WO2018062027A1 - Method for producing anti-glare member - Google Patents

Method for producing anti-glare member Download PDF

Info

Publication number
WO2018062027A1
WO2018062027A1 PCT/JP2017/034259 JP2017034259W WO2018062027A1 WO 2018062027 A1 WO2018062027 A1 WO 2018062027A1 JP 2017034259 W JP2017034259 W JP 2017034259W WO 2018062027 A1 WO2018062027 A1 WO 2018062027A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
layer
antiglare
forming
coating
Prior art date
Application number
PCT/JP2017/034259
Other languages
French (fr)
Japanese (ja)
Inventor
耕司 池上
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2018542513A priority Critical patent/JPWO2018062027A1/en
Publication of WO2018062027A1 publication Critical patent/WO2018062027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Definitions

  • the present invention relates to a method for manufacturing an antiglare member.
  • image display devices liquid crystal displays, organic EL displays, plasma displays, etc.
  • various devices TVs, personal computers, smartphones, mobile phones, navigation systems, etc.
  • indoor lighting fluorescent lamps, etc.
  • sunlight etc.
  • Visibility is reduced by the reflected image reflected on the display surface by the external light.
  • the finger touches the surface of the image display device every time the various devices are operated the surface of the image display device is contaminated.
  • anti-glare processing or anti-reflection processing is known as processing for suppressing reflection due to external light.
  • Patent Documents 1 to 3 disclose an anti-glare process that makes a reflected image unclear by forming irregularities on a display surface and diffusing and reflecting external light.
  • Patent Document 4 discloses an antireflection treatment that forms a hollow silica particle layer on a display surface and suppresses reflection of external light itself.
  • Patent Document 5 As a process for suppressing the adhesion of dirt on the surface of an image display device, as shown in Patent Document 5, an antifouling process for forming an antifouling layer containing a fluorine compound on a display surface is known.
  • anti-glare treatment, antireflection treatment, and antifouling treatment are performed separately. That is, after the antiglare process is completed, the antireflection process is performed, and finally the antifouling process is performed.
  • Each processing step includes heat treatment. Therefore, at least three heat treatments are required before the antiglare member is manufactured. Therefore, it takes a lot of time to manufacture the antiglare member.
  • An object of the present invention is to provide a method of manufacturing an antiglare member that can be efficiently manufactured.
  • a method for producing an antiglare member according to a first aspect of the present invention includes a substrate, an antiglare layer having a concavo-convex structure formed of an inorganic material provided on the substrate, a hollow silica provided on the antiglare layer, and A method of manufacturing an antiglare member having an antireflection layer containing particles, the step of applying a first coating agent for forming an antiglare layer on a substrate and forming a first coating film; Applying a second coating agent for forming an antireflection layer on the first coating film, forming a second coating film, and a first coating film and a second coating film. And a step of simultaneously heating to form an antiglare layer and an antireflection layer.
  • the method for producing an antiglare member according to the first aspect of the present invention may be a method for producing an antiglare member further having an antifouling layer provided on the antireflection layer.
  • the method further includes a step of applying a third coating agent for forming an antifouling layer on the second coating film to form a third coating film, and the first coating film and the second coating film.
  • a third coating agent for forming an antifouling layer on the second coating film to form a third coating film, and the first coating film and the second coating film.
  • the method for producing an antiglare member according to the second aspect of the present invention includes an antiglare substrate, an antireflection layer provided on the antiglare substrate, comprising hollow silica particles, and an antifouling provided on the antireflection layer. And a step of applying a second coating agent for forming an antireflection layer on an antiglare substrate and forming a second coating film, A step of applying a third coating agent for forming an antifouling layer on the second coating film to form the third coating film, and the second coating film and the third coating film simultaneously. And a step of forming an antireflection layer and an antifouling layer by heating.
  • a method for producing an antiglare member according to a third aspect of the present invention includes a substrate, an antiglare layer provided on the substrate and having a concavo-convex structure made of an inorganic material, and an antifouling layer provided on the antiglare layer.
  • a third coating agent for forming an antifouling layer is applied on the surface to form a third coating film, and the first coating film and the third coating film are simultaneously heated to produce an antiglare layer.
  • a step of forming an antifouling layer is applied on the surface to form a third coating film, and the first coating film and the third coating film are simultaneously heated to produce an antiglare layer.
  • an antiglare member can be produced efficiently.
  • FIG. 1 is a schematic cross-sectional view showing an antiglare member according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the first embodiment shown in FIG.
  • FIG. 3 is a schematic cross-sectional view for explaining another example of the method for producing the antiglare member of the first embodiment shown in FIG.
  • FIG. 4 is a schematic cross-sectional view for explaining another example of the method for producing the antiglare member of the first embodiment shown in FIG.
  • FIG. 5 is typical sectional drawing for demonstrating an example of the method of manufacturing the glare-proof member of the 2nd Embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view showing an antiglare member according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the first embodiment shown in FIG.
  • FIG. 3 is a schematic
  • FIG. 6 is typical sectional drawing for demonstrating the other example of the method of manufacturing the glare-proof member of the 2nd Embodiment of this invention.
  • FIG. 7 is a schematic cross-sectional view showing the antiglare member of the second embodiment obtained by the manufacturing method shown in FIG.
  • FIG. 8 is a schematic cross-sectional view showing an antiglare member according to a third embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the third embodiment shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an antiglare member according to a first embodiment of the present invention.
  • the antiglare member 1 of this embodiment includes a substrate 2, an antiglare layer 3 provided on the substrate 2, an antireflection layer 4 provided on the antiglare layer 3, and an antireflection layer. 4 and antifouling layer 5 provided on 4.
  • the antiglare layer 3 has a concavo-convex structure made of an inorganic material.
  • the antireflection layer 4 includes hollow silica particles. Therefore, the antireflection layer 4 has an antireflection function.
  • the substrate 2 has a first main surface 2a and a second main surface 2b facing each other, and the antiglare layer 3 is provided on the first main surface 2a.
  • the material of the substrate 2 includes transparent materials such as glass and resin, and glass is preferable from the viewpoint of heat resistance during the heating process described later.
  • the glass include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass.
  • Aluminosilicate glass is preferable because large stress is easily applied by the tempering treatment and is suitable as an article placed on the viewing side of the image display device.
  • the substrate 2 is preferably subjected to a strengthening process such as air cooling strengthening or chemical strengthening.
  • the substrate 2 is particularly preferably a chemically strengthened aluminosilicate glass obtained by chemically strengthening an aluminosilicate glass.
  • the resin examples include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.
  • Examples of the shape of the substrate 2 include a plate shape and a film shape. 2. Description of the Related Art In recent years, various devices (TVs, personal computers, smartphones, car navigation systems, etc.) in which the display surface of an image display device is a curved surface are known. Therefore, the substrate 2 may have a curved shape that matches the shape of the image display device.
  • the substrate 2 may have a functional layer on the surface of the substrate body.
  • the functional layer include an undercoat layer, an adhesion improving layer, a protective layer, and a colored layer.
  • FIG. 2 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the first embodiment shown in FIG.
  • the manufacturing method described with reference to FIG. 2 is a manufacturing method according to the first aspect of the present invention, and includes a step of forming a first coating film, a step of forming a second coating film, and a third method. And a step of forming a coating film.
  • each step will be described.
  • the first coating film is formed by applying a first coating agent for forming the antiglare layer 3.
  • the first coating agent includes, for example, a matrix precursor and a first liquid medium that dissolves the matrix precursor.
  • the matrix precursor examples include inorganic precursors such as a silica precursor, an alumina precursor, a zirconia precursor, and a titania precursor. From the viewpoint of easily controlling the reactivity, a silica precursor is preferable.
  • silica precursor examples include a silane compound having a hydrocarbon group and a hydrolyzable group bonded to a silicon atom, a hydrolysis condensate of a silane compound, a silazane compound, and the like.
  • a silane compound having a hydrocarbon group and a hydrolyzable group bonded to a silicon atom examples include at least one of or both of the silane compound and the hydrolysis condensate thereof.
  • the silane compound has a hydrocarbon group and a hydrolyzable group bonded to a silicon atom.
  • the hydrocarbon group is one or two selected from —O—, —S—, —CO— and —NR′— (R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. You may have the group which combined the above.
  • the hydrocarbon group may be a monovalent hydrocarbon group bonded to one silicon atom or a divalent hydrocarbon group bonded to two silicon atoms.
  • Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group.
  • Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
  • hydrolyzable group examples include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, a halogen atom and the like, and the stability of the silane compound and the ease of hydrolysis. From the viewpoint of balance, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable. As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
  • silane compounds include alkoxysilanes (tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, etc.), alkoxysilanes having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), alkoxysilanes having a vinyl group (vinyl) Trimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl) Diethoxysilane, 3-glycidoxypropyltriethoxysilane and the like), alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane) and the
  • alkoxysilane and alkoxysilane hydrolysis condensate are preferable, and alkoxysilane hydrolysis condensate is more preferable.
  • the silazane compound is a compound having a silicon-nitrogen bond (—SiN—) in its structure.
  • the silazane compound may be a low molecular compound or a high molecular compound (a polymer having a predetermined repeating unit).
  • low molecular weight silazane compounds include hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, and the like. It is done.
  • Examples of the alumina precursor include aluminum alkoxide, hydrolysis condensate of aluminum alkoxide, water-soluble aluminum salt, aluminum chelate and the like.
  • Examples of the zirconia precursor include zirconium alkoxide, a hydrolysis condensate of zirconium alkoxide, and the like.
  • Examples of the titania precursor include titanium alkoxide, hydrolysis condensate of titanium alkoxide, and the like.
  • the first liquid medium is a solvent that dissolves the matrix precursor.
  • Examples of the first liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds, and the like.
  • alcohols examples include methanol, ethanol, isopropanol, butanol, diacetone alcohol and the like.
  • ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • ethers examples include tetrahydrofuran and 1,4-dioxane.
  • cellosolves examples include methyl cellosolve and ethyl cellosolve.
  • esters examples include methyl acetate and ethyl acetate.
  • glycol ethers examples include ethylene glycol monoalkyl ether.
  • nitrogen-containing compound examples include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
  • sulfur-containing compounds examples include dimethyl sulfoxide.
  • 1st liquid medium may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the first liquid medium contains at least water unless the liquid medium is replaced after hydrolysis of the silane compound.
  • the first liquid medium may be a mixed liquid of water and another liquid.
  • other liquids include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • alcohols are preferable as the solvent for the matrix precursor, and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
  • the first liquid medium may contain an acid catalyst that promotes hydrolysis and condensation of the matrix precursor.
  • the acid catalyst is a component that accelerates hydrolysis and condensation of the matrix precursor and forms a coating film in a short time.
  • the acid catalyst may be added for hydrolysis and condensation of the raw material (alkoxysilane, etc.) during the preparation of the matrix precursor solution, and further after preparing the coating liquid consisting of essential components. It may be added.
  • the acid catalyst include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
  • a coating method of the first coating agent As a coating method of the first coating agent, known wet coating methods (spray coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method) , Bar coat method, flexo coat method, slit coat method, roll coat method, etc.). As a coating method, a spray coating method is preferable from the viewpoint of easily forming irregularities.
  • Examples of nozzles used in the spray coating method include a two-fluid nozzle and a one-fluid nozzle.
  • the particle size of the first coating agent droplets discharged from the nozzle is usually 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m. If the particle size of the droplets is 1 ⁇ m or more, it is possible to form irregularities that sufficiently exhibit the antiglare effect in a short time. If the particle size of the droplet is 100 ⁇ m or less, it is easy to form moderate irregularities that can sufficiently exhibit the antiglare effect.
  • the particle size of the droplets of the first coating agent can be adjusted as appropriate according to the type of nozzle, spray pressure, liquid volume, and the like. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
  • the particle diameter of the droplet is the Sauter average particle diameter measured by a laser measuring instrument.
  • the surface roughness of the anti-glare layer 3 can be adjusted by the coating time, that is, the number of coated surfaces (number of overcoating) by a spray method under a certain coating condition. As the number of coated surfaces increases, the surface roughness of the antiglare layer 3 increases. As a result, the glossiness decreases and the reflected image becomes unclear (the antiglare effect increases), and the haze increases (the resolution decreases).
  • the second coating film is formed by applying a second coating agent for forming the antireflection layer 4.
  • the second coating agent includes, for example, hollow silica particles and a second liquid medium in which the hollow silica particles are dispersed.
  • the hollow silica particles are particles having voids inside the outer shell made of silica.
  • the hollow silica particles include spherical hollow silica particles, fibrous hollow silica particles, tubular hollow silica particles, and sheet-shaped hollow silica particles.
  • Fibrous hollow silica particles are hollow silica particles whose length in the extension direction is larger than the length in the direction perpendicular to the extension direction.
  • the fibrous hollow silica particles may be primary particles or secondary particles in which a plurality of hollow particles are aggregated.
  • the hollow silica particles may contain other metals.
  • other metals include Al, Cu, Ce, Sn, Ti, Cr, Co, Fe, Mn, Ni, and Zn.
  • Other metals may form a complex oxide with Si.
  • the average aggregate particle diameter of the hollow silica particles is preferably 5 to 300 nm, more preferably 10 to 100 nm.
  • the average aggregate particle diameter of the hollow silica particles is the average aggregate particle diameter of the hollow silica particles in the dispersion medium, and is measured by a dynamic light scattering method.
  • the spherical hollow silica particles are produced, for example, by removing the core of the core-shell particles.
  • (A) A step of hydrolyzing a silica precursor in the presence of core fine particles in a dispersion medium to precipitate SiO 2 on the surface of the core fine particles to obtain a dispersion of core-shell particles.
  • (B) A step of dissolving or decomposing core fine particles of core-shell particles to obtain a dispersion of spherical hollow silica particles.
  • Core fine particles include thermally decomposable organic fine particles (surfactant micelles, water-soluble organic polymers, styrene resins, acrylic resins, etc.), acid-soluble inorganic fine particles (ZnO, NaAlO 2 , CaCO 3 , basic ZnCO 3, etc.), Examples thereof include light-soluble inorganic fine particles (ZnS, CdS, ZnO, etc.).
  • thermally decomposable organic fine particles surfactant micelles, water-soluble organic polymers, styrene resins, acrylic resins, etc.
  • acid-soluble inorganic fine particles ZnO, NaAlO 2 , CaCO 3 , basic ZnCO 3, etc.
  • Examples thereof include light-soluble inorganic fine particles (ZnS, CdS, ZnO, etc.).
  • silica precursor examples include the silica precursor described in the matrix precursor.
  • Dispersion media include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, methyl acetate, etc.) ), Glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethylsulfoxide, etc.), and the like.
  • alcohols methanol, ethanol, isopropanol, etc.
  • ketones acetone, methyl ethyl ketone, etc.
  • ethers tetrahydrofuran, 1,4-dioxane, etc.
  • esters ethyl acetate, methyl acetate, etc.
  • the dispersion medium contains 5 to 100% by mass of water in 100% by mass of the dispersion medium because water is required for hydrolysis of the silica precursor.
  • the pH of the dispersion medium is preferably 7 or more, more preferably 8 or more, and particularly preferably 9 to 10 from the viewpoint that the silica precursor is easily three-dimensionally polymerized to form a shell.
  • a pH at which the fine particles are not dissolved that is, 8 or more is preferable.
  • the acid include inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.), organic acids (formic acid, acetic acid, etc.), acidic cation exchange resins, and the like.
  • the core fine particles are thermally decomposable organic fine particles
  • the core fine particles can be thermally decomposed and removed by heating.
  • the core fine particles are light-soluble inorganic fine particles
  • the core fine particles can be dissolved and removed by irradiation with light.
  • the second liquid medium is a liquid in which the hollow silica particles are dispersed.
  • the second liquid medium is not particularly limited as long as the hollow silica particles can be dispersed and applied.
  • the dispersion medium used in the above spherical hollow silica particle production process may be used as it is as the second liquid medium.
  • the second coating agent may include a binder component.
  • a binder component include a matrix precursor in the first coating agent.
  • Examples of the method for applying the second coating agent include the same method as the method for applying the first coating agent.
  • a spray coating method is preferable because it can be uniformly applied.
  • the third coating film is formed by applying a third coating agent for forming the antifouling layer 5.
  • the third coating agent includes, for example, an antifouling agent and a third liquid medium in which the antifouling agent is dissolved or dispersed.
  • Anti-fouling agent As the antifouling agent, general antifouling agents such as fluorine-containing compounds and photocatalytic compounds can be used.
  • fluorine-containing compound examples include fluorine-containing organosilicon compounds containing an alkoxy group and the like.
  • fluorine-containing organosilicon compound a compound containing an amino group is also suitable.
  • fluorine-containing organosilicon compounds include TSL8233 and TSL8257 manufactured by GE Toshiba Silicone Co., Ltd., OPTOOL DSX manufactured by Daikin Industries, Ltd., KY-130 manufactured by Shin-Etsu Chemical Co., Ltd., and KP-801.
  • the photocatalytic compound hardly adheres to dirt and has a self-cleaning action. Although it does not specifically limit as a photocatalyst,
  • the catalyst containing the following 1st components can be used.
  • the first component has a property that the antifouling layer is hydrophilized by light irradiation and decomposes organic substances.
  • the first component for example, a catalyst that works with light having a wavelength of 350 to 500 nm can be used.
  • the first component include titanium oxide, zinc oxide, tin oxide, or tungsten oxide.
  • titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide.
  • tungsten oxide crystalline tungsten oxide or amorphous tungsten oxide may be used.
  • anatase type titanium oxide preferably anatase type titanium oxide, rutile type titanium oxide, or brookite type titanium oxide can be used. These titanium oxides are non-toxic and have even better chemical stability.
  • a second component In addition to the first component, a second component may be included.
  • the second component imparts hydrophilicity to the antifouling layer. When the light for exhibiting the photocatalytic action of the first component is not sufficiently obtained, it has a function of assisting hydrophilicity.
  • the adhesion with the first coating film or the second coating film strength, durability, and weather resistance can be further enhanced.
  • Examples of the second component include silica, alkali silicate, and amorphous titanium oxide.
  • Examples of the alkali silicate include sodium silicate, potassium silicate, and lithium silicate. These components exemplified as the second component may be used alone or in combination.
  • a third component may be included.
  • the third component is a metal compound that is less hydrophilic than the first component and is not decomposed by the first component. Note that the third component may not be included. However, when the third component is included, the self-cleaning action can be further enhanced.
  • oxides examples include Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2 O 3 , In 2 O 3 , and HfO 2. Can be mentioned. These may be used alone or in combination.
  • inorganic salt examples include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, or sodium phosphate of the above metals. Is mentioned.
  • Examples of the organic salt include oxalate salts, propionate salts, metal alkoxides, hydrolysates of metal alkoxides, and chelate compounds.
  • metal alkoxides include compounds in which an alkoxyl group having about 1 to 8 carbon atoms is bonded to a metal atom.
  • zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like can be mentioned.
  • Examples of chelate compounds include ⁇ -ketone ester complexes, ⁇ -diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
  • the third liquid medium includes an organic solvent.
  • the organic solvent is preferably an organic compound having a perfluoro group excellent in solubility of the fluorine-containing organosilicon compound and having 4 or more carbon atoms, such as perfluorohexane, perfluorocyclobutane, perfluorooctane, perfluorodecane.
  • perfluoroether oil and chlorotrifluoroethylene oligomer oil can be used.
  • Freon 225 is mentioned.
  • One of these organic solvents can be used alone or in admixture of two or more.
  • a solvent that can dissolve or disperse the photocatalytic compound can be used as the third liquid medium.
  • Such a solvent examples include alcohols such as water, ethylene glycol, butyl cellosolve, isopropanol, n-butanol, ethanol and methanol, aromatic hydrocarbons such as toluene and xylene, and aliphatics such as hexane, cyclohexane and heptane.
  • alcohols such as water, ethylene glycol, butyl cellosolve, isopropanol, n-butanol, ethanol and methanol
  • aromatic hydrocarbons such as toluene and xylene
  • aliphatics such as hexane, cyclohexane and heptane.
  • Hydrocarbons esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethylacetamide and dimethylformamide, chloroform and methylene chloride , Halogen compounds such as carbon tetrachloride, dimethyl sulfoxide, or nitrobenzene. These solvents may be used alone or in combination.
  • Examples of the third coating agent application method include the same method as the first coating agent application method.
  • a spray coating method is preferable because it can be uniformly applied.
  • the first coating film 11 is formed on the first main surface 2a of the substrate 2 by applying a first coating agent.
  • the second coating film 12 is formed on the first coating film 11 by applying a second coating agent.
  • a third coating film 13 is formed on the second coating film 12 by applying a third coating agent.
  • the first coating film 11, the second coating film 12 and the third coating film 13 are simultaneously heated to form the antiglare layer 3, the antireflection layer 4 and the antifouling layer 5 shown in FIG.
  • the heating temperature is preferably in the range of 80 to 250 ° C, and more preferably in the range of 100 to 230 ° C. By heating within this range, polycondensation of hydrolyzable groups remaining in the first coating film 11, the first coating film 12, and the third coating film 13 can be promoted, It can be densified.
  • the first coating film 11, the second coating film 12 and the third coating film 13 are heated at the same time, so that the antiglare layer 3, the antireflection layer 4 and the antifouling layer 5 are heated. Therefore, the antiglare member 1 can be produced efficiently.
  • FIG. 3 and 4 are schematic cross-sectional views for explaining another example of the method for producing the antiglare member of the first embodiment shown in FIG.
  • the first coating film 11 and the second coating film 12 is heated at the same time, and the antiglare layer 3 and the antireflection layer 4 are formed on the first main surface 2a of the substrate 2 as shown in FIG.
  • the heating temperature is preferably in the range of 80 to 250 ° C., and more preferably in the range of 100 to 230 ° C., as described above.
  • a third coating film 13 is formed on the antireflection layer 4 by applying a third coating agent, and the antifouling layer 5 is formed by heating the third coating film 13.
  • the pollution protection layer 5 when using the above-mentioned photocatalytic compound as a 3rd coating agent, it is desirable to form the pollution protection layer 5 by heating the 3rd coating film 13 at the temperature of 300 degrees C or less. In this case, the self-cleaning action of the antifouling layer 5 can be further enhanced.
  • the antiglare member 1 shown in FIG. 1 can be manufactured. Also by the manufacturing method, the antiglare member 1 can be efficiently manufactured because the antiglare layer 3 and the antireflection layer 4 can be formed by simultaneously heating the first coating film 11 and the second coating film 12. can do.
  • the anti-glare member which does not have the antifouling layer 5 when manufacturing the anti-glare member which does not have the antifouling layer 5, it can manufacture with the manufacturing method shown in FIG.3 and FIG.4.
  • FIG. 5 is typical sectional drawing for demonstrating an example of the method of manufacturing the glare-proof member of the 2nd Embodiment of this invention.
  • the antiglare substrate 20 is used as the substrate.
  • the antiglare substrate 20 has a first main surface 20a and a second main surface 20b that face each other.
  • An antiglare function is imparted to the first main surface 20a of the antiglare substrate 20 by forming an uneven structure.
  • the concavo-convex structure can be physically formed by, for example, an etching process. Moreover, you may form an uneven
  • a second coating agent is applied on the first main surface 20 a of the antiglare substrate 20 to form the second coating film 12, and the second coating film 12 is formed on the second coating film 12.
  • a third coating agent is applied to form a third coating film 13.
  • the 2nd coating agent and the 3rd coating agent can use the thing similar to 1st Embodiment.
  • the 2nd coating film 12 and the 3rd coating film 13 are heated simultaneously, and an antireflection layer and an antifouling layer are formed.
  • the heating temperature at this time is preferably in the range of 80 to 250 ° C., more preferably in the range of 100 to 230 ° C.
  • the temperature is raised to a predetermined temperature within a range of 100 to 230 ° C. over 20 to 60 minutes, and the predetermined temperature is maintained for 20 to 60 minutes, and then over 30 to 90 minutes.
  • the temperature is preferably lowered to 70 ° C. or lower.
  • FIG. 6 is a schematic cross-sectional view for explaining another example of the method for producing the antiglare member of the second embodiment of the present invention.
  • the substrate 2 on which the antiglare layer 3 is formed is used as the antiglare substrate 20.
  • the anti-glare layer 3 is formed by applying the same first coating agent as in the first embodiment to form a first coating film, and heating the first coating film at the same temperature as in the first embodiment. Can be formed.
  • the second coating agent is applied on the antiglare substrate 20 to form the second coating film 12
  • the third coating agent is applied on the second coating film 12.
  • the third coating film 13 is formed.
  • the second coating film 12 and the third coating film 13 are simultaneously heated to form the antireflection layer 4 and the antifouling layer 5 as shown in FIG.
  • the second coating film 12 and the third coating film 13 can be heated at the same time to form the antireflection layer 4 and the antifouling layer 5. It can be manufactured efficiently.
  • FIG. 8 is a schematic cross-sectional view showing an antiglare member according to a third embodiment of the present invention.
  • the antiglare layer 3 is provided on the first main surface 2 a of the substrate 2, and the antifouling layer 5 is provided on the antiglare layer 3. Is provided.
  • FIG. 9 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the third embodiment shown in FIG.
  • the first coating agent is applied on the substrate 2 to form the first coating film 11, and the third coating agent is applied on the first coating film 11.
  • a third coating film 13 is formed.
  • the same thing as a 1st embodiment can be used for the 1st coating agent and the 3rd coating agent.
  • the 1st coating film 11 and the 3rd coating film 13 are heated simultaneously, and as shown in FIG. 8, the anti-glare layer 3 and the antifouling layer 5 are formed.
  • the heating temperature at this time can be heated at the same temperature as in the first embodiment.
  • the first coating film 11 and the third coating film 13 can be heated simultaneously to form the antiglare layer 3 and the antifouling layer 5. Can be manufactured automatically.
  • the compound having a hydroxyl group in the first coating film 11 and the third coating film 13 is formed.
  • the hydroxyl groups of the respective coating films are condensed with each other at the interface of the coating film, so that the bond strength between the antiglare layer 3 and the antifouling layer 5 can be increased.
  • Example 1 (First coating agent) A silica precursor composed of tetraethyl orthosilicate (TEOS) was used as the matrix precursor, and a mixture composed of an aqueous nitric acid solution, ethanol, isopropanol and methyl ethyl ketone was used as the first liquid medium. And the 1st coating agent was obtained by stirring a matrix precursor and a 1st liquid medium until it became uniform.
  • TEOS tetraethyl orthosilicate
  • the second liquid medium a mixed alcohol composed of ethanol, isopropanol and methyl ethyl ketone was used. By stirring the hollow silica particles and the second liquid medium until uniform, a second coating agent was obtained.
  • a fluorine-containing organosilicon compound solution (UF503 manufactured by Daikin Industries, Ltd .: 0.1 mass%, Novec 7200: 99.9 mass% manufactured by 3M) was used.
  • a first coating agent is applied on a glass plate (Nippon Electric Glass Co., Ltd., tempered glass Dinorex (registered trademark), 100 mm ⁇ 100 mm) by a spray method under the following conditions, and a first coating film is formed. Formed.
  • Nozzle Two-fluid system Discharge amount: 4.6 g / min
  • Nozzle movement speed 19 m / min
  • No. of nozzles 4
  • Nozzle arrangement interval 3 mm
  • Nozzle Two-fluid system Discharge amount: 5.4 g / min
  • Nozzle moving speed 40 m / min
  • No. of nozzles 4
  • Nozzle arrangement interval 10 mm
  • Nozzle Two-fluid system Discharge amount: 3 g / min
  • Nozzle movement speed 40 m / min
  • No. of nozzles 4
  • Nozzle arrangement interval 5 mm
  • the first coating film, the second coating film, and the third coating film are baked in an oven at 150 ° C. for 30 minutes to form an antiglare layer, an antireflection layer, and an antifouling layer, respectively, and an antiglare member Got.
  • the reflectance (regular reflection) of light (wavelength 380 to 780 nm) perpendicular to the main surface was measured from the side on which the antiglare layer, antireflection layer, and antifouling layer were formed. As a result, the minimum reflectance within the wavelength range was 0.04 to 4.0%.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Provided is a production method by which an anti-glare member is able to be efficiently produced. A method for producing an anti-glare member 1 having a substrate 2, an anti-glare layer 3 that is arranged on the substrate 2 and has a projected and recessed structure configured from an inorganic material, and an anti-reflection layer 4 that is arranged on the anti-glare layer 3 and contains hollow silica particles, which is characterized by comprising: a step for forming a first coating film by applying a first coating agent for forming the anti-glare layer 3 onto the substrate 2; a step for forming a second coating film by applying a second coating agent for forming the anti-reflection layer 4 onto the first coating film; and a step for forming the anti-glare layer 3 and the anti-reflection layer 4 by heating the first coating film and the second coating film at the same time.

Description

防眩部材の製造方法Manufacturing method of antiglare member
 本発明は、防眩部材の製造方法に関する。 The present invention relates to a method for manufacturing an antiglare member.
 各種機器(テレビ、パーソナルコンピュータ、スマートフォン、携帯電話、ナビゲーションシステム等)に備えられた画像表示装置(液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ等)においては、室内照明(蛍光灯等)、太陽光等の外光により反射像が表示面に映り込むことによって視認性が低下する。また、各種機器の操作の度に、画像表示装置の表面に指が触れるため、画像表示装置の表面に汚れが付着する。 In image display devices (liquid crystal displays, organic EL displays, plasma displays, etc.) provided in various devices (TVs, personal computers, smartphones, mobile phones, navigation systems, etc.), indoor lighting (fluorescent lamps, etc.), sunlight, etc. Visibility is reduced by the reflected image reflected on the display surface by the external light. In addition, since the finger touches the surface of the image display device every time the various devices are operated, the surface of the image display device is contaminated.
 外光による映り込みを抑える処理としては、アンチグレア処理または反射防止処理が知られている。 As anti-glare processing or anti-reflection processing is known as processing for suppressing reflection due to external light.
 特許文献1~3には、表示面に凹凸を形成し、外光を拡散反射させることで、反射像を不鮮明にするアンチグレア処理が開示されている。 Patent Documents 1 to 3 disclose an anti-glare process that makes a reflected image unclear by forming irregularities on a display surface and diffusing and reflecting external light.
 特許文献4には、表示面に中空シリカ粒子層を形成し、外光の反射自体を抑える反射防止処理が開示されている。 Patent Document 4 discloses an antireflection treatment that forms a hollow silica particle layer on a display surface and suppresses reflection of external light itself.
 画像表示装置の表面に汚れが付着することを抑制する処理としては、特許文献5に示すように、表示面にフッ素化合物を含む防汚層を形成する防汚処理が知られている。 As a process for suppressing the adhesion of dirt on the surface of an image display device, as shown in Patent Document 5, an antifouling process for forming an antifouling layer containing a fluorine compound on a display surface is known.
 そして、外光の映り込みを抑え、画像表示装置の表面に汚れが付着することを抑制するために、特許文献6に示すように、アンチグレア処理、反射防止処理、及び防汚処理を行った防眩部材が知られている。 Then, in order to suppress the reflection of external light and to prevent dirt from adhering to the surface of the image display device, as shown in Patent Document 6, anti-glare treatment, antireflection treatment, and antifouling treatment are performed. Dazzling members are known.
特開2001-281405号公報JP 2001-281405 A 特開2001-305314号公報JP 2001-305314 A 特開2007-047722号公報JP 2007-047722 A 特開2001-233611号公報Japanese Patent Laid-Open No. 2001-233611 国際公開第2014/199991号International Publication No. 2014/199991 国際公開第2014/034720号International Publication No. 2014/034720
 一般に、アンチグレア処理、反射防止処理、及び防汚処理は別々に行われる。つまり、アンチグレア処理が完了した後に反射防止処理を行い、最後に防汚処理が行われる。そして、各処理工程は、加熱処理を含む。そのため、防眩部材が製造されるまでに、少なくとも3度の加熱処理が必要となる。よって、防眩部材の製造に多くの時間を要する。 Generally, anti-glare treatment, antireflection treatment, and antifouling treatment are performed separately. That is, after the antiglare process is completed, the antireflection process is performed, and finally the antifouling process is performed. Each processing step includes heat treatment. Therefore, at least three heat treatments are required before the antiglare member is manufactured. Therefore, it takes a lot of time to manufacture the antiglare member.
 本発明の目的は、効率的に製造することができる防眩部材の製造方法を提供することにある。 An object of the present invention is to provide a method of manufacturing an antiglare member that can be efficiently manufactured.
 本発明の第1の局面の防眩部材の製造方法は、基板と、基板の上に設けられ、無機材料により構成された凹凸構造を有するアンチグレア層と、アンチグレア層の上に設けられ、中空シリカ粒子を含む反射防止層とを有する防眩部材を製造する方法であって、アンチグレア層を形成するための第1のコーティング剤を基板の上に塗布し、第1の塗膜を形成する工程と、第1の塗膜の上に、反射防止層を形成するための第2のコーティング剤を塗布し、第2の塗膜を形成する工程と、第1の塗膜及び第2の塗膜を同時に加熱してアンチグレア層及び反射防止層を形成する工程とを備えることを特徴としている。 A method for producing an antiglare member according to a first aspect of the present invention includes a substrate, an antiglare layer having a concavo-convex structure formed of an inorganic material provided on the substrate, a hollow silica provided on the antiglare layer, and A method of manufacturing an antiglare member having an antireflection layer containing particles, the step of applying a first coating agent for forming an antiglare layer on a substrate and forming a first coating film; Applying a second coating agent for forming an antireflection layer on the first coating film, forming a second coating film, and a first coating film and a second coating film. And a step of simultaneously heating to form an antiglare layer and an antireflection layer.
 本発明の第1の局面の防眩部材の製造方法は、反射防止層の上に設けられる防汚層をさらに有する防眩部材を製造する方法であってもよい。この場合、第2の塗膜の上に、防汚層を形成するための第3のコーティング剤を塗布し、第3の塗膜を形成する工程をさらに備え、第1の塗膜及び第2の塗膜を同時に加熱する工程において、さらに第3の塗膜も同時に加熱してアンチグレア層、反射防止層及び防汚層を形成することが好ましい。 The method for producing an antiglare member according to the first aspect of the present invention may be a method for producing an antiglare member further having an antifouling layer provided on the antireflection layer. In this case, the method further includes a step of applying a third coating agent for forming an antifouling layer on the second coating film to form a third coating film, and the first coating film and the second coating film. In the step of simultaneously heating the coating film, it is preferable to further heat the third coating film at the same time to form an antiglare layer, an antireflection layer and an antifouling layer.
 本発明の第2の局面の防眩部材の製造方法は、防眩基板と、防眩基板の上に設けられ、中空シリカ粒子を含む反射防止層と、反射防止層の上に設けられる防汚層とを有する防眩部材を製造する方法であって、防眩基板の上に、反射防止層を形成するための第2のコーティング剤を塗布し、第2の塗膜を形成する工程と、第2の塗膜の上に、防汚層を形成するための第3のコーティング剤を塗布し、第3の塗膜を形成する工程と、第2の塗膜及び第3の塗膜を同時に加熱して反射防止層及び防汚層を形成する工程とを備えることを特徴としている。 The method for producing an antiglare member according to the second aspect of the present invention includes an antiglare substrate, an antireflection layer provided on the antiglare substrate, comprising hollow silica particles, and an antifouling provided on the antireflection layer. And a step of applying a second coating agent for forming an antireflection layer on an antiglare substrate and forming a second coating film, A step of applying a third coating agent for forming an antifouling layer on the second coating film to form the third coating film, and the second coating film and the third coating film simultaneously. And a step of forming an antireflection layer and an antifouling layer by heating.
 本発明の第3の局面の防眩部材の製造方法は、基板と、基板の上に設けられ、無機材料により構成された凹凸構造を有するアンチグレア層と、アンチグレア層の上に設けられる防汚層とを有する防眩部材を製造する方法であって、アンチグレア層を形成するための第1のコーティング剤を基板の上に塗布し、第1の塗膜を形成する工程と、第1の塗膜の上に、防汚層を形成するための第3のコーティング剤を塗布し、第3の塗膜を形成する工程と、第1の塗膜及び第3の塗膜を同時に加熱してアンチグレア層及び防汚層を形成する工程とを備えることを特徴としている。 A method for producing an antiglare member according to a third aspect of the present invention includes a substrate, an antiglare layer provided on the substrate and having a concavo-convex structure made of an inorganic material, and an antifouling layer provided on the antiglare layer. A step of applying a first coating agent for forming an antiglare layer on a substrate to form a first coating film, and a first coating film. A third coating agent for forming an antifouling layer is applied on the surface to form a third coating film, and the first coating film and the third coating film are simultaneously heated to produce an antiglare layer. And a step of forming an antifouling layer.
 本発明によれば、防眩部材を効率的に製造することができる。 According to the present invention, an antiglare member can be produced efficiently.
図1は、本発明の第1の実施形態の防眩部材を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an antiglare member according to a first embodiment of the present invention. 図2は、図1に示す第1の実施形態の防眩部材を製造する方法の一例を説明するための模式的断面図である。FIG. 2 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the first embodiment shown in FIG. 図3は、図1に示す第1の実施形態の防眩部材を製造する方法の他の例を説明するための模式的断面図である。FIG. 3 is a schematic cross-sectional view for explaining another example of the method for producing the antiglare member of the first embodiment shown in FIG. 図4は、図1に示す第1の実施形態の防眩部材を製造する方法の他の例を説明するための模式的断面図である。FIG. 4 is a schematic cross-sectional view for explaining another example of the method for producing the antiglare member of the first embodiment shown in FIG. 図5は、本発明の第2の実施形態の防眩部材を製造する方法の一例を説明するための模式的断面図である。FIG. 5: is typical sectional drawing for demonstrating an example of the method of manufacturing the glare-proof member of the 2nd Embodiment of this invention. 図6は、本発明の第2の実施形態の防眩部材を製造する方法の他の例を説明するための模式的断面図である。FIG. 6: is typical sectional drawing for demonstrating the other example of the method of manufacturing the glare-proof member of the 2nd Embodiment of this invention. 図7は、図6に示す製造方法で得られる第2の実施形態の防眩部材を示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing the antiglare member of the second embodiment obtained by the manufacturing method shown in FIG. 図8は、本発明の第3の実施形態の防眩部材を示す模式的断面図である。FIG. 8 is a schematic cross-sectional view showing an antiglare member according to a third embodiment of the present invention. 図9は、図8に示す第3の実施形態の防眩部材を製造する方法の一例を説明するための模式的断面図である。FIG. 9 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the third embodiment shown in FIG.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 (第1の実施形態)
 図1は、本発明の第1の実施形態の防眩部材を示す模式的断面図である。図1に示すように、本実施形態の防眩部材1は、基板2と、基板2の上に設けられるアンチグレア層3と、アンチグレア層3の上に設けられる反射防止層4と、反射防止層4の上に設けられる防汚層5とを有する。アンチグレア層3は、無機材料により構成された凹凸構造を有する。反射防止層4は、中空シリカ粒子を含む。そのため、反射防止層4は、反射防止機能を有する。基板2は、互いに対向する第1の主面2a及び第2の主面2bを有しており、アンチグレア層3は第1の主面2aの上に設けられている。
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing an antiglare member according to a first embodiment of the present invention. As shown in FIG. 1, the antiglare member 1 of this embodiment includes a substrate 2, an antiglare layer 3 provided on the substrate 2, an antireflection layer 4 provided on the antiglare layer 3, and an antireflection layer. 4 and antifouling layer 5 provided on 4. The antiglare layer 3 has a concavo-convex structure made of an inorganic material. The antireflection layer 4 includes hollow silica particles. Therefore, the antireflection layer 4 has an antireflection function. The substrate 2 has a first main surface 2a and a second main surface 2b facing each other, and the antiglare layer 3 is provided on the first main surface 2a.
 基板2の材料としては、ガラス、樹脂等の透明材料が挙げられ、後述する加熱工程時の耐熱性の点から、ガラスが好ましい。ガラスとしては、ソーダライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、無アルカリガラス等が挙げられる。強化処理によって大きな応力が入りやすく、画像表示装置の視認側に配置される物品として好適である点から、アルミノシリケートガラスが好ましい。また、基板2は、風冷強化、化学強化等の強化処理がなされていることが好ましい。基材2は、アルミノシリケートガラスを化学強化することにより得られる化学強化アルミノシリケートガラスが特に好ましい。 The material of the substrate 2 includes transparent materials such as glass and resin, and glass is preferable from the viewpoint of heat resistance during the heating process described later. Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass. Aluminosilicate glass is preferable because large stress is easily applied by the tempering treatment and is suitable as an article placed on the viewing side of the image display device. The substrate 2 is preferably subjected to a strengthening process such as air cooling strengthening or chemical strengthening. The substrate 2 is particularly preferably a chemically strengthened aluminosilicate glass obtained by chemically strengthening an aluminosilicate glass.
 樹脂としては、ポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリメタクリル酸メチル等が挙げられる。 Examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.
 基板2の形状としては、板状、フィルム状等が挙げられる。近年、各種機器(テレビ、パーソナルコンピュータ、スマートフォン、カーナビゲーション等)において、画像表示装置の表示面が曲面とされたものが知られている。そのため、基板2は、画像表示装置の形状に合わせた湾曲形状であってもよい。 Examples of the shape of the substrate 2 include a plate shape and a film shape. 2. Description of the Related Art In recent years, various devices (TVs, personal computers, smartphones, car navigation systems, etc.) in which the display surface of an image display device is a curved surface are known. Therefore, the substrate 2 may have a curved shape that matches the shape of the image display device.
 また、基板2は、基板本体の表面に機能層を有するものであってもよい。機能層としては、アンダーコート層、密着改善層、保護層、着色層等が挙げられる。 Further, the substrate 2 may have a functional layer on the surface of the substrate body. Examples of the functional layer include an undercoat layer, an adhesion improving layer, a protective layer, and a colored layer.
 図2は、図1に示す第1の実施形態の防眩部材を製造する方法の一例を説明するための模式的断面図である。図2を参照して説明する製造方法は、本発明の第1の局面に従う製造方法であり、第1の塗膜を形成する工程と、第2の塗膜を形成する工程と、第3の塗膜を形成する工程とを備えている。以下、各工程について説明する。 FIG. 2 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the first embodiment shown in FIG. The manufacturing method described with reference to FIG. 2 is a manufacturing method according to the first aspect of the present invention, and includes a step of forming a first coating film, a step of forming a second coating film, and a third method. And a step of forming a coating film. Hereinafter, each step will be described.
 <第1の塗膜の形成工程>
 第1の塗膜は、アンチグレア層3を形成するための第1のコーティング剤を塗布することにより形成する。第1のコーティング剤は、例えば、マトリックス前駆体、及びマトリックス前駆体を溶解する第1の液状媒体を含んでいる。
<Formation process of 1st coating film>
The first coating film is formed by applying a first coating agent for forming the antiglare layer 3. The first coating agent includes, for example, a matrix precursor and a first liquid medium that dissolves the matrix precursor.
 (マトリックス前駆体)
 マトリックス前駆体としては、シリカ前駆体、アルミナ前駆体、ジルコニア前駆体、チタニア前駆体等の無機前駆体が挙げられる。反応性を制御しやすい点から、シリカ前駆体が好ましい。
(Matrix precursor)
Examples of the matrix precursor include inorganic precursors such as a silica precursor, an alumina precursor, a zirconia precursor, and a titania precursor. From the viewpoint of easily controlling the reactivity, a silica precursor is preferable.
 シリカ前駆体としては、ケイ素原子に結合した炭化水素基および加水分解性基を有するシラン化合物、シラン化合物の加水分解縮合物、シラザン化合物等が挙げられる。膜厚が厚くても防眩膜のクラックが充分に抑えられる点から、シラン化合物、およびその加水分解縮合物のいずれか一方または両方を少なくとも含むことが好ましい。 Examples of the silica precursor include a silane compound having a hydrocarbon group and a hydrolyzable group bonded to a silicon atom, a hydrolysis condensate of a silane compound, a silazane compound, and the like. In view of sufficiently suppressing cracks in the antiglare film even when the film thickness is large, it is preferable to include at least one of or both of the silane compound and the hydrolysis condensate thereof.
 シラン化合物は、ケイ素原子に結合した炭化水素基および加水分解性基を有する。炭化水素基は、炭素原子間に-O-、-S-、-CO-および-NR’-(R’は水素原子または1価の炭化水素基である。)から選ばれる1つまたは2つ以上を組み合わせた基を有していてもよい。 The silane compound has a hydrocarbon group and a hydrolyzable group bonded to a silicon atom. The hydrocarbon group is one or two selected from —O—, —S—, —CO— and —NR′— (R ′ is a hydrogen atom or a monovalent hydrocarbon group) between carbon atoms. You may have the group which combined the above.
 炭化水素基は、1つのケイ素原子に結合した1価の炭化水素基であってもよく、2つのケイ素原子に結合した2価の炭化水素基であってもよい。1価の炭化水素基としては、アルキル基、アルケニル基、アリール基等が挙げられる。2価の炭化水素基としては、アルキレン基、アルケニレン基、アリーレン基等が挙げられる。 The hydrocarbon group may be a monovalent hydrocarbon group bonded to one silicon atom or a divalent hydrocarbon group bonded to two silicon atoms. Examples of the monovalent hydrocarbon group include an alkyl group, an alkenyl group, and an aryl group. Examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, and an arylene group.
 加水分解性基としては、アルコキシ基、アシロキシ基、ケトオキシム基、アルケニルオキシ基、アミノ基、アミノキシ基、アミド基、イソシアネート基、ハロゲン原子等が挙げられ、シラン化合物の安定性と加水分解のしやすさとのバランスの点から、アルコキシ基、イソシアネート基およびハロゲン原子(特に塩素原子)が好ましい。アルコキシ基としては、炭素数1~3のアルコキシ基が好ましく、メトキシ基またはエトキシ基がより好ましい。 Examples of the hydrolyzable group include an alkoxy group, an acyloxy group, a ketoxime group, an alkenyloxy group, an amino group, an aminoxy group, an amide group, an isocyanate group, a halogen atom and the like, and the stability of the silane compound and the ease of hydrolysis. From the viewpoint of balance, an alkoxy group, an isocyanate group, and a halogen atom (particularly a chlorine atom) are preferable. As the alkoxy group, an alkoxy group having 1 to 3 carbon atoms is preferable, and a methoxy group or an ethoxy group is more preferable.
 シラン化合物としては、アルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等)、アルキル基を有するアルコキシシラン(メチルトリメトキシシラン、エチルトリエトキシシラン等)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等)等が挙げられる。 Examples of silane compounds include alkoxysilanes (tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, etc.), alkoxysilanes having an alkyl group (methyltrimethoxysilane, ethyltriethoxysilane, etc.), alkoxysilanes having a vinyl group (vinyl) Trimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilane having an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl) Diethoxysilane, 3-glycidoxypropyltriethoxysilane and the like), alkoxysilanes having an acryloyloxy group (such as 3-acryloyloxypropyltrimethoxysilane) and the like.
 防眩膜の各特性の点から、アルコキシシランおよびアルコキシシランの加水分解縮合物のいずれか一方または両方が好ましく、アルコキシシランの加水分解縮合物がより好ましい。 From the viewpoint of each characteristic of the antiglare film, one or both of alkoxysilane and alkoxysilane hydrolysis condensate are preferable, and alkoxysilane hydrolysis condensate is more preferable.
 シラザン化合物は、その構造内にケイ素と窒素の結合(-SiN-)をもった化合物である。 The silazane compound is a compound having a silicon-nitrogen bond (—SiN—) in its structure.
 シラザン化合物としては、低分子化合物でも高分子化合物(所定の繰り返し単位を有するポリマー)であってもよい。低分子系のシラザン化合物としては、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、ジメチルアミノトリメチルシラン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメテルシクロトリシラザンなどが挙げられる。 The silazane compound may be a low molecular compound or a high molecular compound (a polymer having a predetermined repeating unit). Examples of low molecular weight silazane compounds include hexamethyldisilazane, hexaphenyldisilazane, dimethylaminotrimethylsilane, trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, and the like. It is done.
 アルミナ前駆体としては、アルミニウムアルコキシド、アルミニウムアルコキシドの加水分解縮合物、水溶性アルミニウム塩、アルミニウムキレート等が挙げられる。ジルコニア前駆体としては、ジルコニウムアルコキシド、ジルコニウムアルコキシドの加水分解縮合物等が挙げられる。チタニア前駆体としては、チタンアルコキシド、チタンアルコキシドの加水分解縮合物等が挙げられる。 Examples of the alumina precursor include aluminum alkoxide, hydrolysis condensate of aluminum alkoxide, water-soluble aluminum salt, aluminum chelate and the like. Examples of the zirconia precursor include zirconium alkoxide, a hydrolysis condensate of zirconium alkoxide, and the like. Examples of the titania precursor include titanium alkoxide, hydrolysis condensate of titanium alkoxide, and the like.
 (第1の液状媒体)
 第1の液状媒体は、マトリックス前駆体を溶解する溶媒である。第1の液状媒体としては、たとえば、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。
(First liquid medium)
The first liquid medium is a solvent that dissolves the matrix precursor. Examples of the first liquid medium include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, sulfur-containing compounds, and the like.
 アルコール類としては、メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール等が挙げられる。 Examples of alcohols include methanol, ethanol, isopropanol, butanol, diacetone alcohol and the like.
 ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。 Examples of ketones include acetone, methyl ethyl ketone, and methyl isobutyl ketone.
 エーテル類としては、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。 Examples of ethers include tetrahydrofuran and 1,4-dioxane.
 セロソルブ類としては、メチルセロソルブ、エチルセロソルブ等が挙げられる。 Examples of cellosolves include methyl cellosolve and ethyl cellosolve.
 エステル類としては、酢酸メチル、酢酸エチル等が挙げられる。 Examples of the esters include methyl acetate and ethyl acetate.
 グリコールエーテル類としては、エチレングリコールモノアルキルエーテル等が挙げられる。 Examples of glycol ethers include ethylene glycol monoalkyl ether.
 含窒素化合物としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルピロリドン等が挙げられる。 Examples of the nitrogen-containing compound include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone and the like.
 含硫黄化合物としては、ジメチルスルホキシド等が挙げられる。 Examples of sulfur-containing compounds include dimethyl sulfoxide.
 第1の液状媒体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 1st liquid medium may be used individually by 1 type, and may be used in combination of 2 or more type.
 マトリックス前駆体におけるシラン化合物等の加水分解に水が必要となるため、シラン化合物の加水分解後に液状媒体の置換を行わない限り、第1の液状媒体には少なくとも水が含まれる。第1の液状媒体は、水と他の液体との混合液であってもよい。他の液体としては、たとえば、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。他の液体のうち、マトリックス前駆体の溶媒としては、アルコール類が好ましく、メタノール、エタノール、イソプロピルアルコール、ブタノールが特に好ましい。 Since water is required for hydrolysis of the silane compound and the like in the matrix precursor, the first liquid medium contains at least water unless the liquid medium is replaced after hydrolysis of the silane compound. The first liquid medium may be a mixed liquid of water and another liquid. Examples of other liquids include alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds. Among the other liquids, alcohols are preferable as the solvent for the matrix precursor, and methanol, ethanol, isopropyl alcohol, and butanol are particularly preferable.
 第1の液状媒体は、マトリックス前駆体の加水分解および縮合を促進する酸触媒を含んでもよい。酸触媒は、マトリックス前駆体の加水分解および縮合を促進し、塗膜を短時間で形成させる成分である。酸触媒は、マトリックス前駆体の溶液の調製の際に、原料(アルコキシシラン等)の加水分解、縮合のために添加されたものであってもよく、必須成分からなる塗布液を調製した後にさらに添加されたものであってもよい。酸触媒としては、無機酸(硝酸、硫酸、塩酸等)、有機酸(ギ酸、シュウ酸、酢酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等)が挙げられる。 The first liquid medium may contain an acid catalyst that promotes hydrolysis and condensation of the matrix precursor. The acid catalyst is a component that accelerates hydrolysis and condensation of the matrix precursor and forms a coating film in a short time. The acid catalyst may be added for hydrolysis and condensation of the raw material (alkoxysilane, etc.) during the preparation of the matrix precursor solution, and further after preparing the coating liquid consisting of essential components. It may be added. Examples of the acid catalyst include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
 (第1のコーティング剤の塗布方法)
 第1のコーティング剤の塗布方法としては、公知のウェットコート法(スプレーコート法、スピンコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等)等が挙げられる。塗布方法としては、凹凸を形成しやすい点から、スプレーコート法が好ましい。
(Application method of first coating agent)
As a coating method of the first coating agent, known wet coating methods (spray coating method, spin coating method, dip coating method, die coating method, curtain coating method, screen coating method, ink jet method, flow coating method, gravure coating method) , Bar coat method, flexo coat method, slit coat method, roll coat method, etc.). As a coating method, a spray coating method is preferable from the viewpoint of easily forming irregularities.
 スプレーコート法に用いるノズルとしては、2流体ノズル、1流体ノズル等が挙げられる。 Examples of nozzles used in the spray coating method include a two-fluid nozzle and a one-fluid nozzle.
 ノズルから吐出される第1のコーティング剤の液滴の粒径は、通常0.1~100μmであり、1~50μmが好ましい。液滴の粒径が1μm以上であれば、防眩効果が充分に発揮される凹凸を短時間で形成できる。液滴の粒径が100μm以下であれば、防眩効果が充分に発揮される適度な凹凸を形成しやすい。 The particle size of the first coating agent droplets discharged from the nozzle is usually 0.1 to 100 μm, preferably 1 to 50 μm. If the particle size of the droplets is 1 μm or more, it is possible to form irregularities that sufficiently exhibit the antiglare effect in a short time. If the particle size of the droplet is 100 μm or less, it is easy to form moderate irregularities that can sufficiently exhibit the antiglare effect.
 第1のコーティング剤の液滴の粒径は、ノズルの種類、スプレー圧力、液量等により適宜調整できる。たとえば、2流体ノズルでは、スプレー圧力が高くなるほど液滴は小さくなり、また、液量が多くなるほど液滴は大きくなる。 The particle size of the droplets of the first coating agent can be adjusted as appropriate according to the type of nozzle, spray pressure, liquid volume, and the like. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
 液滴の粒径は、レーザ測定器によって測定されるザウター平均粒子径である。 The particle diameter of the droplet is the Sauter average particle diameter measured by a laser measuring instrument.
 アンチグレア層3の表面粗さは、一定の塗布条件下では、塗布時間、すなわちスプレー法によるコート面数(重ね塗り回数)によって調整できる。コート面数が多くなるほど、アンチグレア層3の表面粗さは大きくなり、その結果、光沢度は下がり反射像が不鮮明となり(防眩効果が高くなり)、ヘイズは大きくなる(解像度は低下する)。 The surface roughness of the anti-glare layer 3 can be adjusted by the coating time, that is, the number of coated surfaces (number of overcoating) by a spray method under a certain coating condition. As the number of coated surfaces increases, the surface roughness of the antiglare layer 3 increases. As a result, the glossiness decreases and the reflected image becomes unclear (the antiglare effect increases), and the haze increases (the resolution decreases).
 <第2の塗膜の形成工程>
 第2の塗膜は、反射防止層4を形成するための第2のコーティング剤を塗布することにより形成する。第2のコーティング剤は、例えば、中空シリカ粒子、及び中空シリカ粒子を分散させる第2の液状媒体を含んでいる。
<Formation process of 2nd coating film>
The second coating film is formed by applying a second coating agent for forming the antireflection layer 4. The second coating agent includes, for example, hollow silica particles and a second liquid medium in which the hollow silica particles are dispersed.
 (中空シリカ粒子)
 中空シリカ粒子は、シリカからなる外殻の内部に空隙を有する粒子である。中空シリカ粒子としては、球状中空シリカ粒子、繊維状中空シリカ粒子、チューブ状中空シリカ粒子、シート状中空シリカ粒子等が挙げられる。繊維状中空シリカ粒子は、伸長方向の長さが、伸長方向に垂直な方向の長さに比べて大きい中空シリカ粒子である。繊維状中空シリカ粒子は、一次粒子であってもよく、複数の中空粒子が凝集した二次粒子であってもよい。
(Hollow silica particles)
The hollow silica particles are particles having voids inside the outer shell made of silica. Examples of the hollow silica particles include spherical hollow silica particles, fibrous hollow silica particles, tubular hollow silica particles, and sheet-shaped hollow silica particles. Fibrous hollow silica particles are hollow silica particles whose length in the extension direction is larger than the length in the direction perpendicular to the extension direction. The fibrous hollow silica particles may be primary particles or secondary particles in which a plurality of hollow particles are aggregated.
 中空シリカ粒子は、他の金属を含んでいてもよい。他の金属としては、Al、Cu、Ce、Sn、Ti、Cr、Co、Fe、Mn、Ni、Zn等が挙げられる。他の金属は、Siとともに複合酸化物を形成していてもよい。 The hollow silica particles may contain other metals. Examples of other metals include Al, Cu, Ce, Sn, Ti, Cr, Co, Fe, Mn, Ni, and Zn. Other metals may form a complex oxide with Si.
 中空シリカ粒子の平均凝集粒子径は、5~300nmが好ましく、10~100nmがより好ましい。 The average aggregate particle diameter of the hollow silica particles is preferably 5 to 300 nm, more preferably 10 to 100 nm.
 中空シリカ粒子の平均凝集粒子径は、分散媒中における中空シリカ粒子の平均凝集粒子径であり、動的光散乱法で測定される。 The average aggregate particle diameter of the hollow silica particles is the average aggregate particle diameter of the hollow silica particles in the dispersion medium, and is measured by a dynamic light scattering method.
 球状中空シリカ粒子は、たとえば、コア-シェル粒子のコアを除去することによって製造される。 The spherical hollow silica particles are produced, for example, by removing the core of the core-shell particles.
 具体的には、下記の工程を経て製造される。 Specifically, it is manufactured through the following steps.
 (a)分散媒中にて、コア微粒子の存在下にシリカ前駆体を加水分解して、コア微粒子表面にSiOを析出させ、コア-シェル粒子の分散液を得る工程。 (A) A step of hydrolyzing a silica precursor in the presence of core fine particles in a dispersion medium to precipitate SiO 2 on the surface of the core fine particles to obtain a dispersion of core-shell particles.
 (b)コア-シェル粒子のコア微粒子を溶解または分解し、球状中空シリカ粒子の分散液を得る工程。 (B) A step of dissolving or decomposing core fine particles of core-shell particles to obtain a dispersion of spherical hollow silica particles.
 工程(a):
 コア微粒子としては、熱分解性有機微粒子(界面活性剤ミセル、水溶性有機ポリマー、スチレン樹脂、アクリル樹脂等)、酸溶解性無機微粒子(ZnO、NaAlO、CaCO、塩基性ZnCO等)、光溶解性無機微粒子(ZnS、CdS、ZnO等)などが挙げられる。
Step (a):
Core fine particles include thermally decomposable organic fine particles (surfactant micelles, water-soluble organic polymers, styrene resins, acrylic resins, etc.), acid-soluble inorganic fine particles (ZnO, NaAlO 2 , CaCO 3 , basic ZnCO 3, etc.), Examples thereof include light-soluble inorganic fine particles (ZnS, CdS, ZnO, etc.).
 シリカ前駆体としては、マトリックス前駆体において説明したシリカ前駆体が挙げられる。 Examples of the silica precursor include the silica precursor described in the matrix precursor.
 分散媒としては、水、アルコール類(メタノール、エタノール、イソプロパノール等。)、ケトン類(アセトン、メチルエチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、エステル類(酢酸エチル、酢酸メチル等)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等)、含窒素化合物類(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等)、含硫黄化合物類(ジメチルスルホキシド等)等が挙げられる。 Dispersion media include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, methyl acetate, etc.) ), Glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethylsulfoxide, etc.), and the like.
 分散媒は、シリカ前駆体の加水分解に水が必要であるため、分散媒100質量%中、5~100質量%の水を含む。 The dispersion medium contains 5 to 100% by mass of water in 100% by mass of the dispersion medium because water is required for hydrolysis of the silica precursor.
 分散媒のpHは、シリカ前駆体が三次元的に重合してシェルを形成しやすい点から、7以上が好ましく、8以上が好ましく、9~10が特に好ましい。コア微粒子として酸溶解性無機微粒子を用いる場合は、該微粒子が溶解しないpH、すなわち8以上が好ましい。 The pH of the dispersion medium is preferably 7 or more, more preferably 8 or more, and particularly preferably 9 to 10 from the viewpoint that the silica precursor is easily three-dimensionally polymerized to form a shell. When acid-soluble inorganic fine particles are used as the core fine particles, a pH at which the fine particles are not dissolved, that is, 8 or more is preferable.
 工程(b):
 コア微粒子が酸溶解性無機微粒子の場合、酸を添加することによってコア微粒子を溶解させ、除去することができる。酸としては、無機酸(塩酸、硫酸、硝酸等)、有機酸(ギ酸、酢酸等)、酸性カチオン交換樹脂等が挙げられる。
Step (b):
When the core fine particles are acid-soluble inorganic fine particles, the core fine particles can be dissolved and removed by adding an acid. Examples of the acid include inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.), organic acids (formic acid, acetic acid, etc.), acidic cation exchange resins, and the like.
 コア微粒子が熱分解性有機微粒子の場合、加熱することによってコア微粒子を熱分解させ、除去することができる。 When the core fine particles are thermally decomposable organic fine particles, the core fine particles can be thermally decomposed and removed by heating.
 コア微粒子が光溶解性無機微粒子の場合、光を照射することによってコア微粒子を溶解させ、除去することができる。 When the core fine particles are light-soluble inorganic fine particles, the core fine particles can be dissolved and removed by irradiation with light.
 (第2の液状媒体)
 第2の液状媒体は、中空シリカ粒子を分散させる液体である。第2の液状媒体は、中空シリカ粒子を分散させて塗布することができるものであれば特に限定されない。例えば、上記の球状中空シリカ粒子製造工程において使用した分散媒をそのまま第2の液状媒体として使用してもよい。
(Second liquid medium)
The second liquid medium is a liquid in which the hollow silica particles are dispersed. The second liquid medium is not particularly limited as long as the hollow silica particles can be dispersed and applied. For example, the dispersion medium used in the above spherical hollow silica particle production process may be used as it is as the second liquid medium.
 なお、第2のコーティング剤には、バインダー成分が含まれていてもよい。このようなバインダー成分としては、第1のコーティング剤におけるマトリックス前駆体などが挙げられる。 Note that the second coating agent may include a binder component. Examples of such a binder component include a matrix precursor in the first coating agent.
 (第2のコーティング剤の塗布方法)
 第2のコーティング剤の塗布方法としては、第1のコーティング剤の塗布方法と同様の方法が挙げられる。塗布方法としては、均一に塗布しやすい点から、スプレーコート法が好ましい。
(Application method of second coating agent)
Examples of the method for applying the second coating agent include the same method as the method for applying the first coating agent. As a coating method, a spray coating method is preferable because it can be uniformly applied.
 <第3の塗膜の形成工程>
 第3の塗膜は、防汚層5を形成するための第3のコーティング剤を塗布することにより形成する。第3のコーティング剤は、例えば、防汚剤、及び防汚剤を溶解または分散させる第3の液状媒体を含んでいる。
<Third coating film forming step>
The third coating film is formed by applying a third coating agent for forming the antifouling layer 5. The third coating agent includes, for example, an antifouling agent and a third liquid medium in which the antifouling agent is dissolved or dispersed.
 (防汚剤)
 防汚剤としては、フッ素含有化合物、光触媒化合物などの一般的な防汚剤を用いることができる。
(Anti-fouling agent)
As the antifouling agent, general antifouling agents such as fluorine-containing compounds and photocatalytic compounds can be used.
 (フッ素含有化合物)
 フッ素含有化合物としては、アルコキシ基等を含むフッ素含有有機ケイ素化合物が挙げられる。
(Fluorine-containing compound)
Examples of the fluorine-containing compound include fluorine-containing organosilicon compounds containing an alkoxy group and the like.
 例えば、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OCH、CF(CF10Si(OCH、CF(CF12Si(OCH、CF(CF14Si(OCH、CF(CF16Si(OCH、CF(CF18Si(OCH、CF(CFSi(OC、CF(CFSi(OC、CF(CFSiCl、CF(CFSiCl、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OC、CF(CFSi(OC、CF(CFSiCl、CF(CFSiCl、CF(CFSi(OCH、CF(CFSi(OCH、CF(CFSi(OC、CF(CFSi(OC、CF(CFSi(CH)(OCH、CF(CFSi(CH)(OCH、CF(CFSi(CH)Cl、CF(CFSi(CH)Cl、CF(CFSi(C)(OC、およびCF(CFSi(C)(OCなどが挙げられる。 For example, CF 3 (CF 2) 2 C 2 H 4 Si (OCH 3) 3, CF 3 (CF 2) 4 C 2 H 4 Si (OCH 3) 3, CF 3 (CF 2) 6 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 8 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 10 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 12 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 14 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 16 C 2 H 4 Si (OCH 3 ) 3 , CF 3 (CF 2) 18 C 2 H 4 Si (OCH 3) 3, CF 3 (CF 2) 6 C 2 H 4 Si (OC 2 H 5) 3, CF 3 (CF 2) 8 C 2 H 4 Si (OC 2 H 5) 3, CF 3 (CF 2) 6 C 2 H 4 iCl 3, CF 3 (CF 2 ) 8 C 2 H 4 SiCl 3, CF 3 (CF 2) 6 C 3 H 6 Si (OCH 3) 3, CF 3 (CF 2) 8 C 3 H 6 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 6 C 3 H 6 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 8 C 3 H 6 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 6 C 3 H 6 SiCl 3, CF 3 (CF 2) 8 C 3 H 6 SiCl 3, CF 3 (CF 2) 6 C 4 H 8 Si (OCH 3) 3, CF 3 (CF 2) 8 C 4 H 8 Si (OCH 3 ) 3 , CF 3 (CF 2 ) 6 C 4 H 8 Si (OC 2 H 5 ) 3 , CF 3 (CF 2 ) 8 C 4 H 8 Si (OC 2 H 5 ) 3 , CF 3 ( CF 2) 6 C 2 H 4 Si (CH 3) (OCH 3 2, CF 3 (CF 2) 8 C 2 H 4 Si (CH 3) (OCH 3) 2, CF 3 (CF 2) 6 C 2 H 4 Si (CH 3) Cl 2, CF 3 (CF 2) 8 C 2 H 4 Si (CH 3 ) Cl 2, CF 3 (CF 2) 6 C 2 H 4 Si (C 2 H 5) (OC 2 H 5) 2, and CF 3 (CF 2) 8 C 2 H 4 Si (C 2 H 5) ( OC 2 H 5) 2 and the like.
 フッ素含有有機ケイ素化合物としては、アミノ基を含有する化合物も好適である。 As the fluorine-containing organosilicon compound, a compound containing an amino group is also suitable.
 例えば、C19CONH(CHSi(OC、C19CONH(CHSiCl、C19CONH(CHSi(CH)Cl、C19CONH(CH)NH(CH)Si(OC、C19CONH(CHCONH(CH)Si(OC、C17SONH(CHCONH(CH)Si(OC、CO(CF(CF)CFO)-CF(CF)-CONH(CH)Si(OC、およびCO(CF(CF)CFO)m’-CF(CF)-CONH(CH)Si(OCH[ここで、m’は1以上の整数]などが挙げられる。 For example, C 9 F 19 CONH (CH 2 ) 3 Si (OC 2 H 5 ) 3 , C 9 F 19 CONH (CH 2 ) 3 SiCl 3 , C 9 F 19 CONH (CH 2 ) 3 Si (CH 3 ) Cl 2, C 9 F 19 CONH ( CH 2) NH (CH 2) Si (OC 2 H 5) 3, C 9 F 19 CONH (CH 2) 5 CONH (CH 2) Si (OC 2 H 5) 3, C 8 F 17 SO 2 NH (CH 2 ) 5 CONH (CH 2 ) Si (OC 2 H 5 ) 3 , C 3 F 7 O (CF (CF 3 ) CF 2 O) 2 —CF (CF 3 ) —CONH ( CH 2 ) Si (OC 2 H 5 ) 3 , and C 3 F 7 O (CF (CF 3 ) CF 2 O) m ′ —CF (CF 3 ) —CONH (CH 2 ) Si (OCH 3 ) 3 [here M ′ is an integer greater than or equal to 1] And so on.
 前記したフッ素含有有機ケイ素化合物の具体例としては、GE東芝シリコーン株式会社製TSL8233、TSL8257、ダイキン工業株式会社製オプツールDSX、信越化学工業株式会社製KY-130、KP-801などが挙げられる。 Specific examples of the above-mentioned fluorine-containing organosilicon compounds include TSL8233 and TSL8257 manufactured by GE Toshiba Silicone Co., Ltd., OPTOOL DSX manufactured by Daikin Industries, Ltd., KY-130 manufactured by Shin-Etsu Chemical Co., Ltd., and KP-801.
 (光触媒化合物)
 光触媒化合物は、汚れを付着しにくく、かつ自己洗浄作用を有する。
 光触媒としては、特に限定されないが、例えば、以下の第1の成分を含む触媒を用いることができる。
(Photocatalytic compound)
The photocatalytic compound hardly adheres to dirt and has a self-cleaning action.
Although it does not specifically limit as a photocatalyst, For example, the catalyst containing the following 1st components can be used.
 (第1の成分)
 第1の成分は、光照射により防汚層が親水化され、有機物を分解する性質を有している。
(First ingredient)
The first component has a property that the antifouling layer is hydrophilized by light irradiation and decomposes organic substances.
 第1の成分としては、例えば、波長350~500nmの光で作用する触媒を用いることができる。第1の成分の具体例としては、酸化チタン、酸化亜鉛、酸化錫、又は酸化タングステンなどが挙げられる。酸化チタンとしては、アナターゼ型酸化チタン、ルチル型酸化チタン、又はブルッカイト型酸化チタンなどが挙げられる。酸化タングステンとしては、結晶性酸化タングステンを用いてもよく、非晶質酸化タングステンを用いてもよい。これらの第1の成分として例示される成分は、単独で用いてもよく、複数を併用してもよい。 As the first component, for example, a catalyst that works with light having a wavelength of 350 to 500 nm can be used. Specific examples of the first component include titanium oxide, zinc oxide, tin oxide, or tungsten oxide. Examples of titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, and brookite-type titanium oxide. As tungsten oxide, crystalline tungsten oxide or amorphous tungsten oxide may be used. These components exemplified as the first component may be used alone or in combination.
 第1の成分としては、好ましくはアナターゼ型酸化チタン、ルチル型酸化チタン、又はブルッカイト型酸化チタンを用いることができる。これらの酸化チタンは無毒であり、化学的安定性にもより一層優れている。 As the first component, preferably anatase type titanium oxide, rutile type titanium oxide, or brookite type titanium oxide can be used. These titanium oxides are non-toxic and have even better chemical stability.
 (第2の成分)
 第1の成分以外にも、第2の成分を含んでもよい。第2の成分は、防汚層に親水性を与える。第1の成分の光触媒作用を発揮させるための光が十分に得られないとき、親水性を補助する機能を有する。また、第2の成分を用いることにより、第1の塗膜または第2の塗膜との密着性や、強度、耐久性、耐候性をより一層高めることができる。
(Second component)
In addition to the first component, a second component may be included. The second component imparts hydrophilicity to the antifouling layer. When the light for exhibiting the photocatalytic action of the first component is not sufficiently obtained, it has a function of assisting hydrophilicity. In addition, by using the second component, the adhesion with the first coating film or the second coating film, strength, durability, and weather resistance can be further enhanced.
 第2の成分としては、例えば、シリカ、アルカリシリケート、又は無定形酸化チタンなどが挙げられる。アルカリシリケートとしては、例えば、珪酸ナトリウム、珪酸カリウム、珪酸リチウムなどが挙げられる。これらの第2の成分として例示される成分は、単独で用いてもよく、複数を併用してもよい。 Examples of the second component include silica, alkali silicate, and amorphous titanium oxide. Examples of the alkali silicate include sodium silicate, potassium silicate, and lithium silicate. These components exemplified as the second component may be used alone or in combination.
 (第3の成分)
 第1の成分以外にも、第3の成分を含んでもよい。第3の成分は、第1の成分よりも親水性が低く、第1の成分によって分解されない金属化合物である。なお、第3の成分は、含まれていなくともよい。もっとも、第3の成分が含まれる場合、自己洗浄作用をより一層高めることができる。
(Third component)
In addition to the first component, a third component may be included. The third component is a metal compound that is less hydrophilic than the first component and is not decomposed by the first component. Note that the third component may not be included. However, when the third component is included, the self-cleaning action can be further enhanced.
 第3の成分としては、例えば、Cr、Mn、Fe、Co、Ni、Cu、Ga、Zr、Y、In、及びHfからなる群から選択された少なくとも1種の金属の酸化物、無機塩、又は有機塩などの化合物を用いることができる。これらの化合物は、単独で用いてもよく、複数を併用してもよい。 As the third component, for example, an oxide of at least one metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Ga, Zr, Y, In, and Hf, an inorganic salt, Alternatively, a compound such as an organic salt can be used. These compounds may be used alone or in combination.
 上記酸化物としては、例えば、Cr、MnO、Fe、CoO、NiO、CuO、Ga、ZrO、Y、In、又はHfOなどが挙げられる。これらは、単独で用いてもよく、複数を併用してもよい。 Examples of the oxide include Cr 2 O 3 , MnO 2 , Fe 2 O 3 , CoO, NiO, CuO, Ga 2 O 3 , ZrO 2 , Y 2 O 3 , In 2 O 3 , and HfO 2. Can be mentioned. These may be used alone or in combination.
 上記無機塩としては、上記の金属のオキシ塩化物、ヒドロキシ塩化物、硝酸塩、硫酸塩、酢酸塩、オキシ硝酸塩、炭酸塩、炭酸アンモニウム塩、炭酸ナトリウム塩、炭酸カリウム塩、又はリン酸ナトリウム塩などが挙げられる。 Examples of the inorganic salt include oxychloride, hydroxychloride, nitrate, sulfate, acetate, oxynitrate, carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, or sodium phosphate of the above metals. Is mentioned.
 上記有機塩としては、上記金属のシュウ酸塩、プロピオン酸塩、金属アルコキシド類、金属アルコキシド類の加水分解物、又はキレート化合物などが挙げられる。金属アルコキシド類としては、炭素数1~8程度のアルコキシル基が金属原子に結合した化合物が挙げられる。例えば、上記金属がZrの場合、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラn-プロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラn-ブトキシド、又はジルコニウムテトラt-ブトキシド等が挙げられる。また、キレート化合物としては、例えば、β-ケトンエステル錯体、β-ジケトン錯体、エタノールアミン類錯体、又はジアルキレングリコール錯体等が挙げられる。 Examples of the organic salt include oxalate salts, propionate salts, metal alkoxides, hydrolysates of metal alkoxides, and chelate compounds. Examples of metal alkoxides include compounds in which an alkoxyl group having about 1 to 8 carbon atoms is bonded to a metal atom. For example, when the metal is Zr, zirconium tetramethoxide, zirconium tetraethoxide, zirconium tetra n-propoxide, zirconium tetraisopropoxide, zirconium tetra n-butoxide, zirconium tetra t-butoxide and the like can be mentioned. Examples of chelate compounds include β-ketone ester complexes, β-diketone complexes, ethanolamine complexes, dialkylene glycol complexes, and the like.
 (第3の液状媒体)
 防汚剤としてフッ素含有化合物を含む場合、第3の液状媒体としては、有機溶剤が挙げられる。有機溶剤としては、フッ素含有有機ケイ素化合物の溶解性に優れるパーフルオロ基を有し、炭素数が4以上の有機化合物が好ましく、例えば、パーフルオロヘキサン、パーフルオロシクロブタン、パーフルオロオクタン、パーフルオロデカン、パーフルオロメチルシクロヘキサン、パーフルオロ-1,3-ジメチルシクロヘキサン、パーフルオロ-4-メトキシブタン、パーフルオロ-4-エトキシブタン、メタキシレンヘキサフロライドを挙げることができる。また、パーフルオロエーテル油、クロロトリフルオロエチレンオリゴマー油を使用することができる。その他に、フロン225が挙げられる。これらの有機溶剤の1種を単独でまたは2種以上を混合して用いることができる。
(Third liquid medium)
When a fluorine-containing compound is included as an antifouling agent, the third liquid medium includes an organic solvent. The organic solvent is preferably an organic compound having a perfluoro group excellent in solubility of the fluorine-containing organosilicon compound and having 4 or more carbon atoms, such as perfluorohexane, perfluorocyclobutane, perfluorooctane, perfluorodecane. Perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, perfluoro-4-methoxybutane, perfluoro-4-ethoxybutane, and metaxylene hexafluoride. Moreover, perfluoroether oil and chlorotrifluoroethylene oligomer oil can be used. In addition, Freon 225 is mentioned. One of these organic solvents can be used alone or in admixture of two or more.
 防汚剤として光触媒化合物を含む場合、第3の液状媒体としては、上記の光触媒化合物を溶解または分散させることのできる溶媒を用いることができる。 When a photocatalytic compound is included as an antifouling agent, a solvent that can dissolve or disperse the photocatalytic compound can be used as the third liquid medium.
 このような溶媒としては、例えば、水、エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、エタノール、メタノール等のアルコール類、トルエンやキシレン等の芳香族炭化水素類、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族炭化水素類、酢酸エチル、酢酸n-ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類、クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化合物類、ジメチルスルホキシド、又はニトロベンゼンが挙げられる。これらの溶媒は、単独で用いてもよく、複数を併用してもよい。 Examples of such a solvent include alcohols such as water, ethylene glycol, butyl cellosolve, isopropanol, n-butanol, ethanol and methanol, aromatic hydrocarbons such as toluene and xylene, and aliphatics such as hexane, cyclohexane and heptane. Hydrocarbons, esters such as ethyl acetate and n-butyl acetate, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, amides such as dimethylacetamide and dimethylformamide, chloroform and methylene chloride , Halogen compounds such as carbon tetrachloride, dimethyl sulfoxide, or nitrobenzene. These solvents may be used alone or in combination.
 (第3のコーティング剤の塗布方法)
 第3のコーティング剤の塗布方法としては、第1のコーティング剤の塗布方法と同様の方法が挙げられる。塗布方法としては、均一に塗布しやすい点から、スプレーコート法が好ましい。
(Third coating agent application method)
Examples of the third coating agent application method include the same method as the first coating agent application method. As a coating method, a spray coating method is preferable because it can be uniformly applied.
 図2に示すように、基板2の第1の主面2aの上に、第1のコーティング剤を塗布することにより、第1の塗膜11を形成する。次に、第1の塗膜11の上に、第2のコーティング剤を塗布することにより、第2の塗膜12を形成する。次に、第2の塗膜12の上に、第3のコーティング剤を塗布することにより、第3の塗膜13を形成する。 As shown in FIG. 2, the first coating film 11 is formed on the first main surface 2a of the substrate 2 by applying a first coating agent. Next, the second coating film 12 is formed on the first coating film 11 by applying a second coating agent. Next, a third coating film 13 is formed on the second coating film 12 by applying a third coating agent.
 次に、第1の塗膜11、第2の塗膜12及び第3の塗膜13を同時に加熱して、図1に示すアンチグレア層3、反射防止層4及び防汚層5を形成する。 Next, the first coating film 11, the second coating film 12 and the third coating film 13 are simultaneously heated to form the antiglare layer 3, the antireflection layer 4 and the antifouling layer 5 shown in FIG.
 加熱温度は、80~250℃の範囲内であることが好ましく、100~230℃の範囲内であることがより好ましい。この範囲内で加熱することにより、第1の塗膜11、第の塗膜12、及び第3の塗膜13に内に残存する加水分解性基の重縮合を促進させることができ、膜を緻密化させることができる。 The heating temperature is preferably in the range of 80 to 250 ° C, and more preferably in the range of 100 to 230 ° C. By heating within this range, polycondensation of hydrolyzable groups remaining in the first coating film 11, the first coating film 12, and the third coating film 13 can be promoted, It can be densified.
 本実施形態の上記製造方法によれば、第1の塗膜11、第2の塗膜12及び第3の塗膜13を同時に加熱して、アンチグレア層3、反射防止層4及び防汚層5を形成することができるので、防眩部材1を効率的に製造することができる。 According to the manufacturing method of the present embodiment, the first coating film 11, the second coating film 12 and the third coating film 13 are heated at the same time, so that the antiglare layer 3, the antireflection layer 4 and the antifouling layer 5 are heated. Therefore, the antiglare member 1 can be produced efficiently.
 図3及び図4は、図1に示す第1の実施形態の防眩部材を製造する方法の他の例を説明するための模式的断面図である。この製造方法では、図3に示すように、基板2の第1の主面2aの上に、第1の塗膜11及び第2の塗膜12を形成した後、第1の塗膜11及び第2の塗膜12を同時に加熱し、図4に示すように、基板2の第1の主面2aの上にアンチグレア層3及び反射防止層4を形成している。加熱温度は、上記と同様に、80~250℃の範囲内であることが好ましく、100~230℃の範囲内であることがより好ましい。次に、反射防止層4の上に、第3のコーティング剤を塗布することにより第3の塗膜13を形成し、第3の塗膜13を加熱することにより防汚層5を形成する。 3 and 4 are schematic cross-sectional views for explaining another example of the method for producing the antiglare member of the first embodiment shown in FIG. In this manufacturing method, as shown in FIG. 3, after forming the first coating film 11 and the second coating film 12 on the first main surface 2a of the substrate 2, the first coating film 11 and The second coating film 12 is heated at the same time, and the antiglare layer 3 and the antireflection layer 4 are formed on the first main surface 2a of the substrate 2 as shown in FIG. The heating temperature is preferably in the range of 80 to 250 ° C., and more preferably in the range of 100 to 230 ° C., as described above. Next, a third coating film 13 is formed on the antireflection layer 4 by applying a third coating agent, and the antifouling layer 5 is formed by heating the third coating film 13.
 なお、第3のコーティング剤として上述の光触媒化合物を用いる場合は、第3の塗膜13を、300℃以下の温度で加熱することにより防汚層5を形成することが望ましい。この場合、防汚層5の自己洗浄作用をより一層高めることができる。 In addition, when using the above-mentioned photocatalytic compound as a 3rd coating agent, it is desirable to form the pollution protection layer 5 by heating the 3rd coating film 13 at the temperature of 300 degrees C or less. In this case, the self-cleaning action of the antifouling layer 5 can be further enhanced.
 以上のようにして、図1に示す防眩部材1を製造することができる。上記製造方法によっても、第1の塗膜11及び第2の塗膜12を同時に加熱して、アンチグレア層3及び反射防止層4を形成することができるので、防眩部材1を効率的に製造することができる。 As described above, the antiglare member 1 shown in FIG. 1 can be manufactured. Also by the manufacturing method, the antiglare member 1 can be efficiently manufactured because the antiglare layer 3 and the antireflection layer 4 can be formed by simultaneously heating the first coating film 11 and the second coating film 12. can do.
 なお、防汚層5を有しない防眩部材を製造する場合には、図3及び図4に示す製造方法で製造することができる。 In addition, when manufacturing the anti-glare member which does not have the antifouling layer 5, it can manufacture with the manufacturing method shown in FIG.3 and FIG.4.
 (第2の実施形態)
 図5は、本発明の第2の実施形態の防眩部材を製造する方法の一例を説明するための模式的断面図である。図5に示す実施形態では、基板として、防眩基板20を用いている。防眩基板20は、互いに対向する第1の主面20a及び第2の主面20bを有している。防眩基板20の第1の主面20aには、凹凸構造が形成されることにより、アンチグレア機能が付与されている。凹凸構造は、例えば、エッチング処理等により物理的に形成することができる。また、他の方法でアンチグレア処理を施すことにより、凹凸構造を形成してもよい。
(Second Embodiment)
FIG. 5: is typical sectional drawing for demonstrating an example of the method of manufacturing the glare-proof member of the 2nd Embodiment of this invention. In the embodiment shown in FIG. 5, the antiglare substrate 20 is used as the substrate. The antiglare substrate 20 has a first main surface 20a and a second main surface 20b that face each other. An antiglare function is imparted to the first main surface 20a of the antiglare substrate 20 by forming an uneven structure. The concavo-convex structure can be physically formed by, for example, an etching process. Moreover, you may form an uneven | corrugated structure by giving an anti-glare process by another method.
 図5に示すように、防眩基板20の第1の主面20aの上に、第2のコーティング剤を塗布して第2の塗膜12を形成し、第2の塗膜12の上に第3のコーティング剤を塗布して第3の塗膜13を形成する。第2のコーティング剤及び第3のコーティング剤は、第1の実施形態と同様のものを用いることができる。次に、第2の塗膜12及び第3の塗膜13を同時に加熱し、反射防止層及び防汚層を形成する。このときの加熱温度は、80~250℃の範囲内であることが好ましく、100~230℃の範囲内であることがより好ましい。加熱方法として、70~95℃で予備加熱した後、100~230℃の範囲内の所定温度まで20~60分かけて昇温し、所定温度を20~60分保持し、30~90分かけて70℃以下まで降温することが好ましい。これにより、剥離しにくい反射防止層及び防汚層を形成することができる。 As shown in FIG. 5, a second coating agent is applied on the first main surface 20 a of the antiglare substrate 20 to form the second coating film 12, and the second coating film 12 is formed on the second coating film 12. A third coating agent is applied to form a third coating film 13. The 2nd coating agent and the 3rd coating agent can use the thing similar to 1st Embodiment. Next, the 2nd coating film 12 and the 3rd coating film 13 are heated simultaneously, and an antireflection layer and an antifouling layer are formed. The heating temperature at this time is preferably in the range of 80 to 250 ° C., more preferably in the range of 100 to 230 ° C. As a heating method, after preheating at 70 to 95 ° C., the temperature is raised to a predetermined temperature within a range of 100 to 230 ° C. over 20 to 60 minutes, and the predetermined temperature is maintained for 20 to 60 minutes, and then over 30 to 90 minutes. The temperature is preferably lowered to 70 ° C. or lower. Thereby, the antireflection layer and antifouling layer which are hard to peel can be formed.
 図6は、本発明の第2の実施形態の防眩部材を製造する方法の他の例を説明するための模式的断面図である。図6に示す実施形態では、アンチグレア層3が形成された基板2を、防眩基板20として用いている。アンチグレア層3は、第1の実施形態と同様の第1のコーティング剤を塗布して第1の塗膜を形成し、第1の塗膜を第1の実施形態と同様の温度で加熱することにより形成することができる。 FIG. 6 is a schematic cross-sectional view for explaining another example of the method for producing the antiglare member of the second embodiment of the present invention. In the embodiment shown in FIG. 6, the substrate 2 on which the antiglare layer 3 is formed is used as the antiglare substrate 20. The anti-glare layer 3 is formed by applying the same first coating agent as in the first embodiment to form a first coating film, and heating the first coating film at the same temperature as in the first embodiment. Can be formed.
 図6に示すように、防眩基板20の上に、第2のコーティング剤を塗布して第2の塗膜12を形成し、第2の塗膜12の上に第3のコーティング剤を塗布して第3の塗膜13を形成する。次に、第2の塗膜12及び第3の塗膜13を同時に加熱し、図7に示すように、反射防止層4及び防汚層5を形成する。 As shown in FIG. 6, the second coating agent is applied on the antiglare substrate 20 to form the second coating film 12, and the third coating agent is applied on the second coating film 12. Thus, the third coating film 13 is formed. Next, the second coating film 12 and the third coating film 13 are simultaneously heated to form the antireflection layer 4 and the antifouling layer 5 as shown in FIG.
 本実施形態の製造方法においては、第2の塗膜12及び第3の塗膜13を同時に加熱して、反射防止層4及び防汚層5を形成することができるので、防眩部材21を効率的に製造することができる。 In the manufacturing method of the present embodiment, the second coating film 12 and the third coating film 13 can be heated at the same time to form the antireflection layer 4 and the antifouling layer 5. It can be manufactured efficiently.
 (第3の実施形態)
 図8は、本発明の第3の実施形態の防眩部材を示す模式的断面図である。図8に示すように、本実施形態の防眩部材31は、基板2の第1の主面2aの上に、アンチグレア層3が設けられており、アンチグレア層3の上に防汚層5が設けられている。
(Third embodiment)
FIG. 8 is a schematic cross-sectional view showing an antiglare member according to a third embodiment of the present invention. As shown in FIG. 8, in the antiglare member 31 of the present embodiment, the antiglare layer 3 is provided on the first main surface 2 a of the substrate 2, and the antifouling layer 5 is provided on the antiglare layer 3. Is provided.
 図9は、図8に示す第3の実施形態の防眩部材を製造する方法の一例を説明するための模式的断面図である。図9に示すように、基板2の上に、第1のコーティング剤を塗布して第1の塗膜11を形成し、第1の塗膜11の上に第3のコーティング剤を塗布して第3の塗膜13を形成する。第1のコーティング剤及び第3のコーティング剤は、第1の実施形態と同様のものを用いることができる。次に、第1の塗膜11及び第3の塗膜13を同時に加熱し、図8に示すように、アンチグレア層3及び防汚層5を形成する。このときの加熱温度は、第1の実施形態と同様の温度で加熱することができる。 FIG. 9 is a schematic cross-sectional view for explaining an example of a method for producing the antiglare member of the third embodiment shown in FIG. As shown in FIG. 9, the first coating agent is applied on the substrate 2 to form the first coating film 11, and the third coating agent is applied on the first coating film 11. A third coating film 13 is formed. The same thing as a 1st embodiment can be used for the 1st coating agent and the 3rd coating agent. Next, the 1st coating film 11 and the 3rd coating film 13 are heated simultaneously, and as shown in FIG. 8, the anti-glare layer 3 and the antifouling layer 5 are formed. The heating temperature at this time can be heated at the same temperature as in the first embodiment.
 本実施形態の製造方法においては、第1の塗膜11及び第3の塗膜13を同時に加熱して、アンチグレア層3及び防汚層5を形成することができるので、防眩部材31を効率的に製造することができる。 In the manufacturing method of the present embodiment, the first coating film 11 and the third coating film 13 can be heated simultaneously to form the antiglare layer 3 and the antifouling layer 5. Can be manufactured automatically.
 本実施形態の製造方法によれば、第1の塗膜11及び第3の塗膜13を同時に加熱しているので、第1の塗膜11及び第3の塗膜13に水酸基を有する化合物がそれぞれ含有されている場合、塗膜の界面においてそれぞれの塗膜の水酸基が互いに縮合されるため、アンチグレア層3と防汚層5の結合強度を高めることができる。 According to the manufacturing method of the present embodiment, since the first coating film 11 and the third coating film 13 are heated simultaneously, the compound having a hydroxyl group in the first coating film 11 and the third coating film 13 is formed. When each of them is contained, the hydroxyl groups of the respective coating films are condensed with each other at the interface of the coating film, so that the bond strength between the antiglare layer 3 and the antifouling layer 5 can be increased.
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
 <実施例1>
 (第1のコーティング剤)
 マトリックス前駆体としてオルトケイ酸テトラエチル(TEOS)からなるシリカ前駆体を用い、第1の液状媒体として、硝酸水溶液、エタノール、イソプロパノールおよびメチルエチルケトンからなる混合物を用いた。そして、マトリックス前駆体と第1の液状媒体を均一になるまで撹拌することで、第1のコーティング剤を得た。
<Example 1>
(First coating agent)
A silica precursor composed of tetraethyl orthosilicate (TEOS) was used as the matrix precursor, and a mixture composed of an aqueous nitric acid solution, ethanol, isopropanol and methyl ethyl ketone was used as the first liquid medium. And the 1st coating agent was obtained by stirring a matrix precursor and a 1st liquid medium until it became uniform.
 (第2のコーティング剤)
 第2の液状媒体として、エタノール、イソプロパノールおよびメチルエチルケトンからなる混合アルコールを用いた。中空シリカ粒子と第2の液状媒体とを均一となるまで撹拌することで、第2のコーティング剤を得た。
(Second coating agent)
As the second liquid medium, a mixed alcohol composed of ethanol, isopropanol and methyl ethyl ketone was used. By stirring the hollow silica particles and the second liquid medium until uniform, a second coating agent was obtained.
 (第3のコーティング剤)
 第3のコーティング剤として、フッ素含有有機ケイ素化合物溶液(ダイキン工業社製 UF503:0.1質量%、3M社製Novec7200:99.9質量%)を用いた。
(Third coating agent)
As the third coating agent, a fluorine-containing organosilicon compound solution (UF503 manufactured by Daikin Industries, Ltd .: 0.1 mass%, Novec 7200: 99.9 mass% manufactured by 3M) was used.
 (第1の塗膜の形成工程)
 基板であるガラス板(日本電気硝子社製、強化ガラス Dinorex(登録商標)、100mm×100mm)上に、第1のコーティング剤を下記の条件で、スプレー法にて塗布し、第1の塗膜を形成した。
(Formation process of the first coating film)
A first coating agent is applied on a glass plate (Nippon Electric Glass Co., Ltd., tempered glass Dinorex (registered trademark), 100 mm × 100 mm) by a spray method under the following conditions, and a first coating film is formed. Formed.
 ノズル:2流体方式
 吐出量:4.6g/分
 ノズル移動速度:19m/分
 ノズル数:4個
 ノズル配置間隔:3mm
Nozzle: Two-fluid system Discharge amount: 4.6 g / min Nozzle movement speed: 19 m / min No. of nozzles: 4 Nozzle arrangement interval: 3 mm
 (第2の塗膜の形成工程)
 第1の塗膜の上に、第2のコーティング剤を下記の条件で、スプレー法にて塗布し、第2の塗膜を形成した。
(Second coating film forming step)
On the 1st coating film, the 2nd coating agent was apply | coated by the spray method on the following conditions, and the 2nd coating film was formed.
 ノズル:2流体方式
 吐出量:5.4g/分
 ノズル移動速度:40m/分
 ノズル数:4個
 ノズル配置間隔:10mm
Nozzle: Two-fluid system Discharge amount: 5.4 g / min Nozzle moving speed: 40 m / min No. of nozzles: 4 Nozzle arrangement interval: 10 mm
 (第3の塗膜の形成工程)
 第2の塗膜の上に、第3のコーティング剤を下記の条件で、スプレー法にて塗布し、第3の塗膜を形成した。
(Third coating film forming step)
On the 2nd coating film, the 3rd coating agent was apply | coated by the spray method on the following conditions, and the 3rd coating film was formed.
 ノズル:2流体方式
 吐出量:3g/分
 ノズル移動速度:40m/分
 ノズル数:4個
 ノズル配置間隔:5mm
Nozzle: Two-fluid system Discharge amount: 3 g / min Nozzle movement speed: 40 m / min No. of nozzles: 4 Nozzle arrangement interval: 5 mm
 第1の塗膜、第2の塗膜、及び第3の塗膜を、150℃のオーブンで30分間焼成して、アンチグレア層、反射防止層、及び防汚層をそれぞれ形成し、防眩部材を得た。 The first coating film, the second coating film, and the third coating film are baked in an oven at 150 ° C. for 30 minutes to form an antiglare layer, an antireflection layer, and an antifouling layer, respectively, and an antiglare member Got.
 (ヘイズの測定)
 JIS K7136-2000に基づいて、防眩部材のヘイズを、NDH-5000(日本電色社製)を用いて測定した。その結果、ヘイズは3.0であった。
(Measurement of haze)
Based on JIS K7136-2000, the haze of the antiglare member was measured using NDH-5000 (manufactured by Nippon Denshoku). As a result, the haze was 3.0.
 (グロス値の測定)
 JIS Z8741-1997に基づいて、防眩部材における入射角60°のグロス値を、Microgloss(60°)(BYK製)を用いて測定した。その結果、グロス値は109.9であった。
(Measurement of gross value)
Based on JIS Z8741-1997, the gloss value at an incident angle of 60 ° in the antiglare member was measured using Microgloss (60 °) (by BYK). As a result, the gloss value was 109.9.
 (反射率の測定)
 アンチグレア層、反射防止層、及び防汚層が形成された側から、主面に対して垂直な光(波長380~780nm)の反射率(正反射)を測定した。その結果、前記波長範囲内の最低反射率は0.04~4.0%の範囲となった。
(Measurement of reflectance)
The reflectance (regular reflection) of light (wavelength 380 to 780 nm) perpendicular to the main surface was measured from the side on which the antiglare layer, antireflection layer, and antifouling layer were formed. As a result, the minimum reflectance within the wavelength range was 0.04 to 4.0%.
 (水の接触角の測定)
 防汚層の表面における水との接触角を測定した。その結果、接触角は110°であった。
(Measurement of water contact angle)
The contact angle with water on the surface of the antifouling layer was measured. As a result, the contact angle was 110 °.
1…防眩部材
2…基板
2a…第1の主面
2b…第2の主面
3…アンチグレア層
4…反射防止層
5…防汚層
11…第1の塗膜
12…第2の塗膜
13…第3の塗膜
20…防眩基板
20a…第1の主面
20b…第2の主面
21…防眩部材
31…防眩部材
DESCRIPTION OF SYMBOLS 1 ... Anti-glare member 2 ... Board | substrate 2a ... 1st main surface 2b ... 2nd main surface 3 ... Anti-glare layer 4 ... Antireflection layer 5 ... Antifouling layer 11 ... 1st coating film 12 ... 2nd coating film DESCRIPTION OF SYMBOLS 13 ... 3rd coating film 20 ... Anti-glare board | substrate 20a ... 1st main surface 20b ... 2nd main surface 21 ... Anti-glare member 31 ... Anti-glare member

Claims (4)

  1.  基板と、前記基板の上に設けられ、無機材料により構成された凹凸構造を有するアンチグレア層と、前記アンチグレア層の上に設けられ、中空シリカ粒子を含む反射防止層とを有する防眩部材を製造する方法であって、
     前記アンチグレア層を形成するための第1のコーティング剤を前記基板の上に塗布し、第1の塗膜を形成する工程と、
     前記第1の塗膜の上に、前記反射防止層を形成するための第2のコーティング剤を塗布し、第2の塗膜を形成する工程と、
     前記第1の塗膜及び前記第2の塗膜を同時に加熱して前記アンチグレア層及び前記反射防止層を形成する工程とを備える、防眩部材の製造方法。
    Manufacturing an antiglare member comprising a substrate, an antiglare layer having an uneven structure provided on the substrate and made of an inorganic material, and an antireflection layer provided on the antiglare layer and containing hollow silica particles A way to
    Applying a first coating agent for forming the anti-glare layer on the substrate to form a first coating film;
    Applying a second coating agent for forming the antireflection layer on the first coating film, and forming a second coating film;
    A step of simultaneously heating the first coating film and the second coating film to form the antiglare layer and the antireflection layer.
  2.  前記反射防止層の上に設けられる防汚層をさらに有する防眩部材を製造する方法であって、
     前記第2の塗膜の上に、前記防汚層を形成するための第3のコーティング剤を塗布し、第3の塗膜を形成する工程をさらに備え、
     前記第1の塗膜及び前記第2の塗膜を同時に加熱する工程において、さらに前記第3の塗膜も同時に加熱して前記アンチグレア層、前記反射防止層及び前記防汚層を形成する、請求項1に記載の防眩部材の製造方法。
    A method for producing an antiglare member further comprising an antifouling layer provided on the antireflection layer,
    A step of applying a third coating agent for forming the antifouling layer on the second coating film, and further forming a third coating film,
    In the step of heating the first coating film and the second coating film at the same time, the third coating film is also heated at the same time to form the antiglare layer, the antireflection layer, and the antifouling layer. Item 2. A method for producing an antiglare member according to Item 1.
  3.  防眩基板と、前記防眩基板の上に設けられ、中空シリカ粒子を含む反射防止層と、前記反射防止層の上に設けられる防汚層とを有する防眩部材を製造する方法であって、
     前記防眩基板の上に、前記反射防止層を形成するための第2のコーティング剤を塗布し、第2の塗膜を形成する工程と、
     前記第2の塗膜の上に、前記防汚層を形成するための第3のコーティング剤を塗布し、第3の塗膜を形成する工程と、
     前記第2の塗膜及び前記第3の塗膜を同時に加熱して前記反射防止層及び前記防汚層を形成する工程とを備える、防眩部材の製造方法。
    A method for producing an antiglare member comprising an antiglare substrate, an antireflection layer provided on the antiglare substrate and containing hollow silica particles, and an antifouling layer provided on the antireflection layer, ,
    Applying a second coating agent for forming the antireflection layer on the antiglare substrate and forming a second coating film;
    Applying a third coating agent for forming the antifouling layer on the second coating film, and forming a third coating film;
    And a step of simultaneously heating the second coating film and the third coating film to form the antireflection layer and the antifouling layer.
  4.  基板と、前記基板の上に設けられ、無機材料により構成された凹凸構造を有するアンチグレア層と、前記アンチグレア層の上に設けられる防汚層とを有する防眩部材を製造する方法であって、
     前記アンチグレア層を形成するための第1のコーティング剤を前記基板の上に塗布し、第1の塗膜を形成する工程と、
     前記第1の塗膜の上に、前記防汚層を形成するための第3のコーティング剤を塗布し、第3の塗膜を形成する工程と、
     前記第1の塗膜及び前記第3の塗膜を同時に加熱して前記アンチグレア層及び前記防汚層を形成する工程とを備える、防眩部材の製造方法。
    A method for producing an antiglare member comprising a substrate, an antiglare layer having an uneven structure made of an inorganic material provided on the substrate, and an antifouling layer provided on the antiglare layer,
    Applying a first coating agent for forming the anti-glare layer on the substrate to form a first coating film;
    Applying a third coating agent for forming the antifouling layer on the first coating film, and forming a third coating film;
    And a step of simultaneously heating the first coating film and the third coating film to form the antiglare layer and the antifouling layer.
PCT/JP2017/034259 2016-09-28 2017-09-22 Method for producing anti-glare member WO2018062027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018542513A JPWO2018062027A1 (en) 2016-09-28 2017-09-22 Method of manufacturing antiglare member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-189608 2016-09-28
JP2016189608 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018062027A1 true WO2018062027A1 (en) 2018-04-05

Family

ID=61763189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034259 WO2018062027A1 (en) 2016-09-28 2017-09-22 Method for producing anti-glare member

Country Status (3)

Country Link
JP (1) JPWO2018062027A1 (en)
TW (1) TW201816426A (en)
WO (1) WO2018062027A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI675220B (en) * 2018-05-11 2019-10-21 友達光電股份有限公司 Display device and optical film
CN112635692B (en) * 2021-01-05 2022-07-12 Tcl华星光电技术有限公司 Display panel and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224718A (en) * 2007-03-08 2008-09-25 Konica Minolta Opto Inc Antiglare antireflection film and display device
WO2008126528A1 (en) * 2007-03-12 2008-10-23 Konica Minolta Opto, Inc. Process for producing antiglare antireflection film, antiglare antireflection film, polarizer, and display
JP2011186056A (en) * 2010-03-05 2011-09-22 Fujifilm Corp Method of producing antiglare film
WO2014034720A1 (en) * 2012-08-31 2014-03-06 日本電気硝子株式会社 Anti-glare/antireflection member and method for producing same
WO2015002042A1 (en) * 2013-07-05 2015-01-08 株式会社カネカ Anti-glare film for solar cell module, solar cell module provided with anti-glare film, and method for manufacturing same
JP2015049319A (en) * 2013-08-30 2015-03-16 旭硝子株式会社 Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
JP3201038U (en) * 2014-08-21 2015-11-19 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Optical film
WO2016021560A1 (en) * 2014-08-04 2016-02-11 旭硝子株式会社 Translucent structure, method for producing same, and product
WO2017135261A1 (en) * 2016-02-01 2017-08-10 旭硝子株式会社 Translucent structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224718A (en) * 2007-03-08 2008-09-25 Konica Minolta Opto Inc Antiglare antireflection film and display device
WO2008126528A1 (en) * 2007-03-12 2008-10-23 Konica Minolta Opto, Inc. Process for producing antiglare antireflection film, antiglare antireflection film, polarizer, and display
JP2011186056A (en) * 2010-03-05 2011-09-22 Fujifilm Corp Method of producing antiglare film
WO2014034720A1 (en) * 2012-08-31 2014-03-06 日本電気硝子株式会社 Anti-glare/antireflection member and method for producing same
WO2015002042A1 (en) * 2013-07-05 2015-01-08 株式会社カネカ Anti-glare film for solar cell module, solar cell module provided with anti-glare film, and method for manufacturing same
JP2015049319A (en) * 2013-08-30 2015-03-16 旭硝子株式会社 Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
WO2016021560A1 (en) * 2014-08-04 2016-02-11 旭硝子株式会社 Translucent structure, method for producing same, and product
JP3201038U (en) * 2014-08-21 2015-11-19 ティーピーケイ タッチ ソリューションズ(シアメン)インコーポレーテッド Optical film
WO2017135261A1 (en) * 2016-02-01 2017-08-10 旭硝子株式会社 Translucent structure

Also Published As

Publication number Publication date
JPWO2018062027A1 (en) 2019-07-04
TW201816426A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
JP7168383B2 (en) Vehicle transparent parts and display devices
CN107924002B (en) Light-transmitting structure, method for producing same, and article
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
EP1693689B1 (en) Optical transparent member and optical system using the same
KR100783714B1 (en) Coating material composition and article having coating film formed therewith
EP2653453B1 (en) Optical member, method for manufacturing optical member, and optical film of optical member
JP6458804B2 (en) Translucent structure
JPWO2004070436A1 (en) Method for producing low reflection processed article, solution for forming low reflection layer, and low reflection processed article
JP6696486B2 (en) Substrate with antiglare film, liquid composition for forming antiglare film, and method for producing substrate with antiglare film
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
WO2019194176A1 (en) Article with anti-glare surface
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
WO2015163330A1 (en) Anti-glare-layer substrate and article
WO2018062027A1 (en) Method for producing anti-glare member
US9012354B2 (en) Photocatalytic film, method for forming photocatalytic film and photocatalytic film coated product
JP3514065B2 (en) Laminate and manufacturing method thereof
US8501270B2 (en) Optical transparent member and optical system using the same
JP5967604B2 (en) Water-repellent alumina sol, water-repellent alumina film and method for producing the same
WO2018105212A1 (en) Glass article with colored coating
WO2019021643A1 (en) Coating liquid for forming visible light scattering coating film, and substrate provided with visible light scattering coating film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542513

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855981

Country of ref document: EP

Kind code of ref document: A1