin film containing inorganic fine powder and a thermoplastic resin film not containing inorganic fine powder can be properly used.
  • the inorganic fine powder examples include calcium carbonate (preferably heavy calcium carbonate), calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide (preferably rutile titanium dioxide), barium sulfate, alumina, zeolite, mica, Examples thereof include sericite, bentonite, sepiolite, vermiculite, dolomite, wollastonite, and glass fiber.
  • the inorganic fine powder one whose surface is treated with a fatty acid or the like can be used.
  • the thermoplastic resin film may contain an organic filler. Even when the thermoplastic resin film contains an organic filler, the in-mold label can be whitened and opaqued, and the effect of facilitating the visual recognition of printing is achieved.
  • the organic filler is more than the melting point or glass transition point of the thermoplastic resin mainly contained in the thermoplastic resin film (50% by mass or more based on the total mass of the thermoplastic resin when two or more types of thermoplastic resins are included), A resin having a high melting point or glass transition point is preferable.
  • the organic filler preferably has a melting point or glass transition point of 120 to 300 ° C.
  • Suitable organic fillers include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyamide, polycarbonate, polystyrene, cyclic olefin homopolymer, ethylene-cyclic olefin copolymer, polyethylene sulfide, polyimide, polymethacrylate, polyethyl ether ketone, Examples include polyphenylene sulfide and melamine resin.
  • thermoplastic resin film one kind selected from inorganic fine powder or organic filler may be used alone, or two or more kinds may be selected and used in combination.
  • the addition ratio of the inorganic fine powder or the organic filler to the total mass of the thermoplastic resin film is preferably 10 to 70% by mass, and more preferably 10 to 60% by mass. 15 to 50% by mass is more preferable.
  • the addition rate of the inorganic fine powder or organic filler is equal to or higher than the lower limit value of the above range, the thermoplastic resin film tends to become white opaque, and the addition rate of the inorganic fine powder or organic filler is less than the upper limit value of the above range. Tends to be uniform.
  • the volume average particle size of the inorganic fine powder or the average dispersed particle size of the organic filler is preferably 0.01 to 15 ⁇ m, more preferably 0.05 to 5 ⁇ m, and more preferably 0.1 to 2 ⁇ m as a volume average particle size by laser diffraction method. 0 ⁇ m is more preferable. Accordingly, there is a tendency that voids are easily obtained by stretch molding, and the in-mold label is easily made opaque.
  • the volume average particle size of the inorganic fine powder or the average dispersed particle size of the organic filler is not less than the lower limit of the above range, the thermoplastic resin film can easily achieve white opacification, and the volume average particle size is the upper limit of the above range.
  • the volume average particle size of the inorganic fine powder and the average dispersed particle size of the organic filler are cumulative values measured by a particle measuring device such as a laser diffraction particle measuring device “Microtrack” (trade name, manufactured by Microtrack Bell Co., Ltd.). Observation of particle diameter corresponding to 50% (cumulative 50% particle diameter), observation of primary particle diameter with a scanning electron microscope (in the present invention, the average value of 100 particles is an average particle diameter), conversion from specific surface area (present invention) Then, the specific surface area was measured using a powder specific surface area measuring device SS-100 manufactured by Shimadzu Corporation).
  • a particle measuring device such as a laser diffraction particle measuring device “Microtrack” (trade name, manufactured by Microtrack Bell Co., Ltd.). Observation of particle diameter corresponding to 50% (cumulative 50% particle diameter), observation of primary particle diameter with a scanning electron microscope (in the present invention, the average value of 100 particles is an average particle diameter), conversion from specific surface area (present invention) Then, the specific
  • thermoplastic resin film is optionally provided with a sterically hindered phenol-based, phosphorus-based, amine-based or sulfur-based antioxidant; a sterically hindered amine-based, benzotriazole-based or benzophenone-based light stabilizer; a dispersant.
  • Additives such as lubricants and antistatic agents can be used. It is preferable to add 0.001 to 1% by mass of each of the above-mentioned various additives individually based on the total mass of the thermoplastic resin film.
  • the thermoplastic resin film may be a single layer or two or more layers. By forming two or more layers, it is possible to impart functions such as white opacification, printing ink acceptability, heat insulation and good in-mold moldability associated therewith to the in-mold label.
  • the thickness of the thermoplastic resin film is preferably 20 to 200 ⁇ m, more preferably 40 to 150 ⁇ m.
  • a suitable transparent thermoplastic resin film it does not contain inorganic fine powder, polypropylene-based unstretched film (CPP film), polypropylene-based biaxially stretched film (BOPP film), polyethylene terephthalate-based An unstretched film (CPET film) and a polyethylene terephthalate biaxially stretched film (BOPET film) are mentioned.
  • Suitable opaque thermoplastic resin films include CPP films, BOPP films, CPET films, BOPET films, and synthetic paper containing inorganic fine powder.
  • Low melting point resin layer The in-mold label of this embodiment has a low melting point resin layer on one surface of a thermoplastic resin film.
  • the low melting point resin layer provides sufficient adhesion strength with a molded product even under low temperature adhesion conditions in stretch blow molding.
  • the thickness of the low melting point resin layer is 1.5 to 15 ⁇ m. When the thickness is 1.5 ⁇ m or more, the adhesive strength is hardly lowered. When the thickness is 15 ⁇ m or less, coloring of the adhesive layer and curling of the label are less likely to occur, and there is no need to deepen the embossing to escape the air that has entered between the label and the container during in-mold molding. It becomes difficult to affect.
  • the thickness of the low melting point resin layer is preferably 2 to 5 ⁇ m, more preferably 2 to 3 ⁇ m.
  • the melting point of the polyethylene resin contained in the low melting point resin layer is 60 to 110 ° C.
  • the melting point is 60 ° C. or more, blocking (particularly cut blocking) is difficult to occur, and when the melting point is 110 ° C. or less, the low melting point resin layer is easily melted during in-mold molding, and the adhesive strength is easily increased.
  • the melting point of the polyethylene resin contained in the low melting point resin layer is preferably 70 to 100 ° C, more preferably 75 to 90 ° C.
  • the polyethylene resin contained in the low melting point resin layer may be a homopolymer of ethylene or a copolymer of ethylene and a monomer copolymerizable with ethylene.
  • the polyethylene resin contained in the low melting point resin layer is preferably a copolymer of ethylene and a monomer copolymerizable with ethylene.
  • Monomers copolymerizable with ethylene include ⁇ -olefins having 3 to 10 carbon atoms (preferably 3 to 8 carbon atoms), monomers having no hetero atom such as styrene; vinyl acetate, (meth) acrylic acid, alkyl groups And a monomer having a hetero atom such as (meth) acrylic acid alkyl ester having 1 to 8 carbon atoms and maleic anhydride. From the viewpoint of improving water resistance, it is preferable that the polyethylene-based resin does not basically have a hetero atom. From the viewpoint of improving water resistance, it is preferable to contain 95 mol% or more, more preferably 97 mol% or more of a monomer-derived structural unit having no hetero atom.
  • the polyethylene-based resin preferably contains 5 mol% or less of a structural unit derived from a monomer having a hetero atom, more preferably 3 mol% or less, and particularly preferably does not contain at all.
  • a polyethylene-type resin contains 80 mol% or more of structural units derived from ethylene.
  • the polyethylene resin more preferably contains 95 mol% or more and less than 100 mol% of structural units derived from ethylene, and particularly preferably contains 97 mol% or more and less than 100 mol%.
  • the structural unit derived from a monomer copolymerizable with ethylene is included more than 0 mol% and 5 mol% or less, and more preferably more than 0 mol% and 3 mol% or less.
  • the content of the polyethylene resin contained in the low melting point resin layer is not particularly limited, but is usually 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass with respect to the total mass of the low melting point resin layer. % Or more, and usually 100% by mass or less. If the content rate of a polyethylene-type resin is the said range, the adhesive strength of a labeled container will be excellent.
  • low density polyethylene low density polyethylene
  • linear low density polyethylene linear low density polyethylene
  • ethylene-propylene copolymer ethylene-propylene copolymer
  • linear low density polyethylene is most preferable.
  • These polyethylene resins may be used alone or in combination of two or more.
  • the linear low density polyethylene include those synthesized by a multisite catalyst typified by a Ziegler type catalyst and those synthesized by a single site catalyst typified by a metallocene catalyst. From the viewpoint of controlling the melting point of the polyethylene resin contained in the low melting point resin layer within the above range, those synthesized by a single site catalyst are preferable.
  • transition metals such as Zr, Ti, Hf and cyclopentadi
  • metallocene catalyst consisting of an unsaturated ring such as an enyl ring or an indenyl ring
  • the ratio Mw / Mn between the weight average molecular weight and the number average molecular weight of the linear low density polyethylene is preferably 3.5 or less.
  • additives such as antioxidants, lubricants, antiblocking agents, and antistatic agents can be blended with the polyethylene-based resin as necessary.
  • the surface of the low melting point resin layer has irregularities from the viewpoint of promptly discharging air that has entered between the label and the parison during in-mold molding.
  • the embossing roll can be preferably used.
  • the surface of the low melting point resin layer is activated in the state of the in-mode label.
  • the activation treatment of the surface of the low melting point resin layer is as described in detail in the activation treatment section of the labeled container manufacturing apparatus.
  • the surface tension of the surface of the low melting point resin layer or the number of oxygen atoms / number of carbon atoms by the X-ray photoelectron spectroscopy (XPS) method of the surface of the low melting point resin layer
  • XPS X-ray photoelectron spectroscopy
  • the in-mold label concerning this embodiment has an ink receiving layer as a printing layer in the surface in which a thermoplastic resin film does not have a low melting-point resin layer.
  • the ink receiving layer has the effect of improving the printability of the in-mold label, particularly the ink transferability and the ink adhesion.
  • the ink receiving layer preferably contains a binder and / or an antistatic agent.
  • the ink receiving layer preferably further contains a cross-linking agent.
  • the ink receiving layer can contain an antiblocking agent, a colorant, an antifoaming agent, an antifungal agent, a lubricant, and the like, if necessary.
  • the binder is not particularly limited as long as it has adhesiveness and can be applied to the surface of the thermoplastic resin film.
  • binders include ethylene / vinyl acetate copolymers, ethylene / (meth) acrylic acid copolymers and metal salts thereof (Zn, Al, Li, K, Na, etc.), ethylene / (meth) acrylic acid (C1-8).
  • Ethylene copolymers such as alkyl ester copolymers; acid-modified polyolefins such as maleic acid-modified polyethylene, maleic acid-modified polypropylene, maleic acid-modified ethylene / vinyl acetate copolymers; monohydroxy (C3-6) alkyl-modified polyethylene Hydroxyl-modified polyolefin such as chlorinated polyolefin; Polyurethane such as polyester polyurethane and polycarbonate polyurethane; Polyethyleneimine such as polyethyleneimine and poly (ethyleneimine-urea) and its modified product; Ethyleneimine adduct of polyamine polyamide, polyamine Polyamide various (alkyl, cycloalkyl, aryl, aralkyl, benzyl, cyclopentyl) include modified polyamine polyamide modified products and the like.
  • a water dispersible (emulsion) binder can be selected.
  • the content of the binder contained in the ink receiving layer is not particularly limited, but is usually 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more, and usually 100% with respect to the total mass of the ink receiving layer. It is not more than mass%, preferably not more than 99.5 mass%.
  • the antistatic agent may be applied to any layer of the in-mold label when the label holding method in the mold is a vacuum suction type, but the label holding method in the mold is an electrostatic adsorption type Is applicable to the surface of the in-mold label 10 that does not have a low melting point resin layer.
  • the label holding method in the mold is an electrostatic adsorption type Is applicable to the surface of the in-mold label 10 that does not have a low melting point resin layer.
  • the antistatic agent include low molecular weight organic compounds, conductive inorganic compounds, so-called electronic conductive polymers, nonionic polymer type antistatic agents, quaternary ammonium salt type copolymers, and alkali metal salt-containing polymers. .
  • low molecular weight organic compounds such as stearic acid monoglyceride, alkyldiethanolamine, sorbitan monolaurate, alkylbenzene sulfonate, and alkyl diphenyl ether sulfonate; ITO (indium doped tin oxide), ATO (antimony doped tin oxide) ), Conductive inorganic compounds such as graphite whiskers; so-called electron conductive polymers that exhibit conductivity by pi electrons in the molecular chain such as polythiophene, polypyroyl, polyaniline; polyethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene diamine, etc.
  • Nonionic polymer type antistatic agent quaternary ammonium salt type copolymer such as polyvinylbenzyltrimethylammonium chloride, polydimethylaminoethyl methacrylate quaternized product, etc. Body; alkali metal salt-containing polymers such as an alkali metal ion additives, etc. to the alkylene oxide group and / or hydroxyl group-containing polymer.
  • the surface resistivity of the surface of the in-mold label to which the antistatic agent is applied is preferably 1 ⁇ 10 2 ⁇ to 1 ⁇ 10 13 ⁇ , and more preferably 1 ⁇ 10 6 ⁇ to 1 ⁇ 10 12 ⁇ .
  • the content ratio of the antistatic agent contained in the ink receiving layer is not particularly limited, but is usually 10% by mass or more, preferably 15% by mass or more, more preferably 20% by mass or more, based on the total mass of the ink receiving layer. Usually, it is 50 mass% or less, Preferably it is 40 mass% or less.
  • Crosslinking agent reacts with the binder and / or antistatic agent, or encapsulates the binder and / or antistatic agent in the network formed by the crosslinking agent, and the binder and / or antistatic agent is placed on the surface of the in-mold label. It works to fix to. As a result, for example, there is an effect of improving adhesion and water resistance of printing applied to the in-mold label.
  • crosslinking agent examples include bifunctional or higher functional materials having a hydroxyl group, a carboxyl group, an epoxy group, an isocyanate group, an aldehyde group, an oxazoline skeleton, a carbodiimide skeleton, and the like as a reactive functional group.
  • bifunctional or higher functional materials having a hydroxyl group, a carboxyl group, an epoxy group, an isocyanate group, an aldehyde group, an oxazoline skeleton, a carbodiimide skeleton, and the like as a reactive functional group.
  • bisphenol A-epichlorohydrin resin, polyamine polyamide epichlorohydrin resin, aliphatic epoxy resin, epoxy novolac resin, alicyclic epoxy resin, brominated epoxy resin, etc. are preferable, and polyamine polyamide epichlorohydrin adduct, monofunctional to polyfunctional glycidyl. Ethers and glycidyl esters are more preferred.
  • the content ratio of the crosslinking agent contained in the ink receiving layer is not particularly limited, but is usually 15% by mass or more, preferably 20% by mass or more, and usually 45% by mass or less, preferably 40% with respect to the total mass of the ink receiving layer. It is below mass%. If the content rate of a crosslinking agent is the said range, the adhesiveness and water resistance of printing ink can be improved.
  • thermoplastic resin film can also be made into a multilayer structure.
  • examples of the method for forming a single layer film include extrusion molding (cast molding) using a T die, inflation molding using an O die, and calendar molding using a rolling roll.
  • the T die and the O die are configured as a multilayer die. Then, the thermoplastic resin composition used for each layer is supplied to different extruders and melted, and the thermoplastic resin composition discharged from each extruder is supplied to the multilayer die and laminated in the die. Discharge in film form.
  • the method for laminating the low melting point resin layer on one surface of the thermoplastic resin film is not particularly limited, and examples thereof include a co-extrusion method, an extrusion laminating method, a film laminating method, a coating method, a dry laminating method and a thermal laminating method. It is done.
  • a thermoplastic resin composition for a thermoplastic resin film and a thermoplastic resin composition for a low melting point resin layer are supplied to the multilayer die, Since lamination and extrusion are performed, lamination is performed simultaneously with molding.
  • thermoplastic resin film is formed first, and a molten low melting point resin layer is laminated thereon. Therefore, the molding and lamination are performed in separate steps.
  • the thermoplastic resin film and the low melting point resin layer are respectively formed into a film and the both are bonded through an adhesive.
  • the application method is a method of applying a thermoplastic resin composition for a low melting point resin layer to one surface of a thermoplastic resin film.
  • a low melting point resin layer is formed by dissolving a thermoplastic resin composition for a low melting point resin layer in a solvent to form a coating liquid and drying the thermoplastic resin composition applied to the thermoplastic resin film. Therefore, lamination is performed simultaneously with molding.
  • the low melting point resin layer can be formed into a multilayer by using a dry laminating method or a thermal laminating method.
  • a dry laminating method By these methods, the low-melting point resin layer and the thermoplastic resin film are strongly adhered and integrally provided.
  • the coextrusion method is preferable from the viewpoint that each layer can be firmly bonded.
  • thermoplastic resin film and the low melting point resin layer may be unstretched, or may be stretched in at least a uniaxial direction.
  • the shape following property of the labeled container can be improved.
  • the thermoplastic resin film is stretched, it is lightweight and excellent in thickness uniformity.
  • Stretching methods include longitudinal stretching using the peripheral speed difference of the roll group, rolling, lateral stretching using a tenter oven, sequential biaxial stretching combining longitudinal stretching and lateral stretching, and simultaneous use of a combination of a tenter oven and a linear motor. Biaxial stretching, simultaneous biaxial stretching by a combination of a tenter oven and a pantograph can be exemplified.
  • simultaneous biaxial stretching by adjustment of the amount of blowing air can be mentioned.
  • the draw ratio at the time of drawing is not particularly limited, and is appropriately determined in consideration of the physical properties of the in-mold label, the drawing characteristics of each layer (particularly the thermoplastic resin film), and the like.
  • the stretching ratio in the case of uniaxial stretching is preferably 1.2 to 12 times, more preferably 2 to 10 times.
  • the area magnification is preferably 1.5 to 60 times, more preferably 4 to 50 times.
  • the stretching ratio is preferably 1.2 to 10 times, more preferably 2 to 5 times in the case of uniaxial stretching.
  • the area magnification is preferably 1.5 to 20 times, and more preferably 4 to 12 times.
  • the stretching temperature is appropriately determined in consideration of the stretching characteristics of each layer (particularly the thermoplastic resin film). Among them, the temperature is preferably from the glass transition temperature of the thermoplastic resin mainly contained in the thermoplastic resin film to the melting point of the crystal part.
  • the thermoplastic resin mainly contained in the thermoplastic resin film is a propylene homopolymer (melting point: 155 to 167 ° C.)
  • the stretching temperature is preferably 1 to 70 ° C. lower than the melting point.
  • the stretching temperature is preferably 100 to 166 ° C.
  • the stretching speed is preferably 20 to 350 m / min.
  • the label when the label is placed on the mold 90 by the arm portion 60, the label may be bent. It becomes difficult to enter.
  • the formation of the deformed portions 11a and 12a can be suppressed by setting the stretching direction according to the contour shape of the label. For example, the label 10 installed in the feeding mechanism 20 is stretched in the X direction.
  • the ink receiving layer is preferably formed by applying a coating liquid.
  • the solvent that forms the coating liquid is water; water-soluble solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, and methyl ethyl ketone; water-insoluble solvents such as ethyl acetate, toluene, and xylene from the viewpoint of easy process control Is mentioned.
  • the coating liquid is preferably used in the form of a solution or dispersion by uniformly dissolving or dispersing the above components such as a binder in the above solvent.
  • the solid content concentration in the coating liquid is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more. Moreover, 20 mass% or less is preferable from a viewpoint of obtaining a uniform coating surface, and 10 mass% or less is more preferable.
  • the coating method examples include a method using a coating apparatus such as a gravure coater, a micro gravure coater, a reverse coater, a blade coater, a Mayer bar coater, and an air knife coater.
  • a coating apparatus such as a gravure coater, a micro gravure coater, a reverse coater, a blade coater, a Mayer bar coater, and an air knife coater.
  • the low melting point resin layer is applied to the surface on which the thermoplastic resin film coating liquid is applied in advance from the viewpoint of uniform coating while suppressing the repelling of the coating liquid. It is preferable to perform activation treatment exemplified by corona discharge treatment similar to the surface. Moreover, it is also preferable to apply the coating liquid on one side of the thermoplastic resin film in advance and dry the coating layer to remove the solvent.
  • Ink receiving layer is more that is preferably 0.01g / m 2 ⁇ 7g / m 2 as a solid coating amount per one side after drying, is 0.01g / m 2 ⁇ 5g / m 2 0.05 g / m 2 to 3 g / m 2 is particularly preferable.
  • the coating amount of the ink receiving layer is within the above range, the transferability and adhesion of the ink are improved. If the coating amount of the ink receiving layer is less than or equal to the above upper limit value, the in-mold label is unlikely to curl, and ink adhesion is unlikely to decrease due to cohesive failure in the ink receiving layer. On the other hand, when the coating amount of the ink receiving layer is equal to or more than the above lower limit, the transferability and adhesion of the ink are easily developed.
  • the in-mold label can be printed. Usually, it can print on the surface which does not provide the low melting point resin layer of a thermoplastic resin film. Examples of the print information include a barcode, a manufacturer, a sales company name, a character, a product name, and a usage method. Also, printing can be performed on the low melting point resin layer.
  • the thermoplastic resin film is transparent, since the printed information of the low melting point resin layer is not in the outermost layer in the labeled container, the effect of excellent durability is achieved. Further, when the thermoplastic resin film is opaque, the printing information cannot be visually recognized in the container with the label, and the printing can be visually recognized when the label is broken.
  • the printing method examples include gravure printing, offset printing, flexographic printing, seal printing, and screen printing.
  • the in-mold label may be decorated with a transfer foil, a hologram, or the like. Security elements such as threads are also included in the decoration. You may give both printing and decoration.
  • the in-mold label is preferably separated into a necessary shape and size by punching before or after printing and decoration. From the viewpoint of not easily damaging printed and decorated information, it is preferable to perform punching after printing and decoration.
  • the punched in-mold label may be affixed to the entire surface of the plastic container, or may be a partial affixed partly.
  • the in-mold label may be used as a blank label surrounding the side surface of a cup-shaped plastic container attached by injection molding, or the surface of a bottle-shaped plastic container attached by hollow molding It may also be used as a label attached to the back surface.
  • the in-mold label of this embodiment is stuck on the surface of a polar resin container.
  • the method of in-mold molding that is, the method of attaching an in-mold label to the surface of the polar resin container.
  • the in-mold label of this embodiment uses a low-melting resin layer containing a polyethylene-based resin that basically has no heteroatoms (which is a nonpolar resin), the surface of the low-melting resin layer Has a property of being attached (preferably heat-sealed) to a polar resin (for example, a polyester resin typified by polyethylene terephthalate).
  • Examples of the method for forming a polar resin container include stretch blow molding in which a preform heated as a parison is used and pressed onto a mold inner wall with a rod and compressed air.
  • the in-mold label of this embodiment is particularly useful for stretch blow molding because of its high adhesive strength even under low temperature bonding conditions for stretch blow molding.
  • the in-mold label of this embodiment can be used not only for stretch blow molding but also for direct blow molding, injection molding, differential pressure molding, and the like. Below, the preferable aspect of the container with a label of this embodiment is demonstrated.
  • a polar resin is used as the material of the container.
  • the polar resin used for the container material include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, and polylactic acid.
  • specific examples of the material used for the container include polycarbonate resin, acrylonitrile-styrene (AS) resin, acrylonitrile-butylene-styrene (ABS) resin, methyl Other polar resins such as methacrylate-styrene (MS) resin are also included.
  • the container may be transparent and / or natural color containing no pigments or dyes, and may be opaque and / or colored containing pigments or dyes.
  • the body of the container may have a perfect cross section or may be oval or rectangular. When the body has a rectangular cross section, the corners preferably have a curvature. From the viewpoint of strength, the cross section of the body is preferably a perfect circle or an elliptical shape close to a perfect circle, and more preferably a perfect circle. Further, the size of the container is not particularly limited.
  • the labeled container preferably has the following characteristics.
  • the adhesive strength between the polar resin container and the in-mold label is measured in accordance with JIS K6854-2: 1999 “Adhesive—Peeling adhesive strength test method—Part 2: 180 degree peeling”.
  • the adhesive strength is preferably 2N / 15 mm or more, more preferably 4N / 15 mm or more, and further preferably 5N / 15 mm or more.
  • the upper limit of the adhesive strength is not particularly limited, but is preferably 15 N / 15 mm or less from the cohesive fracture strength of the resin constituting the low melting point resin layer.
  • the label is attached to the container by in-mold labeling, “T 2 ” of the height dimension of the label is suppressed.
  • the ratio T 1 : T 2 between “T 1 ” which is the dimension in the thickness direction of the label and “T 2 ” which is the height dimension of the step of the label is in the range of 50:50 to 100: 0. Is preferred.
  • thermoplastic resin film material As a thermoplastic resin film material, a thermoplastic resin composition of PP-1 shown in Table 1 with 84% by mass, CA-1 at 15% by mass, and TI-1 at 1% by mass was melted in an extruder heated to 230 ° C. The mixture was kneaded and supplied to a two-layer die.
  • PE-1 shown in Table 1 as a material for the low melting point resin layer was melt kneaded with an extruder heated to 210 ° C. and supplied to a two-layer die. The material of the thermoplastic resin film and the material of the low melting point resin layer were laminated in a two-layer die and extruded from the T die as a two-layer film having two types of layers.
  • This unstretched sheet was heated to 150 ° C. and stretched 5 times in the longitudinal direction.
  • it is again heated to a temperature of 150 ° C., stretched 8 times in the transverse direction with a tenter, annealed at a temperature of 160 ° C., cooled to a temperature of 60 ° C., A white opaque biaxially oriented polyolefin-based laminated resin film having a two-layer structure was obtained.
  • the resulting white opaque biaxially stretched polyolefin-based laminated resin film having a two-layer structure had a thickness of 70 ⁇ m and a density of 0.76 g / cm 3 .
  • the low melting point resin layer had a thickness of 2.0 ⁇ m and a surface tension of 64 mN / m.
  • the white opaque biaxially stretched polyolefin-based laminated resin film having this two-layer structure was used as the in-mold label of Example 1.
  • Example 2 In Example 1, the composition of the thermoplastic resin composition for a thermoplastic resin film was changed to that without inorganic fine powder as shown in Table 2 to obtain a colorless and transparent biaxially stretched polyolefin-based laminated resin film. This colorless and transparent biaxially stretched polyolefin-based laminated resin film was used as the in-mold label of Example 2.
  • Example 3 In Example 1, the resin for the low melting point resin layer was changed to PE-2 having a melting point of 90 ° C. as shown in Table 2 below to obtain a white opaque biaxially oriented polyolefin-based laminated resin film. This white opaque biaxially oriented polyolefin-based laminated resin film was used as the in-mold label of Example 3. In comparison with Example 3 and Example 1 in the adhesive strength test results described later, Example 1 using PE-1 having an ethylene copolymerization ratio of 95% or more has an ethylene copolymerization ratio of 95. It was shown that the adhesive strength was higher than that of Example 3 using PE-2 of less than%.
  • Reference examples 1 and 2 are shown below.
  • an in-mold label of Reference Example 1 was produced in the same manner as in Example 1 except that the thickness of the low melting point resin layer in the in-mold label of Example 1 was changed.
  • an in-mold label of Reference Example 2 was produced in the same manner as in Example 1 except that the polyethylene resin contained in the low melting point resin layer in the in-mold label of Example 1 was changed.
  • Example 1 the in-mold label of Reference Example 1 in which the thickness of the low melting point resin layer was 0.8 ⁇ m was produced by narrowing the supply amount of the low melting point resin layer to the two-layer die.
  • the adhesive strength was lower than the adhesive strength measured in Example 1.
  • the in-mold label attached to the container can be easily peeled depending on the thickness of the low-melting point resin layer, regardless of whether it is immersed in water or not immersed in water (dry conditions). It can be seen that it can be granted. Therefore, the in-mold label of Reference Example 1 is useful when obtaining a labeled container excellent in easy peelability. Further, according to Reference Example 1, the low melting point resin layer was filled between the label and the container, and the thickness of the low melting point resin layer suitable for obtaining excellent adhesive strength was shown. Further, Reference Example 1 shows that the adhesive strength between the label and the container and the water peel resistance are relatively improved by the thickness of the low melting point resin layer in the in-mold label.
  • Example 2 the polyethylene resin used for the low-melting point resin layer had a melting point of 81 ° C. and PE-3 having a melting point of 115 ° C. was used in the same manner as in Example 1, except that PE-3 was used. 2 in-mold labels were produced. When the labeled container was manufactured using the in-mold label of Reference Example 2 as described later in the adhesive strength test results, the adhesive strength was lower than the adhesive strength measured in Example 1. Moreover, it was shown that a label peels in a short time compared with the labeled container of Example 1 as a result of a water-resistant peeling test.
  • Reference Example 2 showed the critical point of the melting point (melting peak temperature) of the polyethylene resin suitable for filling the low melting point resin layer between the label and the container and melting the low melting point resin layer. . Furthermore, Reference Example 2 showed that the adhesive strength between the label and the container and the water peel resistance were relatively improved by the melting point of the polyethylene resin contained in the low melting point resin layer.
  • Example 1 and Reference Example 2 when Example 1 and Reference Example 2 are compared, the melting point of a polyethylene resin suitable for stretch blow molding conditions (conditions in which the parison has less heat than in direct blow molding) can be found.
  • the temperature of the parison In direct blow molding, the temperature of the parison is 250 to 270 ° C. Therefore, even if the in-mold label of Reference Example 2 is used, the low melting point resin layer is sufficiently melted and a labeled container having excellent adhesive strength can be obtained.
  • Comparative Examples 2 and 3 are shown below.
  • in-mold labels of Comparative Examples 2 and 3 were produced in the same manner as Reference Examples 1 and 2, except that the corona discharge treatment was not performed.
  • the adhesive strength test described later when a labeled container was manufactured using the in-mold labels of Comparative Examples 2 and 3, sufficient adhesive strength was not obtained.
  • the label and the container are relatively bonded depending on whether or not the low melting point resin layer is activated. It was shown that strength and water peel resistance were improved.
  • ⁇ Evaluation method> [In-mold label properties] (Thickness of each layer)
  • the thickness (total thickness) of the in-mold label was measured using a constant pressure thickness measuring instrument (trade name: PG-01J, manufactured by Teclock Co., Ltd.) according to JIS K7130: 1999.
  • the thickness of each layer in the in-mold label is determined by cooling the sample to be measured to a temperature of ⁇ 60 ° C. or less with liquid nitrogen and placing it on a glass plate with a razor blade (manufactured by Sick Japan Co., Ltd.).
  • Powder toner (model number: TK-571M, manufactured by Kyocera Mita, plus charge type) and glass beads with a particle diameter of 2.5 mm are placed in a PP screw bottle (50 ml), and the bottle is shaken by hand for 3 minutes. The aggregate was crushed. The obtained toner was sprinkled on the surface of the low melting point resin layer of the in-mold label, and the presence or absence of a corona discharge treatment trace was visually confirmed and judged according to the following criteria.
  • Existence Toner adheres to the surface of the low melting point resin layer of the in-mold label, and the pattern appears to float. No: Toner does not adhere to the surface of the low melting point resin layer of the in-mold label. Alternatively, the toner adheres to the surface of the low melting point resin layer of the in-mold label, but the pattern does not appear.
  • the in-mold label was installed so that the long side of the label was stuck in parallel to the circumferential direction of the body of the resin molded body in the mold.
  • the mold was controlled so that the surface temperature on the cavity side was in the range of 20 to 45 ° C.
  • a polyethylene terephthalate preform was preheated to 100 ° C. Then, the preform leads to a mold, under a blow pressure of 5 ⁇ 40kg / cm 2, and stretch blow molding 1 second. Then, it cooled to 50 degreeC in 15 seconds.
  • the mold was opened, and the labeled container having a square body having a height of 12 cm and a side of about 7 cm was taken out.
  • the labeled container to be measured was stored for 2 days in an environment of a temperature of 23 ° C. and a relative humidity of 50%.
  • the container wall and the label of the label sticking part are cut together with a cutter, and the length of the circumferential direction of the container body is 12 cm (the sticking part of the label is 9 cm, the non-sticking part is 3 cm) and A total of 6 samples for measurement having a width of 1.5 cm (with labels attached to the entire width) were collected from two containers.
  • the label was carefully peeled off from the gripping (unlabeled) part and peeled about 1 cm to form an adhesive part for gripping.
  • the material MFR (melt flow rate according to JIS K7210: 1999), melting point (melting peak temperature according to JIS K7121: 1987), ethylene content, density, and volume average particle diameter of inorganic fine powders were used as catalog values for each material. .
  • Example 101 “Epomin SP-003” manufactured by Nippon Shokubai Co., Ltd. and “Saftmer ST-1000” manufactured by Mitsubishi Chemical Co., Ltd. were mixed to prepare a paint for an ink receiving layer having a solid content concentration of 3 mass%.
  • the paint is applied to the thermoplastic resin film side of the white opaque biaxially stretched polyolefin-based laminated resin film having the two-layer structure prepared in Example 1 with a Mayer bar # 8, and dried at 80 ° C. for 45 seconds to receive ink. A layer was provided.
  • the modification regarding the arm part 60 is described.
  • the chassis unit 52 provided with the arm units 61 and 62 corresponding to the number of labels 11 and 12 in one label 10 has been described. May be used.
  • the arm portion used in this case is provided with a tip portion having a size overlapping with all of the plurality of labels in a side view.
  • a punching grille also referred to as “punching plate” having a large number of holes can be used.
  • more arm portions may be provided than the number of labels 11 and 12 in one label 10.
  • a plurality of arm portions may be provided for one label 11, 12.
  • the label may be attracted to the arm portion not only by suction but by static electricity. In this case, since the label can be charged, it is not necessary to provide a charging portion.
  • a sheet-like label 9 in a state of being stacked on the stacker 8 may be provided.
  • a gantry 54 that supports the stacker 8 and the above-described feeding mechanism 20 is provided, and a switching mechanism (switching unit) 55 that switches the take-out destination of the labels 9 and 10 is provided.
  • the stacker 8 provided above the feeding mechanism 20 is illustrated.
  • the switching mechanism 55 is provided with a moving mechanism 56 that moves the gantry 54 up and down. That is, the switching mechanism 55 switches the stage (vertical direction position) from which the labels 9 and 10 are taken out.
  • the stage to which the labels 9 and 10 are taken out is switched without switching the stage of the transport mechanism 50.
  • the label 10 of the feeding mechanism 20 facing the arm unit 60 of the chassis unit 52 can be taken out, and the gantry 54 is moved downward to move the arm unit
  • the label 9 of the stacker 8 facing 60 can be taken out. Therefore, the labels 9 and 10 used on the front side of the container 2 can be switched alternatively.
  • the sheet-like label 9 is stuck on the front side and the label separated from the film is stuck on the back side 2 can also be molded. That is, the sheet-like label 9 and the label 10 separated from the film can be used together in one container 2.
  • Such a switching process by the switching mechanism 55 may be performed in parallel with the winding process.
  • the switching mechanism may switch the stage of the transport mechanism 50 instead of or in addition to switching the stage from which the labels 9 and 10 are taken out.
  • it may be a switching mechanism in which a slide rail extending vertically is provided and the chassis 52 slides up and down along the slide rail.
  • the label 10 when the chassis part 52 is located at the lower part, the label 10 can be separated from the long film 1 as described above, and when it is located at the upper part, the sheets stacked by the stacker 8 can be separated.
  • the leaf-shaped label 9 can be taken out.
  • the extending direction of the rotating shafts 21 and 22 in the feeding mechanism 20 and the direction in which the feeding mechanism 20 and the stacker 8 are arranged are not limited to the vertical direction, but are set in various directions according to the surrounding configuration and required specifications.
  • the transport mechanism 50 is not limited to a mechanism in which the chassis 52 slides along the rail 51 and the labels 9 and 10 reciprocate linearly.
  • suction cups and electrostatic parts may be intermittently arranged on the rotating disk-shaped outer peripheral end, and the labels 9 and 10 may be attracted by these suction cups and electrostatic parts. In this case, the labels 9 and 10 are conveyed while rotating.
  • a suction cup or an electrostatic part may be arranged at the tip of a multi-axis robot arm such as a four-axis robot or a six-axis robot, and the labels 9 and 10 may be attracted by these suction cups or electrostatic parts.
  • the labels 9 and 10 can be transported along a free path.
  • the relative arrangement can be changed and transported. Therefore, the material cost can be suppressed by printing the label 10 on the film 1 with high density.
  • the relative arrangement of the plurality of labels 11 and 12 may be set differently in the extraction process (extraction part) and the arrangement process (arrangement part).
  • the plurality of labels 11, The interval of 12 can be narrowed.
  • the material cost of the film 1 can be reduced by reducing the margins by devising the pattern allocation (also referred to as imposition) when printing on the long film 1.
  • each of the plurality of labels 11 and 12 forming the label group 10 is separated from the film 1 in the take-out process. It is necessary to dispose the labels 11 and 12 that are separated and taken out of the relative disposition.
  • the arm portions 60 for sucking each of the plurality of labels 11 and 12 need to move independently.
  • each arm unit 60 is preferably configured as an arm of an independent multi-axis robot or connected to this arm.
  • the relative arrangement of the plurality of labels 11 and 12 is set to be different between the extraction process and the arrangement process
  • the relative positions of the plurality of labels 11 and 12 in the extraction process and the plurality of labels 11 in the arrangement process. , 12 are stored in advance in the external storage device 112, and the relative arrangement of the labels 11, 12 in the take-out process is changed to the relative arrangement of the labels 11, 12 in the arrangement process.
  • 12 are preferably computer controlled so that the multi-axis robot is arranged in the mold 91. Further, it is preferable that a program 117 that causes the control unit 100 to execute this control is stored in the external storage device 112.
  • control target of the control unit 100 is not limited to the arm unit 60, but may be other units such as the printing unit 30, the feeding mechanism 20, and the transport mechanism 50. You may control the whole.
  • the program 117 may execute a control process for individually controlling each unit of the manufacturing apparatus or a control process for controlling the entire control apparatus.
  • the charging unit 80 may be omitted. In this case, the apparatus configuration can be simplified.
  • the label 10 is preferably discharged. This is because when the label 10 is charged, the electrostatic force affects the suction holding, and the holding position of the label 10 in the mold 91 may be shifted from the normal position.
  • the example in which the present invention is applied to the label 10 arranged in the longitudinal direction of the film 1 is subjected to the activation treatment.
  • the present invention is activated to a sheet-like label. It is applicable also to what performs a process.
  • the labeled container, the labeled container manufacturing apparatus, and the labeled container manufacturing method of the present invention using a film having a polyethylene-based resin as an adhesive layer that cannot be bonded to polyester with conventional common sense It becomes possible to bond to a polyester container, and a molded product having sufficient adhesive strength with the molded product can be obtained even under low temperature bonding conditions by stretch blow molding. Therefore, it becomes possible to manufacture an in-mold label for both a polyester container and a polyolefin container, which greatly contributes to cost reduction in the field.

Abstract

Provided is a labelled container production apparatus with which it is possible to select a nonpolar resin for the low melting point resin layer of a label and attach said label to a container made of a polar resin material. The apparatus is provided with: a retrieving section 60 for retrieving a label 10 with a low melting point resin layer; a placement section 60 for disposing the label 10 retrieved by the retrieving section 60 inside a mold 91 with the low melting point resin layer facing inward; a molding unit 90 for supplying a molding material into the mold 91 to form a container in which the label 10 disposed inside the mold 91 by the placement section 60 is attached on the outer wall by the low melting point resin layer; and an activation unit 200 for activating the low melting point resin layer prior to the label 10 being disposed inside the mold 91 by the placement section 60.

Description

インモールドラベル、ラベル付き容器、ラベル付き容器の製造装置および製造方法In-mold label, labeled container, manufacturing apparatus and manufacturing method of labeled container
 本件は、インモールドラベル、ラベル付き容器、ラベル付き容器の製造装置および製造方法に関する。 This example relates to an in-mold label, a labeled container, a manufacturing apparatus and a manufacturing method for a labeled container.
 従来、接着剤でラベルが貼り付けられた容器が知られている。この容器では、接着剤が塗布された接着層を介してラベルが容器に貼付されることから、容器に対するラベルの段差が大きく、ラベルが剥がれるおそれがある。
 そこで、容器に対してラベルを確実に貼着させる手法の一つとして、インモールド成形(インモールドラベリング)という製法が用いられている。
Conventionally, a container having a label attached with an adhesive is known. In this container, since the label is affixed to the container through the adhesive layer to which the adhesive is applied, there is a possibility that the label has a large step and the label may be peeled off.
Therefore, a method called in-mold molding (in-mold labeling) is used as one of the methods for reliably attaching the label to the container.
 インモールド成形では、一組の割り金型の内部にラベルを配置したうえで、溶融したパイプ状のプラスチック原料を割り金型で挟み込み、内部に空気を吹き込むことで、ラベルが一体的に貼着された容器を成形する。そのため、容器に対するラベルの段差が抑えられ、ラベルが確実に貼着された容器を成形することができる。たとえば、重ねられた枚葉状のラベルを一枚ずつ取り出して割り金型の内部に配置して、インモールド成形で容器にラベルを貼着させる技術が提案されている(特許文献1参照)。 In in-mold molding, a label is placed inside a set of split molds, a molten pipe-shaped plastic material is sandwiched between split molds, and air is blown into the interior, so that the labels are attached together. The formed container is molded. Therefore, the level | step difference of the label with respect to a container is suppressed, and the container with the label stuck reliably can be shape | molded. For example, a technique has been proposed in which stacked sheet-like labels are taken out one by one and placed inside a split mold, and the label is attached to a container by in-mold molding (see Patent Document 1).
 一方、ポリエチレンテレフタレートに代表されるポリエステル樹脂製のプリフォームをブロー成形して得られる容器の表面には、ポリエチレンからなる接着層を有するインモールドラベルを貼着することはできない。ポリエステル樹脂容器に貼着するインモールドラベルとして、例えば、エチレン-酢酸ビニル共重合体を含むヒートシール層を有する延伸ポリプロピレンフィルムで、接着層の厚さが25~50μmのラベル、および該ラベルをポリエステル製容器に貼着して得られるラベル付き容器が知られている(例えば、特許文献2参照)。 On the other hand, an in-mold label having an adhesive layer made of polyethylene cannot be attached to the surface of a container obtained by blow molding a preform made of polyester resin represented by polyethylene terephthalate. As an in-mold label to be attached to a polyester resin container, for example, a stretched polypropylene film having a heat seal layer containing an ethylene-vinyl acetate copolymer, a label having an adhesive layer thickness of 25 to 50 μm, and the label as a polyester A labeled container obtained by sticking to a container is known (for example, see Patent Document 2).
 一方、高分子フィルムの一方の面に、エチレン-酢酸ビニル共重合体樹脂およびエチレン-メタアクリル酸共重合体樹脂の混合物を主とする接着層を有する積層フィルムで、接着層の厚さが1.5~3μmのヒートシーラブルフィルムが開示されている(例えば、特許文献3参照)。当該公報には、インモールド成形の記載はない。
 しかし、同様の極性樹脂を使用した、厚さ3μmの接着層を有するインモールドラベルがポリエステル製容器に貼着することが知られている(例えば、特許文献4参照)。
On the other hand, a laminated film having an adhesive layer mainly composed of a mixture of ethylene-vinyl acetate copolymer resin and ethylene-methacrylic acid copolymer resin on one surface of the polymer film, the thickness of the adhesive layer being 1 A heat-sealable film having a thickness of 5 to 3 μm is disclosed (for example, see Patent Document 3). The publication does not describe in-mold molding.
However, it is known that an in-mold label using a similar polar resin and having an adhesive layer having a thickness of 3 μm is attached to a polyester container (for example, see Patent Document 4).
特開平06-255821号公報Japanese Patent Laid-Open No. 06-255821 特開2004-136486号公報JP 2004-136486 A 特開2005-271424号公報JP 2005-271424 A 特表2016-511437号公報Special table 2016-511437 gazette
 インモールド成形に使用されるラベルでは、容器に向かう貼着面がヒートシール層により形成されている。このヒートシール層は、一般に低融点樹脂により形成されており、インモールド成形の際、容器と溶融接着する。
ところで、近年、PET(ポリエチレンテレフタレート)を材料に使用したペットボトルが市場に多く流通している。PETのような極性樹脂を材料とした容器では、ラベルの低融点樹脂層に、エチレン-酢酸ビニル共重合体やアクリル酸アルキル共重合体のような極性樹脂を使用しないと容器にラベルを接着するのが困難である。
 しかしながら、上記極性樹脂を低融点樹脂層に使用する場合、基材との共押出か、基材への熱ラミネートによる成形によらなければ工業的に生産できず、上記成形法では接着層樹脂の熱分解に伴う着色や、接着層を厚めにする必要があるためその厚さに起因するカール等の問題が生じることがある。また、ストレッチブロー成形の場合、パリソン(ブロー成形に用いるための熱可塑性樹脂で作った原体)が有する熱量がダイレクトブロー成形のパリソンが有する熱量より少ないため、少ない熱量で融着する樹脂を選定する必要があり、必然的に融点が130℃以下の極性樹脂が選択される。そうすると、接着層の融点が低いことに起因して、室温でインモールドラベルを複数枚重ねて荷重をかけた場合にラベル同士が離れなくなる荷重ブロッキングや、インモールドラベルを複数枚重ねて打ち抜き加工する場合においてラベル同士が離れなくなるカットブロッキングが生じることが分かった。
 このため、低融点樹脂層に非極性樹脂を選定しつつ、ペットボトルのように極性樹脂を材料とした容器に貼着できるラベルの製造が要望されている。
In the label used for in-mold molding, the sticking surface toward the container is formed by a heat seal layer. This heat seal layer is generally formed of a low melting point resin, and is melt-bonded to the container during in-mold molding.
By the way, in recent years, many PET bottles using PET (polyethylene terephthalate) as a material have been distributed in the market. In a container made of a polar resin such as PET, the label is adhered to the container unless a polar resin such as an ethylene-vinyl acetate copolymer or an alkyl acrylate copolymer is used in the low melting point resin layer of the label. Is difficult.
However, when the polar resin is used for the low-melting point resin layer, it cannot be industrially produced unless it is co-extruded with the base material or molded by thermal lamination to the base material. Problems such as coloring due to thermal decomposition and curling due to the thickness may occur because the adhesive layer needs to be thicker. In the case of stretch blow molding, the heat quantity of the parison (original made of thermoplastic resin for use in blow molding) is less than the heat quantity of the direct blow molding parison, so select a resin that can be fused with less heat. Naturally, a polar resin having a melting point of 130 ° C. or lower is selected. Then, due to the low melting point of the adhesive layer, when a plurality of in-mold labels are stacked and a load is applied at room temperature, load blocking that prevents the labels from separating from each other, or a plurality of in-mold labels are stacked and punched. In some cases, it has been found that cut blocking occurs in which the labels are not separated from each other.
For this reason, manufacture of the label which can be stuck on the container which used polar resin as a material like a PET bottle, selecting a nonpolar resin for a low melting-point resin layer is desired.
 特許文献3および4に記載のように、基材の一方の面に接着層として極性樹脂を1.5~3μm程度積層する場合は、基材との共押出か、基材への押出ラミネートによる成形方法は使用できず、極性樹脂を含む塗料を塗布して乾燥する必要がある。しかし、極性樹脂はエチレン重合単位の含有量が高いため水に溶解せず、極性樹脂をエマルジョンとして含む塗料として使用する必要がある。極性樹脂をエマルジョンにするには、一般的に界面活性剤を使用する。そうすると、得られたラベル付き容器を水に接触させた場合に、ラベルが容器から直ちに剥離するおそれがあった。 As described in Patent Documents 3 and 4, when laminating about 1.5 to 3 μm of a polar resin as an adhesive layer on one surface of the base material, either by coextrusion with the base material or extrusion lamination to the base material A molding method cannot be used, and it is necessary to apply and dry a paint containing a polar resin. However, since the polar resin has a high content of ethylene polymerized units, it does not dissolve in water and must be used as a coating containing the polar resin as an emulsion. A surfactant is generally used to make the polar resin into an emulsion. As a result, when the obtained labeled container is brought into contact with water, the label may be peeled off immediately from the container.
 そこで本発明者らは、主鎖または側鎖にヘテロ原子(水素原子および炭素原子以外の原子)をほとんど含まない樹脂(以下、「非極性樹脂」と称することがある)を接着層に使用しているにも関わらず極性樹脂製容器に貼着するインモールドラベル、ラベル付き容器を水に接触させてもラベルが容器から剥離しにくいインモールドラベルを提供することを本発明の目的の一つとした。すなわち、本発明が解決しようとする課題は、非極性樹脂を接着層に使用しているにも関わらず極性樹脂製容器に貼着するインモールドラベル、さらにはストレッチブロー成形の低温接着条件でも接着強度が高く、ラベル付き容器を水に接触させてもラベルが容器から剥離しにくいインモールドラベルを提供することである。また、当該ラベルを極性樹脂製容器に貼着したラベル付き容器を提供することを本発明の目的の一つとした。 Therefore, the present inventors use a resin (hereinafter sometimes referred to as “non-polar resin”) containing almost no hetero atoms (atoms other than hydrogen atoms and carbon atoms) in the main chain or side chain in the adhesive layer. One of the objects of the present invention is to provide an in-mold label that is attached to a polar resin container in spite of being provided, and an in-mold label that does not easily peel off the label from the container even when the labeled container is brought into contact with water. did. That is, the problem to be solved by the present invention is that an in-mold label adhered to a polar resin container in spite of using a non-polar resin for the adhesive layer, and further bonded under low temperature bonding conditions of stretch blow molding. It is to provide an in-mold label that has high strength and is difficult to peel from the container even when the container with the label is brought into contact with water. Another object of the present invention is to provide a labeled container in which the label is attached to a polar resin container.
 本発明者らは鋭意検討を重ねた結果、接着層として非極性樹脂を選定し、ストレッチブロー成形の熱量で溶融する低融点の樹脂を特定の厚さで積層した後に、低融点樹脂層の表面を活性化処理することによって、上記目的を達成して上記課題を解決できることを見出した。 As a result of intensive studies, the present inventors have selected a nonpolar resin as the adhesive layer, and after laminating a low melting point resin that melts with the heat of stretch blow molding at a specific thickness, the surface of the low melting point resin layer It has been found that the above-mentioned object can be achieved and the above-mentioned problems can be solved by activating treatment.
 また、本発明に係るラベル付き容器の製造装置および製造方法は、ラベルの低融点樹脂層に非極性樹脂を選定しつつ、極性樹脂を材料とした容器に当該ラベルを貼着することを目的の一つとする。
 なお、上記の目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用および効果であって、従来の技術では得られない作用および効果を奏することも、本件の他の目的として位置付けることができる。
Moreover, the manufacturing apparatus and manufacturing method of a labeled container according to the present invention are intended to attach a label to a container made of a polar resin as a material while selecting a nonpolar resin for the low melting point resin layer of the label. One.
In addition, the present invention is not limited to the above-mentioned purpose, and is an operation and effect derived from each configuration shown in “Mode for Carrying Out the Invention” to be described later. Can be positioned as other purpose.
 (1)ここで開示するインモールドラベルは、熱可塑性樹脂フィルムの一方の面に低融点樹脂層を有し、前記低融点樹脂層がポリエチレン系樹脂を含有し、前記ポリエチレン系樹脂の融点が60~110℃であり、前記低融点樹脂層の厚さが1.5~15μmであり、前記低融点樹脂層の表面が活性化処理されている。 (1) The in-mold label disclosed herein has a low melting point resin layer on one surface of a thermoplastic resin film, the low melting point resin layer contains a polyethylene resin, and the melting point of the polyethylene resin is 60. The low melting point resin layer has a thickness of 1.5 to 15 μm, and the surface of the low melting point resin layer is activated.
 (2)前記ポリエチレン系樹脂が、エチレン95mol%以上100mol%未満と、エチレンと共重合可能なモノマー0mol%を超え5mol%以下との共重合体であることが好ましい。 (2) The polyethylene-based resin is preferably a copolymer of 95 mol% or more and less than 100 mol% of ethylene and more than 0 mol% and 5 mol% or less of a monomer copolymerizable with ethylene.
 (3)前記低融点樹脂層の表面にコロナ放電処理痕が存在することが好ましい。 (3) It is preferable that corona discharge treatment traces exist on the surface of the low melting point resin layer.
 (4)前記熱可塑性樹脂フィルム(A)が前記低融点樹脂層を有していない面にインキ受理層を有することが好ましい。 (4) It is preferable that the thermoplastic resin film (A) has an ink receiving layer on the surface not having the low melting point resin layer.
 (5)ここで開示するラベル付き容器は、極性樹脂製容器の表面に、上記(1)~(4)のいずれかに記載のインモールドラベルが貼着している。 (5) In the labeled container disclosed here, the in-mold label according to any one of the above (1) to (4) is adhered to the surface of a polar resin container.
 (6)前記極性樹脂がポリエステル樹脂であることが好ましい。 (6) It is preferable that the polar resin is a polyester resin.
 (7)ここで開示するラベル付き容器の製造装置は、低融点樹脂層を有するラベルを取り出す取出部と、前記取出部によって取り出された前記ラベルを、前記低融点樹脂層を内方に向けて金型内に配置する配置部と、前記金型内に成形材料を供給し、前記配置部によって前記金型内に配置された前記ラベルが、前記低融点樹脂層で外壁に貼着された容器を成形する成形部と、前記ラベルが前記配置部によって前記金型内に配置される前に、前記低融点樹脂層に活性化処理を行う活性化処理部とを備える。 (7) An apparatus for manufacturing a container with a label disclosed herein has an extraction part for taking out a label having a low melting point resin layer, and the label taken out by the extraction part with the low melting point resin layer facing inward. An arrangement part arranged in a mold and a container in which a molding material is supplied into the mold, and the label arranged in the mold by the arrangement part is adhered to an outer wall with the low melting point resin layer And an activation processing unit that performs an activation process on the low-melting point resin layer before the label is arranged in the mold by the arrangement unit.
 (8)前記活性化処理部が、コロナ放電処理を行うコロナ放電処理部であることが好ましい。 (8) It is preferable that the said activation process part is a corona discharge process part which performs a corona discharge process.
 (9)前記ラベルが、長尺のフィルムに、前記フィルムの長手方向に複数配列され、前記フィルムを繰り出す繰り出し部をさらに備え、前記取出部は、前記繰り出し部によって繰り出された前記フィルムから前記ラベルを取り出し、前記活性化処理部は、前記繰り出し部から繰り出されている最中の前記フィルムに配列された前記ラベルの前記低融点樹脂層に対して、前記活性化処理を行うことが好ましい。 (9) A plurality of the labels are arranged on a long film in a longitudinal direction of the film, and further provided with a feeding part for feeding out the film, wherein the taking-out part is provided with the label from the film fed out by the feeding part. It is preferable that the activation processing unit performs the activation processing on the low-melting point resin layer of the label arranged on the film being fed from the feeding unit.
 (10)ここで開示するラベル付き容器の製造方法は、低融点樹脂層を有するラベルを取り出す取出工程と、前記取出工程によって取り出された前記ラベルを、前記低融点樹脂層を内方に向けて金型内に配置する配置工程と、前記金型内に成形材料を供給し、前記配置部によって前記金型内に配置された前記ラベルが、前記低融点樹脂層で外壁に貼着された容器を成形する成形工程と、前記ラベルが前記配置部によって前記金型内に配置される前に、前記低融点樹脂層に活性化処理を行う活性化処理工程とを備える。 (10) The method for manufacturing a labeled container disclosed herein includes an extraction step of taking out a label having a low melting point resin layer, and the label taken out by the extraction step with the low melting point resin layer facing inward. An arrangement step of arranging in a mold, a container in which a molding material is supplied into the mold, and the label arranged in the mold by the arrangement unit is adhered to an outer wall with the low melting point resin layer And an activation treatment step of performing an activation treatment on the low-melting point resin layer before the label is placed in the mold by the placement portion.
 (11)前記活性化処理工程が、コロナ放電処理を行うコロナ放電処理工程であることが好ましい。 (11) It is preferable that the activation treatment step is a corona discharge treatment step for performing a corona discharge treatment.
 (12)前記ラベルが、長尺のフィルムに、前記フィルムの長手方向に複数配列され、前記フィルムを繰り出す繰り出し工程をさらに備え、前記取出工程では、前記繰り出し工程によって繰り出された前記フィルムから前記ラベルを取り出し、前記活性化処理工程では、前記繰り出し工程から繰り出されている最中の前記フィルムに配列された前記ラベルの前記低融点樹脂層に対して、前記活性化処理を行うことが好ましい。 (12) The label is further arranged on a long film in the longitudinal direction of the film, and further includes a feeding step of feeding out the film, and in the taking out step, the label from the film fed out by the feeding step In the activation treatment step, the activation treatment is preferably performed on the low-melting point resin layer of the label arranged on the film being fed out from the feeding step.
 本発明に係るインモールドラベル、ラベル付き容器、ラベル付き容器の製造装置および製造方法によれば、ラベルの低融点樹脂層に活性化処理を行うことで、この低融点樹脂層の濡れ性を向上させて容器と低融点樹脂層との接着性を向上させることができ、容器が極性樹脂を成型したものであった場合でも低融点樹脂層に非極性樹脂を使用したラベルを貼着できる。
 また、フィルムの長手方向に配列されたラベルを取り出す構成を採用した場合には、重ねられた枚葉状のラベルを一枚ずつ取り出す製法に比較して、ラベルの反りを抑えることができ、静電気などでラベルが重なって取り出されることもない。よって、ラベル付き容器の品質を向上させることができる。
 さらに、低融点樹脂層に含まれる樹脂の種類および物性、並びに低融点樹脂層の厚さを特定範囲に制御したインモールドラベルによれば、極性樹脂製容器に対する接着強度や耐水剥離性が向上する。
According to the in-mold label, the labeled container, and the manufacturing apparatus and manufacturing method of the labeled container according to the present invention, the wettability of the low melting point resin layer is improved by performing the activation treatment on the low melting point resin layer of the label. Thus, the adhesion between the container and the low melting point resin layer can be improved, and even when the container is a molded polar resin, a label using a nonpolar resin can be attached to the low melting point resin layer.
In addition, when adopting a configuration to take out the labels arranged in the longitudinal direction of the film, the warping of the label can be suppressed compared to the production method of taking out the stacked sheet-by-sheet labels one by one, static electricity etc. The labels do not overlap and are not removed. Therefore, the quality of the labeled container can be improved.
Furthermore, according to the in-mold label in which the type and physical properties of the resin contained in the low-melting point resin layer and the thickness of the low-melting point resin layer are controlled within a specific range, the adhesive strength and water peel resistance to the polar resin container are improved. .
ラベル付き容器を示す図であり、(A)はラベル付き容器を示す斜視図であり、(B)は(A)の領域Zを拡大して示す斜視図であり、(C)は(B)の要部断面図である。It is a figure which shows a container with a label, (A) is a perspective view which shows a container with a label, (B) is a perspective view which expands and shows the area | region Z of (A), (C) is (B) FIG. 製造装置の全体構成を模式的に示す上面図である。It is a top view which shows typically the whole structure of a manufacturing apparatus. 製造装置上のフィルムおよびその周辺を示す斜視図である。It is a perspective view which shows the film on a manufacturing apparatus, and its periphery. 製造装置において搬送されるラベルの異形部を除去する様子を模式的に示す斜視図である。It is a perspective view which shows typically a mode that the deformed part of the label conveyed in a manufacturing apparatus is removed. 製造装置の金型を模式的に示す斜視図である。It is a perspective view which shows typically the metal mold | die of a manufacturing apparatus. 製造装置の制御構成を示すブロック図である。It is a block diagram which shows the control structure of a manufacturing apparatus. 製造方法を示すフローチャートである。It is a flowchart which shows a manufacturing method. 製造装置の切替機構を模式的に示す斜視図である。It is a perspective view which shows typically the switching mechanism of a manufacturing apparatus.
 図面を参照して、まず、本実施形態のラベル付き容器の製造装置および製造方法について説明する。次いで、本実施形態のインモールドラベルおよびラベル付き容器について説明する。
 なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。また、本明細書において「(メタ)アクリル酸」と称するときは、アクリル酸とメタアクリル酸の両方を指していう。また、「ヘテロ原子」とは、水素原子および炭素原子以外の原子を指していう。また、「~」を用いて表される数値範囲は、「~」の前後に記載される数値をそれぞれ下限値および上限値として含む範囲を意味する。また、「主として含む」とは、質量比で最も多く含むことを意味する。また、エタン、エチレン等の炭素数2の有機物質をC2などというように、炭素数で代表することがある。また、熱可塑性樹脂の融点はJIS K7121:1987による融解ピーク温度とする。さらに、以下の実施形態では、ラベル付き容器の製造工程を基準に上流および下流を定め、重力の作用方向を下方とし、下方の反対方向を上方とする。また、「低融点樹脂層(またはヒートシール層)を内方に向けて金型内に配置する」とは、ラベルの低融点樹脂層(またはヒートシール層)と反対側の面が金型に接し、ラベルの低融点樹脂層側(またはヒートシール層側)の面が容器に貼着されるように配置することを示す。
First, a manufacturing apparatus and a manufacturing method of a labeled container according to the present embodiment will be described with reference to the drawings. Next, the in-mold label and the labeled container of this embodiment will be described.
Note that the embodiment described below is merely an example, and there is no intention to exclude various modifications and technical applications that are not explicitly described in the following embodiment. Each configuration of the present embodiment can be implemented with various modifications without departing from the spirit thereof. Further, they can be selected as necessary, or can be appropriately combined. Further, in the present specification, the term “(meth) acrylic acid” refers to both acrylic acid and methacrylic acid. “Heteroatom” refers to an atom other than a hydrogen atom and a carbon atom. In addition, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value, respectively. Further, “mainly contained” means containing most by mass ratio. In addition, an organic substance having 2 carbon atoms such as ethane or ethylene may be represented by the number of carbon atoms such as C2. The melting point of the thermoplastic resin is the melting peak temperature according to JIS K7121: 1987. Furthermore, in the following embodiments, the upstream and downstream are defined based on the manufacturing process of the labeled container, the direction of gravity is defined as the downward direction, and the opposite direction is defined as the upward direction. “The low melting point resin layer (or heat seal layer) is placed in the mold facing inward” means that the surface opposite to the low melting point resin layer (or heat seal layer) of the label is on the mold. It shows that it is arranged so that the surface of the low melting point resin layer side (or heat seal layer side) of the label is adhered to the container.
[I.一実施形態]
[1.ラベル付き容器の製造装置]
 図1(A)に示すように、本実施形態の装置および方法で製造されるラベル付き容器は、外壁2aにラベル10が貼着されている中空の容器2である。たとえば、ラベル10が容器2に融着(溶着)して一体化した状態は、ラベル10が容器2に貼着された状態に含まれる。
[I. One Embodiment]
[1. Labeled container manufacturing equipment]
As shown to FIG. 1 (A), the labeled container manufactured with the apparatus and method of this embodiment is the hollow container 2 by which the label 10 is stuck on the outer wall 2a. For example, the state in which the label 10 is fused (welded) to the container 2 and integrated is included in the state in which the label 10 is adhered to the container 2.
 このラベル付き容器では、インモールドラベリング(インモールド成形)でラベル10が容器2に貼着されている。そのため、ラベル10の厚み方向の少なくとも一部が容器2の外壁2aに埋没している。したがって、図1(B)および(C)に示すように、ラベル10の厚み方向寸法を「T」とおき、外壁2aの外表面2bに対して外側で段部を形成するラベル10の高さ寸法(厚み方向寸法)を「T」とおけば、不等式「T>T」を満たす。プリフォームを使用するブロー成形方法の場合、不等式「T>T」を満たしやすい。なお、ラベル10の厚み方向の全部が容器2の外壁2aに埋没(たとえばラベル10の外表面と容器2の外表面2bとが同一平面をなす)していてもよく、この場合は「T=0」となる。また、ダイレクトブロー成形の場合は等式「T=0」を満たしやすい。ここでは、側面視で複数のラベル10(ラベル群)が容器2の外壁2aに貼着されている。さらに、容器2に貼着される前のラベル10は、裏面(貼着面)に予めヒートシール層1a(図3参照)を有している。 In this labeled container, the label 10 is stuck to the container 2 by in-mold labeling (in-mold molding). Therefore, at least a part of the label 10 in the thickness direction is buried in the outer wall 2 a of the container 2. Therefore, as shown in FIGS. 1B and 1C, the dimension in the thickness direction of the label 10 is set to “T 1 ”, and the height of the label 10 that forms a stepped portion on the outer side with respect to the outer surface 2b of the outer wall 2a. If the thickness dimension (thickness direction dimension) is set to “T 2 ”, the inequality “T 1 > T 2 ” is satisfied. In the case of a blow molding method using a preform, it is easy to satisfy the inequality “T 1 > T 2 ”. Incidentally, may also be buried in the outer wall 2a whole thickness direction of the container 2 the label 10 (e.g. forms an outer surface 2b and the same plane of the outer surface and the vessel 2 of the label 10), in this case "T 2 = 0 ". In the case of direct blow molding, the equation “T 2 = 0” is easily satisfied. Here, the some label 10 (label group) is stuck on the outer wall 2a of the container 2 by the side view. Furthermore, the label 10 before being attached to the container 2 has a heat seal layer 1a (see FIG. 3) in advance on the back surface (attachment surface).
 図1(A)では、容器2における表側の外壁2aに、第一ラベル11および第二ラベル12からなる二枚のラベル10(単に「ラベル10」と言う)を例示する。なお、図示省略するが、容器2における裏側の外壁には一枚のラベルが貼着されている。
 また、ラベル11,12は、互いに異なる形状に形成されている。ここでは、円形の第一ラベル11を例示し、三角形の第二ラベル12を例示する。ラベル11,12の輪郭形状の他の例としては、輪郭が曲線のみからなる種々の形状が挙げられる。ここでいう「輪郭が曲線のみからなる形状」には、紅葉形のような曲線どうしが角部で突き合わされた形状を含むものとする。
In FIG. 1A, two labels 10 (simply referred to as “label 10”) including a first label 11 and a second label 12 are illustrated on the outer wall 2 a on the front side of the container 2. Although not shown, a single label is attached to the outer wall on the back side of the container 2.
The labels 11 and 12 are formed in different shapes. Here, a circular first label 11 is illustrated, and a triangular second label 12 is illustrated. Other examples of the contour shape of the labels 11 and 12 include various shapes in which the contour is composed only of a curve. As used herein, “a shape whose contour is composed only of a curve” includes a shape in which curved lines such as autumn leaves are abutted at corners.
 ラベル10は、図3に示すように、長尺(帯状)のフィルム1の一方の主面の長手方向に規則的に配列して複数形成されている。これらのラベル10は、後述するようにフィルム1から分離可能となっている。
 このフィルム1は、裏側(図3では紙面手前側)の面から表側(図3では紙面奥側)の面に向けて、ヒートシール層1a、基層1bおよび印刷層1cの順に少なくとも三層を積層して形成される。なお、本実施形態に係るラベル付き容器の製造装置では、ヒートシール層1a、基層1bおよび印刷層1cの順に積層された三層構成のラベル10を使用する例を示すが、後述するように、本実施形態に係るインモールドラベルでは、上記印刷層1cに対応するインキ受理層は任意の層である。
As shown in FIG. 3, a plurality of labels 10 are regularly arranged in the longitudinal direction of one main surface of the long (band-shaped) film 1. These labels 10 can be separated from the film 1 as will be described later.
The film 1 has at least three layers in the order of a heat seal layer 1a, a base layer 1b, and a printing layer 1c from the back side (the front side in FIG. 3) to the front side (the back side in FIG. 3). Formed. In addition, in the manufacturing apparatus of the labeled container according to the present embodiment, an example in which the label 10 having a three-layer structure in which the heat seal layer 1a, the base layer 1b, and the print layer 1c are laminated in this order is used will be described. In the in-mold label according to the present embodiment, the ink receiving layer corresponding to the print layer 1c is an arbitrary layer.
 ヒートシール層1aは、ラベル10と容器2とを接合する接着剤の働きをするものであり、低融点樹脂により形成される低融点樹脂層である。そこで、以下、ヒートシール層1aを低融点樹脂層1aとも表記する。低融点樹脂層1aは、常温では固体状であるが、金型内で被着体(容器2)を成形する際に溶融した樹脂の熱で活性化し、被着体と溶融接着して、冷却後は再度固体状となり強固な接着力を発揮する。なお、基層1bおよび印刷層1cは従来公知の種々の材料により形成できる。また、低融点樹脂層1a、基層1bおよび印刷層1cの厚さは特に限定されない。 The heat seal layer 1a functions as an adhesive for joining the label 10 and the container 2 and is a low melting point resin layer formed of a low melting point resin. Therefore, hereinafter, the heat seal layer 1a is also referred to as a low melting point resin layer 1a. The low melting point resin layer 1a is solid at normal temperature, but is activated by the heat of the molten resin when the adherend (container 2) is molded in the mold, and is melted and bonded to the adherend to cool. After that, it becomes solid again and exhibits strong adhesive strength. The base layer 1b and the print layer 1c can be formed of various conventionally known materials. Moreover, the thickness of the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c is not particularly limited.
 フィルム1は、一部分がラベル10であり、その他の部分が余白部13である。すなわち、フィルム1は、ラベル10の輪郭形状に沿って切断され、この切断線を介してラベル10と余白部13とが区画されるようになっている。
 ここでは、ラベル10がフィルム1から脱落しないように、フィルム1が繰り出された状態においてラベル10と余白部13とが一部で繋がっており、ラベル10と余白部13とが完全には分離していない。たとえば、複数あるいは単数の箇所でラベル10と余白部13とが点状に繋げられた点止め加工が施されている。なお、上記した切断線がミシン目状に形成されていてもよい。
A part of the film 1 is a label 10 and the other part is a blank part 13. That is, the film 1 is cut along the contour shape of the label 10, and the label 10 and the blank portion 13 are partitioned through the cutting line.
Here, in order for the label 10 not to fall off from the film 1, the label 10 and the blank portion 13 are partially connected in the state where the film 1 is drawn out, and the label 10 and the blank portion 13 are completely separated. Not. For example, a point-stopping process in which the label 10 and the blank portion 13 are connected in a dotted manner at a plurality or a single location is performed. In addition, the above-mentioned cutting line may be formed in perforation shape.
 あるいは、上記した切断線に替えてまたは加えて、低融点樹脂層1a側または印刷層1c側から深さ(厚さ)方向に切れ込み(ハーフカット)がフィルム1に施されていてもよい。このとき、低融点樹脂層1a,基層1bおよび印刷層1cの少なくとも一層において、完全には切断されずに接続されているように構成する。たとえば、ロータリーダイカッターやピナクルダイなどを使用してハーフカットが施される。
 また、ラベル10の輪郭に切れ込みがない状態でフィルム1が繰り出され、ラベル10の輪郭形状に応じた刃部を有するダイカッタによってラベル10を切断することができる。あるいは、ラベル10の輪郭形状に沿ってレーザーでフィルム1を切断(レーザーカット)してもよい。
Alternatively, in addition to or in addition to the cutting line described above, the film 1 may be cut (half cut) in the depth (thickness) direction from the low melting point resin layer 1a side or the printing layer 1c side. At this time, at least one of the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c is configured to be connected without being completely cut. For example, half cutting is performed using a rotary die cutter or a pinnacle die.
Moreover, the film 1 is drawn out in a state where the outline of the label 10 is not cut, and the label 10 can be cut by a die cutter having a blade portion corresponding to the outline shape of the label 10. Alternatively, the film 1 may be cut (laser cut) with a laser along the contour shape of the label 10.
 そのほか、図示省略するが、フィルム1を他の搬送フィルムに貼り付けてもよい。具体的には、フィルム1のうちラベル10の部分において、低融点樹脂層1a,基層1bおよび印刷層1cは、微粘着性の粘着剤あるいは接着剤を介して、フィルム1とは別の搬送フィルムに取り外し可能なように貼り付けられていてもよい。このとき、搬送フィルムからラベル10を外したときに、印刷層1cの表面に粘着剤あるいは接着剤が残らないように構成することが好ましい。この場合には、ラベル10と余白部13とが完全に切り離された全抜き加工が施されていてもよい。また、余白部13においては、搬送フィルムに必ずしも低融点樹脂層1a,基層1bおよび印刷層1cの全てが貼り付けられていなくてもよい。 In addition, although not shown, the film 1 may be affixed to another transport film. Specifically, in the portion of the label 10 in the film 1, the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c are transport films different from the film 1 through a slightly sticky adhesive or adhesive. It may be attached so as to be removable. At this time, when the label 10 is removed from the transport film, it is preferable that the pressure-sensitive adhesive or the adhesive does not remain on the surface of the printing layer 1c. In this case, a complete punching process in which the label 10 and the blank portion 13 are completely separated may be performed. Moreover, in the blank part 13, all of the low melting point resin layer 1a, the base layer 1b, and the printing layer 1c do not necessarily have to be attached to the transport film.
 ラベル付き容器の製造装置は、図2に示すように、上流から下流に向けてそれぞれ設けられた繰り出し機構(繰り出し部)20,搬送機構(搬送部)50および成形機構(成形部)90の三つの機構に大別される。 As shown in FIG. 2, the labeled container manufacturing apparatus includes three feeding mechanisms (feeding portions) 20, a feeding mechanism (conveying portion) 50, and a forming mechanism (forming portion) 90 provided from the upstream side to the downstream side. Broadly divided into two mechanisms.
 繰り出し機構20は、ラベル10が配列されたフィルム1を繰り出し、搬送機構50は、繰り出されるフィルム1からラベル10を分離してから金型91に配置するまで搬送する。成形機構90は、金型91内に成形材料を供給し、金型91の内部に配置されたラベル10を外壁2a(図1参照)に貼着させて、容器2を成形する。
 さらに、繰り出し機構20には、本発明の大きな特徴である活性化処理部200が付設されている。
 また、図2に二点鎖線で示すように、繰り出し機構20には、印刷されたラベル10の絵柄の印刷状態を検査する検査部40が付設されてもよい。
The feeding mechanism 20 feeds the film 1 on which the labels 10 are arranged, and the transport mechanism 50 transports the label 10 from the fed film 1 until it is placed in the mold 91. The molding mechanism 90 supplies the molding material into the mold 91, and sticks the label 10 disposed inside the mold 91 to the outer wall 2a (see FIG. 1) to mold the container 2.
Further, the feeding mechanism 20 is provided with an activation processing unit 200 which is a major feature of the present invention.
In addition, as indicated by a two-dot chain line in FIG. 2, the feeding mechanism 20 may be provided with an inspection unit 40 that inspects the printed state of the pattern of the printed label 10.
 ここでは、本製造装置にフィルム1が配設される前に、ラベル10の絵柄,図柄あるいは文字など(単に「絵柄」という)がフィルム1に予め印刷されている。
 ただし、ラベル10の絵柄をフィルム1における印刷層1cの表面に印刷する印刷部30(図2には二点鎖線で示す)を繰り出し機構20に付設してもよい。すなわち、ラベル付き容器の製造装置に、ラベル10が配列されたフィルム1を準備するための印刷部30が組み込まれていてもよい。
Here, before the film 1 is disposed in the present manufacturing apparatus, a pattern, a pattern, a character, or the like (simply referred to as “pattern”) of the label 10 is printed on the film 1 in advance.
However, a printing unit 30 (indicated by a two-dot chain line in FIG. 2) for printing the design of the label 10 on the surface of the printing layer 1 c in the film 1 may be attached to the feeding mechanism 20. That is, the printing unit 30 for preparing the film 1 on which the labels 10 are arranged may be incorporated in the labeled container manufacturing apparatus.
 搬送機構50には、搬送するラベル10をフィルム1から分離して保持し、また、搬送されたラベル10を金型91の内部に配置するアーム部(取出部,配置部)60が設けられる。そのうえ、搬送中のラベル10を帯電させる帯電部80が搬送機構50に付設される。加えて、図2に二点鎖線で示すように、搬送中のラベル10を整形する整形部70が搬送機構50に付設されてもよい。
 ここで説明する製造装置には、二つの割り金型91a,91bから構成される金型91が設けられている。具体的には、装置の一側(図2では上方)に第一割り金型91aを配置し、他側(図2では下方)に第二割り金型91bを配置することで、ラベル10の処理効率を高めたうえで、容器2の成形効率も向上させている。なお、ラベル付き容器は、第一割り金型91aによって表側が成形され、第二割り金型91bによって裏側が成形される。
The transport mechanism 50 is provided with an arm part (extraction part, placement part) 60 that separates and holds the transported label 10 from the film 1 and places the transported label 10 inside the mold 91. In addition, a charging unit 80 for charging the label 10 being transported is attached to the transport mechanism 50. In addition, as shown by a two-dot chain line in FIG. 2, a shaping unit 70 that shapes the label 10 being conveyed may be attached to the conveyance mechanism 50.
The manufacturing apparatus described here is provided with a mold 91 composed of two split molds 91a and 91b. Specifically, the first split mold 91a is disposed on one side (upper in FIG. 2) and the second split mold 91b is disposed on the other side (lower in FIG. 2). In addition to increasing the processing efficiency, the molding efficiency of the container 2 is also improved. The labeled container has a front side molded by the first split mold 91a and a back side molded by the second split mold 91b.
 そのため、製造装置が水平方向に対称(図2では上下対称)に設けられている。このように対称な製造装置では、二系統の製造工程を同時に実施することができる。具体的には、容器2における表側の外壁2aに貼着されるラベル10を装置の一側で扱うと同時に、容器2における裏側の外壁に貼着されるラベルを装置の他側で扱うことができる。
 ここでは、二組の金型91が設けられ、二つのラベル付き容器を同時に成形する製造装置を例示する。
 以下の説明では、おもに装置の一側に着目して説明する。
Therefore, the manufacturing apparatus is provided symmetrically in the horizontal direction (vertical symmetry in FIG. 2). In such a symmetrical manufacturing apparatus, two systems of manufacturing processes can be performed simultaneously. Specifically, the label 10 attached to the outer wall 2a on the front side of the container 2 is handled on one side of the apparatus, and at the same time, the label attached to the outer wall on the back side of the container 2 is handled on the other side of the apparatus. it can.
Here, a manufacturing apparatus that is provided with two sets of molds 91 and simultaneously molds two labeled containers is illustrated.
In the following description, description will be given mainly focusing on one side of the apparatus.
<1-1.繰り出し機構>
 まず、繰り出し機構20の繰り出しに関する構成を説明する。
 繰り出し機構20は、フィルム1を繰り出すことで、ラベル10を所定の位置に繰り出す機構である。この繰り出し機構20には、二つの回転軸21,22が設けられる。これらの回転軸21,22のうち、上流側に配置された第一回転軸21ではラベル10を分離する前のフィルム1が巻回された状態から引き出され、下流側に配置された第二回転軸22ではラベル10を分離した後のフィルム1(残部)が巻き取られる。ここでは、第二回転軸22が回転駆動される。さらに、回転軸21,22にそれぞれ巻回されたフィルム1の中間部は、平面状に張架される。
<1-1. Feeding mechanism>
First, the configuration related to the feeding mechanism 20 will be described.
The feeding mechanism 20 is a mechanism that feeds the label 10 to a predetermined position by feeding the film 1. The feeding mechanism 20 is provided with two rotating shafts 21 and 22. Of these rotary shafts 21 and 22, the first rotary shaft 21 arranged on the upstream side is pulled out from the state in which the film 1 before separating the label 10 is wound, and the second rotation arranged on the downstream side. On the shaft 22, the film 1 (remaining part) after the label 10 is separated is taken up. Here, the second rotating shaft 22 is rotationally driven. Furthermore, the intermediate part of the film 1 wound around the rotating shafts 21 and 22 is stretched in a planar shape.
(位置決め機構)
 繰り出し機構20には、繰り出されたラベル10を分離位置に静止させるための位置決め機構(位置決め部)25が図2に二点鎖線で示すように設けられてもよい。
 位置決め機構25では、図3に示すように、フィルム1の余白部13に付されたアイマークやトンボなどのマーキング14と、このマーキング14を撮像あるいは走査(以下単に「撮像」という)する光学機器26とを用いることができる。
 つづいて、繰り出し機構20に付設される活性化処理部200、および、繰り出し機構20にそれぞれ付設可能な印刷部30、および検査部40を説明する。
(Positioning mechanism)
The feeding mechanism 20 may be provided with a positioning mechanism (positioning portion) 25 for stopping the fed label 10 at the separation position as indicated by a two-dot chain line in FIG.
In the positioning mechanism 25, as shown in FIG. 3, the marking 14 such as an eye mark or a registration mark attached to the blank portion 13 of the film 1, and an optical device that images or scans the marking 14 (hereinafter simply referred to as “imaging”). 26 can be used.
Next, the activation processing unit 200 attached to the feeding mechanism 20, the printing unit 30 and the inspection unit 40 that can be attached to the feeding mechanism 20, respectively, will be described.
(印刷部)
 印刷部30は、フィルム1のラベル10となる部分に絵柄を印刷するプリンタである。 すなわち、フィルム1の表面に所要の印刷がなされることで、ラベル10が形成される。
 この印刷部30の印刷方式としては、ラベル10に印刷可能な方式であれば、刷版方式,電子写真方式,インクジェット方式,熱転写方式といった種々の印刷方式を採用することができる。印刷部30の印刷方式の特徴を利用して、シリアルナンバー,日付,名前などの可変情報をオンデマンド印刷することができる。
(Printing department)
The printing unit 30 is a printer that prints a pattern on a portion that becomes the label 10 of the film 1. That is, the label 10 is formed by performing required printing on the surface of the film 1.
As a printing method of the printing unit 30, various printing methods such as a printing plate method, an electrophotographic method, an ink jet method, and a thermal transfer method can be adopted as long as they can be printed on the label 10. By utilizing the printing system characteristics of the printing unit 30, variable information such as a serial number, date, and name can be printed on demand.
(検査部)
 検査部40は、繰り出し機構20で繰り出されるラベル10が所定の状態であるか否かを検査する。ここでいう「所定の状態である」とは、ラベル10の状態が良好(合格)であることを意味する。逆に、「所定の状態でない」とは、ラベル10の状態が不良(不合格)であることを意味する。そのため、検査部40は、不良な状態のラベル10を検出するものとも言える。
(Inspection unit)
The inspection unit 40 inspects whether or not the label 10 fed out by the feeding mechanism 20 is in a predetermined state. Here, “predetermined state” means that the state of the label 10 is good (passed). Conversely, “not in a predetermined state” means that the state of the label 10 is defective (failed). Therefore, it can be said that the inspection unit 40 detects the defective label 10.
 検査部40による検査対象としては、ラベル10の印刷状態や表面状態が挙げられる。検査対象が印刷状態であれば、ラベル10に印刷された絵柄の位置や色味などが所定の印刷状態(所定の状態)、即ち、所望の印刷がなされているか否かが検査される。検査対象が表面状態であれば、ラベル10に異物が付着していない所定の表面状態(所定の状態)であるか否かが検査される。 Examples of the inspection target by the wrinkle inspection unit 40 include the printing state and surface state of the label 10. If the object to be inspected is a print state, the position or color of the image printed on the label 10 is inspected in a predetermined print state (predetermined state), that is, whether or not a desired print is being performed. If the inspection target is a surface state, it is inspected whether or not the label 10 is in a predetermined surface state (predetermined state) in which no foreign matter is attached.
 この検査部40は、ラベル10の状態を検出する検出部41と、検出部41による検出結果に基づいてラベル10が所定の状態であるか否かを判定する判定部42とを有する。
 検出部41としては、ラベル10の状態を検出可能な種々の公知機器を用いることができる。たとえば、ラベル10を撮像するカメラやスキャナといった光学機器が検出部41に用いられる。具体的には、CCDのエリアカメラやラインセンサが検出部41に採用される。さらに、検出精度を向上させるために、可視光やレーザー光をラベル10に照射する機器を検出部41に付設してもよい。
The inspection unit 40 includes a detection unit 41 that detects the state of the label 10 and a determination unit 42 that determines whether the label 10 is in a predetermined state based on the detection result of the detection unit 41.
As the detection unit 41, various known devices that can detect the state of the label 10 can be used. For example, an optical device such as a camera or a scanner that images the label 10 is used for the detection unit 41. Specifically, a CCD area camera or a line sensor is employed as the detection unit 41. Furthermore, in order to improve the detection accuracy, a device that irradiates the label 10 with visible light or laser light may be attached to the detection unit 41.
(活性化処理部)
 活性化処理部200はラベル10の低融点樹脂層1a(図3参照)側に配置される。活性化処理部200は、低融点樹脂層1aの容器2に貼着される貼着面、すなわち金型91内に配置されたときに金型91の内方に向く面に、活性化処理を施すことで、低融点樹脂層1aを活性化して濡れ性を向上させる。
 活性化処理部200の位置は、ラベル10が金型91に配置される前に、低融点樹脂層1aに活性化処理を施せる位置であれば図示する位置に限定されない。
 具体的には、繰り出し機構20の第一回転軸21側からフィルム1と一体に繰り出された後、搬送機構50のアーム部60により金型91の第一割り金型91aの内部に配置される前に、ラベル10に対して活性化処理を行えるような位置に、活性化処理部200を配置すればよい。
 また、活性化処理部200は、ラベル10が活性化処理を行う処理位置を通過する期間だけ活性化処理を行うようにしてもよい。あるいは、連続的に活性化処理を行うようにしてもよい。連続的に活性化処理を行う場合は、ラベル10だけでなく余白部13(図3参照)を含むフィルム1全体が活性化処理されることとなる。
(Activation processing department)
The activation processing unit 200 is arranged on the low melting point resin layer 1a (see FIG. 3) side of the label 10. The activation processing unit 200 performs an activation process on a bonding surface to be bonded to the container 2 of the low melting point resin layer 1a, that is, a surface facing inward of the mold 91 when disposed in the mold 91. By applying, the low melting point resin layer 1a is activated and wettability is improved.
The position of the activation processing unit 200 is not limited to the illustrated position as long as the low melting point resin layer 1a can be activated before the label 10 is placed on the mold 91.
Specifically, after being fed integrally with the film 1 from the first rotating shaft 21 side of the feeding mechanism 20, it is placed inside the first split mold 91 a of the mold 91 by the arm portion 60 of the transport mechanism 50. The activation processing unit 200 may be disposed at a position where the activation process can be performed on the label 10 before.
Further, the activation processing unit 200 may perform the activation process only during a period in which the label 10 passes the processing position where the activation process is performed. Or you may make it perform an activation process continuously. When the activation process is continuously performed, not only the label 10 but also the entire film 1 including the blank portion 13 (see FIG. 3) is activated.
[3.作用および効果]の欄で後述するように、インモールドする際に低融点樹脂層1aの表面を活性化処理することで、低融点樹脂層1aと容器2との密着が良好になり、これにより、ラベル付き容器2のラベル接着強度を高くすることができる。
 活性化処理としては、主にコロナ放電処理を挙げることができるが、その他にも、フレーム処理、プラズマ処理を挙げることができる。中でも処理効果の観点からはコロナ放電処理およびプラズマ処理が好ましく、簡便な設備を用いる観点からはコロナ放電処理およびフレーム処理が好ましい。
 以下、コロナ放電処理を行うコロナ放電処理部、フレーム処理を行うフレーム処理部、および、プラズマ処理を行うプラズマ処理部の具体的な構成を説明する。
[3. As will be described later in the section of “Action and effect”, the surface of the low melting point resin layer 1a is activated during in-molding, whereby the adhesion between the low melting point resin layer 1a and the container 2 is improved. The label adhesive strength of the labeled container 2 can be increased.
As the activation treatment, a corona discharge treatment can be mainly exemplified, but a flame treatment and a plasma treatment can also be exemplified. Of these, corona discharge treatment and plasma treatment are preferred from the viewpoint of treatment effects, and corona discharge treatment and flame treatment are preferred from the viewpoint of using simple equipment.
Hereinafter, specific configurations of a corona discharge processing unit that performs corona discharge processing, a frame processing unit that performs frame processing, and a plasma processing unit that performs plasma processing will be described.
 コロナ放電処理部は、低融点樹脂層1a側に設けられる放電電極と、フィルム1を挟んで放電電極と反対側に配置される対極ロールとを備える。すなわち放電電極と対極ロールとはフィルム1を介して相対している。放電電極としては特に限定されないが、角柱状、ワイヤ状、ブレード形状等が挙げられ、また電極に山谷部を設けて山部から安定的に放電させることを企図した電極でもよい。また、対極ロールは絶縁体が被覆されたものが好ましい。絶縁体としては各種ゴム、セラミック等が挙げられる。走行するフィルム1を、対極ロールに接触させつつ、放電電極と対極ロールとの間で発生するアーク放電領域にさらすことにより、フィルム1の表面の改質を行うことができる。また、放電電極と対極ロールとの間には直流電圧を印加することが好ましい。 The corona discharge treatment section includes a discharge electrode provided on the low melting point resin layer 1a side and a counter electrode roll disposed on the opposite side of the discharge electrode with the film 1 interposed therebetween. That is, the discharge electrode and the counter electrode roll are opposed to each other through the film 1. The discharge electrode is not particularly limited, and examples thereof include a prismatic shape, a wire shape, a blade shape, and the like, and an electrode that is intended to stably discharge from a peak portion by providing a valley portion on the electrode. The counter roll is preferably coated with an insulator. Examples of the insulator include various rubbers and ceramics. The surface of the film 1 can be modified by exposing the traveling film 1 to an arc discharge region generated between the discharge electrode and the counter electrode roll while contacting the counter electrode roll. Moreover, it is preferable to apply a DC voltage between the discharge electrode and the counter electrode roll.
 フレーム処理部は、低融点樹脂層1a側に設けられ、フィルム1に対して平行なノズル列を有するバーナを備える。バーナで天然ガスやプロパン等の可燃性ガスを燃焼させた時に生じる火炎内のイオン化したプラズマを、低融点樹脂層1aの表面に吹き付けることにより活性化処理を実施できる。 The flame frame processing unit includes a burner provided on the low melting point resin layer 1 a side and having a nozzle row parallel to the film 1. Activation treatment can be carried out by spraying ionized plasma in a flame generated when combustible gas such as natural gas or propane is burned by a burner onto the surface of the low melting point resin layer 1a.
 プラズマ処理部は、低融点樹脂層1a側に設けられる一対の対向電極と、フィルム1を挟んでこれらの対向電極に対向配置される対極ロールとを備える。電極としては平板状や、対向面が凸状のもの、ロール状で回転可能なものが挙げられる。また、対極ロールは絶縁体が被覆されたものが好ましい。具体的には、放電電極と対極ロール間で発生するグロー放電領域に、アルゴン、ヘリウム、ネオン等の不活性ガスを主成分とするガスに水素、酸素、窒素、空気等を混合した気体を通し、電子的に励起させ、帯電粒子を除去し、電気的に中性とした励起不活性ガスをフィルム表面に吹き付ける方法が挙げられる。 The soot plasma processing unit includes a pair of counter electrodes provided on the low melting point resin layer 1a side, and a counter electrode roll disposed to face these counter electrodes with the film 1 interposed therebetween. Examples of the electrode include a flat plate shape, a convex surface on the opposite surface, and a roll shape that can rotate. The counter roll is preferably coated with an insulator. Specifically, a gas in which hydrogen, oxygen, nitrogen, air or the like is mixed with a gas mainly composed of an inert gas such as argon, helium, or neon is passed through a glow discharge region generated between the discharge electrode and the counter electrode roll. There is a method in which an excited inert gas which is excited electronically, removes charged particles, and is electrically neutral is sprayed on the film surface.
 コロナ放電処理の場合の活性化処理量は、コロナ放電処理の効果を得る観点から、600~12,000J/m2(10~200W・分/m2)が好ましく、1,200~9,000J/m2(20~150W・分/m2)がより好ましい。処理量がこの範囲であるとラベル接着強度が低下しにくい。
 プラズマ処理およびフレーム処理の場合の活性化処理量は、活性処理の効果を得る観点から8,000~200,000J/m2が好ましく、20,000~100,000J/m2がより好ましい。処理量がこの範囲であるとラベル接着強度が低下しにくい。処理量は印加電力、放電電極とフィルムとの間隔、処理速度(ラベル搬送速度)等によって制御することができる。
 また、コロナ放電処理後の表面には、コロナ放電処理が十分に行われていれば、通常、コロナ放電処理痕が存在することが好ましい。コロナ放電処理痕としては、アーク原因による表面のピンホール、ストリーマの不均一分布に起因する処理むら(表面張力が場所によって異なる)、処理後の帯電が挙げられる。コロナ放電起因の帯電は、極性と色がそれぞれ異なる2種類のトナーの混合物を表面に振り掛けると、表面に極性の異なるトナーが偏在して2色のまだら模様となることで確認できる。低融点樹脂層1aの表面にコロナ放電処理痕が存在していれば、コロナ放電処理により低融点樹脂層1aが活性化されたことを確認できる。
The activation treatment amount in the case of corona discharge treatment is preferably 600 to 12,000 J / m 2 (10 to 200 W · min / m 2 ), from the viewpoint of obtaining the effect of corona discharge treatment, and is preferably 1,200 to 9,000 J / M 2 (20 to 150 W · min / m 2 ) is more preferable. When the processing amount is within this range, the label adhesive strength is unlikely to decrease.
In the case of plasma treatment and flame treatment, the amount of activation treatment is preferably 8,000 to 200,000 J / m 2 and more preferably 20,000 to 100,000 J / m 2 from the viewpoint of obtaining the effect of the activation treatment. When the processing amount is within this range, the label adhesive strength is unlikely to decrease. The processing amount can be controlled by the applied power, the interval between the discharge electrode and the film, the processing speed (label transport speed), and the like.
Moreover, if the corona discharge treatment is sufficiently performed on the surface after the corona discharge treatment, it is usually preferable that a corona discharge treatment trace is present. Corona discharge treatment traces include surface pinholes due to arcing, processing unevenness due to uneven distribution of streamers (surface tension varies depending on location), and post-treatment charging. Charging due to corona discharge can be confirmed by sprinkling a mixture of two types of toners having different polarities and colors on the surface, so that the toners having different polarities are unevenly distributed on the surface, resulting in a mottled pattern of two colors. If there is a corona discharge treatment mark on the surface of the low melting point resin layer 1a, it can be confirmed that the low melting point resin layer 1a has been activated by the corona discharge treatment.
 低融点樹脂層1aの表面が活性化処理されていれば、JIS K6768:1999「プラスチック-フィルムおよびシート-ぬれ張力試験方法」に従い、試験用混合液を使用して求めた表面張力が40mN/m以上である。本発明の接着効果を発現する観点から、低融点樹脂層1aの表面の表面張力は40~75mN/mが好ましく、45~70mN/mがより好ましく、50~65mN/mがさらに好ましい。これによりラベル付き容器の接着強度が高くなる。表面張力が上記範囲外では高くても低くてもパリソンに対する低融点樹脂層1aを構成する樹脂組成物(例えば熱可塑性樹脂組成物等)のぬれ広がりが良くないものと推定される。 If the surface of the low melting point resin layer 1a has been activated, the surface tension obtained using the test mixture according to JIS K6768: 1999 “Plastic-Film and Sheet-Wetting Tension Test Method” is 40 mN / m. That's it. From the viewpoint of expressing the adhesive effect of the present invention, the surface tension of the low melting point resin layer 1a is preferably 40 to 75 mN / m, more preferably 45 to 70 mN / m, and further preferably 50 to 65 mN / m. This increases the adhesive strength of the labeled container. It is presumed that the wetting and spreading of the resin composition (for example, the thermoplastic resin composition) constituting the low melting point resin layer 1a with respect to the parison is not good whether the surface tension is high or low outside the above range.
 活性化処理は酸化処理であることが好ましく、活性化処理後の低融点樹脂層1a表面のX線光電子分光(XPS)法による酸素原子数/炭素原子数比(=O/C比)は、0.006~0.1が好ましく、0.015~0.1がより好ましい。これによりラベル付き容器の接着強度が高くなる。O/C比が上記範囲内ではいずれもパリソンに対する低融点樹脂層1aを構成する樹脂組成物(例えば熱可塑性樹脂組成物等)のぬれ広がりが良いものと推定される。
 また、活性化処理効果は時間経過とともに徐々に低下することがあるので、ラベル製造ロットごとのラベル付き容器の接着強度ばらつきを抑える観点から、インモールド成形の直前に活性化処理を行ってもよい。
The activation treatment is preferably an oxidation treatment, and the number of oxygen atoms / carbon atoms (= O / C ratio) by the X-ray photoelectron spectroscopy (XPS) method on the surface of the low melting point resin layer 1a after the activation treatment is 0.006 to 0.1 is preferable, and 0.015 to 0.1 is more preferable. This increases the adhesive strength of the labeled container. Any O / C ratio within the above range is presumed to have good wetting and spreading of the resin composition (for example, thermoplastic resin composition) constituting the low melting point resin layer 1a with respect to the parison.
In addition, since the activation treatment effect may gradually decrease over time, the activation treatment may be performed immediately before in-mold molding from the viewpoint of suppressing variations in the adhesive strength of the labeled container for each label production lot. .
<1-2.搬送機構>
 つぎに、搬送機構50の搬送に関する構成を説明する。
 搬送機構50には、繰り出し機構20および成形機構90に跨るように延びるスライドレール51と、このスライドレール51に沿ってスライド移動する車台部52とが設けられている。このスライドレール51はフィルム1の中間部に沿って水平に敷設され、車台部52が水平に移動する。
<1-2. Transport mechanism>
Next, a configuration related to the conveyance of the conveyance mechanism 50 will be described.
The transport mechanism 50 is provided with a slide rail 51 that extends so as to straddle the feeding mechanism 20 and the forming mechanism 90, and a chassis unit 52 that slides along the slide rail 51. The slide rail 51 is laid horizontally along the middle portion of the film 1, and the chassis 52 moves horizontally.
 ここでは、水平方向のうち、スライドレール51が延びる方向を「X方向」(図2では左右方向)とし、このX方向に直交する方向を「Y方向」(図2では上下方向)とする。さらに、X方向のうち一方(図2では左方)を「X1」とするとともに他方を「X2」とし、Y方向のうち一方(図2では上方)を「Y1」とするとともに他方を「Y2」とする。製造装置のY1方向側では、フィルム1や第一割り金型91aよりもY2方向側にスライドレール51および車台部52が設けられる。反対に、製造装置のY2方向側では、フィルム1や第二割り金型91bよりもY1方向側にスライドレール51および車台部52が設けられる。 Here, in the horizontal direction, the direction in which the slide rail 51 extends is the “X direction” (left and right direction in FIG. 2), and the direction orthogonal to the X direction is the “Y direction” (up and down direction in FIG. 2). Further, one of the X directions (left side in FIG. 2) is “X1” and the other is “X2”, and one of the Y directions (upward in FIG. 2) is “Y1” and the other is “Y2”. " On the Y1 direction side of the manufacturing apparatus, a slide rail 51 and a chassis part 52 are provided on the Y2 direction side of the film 1 and the first split mold 91a. On the contrary, on the Y2 direction side of the manufacturing apparatus, the slide rail 51 and the chassis 52 are provided on the Y1 direction side of the film 1 and the second split mold 91b.
 スライドレール51上の車台部52は、X1方向からX2方向に向けて、ラベル10を分離する原点位置P1,ラベル10を帯電部80で帯電させる帯電位置P3,ラベル10を第一割り金型91aに配置して容器2を成形する成形位置P4の順に並ぶ各位置に移動する。
 具体的に言えば、車台部52は、ラベル10を搬送するときに、原点位置P1,帯電位置P3,成形位置P4の順に往動する。その後に、ラベル10を再び搬送するため、成形位置P4,帯電位置P3,原点位置P1の順に復動する。そして、再びラベル10を搬送するときに、原点位置P1,帯電位置P3,成形位置P4の順に往動する。
 なお、整形部70を設ける場合には、ラベル10を整形部70で整形する整形位置P2が、原点位置P1と帯電位置P3との間に位置することとなり、車台部52は、原点位置P1,整形位置P2,帯電位置P3,成形位置P4の順に往動し、成形位置P4,帯電位置P3,整形位置P2,原点位置P1の順に復動することとなる。
The chassis 52 on the slide rail 51 has an origin position P1 for separating the label 10 from the X1 direction to the X2 direction, a charging position P3 for charging the label 10 by the charging unit 80, and the label 10 for the first split mold 91a. To the respective positions arranged in the order of the molding position P4 for molding the container 2.
Specifically, when the label 10 is conveyed, the chassis unit 52 moves forward in the order of the origin position P1, the charging position P3, and the molding position P4. Thereafter, in order to transport the label 10 again, the label 10 is moved back in the order of the forming position P4, the charging position P3, and the origin position P1. When the label 10 is transported again, the origin position P1, the charging position P3, and the molding position P4 are moved forward in this order.
When the shaping unit 70 is provided, the shaping position P2 at which the label 10 is shaped by the shaping unit 70 is located between the origin position P1 and the charging position P3, and the chassis 52 has the origin position P1, The shaping position P2, the charging position P3, and the molding position P4 are moved forward in this order, and the molding position P4, the charging position P3, the shaping position P2, and the origin position P1 are moved back in this order.
 車台部52には、上述したアーム部60が設けられる。アーム部60は、伸縮するようにY方向に駆動される。具体的には、アーム部60の先端部60aがフィルム1や第一割り金型91aに当接するように突出した挿抜位置と、先端部60aがフィルム1や第一割り金型91aから離隔した搬送位置との二つの位置を切り替えるように、アーム部60が車台部52から出没駆動(往復駆動)される。
 さらに、アーム部60の先端部60aには、保持対象のラベル10を吸い付ける吸引機構(吸盤)が設けられている。
The chassis portion 52 is provided with the arm portion 60 described above. The arm unit 60 is driven in the Y direction so as to expand and contract. Specifically, an insertion / extraction position where the tip end portion 60a of the arm portion 60 protrudes so as to contact the film 1 or the first split die 91a, and conveyance where the tip end portion 60a is separated from the film 1 or the first split die 91a. The arm portion 60 is driven in and out (reciprocating drive) from the chassis portion 52 so as to switch between the two positions.
Further, a suction mechanism (suction cup) that sucks the label 10 to be held is provided at the distal end portion 60 a of the arm portion 60.
 ここでは、二つのラベル10が同時に分離される。そのため、二つのラベル10のそれぞれに対応して二組のアーム部60がX方向に並んで設けられる。さらに、一つのラベル10には二枚のラベル11,12が設けられることから、一組のアーム部60には、第一ラベル11に対応する第一アーム部61と、第二ラベル12に対応する第二アーム部62とが設けられる。敷衍して言えば、一つのラベル10におけるラベル11,12の枚数に応じた数のアーム部61,62が車台部52に設けられる。以下の説明では、一組のアーム部60に着目して説明する。
 つぎに、位置P1,P2,P3,P4のそれぞれに車台部52が位置するときの搬送機構50について順を追って述べる。
Here, the two labels 10 are separated simultaneously. Therefore, two sets of arm portions 60 are provided side by side in the X direction corresponding to each of the two labels 10. Furthermore, since one label 10 is provided with two labels 11, 12, the set of arm portions 60 corresponds to the first arm portion 61 corresponding to the first label 11 and the second label 12. And a second arm portion 62 is provided. In other words, a number of arm portions 61 and 62 corresponding to the number of labels 11 and 12 in one label 10 are provided in the chassis portion 52. In the following description, the description will be given focusing on the pair of arm portions 60.
Next, the transport mechanism 50 when the chassis unit 52 is located at each of the positions P1, P2, P3, and P4 will be described in order.
(取出部)
 原点位置P1に車台部52が位置するときには、車台部52のアーム部60が、フィルム1からラベル10を分離して取り出す取出部として機能する。このときの車台部52は、原点位置P1に停止している。
 アーム部60は、図3の中央に示すように、搬送位置から挿抜位置に突出駆動され、先端部60aがラベル10に接触する。それから、吸引機構が作動して先端部60aにラベル10が吸い付けられる。その後、図3の右側に示すように、挿抜位置から搬送位置にアーム部60が没入駆動される。このとき、先端部60aに吸い付けられたラベル10がフィルム1から分離される。この分離時には、ラベル10と余白部13とを繋ぐ点状の箇所が引きちぎられる。
(Extraction department)
When the chassis part 52 is located at the origin position P1, the arm part 60 of the chassis part 52 functions as an extraction part that separates the label 10 from the film 1 and takes it out. The chassis section 52 at this time is stopped at the origin position P1.
As shown in the center of FIG. 3, the arm portion 60 is driven to project from the transport position to the insertion / extraction position, and the tip end portion 60 a contacts the label 10. Then, the suction mechanism is activated and the label 10 is sucked to the tip 60a. Thereafter, as shown on the right side of FIG. 3, the arm unit 60 is driven into the transport position from the insertion / extraction position. At this time, the label 10 sucked on the leading end 60 a is separated from the film 1. At the time of the separation, a dotted portion that connects the label 10 and the blank portion 13 is torn off.
 ここでは、図2および図3に示すように、アーム部60によるラベル10の分離をサポートするために、ラベル10の分離方向とは反対方向に余白部13を押圧するストッパ29が設けられている。このストッパ29としては、フィルム1に対して車台部52側に立設されたプレート29aや、このプレート29aからフィルム1側に突出したピン29bを用いることができる。このストッパ29により、ラベル10の分離方向とは反対方向に余白部13を押さえることで、ラベル10の分離性を向上させることができる。
 すなわち、車台部52には、アーム部60やその出没駆動機構,吸引機構,ストッパ29などの設けられた取出機構(取出部)が設けられている。
Here, as shown in FIGS. 2 and 3, in order to support the separation of the label 10 by the arm portion 60, a stopper 29 that presses the blank portion 13 in a direction opposite to the separation direction of the label 10 is provided. . As the stopper 29, a plate 29 a erected on the chassis 52 side with respect to the film 1 or a pin 29 b protruding from the plate 29 a to the film 1 side can be used. By pressing the blank portion 13 in the direction opposite to the separation direction of the label 10 by the stopper 29, the separation property of the label 10 can be improved.
In other words, the chassis 52 is provided with an extraction mechanism (extraction portion) provided with the arm portion 60 and its drive mechanism, suction mechanism, stopper 29 and the like.
 このように分離されたラベル10には、たとえば余白部13に対する繋ぎ目や切断不良によって、図4に示すように、微小な突起状の異形部11aやヒゲ状あるいはバリ状の異形部12aが付随して形成されうる。
 そこで、本製造装置には、上述したように、つぎに説明するような整形部70が配備されてもよい。
As shown in FIG. 4, the separated label 10 is accompanied by a minute protrusion-like deformed portion 11 a or a beard-like or burr-like deformed portion 12 a due to, for example, a joint to the blank portion 13 or a defective cutting. Can be formed.
Therefore, as described above, the manufacturing apparatus may be provided with the shaping unit 70 described below.
(整形部)
 整形位置P2に車台部52が位置するときには、アーム部60に保持された搬送中のラベル10が、整形部70によって整形される。
 整形部70は、ラベル10に付随している異形部11a,12aを除去して、ラベル10を整形する。この整形部70としては、噴射したエアで異形部11aを吹き飛ばしてラベル10から除去するエアガン(噴気部)71や、放射した火炎で異形部12aを溶融させてラベル10から除去するバーナ(火炎放射部)72といった異形部除去装置を採用することができる。
 ここでは、整形部70から連続的に放出されたエアや火炎にラベル10の異形部11a,12aが晒されることで、異形部11a,12aが除去され、搬送中のラベル10が整形される。
(Shaping department)
When the chassis part 52 is located at the shaping position P2, the label 10 being conveyed held by the arm part 60 is shaped by the shaping part 70.
The shaping unit 70 shapes the label 10 by removing the deformed portions 11 a and 12 a attached to the label 10. As the shaping unit 70, an air gun (fountain unit) 71 that blows off the deformed portion 11a with jetted air and removes it from the label 10, or a burner (flame radiation) that melts the deformed portion 12a with a radiated flame and removes it from the label 10. Part) 72 can be adopted.
Here, the deformed portions 11a and 12a of the label 10 are exposed to air and flame continuously discharged from the shaping portion 70, whereby the deformed portions 11a and 12a are removed, and the label 10 being conveyed is shaped.
(帯電部)
 ところで、金型91の内部(キャビティ)にラベル10を配置した直後には、金型91内でラベル10が動かないよう保持する必要がある。このようにラベル10を保持する方式としては、金型91内に吸引孔を設け、この吸引孔から真空吸引してラベル10を保持する方式と、ラベル10を帯電させて、金型91にラベル10を静電吸着させる方式が挙げられる。後者を採用する場合には、ラベル10を帯電させる必要があり、これには、ラベル10の少なくとも片面を帯電防止処理せず形成し、これによって得られたラベル10を帯電させる装置が必要となる。
(Charging part)
By the way, immediately after placing the label 10 in the mold 91 (cavity), it is necessary to hold the label 10 in the mold 91 so as not to move. As a method for holding the label 10 as described above, a suction hole is provided in the mold 91, and the label 10 is held by vacuum suction from the suction hole, and the label 10 is charged and the label is attached to the mold 91. 10 is an electrostatic adsorption method. When the latter is adopted, it is necessary to charge the label 10, and this requires a device for forming at least one side of the label 10 without antistatic treatment and charging the resulting label 10. .
 ここでは、ラベル10を帯電させる方式を採用した製造装置を例示する。
図2に示すように、帯電位置P3に車台部52が位置するときには、アーム部60に保持された搬送中のラベル10が、帯電部80の近傍を通過する。これにより、ラベル10が帯電させられる。これによって、第一割り金型91aの内部にラベル10が配置された後に、ラベル10が第一割り金型91aに張り付いた状態がクーロン力で保持される。この帯電部80としては、帯電バーや帯電ガンといった帯電装置を採用することができる。
 なお、ラベル10を金型91に真空吸引させる吸引機構が本製造装置に設けられれば、帯電部80を停止させてもよく、帯電部80を省略してもよい。
Here, a manufacturing apparatus that employs a method of charging the label 10 is illustrated.
As shown in FIG. 2, when the chassis unit 52 is located at the charging position P <b> 3, the label 10 being conveyed held by the arm unit 60 passes in the vicinity of the charging unit 80. Thereby, the label 10 is charged. Thereby, after the label 10 is arranged inside the first split mold 91a, the state where the label 10 is stuck to the first split mold 91a is held by Coulomb force. As the charging unit 80, a charging device such as a charging bar or a charging gun can be employed.
If the manufacturing apparatus is provided with a suction mechanism for vacuum suction of the label 10 to the mold 91, the charging unit 80 may be stopped or the charging unit 80 may be omitted.
(配置部)
 成形位置P4に車台部52が位置するときには、車台部52のアーム部60が、第一割り金型91aの内部にラベル10を配置する配置部として機能する。このときの車台部52は、第一割り金型91aの内部に対向するように、成形位置P4に停止している。
 アーム部60は、搬送位置から挿抜位置に突出駆動され、先端部60aに保持されたラベル10が第一割り金型91aの内部に挿入されて押し当てられる。
(Arrangement part)
When the chassis part 52 is located at the molding position P4, the arm part 60 of the chassis part 52 functions as an arrangement part that arranges the label 10 inside the first split mold 91a. The chassis section 52 at this time is stopped at the molding position P4 so as to face the inside of the first split mold 91a.
The arm part 60 is driven to project from the transport position to the insertion / extraction position, and the label 10 held at the tip part 60a is inserted into the first split mold 91a and pressed.
 それから、アーム部60の吸引機構の作動が停止し、帯電状態のラベル10が第一割り金型91aの内部に張り付く。このとき、図5に示すように、ラベル10をなす第一ラベル11および第二ラベル12は、相対的な配置が保持されたまま第一割り金型91aの内部の所定位置に張り付く。そのため、金型91のうち第一割り金型91aの内部におけるラベル11,12の相対的な配置に合わせて、フィルム1におけるラベル11,12の相対的な配置が設定されている。
 すなわち、車台部52には、アーム部60やその出没駆動機構,吸引機構などの設けられた配置機構(配置部)が設けられている。
Then, the operation of the suction mechanism of the arm unit 60 is stopped, and the charged label 10 is stuck inside the first split mold 91a. At this time, as shown in FIG. 5, the first label 11 and the second label 12 forming the label 10 are stuck to predetermined positions inside the first split mold 91a while maintaining the relative arrangement. Therefore, the relative arrangement of the labels 11 and 12 on the film 1 is set in accordance with the relative arrangement of the labels 11 and 12 inside the first split mold 91a of the mold 91.
That is, the chassis part 52 is provided with an arrangement mechanism (arrangement part) provided with the arm part 60, its drive mechanism, a suction mechanism, and the like.
 その後、挿抜位置から搬送位置にアーム部60が没入駆動されて、車台部52が原点位置P1に移動する。
 なお、ラベル10が第一割り金型91aに押し当てられると、繰り出し機構20がフィルム1を再び繰り出して、ラベル10が二つ分だけ繰り出される。
Thereafter, the arm portion 60 is driven into the transport position from the insertion / extraction position, and the chassis portion 52 moves to the origin position P1.
When the label 10 is pressed against the first split mold 91a, the feeding mechanism 20 feeds the film 1 again, and the labels 10 are fed by two.
<1-3.成形機構>
 つぎに、図2を参照して、成形機構90を説明する。
 成形機構90は、金型91内に成形材料を供給し、インモールドラベリングで外壁2aにラベル10を貼着させることで、容器2をインモールド成形する。ここでは、ブロー成形でラベル10が貼着された容器2を成形する。たとえば、インジェクション成形,ダイレクトブロー成形,ストレッチブロー成形などでラベル付き容器を成形する。また、差圧式熱成形や真空成形などでラベル10が貼着された容器2を成形してもよい。
 例えばブロー成形(中空成形)では、ラベルを、成形金型のキャビティ内にラベルの低融点樹脂層1a側が金型のキャビティ側(容器材質の樹脂に接するよう)に向くように配置した後、吸引や静電気により金型内壁に固定する。次いで容器成形材料となる樹脂のパリソンを金型間に導き、型締めした後に常法により中空成形され、型開きして該ラベルがプラスチック容器の表面に融着されたラベル付き容器が成形される。
 また、インジェクション成形では、インモールドラベルを、雌金型のキャビティ内にラベルの低融点樹脂層1a側が金型のキャビティ側(容器材質の樹脂に接するよう)に向くように配置した後、吸引や静電気により金型内壁に固定し、型締めした後に、容器成形材料となる樹脂の溶融物を金型内に射出し容器成形され、型開きして該ラベルがプラスチック容器の表面に融着されたラベル付き容器が成形される。
 また、差圧成形では、インモールドラベルを、差圧成形金型の下雌金型のキャビティ内にラベルの低融点樹脂層1a側が金型のキャビティ側(容器材質の樹脂に接するよう)に向くように配置した後、吸引や静電気により金型内壁に固定する。次いで容器成形材料となる樹脂シートの半溶融物が下雌金型の上方に導かれ、常法により差圧成形され、該ラベルがプラスチック容器の外壁に一体に融着されたラベル付きプラスチック容器が成形される。差圧成形は、真空成形、圧空成形のいずれも採用できるが、一般には両者を併用し、かつプラグアシストを利用した差圧成形が好ましい。
<1-3. Molding mechanism>
Next, the forming mechanism 90 will be described with reference to FIG.
The molding mechanism 90 supplies the molding material into the mold 91 and attaches the label 10 to the outer wall 2a by in-mold labeling, thereby molding the container 2 in-mold. Here, the container 2 with the label 10 attached thereto is formed by blow molding. For example, a labeled container is formed by injection molding, direct blow molding, stretch blow molding, or the like. Moreover, you may shape | mold the container 2 with which the label 10 was stuck by differential pressure type thermoforming, vacuum forming, etc. FIG.
For example, in blow molding (hollow molding), the label is placed in the cavity of the molding die so that the low melting point resin layer 1a side of the label faces the cavity side of the die (contacts with the resin of the container material), and then suction is performed. Fix to the inner wall of the mold by static electricity. Next, a resin parison serving as a container molding material is guided between the molds, clamped and then hollow molded by a conventional method, and the mold is opened to form a labeled container in which the label is fused to the surface of the plastic container. .
In injection molding, an in-mold label is disposed in a cavity of a female mold so that the low-melting point resin layer 1a side of the label faces the mold cavity side (in contact with the resin of the container material), and then suction or After being fixed to the inner wall of the mold by static electricity and clamped, a resin melt as a container molding material was injected into the mold to form a container, and the mold was opened and the label was fused to the surface of the plastic container. A labeled container is formed.
Further, in the differential pressure molding, the in-mold label faces the low melting point resin layer 1a side of the label in the lower female mold cavity of the differential pressure molding mold so as to face the mold cavity side (contact with the resin of the container material). After being arranged in this way, it is fixed to the inner wall of the mold by suction or static electricity. Next, a plastic container with a label in which a semi-molten resin sheet serving as a container molding material is guided to the upper part of the lower female mold, subjected to differential pressure molding by a conventional method, and the label is integrally fused to the outer wall of the plastic container. Molded. As the differential pressure forming, either vacuum forming or pressure forming can be adopted, but in general, differential pressure forming using both of them and utilizing plug assist is preferable.
 この成形機構90には、二組のアーム部60と同様に、二組の金型91がX方向に並んで配置される。さらに、Y方向に二分割された割り金型91a,91bから各組の金型91が構成されることから、割り金型91a,91bを結ぶようにY方向に延びるスライドレール92が成形機構90に敷設される。このスライドレール92に沿って割り金型91a,91bが互いに接近または離隔するように移動する。 成形 Like the two sets of arm portions 60, two sets of molds 91 are arranged in the molding mechanism 90 side by side in the X direction. Furthermore, since each set of molds 91 is composed of split molds 91a and 91b divided in two in the Y direction, a slide rail 92 extending in the Y direction so as to connect the split molds 91a and 91b is formed by a forming mechanism 90. Will be laid. The split molds 91a and 91b move along the slide rail 92 so as to approach or separate from each other.
 また、成形機構90のY方向中央には、溶融したパイプ状の成形材料(プラスチック原料、いわゆる「パリソン」や「プリフォーム」)を金型91に供給する供給口93と、型閉め時の金型91に空気を吹き込む吹込口94とが設けられる。これらの供給口93および吹込口94は、金型91よりも上方(X方向及びY方向に直行する方向、例えば図2では紙面手前側)に配置される。
 なお、割り金型91a,91bには、配置されるラベル10を吸い付ける吸引機構が設けられていてもよい。
Further, at the center of the molding mechanism 90 in the Y direction, a supply port 93 for supplying a molten pipe-shaped molding material (plastic raw material, so-called “parison” or “preform”) to the mold 91, and a mold when the mold is closed. An air inlet 94 for blowing air into the mold 91 is provided. These supply port 93 and blow-in port 94 are disposed above the mold 91 (in a direction orthogonal to the X direction and the Y direction, for example, on the front side in FIG. 2).
The split molds 91a and 91b may be provided with a suction mechanism for sucking the label 10 to be arranged.
 ラベル付き容器は、次のような手順で成形される。
 供給口93から割り金型91a,91b内に成形材料を導入し、割り金型91a,91bを接近させて型閉めしてブロー成形する。そして、冷却された割り金型91a,91bを互いに離隔させて型開きし、成形されたラベル付き容器が取り出される。その後、ラベル付き容器のバリ取り処理を施してもよい。
The labeled container is formed by the following procedure.
A molding material is introduced into the split molds 91a and 91b from the supply port 93, the split molds 91a and 91b are brought close to each other, and the mold is closed to perform blow molding. Then, the cooled split molds 91a and 91b are separated from each other and opened, and the molded labeled container is taken out. Thereafter, a deburring process may be performed on the labeled container.
<1-4.制御構成>
 つぎに、図6を参照して、製造装置を制御する制御部100の構成を説明する。
 まず、制御部100の基本的な構成を説明する。
 制御部100には、CPU(Central Processing Unit)110と、ROM(Read Only Memory)やRAM(Random Access Memory)などのメモリ111と、HDD(Hard Disk Drive),SSD(Solid State Drive),光学ドライブ,フラッシュメモリ,リーダライタなどの外部記憶装置112,キーボードやマウスなどの入力装置113,ディスプレイやプリンタ装置などの出力装置(表示部)114,無線または有線で送受信する通信装置115が設けられる。これらの各デバイス110~115は、制御部100の内部に設けられた制御バスやデータバスなどのバス116を介して互いに通信可能に接続される。
<1-4. Control configuration>
Next, the configuration of the control unit 100 that controls the manufacturing apparatus will be described with reference to FIG.
First, a basic configuration of the control unit 100 will be described.
The control unit 100 includes a CPU (Central Processing Unit) 110, a memory 111 such as a ROM (Read Only Memory) and a RAM (Random Access Memory), an HDD (Hard Disk Drive), an SSD (Solid State Drive), and an optical drive. , An external storage device 112 such as a flash memory and a reader / writer, an input device 113 such as a keyboard and a mouse, an output device (display unit) 114 such as a display and a printer, and a communication device 115 that transmits and receives wirelessly or by wire. These devices 110 to 115 are communicably connected to each other via a bus 116 such as a control bus or a data bus provided in the control unit 100.
 この制御部100は、プログラム117を実行可能な汎用のコンピュータである。このプログラム117は、外部記憶装置112にインストールされる。
 なお、光学ドライブ,フラッシュメモリ,リーダライタなどで読み取り可能な記録媒体118にプログラム117を記録しておいてもよい。あるいは、制御部100が接続可能なネットワーク上のオンラインストレージにプログラム117を記録しておいてもよい。何れにしても、制御部100の外部記憶装置112にプログラム117をダウンロードする、あるいは、CPU110やメモリ111にプログラム117を読み込むことで、プログラム117が実行可能であればよい。
The control unit 100 is a general-purpose computer that can execute the program 117. This program 117 is installed in the external storage device 112.
The program 117 may be recorded in a recording medium 118 that can be read by an optical drive, a flash memory, a reader / writer, or the like. Alternatively, the program 117 may be recorded in an online storage on a network to which the control unit 100 can be connected. In any case, it is only necessary that the program 117 can be executed by downloading the program 117 to the external storage device 112 of the control unit 100 or reading the program 117 into the CPU 110 or the memory 111.
[2.ラベル付き容器の製造方法]
 つづいて、図7を参照して、ラベル付き容器の製造方法を説明する。この製造方法は、上述した製造装置によってラベル付き容器を製造する方法である。
 この製造方法では、ラベル10が配列されたフィルム1を準備する準備工程(ステップA10),準備されたフィルム1とそのラベル10を繰り出して活性化処理を施す活性化処理工程(ステップA14),ラベル10を搬送する搬送工程(ステップA20),搬送工程で搬送されたラベル10を用いて容器2を成形する成形工程(ステップA30)の順に各工程が実施される。
[2. Manufacturing method of labeled container]
Next, a manufacturing method of the labeled container will be described with reference to FIG. This manufacturing method is a method of manufacturing a labeled container by the manufacturing apparatus described above.
In this manufacturing method, a preparation process (step A10) for preparing the film 1 on which the labels 10 are arranged, an activation process process (step A14) in which the prepared film 1 and the label 10 are unwound and activated. Each process is carried out in the order of a transport process (step A20) for transporting 10 and a molding process (step A30) for molding the container 2 using the label 10 transported in the transport process.
 また、搬送工程では、取出工程(ステップA22),帯電工程(ステップA26),配置工程(ステップA28)の順に各工程が実施される。
 なお、活性化処理工程(ステップA14)において、コロナ放電処理を行う場合は、取出工程(ステップA22)の前に行われればよく、プラズマ処理工程を行う場合は、配置工程(ステップA28)の前に行われればよい。
 また、コロナ放電処理を取出工程(ステップA22)の前に行うのは、コロナ放電処理では、ラベル10が安定した状態でないと処理が困難なため、アーム部60により取り出された後、つまりアーム部60により搬送されている不安定な状態では処理が困難なためである。
In the transport process, each process is performed in the order of an extraction process (step A22), a charging process (step A26), and an arrangement process (step A28).
In the activation process (step A14), when the corona discharge process is performed, it may be performed before the extraction process (step A22), and when the plasma process is performed, before the arrangement process (step A28). It only has to be done.
Further, the corona discharge treatment is performed before the removal step (step A22). In the corona discharge treatment, since the treatment is difficult unless the label 10 is in a stable state, the arm portion 60 is taken out. This is because the process is difficult in the unstable state being conveyed by 60.
 以下、順を追って各工程を説明する。
 はじめに、ステップA10の準備工程では、ステップA12の印刷工程でフィルム1のラベル10となる部分に印刷が施される。このようにして印刷されたラベル10は、フィルム1が繰り出されるのに伴って繰り出され、長手方向に配列して形成される。このようにしてフィルム1に配列した状態のラベル10を準備する。
Hereinafter, each step will be described in order.
First, in the preparation process of Step A10, printing is performed on the portion of the film 1 that becomes the label 10 in the printing process of Step A12. The labels 10 printed in this manner are fed out as the film 1 is fed out, and are arranged in the longitudinal direction. In this way, the label 10 arranged in the film 1 is prepared.
 ステップA14の活性化処理工程では、印刷されたラベル10の低融点樹脂層1aに対して活性化処理を行い、低融点樹脂層1aの濡れ性を向上させる。 In the activation process of Step A14, the low melting point resin layer 1a of the printed label 10 is activated to improve the wettability of the low melting point resin layer 1a.
 その後、ステップA20の搬送工程に移行する。 After that, the process proceeds to the transport process of Step A20.
 ステップA20の搬送工程では、搬送機構50のアーム部60によってラベル10が搬送される。
 搬送工程で搬送されるラベル10は、ステップA22の取出工程で、アーム部60によってフィルム1から分離される。
In the transport process of Step A20, the label 10 is transported by the arm unit 60 of the transport mechanism 50.
The label 10 conveyed in the conveyance process is separated from the film 1 by the arm unit 60 in the take-out process of Step A22.
 つづいて、ステップA26の帯電工程では、帯電部80によってラベル10が帯電させられる。
 その後、ステップA28の配置工程では、アーム部60によって帯電状態のラベル10が金型91の内部に配置される。そして、ラベル10が金型91に張り付く。なお、金型内のラベル保持方法が真空吸引式である場合は、帯電部80を省略することができる。
 ステップA30の成形工程では、成形機構90によってラベル10が貼着された容器2を成形する。
Subsequently, in the charging process of Step A26, the label 10 is charged by the charging unit 80.
Thereafter, in the arrangement step of Step A28, the charged label 10 is arranged inside the mold 91 by the arm unit 60. Then, the label 10 sticks to the mold 91. When the label holding method in the mold is a vacuum suction type, the charging unit 80 can be omitted.
In the molding process of Step A30, the container 2 with the label 10 attached thereto is molded by the molding mechanism 90.
[3.作用および効果]
 本実施形態のラベル付き容器の製造装置および製造方法では、フィルム1の長手方向に配列されたラベル10が分離されるため、重ねられた枚葉状のラベルを一枚ずつ取り出す製法に比較して、ラベル10の反りを抑えることができ、静電気などで重なってラベル10が取り出されることもない。よって、ラベル付き容器の品質及び生産性を向上させることができる。
[3. Action and effect]
In the manufacturing apparatus and the manufacturing method of the labeled container of the present embodiment, since the labels 10 arranged in the longitudinal direction of the film 1 are separated, compared to the manufacturing method of taking out the stacked sheet-like labels one by one, The warping of the label 10 can be suppressed, and the label 10 is not taken out due to static electricity. Therefore, the quality and productivity of the labeled container can be improved.
 ここで、従来、ラベルに両面印刷が施されるような場合には、ヒートシール層(低融点樹脂層)の貼着面を含むラベルに両面に印刷機能を付与すべくコロナ放電処理のような活性化処理を施すことはあったが、インモールド成型のように外側面だけに片面印刷する場合には、非印刷面である貼着面にコロナ放電処理のような活性化処理を施す必要がなかった。また、ラベルの貼着面に活性化処理を施すと却ってラベルの接着強度が低下して実用的でないことが一般的な理解であった。
 このため、インモールド成型に使用するラベルの貼着面に活性化処理を施すことは禁忌とされ、ラベルの外側面に印刷機能を付与すべく活性化処理を施す場合には、活性化処理の影響が貼着面に作用しないように注意が払われていた。
 これに対し、本発明者は、容器2が、ペットボトルのように極性樹脂を成型したものであった場合には、ラベル10の低融点樹脂層1aの貼着面、すなわちインモールド成型時にパリソンに対向する面に、活性化処理を行うことで、貼着面を活性化して濡れ性を向上させることができ、これにより容器2と低融点樹脂層1aとの接着性を向上できることを発見した。これは、低融点樹脂層1aの濡れ性が向上すると、パリソンの熱で低融点樹脂層1aが融解したとき、低融点樹脂層1aとパリソンとのなじみが良くなり、パリソンの表面に低融点樹脂層1aが広がりやすくなって低融点樹脂層1aと容器2との密着が良好になるものと推察される。
 この結果、容器2が極性樹脂を成型したものであった場合でも、低融点樹脂層1aに非極性樹脂を使用したラベル10を貼着できる。
Here, conventionally, when double-sided printing is applied to a label, a corona discharge treatment or the like is required to give a printing function to both sides of a label including a sticking surface of a heat seal layer (low melting point resin layer). Although there was an activation process, when printing only on the outer side only like in-mold molding, it is necessary to perform an activation process such as corona discharge on the non-printing surface. There wasn't. Further, it was a general understanding that when the activation surface is applied to the sticking surface of the label, the adhesive strength of the label is lowered and it is not practical.
For this reason, it is contraindicated to apply an activation process to the surface of the label used for in-mold molding. When the activation process is performed to give a printing function to the outer surface of the label, the activation process Care was taken to ensure that the effect did not affect the sticking surface.
On the other hand, when the container 2 is formed by molding a polar resin like a plastic bottle, the inventor has a parison at the time of attaching the low melting point resin layer 1a of the label 10, that is, in-mold molding. It was discovered that by performing an activation treatment on the surface facing the surface, the sticking surface can be activated to improve the wettability, thereby improving the adhesion between the container 2 and the low melting point resin layer 1a. . This is because when the low melting point resin layer 1a is improved in wettability, when the low melting point resin layer 1a is melted by the heat of the parison, the familiarity between the low melting point resin layer 1a and the parison is improved. It is presumed that the layer 1a easily spreads and the adhesion between the low melting point resin layer 1a and the container 2 is improved.
As a result, even when the container 2 is made of a polar resin, the label 10 using a nonpolar resin can be attached to the low melting point resin layer 1a.
[4.インモールドラベル]
 つぎに、本実施形態のインモールドラベルについて説明する。
 本実施形態のインモールドラベルは、熱可塑性樹脂フィルムの一方の面に低融点樹脂層を有し、低融点樹脂層がポリエチレン系樹脂を含有し、ポリエチレン系樹脂の融点が60~110℃であり、低融点樹脂層の厚さが1.5~15μmであり、低融点樹脂層の表面が活性化処理されていることを特徴とする。
 なお、上述したラベル付き容器の製造装置やラベル付き容器の製造方法に用いられるラベル10は、本実施形態のインモールドラベルに限定されず、従来公知の種々のラベルを使用できる。つまり、上述したラベル10の低融点樹脂層1aに含まれる樹脂の種類及び物性(例えば融点等)、並びに低融点樹脂層1aの厚さは特に限定されない。
 ラベル10として本実施形態のインモールドラベルを使用する場合には、ラベル10における基層1b、ヒートシール層1a及び印刷層1cは、順に、本実施形態のインモールドラベルにおける熱可塑性樹脂フィルム、低融点樹脂層及びインキ受理層に対応する。また、後述するように、ラベル10として本実施形態のインモールドラベルを使用すると、相対的にラベル付き容器の特性(容器に対するラベルの接着強度や耐水性)が向上する。
 以下において、インモールドラベルを構成する熱可塑性樹脂フィルム、低融点樹脂層、及び任意に設けられるインキ受理層などについて述べる。
[4. In-mold label]
Next, the in-mold label of this embodiment will be described.
The in-mold label of this embodiment has a low melting point resin layer on one surface of a thermoplastic resin film, the low melting point resin layer contains a polyethylene resin, and the melting point of the polyethylene resin is 60 to 110 ° C. The low melting point resin layer has a thickness of 1.5 to 15 μm, and the surface of the low melting point resin layer is activated.
In addition, the label 10 used for the manufacturing apparatus of a labeled container mentioned above and the manufacturing method of a labeled container is not limited to the in-mold label of this embodiment, A conventionally well-known various label can be used. That is, the kind and physical property (for example, melting | fusing point etc.) of resin contained in the low melting point resin layer 1a of the label 10 mentioned above, and the thickness of the low melting point resin layer 1a are not specifically limited.
When the in-mold label of this embodiment is used as the label 10, the base layer 1b, the heat seal layer 1a, and the printing layer 1c in the label 10 are sequentially formed of a thermoplastic resin film and a low melting point in the in-mold label of this embodiment. Corresponds to resin layer and ink receiving layer. As will be described later, when the in-mold label of the present embodiment is used as the label 10, the characteristics of the labeled container (the adhesive strength and water resistance of the label to the container) are relatively improved.
Hereinafter, a thermoplastic resin film, a low melting point resin layer, an optional ink receiving layer, and the like constituting the in-mold label will be described.
<4-1.熱可塑性樹脂フィルム>
 熱可塑性樹脂フィルムはインモールドラベルにおいて支持体となる基層であり、特に限定されない。熱可塑性樹脂フィルムはインモールドラベルに印刷や金型内挿入等のハンドリングができる程度の剛度(コシ)を与えるものであることが好ましい。
<4-1. Thermoplastic resin film>
The thermoplastic resin film is a base layer serving as a support in the in-mold label, and is not particularly limited. It is preferable that the thermoplastic resin film gives the in-mold label a rigidity (stiffness) that allows handling such as printing and insertion in a mold.
(熱可塑性樹脂)
 熱可塑性樹脂フィルムに含まれる熱可塑性樹脂としては、ポリプロピレン系樹脂、ポリメチル-1-ペンテン、エチレン-環状オレフィン共重合体等のオレフィン系樹脂;ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂等のポリエステル系樹脂;ポリ塩化ビニル樹脂;ナイロン-6、ナイロン-6,6、ナイロン-6,10、ナイロン-6,12等のポリアミド系樹脂;ポリスチレン;ポリカーボネート等が挙げられる。これらの中でも製造の簡便さの観点から、ポリプロピレン系樹脂、ポリエチレンテレフタレート樹脂を主として含むことが好ましい。また、低融点樹脂層との融点差を生じ、インモールド成形時に熱可塑性樹脂フィルムが不要な変形を生じない観点から、熱可塑性樹脂フィルムに含まれる熱可塑性樹脂は、低融点樹脂層が含むポリエチレン系樹脂の融点より15℃以上高い融点を有する熱可塑性樹脂であることが好ましい。具体的には融点が130~280℃の範囲である熱可塑性樹脂が好ましい。これらの熱可塑性樹脂は2種以上を混合して用いることもできる。
(Thermoplastic resin)
Examples of the thermoplastic resin contained in the thermoplastic resin film include olefin resins such as polypropylene resin, polymethyl-1-pentene, and ethylene-cyclic olefin copolymer; polyester resins such as polyethylene terephthalate resin and polybutylene terephthalate resin; Polyvinyl chloride resin; polyamide resins such as nylon-6, nylon-6,6, nylon-6,10, nylon-6,12; polystyrene; polycarbonate and the like. Among these, it is preferable that a polypropylene resin and a polyethylene terephthalate resin are mainly included from the viewpoint of ease of production. In addition, from the viewpoint of causing a difference in melting point from the low melting point resin layer and preventing the thermoplastic resin film from unnecessary deformation during in-mold molding, the thermoplastic resin contained in the thermoplastic resin film is a polyethylene contained in the low melting point resin layer. A thermoplastic resin having a melting point higher by 15 ° C. or more than the melting point of the base resin is preferable. Specifically, a thermoplastic resin having a melting point in the range of 130 to 280 ° C. is preferable. Two or more of these thermoplastic resins can be mixed and used.
 熱可塑性樹脂フィルムに含まれる熱可塑性樹脂の含有割合は特に限定されないが、熱可塑性樹脂フィルムの全質量に対して、通常55質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上であり、通常100質量%以下、好ましくは98質量%以下、より好ましくは95質量%以下である。熱可塑性樹脂の含有割合が上記範囲であれば、熱可塑性樹脂フィルムの成形性に優れると同時に、適度な断熱性を発現してラベル付き容器の接着強度を高める効果を奏する。 The content ratio of the thermoplastic resin contained in the thermoplastic resin film is not particularly limited, but is usually 55% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more with respect to the total mass of the thermoplastic resin film. It is usually 100% by mass or less, preferably 98% by mass or less, more preferably 95% by mass or less. If the content rate of a thermoplastic resin is the said range, it will be excellent in the moldability of a thermoplastic resin film, and it has the effect of improving moderate adhesiveness and raising the adhesive strength of a labeled container.
(無機微細粉末および有機フィラー)
 熱可塑性樹脂フィルムは、無機微細粉末または有機フィラーを含んでもよい。無機微細粉末を含む熱可塑性樹脂フィルムを延伸することによって、熱可塑性樹脂フィルムを白色不透明化することができる。その結果、インモールドラベルに設けられる印刷の視認性を高めることが出来る。なお、熱可塑性樹脂フィルムが無機微細粉末を含まない場合、ラベル付き容器においてラベルが目立たずあたかも容器に直接印刷したかのような視認性を発揮することができるので、容器およびラベルのデザインに応じて無機微細粉末を含む熱可塑性樹脂フィルムと無機微細粉末を含まない熱可塑性樹脂フィルムとを使い分けることができる。
(Inorganic fine powder and organic filler)
The thermoplastic resin film may contain an inorganic fine powder or an organic filler. By stretching a thermoplastic resin film containing inorganic fine powder, the thermoplastic resin film can be made white opaque. As a result, the visibility of printing provided on the in-mold label can be improved. In addition, when the thermoplastic resin film does not contain inorganic fine powder, the label does not stand out in the container with the label and can be displayed as if it was printed directly on the container, so depending on the design of the container and the label Thus, a thermoplastic resin film containing inorganic fine powder and a thermoplastic resin film not containing inorganic fine powder can be properly used.
 無機微細粉末としては、炭酸カルシウム(好ましくは重質炭酸カルシウム)、焼成クレイ、シリカ、けいそう土、白土、タルク、酸化チタン(好ましくはルチル型二酸化チタン)、硫酸バリウム、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、ガラスファイバー等が挙げられる。
 無機微細粉末は表面を脂肪酸等で表面処理されたものを使用することができる。
Examples of the inorganic fine powder include calcium carbonate (preferably heavy calcium carbonate), calcined clay, silica, diatomaceous earth, white clay, talc, titanium oxide (preferably rutile titanium dioxide), barium sulfate, alumina, zeolite, mica, Examples thereof include sericite, bentonite, sepiolite, vermiculite, dolomite, wollastonite, and glass fiber.
As the inorganic fine powder, one whose surface is treated with a fatty acid or the like can be used.
 熱可塑性樹脂フィルムは、有機フィラーを含むものであってもよい。熱可塑性樹脂フィルムが有機フィラーを含むことでも、インモールドラベルを白色化、不透明化させることができ、印刷の視認を容易にする効果を奏する。
 有機フィラーは、熱可塑性樹脂フィルムが主として(2種類以上の熱可塑性樹脂が含まれる場合は熱可塑性樹脂の全質量に対して50質量%以上)含む熱可塑性樹脂の融点またはガラス転移点よりも、自身の融点またはガラス転移点が高い樹脂であることが好ましい。
 熱可塑性樹脂フィルムが主として含む熱可塑性樹脂がポリプロピレン系樹脂の場合、有機フィラーの融点またはガラス転移点が120~300℃であることが好ましい。好適な有機フィラーとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアミド、ポリカーボネート、ポリスチレン、環状オレフィン単独重合体、エチレン-環状オレフィン共重合体、ポリエチレンサルファイド、ポリイミド、ポリメタクリレート、ポリエチルエーテルケトン、ポリフェニレンサルファイド、メラミン樹脂等が挙げられる。
The thermoplastic resin film may contain an organic filler. Even when the thermoplastic resin film contains an organic filler, the in-mold label can be whitened and opaqued, and the effect of facilitating the visual recognition of printing is achieved.
The organic filler is more than the melting point or glass transition point of the thermoplastic resin mainly contained in the thermoplastic resin film (50% by mass or more based on the total mass of the thermoplastic resin when two or more types of thermoplastic resins are included), A resin having a high melting point or glass transition point is preferable.
When the thermoplastic resin mainly contained in the thermoplastic resin film is a polypropylene resin, the organic filler preferably has a melting point or glass transition point of 120 to 300 ° C. Suitable organic fillers include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polyamide, polycarbonate, polystyrene, cyclic olefin homopolymer, ethylene-cyclic olefin copolymer, polyethylene sulfide, polyimide, polymethacrylate, polyethyl ether ketone, Examples include polyphenylene sulfide and melamine resin.
 熱可塑性樹脂フィルムには、無機微細粉末または有機フィラーの中から1種を選択してこれを単独で使用してもよいし、2種以上を選択して組み合わせて使用してもよい。
 熱可塑性樹脂フィルムに無機微細粉末または有機フィラーを含める場合、熱可塑性樹脂フィルムの全質量に対する無機微細粉末または有機フィラーの添加率は、10~70質量%が好ましく、10~60質量%がより好ましく、15~50質量%がさらに好ましい。無機微細粉末または有機フィラーの添加率が上記範囲の下限値以上であると熱可塑性樹脂フィルムが白色不透明化しやすくなり、無機微細粉末または有機フィラーの添加率が上記範囲の上限値以下であると成形が均一になりやすい。
For the thermoplastic resin film, one kind selected from inorganic fine powder or organic filler may be used alone, or two or more kinds may be selected and used in combination.
When the inorganic fine powder or the organic filler is included in the thermoplastic resin film, the addition ratio of the inorganic fine powder or the organic filler to the total mass of the thermoplastic resin film is preferably 10 to 70% by mass, and more preferably 10 to 60% by mass. 15 to 50% by mass is more preferable. When the addition rate of the inorganic fine powder or organic filler is equal to or higher than the lower limit value of the above range, the thermoplastic resin film tends to become white opaque, and the addition rate of the inorganic fine powder or organic filler is less than the upper limit value of the above range. Tends to be uniform.
 無機微細粉末の体積平均粒径または有機フィラーの平均分散粒径は、レーザー回折法による体積平均粒子径として0.01~15μmが好ましく、0.05~5μmがより好ましく、0.1~2.0μmがさらに好ましい。これにより延伸成形により空孔が得られやすくインモールドラベルの不透明化を達成しやすい傾向がある。無機微細粉末の体積平均粒径または有機フィラーの平均分散粒径が上記範囲の下限値以上であると熱可塑性樹脂フィルムが白色不透明化を達成しやすくなり、体積平均粒子径が上記範囲の上限値以下であると成形が均一になり、熱可塑性樹脂フィルムの強度が十分となる。
 無機微細粉末の体積平均粒径および有機フィラーの平均分散粒径は、粒子計測装置、例えばレーザー回折式粒子計測装置「マイクロトラック」(株式会社マイクロトラックベル社製、商品名)により測定した累積で50%にあたる粒子径(累積50%粒径)や、走査型電子顕微鏡による一次粒径の観察(本発明では粒子100個の平均値を平均粒径とした)、比表面積からの換算(本発明では(株)島津製作所製の粉体比表面積測定装置SS-100を使用し比表面積を測定した)などにより求めることができる。
The volume average particle size of the inorganic fine powder or the average dispersed particle size of the organic filler is preferably 0.01 to 15 μm, more preferably 0.05 to 5 μm, and more preferably 0.1 to 2 μm as a volume average particle size by laser diffraction method. 0 μm is more preferable. Accordingly, there is a tendency that voids are easily obtained by stretch molding, and the in-mold label is easily made opaque. When the volume average particle size of the inorganic fine powder or the average dispersed particle size of the organic filler is not less than the lower limit of the above range, the thermoplastic resin film can easily achieve white opacification, and the volume average particle size is the upper limit of the above range. When it is below, the molding becomes uniform and the thermoplastic resin film has sufficient strength.
The volume average particle size of the inorganic fine powder and the average dispersed particle size of the organic filler are cumulative values measured by a particle measuring device such as a laser diffraction particle measuring device “Microtrack” (trade name, manufactured by Microtrack Bell Co., Ltd.). Observation of particle diameter corresponding to 50% (cumulative 50% particle diameter), observation of primary particle diameter with a scanning electron microscope (in the present invention, the average value of 100 particles is an average particle diameter), conversion from specific surface area (present invention) Then, the specific surface area was measured using a powder specific surface area measuring device SS-100 manufactured by Shimadzu Corporation).
(添加剤)
 また、熱可塑性樹脂フィルムは必要に応じて、立体障害フェノール系、リン系、アミン系、イオウ系等の酸化防止剤;立体障害アミン系、ベンゾトリアゾール系、ベンゾフェノン系等の光安定剤;分散剤、滑剤、帯電防止剤等の添加剤を使用することができる。熱可塑性樹脂フィルムの全質量に対して上記各種添加剤をそれぞれ単独に0.001~1質量%添加することが好ましい。各種添加剤の添加量が上記範囲の下限値以上であると添加剤の効果が発現しやすくなり、各種添加剤の添加量が上記範囲の上限値以下であると着色したり印刷適性が低下したりしにくくなる。
(Additive)
In addition, the thermoplastic resin film is optionally provided with a sterically hindered phenol-based, phosphorus-based, amine-based or sulfur-based antioxidant; a sterically hindered amine-based, benzotriazole-based or benzophenone-based light stabilizer; a dispersant. Additives such as lubricants and antistatic agents can be used. It is preferable to add 0.001 to 1% by mass of each of the above-mentioned various additives individually based on the total mass of the thermoplastic resin film. When the additive amount of various additives is equal to or higher than the lower limit value of the above range, the effect of the additive tends to be exhibited, and when the additive amount of various additives is equal to or lower than the upper limit value of the above range, coloring or printability decreases. It becomes difficult to do.
 熱可塑性樹脂フィルムは単層であってもよく、2層以上であってもよい。2層以上の多層化により、インモールドラベルに白色不透明化、印刷インキ受理性、断熱性およびそれに伴う良好なインモールド成形性等の機能を付与することができる。 The thermoplastic resin film may be a single layer or two or more layers. By forming two or more layers, it is possible to impart functions such as white opacification, printing ink acceptability, heat insulation and good in-mold moldability associated therewith to the in-mold label.
 熱可塑性樹脂フィルムの厚さは20~200μmが好ましく、40~150μmがより好ましい。これにより印刷時にラベルにシワを生じにくく、また金型内挿入時に正規の位置に固定しやすくなり、ラベル付き容器のラベル境界部分の強度低下に伴う耐落下強度が高くなる効果が得られる。 The thickness of the thermoplastic resin film is preferably 20 to 200 μm, more preferably 40 to 150 μm. As a result, the label is less likely to be wrinkled at the time of printing, and can be easily fixed at a proper position when inserted into the mold, so that the effect of increasing the drop-proof strength associated with a decrease in the strength of the label boundary portion of the labeled container can be obtained.
 これらの条件を考慮した場合、好適な透明の熱可塑性樹脂フィルムとしては、無機微細粉末を含まない、ポリプロピレン系無延伸フィルム(CPPフィルム)、ポリプロピレン系二軸延伸フィルム(BOPPフィルム)、ポリエチレンテレフタレート系無延伸フィルム(CPETフィルム)、ポリエチレンテレフタレート系二軸延伸フィルム(BOPETフィルム)が挙げられる。
 また、好適な不透明の熱可塑性樹脂フィルムとしては、無機微細粉末を含む、CPPフィルム、BOPPフィルム、CPETフィルム、BOPETフィルム、合成紙が挙げられる。
In consideration of these conditions, as a suitable transparent thermoplastic resin film, it does not contain inorganic fine powder, polypropylene-based unstretched film (CPP film), polypropylene-based biaxially stretched film (BOPP film), polyethylene terephthalate-based An unstretched film (CPET film) and a polyethylene terephthalate biaxially stretched film (BOPET film) are mentioned.
Suitable opaque thermoplastic resin films include CPP films, BOPP films, CPET films, BOPET films, and synthetic paper containing inorganic fine powder.
<4-2.低融点樹脂層>
 本実施形態のインモールドラベルは、熱可塑性樹脂フィルムの一方の面に低融点樹脂層を有する。低融点樹脂層はストレッチブロー成形における低温接着条件でも成形品との十分な接着強度を与えるものである。
<4-2. Low melting point resin layer>
The in-mold label of this embodiment has a low melting point resin layer on one surface of a thermoplastic resin film. The low melting point resin layer provides sufficient adhesion strength with a molded product even under low temperature adhesion conditions in stretch blow molding.
 低融点樹脂層の厚さは1.5~15μmである。厚さが1.5μm以上であると接着強度が低下しにくくなる。厚さが15μm以下であると接着層の着色やラベルのカールが起きにくくなり、インモールド成形の際にラベルと容器との間に入り込んだ空気を逃がすためのエンボスを深くする必要が無く、外観に影響しにくくなる。低融点樹脂層の厚さは2~5μmが好ましく、2~3μmがより好ましい。 The thickness of the low melting point resin layer is 1.5 to 15 μm. When the thickness is 1.5 μm or more, the adhesive strength is hardly lowered. When the thickness is 15 μm or less, coloring of the adhesive layer and curling of the label are less likely to occur, and there is no need to deepen the embossing to escape the air that has entered between the label and the container during in-mold molding. It becomes difficult to affect. The thickness of the low melting point resin layer is preferably 2 to 5 μm, more preferably 2 to 3 μm.
(ポリエチレン系樹脂)
 低融点樹脂層が含有するポリエチレン系樹脂の融点は、60~110℃である。融点が60℃以上であるとブロッキング(特にカットブロッキング)が起きにくくなり、融点が110℃以下であるとインモールド成形時に低融点樹脂層が溶融しやすく、接着強度を高めやすくなる。ラベルのブロッキングとラベル付き容器の接着強度とを両立させる観点から、低融点樹脂層が含有するポリエチレン系樹脂の融点は70~100℃が好ましく、75~90℃がより好ましい。
 低融点樹脂層が含有するポリエチレン系樹脂は、エチレンの単独重合体でもよく、エチレンと、エチレンと共重合可能なモノマーとの共重合体であってもよい。低融点樹脂層が含有するポリエチレン系樹脂は、エチレンと、エチレンと共重合可能なモノマーとの共重合体であることが好ましい。
 エチレンと共重合可能なモノマーとしては、炭素数3~10(好ましくは炭素数3~8)のα-オレフィン、スチレン等のヘテロ原子を有しないモノマー;酢酸ビニル、(メタ)アクリル酸、アルキル基の炭素数が1~8の(メタ)アクリル酸アルキルエステル、無水マレイン酸等のヘテロ原子を有するモノマーが挙げられる。
 耐水性を向上させる観点から、ポリエチレン系樹脂は基本的にヘテロ原子を有しないことが好ましい。耐水性を向上させる観点から、ヘテロ原子を有しないモノマー由来の構造単位を95mol%以上含むことが好ましく、97mol%以上含むことがより好ましい。同様に、ポリエチレン系樹脂は、ヘテロ原子を有するモノマー由来の構造単位を5mol%以下含むことが好ましく、3mol%以下含むことがより好ましく、全く含まないことが特に好ましい。
 中でも、ポリエチレン系樹脂は、エチレン由来の構造単位を80mol%以上含むことが好ましい。低温での接着強度を高める観点から、ポリエチレン系樹脂は、エチレン由来の構造単位を95mol%以上100mol%未満含むことがより好ましく、97mol%以上100mol%未満含むことが特に好ましい。
 また、ブロッキング抑制の観点から、エチレンと共重合可能なモノマー由来の構造単位を、0mol%を超え5mol%以下含むことが好ましく、0mol%を超え3mol%以下含むことがより好ましい。
(Polyethylene resin)
The melting point of the polyethylene resin contained in the low melting point resin layer is 60 to 110 ° C. When the melting point is 60 ° C. or more, blocking (particularly cut blocking) is difficult to occur, and when the melting point is 110 ° C. or less, the low melting point resin layer is easily melted during in-mold molding, and the adhesive strength is easily increased. From the viewpoint of achieving both label blocking and the adhesive strength of the labeled container, the melting point of the polyethylene resin contained in the low melting point resin layer is preferably 70 to 100 ° C, more preferably 75 to 90 ° C.
The polyethylene resin contained in the low melting point resin layer may be a homopolymer of ethylene or a copolymer of ethylene and a monomer copolymerizable with ethylene. The polyethylene resin contained in the low melting point resin layer is preferably a copolymer of ethylene and a monomer copolymerizable with ethylene.
Monomers copolymerizable with ethylene include α-olefins having 3 to 10 carbon atoms (preferably 3 to 8 carbon atoms), monomers having no hetero atom such as styrene; vinyl acetate, (meth) acrylic acid, alkyl groups And a monomer having a hetero atom such as (meth) acrylic acid alkyl ester having 1 to 8 carbon atoms and maleic anhydride.
From the viewpoint of improving water resistance, it is preferable that the polyethylene-based resin does not basically have a hetero atom. From the viewpoint of improving water resistance, it is preferable to contain 95 mol% or more, more preferably 97 mol% or more of a monomer-derived structural unit having no hetero atom. Similarly, the polyethylene-based resin preferably contains 5 mol% or less of a structural unit derived from a monomer having a hetero atom, more preferably 3 mol% or less, and particularly preferably does not contain at all.
Especially, it is preferable that a polyethylene-type resin contains 80 mol% or more of structural units derived from ethylene. From the viewpoint of increasing the adhesive strength at low temperatures, the polyethylene resin more preferably contains 95 mol% or more and less than 100 mol% of structural units derived from ethylene, and particularly preferably contains 97 mol% or more and less than 100 mol%.
Further, from the viewpoint of inhibiting blocking, it is preferable that the structural unit derived from a monomer copolymerizable with ethylene is included more than 0 mol% and 5 mol% or less, and more preferably more than 0 mol% and 3 mol% or less.
 また、低融点樹脂層に含まれるポリエチレン系樹脂の含有割合は特に限定されないが、低融点樹脂層の全質量に対して、通常70質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上であり、通常100質量%以下である。ポリエチレン系樹脂の含有割合が上記範囲であれば、ラベル付き容器の接着強度が優れる。 The content of the polyethylene resin contained in the low melting point resin layer is not particularly limited, but is usually 70% by mass or more, preferably 80% by mass or more, more preferably 90% by mass with respect to the total mass of the low melting point resin layer. % Or more, and usually 100% by mass or less. If the content rate of a polyethylene-type resin is the said range, the adhesive strength of a labeled container will be excellent.
 上記の理由により、ポリエチレン系樹脂の中でも、低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン-プロピレン共重合体が特に好ましく、直鎖状低密度ポリエチレンが最も好ましい。これらのポリエチレン系樹脂は単独で使用してもよく、2種以上をブレンドして使用してもよい。
 直鎖状低密度ポリエチレンとしては、チーグラー型の触媒に代表されるマルチサイト系の触媒によって合成されたものと、メタロセン触媒に代表されるシングルサイト系の触媒によって合成されたものが挙げられるが、低融点樹脂層が含有するポリエチレン系樹脂の融点を上記範囲に制御する観点から、シングルサイト系の触媒によって合成されたものが好ましく、触媒の中でもZr、Ti、Hf等の遷移金属とシクロペンタジエニル環やインデニル環等の不飽和環とからなる、いわゆるメタロセン触媒が好ましい。
 また、カットブロッキング抑制の観点から、直鎖状低密度ポリエチレンの重量平均分子量と数平均分子量との比Mw/Mnは3.5以下が好ましい。
 ポリエチレン系樹脂には、必要に応じて酸化防止剤、滑剤、アンチブロッキング剤、帯電 防止剤等の各種添加剤を配合することができる。
For the above reasons, among the polyethylene resins, low density polyethylene, linear low density polyethylene, and ethylene-propylene copolymer are particularly preferable, and linear low density polyethylene is most preferable. These polyethylene resins may be used alone or in combination of two or more.
Examples of the linear low density polyethylene include those synthesized by a multisite catalyst typified by a Ziegler type catalyst and those synthesized by a single site catalyst typified by a metallocene catalyst. From the viewpoint of controlling the melting point of the polyethylene resin contained in the low melting point resin layer within the above range, those synthesized by a single site catalyst are preferable. Among the catalysts, transition metals such as Zr, Ti, Hf and cyclopentadi A so-called metallocene catalyst consisting of an unsaturated ring such as an enyl ring or an indenyl ring is preferred.
Moreover, from the viewpoint of cut-blocking suppression, the ratio Mw / Mn between the weight average molecular weight and the number average molecular weight of the linear low density polyethylene is preferably 3.5 or less.
Various additives such as antioxidants, lubricants, antiblocking agents, and antistatic agents can be blended with the polyethylene-based resin as necessary.
 低融点樹脂層の表面は、インモールド成形時にラベルとパリソンの間に入り込んだ空気を速やかに排出する観点から、凹凸を有することが好ましい。凹凸の付与は、公知の方法が使用できるが、一般的にエンボスロールによる付与が好適に使用できる。 It is preferable that the surface of the low melting point resin layer has irregularities from the viewpoint of promptly discharging air that has entered between the label and the parison during in-mold molding. Although a well-known method can be used for the provision of unevenness, generally the embossing roll can be preferably used.
 本実施形態では、インモードラベルの状態において、低融点樹脂層の表面は活性化処理されている。低融点樹脂層の表面の活性化処理に関しては、上記ラベル付き容器の製造装置における活性化処理部において詳述したとおりである。低融点樹脂層の表面が活性化処理されることにより、例えば、低融点樹脂層の表面の表面張力や、低融点樹脂層表面のX線光電子分光(XPS)法による酸素原子数/炭素原子数比(=O/C比)等を好ましい範囲とすることができる。 In the present embodiment, the surface of the low melting point resin layer is activated in the state of the in-mode label. The activation treatment of the surface of the low melting point resin layer is as described in detail in the activation treatment section of the labeled container manufacturing apparatus. By activating the surface of the low melting point resin layer, for example, the surface tension of the surface of the low melting point resin layer or the number of oxygen atoms / number of carbon atoms by the X-ray photoelectron spectroscopy (XPS) method of the surface of the low melting point resin layer The ratio (= O / C ratio) and the like can be made a preferable range.
<4-3.インキ受理層>
 本実施形態にかかるインモールドラベルは、熱可塑性樹脂フィルムが低融点樹脂層を有していない面に印刷層としてインキ受理層を有することが好ましい。インキ受理層はインモールドラベルの印刷適性、特にインキの転移性およびインキの密着性を高める効果を奏する。
 インキ受理層はバインダーおよび/または帯電防止剤を含むことが好ましい。インキ受理層は、さらに架橋剤を含むことが好ましい。また、インキ受理層は、必要に応じて、アンチブロッキング剤、着色剤、消泡剤、防黴剤、滑剤等を含めることができる。
<4-3. Ink Receiving Layer>
It is preferable that the in-mold label concerning this embodiment has an ink receiving layer as a printing layer in the surface in which a thermoplastic resin film does not have a low melting-point resin layer. The ink receiving layer has the effect of improving the printability of the in-mold label, particularly the ink transferability and the ink adhesion.
The ink receiving layer preferably contains a binder and / or an antistatic agent. The ink receiving layer preferably further contains a cross-linking agent. The ink receiving layer can contain an antiblocking agent, a colorant, an antifoaming agent, an antifungal agent, a lubricant, and the like, if necessary.
(バインダー)
 バインダーは、粘着性があり、熱可塑性樹脂フィルムの表面に適用可能なものであれば特に限定されない。
 バインダーとしては、エチレン・酢酸ビニル共重合体、エチレン・(メタ)アクリル酸共重合体およびその金属塩(Zn、Al、Li、K、Na等)、エチレン・(メタ)アクリル酸(C1~8)アルキルエステル共重合体等のエチレン系共重合体;マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン、マレイン酸変性エチレン・酢酸ビニル共重合体等の酸変性ポリオレフィン;モノヒドロキシ(C3~6)アルキル変性ポリエチレン等の水酸基変性ポリオレフィン;塩素化ポリオレフィン;ポリエステルポリウレタン、ポリカーボネートポリウレタン等のポリウレタン;ポリエチレンイミン、ポリ(エチレンイミン-尿素)等のポリエチレンイミンおよびその変性物;ポリアミンポリアミドのエチレンイミン付加物、ポリアミンポリアミドの各種(アルキル、シクロアルキル、アリル、アラルキル、ベンジル、シクロペンチル)変性体等の変性ポリアミンポリアミドが挙げられる。
 インキ受理層に特に耐水性を付与する場合、水分散性(エマルジョン)のバインダーを選択することができる。
(binder)
The binder is not particularly limited as long as it has adhesiveness and can be applied to the surface of the thermoplastic resin film.
Examples of binders include ethylene / vinyl acetate copolymers, ethylene / (meth) acrylic acid copolymers and metal salts thereof (Zn, Al, Li, K, Na, etc.), ethylene / (meth) acrylic acid (C1-8). ) Ethylene copolymers such as alkyl ester copolymers; acid-modified polyolefins such as maleic acid-modified polyethylene, maleic acid-modified polypropylene, maleic acid-modified ethylene / vinyl acetate copolymers; monohydroxy (C3-6) alkyl-modified polyethylene Hydroxyl-modified polyolefin such as chlorinated polyolefin; Polyurethane such as polyester polyurethane and polycarbonate polyurethane; Polyethyleneimine such as polyethyleneimine and poly (ethyleneimine-urea) and its modified product; Ethyleneimine adduct of polyamine polyamide, polyamine Polyamide various (alkyl, cycloalkyl, aryl, aralkyl, benzyl, cyclopentyl) include modified polyamine polyamide modified products and the like.
When water resistance is particularly imparted to the ink receiving layer, a water dispersible (emulsion) binder can be selected.
 インキ受理層に含まれるバインダーの含有割合は特に限定されないが、インキ受理層の全質量に対して通常30質量%以上、好ましくは40質量%以上、より好ましくは50質量%以上であり、通常100質量%以下、好ましくは99.5質量%以下である。 The content of the binder contained in the ink receiving layer is not particularly limited, but is usually 30% by mass or more, preferably 40% by mass or more, more preferably 50% by mass or more, and usually 100% with respect to the total mass of the ink receiving layer. It is not more than mass%, preferably not more than 99.5 mass%.
(帯電防止剤)
 帯電防止剤は、金型内のラベル保持方法が真空吸引式である場合は、インモールドラベルのどの層に適用されてもよいが、金型内のラベル保持方法が静電吸着式である場合は、インモールドラベル10の低融点樹脂層を有しない表面に適用可能なものである。この面を構成する熱可塑性樹脂フィルムの表面またはインキ受理層に帯電防止性を付与できれば特に限定されない。
 帯電防止剤としては、低分子量有機化合物、導電性無機化合物、いわゆる電子導電性ポリマー、非イオン性ポリマー型帯電防止剤、第四級アンモニウム塩型共重合体、アルカリ金属塩含有ポリマー等が挙げられる。具体的には、ステアリン酸モノグリセリド、アルキルジエタノールアミン、ソルビタンモノラウレート、アルキルベンゼンスルホン酸塩、アルキルジフェニルエーテルスルホン酸塩等の低分子量有機化合物;ITO(インジウムドープド酸化錫)、ATO(アンチモンドープド酸化錫)、グラファイトウィスカ等の導電性無機化合物;ポリチオフェン、ポリピーロイル、ポリアニリン等の分子鎖内のパイ電子により導電性を発揮するいわゆる電子導電性ポリマー;ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンジアミン等の非イオン性ポリマー型帯電防止剤;ポリビニルベンジルトリメチルアンモニウムクロライド、ポリジメチルアミノエチルメタクリレート四級化物等の第四級アンモニウム塩型共重合体;アルキレンオキシド基および/または水酸基含有ポリマーへのアルカリ金属イオン添加物等のアルカリ金属塩含有ポリマー等が挙げられる。
 帯電防止剤が適用された、インモールドラベルの表面の表面抵抗率は1×102Ω~1×1013Ωが好ましく、1×106Ω~1×1012Ωがより好ましい。
(Antistatic agent)
The antistatic agent may be applied to any layer of the in-mold label when the label holding method in the mold is a vacuum suction type, but the label holding method in the mold is an electrostatic adsorption type Is applicable to the surface of the in-mold label 10 that does not have a low melting point resin layer. There is no particular limitation as long as antistatic properties can be imparted to the surface of the thermoplastic resin film constituting the surface or the ink receiving layer.
Examples of the antistatic agent include low molecular weight organic compounds, conductive inorganic compounds, so-called electronic conductive polymers, nonionic polymer type antistatic agents, quaternary ammonium salt type copolymers, and alkali metal salt-containing polymers. . Specifically, low molecular weight organic compounds such as stearic acid monoglyceride, alkyldiethanolamine, sorbitan monolaurate, alkylbenzene sulfonate, and alkyl diphenyl ether sulfonate; ITO (indium doped tin oxide), ATO (antimony doped tin oxide) ), Conductive inorganic compounds such as graphite whiskers; so-called electron conductive polymers that exhibit conductivity by pi electrons in the molecular chain such as polythiophene, polypyroyl, polyaniline; polyethylene glycol, polyoxyethylene alkyl ether, polyoxyethylene diamine, etc. Nonionic polymer type antistatic agent; quaternary ammonium salt type copolymer such as polyvinylbenzyltrimethylammonium chloride, polydimethylaminoethyl methacrylate quaternized product, etc. Body; alkali metal salt-containing polymers such as an alkali metal ion additives, etc. to the alkylene oxide group and / or hydroxyl group-containing polymer.
The surface resistivity of the surface of the in-mold label to which the antistatic agent is applied is preferably 1 × 10 2 Ω to 1 × 10 13 Ω, and more preferably 1 × 10 6 Ω to 1 × 10 12 Ω.
 インキ受理層に含まれる帯電防止剤の含有割合は特に限定されないが、インキ受理層の全質量に対して通常10質量%以上、好ましくは15質量%以上、より好ましくは20質量%以上であり、通常50質量%以下、好ましくは40質量%以下である。 The content ratio of the antistatic agent contained in the ink receiving layer is not particularly limited, but is usually 10% by mass or more, preferably 15% by mass or more, more preferably 20% by mass or more, based on the total mass of the ink receiving layer. Usually, it is 50 mass% or less, Preferably it is 40 mass% or less.
(架橋剤)
 架橋剤は、バインダーおよび/または帯電防止剤と反応して、あるいは架橋剤が形成する網目ネットワーク中にバインダーおよび/または帯電防止剤を閉じ込めて、バインダーおよび/または帯電防止剤をインモールドラベルの表面に固定する働きをする。その結果、たとえばインモールドラベルに施した印刷の密着性や耐水性を高める効果を奏する。
 架橋剤としては、反応性官能基として水酸基、カルボキシル基、エポキシ基、イソシアネート基、アルデヒド基、オキサゾリン骨格、カルボジイミド骨格等を有する2官能以上の物質が挙げられる。中でもビスフェノールA-エピクロルヒドリン樹脂、ポリアミンポリアミドのエピクロルヒドリン樹脂、脂肪族エポキシ樹脂、エポキシノボラック樹脂、脂環式エポキシ樹脂、臭素化エポキシ樹脂等が好ましく、ポリアミンポリアミドのエピクロルヒドリン付加物、単官能乃至多官能のグリシジルエーテル、グリシジルエステル類がより好ましい。
(Crosslinking agent)
The crosslinking agent reacts with the binder and / or antistatic agent, or encapsulates the binder and / or antistatic agent in the network formed by the crosslinking agent, and the binder and / or antistatic agent is placed on the surface of the in-mold label. It works to fix to. As a result, for example, there is an effect of improving adhesion and water resistance of printing applied to the in-mold label.
Examples of the crosslinking agent include bifunctional or higher functional materials having a hydroxyl group, a carboxyl group, an epoxy group, an isocyanate group, an aldehyde group, an oxazoline skeleton, a carbodiimide skeleton, and the like as a reactive functional group. Among them, bisphenol A-epichlorohydrin resin, polyamine polyamide epichlorohydrin resin, aliphatic epoxy resin, epoxy novolac resin, alicyclic epoxy resin, brominated epoxy resin, etc. are preferable, and polyamine polyamide epichlorohydrin adduct, monofunctional to polyfunctional glycidyl. Ethers and glycidyl esters are more preferred.
 インキ受理層に含まれる架橋剤の含有割合は特に限定されないが、インキ受理層の全質量に対して通常15質量%以上、好ましくは20質量%以上であり、通常45質量%以下、好ましくは40質量%以下である。架橋剤の含有割合が上記範囲であれば、印刷インキの密着性や耐水性を高めることができる。 The content ratio of the crosslinking agent contained in the ink receiving layer is not particularly limited, but is usually 15% by mass or more, preferably 20% by mass or more, and usually 45% by mass or less, preferably 40% with respect to the total mass of the ink receiving layer. It is below mass%. If the content rate of a crosslinking agent is the said range, the adhesiveness and water resistance of printing ink can be improved.
<4-4.インモールドラベルの製造方法>
 インモールドラベルの製造方法に制限はない。
 低融点樹脂層を、熱可塑性樹脂フィルムの一方の面に積層して製造することが好ましい。熱可塑性樹脂フィルムの一方の面に低融点樹脂層を積層する方法は特に限定されない。
 また、熱可塑性樹脂フィルムを多層構造とすることもできる。単層のフィルムを成形する方法としては、Tダイによる押出し成形(キャスト成形)、Oダイによるインフレーション成形、圧延ロールによるカレンダー成形が挙げられる。多層のフィルムを成形する方法としては、前記Tダイや前記Oダイを多層ダイス構成とする。そして、それぞれの層に用いる熱可塑性樹脂組成物をそれぞれ異なる押出機に供給して溶融し、各押出機から吐出された熱可塑性樹脂組成物を前記多層ダイスに供給し、ダイス内で積層してフィルム状に吐出する。
<4-4. Manufacturing method of in-mold label>
There is no limitation on the method for producing the in-mold label.
It is preferable to manufacture by laminating a low melting point resin layer on one surface of a thermoplastic resin film. The method for laminating the low melting point resin layer on one surface of the thermoplastic resin film is not particularly limited.
Moreover, a thermoplastic resin film can also be made into a multilayer structure. Examples of the method for forming a single layer film include extrusion molding (cast molding) using a T die, inflation molding using an O die, and calendar molding using a rolling roll. As a method of forming a multilayer film, the T die and the O die are configured as a multilayer die. Then, the thermoplastic resin composition used for each layer is supplied to different extruders and melted, and the thermoplastic resin composition discharged from each extruder is supplied to the multilayer die and laminated in the die. Discharge in film form.
(低融点樹脂層の積層方法)
 熱可塑性樹脂フィルムの一方の面に低融点樹脂層を積層する方法は特に限定されないが、例えば、共押出法、押出ラミネート法、フィルム貼合法、塗布法、ドライラミネート法や熱ラミネート法等が挙げられる。
 共押出法は、前記多層ダイスに熱可塑性樹脂フィルム用の熱可塑性樹脂組成物と、低融点樹脂層用の熱可塑性樹脂組成物(それぞれ複数あってもよい)とを供給し、多層ダイス内で積層して押し出すため、成形と同時に積層が行われる。
 押出ラミネート法は、熱可塑性樹脂フィルムを先に成形し、これに溶融した低融点樹脂層を積層するため、成形と積層とは別工程で行なわれる。
 フィルム貼合法は、熱可塑性樹脂フィルムと低融点樹脂層とをそれぞれフィルム成形し、接着剤を介して両者を貼りあわせるため、成形と積層とは別工程で行なわれる。
 塗布法は、熱可塑性樹脂フィルムの一方の面に低融点樹脂層用の熱可塑性樹脂組成物を塗布する方法である。例えば、低融点樹脂層用の熱可塑性樹脂組成物を溶剤に溶解して塗工液とし、熱可塑性樹脂フィルムに塗布された熱可塑性樹脂組成物を乾燥させることで低融点樹脂層が形成されるため、成形と同時に積層が行われる。
 また、ドライラミネート法や熱ラミネート法を用いて低融点樹脂層を複層化することもできる。
 これらの方法により低融点樹脂層と熱可塑性樹脂フィルムとは強く粘着して一体的に設けられる。
 これら積層法の中でも、各層を強固に接着できる観点から、共押出法が好ましい。
(Lamination method of low melting point resin layer)
The method for laminating the low melting point resin layer on one surface of the thermoplastic resin film is not particularly limited, and examples thereof include a co-extrusion method, an extrusion laminating method, a film laminating method, a coating method, a dry laminating method and a thermal laminating method. It is done.
In the coextrusion method, a thermoplastic resin composition for a thermoplastic resin film and a thermoplastic resin composition for a low melting point resin layer (each of which may be plural) are supplied to the multilayer die, Since lamination and extrusion are performed, lamination is performed simultaneously with molding.
In the extrusion laminating method, a thermoplastic resin film is formed first, and a molten low melting point resin layer is laminated thereon. Therefore, the molding and lamination are performed in separate steps.
In the film laminating method, the thermoplastic resin film and the low melting point resin layer are respectively formed into a film and the both are bonded through an adhesive.
The application method is a method of applying a thermoplastic resin composition for a low melting point resin layer to one surface of a thermoplastic resin film. For example, a low melting point resin layer is formed by dissolving a thermoplastic resin composition for a low melting point resin layer in a solvent to form a coating liquid and drying the thermoplastic resin composition applied to the thermoplastic resin film. Therefore, lamination is performed simultaneously with molding.
Further, the low melting point resin layer can be formed into a multilayer by using a dry laminating method or a thermal laminating method.
By these methods, the low-melting point resin layer and the thermoplastic resin film are strongly adhered and integrally provided.
Among these lamination methods, the coextrusion method is preferable from the viewpoint that each layer can be firmly bonded.
(延伸)
 熱可塑性樹脂フィルムおよび低融点樹脂層はそれぞれ無延伸であってもよく、少なくとも1軸方向に延伸されたものであってもよい。
 例えば、熱可塑性樹脂フィルムが無延伸であれば、ラベル付き容器の形状追随性を高めることができる。一方、熱可塑性樹脂フィルムが延伸されたものであれば、軽量で厚さの均一性に優れる。
 延伸方法としては、ロール群の周速差を利用した縦延伸、圧延、テンターオーブンを使用した横延伸、縦延伸と横延伸とを組み合わせた逐次2軸延伸、テンターオーブンとリニアモーターの組み合わせによる同時2軸延伸、テンターオーブンとパンタグラフとの組み合わせによる同時2軸延伸等を挙げることができる。また、インフレーション成形法を用いる場合は、吹込空気量の調整による同時2軸延伸を挙げることができる。
(Stretching)
Each of the thermoplastic resin film and the low melting point resin layer may be unstretched, or may be stretched in at least a uniaxial direction.
For example, if the thermoplastic resin film is unstretched, the shape following property of the labeled container can be improved. On the other hand, if the thermoplastic resin film is stretched, it is lightweight and excellent in thickness uniformity.
Stretching methods include longitudinal stretching using the peripheral speed difference of the roll group, rolling, lateral stretching using a tenter oven, sequential biaxial stretching combining longitudinal stretching and lateral stretching, and simultaneous use of a combination of a tenter oven and a linear motor. Biaxial stretching, simultaneous biaxial stretching by a combination of a tenter oven and a pantograph can be exemplified. Moreover, when using an inflation shaping | molding method, simultaneous biaxial stretching by adjustment of the amount of blowing air can be mentioned.
 延伸時の延伸倍率は、特に限定されず、インモールドラベルの物性および各層(特に熱可塑性樹脂フィルム)の延伸特性等を考慮して適宜決定する。
 熱可塑性樹脂フィルムの熱可塑性樹脂としてポリプロピレン系樹脂を使用する場合の延伸倍率は、一軸延伸の場合、1.2~12倍が好ましく、2~10倍がより好ましい。また、二軸延伸の場合、面積倍率で1.5~60倍が好ましく、4~50倍がより好ましい。
 また、ポリエチレン系樹脂、ポリエステル樹脂等のその他の熱可塑性樹脂を使用する場合の延伸倍率は、一軸延伸の場合、1.2~10倍が好ましく、2~5倍がより好ましい。また、二軸延伸の場合、面積倍率で1.5~20倍が好ましく、4~12倍がより好ましい。
The draw ratio at the time of drawing is not particularly limited, and is appropriately determined in consideration of the physical properties of the in-mold label, the drawing characteristics of each layer (particularly the thermoplastic resin film), and the like.
In the case of using a polypropylene resin as the thermoplastic resin of the thermoplastic resin film, the stretching ratio in the case of uniaxial stretching is preferably 1.2 to 12 times, more preferably 2 to 10 times. In the case of biaxial stretching, the area magnification is preferably 1.5 to 60 times, more preferably 4 to 50 times.
In the case of using other thermoplastic resins such as polyethylene resins and polyester resins, the stretching ratio is preferably 1.2 to 10 times, more preferably 2 to 5 times in the case of uniaxial stretching. In the case of biaxial stretching, the area magnification is preferably 1.5 to 20 times, and more preferably 4 to 12 times.
 延伸温度は、各層(特に熱可塑性樹脂フィルム)の延伸特性等を考慮して適宜決定する。中でも熱可塑性樹脂フィルムが主として含む熱可塑性樹脂のガラス転移点温度以上から結晶部の融点以下が好ましい。
 熱可塑性樹脂フィルムに主として含まれる熱可塑性樹脂がプロピレン単独重合体(融点155~167℃)である場合は、延伸温度は融点より1~70℃低い温度が好ましい。また、延伸温度は100~166℃が好ましい。
 また延伸速度は、20~350m/分が好ましい。
 熱可塑性樹脂フィルムおよび低融点樹脂層を延伸する場合には、さらに、延伸することによってラベルの剛性が高くなるため、アーム部60でラベルを金型90に配置するときにラベルが撓んだり皺が入ったりしにくくなる。そのうえ、延伸方向をラベルの輪郭形状に応じて設定することで、異形部11a,12aの形成が抑えられる。たとえば、繰り出し機構20に設置されたラベル10において、X方向に延伸される。
The stretching temperature is appropriately determined in consideration of the stretching characteristics of each layer (particularly the thermoplastic resin film). Among them, the temperature is preferably from the glass transition temperature of the thermoplastic resin mainly contained in the thermoplastic resin film to the melting point of the crystal part.
When the thermoplastic resin mainly contained in the thermoplastic resin film is a propylene homopolymer (melting point: 155 to 167 ° C.), the stretching temperature is preferably 1 to 70 ° C. lower than the melting point. The stretching temperature is preferably 100 to 166 ° C.
The stretching speed is preferably 20 to 350 m / min.
When the thermoplastic resin film and the low-melting point resin layer are stretched, the rigidity of the label is further increased by stretching. Therefore, when the label is placed on the mold 90 by the arm portion 60, the label may be bent. It becomes difficult to enter. In addition, the formation of the deformed portions 11a and 12a can be suppressed by setting the stretching direction according to the contour shape of the label. For example, the label 10 installed in the feeding mechanism 20 is stretched in the X direction.
(インキ受理層の積層)
 インキ受理層は、塗工液を塗工して形成されることが好ましい。塗工液を形成する溶剤は、工程管理が容易である観点から、水;メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン等の水溶性溶剤;酢酸エチル、トルエン、キシレン等の非水溶性溶剤が挙げられる。
 塗工液は上記溶剤に、バインダー等の上記成分を均質に溶解または分散させて、溶液または分散液の状態として用いることが好ましい。中でも安全性や臭気の観点から、上記成分を何れも水溶性または水分散性の物質として、水溶液または水分散液の形態で用いることがより好ましい。
 塗工液中の固形分濃度は、乾燥負荷を少なくする観点から0.1質量%以上が好ましく、0.2質量%以上がより好ましい。また、均一な塗工面を得る観点から20質量%以下が好ましく、10質量%以下がより好ましい。
(Lamination of ink receiving layer)
The ink receiving layer is preferably formed by applying a coating liquid. The solvent that forms the coating liquid is water; water-soluble solvents such as methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, and methyl ethyl ketone; water-insoluble solvents such as ethyl acetate, toluene, and xylene from the viewpoint of easy process control Is mentioned.
The coating liquid is preferably used in the form of a solution or dispersion by uniformly dissolving or dispersing the above components such as a binder in the above solvent. Among these, from the viewpoint of safety and odor, it is more preferable to use any of the above components as a water-soluble or water-dispersible substance in the form of an aqueous solution or an aqueous dispersion.
From the viewpoint of reducing the drying load, the solid content concentration in the coating liquid is preferably 0.1% by mass or more, and more preferably 0.2% by mass or more. Moreover, 20 mass% or less is preferable from a viewpoint of obtaining a uniform coating surface, and 10 mass% or less is more preferable.
 塗工方法としては、グラビアコーター、マイクログラビアコーター、リバースコーター、ブレードコーター、メイヤーバーコーター、エアーナイフコーター等の塗工装置を用いる方法が挙げられる。
 溶剤として水または水溶性有機溶剤を使用する場合、塗工液のはじきを抑制し均一に塗工する観点から、事前に熱可塑性樹脂フィルムの塗工液を塗工する面に低融点樹脂層の表面と同様のコロナ放電処理に例示される活性化処理を施すことが好ましい。また、事前に熱可塑性樹脂フィルムの片面に上記塗工液を塗工し、塗工層を乾燥させて溶剤を除去することも好ましい。
Examples of the coating method include a method using a coating apparatus such as a gravure coater, a micro gravure coater, a reverse coater, a blade coater, a Mayer bar coater, and an air knife coater.
When water or a water-soluble organic solvent is used as the solvent, the low melting point resin layer is applied to the surface on which the thermoplastic resin film coating liquid is applied in advance from the viewpoint of uniform coating while suppressing the repelling of the coating liquid. It is preferable to perform activation treatment exemplified by corona discharge treatment similar to the surface. Moreover, it is also preferable to apply the coating liquid on one side of the thermoplastic resin film in advance and dry the coating layer to remove the solvent.
 インキ受理層は、乾燥後の片面当たりの固形分塗工量として0.01g/m2~7g/m2であることが好ましく、0.01g/m2~5g/m2であることがより好ましく、0.05g/m2~3g/m2が特に好ましい。インキ受理層の塗工量が上記範囲であると、インキの転移性及び密着性が向上する。インキ受理層の塗工量が上記上限値以下であるとインモールドラベルがカールを起こしにくく、インキ受理層内での凝集破壊によりインキの密着性が低下しにくくなる。一方、インキ受理層の塗工量が上記下限値以上であるとインキの転移性及び密着性が発現しやすくなる。 Ink receiving layer is more that is preferably 0.01g / m 2 ~ 7g / m 2 as a solid coating amount per one side after drying, is 0.01g / m 2 ~ 5g / m 2 0.05 g / m 2 to 3 g / m 2 is particularly preferable. When the coating amount of the ink receiving layer is within the above range, the transferability and adhesion of the ink are improved. If the coating amount of the ink receiving layer is less than or equal to the above upper limit value, the in-mold label is unlikely to curl, and ink adhesion is unlikely to decrease due to cohesive failure in the ink receiving layer. On the other hand, when the coating amount of the ink receiving layer is equal to or more than the above lower limit, the transferability and adhesion of the ink are easily developed.
<4-5.インモールドラベルの加工>
(印刷および加飾)
 インモールドラベルは、印刷が可能である。
 通常、熱可塑性樹脂フィルムの低融点樹脂層を設けていない面に印刷を施すことができる。印刷情報としてはバーコード、製造元、販売会社名、キャラクター、商品名、使用方法等が挙げられる。
 また、低融点樹脂層に印刷を施すこともできる。熱可塑性樹脂フィルムが透明の場合は、ラベル付き容器において低融点樹脂層の印刷情報が最外層にないため、耐久性に優れる効果を奏する。また、熱可塑性樹脂フィルムが不透明の場合は、ラベル付き容器において該印刷情報が視認できず、ラベルを破壊した時印刷が視認可能になるため、セキュリティ性を発現する。
 印刷方法としては、グラビア印刷、オフセット印刷、フレキソ印刷、シール印刷、スクリーン印刷等が挙げられる。
 また、インモールドラベルに転写箔、ホログラム等の加飾を施してもよい。スレッド等のセキュリティ要素も加飾に含まれる。印刷と加飾との両方を施してもよい。
<4-5. In-mold label processing>
(Printing and decoration)
The in-mold label can be printed.
Usually, it can print on the surface which does not provide the low melting point resin layer of a thermoplastic resin film. Examples of the print information include a barcode, a manufacturer, a sales company name, a character, a product name, and a usage method.
Also, printing can be performed on the low melting point resin layer. When the thermoplastic resin film is transparent, since the printed information of the low melting point resin layer is not in the outermost layer in the labeled container, the effect of excellent durability is achieved. Further, when the thermoplastic resin film is opaque, the printing information cannot be visually recognized in the container with the label, and the printing can be visually recognized when the label is broken.
Examples of the printing method include gravure printing, offset printing, flexographic printing, seal printing, and screen printing.
Further, the in-mold label may be decorated with a transfer foil, a hologram, or the like. Security elements such as threads are also included in the decoration. You may give both printing and decoration.
(打ち抜き)
 インモールドラベルは、印刷および加飾を行う前または後に、打ち抜きにより必要な形状および寸法に分離されることが好ましい。印刷および加飾された情報を損ないにくい観点から、印刷・加飾を行った後に打ち抜きを行なうことが好ましい。打ち抜き加工された インモールドラベルは、プラスチック容器表面の全面に貼着されるものであってもよいし、一部に貼着される部分的なものであってもよい。例えば、インモールドラベルはインジェクション成形により付型されるカップ状のプラスチック容器の側面をぐるりと取巻くブランクラベルとして用いるものであってもよいし、中空成形により付型されるボトル状のプラスチック容器の表面および裏面に貼着されるラベルとして用いるものであってもよい。
(Punching)
The in-mold label is preferably separated into a necessary shape and size by punching before or after printing and decoration. From the viewpoint of not easily damaging printed and decorated information, it is preferable to perform punching after printing and decoration. The punched in-mold label may be affixed to the entire surface of the plastic container, or may be a partial affixed partly. For example, the in-mold label may be used as a blank label surrounding the side surface of a cup-shaped plastic container attached by injection molding, or the surface of a bottle-shaped plastic container attached by hollow molding It may also be used as a label attached to the back surface.
[5.ラベル付き容器]
 本実施形態のラベル付き容器は、極性樹脂製容器の表面に、本実施形態のインモールドラベルが貼着されている。極性樹脂製容器の表面に、インモールド成形する方法、すなわちインモールドラベルを貼着する方法に制限はない。本実施形態のインモールドラベルは、ヘテロ原子を基本的に有しない(非極性樹脂である)ポリエチレン系樹脂を含有する低融点樹脂層を使用しているにも関わらず、低融点樹脂層の表面が極性樹脂(例えば、ポリエチレンテレフタレートに代表されるポリエステル樹脂)に貼着する(好ましくは熱融着する)性質を有する。
 極性樹脂製容器の成形方法としては、例えば、パリソンとして加熱したプリフォームを使用し、ロッドと圧空により金型内壁に圧着して付形するストレッチブロー成形が挙げられる。本実施形態のインモールドラベルは、ストレッチブロー成形の低温接着条件でも接着強度が高いため、特にストレッチブロー成形に有用である。
 ただし、本実施形態のインモールドラベルはストレッチブロー成形のみならず、ダイレクトブロー成形、インジェクション成形、差圧成形等にも同様に使用可能である。
以下において、本実施形態のラベル付き容器の好ましい態様を説明する。
[5. Labeled container]
As for the labeled container of this embodiment, the in-mold label of this embodiment is stuck on the surface of a polar resin container. There is no limitation on the method of in-mold molding, that is, the method of attaching an in-mold label to the surface of the polar resin container. Although the in-mold label of this embodiment uses a low-melting resin layer containing a polyethylene-based resin that basically has no heteroatoms (which is a nonpolar resin), the surface of the low-melting resin layer Has a property of being attached (preferably heat-sealed) to a polar resin (for example, a polyester resin typified by polyethylene terephthalate).
Examples of the method for forming a polar resin container include stretch blow molding in which a preform heated as a parison is used and pressed onto a mold inner wall with a rod and compressed air. The in-mold label of this embodiment is particularly useful for stretch blow molding because of its high adhesive strength even under low temperature bonding conditions for stretch blow molding.
However, the in-mold label of this embodiment can be used not only for stretch blow molding but also for direct blow molding, injection molding, differential pressure molding, and the like.
Below, the preferable aspect of the container with a label of this embodiment is demonstrated.
<5-1.材料等>
 容器の材料には極性樹脂を用いる。容器の材料に使用される極性樹脂の具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンサクシネート、ポリ乳酸等のポリエステル系樹脂が挙げられる。また、ポリエステル系樹脂と同様の接着機構であることから、容器の材料に使用される具体例としては、ポリカーボネート系樹脂、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブチレンースチレン(ABS)樹脂、メチルメタクリレート-スチレン(MS)樹脂等のその他の極性樹脂も挙げられる。
 また、容器は、顔料や染料等を含まない透明および/または自然色のものであってもよく、顔料や染料等を含む不透明および/または着色のものであってもよい。
 容器の胴体は、断面が真円であってもよく、楕円形や矩形であっても構わない。胴体の断面が矩形である場合は、角が曲率を有するものであることが好ましい。強度の観点から、胴体の断面は真円か真円に近い楕円形であることが好ましく、真円であることがより好ましい。また、容器のサイズも特に限定されない。
<5-1. Materials>
A polar resin is used as the material of the container. Specific examples of the polar resin used for the container material include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polybutylene succinate, and polylactic acid. In addition, since the adhesion mechanism is the same as that of polyester resin, specific examples of the material used for the container include polycarbonate resin, acrylonitrile-styrene (AS) resin, acrylonitrile-butylene-styrene (ABS) resin, methyl Other polar resins such as methacrylate-styrene (MS) resin are also included.
Further, the container may be transparent and / or natural color containing no pigments or dyes, and may be opaque and / or colored containing pigments or dyes.
The body of the container may have a perfect cross section or may be oval or rectangular. When the body has a rectangular cross section, the corners preferably have a curvature. From the viewpoint of strength, the cross section of the body is preferably a perfect circle or an elliptical shape close to a perfect circle, and more preferably a perfect circle. Further, the size of the container is not particularly limited.
<5-2.特性>
 上記の通りにして極性樹脂製容器の表面に、インモールドラベルが貼着されているラベル付き容器が得られる。そのラベル付き容器は以下の特性を有することが好ましい。
<5-2. Characteristics>
As described above, a labeled container in which an in-mold label is attached to the surface of the polar resin container is obtained. The labeled container preferably has the following characteristics.
(接着強度)
 極性樹脂製容器とインモールドラベルとの間の接着強度はJIS K6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に従って測定する。ブリスター(気泡)が生じない状況下では、上記接着強度は2N/15mm以上が好ましく、4N/15mm以上がより好ましく、5N/15mm以上がさらに好ましい。一方、上記接着強度の上限は特に限定されないが、低融点樹脂層を構成する樹脂の凝集破壊強度から15N/15mm以下であることが好ましい。
(Adhesive strength)
The adhesive strength between the polar resin container and the in-mold label is measured in accordance with JIS K6854-2: 1999 “Adhesive—Peeling adhesive strength test method—Part 2: 180 degree peeling”. In the situation where no blisters (bubbles) are generated, the adhesive strength is preferably 2N / 15 mm or more, more preferably 4N / 15 mm or more, and further preferably 5N / 15 mm or more. On the other hand, the upper limit of the adhesive strength is not particularly limited, but is preferably 15 N / 15 mm or less from the cohesive fracture strength of the resin constituting the low melting point resin layer.
(耐水剥離)
 ラベル付き容器を温水に浸漬した場合、ラベルが容易に剥がれないが、長時間浸漬するとラベルが自然に剥離するように設計しておくとラベル付き容器からラベルを剥離することによって容器のリサイクル適性が向上する。本願実施例では25℃の温水に10時間浸漬しても剥離せず、24時間浸漬した場合剥離する例を示すが、これに限定されず、低融点樹脂層の組成、低融点樹脂層の厚み、溶解度パラメーター、表面活性化処理の種類及び処理量等の条件を適宜設定することにより、洗浄条件(洗浄液の組成、液温、浸漬状態等)に応じた剥離適性を付与することができる。
(Waterproof peeling)
When a container with a label is immersed in warm water, the label does not easily peel off.However, if the label is designed to peel off naturally when immersed for a long time, the container can be recycled by peeling the label from the container with the label. improves. In the embodiment of the present application, an example is shown in which the film does not peel even when immersed in warm water of 25 ° C. for 10 hours, and peels off when immersed for 24 hours. By appropriately setting the conditions such as the solubility parameter, the type of surface activation treatment and the treatment amount, it is possible to impart peelability according to the washing conditions (composition of washing solution, solution temperature, immersion state, etc.).
(厚み方向寸法)
 また、インモールドラベリングで容器にラベルが貼着されることから、ラベルの高さ寸法の「T」が抑えられている。具体的に言えば、ラベルの厚み方向寸法である「T」と、ラベルの段差の高さ寸法である「T」との比率T:Tは50:50~100:0の範囲が好ましい。
(Thickness direction dimension)
Further, since the label is attached to the container by in-mold labeling, “T 2 ” of the height dimension of the label is suppressed. Specifically, the ratio T 1 : T 2 between “T 1 ” which is the dimension in the thickness direction of the label and “T 2 ” which is the height dimension of the step of the label is in the range of 50:50 to 100: 0. Is preferred.
[6.作用および効果]
 本実施形態のインモールドラベル及びラベル付き容器では、上記[3.作用および効果]に加え、水に特定時間接触させてもラベルが容器から剥離することを防止できる。
[6. Action and effect]
In the in-mold label and the labeled container of the present embodiment, the above [3. In addition to the action and effect], the label can be prevented from peeling off from the container even if it is brought into contact with water for a specific time.
[II.実施例]
 以下、本件の実施例を述べる。
 なお、下記の実施例に示す材料,使用量,割合,処理内容,処理手順などは、本件の趣旨を逸脱しない限り適宜変更することができる。したがって、本件の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[II. Example]
Hereinafter, an example of this case will be described.
In addition, the material, usage-amount, ratio, processing content, processing procedure, etc. which are shown to the following Example can be suitably changed unless it deviates from the meaning of this case. Therefore, the scope of this case should not be construed as limited by the specific examples shown below.
<実施例1>
 熱可塑性樹脂フィルムの材料として表1記載のPP-1が84質量%、CA-1が15質量%、TI-1が1質量%の熱可塑性樹脂組成物を230℃に加熱した押出機で溶融混練して、2層ダイスに供給した。
 一方、低融点樹脂層の材料として表1記載のPE-1を210℃に加熱した押出機で溶融混練して、2層ダイスに供給した。
 2層ダイスの中で熱可塑性樹脂フィルムの材料と低融点樹脂層の材料とを積層して2種類の層を有する2層フィルムとしてTダイから押し出した。
 これを冷却装置により冷却して2層構造の無延伸シートを得た。この無延伸シートを150℃に加熱して縦方向に5倍延伸した。次いで60℃の温度にまで冷却した後、再び150℃の温度にまで加熱してテンターで横方向に8倍延伸し、160℃の温度でアニーリング処理し、60℃の温度にまで冷却して、2層構造を有する白色不透明の二軸延伸ポリオレフィン系積層樹脂フィルムを得た。
 次いでこれをガイドロールでコロナ放電処理器に導き、両側の表面にそれぞれ50W/m2の処理量でコロナ放電処理を施し、耳部を切り取った後、巻き取り機で巻き取った。
 得られた2層構造を有する白色不透明の二軸延伸ポリオレフィン系積層樹脂フィルムの厚さは70μmで、密度は0.76g/cm3であった。低融点樹脂層の厚さは2.0μmで、表面張力は64mN/mであった。
 この2層構造を有する白色不透明の二軸延伸ポリオレフィン系積層樹脂フィルムを実施例1のインモールドラベルとした。
<Example 1>
As a thermoplastic resin film material, a thermoplastic resin composition of PP-1 shown in Table 1 with 84% by mass, CA-1 at 15% by mass, and TI-1 at 1% by mass was melted in an extruder heated to 230 ° C. The mixture was kneaded and supplied to a two-layer die.
On the other hand, PE-1 shown in Table 1 as a material for the low melting point resin layer was melt kneaded with an extruder heated to 210 ° C. and supplied to a two-layer die.
The material of the thermoplastic resin film and the material of the low melting point resin layer were laminated in a two-layer die and extruded from the T die as a two-layer film having two types of layers.
This was cooled by a cooling device to obtain an unstretched sheet having a two-layer structure. This unstretched sheet was heated to 150 ° C. and stretched 5 times in the longitudinal direction. Next, after cooling to a temperature of 60 ° C., it is again heated to a temperature of 150 ° C., stretched 8 times in the transverse direction with a tenter, annealed at a temperature of 160 ° C., cooled to a temperature of 60 ° C., A white opaque biaxially oriented polyolefin-based laminated resin film having a two-layer structure was obtained.
Next, this was guided to a corona discharge treatment device with a guide roll, subjected to corona discharge treatment at a treatment amount of 50 W / m 2 on each of both surfaces, cut off the ears, and wound up with a winder.
The resulting white opaque biaxially stretched polyolefin-based laminated resin film having a two-layer structure had a thickness of 70 μm and a density of 0.76 g / cm 3 . The low melting point resin layer had a thickness of 2.0 μm and a surface tension of 64 mN / m.
The white opaque biaxially stretched polyolefin-based laminated resin film having this two-layer structure was used as the in-mold label of Example 1.
<実施例2>
 実施例1において、熱可塑性樹脂フィルム用熱可塑性樹脂組成物の配合を表2記載の通り無機微細粉末なしに変更して、無色透明の二軸延伸ポリオレフィン系積層樹脂フィルムを得た。この無色透明の二軸延伸ポリオレフィン系積層樹脂フィルムを実施例2のインモールドラベルとした。
<Example 2>
In Example 1, the composition of the thermoplastic resin composition for a thermoplastic resin film was changed to that without inorganic fine powder as shown in Table 2 to obtain a colorless and transparent biaxially stretched polyolefin-based laminated resin film. This colorless and transparent biaxially stretched polyolefin-based laminated resin film was used as the in-mold label of Example 2.
<実施例3>
 実施例1において、低融点樹脂層用樹脂を下記表2に記載の融点が90℃のPE-2に変更して、白色不透明の二軸延伸ポリオレフィン系積層樹脂フィルムを得た。この白色不透明の二軸延伸ポリオレフィン系積層樹脂フィルムを実施例3のインモールドラベルとした。
 なお、後述の接着強度の試験結果における実施例3と実施例1との比較により、エチレン共重合比率が95%以上であるPE-1を用いた実施例1の方がエチレン共重合比率が95%未満であるPE-2を用いた実施例3よりも接着強度が高くなることが示された。
<Example 3>
In Example 1, the resin for the low melting point resin layer was changed to PE-2 having a melting point of 90 ° C. as shown in Table 2 below to obtain a white opaque biaxially oriented polyolefin-based laminated resin film. This white opaque biaxially oriented polyolefin-based laminated resin film was used as the in-mold label of Example 3.
In comparison with Example 3 and Example 1 in the adhesive strength test results described later, Example 1 using PE-1 having an ethylene copolymerization ratio of 95% or more has an ethylene copolymerization ratio of 95. It was shown that the adhesive strength was higher than that of Example 3 using PE-2 of less than%.
<比較例1>
 コロナ放電処理を行わなかったことを除いて実施例1と同様にして比較例1のインモールドラベルを作製した。
 後述の接着強度の試験結果のとおり、比較例1のインモールドラベルを用いてラベル付き容器を製造したところ、十分な接着強度が得られなかった。低融点樹脂層表面の表面張力は32mN/mであり、O/C比は0.005であった。低融点樹脂層がポリエチレン系樹脂である場合、低融点樹脂層が最外層であるインモールドラベルを用いてインモールド成形でポリエチレンテレフタレート製容器に貼着されるためには、コロナ放電を代表とする活性化処理が必須であることが示された。
<Comparative Example 1>
An in-mold label of Comparative Example 1 was produced in the same manner as in Example 1 except that the corona discharge treatment was not performed.
As a result of the adhesive strength test described later, when a labeled container was manufactured using the in-mold label of Comparative Example 1, sufficient adhesive strength was not obtained. The surface tension of the low melting point resin layer surface was 32 mN / m, and the O / C ratio was 0.005. When the low melting point resin layer is a polyethylene-based resin, a corona discharge is representative for being attached to a polyethylene terephthalate container by in-mold molding using an in-mold label in which the low melting point resin layer is the outermost layer. It was shown that the activation treatment is essential.
 なお、以下に参考例1,2を示す。参考例1では、実施例1のインモールドラベルにおける低融点樹脂層の厚さを変更したこと以外は、実施例1と同様にして参考例1のインモールドラベルを作製した。また、参考例2では、実施例1のインモールドラベルにおける低融点樹脂層に含まれるポリエチレン系樹脂を変更したこと以外は、実施例1と同様にして参考例2のインモールドラベルを作製した。 参考 Reference examples 1 and 2 are shown below. In Reference Example 1, an in-mold label of Reference Example 1 was produced in the same manner as in Example 1 except that the thickness of the low melting point resin layer in the in-mold label of Example 1 was changed. In Reference Example 2, an in-mold label of Reference Example 2 was produced in the same manner as in Example 1 except that the polyethylene resin contained in the low melting point resin layer in the in-mold label of Example 1 was changed.
<参考例1>
 実施例1において、2層ダイスへの低融点樹脂層の供給量を絞ることによって、低融点樹脂層の厚さが0.8μmの参考例1のインモールドラベルを作製した。
 後述の接着強度の試験結果のとおり、参考例1のインモールドラベルを用いてラベル付き容器を製造したところ、実施例1で測定された接着強度よりは低い接着強度となった。また、耐水剥離試験の結果のとおり、実施例1のラベル付き容器と比較して、短時間でラベルが剥離することが示された。つまり、参考例1により、水に浸漬する用途又は水に浸漬しない用途(ドライ条件)のいずれにおいても、低融点樹脂層の厚さにより、容器に貼着されたインモールドラベルに易剥離性を付与できることが分かる。したがって、参考例1のインモールドラベルは、易剥離性に優れるラベル付き容器を得る際に有用である。
 また、参考例1により、ラベルと容器との間を低融点樹脂層が充填し、優れた接着強度を得るために適した低融点樹脂層の厚さが示された。さらに、参考例1により、インモールドラベルにおける低融点樹脂層の厚さにより相対的にラベルと容器との接着強度や耐水剥離性が改善されることが示された。
<Reference Example 1>
In Example 1, the in-mold label of Reference Example 1 in which the thickness of the low melting point resin layer was 0.8 μm was produced by narrowing the supply amount of the low melting point resin layer to the two-layer die.
When a labeled container was manufactured using the in-mold label of Reference Example 1 as described in the adhesive strength test result described later, the adhesive strength was lower than the adhesive strength measured in Example 1. Moreover, it was shown that a label peels in a short time compared with the labeled container of Example 1 as a result of a water-resistant peeling test. That is, according to Reference Example 1, the in-mold label attached to the container can be easily peeled depending on the thickness of the low-melting point resin layer, regardless of whether it is immersed in water or not immersed in water (dry conditions). It can be seen that it can be granted. Therefore, the in-mold label of Reference Example 1 is useful when obtaining a labeled container excellent in easy peelability.
Further, according to Reference Example 1, the low melting point resin layer was filled between the label and the container, and the thickness of the low melting point resin layer suitable for obtaining excellent adhesive strength was shown. Further, Reference Example 1 shows that the adhesive strength between the label and the container and the water peel resistance are relatively improved by the thickness of the low melting point resin layer in the in-mold label.
<参考例2>
 実施例1において、低融点樹脂層に用いたポリエチレン系樹脂の融点が81℃のPE-1に対し、融点が115℃のPE-3を使用したこと以外は実施例1と同様にして参考例2のインモールドラベルを作製した。
 後述の接着強度の試験結果のとおり、参考例2のインモールドラベルを用いてラベル付き容器を製造したところ、実施例1で測定された接着強度よりは低い接着強度となった。
 また、耐水剥離試験の結果のとおり、実施例1のラベル付き容器と比較して、短時間でラベルが剥離することが示された。つまり、参考例2により、水に浸漬する用途又は水に浸漬しない用途(ドライ条件)のいずれにおいても、低融点樹脂層に含まれるポリエチレン系樹脂の融点により、容器に貼着されたインモールドラベルに易剥離性を付与できることが分かる。したがって、参考例2のインモールドラベルは、易剥離性に優れるラベル付き容器を得る際に有用である。また、参考例2により、ラベルと容器との間を低融点樹脂層が充填し、低融点樹脂層が融解するために適したポリエチレン系樹脂の融点(融解ピーク温度)の臨界点が示された。さらに、参考例2により、低融点樹脂層に含まれるポリエチレン系樹脂の融点により相対的にラベルと容器との接着強度や耐水剥離性が改善されることが示された。
 また、実施例1と参考例2とを対比すると、ストレッチブロー成形の条件(ダイレクトブロー成形の場合と比較してパリソンの有する熱量が少ない条件)に適したポリエチレン系樹脂の融点が分かる。ダイレクトブロー成形ではパリソンの温度が250~270℃になるため、参考例2のインモールドラベルを用いても低融点樹脂層が十分に溶融し、接着強度に優れるラベル付き容器を得ることができる。
<Reference Example 2>
In Example 1, the polyethylene resin used for the low-melting point resin layer had a melting point of 81 ° C. and PE-3 having a melting point of 115 ° C. was used in the same manner as in Example 1, except that PE-3 was used. 2 in-mold labels were produced.
When the labeled container was manufactured using the in-mold label of Reference Example 2 as described later in the adhesive strength test results, the adhesive strength was lower than the adhesive strength measured in Example 1.
Moreover, it was shown that a label peels in a short time compared with the labeled container of Example 1 as a result of a water-resistant peeling test. In other words, according to Reference Example 2, the in-mold label adhered to the container by the melting point of the polyethylene resin contained in the low-melting point resin layer in any of the uses immersed in water or not used in water (dry conditions). It can be seen that easy peelability can be imparted. Therefore, the in-mold label of Reference Example 2 is useful when obtaining a labeled container excellent in easy peelability. Reference Example 2 showed the critical point of the melting point (melting peak temperature) of the polyethylene resin suitable for filling the low melting point resin layer between the label and the container and melting the low melting point resin layer. . Furthermore, Reference Example 2 showed that the adhesive strength between the label and the container and the water peel resistance were relatively improved by the melting point of the polyethylene resin contained in the low melting point resin layer.
Further, when Example 1 and Reference Example 2 are compared, the melting point of a polyethylene resin suitable for stretch blow molding conditions (conditions in which the parison has less heat than in direct blow molding) can be found. In direct blow molding, the temperature of the parison is 250 to 270 ° C. Therefore, even if the in-mold label of Reference Example 2 is used, the low melting point resin layer is sufficiently melted and a labeled container having excellent adhesive strength can be obtained.
<比較例2,3>
 また、以下に、比較例2,3を示す。
 比較例2,3では、コロナ放電処理を行わなかったことを除いて参考例1,2と同様にして比較例2,3のインモールドラベルを作製した。後述の接着強度の試験結果のとおり、比較例2,3のインモールドラベルを用いてラベル付き容器を製造したところ、十分な接着強度が得られなかった。
 実施例1と比較例1との対比、及び、参考例1,2と比較例2,3との対比により、低融点樹脂層の活性化処理の有無により、相対的にラベルと容器との接着強度や耐水剥離性が改善することが示された。
<Comparative Examples 2 and 3>
In addition, Comparative Examples 2 and 3 are shown below.
In Comparative Examples 2 and 3, in-mold labels of Comparative Examples 2 and 3 were produced in the same manner as Reference Examples 1 and 2, except that the corona discharge treatment was not performed. As a result of the adhesive strength test described later, when a labeled container was manufactured using the in-mold labels of Comparative Examples 2 and 3, sufficient adhesive strength was not obtained.
According to the comparison between Example 1 and Comparative Example 1 and the comparison between Reference Examples 1 and 2 and Comparative Examples 2 and 3, the label and the container are relatively bonded depending on whether or not the low melting point resin layer is activated. It was shown that strength and water peel resistance were improved.
<評価方法>
[インモールドラベル物性]
(各層の厚さ)
 インモールドラベルの厚さ(全厚)は、JIS K7130:1999に準拠し、定圧厚さ測定器((株)テクロック製、商品名:PG-01J)を用いて測定した。また、インモールドラベルにおける各層の厚さは、測定対象試料を液体窒素にて-60℃以下の温度に冷却し、ガラス板上に置いた試料に対してカミソリ刃(シック・ジャパン(株)製、商品名:プロラインブレード)を直角に当て切断し断面観察用の試料を作製し、得られた試料を走査型電子顕微鏡(日本電子(株)製、商品名:JSM-6490)を使用して断面観察を行い、外観から熱可塑性樹脂組成物ごとの境界線を判別して、インモールドラベルの全厚に観察される各層厚さ比率を乗算して求めた。
<Evaluation method>
[In-mold label properties]
(Thickness of each layer)
The thickness (total thickness) of the in-mold label was measured using a constant pressure thickness measuring instrument (trade name: PG-01J, manufactured by Teclock Co., Ltd.) according to JIS K7130: 1999. The thickness of each layer in the in-mold label is determined by cooling the sample to be measured to a temperature of −60 ° C. or less with liquid nitrogen and placing it on a glass plate with a razor blade (manufactured by Sick Japan Co., Ltd.). , Trade name: Proline blade) was cut at right angles to prepare a sample for cross-sectional observation, and the obtained sample was used with a scanning electron microscope (trade name: JSM-6490, manufactured by JEOL Ltd.). Cross-sectional observation was performed, the boundary line for each thermoplastic resin composition was determined from the appearance, and the total thickness of the in-mold label was multiplied by the observed layer thickness ratio.
(表面原子構成比率O/C値)
 X線光電子分光分析装置(Thermo Fisher Scientific社製のK-Alpha)を用い、低融点樹脂層の表面の活性処理面を、励起X線:Al Kα線にして光電子脱出角度90度、C1sメインピークの結合エネルギー値を284.6eVとして1s軌道のエネルギーを測定し、得られたスペクトルからC1sピークとO1sピークの面積比を(酸素原子の数/炭素原子の数)の比、(O/C値)とした。
(Surface atomic composition ratio O / C value)
Using an X-ray photoelectron spectrometer (K-Alpha manufactured by Thermo Fisher Scientific), the active surface of the low melting point resin layer was changed to excitation X-ray: Al Kα ray, photoelectron escape angle 90 degrees, C1s main peak The energy of 1s orbital was measured with the bond energy value of 284.6 eV, and the area ratio of the C1s peak to the O1s peak (number of oxygen atoms / number of carbon atoms) from the obtained spectrum, (O / C value) ).
(表面張力)
 JIS K6768:1999に従って、ぬれ張力試験用混合液(和光純薬(株)製)を低融点樹脂層表面の測定面に塗布し、低融点樹脂層(フィルム)をぬらすと判定された最も表面張力が低い標準液の表面張力を測定面の表面張力とした。単位は、mN/mで表した。
(surface tension)
According to JIS K6768: 1999, the surface tension determined to wet the low-melting resin layer (film) by applying a wet-tension test mixture (manufactured by Wako Pure Chemical Industries, Ltd.) to the measurement surface of the low-melting resin layer surface. The surface tension of the standard solution having a low value was defined as the surface tension of the measurement surface. The unit was expressed in mN / m.
(コロナ放電処理痕)
 PP製スクリューボトル(50ml)に粉体トナー(型番:TK-571M、京セラミタ社製、プラス帯電タイプ)と、粒子径2.5mmのガラスビーズを投入し、ボトルを3分間手で振り、凝集体を破砕した。得られたトナーをインモールドラベルの低融点樹脂層の表面にふりかけ、コロナ放電処理痕の有無を、目視にて確認し、以下の基準で判断した。
 有:インモールドラベルの低融点樹脂層の表面にトナーが付着し、かつ模様が浮き上がって見える。
 無:インモールドラベルの低融点樹脂層の表面にトナーが付着しない。または、インモールドラベルの低融点樹脂層の表面にトナーが付着するが模様が浮かび上がってこない。
(Corona discharge treatment trace)
Powder toner (model number: TK-571M, manufactured by Kyocera Mita, plus charge type) and glass beads with a particle diameter of 2.5 mm are placed in a PP screw bottle (50 ml), and the bottle is shaken by hand for 3 minutes. The aggregate was crushed. The obtained toner was sprinkled on the surface of the low melting point resin layer of the in-mold label, and the presence or absence of a corona discharge treatment trace was visually confirmed and judged according to the following criteria.
Existence: Toner adheres to the surface of the low melting point resin layer of the in-mold label, and the pattern appears to float.
No: Toner does not adhere to the surface of the low melting point resin layer of the in-mold label. Alternatively, the toner adheres to the surface of the low melting point resin layer of the in-mold label, but the pattern does not appear.
[ラベル付き容器の特性]
(ラベル付き容器の製造)
 各実施例、各比較例及び各参考例で得たインモールドラベルを、長辺8cm及び短辺6cmの矩形に打ち抜いた。
 次に打ち抜いたインモールドラベルを、静電気帯電装置を用いて帯電させた。続いてストレッチブロー成形機(日精ASB社製、商品名:ASB-70DPH)の成形用金型の内部に、低融点樹脂層の反対面が金型に接するように(低融点樹脂層がキャビティ側を向くように)、設置して型締めした。インモールドラベルは、金型内でラベルの長辺が樹脂成形体の胴体の周方向に対して平行に貼着されるように設置した。金型は、キャビティ側の表面温度が20~45℃の範囲内となるように制御した。
 一方、ポリエチレンテレフタレート製のプリフォームを100℃に予熱した。次に、プリフォームを金型に導き、5~40kg/cm2のブロー圧力下、1秒間ストレッチブロー成形した。その後、15秒で50℃まで冷却した。
 次に型を開き、高さ12cm及び一辺約7cmの角型の胴部を有するラベル付き容器を取り出した。
[Characteristics of labeled containers]
(Manufacture of labeled containers)
The in-mold labels obtained in each example, each comparative example and each reference example were punched into a rectangle having a long side of 8 cm and a short side of 6 cm.
Next, the punched in-mold label was charged using an electrostatic charging device. Subsequently, inside the molding die of a stretch blow molding machine (trade name: ASB-70DPH, manufactured by Nissei ASB), the opposite surface of the low melting point resin layer is in contact with the die (the low melting point resin layer is on the cavity side) And then clamped. The in-mold label was installed so that the long side of the label was stuck in parallel to the circumferential direction of the body of the resin molded body in the mold. The mold was controlled so that the surface temperature on the cavity side was in the range of 20 to 45 ° C.
Meanwhile, a polyethylene terephthalate preform was preheated to 100 ° C. Then, the preform leads to a mold, under a blow pressure of 5 ~ 40kg / cm 2, and stretch blow molding 1 second. Then, it cooled to 50 degreeC in 15 seconds.
Next, the mold was opened, and the labeled container having a square body having a height of 12 cm and a side of about 7 cm was taken out.
(インモールドラベルの接着強度)
 測定対象のラベル付き容器を、温度23℃、相対湿度50%環境下で2日間保管した。次に、ラベルの貼着部分の容器器壁およびラベルを一体にカッターで切り取り、容器の胴の周方向を長手として長さ12cm(ラベルの貼着部分は9cm、非貼着部分は3cm)及び幅1.5cm(全幅にラベルが貼着)の測定用サンプルを、容器2個より計6本採取した。
 次に、つかみしろ(ラベルの非貼着)部分からラベルを丁寧に剥がしていき、約1cm剥離して、つかみしろのための接着部分を形成した。次に幅1.5cmのPETフィルム(50μm)の端と上記接着部分とを重ね、粘着剤で接着してラベル側のつかみしろ部分とし、接着強度測定用のサンプルを作製した。
 次に、JIS K6854-2:1999に基づき、引張試験機(島津製作所社製オートグラフAGS-5kNJ)を用いて剥離速度300mm/minの条件で180度剥離試験を実施した。剥離長さ25mm~75mm間の剥離力の平均値を測定し、さらにサンプル6点の測定値を平均して得られた値を、接着強度とした。接着強度の単位は、N/15mmとした。
 なお、比較例1~3のラベル付き容器については、ラベルの殆どの部分が容器から浮き上がり、サンプリング時に剥がれてしまい、安定に測定できなかったため、比較例1~3については「接着せず」と判定した。
(In-mold label adhesive strength)
The labeled container to be measured was stored for 2 days in an environment of a temperature of 23 ° C. and a relative humidity of 50%. Next, the container wall and the label of the label sticking part are cut together with a cutter, and the length of the circumferential direction of the container body is 12 cm (the sticking part of the label is 9 cm, the non-sticking part is 3 cm) and A total of 6 samples for measurement having a width of 1.5 cm (with labels attached to the entire width) were collected from two containers.
Next, the label was carefully peeled off from the gripping (unlabeled) part and peeled about 1 cm to form an adhesive part for gripping. Next, the end of a 1.5 cm wide PET film (50 μm) and the above-mentioned adhesive portion were overlapped and adhered with an adhesive to form a gripping portion on the label side, thereby preparing a sample for measuring adhesive strength.
Next, based on JIS K6854-2: 1999, a 180 ° peel test was performed using a tensile tester (Autograph AGS-5kNJ, manufactured by Shimadzu Corporation) at a peel rate of 300 mm / min. The average value of the peel force between the peel lengths of 25 mm to 75 mm was measured, and the value obtained by averaging the measured values of 6 samples was taken as the adhesive strength. The unit of adhesive strength was N / 15 mm.
For the labeled containers of Comparative Examples 1 to 3, since most of the label was lifted from the container and peeled off at the time of sampling and could not be measured stably, the comparative examples 1 to 3 were “not adhered”. Judged.
(耐水剥離試験)
 測定対象のラベル付き容器品を25℃の温水に3時間または24時間浸漬して、水中で剥離テストして、以下の通り評価した。なお、ラベルを指で滑らせることができれば「剥離」とする。
 A:24時間浸漬で剥離しない。
 B:10時間浸漬では剥離しないが24時間浸漬では剥離する。
 C:3時間浸漬では剥離しないが10時間浸漬では剥離する。
 D:3時間浸漬で剥離する。
(Water peeling test)
The container with a label to be measured was immersed in warm water at 25 ° C. for 3 hours or 24 hours, and a peel test was performed in water. If the label can be slid with a finger, “peel” is assumed.
A: It does not peel off by immersion for 24 hours.
B: Not peeled off by immersion for 10 hours, but peeled off by immersion for 24 hours.
C: Not peeled after 3 hours immersion but peeled after 10 hours immersion.
D: Peel off by immersion for 3 hours.
[その他]
 材料のMFR(JIS K7210:1999によるメルトフローレート)、融点(JIS K7121:1987による融解ピーク温度)、エチレン含有率、密度、無機微細粉末の体積平均粒子径はそれぞれの材料のカタログ値を使用した。
[Others]
The material MFR (melt flow rate according to JIS K7210: 1999), melting point (melting peak temperature according to JIS K7121: 1987), ethylene content, density, and volume average particle diameter of inorganic fine powders were used as catalog values for each material. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<実施例101>
(株)日本触媒製「エポミンSP-003」、三菱化学(株)製「サフトマーST-1000」を混合して、固形分濃度3質量%のインキ受理層用塗料を作製した。
 実施例1で作製した2層構造を有する白色不透明の二軸延伸ポリオレフィン系積層樹脂フィルムの熱可塑性樹脂フィルム側に上記塗料をメイヤーバー#8で塗布し、80℃で45秒間乾燥させてインキ受理層を設けた。
 次に、インキ受理層側表面にフレキソ印刷機(エムティーテック社製、機器名:FC11B)でUVフレキソ用インク((株)T&K TOKA製、製品名:フレキソ500)を用いて、印刷して、絵柄が印刷されたインモールドラベルを作製し、実施例101のインモールドラベルとした。
 実施例101のインモールドラベルを用いた以外は実施例1と同様にしてラベル付き容器を作製したところ、実施例1と同様に接着強度を発現し、絵柄を有するラベル付き容器が得られた。
<Example 101>
“Epomin SP-003” manufactured by Nippon Shokubai Co., Ltd. and “Saftmer ST-1000” manufactured by Mitsubishi Chemical Co., Ltd. were mixed to prepare a paint for an ink receiving layer having a solid content concentration of 3 mass%.
The paint is applied to the thermoplastic resin film side of the white opaque biaxially stretched polyolefin-based laminated resin film having the two-layer structure prepared in Example 1 with a Mayer bar # 8, and dried at 80 ° C. for 45 seconds to receive ink. A layer was provided.
Next, printing is performed on the ink receiving layer side surface using a flexographic printing machine (manufactured by MT Tech Co., Ltd., device name: FC11B) using a UV flexographic ink (manufactured by T & K TOKA, product name: flexo 500). An in-mold label on which a pattern was printed was produced and used as the in-mold label of Example 101.
A labeled container was produced in the same manner as in Example 1 except that the in-mold label of Example 101 was used. As a result, an adhesive strength was developed in the same manner as in Example 1, and a labeled container having a pattern was obtained.
[III.変形例]
 最後に、本実施形態のラベル付き容器の製造装置の変形例について述べる。
[III. Modified example]
Finally, a modification of the labeled container manufacturing apparatus of this embodiment will be described.
[1.第一変形例]
 ここでは、アーム部60に関する変形例を述べる。
上述した一実施形態では、一つのラベル10におけるラベル11,12の枚数に応じた数のアーム部61,62が設けられる車台部52を説明したが、ラベルの枚数にかかわらず、一つのアーム部を用いてもよい。
 この場合に用いられるアーム部には、複数枚のラベルの全てと側面視で重複する大きさの先端部が設けられる。この先端部としては、多数の穴が穿設されたパンチンググリル(「パンチングプレート」とも称される)を用いることができる。
 翻って、一つのラベル10におけるラベル11,12の枚数よりも多数のアーム部を設けてもよい。具体的には、一枚のラベル11,12に対して複数のアーム部が設けられてもよい。
 さらに、吸引に限らず、静電気でラベルをアーム部に引き付けてもよい。この場合には、ラベルが帯電しうることから、帯電部を設けなくてもよい。
[1. First modification]
Here, the modification regarding the arm part 60 is described.
In the above-described embodiment, the chassis unit 52 provided with the arm units 61 and 62 corresponding to the number of labels 11 and 12 in one label 10 has been described. May be used.
The arm portion used in this case is provided with a tip portion having a size overlapping with all of the plurality of labels in a side view. As the tip portion, a punching grille (also referred to as “punching plate”) having a large number of holes can be used.
In turn, more arm portions may be provided than the number of labels 11 and 12 in one label 10. Specifically, a plurality of arm portions may be provided for one label 11, 12.
Further, the label may be attracted to the arm portion not only by suction but by static electricity. In this case, since the label can be charged, it is not necessary to provide a charging portion.
[2.第二変形例]
 ここでは、ラベル10の取り出し先に関する変形例を述べる。
 図8に示すように、長尺のフィルム1に加えて、スタッカ8に重ねられた状態の枚葉状のラベル9が設けられてもよい。この場合には、スタッカ8および上述した繰り出し機構20を支持する架台54が設けられ、また、ラベル9,10の取り出し先を切り替える切替機構(切替部)55が設けられる。
 ここでは、繰り出し機構20の上方に設けられたスタッカ8を例示する。
 この切替機構55には、架台54を上下に移動させる移動機構56が設けられる。すなわち、切替機構55は、ラベル9,10の取り出し先のステージ(上下方向位置)を切り替える。ここでは、搬送機構50のステージを切り替えずに、ラベル9,10の取り出し先のステージを切り替える。
[2. Second modification]
Here, a modified example relating to the takeout destination of the label 10 will be described.
As shown in FIG. 8, in addition to the long film 1, a sheet-like label 9 in a state of being stacked on the stacker 8 may be provided. In this case, a gantry 54 that supports the stacker 8 and the above-described feeding mechanism 20 is provided, and a switching mechanism (switching unit) 55 that switches the take-out destination of the labels 9 and 10 is provided.
Here, the stacker 8 provided above the feeding mechanism 20 is illustrated.
The switching mechanism 55 is provided with a moving mechanism 56 that moves the gantry 54 up and down. That is, the switching mechanism 55 switches the stage (vertical direction position) from which the labels 9 and 10 are taken out. Here, the stage to which the labels 9 and 10 are taken out is switched without switching the stage of the transport mechanism 50.
 切替機構55によって架台54を上方に移動することで、車台部52のアーム部60に対向する繰り出し機構20のラベル10を取り出すことができるうえに、架台54を下方に移動させることで、アーム部60に対向するスタッカ8のラベル9を取り出すことができる。
 したがって、容器2の表側に使用するラベル9,10を択一的に切り替えることができる。なお、容器2の裏側に使用するラベルがフィルムから分離される場合には、表側には枚葉状のラベル9が貼着されるとともに、裏側にはフィルムから分離されたラベルが貼着された容器2を成形することもできる。つまり、枚葉状のラベル9とフィルムから分離されたラベル10とを一つの容器2で併用することもできる。
 このような切替機構55による切替工程が、巻回工程と並列的に実施されてもよい。
By moving the gantry 54 upward by the switching mechanism 55, the label 10 of the feeding mechanism 20 facing the arm unit 60 of the chassis unit 52 can be taken out, and the gantry 54 is moved downward to move the arm unit The label 9 of the stacker 8 facing 60 can be taken out.
Therefore, the labels 9 and 10 used on the front side of the container 2 can be switched alternatively. In addition, when the label used on the back side of the container 2 is separated from the film, the sheet-like label 9 is stuck on the front side and the label separated from the film is stuck on the back side 2 can also be molded. That is, the sheet-like label 9 and the label 10 separated from the film can be used together in one container 2.
Such a switching process by the switching mechanism 55 may be performed in parallel with the winding process.
 そのほか、切替機構は、ラベル9,10の取り出し先のステージを切り替えるのに代えてあるいは加えて、搬送機構50のステージを切り替えてもよい。具体的には、上下に延びるスライドレールが設けられ、車台部52がスライドレールに沿って上下にスライド移動する切替機構であってもよい。この場合には、車台部52が下部に位置するときは、上述したように長尺のフィルム1からラベル10を分離することができるうえに、上部に位置するときには、スタッカ8で重ねられた枚葉状のラベル9を取り出すことができる。
 なお、繰り出し機構20における回転軸21,22の延在方向や、繰り出し機構20およびスタッカ8が並ぶ方向は、上下方向に限らず、周囲の構成や要求仕様などに応じて種々の方向に設定される。
In addition, the switching mechanism may switch the stage of the transport mechanism 50 instead of or in addition to switching the stage from which the labels 9 and 10 are taken out. Specifically, it may be a switching mechanism in which a slide rail extending vertically is provided and the chassis 52 slides up and down along the slide rail. In this case, when the chassis part 52 is located at the lower part, the label 10 can be separated from the long film 1 as described above, and when it is located at the upper part, the sheets stacked by the stacker 8 can be separated. The leaf-shaped label 9 can be taken out.
The extending direction of the rotating shafts 21 and 22 in the feeding mechanism 20 and the direction in which the feeding mechanism 20 and the stacker 8 are arranged are not limited to the vertical direction, but are set in various directions according to the surrounding configuration and required specifications. The
[3.第三変形例]
 ここでは、ラベル9,10の搬送に関する変形例を述べる。
 搬送機構50は、車台部52がレール51に沿ってスライド移動して、ラベル9,10が直線的に往復動する機構に限られない。
 たとえば、回転する円盤状の外周端部に断続的に吸盤や静電部を配置し、これらの吸盤や静電部でラベル9,10を引き付けてもよい。この場合には、ラベル9,10が回転しながら搬送される。
[3. Third modification]
Here, the modification regarding conveyance of the labels 9 and 10 is described.
The transport mechanism 50 is not limited to a mechanism in which the chassis 52 slides along the rail 51 and the labels 9 and 10 reciprocate linearly.
For example, suction cups and electrostatic parts may be intermittently arranged on the rotating disk-shaped outer peripheral end, and the labels 9 and 10 may be attracted by these suction cups and electrostatic parts. In this case, the labels 9 and 10 are conveyed while rotating.
 そのほか、四軸ロボットや六軸ロボットといった多軸のロボットアームの先端部に吸盤や静電部を配置し、これらの吸盤や静電部でラベル9,10を引き付けてもよい。この場合には、ラベル9,10を自在な軌道で搬送することができる。
 さらに、ラベルの枚数に応じた数のロボットアームが設けられる場合には、相対的な配置を変更して搬送することができる。そのため、フィルム1に対してラベル10を高密度に印刷することで、材料コストを抑えることができる。
In addition, a suction cup or an electrostatic part may be arranged at the tip of a multi-axis robot arm such as a four-axis robot or a six-axis robot, and the labels 9 and 10 may be attracted by these suction cups or electrostatic parts. In this case, the labels 9 and 10 can be transported along a free path.
Furthermore, when the number of robot arms corresponding to the number of labels is provided, the relative arrangement can be changed and transported. Therefore, the material cost can be suppressed by printing the label 10 on the film 1 with high density.
 すなわち、複数のラベル11,12の相対的な配置は、取出工程(取出部)と配置工程(配置部)とで、異なるように設定されていてもよい。これにより、長尺のフィルム1において、一方の主面の長手方向に複数のラベル11,12からなるラベル群10が複数配列された状態で、一つのラベル群10の中における複数のラベル11,12の間隔を狭くすることができる。言い換えると、長尺のフィルム1に印刷するときの絵柄の割り付け(面付けともいう)の工夫により余白を少なくすることで、フィルム1の材料コストを削減することができる。 That is, the relative arrangement of the plurality of labels 11 and 12 may be set differently in the extraction process (extraction part) and the arrangement process (arrangement part). Thereby, in the long film 1, in the state where a plurality of label groups 10 composed of a plurality of labels 11, 12 are arranged in the longitudinal direction of one main surface, the plurality of labels 11, The interval of 12 can be narrowed. In other words, the material cost of the film 1 can be reduced by reducing the margins by devising the pattern allocation (also referred to as imposition) when printing on the long film 1.
 このとき、取出工程において、ラベル群10をなす複数のラベル11,12のそれぞれをフィルム1から分離する点で変化はないが、配置工程において、金型91のうち一つの内部に、取出工程で分離して取り出された複数のラベル11,12の相対的な配置と異なるように配置することが必要になる。複数のラベル11,12のそれぞれを吸引するアーム部60はそれぞれ独立して移動する必要がある。これを達成するためには、上述したように、それぞれのアーム部60がそれぞれ独立した多軸ロボットのアームとして、またはこのアームに接続されて構成されることが好ましい。 At this time, there is no change in that each of the plurality of labels 11 and 12 forming the label group 10 is separated from the film 1 in the take-out process. It is necessary to dispose the labels 11 and 12 that are separated and taken out of the relative disposition. The arm portions 60 for sucking each of the plurality of labels 11 and 12 need to move independently. In order to achieve this, as described above, each arm unit 60 is preferably configured as an arm of an independent multi-axis robot or connected to this arm.
 複数のラベル11,12の相対的な配置が、取出工程と配置工程とで異なるように設定される場合には、取出工程における複数のラベル11,12の相対位置および配置工程における複数のラベル11,12の相対位置をそれぞれ予め外部記憶装置112に記憶しておき、取出工程でのラベル11,12の相対配置を配置工程でのラベル11,12の相対配置に変化させて、複数のラベル11,12を金型91に配置するように多軸ロボットをコンピュータ制御することが好ましい。さらに、この制御を制御部100に実行させるプログラム117が外部記憶装置112に格納されることが好ましい。 When the relative arrangement of the plurality of labels 11 and 12 is set to be different between the extraction process and the arrangement process, the relative positions of the plurality of labels 11 and 12 in the extraction process and the plurality of labels 11 in the arrangement process. , 12 are stored in advance in the external storage device 112, and the relative arrangement of the labels 11, 12 in the take-out process is changed to the relative arrangement of the labels 11, 12 in the arrangement process. , 12 are preferably computer controlled so that the multi-axis robot is arranged in the mold 91. Further, it is preferable that a program 117 that causes the control unit 100 to execute this control is stored in the external storage device 112.
[4.第四変形例]
 ここでは、制御系に関する変形例を述べる。
 制御部100の制御対象は、アーム部60だけでなく、印刷部30,繰り出し機構20,搬送機構50といった他のユニットであってもよいし、これらのユニットを統合的に制御して製造装置の全体を制御してもよい。この場合には、製造装置の各ユニットを個別に制御するときの制御処理や制御装置の全体を制御するときの制御処理をプログラム117が実行してもよい。
 更に言えば、帯電部80を省略してもよい。この場合には、装置構成を簡素にすることができる。
[4. Fourth modification]
Here, a modified example related to the control system will be described.
The control target of the control unit 100 is not limited to the arm unit 60, but may be other units such as the printing unit 30, the feeding mechanism 20, and the transport mechanism 50. You may control the whole. In this case, the program 117 may execute a control process for individually controlling each unit of the manufacturing apparatus or a control process for controlling the entire control apparatus.
Furthermore, the charging unit 80 may be omitted. In this case, the apparatus configuration can be simplified.
[5.第五変形例]
 ここでは、活性化処理部200にコロナ放電処理部を使用した場合に関連する変形例を述べる。
(1)コロナ放電処理部を設けてコロナ放電処理により活性化処理工程A14が実行されるので、その際に、ラベル10が帯電する。この帯電の電荷が大きい場合には、金型91にラベル10を静電吸着させることが可能となるので、帯電部80及び帯電工程A26を省略してもよい。
 逆に、金型91内に吸引孔を設け、この吸引孔から真空吸引してラベル10を保持する場合には、除電装置(イオナイザ)を設けて、コロナ放電処理による活性化処理工程A14の実行後、ラベル10を金型91内に吸引保持させる前に、ラベル10を除電するようにするのが好ましい。これは、ラベル10が帯電していると、静電力が吸引保持に影響して、金型91内でのラベル10の保持位置が正規の位置からずれてしまうおそれがあるためである。
[5. Fifth modification]
Here, a modification related to the case where a corona discharge processing unit is used for the activation processing unit 200 will be described.
(1) Since the activation processing step A14 is executed by corona discharge treatment by providing a corona discharge treatment section, the label 10 is charged at that time. When this charge is large, the label 10 can be electrostatically adsorbed to the mold 91, so the charging unit 80 and the charging step A26 may be omitted.
Conversely, when a suction hole is provided in the mold 91 and the label 10 is held by vacuum suction from this suction hole, a neutralization device (ionizer) is provided, and the activation processing step A14 by corona discharge processing is performed. Thereafter, before the label 10 is sucked and held in the mold 91, the label 10 is preferably discharged. This is because when the label 10 is charged, the electrostatic force affects the suction holding, and the holding position of the label 10 in the mold 91 may be shifted from the normal position.
(2)上記実施形態では、本発明を、フィルム1の長手方向に配列されたラベル10に活性化処理を施すものに適用した例を説明したが、本発明は、枚葉状のラベルに活性化処理を施すものにも適用できる。 (2) In the above-described embodiment, the example in which the present invention is applied to the label 10 arranged in the longitudinal direction of the film 1 is subjected to the activation treatment. However, the present invention is activated to a sheet-like label. It is applicable also to what performs a process.
 本発明のインモールドラベル、ラベル付き容器、ラベル付き容器の製造装置およびラベル付き容器の製造方法によれば、これまでの常識ではポリエステルに接着できないポリエチレン系樹脂を接着層として有するフィルムを使用してポリエステル製容器に接着可能になり、ストレッチブロー成形による低温接着条件でも成形品との接着強度が充分である成形品を得ることができる。そのため、ポリエステル製容器用/ポリオレフィン製容器用兼用のインモールドラベルを製造することが可能になり、当該分野のコスト削減に大きく寄与する。 According to the in-mold label, the labeled container, the labeled container manufacturing apparatus, and the labeled container manufacturing method of the present invention, using a film having a polyethylene-based resin as an adhesive layer that cannot be bonded to polyester with conventional common sense It becomes possible to bond to a polyester container, and a molded product having sufficient adhesive strength with the molded product can be obtained even under low temperature bonding conditions by stretch blow molding. Therefore, it becomes possible to manufacture an in-mold label for both a polyester container and a polyolefin container, which greatly contributes to cost reduction in the field.
1  フィルム
1a  ヒートシール層(低融点樹脂層)
1b  基層(熱可塑性樹脂フィルム)
1c  印刷層(インキ受理層)
8  スタッカ
9  枚葉状のラベル
10  ラベル(ラベル群)
11a  異形部
12  第二ラベル
13  余白部
14  マーキング
2  容器
2a  外壁
20  繰り出し機構(繰り出し部)
25  位置決め機構
26  光学機器
27  排出口
29  ストッパ
30  印刷部
40  検査部
41  検出部
42  判定部
50  搬送機構(搬送部)
51  スライドレール
52  車台部
54  架台
55  切替機構
56  移動機構
60  アーム部(取出部,配置部)
70  整形部(整形工程)
71  エアガン(噴気部)
72  バーナ(火炎放射部)
80  帯電部(帯電工程)
90  成形機構(成形部)
91  金型
100  制御部(コンピュータ)
200  活性化処理部
113  入力装置
114  出力装置(表示部)
117  プログラム
118  記録媒体
P1  原点位置
P2  整形位置
P3  帯電位置
P4  成形位置
1 Film 1a Heat seal layer (low melting point resin layer)
1b Base layer (thermoplastic resin film)
1c Printing layer (ink receiving layer)
8 Stacker 9 Single-sheet label 10 Label (label group)
11a Profile 12 Second label 13 Margin 14 Marking 2 Container 2a Outer wall 20 Feeding mechanism (feeding part)
25 Positioning mechanism 26 Optical device 27 Discharge port 29 Stopper 30 Printing unit 40 Inspection unit 41 Detection unit 42 Determination unit 50 Conveying mechanism (conveying unit)
51 Slide rail 52 Car body part 54 Base 55 Switching mechanism 56 Moving mechanism 60 Arm part (extraction part, arrangement part)
70 Shaping part (Shaping process)
71 Air gun
72 Burner (flame radiating part)
80 Charging part (charging process)
90 Molding mechanism (molding part)
91 Mold 100 Control Unit (Computer)
200 activation processing unit 113 input device 114 output device (display unit)
117 Program 118 Recording medium P1 Origin position P2 Shaping position P3 Charging position P4 Molding position

Claims (12)

  1.  熱可塑性樹脂フィルムの一方の面に低融点樹脂層を有し、
     前記低融点樹脂層がポリエチレン系樹脂を含有し、
     前記ポリエチレン系樹脂の融点が60~110℃であり、
     前記低融点樹脂層の厚さが1.5~15μmであり、
     前記低融点樹脂層の表面が活性化処理されていることを特徴とするインモールドラベル。
    Having a low melting point resin layer on one side of the thermoplastic resin film,
    The low melting point resin layer contains a polyethylene resin;
    The melting point of the polyethylene resin is 60 to 110 ° C.,
    The low melting point resin layer has a thickness of 1.5 to 15 μm;
    An in-mold label, wherein the surface of the low melting point resin layer is activated.
  2.  前記ポリエチレン系樹脂が、エチレン95mol%以上100mol%未満と、エチレンと共重合可能なモノマー0mol%を超え5mol%以下との共重合体である請求項1に記載のインモールドラベル。 The in-mold label according to claim 1, wherein the polyethylene resin is a copolymer of 95 mol% or more and less than 100 mol% of ethylene and more than 0 mol% and 5 mol% or less of a monomer copolymerizable with ethylene.
  3.  前記低融点樹脂層の表面にコロナ放電処理痕が存在する請求項1または2に記載のインモールドラベル。 The in-mold label according to claim 1 or 2, wherein a corona discharge treatment mark is present on the surface of the low melting point resin layer.
  4.  前記熱可塑性樹脂フィルムが前記低融点樹脂層を有していない面にインキ受理層を有する請求項1~3のいずれか1項に記載のインモールドラベル。 The in-mold label according to any one of claims 1 to 3, wherein the thermoplastic resin film has an ink receiving layer on a surface not having the low melting point resin layer.
  5.  極性樹脂製容器の表面に、請求項1~4のいずれか1項に記載のインモールドラベルが貼着しているラベル付き容器。 A container with a label, wherein the in-mold label according to any one of claims 1 to 4 is adhered to the surface of a polar resin container.
  6.  前記極性樹脂がポリエステル樹脂である請求項5に記載のラベル付き容器。 6. The labeled container according to claim 5, wherein the polar resin is a polyester resin.
  7.  低融点樹脂層を有するラベルを取り出す取出部と、
     前記取出部によって取り出された前記ラベルを、前記低融点樹脂層を内方に向けて金型内に配置する配置部と、
     前記金型内に成形材料を供給し、前記配置部によって前記金型内に配置された前記ラベルが、前記低融点樹脂層で外壁に貼着された容器を成形する成形部と、
     前記ラベルが前記配置部によって前記金型内に配置される前に、前記低融点樹脂層に活性化処理を行う活性化処理部とを備えたことを特徴とするラベル付き容器の製造装置。
    An extraction portion for taking out the label having the low melting point resin layer;
    An arrangement part for arranging the label taken out by the take-out part in a mold with the low melting point resin layer facing inward;
    A molding part for supplying a molding material into the mold and molding a container in which the label placed in the mold by the placement part is attached to an outer wall with the low melting point resin layer;
    An apparatus for manufacturing a labeled container, comprising: an activation processing unit that performs an activation process on the low-melting point resin layer before the label is placed in the mold by the placement unit.
  8.  前記活性化処理部が、コロナ放電処理を行うコロナ放電処理部である
    ことを特徴とする請求項7に記載されたラベル付き容器の製造装置。
    The said activation process part is a corona discharge process part which performs a corona discharge process, The manufacturing apparatus of the labeled container described in Claim 7 characterized by the above-mentioned.
  9.  前記ラベルが、長尺のフィルムに、前記フィルムの長手方向に複数配列され、
     前記フィルムを繰り出す繰り出し部をさらに備え、
     前記取出部は、前記繰り出し部によって繰り出された前記フィルムから前記ラベルを取り出し、
     前記活性化処理部は、前記繰り出し部から繰り出されている最中の前記フィルムに配列された前記ラベルの前記低融点樹脂層に対して、前記活性化処理を行う
    ことを特徴とする請求項7又は8に記載されたラベル付き容器の製造装置。
    A plurality of the labels are arranged on a long film in the longitudinal direction of the film,
    It further comprises a payout part for paying out the film,
    The take-out part takes out the label from the film fed out by the feed-out part,
    The said activation process part performs the said activation process with respect to the said low melting-point resin layer of the said label arranged in the said film in the middle of being drawn out from the said delivery part. Or the manufacturing apparatus of the labeled container described in 8.
  10.  低融点樹脂層を有するラベルを取り出す取出工程と、
     前記取出工程によって取り出された前記ラベルを、前記低融点樹脂層を内方に向けて金型内に配置する配置工程と、
     前記金型内に成形材料を供給し、前記配置部によって前記金型内に配置された前記ラベルが、前記低融点樹脂層で外壁に貼着された容器を成形する成形工程と、
     前記ラベルが前記配置部によって前記金型内に配置される前に、前記低融点樹脂層に活性化処理を行う活性化処理工程とを備えたことを特徴とするラベル付き容器の製造方法。
    Taking out the label having a low melting point resin layer;
    An arrangement step in which the label taken out in the take-out step is placed in a mold with the low melting point resin layer facing inward;
    A molding step of supplying a molding material into the mold, and molding a container in which the label placed in the mold by the placement portion is attached to an outer wall with the low melting point resin layer;
    The manufacturing method of the labeled container characterized by including the activation process process which performs an activation process to the said low melting-point resin layer, before arrange | positioning the said label in the said mold by the said arrangement | positioning part.
  11.  前記活性化処理工程が、コロナ放電処理を行うコロナ放電処理工程である
    ことを特徴とする請求項10に記載されたラベル付き容器の製造方法。
    The said activation process process is a corona discharge process process which performs a corona discharge process, The manufacturing method of the labeled container described in Claim 10 characterized by the above-mentioned.
  12.  前記ラベルが、長尺のフィルムに、前記フィルムの長手方向に複数配列され、
     前記フィルムを繰り出す繰り出し工程をさらに備え、
     前記取出工程では、前記繰り出し工程によって繰り出された前記フィルムから前記ラベルを取り出し、
     前記活性化処理工程では、前記繰り出し工程から繰り出されている最中の前記フィルムに配列された前記ラベルの前記低融点樹脂層に対して、前記活性化処理を行う
    ことを特徴とする請求項10又は11に記載されたラベル付き容器の製造方法。
     
    A plurality of the labels are arranged on a long film in the longitudinal direction of the film,
    It further comprises a feeding process for feeding out the film,
    In the take-out step, the label is taken out from the film fed out by the feed-out step,
    The said activation process step performs the said activation process with respect to the said low melting-point resin layer of the said label arranged in the said film in the middle of being extended | stretched from the said delivery process. Or the manufacturing method of the labeled container as described in 11.
PCT/JP2017/034638 2016-09-29 2017-09-26 In-mold label, labelled container, and production apparatus and production method for labelled container WO2018062128A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-190667 2016-09-29
JP2016190667 2016-09-29
JP2016234440 2016-12-01
JP2016-234440 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018062128A1 true WO2018062128A1 (en) 2018-04-05

Family

ID=61763410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034638 WO2018062128A1 (en) 2016-09-29 2017-09-26 In-mold label, labelled container, and production apparatus and production method for labelled container

Country Status (2)

Country Link
TW (1) TW201815920A (en)
WO (1) WO2018062128A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114934A (en) * 2019-12-31 2020-05-08 深圳市宇道机电技术有限公司 Automatic paste machine in

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111634506B (en) * 2020-06-09 2022-02-11 埃斯顿(湖北)机器人工程有限公司 Intelligent packaging production line of daily ceramic product robot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230791A (en) * 1996-02-22 1997-09-05 Kao Corp Thermally active label and production of molding with label
JPH10315410A (en) * 1997-05-16 1998-12-02 Toppan Printing Co Ltd Label, manufacture of label and plastic vessel with label
JP2010168117A (en) * 2008-12-26 2010-08-05 Yupo Corp Labeled container and manufacturing method of the same
JP2010173222A (en) * 2009-01-30 2010-08-12 Yupo Corp In-mold molding label
JP2013214075A (en) * 2013-05-08 2013-10-17 Yupo Corp Label for in-mold molding and injection-molded product with label
JP2015077724A (en) * 2013-10-17 2015-04-23 スターテクノ株式会社 Label formation device and method for in-mold label molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09230791A (en) * 1996-02-22 1997-09-05 Kao Corp Thermally active label and production of molding with label
JPH10315410A (en) * 1997-05-16 1998-12-02 Toppan Printing Co Ltd Label, manufacture of label and plastic vessel with label
JP2010168117A (en) * 2008-12-26 2010-08-05 Yupo Corp Labeled container and manufacturing method of the same
JP2010173222A (en) * 2009-01-30 2010-08-12 Yupo Corp In-mold molding label
JP2013214075A (en) * 2013-05-08 2013-10-17 Yupo Corp Label for in-mold molding and injection-molded product with label
JP2015077724A (en) * 2013-10-17 2015-04-23 スターテクノ株式会社 Label formation device and method for in-mold label molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114934A (en) * 2019-12-31 2020-05-08 深圳市宇道机电技术有限公司 Automatic paste machine in

Also Published As

Publication number Publication date
TW201815920A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI583550B (en) Thermoplastic resin film, attached label hollow forming container, adhesive film, label and printing film
US7514131B2 (en) In-mold label with separable part
JP3279668B2 (en) In-mold label with coupon
JP5701461B1 (en) Labeled plastic container
TWI770424B (en) In-mold labels and containers with in-mold labels
WO2018062128A1 (en) In-mold label, labelled container, and production apparatus and production method for labelled container
CN109195763B (en) Apparatus and method for manufacturing labeled container, program for the same, and recording medium containing the program
WO2018062214A1 (en) In-mold label and container fitted with label
US8097338B2 (en) In-mold label, and labeled resin-labeled article
JP2018089952A (en) Manufacturing apparatus and manufacturing method of labelled container
JP2018060185A (en) In-mold label and container with label
JP6854721B2 (en) Labeled container manufacturing equipment, its label transporting equipment and manufacturing method, programs used for these, and recording media on which they are recorded.
WO2014131372A1 (en) In-mold label for use in stretch blow molding and stretch blow molding-molded product having the label
JP7303939B2 (en) thermal label
JP2018012332A (en) Manufacturing apparatus and manufacturing method for container with label, program used therefor, and recording medium recorded therewith
JP2017213897A (en) Manufacturing device and manufacturing method of container with label, program used therefor and recording medium recording the same
JP2017213896A (en) Manufacturing device and manufacturing method of container with label, program used therefor and recording medium recording the same
CN109195764B (en) Apparatus and method for manufacturing container with label
JP3145133B2 (en) In-mold label with coupon
JP5753937B1 (en) In-mold label and labeled plastic container
JP2002074303A (en) Ic label
JP2012206732A (en) Labeled container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17856079

Country of ref document: EP

Kind code of ref document: A1