WO2018061727A1 - Polyimide film, copper-clad laminate, and circuit substrate - Google Patents

Polyimide film, copper-clad laminate, and circuit substrate Download PDF

Info

Publication number
WO2018061727A1
WO2018061727A1 PCT/JP2017/032642 JP2017032642W WO2018061727A1 WO 2018061727 A1 WO2018061727 A1 WO 2018061727A1 JP 2017032642 W JP2017032642 W JP 2017032642W WO 2018061727 A1 WO2018061727 A1 WO 2018061727A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
weight
residue
diamine
polyimide
Prior art date
Application number
PCT/JP2017/032642
Other languages
French (fr)
Japanese (ja)
Inventor
智典 安藤
哲平 西山
芳樹 須藤
亮 森
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to CN202210504040.4A priority Critical patent/CN114716707A/en
Priority to CN201780059180.2A priority patent/CN109789689A/en
Priority to JP2018542342A priority patent/JP6936239B2/en
Priority to KR1020197008643A priority patent/KR102290631B1/en
Publication of WO2018061727A1 publication Critical patent/WO2018061727A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide film, a copper clad laminate, and a circuit board.
  • FPCs flexible printed wiring boards
  • HDDs high-density digital versatile disks
  • DVDs digital versatile disks
  • cables and connectors parts such as cables and connectors. I am doing.
  • Patent Document 1 In order to improve heat resistance and adhesiveness, a metal-clad laminate using polyimide as an insulating layer has been proposed (Patent Document 1).
  • Patent Document 1 it is known that the dielectric constant is generally lowered by using an aliphatic monomer as a polymer material, and an aliphatic (chain) tetracarboxylic dianhydride is used. Since the heat resistance of the polyimide obtained in this way is extremely low, it cannot be used for processing such as soldering, and there is a problem in practical use. However, when alicyclic tetracarboxylic dianhydride is used, it becomes a chain-like one It is said that polyimide having improved heat resistance can be obtained.
  • the polyimide film formed from such a polyimide has a dielectric constant of 10 or less at 10 GHz, the dielectric loss tangent exceeds 0.01, and the dielectric properties have not been sufficient.
  • many polyimides using the above-mentioned aliphatic monomers have a large linear thermal expansion coefficient, and there are problems that the dimensional change rate of the polyimide film is large and flame retardancy is reduced.
  • the object of the present invention is to have high dimensional stability and low hygroscopicity, and by reducing the dielectric loss tangent of the insulating layer, it is possible to reduce transmission loss and to be suitably used for a high-frequency circuit board. It is providing the polyimide film which can be performed.
  • the inventors of the present invention have made a non-thermoplastic polyimide layer mainly responsible for controlling the rate of dimensional change in the circuit board, and further, if necessary, thermoplastic polyimide responsible for adhesion to the copper foil.
  • the layer by selecting the monomer that will be the raw material of the polyimide, ensuring the dimensional stability required for the circuit board, and reducing the moisture absorption and lowering the dielectric loss tangent by controlling the ordering (crystallinity) of the polyimide As a result, the present invention has been completed.
  • the polyimide film of the 1st viewpoint of this invention is a polyimide film which has a thermoplastic polyimide layer containing a thermoplastic polyimide in at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide.
  • the polyimide film according to the first aspect of the present invention is characterized by satisfying the following conditions (ai) to (a-iv).
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
  • Tetracarboxylic acid residue BPDA residue
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • 1,4-phenylenebis (trimellitic acid monoester) dianhydride At least one tetracarboxylic acid residue (TAHQ residue) derived from the product (TAHQ) and tetracarboxylic acid residue (PMDA residue) derived from pyromellitic dianhydride (PMDA) and a few
  • the total of at least one tetracarboxylic acid residue (NTCDA residue) derived from 1,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) is 80 parts by mole or more, Molar ratio
  • thermoplastic polyimide constituting the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and relative to 100 mole parts of the diamine residue,
  • the diamine residue derived from at least one diamine compound selected from the diamine compounds represented by the following general formulas (B1) to (B7) is 70 mol parts or more.
  • the coefficient of thermal expansion is within the range of 10 ppm / K to 30 ppm / K.
  • Df dielectric loss tangent at 10 GHz is 0.004 or less.
  • R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms
  • the linking group A is independently —O—, —S—, —CO
  • a divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—
  • n 1 is independent Represents an integer of 0 to 4.
  • n 1 is independent
  • those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded.
  • the polyimide film of the 1st viewpoint of this invention is a diamine compound represented with the following general formula (A1) with respect to 100 mol part of the diamine residue in the non-thermoplastic polyimide which comprises the said non-thermoplastic polyimide layer.
  • the diamine residue derived from may be 80 mol parts or more.
  • the linking group X represents a single bond or a divalent group selected from —COO—
  • Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group.
  • N represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • the polyimide film of the first aspect of the present invention is a diamine represented by the general formulas (B1) to (B7) with respect to 100 mole parts of the diamine residue in the thermoplastic polyimide constituting the thermoplastic polyimide.
  • a diamine residue derived from the diamine compound represented by the general formula (A1), wherein the diamine residue derived from at least one diamine compound selected from the compounds is in the range of 70 to 99 mol parts May be in the range of 1 to 30 mole parts.
  • the polyimide film of the 2nd viewpoint of this invention is a polyimide film which has a thermoplastic polyimide layer containing a thermoplastic polyimide in at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide.
  • the polyimide film according to the second aspect of the present invention is characterized by satisfying the following conditions (bi) to (b-iv).
  • the coefficient of thermal expansion is in the range of 10 ppm / K to 30 ppm / K.
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, For 100 mole parts of the tetracarboxylic acid residue, At least one tetracarboxylic dianhydride selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride (TAHQ)
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • TAHQ 1,4-phenylenebis (trimellitic acid monoester) dianhydride
  • the tetracarboxylic acid residue derived from the anhydride is in the range of 30 to 60 parts by mole
  • the tetracarboxylic acid residue derived from pyromellitic dianhydride (PMDA) is in the range of 40 to 70 parts by
  • the diamine residue derived from the diamine compound represented by the following general formula (A1) is 80 parts by mole or more.
  • thermoplastic polyimide composing the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and with respect to 100 mole parts of the diamine residue,
  • the diamine residue derived from at least one diamine compound selected from the diamine compounds represented by the following general formulas (B1) to (B7) is in the range of 70 to 99 parts by mole,
  • the diamine residue derived from the diamine compound represented by the following general formula (A1) is in the range of 1 to 30 mol parts.
  • the linking group X represents a single bond or a divalent group selected from —COO—
  • Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group.
  • N represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms
  • the linking group A is independently —O—, —S—, —CO
  • a divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—
  • n 1 is independent Represents an integer of 0 to 4.
  • n 1 is independent
  • those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded.
  • the non-thermoplastic polyimide and the thermoplastic polyimide may each have an imide group concentration of 33% by weight or less.
  • a polyimide film according to a third aspect of the present invention is a polyimide film having at least one non-thermoplastic polyimide layer, and satisfies the following conditions (ci) to (c-iii): .
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride per 100 mole parts of the tetracarboxylic acid residue Of tetracarboxylic acid residues derived from at least one of the products (TAHQ) within a range of 30 to 60 mole parts, pyromellitic dianhydride (PMDA) and 2,3,6,7-naphthalenetetracarboxylic acid Containing tetracarboxylic
  • the linking group X represents a single bond or a divalent group selected from —COO—
  • Y independently represents hydrogen, a monovalent hydrocarbon having 1 to 3 carbon atoms, or an alkoxy group.
  • N represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • the polyimide film of the third aspect of the present invention has 2 diamine residues derived from diamine compounds represented by the following general formulas (C1) to (C4) with respect to 100 mol parts of the diamine residues. It may be contained within a range of ⁇ 15 mol parts.
  • R 2 independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group or an alkylthio group, and the linking group A ′ is independently —O— or —SO 2.
  • 2 represents a divalent group selected from —CH 2 — or —C (CH 3 ) 2 —, and the linking group X1 is independently —CH 2 —, —O—CH 2 —O—, —O—C.
  • n 3 independently represents an integer of 1 to 4
  • the copper clad laminate according to the first, second or third aspect of the present invention comprises an insulating layer and a copper foil on at least one surface of the insulating layer, and the insulating layer is a polyimide according to any one of the above. It is characterized by including a film.
  • the circuit board according to the first, second or third aspect of the present invention is obtained by processing the copper foil of the copper-clad laminate into a wiring.
  • the polyimide film according to the first to third aspects of the present invention can achieve both of ensuring physical properties as a base resin layer and lowering the moisture absorption rate by forming a non-thermoplastic polyimide layer using a specific acid anhydride as a raw material. And low dielectric loss tangent.
  • the polyimide film of the first or second aspect of the present invention enables low moisture absorption and low dielectric loss tangent by forming a thermoplastic polyimide layer from a thermoplastic polyimide into which a specific diamine compound is introduced. did.
  • the multilayer film which combined both resin layers has a low hygroscopic property and a dielectric loss tangent, and is excellent also in the dimensional stability after thermocompression bonding of copper foil.
  • the polyimide film of the present invention and the copper-clad laminate using the same as an FPC material, it is possible to improve the reliability and yield in the circuit board, for example, transmitting a high frequency signal of 10 GHz or more.
  • Application to a circuit board or the like is also possible.
  • the polyimide film of the first embodiment of the present invention has a thermoplastic polyimide layer containing a thermoplastic polyimide on at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide, and the above conditions (ai) to (a -iv).
  • the polyimide film of the second embodiment of the present invention has a thermoplastic polyimide layer containing a thermoplastic polyimide on at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide, and the above conditions (bi) to (B-iv) is satisfied.
  • the thermoplastic polyimide layer is provided on one side or both sides of the non-thermoplastic polyimide layer.
  • the copper foil can be laminated on the surface of the thermoplastic polyimide layer.
  • one thermoplastic polyimide layer may satisfy the above condition (a-ii) or condition (b-iv). Both preferably satisfy the above condition (a-ii) or condition (b-iv).
  • the polyimide film of the third embodiment of the present invention has at least one non-thermoplastic polyimide layer made of non-thermoplastic polyimide and satisfies the above conditions (ci) to (c-iii). It is.
  • Non-thermoplastic polyimide generally means a polyimide that does not soften or show adhesiveness even when heated. In the present invention, it is measured using a dynamic viscoelasticity measuring device (DMA) at 30 ° C.
  • the storage elastic modulus is 1.0 ⁇ 10 9 Pa or higher, and the storage elastic modulus at 280 ° C. is 3.0 ⁇ 10 8 Pa or higher.
  • the “thermoplastic polyimide” is generally a polyimide whose glass transition temperature (Tg) can be clearly confirmed.
  • the storage elastic modulus at 30 ° C. measured by DMA is 1.0.
  • X10 9 Pa or higher which means a polyimide having a storage elastic modulus at 280 ° C. of less than 3.0 ⁇ 10 8 Pa.
  • the resin component of the non-thermoplastic polyimide layer is preferably made of non-thermoplastic polyimide.
  • the thermoplastic resin The resin component of the polyimide layer is preferably made of thermoplastic polyimide.
  • the non-thermoplastic polyimide layer constitutes a low thermal expansion polyimide layer
  • the thermoplastic polyimide layer constitutes a high thermal expansion polyimide layer.
  • the low thermal expansion polyimide layer is preferably a polyimide layer having a coefficient of thermal expansion (CTE) in the range of 1 ppm / K to 25 ppm / K, more preferably in the range of 3 ppm / K to 25 ppm / K.
  • CTE coefficient of thermal expansion
  • the high thermal expansion polyimide layer preferably has a CTE of 35 ppm / K or more, more preferably in the range of 35 ppm / K or more and 80 ppm / K or less, and still more preferably in the range of 35 ppm / K or more and 70 ppm / K or less.
  • a polyimide layer can be made into the polyimide layer which has desired CTE by changing suitably the combination of the raw material to be used, thickness, and drying / curing conditions.
  • a polyimide can be produced by reacting a tetracarboxylic dianhydride and a diamine compound in a solvent to form a polyamic acid and then ring-closing with heating.
  • a precursor of polyimide is obtained by dissolving a tetracarboxylic dianhydride and a diamine compound in an organic solvent in approximately equimolar amounts and stirring for 30 minutes to 24 hours at a temperature within a range of 0 to 100 ° C.
  • a polyamic acid is obtained.
  • the reaction components are dissolved so that the precursor to be produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent.
  • organic solvent used in the polymerization reaction examples include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2 -Butanone, dimethyl sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, cresol and the like. Two or more of these solvents can be used in combination, and further, aromatic hydrocarbons such as xylene and toluene can be used in combination.
  • the amount of such organic solvent used is not particularly limited, but it should be adjusted so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight. Is preferred.
  • the synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted or substituted with another organic solvent as necessary. Moreover, since polyamic acid is generally excellent in solvent solubility, it is advantageously used.
  • the viscosity of the polyamic acid solution is preferably in the range of 500 cps to 100,000 cps. If it is out of this range, defects such as uneven thickness and streaks are likely to occur in the film during coating by a coater or the like.
  • the method for imidizing the polyamic acid is not particularly limited, and for example, heat treatment such as heating in the above-mentioned solvent under a temperature condition in the range of 80 to 400 ° C. for 1 to 24 hours is suitably employed.
  • Polyimide is formed by imidizing the above polyamic acid, and is produced by reacting a specific acid anhydride with a diamine compound. Therefore, by explaining the acid anhydride and diamine compound, the first, second Or the specific example of the non-thermoplastic polyimide of 3rd Embodiment and the thermoplastic polyimide of 1st or 2nd Embodiment is understood.
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue.
  • the tetracarboxylic acid residue means a tetravalent group derived from tetracarboxylic dianhydride
  • the diamine residue means a divalent group derived from a diamine compound. Represents that.
  • the polyimide film of the first, second or third embodiment has an aromatic tetracarboxylic acid residue derived from an aromatic tetracarboxylic dianhydride and an aromatic diamine residue derived from an aromatic diamine. It is preferable to include.
  • the tetracarboxylic acid residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer may be 3,3 ′, 4,4′-biphenyltetracarboxylic Tetracarboxylic acid residues derived from at least one of acid dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride (TAHQ) and pyromellitic dianhydride (PMDA) And a tetracarboxylic acid residue derived from at least one of 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA).
  • BPDA acid dianhydride
  • TAHQ 1,4-phenylenebis (trimellitic acid monoester) dianhydride
  • PMDA pyromellitic dianhydride
  • NTCDA 2,3,6,7-naphthalenetetracarboxylic dianhydride
  • a tetracarboxylic acid residue derived from BPDA (hereinafter also referred to as “BPDA residue”) and a tetracarboxylic acid residue derived from TAHQ (hereinafter also referred to as “TAHQ residue”) are polymer ordered. It is easy to form a structure, and the loss tangent and hygroscopicity can be reduced by suppressing the movement of molecules.
  • the BPDA residue can give the self-supporting property of the gel film as the polyamic acid of the polyimide precursor, but increases the CTE after imidization and lowers the glass transition temperature to lower the heat resistance. Become a trend.
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer in the polyimide film of the first, second or third embodiment is based on 100 mol parts of the tetracarboxylic acid residue.
  • the total of the BPDA residue and the TAHQ residue is preferably controlled to be contained in the range of 30 to 60 parts by mole, more preferably in the range of 40 to 50 parts by mole. If the total of the BPDA residue and the TAHQ residue is less than 30 parts by mole, the formation of the ordered structure of the polymer becomes insufficient, the hygroscopic resistance is lowered, and the reduction of the dielectric loss tangent is insufficient. When it exceeds, there exists a possibility that heat resistance may fall besides the increase in the amount of change of CTE and in-plane retardation (RO).
  • RO in-plane retardation
  • a tetracarboxylic acid residue derived from pyromellitic dianhydride (hereinafter also referred to as “PMDA residue”) and a tetracarboxylic acid dianhydride derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride.
  • Carboxylic acid residues (hereinafter also referred to as “NTCDA residues”) have rigidity, so that they increase the in-plane orientation, keep CTE low, and control RO and glass transition temperature. responsible residue.
  • the molecular weight of the PMDA residue is small, if the amount is too large, the imide group concentration of the polymer is increased, the polar group is increased and the hygroscopicity is increased, and the moisture content in the molecular chain is increased.
  • the dielectric loss tangent increases due to the influence.
  • the NTCDA residue tends to be brittle due to a highly rigid naphthalene skeleton, and tends to increase the elastic modulus.
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer is a PMDA residue and an NTCDA residue with respect to 100 mole parts of the tetracarboxylic acid residue. Is preferably in the range of 40 to 70 mole parts, more preferably in the range of 50 to 60 mole parts, and still more preferably in the range of 50 to 55 mole parts. If the total of PMDA residues and NTCDA residues is less than 40 parts by mole, CTE may increase or heat resistance may decrease.
  • the imide group concentration of the polymer increases, There is a risk that low hygroscopicity is impaired due to an increase in the group, and that the dielectric loss tangent may increase or the film becomes brittle and the self-supporting property of the film is lowered.
  • the total of at least one of the BPDA residue and the TAHQ residue and at least one of the PMDA residue NTCDA residue is a tetracarboxylic acid. It is 80 mol parts or more, preferably 90 mol parts or more with respect to 100 mol parts of the residue.
  • a molar ratio ⁇ (BPDA) of at least one BPDA residue and TAHQ residue and at least one PMDA residue and NTCDA residue is defined.
  • the formation of an ordered structure of CTE and polymer is controlled.
  • the control of the in-plane orientation of the molecules in the polyimide is greater than that of other general acid anhydride components. This is possible and has the effect of suppressing the coefficient of thermal expansion (CTE) and improving the glass transition temperature (Tg).
  • CTE coefficient of thermal expansion
  • Tg glass transition temperature
  • BPDA and TAHQ have a higher molecular weight than PMDA, the imide group concentration is reduced by increasing the charging ratio, and this is effective in reducing dielectric loss tangent and moisture absorption.
  • the preparation ratio of BPDA and TAHQ is increased, the in-plane orientation of molecules in the polyimide is lowered, leading to an increase in CTE.
  • the total amount of PMDA and NTCDA is in the range of 40 to 70 mol parts, preferably in the range of 50 to 60 mol parts, with respect to 100 mol parts of the total acid anhydride component of the raw material. More preferably, it is in the range of 50 to 55 mole parts.
  • the total charge amount of PMDA and NTCDA is less than 40 mol parts with respect to 100 mol parts of the total acid anhydride component of the raw material, the in-plane orientation of the molecule is lowered, making it difficult to reduce CTE, and Tg The heat resistance and dimensional stability of the film at the time of heating due to the decrease in the thickness are reduced.
  • the total amount of PMDA and NTCDA exceeds 70 mol parts, the moisture absorption rate tends to deteriorate due to an increase in the imide group concentration, or the elastic modulus tends to increase.
  • BPDA and TAHQ are effective in suppressing molecular motion and lowering the dielectric loss tangent and lowering the moisture absorption rate by lowering the imide group concentration, but increase the CTE as a polyimide film after imidization.
  • the total charge amount of BPDA and TAHQ is in the range of 30 to 60 mol parts, preferably in the range of 40 to 50 mol parts, with respect to 100 mol parts of the total acid anhydride component of the raw material. More preferably, it is within the range of 40 to 45 mole parts.
  • Examples of tetracarboxylic acid residues other than the BPDA residue, TAHQ residue, PMDA residue, and NTCDA residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer include, for example, 3, 3 ′, 4 , 4'-Diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,3 ', 3,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3 ' -2,3,3 ', 4'- or 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3 ', 3,4'-diphenyl ether tetracarboxylic dianhydride, bis (2,3-Dicarboxyphenyl) ether dianhydride, 3,3 ′′, 4,4 ′′-, 2,3,3 ′′, 4 ′′-or 2,2 ′′
  • the diamine residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer is derived from a diamine compound represented by the general formula (A1). A diamine residue is preferred.
  • the linking group X represents a single bond or a divalent group selected from —COO—
  • Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group.
  • N represents an integer of 0 to 2
  • p and q independently represent an integer of 0 to 4.
  • “independently” means that in the above formula (A1), the plurality of linking groups A, the plurality of substituents Y, and the integers p and q may be the same or different.
  • the hydrogen atoms in the two terminal amino groups may be substituted. For example, —NR 3 R 4 (wherein R 3 and R 4 are independently alkyl groups, etc. Meaning any substituent).
  • the diamine compound represented by the general formula (A1) (hereinafter sometimes referred to as “diamine (A1)”) is an aromatic diamine having two benzene rings. Since the diamine (A1) has a rigid structure, it has an action of imparting an ordered structure to the entire polymer. Therefore, a low gas permeability and low hygroscopic polyimide can be obtained, and moisture inside the molecular chain can be reduced, so that the dielectric loss tangent can be lowered.
  • the linking group X is preferably a single bond.
  • diamine (A1) examples include 1,4-diaminobenzene (p-PDA; paraphenylenediamine), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), and 2,2′-.
  • examples thereof include n-propyl-4,4′-diaminobiphenyl (m-NPB) and 4-aminophenyl-4′-aminobenzoate (APAB).
  • the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer of the first or second embodiment preferably has a diamine residue derived from the diamine (A1) with respect to 100 mole parts of the diamine residue. 80 mol parts or more, more preferably 85 mol parts or more.
  • the diamine (A1) in an amount within the above range, the rigid structure derived from the monomer facilitates the formation of an ordered structure throughout the polymer, has low gas permeability, low hygroscopicity, and low dielectric loss tangent. Non-thermoplastic polyimide is easily obtained.
  • the diamine residue derived from the diamine (A1) is from 80 to 85 parts by mole with respect to 100 parts by mole of the diamine residue in the non-thermoplastic polyimide.
  • 1,4-diaminobenzene is preferably used as the diamine (A1) from the viewpoint of being more rigid and having an excellent in-plane orientation.
  • the other diamine residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer is, for example, 2,2-bis- [4- (3-aminophenoxy ) Phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (3 -Aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy)] benzophenone, 9,9-bis [4- (3-aminophenoxy) phenyl ] Fluorene, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phen
  • the diamine (A1) is added to 100 mol parts of the total diamine component of the raw material as defined in the above condition (ci). On the other hand, it is 70 mol parts or more, for example, in the range of 70 to 90 mol parts, preferably in the range of 80 to 90 mol parts. On the other hand, when the amount of diamine (A1) charged exceeds 90 mol parts, the elongation of the film may decrease.
  • the non-thermoplastic polyimide used in the third embodiment is at least one aromatic selected from the group consisting of aromatic diamines represented by the general formulas (C1) to (C4) as a diamine component of the raw material. Preference is given to using diamines. Since the diamines (C1) to (C4) have bulky substituents and flexible portions, flexibility can be imparted to the polyimide. Further, since the diamines (C1) to (C4) can improve gas permeability, they have an effect of suppressing foaming during the production of the multilayer film and the metal-clad laminate.
  • one or more aromatic diamines selected from diamines (C1) to (C4) may be used within a range of 2 to 15 parts by mole with respect to 100 parts by mole of the total diamine component. preferable.
  • the amount of diamine (C1) to (C4) is less than 2 mole parts, foaming may occur when a multilayer film and a metal-clad laminate are produced.
  • the amount of diamine (C1) to (C4) charged exceeds 15 parts by mole, the molecular orientation is lowered and it is difficult to reduce the CTE.
  • R 2 independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group or an alkylthio group
  • the linking group A ′ is independently —O—, —SO A divalent group selected from 2 —, —CH 2 — or —C (CH 3 ) 2 —, preferably a divalent group selected from —O—, —CH 2 — or —C (CH 3 ) 2 —.
  • the linking group X1 is independently —CH 2 —, —O—CH 2 —O—, —O—C 2 H 4 —O—, —O—C 3 H 6 —O—, —O—C 4.
  • n 3 independently represents an integer of 1 to 4
  • “independently” refers to a plurality of linking groups A ′, a plurality of linking groups X1, a plurality of substituents R in one or more of the above formulas (C1) to (C4). It means that two or a plurality of n 3 and n 4 may be the same or different.
  • hydrogen atoms in the two terminal amino groups may be substituted.
  • —NR 3 R 4 wherein R 3 and R 4 are independently Meaning an arbitrary substituent such as an alkyl group).
  • Examples of the aromatic diamine represented by the general formula (C1) include 2,6-diamino-3,5-diethyltoluene and 2,4-diamino-3,5-diethyltoluene.
  • Examples of the aromatic diamine represented by the general formula (C2) include 2,4-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane and bis (4-amino-3-ethyl-5- And methylphenyl) methane.
  • Examples of the aromatic diamine represented by the general formula (C3) include 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene and 1,4-bis [2- (4-amino). Phenyl) -2-propyl] benzene, 1,4-bis (4-aminophenoxy) -2,5-di-tert-butylbenzene, and the like.
  • Examples of the aromatic diamine represented by the general formula (C4) include 2,2-bis [4- (4-aminophenoxy) phenyl] propane.
  • the non-thermoplastic polyimide constituting the polyimide film of the third embodiment has 70 mol parts or more of residues derived from diamine (A1) with respect to 100 mol parts of diamine residues,
  • the residue is preferably controlled so as to contain a residue derived from diamines (C1) to (C4) within a range of 2 to 15 mol parts within a range of 70 to 90 mol parts.
  • other diamines that can be used as a raw material for polyimide include, for example, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4 -(4-Aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (2-trifluoro-4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-aminophenoxy) 2 , 3,6-trimethyl-benzene, 1,4-bis (4-aminophenoxymethyl) propane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) methane, 1,4-bis (4-aminophenoxy) ethane, 1,4-bis (4-aminophenoxy) propane 1,
  • BPDA, TAHQ, PMDA, and NTCDA are used as the acid anhydride component that is a raw material for polyimide
  • diamine (A1) and diamines (C1) to (C4) are used as the diamine components in the above molar ratios, respectively.
  • the polyimide film of the third embodiment has a low dielectric constant, a low dielectric loss tangent, and a low hygroscopicity, so that it is preferable as a base resin in an insulating resin layer of a copper clad laminate that is a raw material for FPC, for example. It is.
  • aromatic tetracarboxylic acid anhydride and aromatic diamine are used as the raw material for polyimide, the problem of dimensional change due to heating is less likely to occur, and it has flame retardancy. There is no need to blend. Therefore, by using the polyimide film of the third embodiment and the copper-clad laminate using the polyimide film, it is possible to improve the reliability and yield of a circuit board such as an FPC.
  • non-thermoplastic polyimide of the first, second or third embodiment when the types of the tetracarboxylic acid residue and diamine residue, or two or more kinds of tetracarboxylic acid residues or diamine residues are applied By selecting the respective molar ratios, the thermal expansion coefficient, storage elastic modulus, tensile elastic modulus and the like can be controlled.
  • a non-thermoplastic polyimide when it has a plurality of polyimide structural units, it may exist as a block or randomly, but it is random from the viewpoint of suppressing variation in in-plane retardation (RO). It is preferable that it exists in.
  • the tetracarboxylic acid residue and the diamine residue contained in the non-thermoplastic polyimide are both aromatic groups, so that the dimensions of the polyimide film in a high temperature environment are as follows. This is preferable because accuracy can be improved and the amount of change in in-plane retardation (RO) can be reduced.
  • concentration of a non-thermoplastic polyimide is 33 weight% or less.
  • the “imide group concentration” means a value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) in the polyimide by the molecular weight of the entire polyimide structure.
  • the imide group concentration exceeds 33% by weight, the molecular weight of the resin itself is reduced, and the low hygroscopicity is also deteriorated due to an increase in polar groups.
  • the weight average molecular weight of the non-thermoplastic polyimide is preferably in the range of, for example, 10,000 to 400,000, more preferably in the range of 50,000 to 350,000. preferable.
  • the weight average molecular weight is less than 10,000, the strength of the film tends to decrease and the film tends to become brittle.
  • the weight average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as film thickness unevenness and streaks tend to occur during the coating operation.
  • thermoplastic polyimide constituting the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and is from an aromatic tetracarboxylic dianhydride. It preferably contains an aromatic tetracarboxylic acid residue derived from and an aromatic diamine residue derived from an aromatic diamine.
  • thermoplastic polyimide constituting the thermoplastic polyimide layer
  • tetracarboxylic acid residue used in the thermoplastic polyimide constituting the thermoplastic polyimide layer should be the same as the tetracarboxylic acid residue exemplified in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer. Can do.
  • a diamine residue derived from a diamine compound represented by the general formulas (B1) to (B7) is preferable.
  • R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms
  • the linking group A is independently —O—, —S—, —CO—.
  • n 1 is independently An integer from 0 to 4 is shown.
  • those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded.
  • the diamine represented by the formula (B1) (hereinafter sometimes referred to as “diamine (B1)”) is an aromatic diamine having two benzene rings.
  • This diamine (B1) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of a polyimide increases by using diamine (B1).
  • the linking group A is preferably —O—, —CH 2 —, —C (CH 3 ) 2 —, —CO—, —SO 2 —, —S—.
  • diamine (B1) examples include 3,3′-diaminodiphenylmethane, 3,3′-diaminodiphenylpropane, 3,3′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, and 3,3′-diamino.
  • the diamine represented by the formula (B2) (hereinafter sometimes referred to as “diamine (B2)”) is an aromatic diamine having three benzene rings.
  • This diamine (B2) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the use of diamine (B2) increases the thermoplasticity of the polyimide.
  • the linking group A is preferably —O—.
  • Examples of the diamine (B2) include 1,4-bis (3-aminophenoxy) benzene, 3- [4- (4-aminophenoxy) phenoxy] benzenamine, 3- [3- (4-aminophenoxy) phenoxy] Examples thereof include benzeneamine.
  • the diamine represented by the formula (B3) (hereinafter sometimes referred to as “diamine (B3)”) is an aromatic diamine having three benzene rings.
  • This diamine (B3) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because two divalent linking groups A directly connected to one benzene ring are in the meta position. Therefore, it is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the use of diamine (B3) increases the thermoplasticity of the polyimide.
  • the linking group A is preferably —O—.
  • diamine (B3) examples include 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 4,4 ′-[2- Methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 '-[4-methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4'-[5-methyl- (1,3-phenylene) ) Bisoxy] bisaniline and the like.
  • the diamine represented by the formula (B4) (hereinafter sometimes referred to as “diamine (B4)”) is an aromatic diamine having four benzene rings.
  • This diamine (B4) has a high flexibility because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position, thereby improving the flexibility of the polyimide molecular chain. It is thought to contribute. Therefore, the use of diamine (B4) increases the thermoplasticity of the polyimide.
  • the linking group A is preferably —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO—, —CONH—.
  • Examples of the diamine (B4) include bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 ′-(3-aminophenoxy)] benzanilide and the like can be mentioned.
  • the diamine represented by the formula (B5) (hereinafter sometimes referred to as “diamine (B5)”) is an aromatic diamine having four benzene rings.
  • This diamine (B5) has high flexibility because the degree of freedom of the polyimide molecular chain is increased by having two divalent linking groups A directly connected to at least one benzene ring in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (B5).
  • the linking group A is preferably —O—.
  • Examples of the diamine (B5) include 4- [3- [4- (4-aminophenoxy) phenoxy] phenoxy] aniline, 4,4 ′-[oxybis (3,1-phenyleneoxy)] bisaniline, and the like. .
  • the diamine represented by the formula (B6) (hereinafter sometimes referred to as “diamine (B6)”) is an aromatic diamine having four benzene rings.
  • This diamine (B6) has high flexibility by having at least two ether bonds, and is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Therefore, the use of diamine (B6) increases the thermoplasticity of the polyimide.
  • the linking group A is preferably —C (CH 3 ) 2 —, —O—, —SO 2 —, or —CO—.
  • diamine (B6) examples include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) phenyl] ether (BAPE), and bis [4 -(4-Aminophenoxy) phenyl] sulfone (BAPS), bis [4- (4-aminophenoxy) phenyl] ketone (BAPK) and the like can be mentioned.
  • BAPP 2,2-bis [4- (4-aminophenoxy) phenyl] propane
  • BAPE bis [4- (4-aminophenoxy) phenyl] ether
  • BAPS bis [4 -(4-Aminophenoxy) phenyl] sulfone
  • BAPK bis [4- (4-aminophenoxy) phenyl] ketone
  • the diamine represented by the formula (B7) (hereinafter sometimes referred to as “diamine (B7)”) is an aromatic diamine having four benzene rings. Since this diamine (B7) has divalent linking groups A having high flexibility on both sides of the diphenyl skeleton, it is considered that this diamine (B7) contributes to improvement in flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (B7).
  • the linking group A is preferably —O—.
  • Examples of the diamine (B7) include bis [4- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy)] biphenyl, and the like.
  • the thermoplastic polyimide constituting the thermoplastic polyimide layer is at least one diamine selected from diamine (B1) to diamine (B7) with respect to 100 mole parts of the diamine residue.
  • a diamine residue derived from the compound is contained in an amount of 70 mol parts or more, preferably 70 mol parts or more and 99 mol parts or less, more preferably 80 mol parts or more and 95 mol parts or less. Since diamine (B1) to diamine (B7) have a flexible molecular structure, the flexibility of the polyimide molecular chain is improved by using at least one diamine compound selected from these in an amount within the above range. And thermoplasticity can be imparted. If the total amount of diamine (B1) to diamine (B7) is less than 70 parts by mole with respect to 100 parts by mole of the total diamine component, sufficient thermoplasticity cannot be obtained due to insufficient flexibility of the polyimide resin.
  • a diamine residue contained in the thermoplastic polyimide constituting the thermoplastic polyimide layer a diamine residue derived from a diamine compound represented by the general formula (A1) is also preferable.
  • the diamine compound [diamine (A1)] represented by the formula (A1) is as described in the description of the non-thermoplastic polyimide. Since the diamine (A1) has a rigid structure and has an action of imparting an ordered structure to the entire polymer, the dielectric loss tangent and hygroscopicity can be reduced by suppressing the movement of molecules. Furthermore, by using it as a raw material for thermoplastic polyimide, a polyimide having low gas permeability and excellent long-term heat-resistant adhesion can be obtained.
  • the thermoplastic polyimide constituting the thermoplastic polyimide layer is preferably a diamine residue derived from the diamine (A1), preferably in the range of 1 to 30 mol parts, More preferably, it may be contained within the range of 5 mol parts or more and 20 mol parts or less.
  • the diamine (A1) in an amount within the above range, an ordered structure is formed in the entire polymer due to the rigid structure derived from the monomer, so that the gas permeability and hygroscopicity are low while being thermoplastic, A polyimide having excellent heat-resistant adhesion can be obtained.
  • thermoplastic polyimide constituting the thermoplastic polyimide layer can contain a diamine residue derived from a diamine compound other than the diamines (A1) and (B1) to (B7) as long as the effects of the invention are not impaired.
  • thermoplastic polyimide the coefficient of thermal expansion is determined by selecting the types of the tetracarboxylic acid residue and diamine residue, and the molar ratios when two or more tetracarboxylic acid residues or diamine residues are applied. , Tensile modulus, glass transition temperature and the like can be controlled. Further, in the thermoplastic polyimide, when having a plurality of polyimide structural units, they may exist as a block or randomly, but are preferably present at random.
  • the tetracarboxylic acid residue and the diamine residue contained in the thermoplastic polyimide are both aromatic groups, so that the dimensional accuracy of the polyimide film in a high-temperature environment is increased.
  • the amount of change in in-plane retardation (RO) can be suppressed.
  • the imide group concentration of the thermoplastic polyimide is preferably 33% by weight or less.
  • the “imide group concentration” means a value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) in the polyimide by the molecular weight of the entire polyimide structure.
  • the imide group concentration exceeds 33% by weight, the molecular weight of the resin itself is reduced, and the low hygroscopicity is also deteriorated due to an increase in polar groups.
  • the increase in CTE accompanying the decrease in imide group concentration is suppressed, Ensures low hygroscopicity.
  • the weight average molecular weight of the thermoplastic polyimide is preferably in the range of, for example, 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000.
  • weight average molecular weight is less than 10,000, the strength of the film tends to decrease and the film tends to become brittle.
  • weight average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as film thickness unevenness and streaks tend to occur during the coating operation.
  • thermoplastic polyimide constituting the thermoplastic polyimide layer can improve the adhesion with the copper foil.
  • thermoplastic polyimide has a glass transition temperature in the range of 200 ° C. to 350 ° C., preferably in the range of 200 ° C. to 320 ° C.
  • thermoplastic polyimide constituting the thermoplastic polyimide layer is, for example, an adhesive layer in an insulating resin of a circuit board. Therefore, a completely imidized structure is most preferable in order to suppress copper diffusion. However, a part of the polyimide may be amic acid.
  • the imidation ratio was measured at about 1015 cm ⁇ 1 by measuring the infrared absorption spectrum of the polyimide thin film by a single reflection ATR method using a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO). And the absorbance of C ⁇ O stretching derived from an imide group of 1780 cm ⁇ 1 , based on the benzene ring absorber.
  • the polyimide film of the first, second or third embodiment is not particularly limited as long as it satisfies the above conditions, and may be a film (sheet) made of an insulating resin, copper foil, It may be an insulating resin film laminated on a substrate such as a resin sheet such as a glass plate, a polyimide film, a polyamide film, or a polyester film.
  • the thickness of the polyimide film of 1st, 2nd or 3rd embodiment can be set to the thickness within a predetermined range according to the purpose to be used.
  • the thickness of the polyimide film is preferably in the range of 8 to 50 ⁇ m, for example, and more preferably in the range of 11 to 26 ⁇ m. If the thickness of the polyimide film is less than the lower limit, problems such as inability to ensure electrical insulation and difficulty in handling in the production process due to a decrease in handling properties may occur.
  • the thickness of the polyimide film exceeds the above upper limit value, for example, it is necessary to control the manufacturing conditions for controlling the in-plane retardation (RO) with high accuracy, resulting in problems such as a decrease in productivity.
  • RO in-plane retardation
  • the thickness ratio of the non-thermoplastic polyimide layer to the thermoplastic polyimide layer is 1.5 to 6.0. It is good to be within the range. If the value of this ratio is less than 1.5, the non-thermoplastic polyimide layer with respect to the entire polyimide film becomes thin, so that the variation in in-plane retardation (RO) tends to be large, and if it exceeds 6.0, the thermoplastic polyimide layer Therefore, the adhesion reliability between the polyimide film and the copper foil is likely to decrease.
  • RO in-plane retardation
  • Control of this in-plane retardation has a correlation with the resin structure of each polyimide layer which comprises a polyimide film, and its thickness.
  • the thermoplastic polyimide layer which is a resin structure with adhesiveness, that is, high thermal expansion or softening, greatly affects the value of RO of the polyimide film as the thickness increases, so the ratio of the thickness of the non-thermoplastic polyimide layer Increase the thickness and decrease the thickness ratio of the thermoplastic polyimide layer to reduce the RO value of the polyimide film and its variation.
  • the polyimide film has a film width in the range of 490 mm or more and 1100 mm or less and a long length of 20 m or more from the viewpoint of increasing the effect of improving the dimensional accuracy of the polyimide film.
  • the effect of invention becomes especially remarkable, so that the width direction (henceforth TD direction) is wide.
  • the longitudinal direction of a long polyimide film is called MD direction.
  • the polyimide film of the second embodiment has an in-plane retardation (RO) value in the range of 5 nm to 50 nm, preferably in the range of 5 nm to 20 nm, more preferably in the range of 5 nm to 15 nm. .
  • the variation in the TD direction ( ⁇ RO) is 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less, and is controlled within such a range, so that the film has a thickness of 25 ⁇ m or more.
  • the dimensional accuracy is high.
  • the polyimide film of the second embodiment has an in-plane retardation (RO) change amount of 20 nm or less, preferably 10 nm or less before and after pressurization at a pressure of 340 MPa / m 2 and a holding time of 15 minutes in an environment at a temperature of 320 ° C. More preferably, it is 5 nm or less.
  • RO in-plane retardation
  • the polyimide film of 2nd Embodiment is the temperature exceeding the glass transition temperature of the polyimide which comprises a thermoplastic polyimide layer, the variation
  • the coefficient of thermal expansion (CTE) of the entire film is in the range of 10 ppm / K to 30 ppm / K, preferably in the range of 10 ppm / K to 25 ppm / K. The inside is good, and the range of 10 to 20 ppm / K is more preferable.
  • the coefficient of thermal expansion (CTE) of the polyimide film of the third embodiment is the same as that of the first or second embodiment.
  • the dielectric loss tangent (Tan ⁇ ) at 10 GHz as measured by a split post-derivative resonator (SPDR) as the whole insulating layer is 0.004 or less, more preferably 0.001 or more and 0. Within the range of 0.004 or less, more preferably within the range of 0.002 or more and 0.003 or less.
  • the dielectric loss tangent of the insulating layer In order to improve the dielectric characteristics of the circuit board, it is particularly important to control the dielectric loss tangent of the insulating layer. By setting the dielectric loss tangent within the above range, the effect of reducing transmission loss increases. Therefore, when applying a polyimide film as an insulating layer of a high frequency circuit board, for example, transmission loss can be reduced efficiently.
  • the dielectric tangent of the insulating layer at 10 GHz exceeds 0.004
  • inconveniences such as loss of an electric signal are likely to occur on a high-frequency signal transmission path.
  • the lower limit value of the dielectric loss tangent at 10 GHz of the insulating layer is not particularly limited, but physical property control in the case of applying polyimide as the insulating layer of the circuit board is considered.
  • the dielectric constant at 10 GHz as a whole is 4 to ensure impedance matching. It is preferably 0 or less.
  • the dielectric constant at 10 GHz of the insulating layer exceeds 4.0, when used on a circuit board such as an FPC, the dielectric loss of the insulating layer is deteriorated, and the inconvenience such as loss of an electric signal on a high-frequency signal transmission path. Is likely to occur.
  • the polyimide film of the first embodiment or the second embodiment has a moisture absorption rate of 0. 23 ° C. and 50% RH in order to reduce the influence of humidity when used for a circuit board such as an FPC. It is preferably 7% by weight or less.
  • the moisture absorption rate of the polyimide film exceeds 0.7% by weight, when used for a circuit board such as an FPC, it is easily affected by humidity, and inconveniences such as fluctuations in the transmission speed of high-frequency signals are likely to occur.
  • the polyimide film of the third embodiment takes into consideration the influence on the dimensional stability and dielectric properties of the polyimide film, and has a moisture absorption rate of 0.2 when humidity is adjusted at 23 ° C. and 50% RH for 24 hours. It is preferable that it is 65 weight% or less. If the moisture absorption rate exceeds 0.65% by weight, the dimensional stability and dielectric characteristics of the polyimide film may be deteriorated. The fact that the moisture absorption is 0.65% by weight or less means that the polar group concentration in the polyimide is low and that the ordered structure of the polymer chain is likely to be formed. It is preferable for improvement. However, since the HAZE value tends to increase with the formation of the ordered structure of the polymer chain when the moisture absorption rate decreases, it is preferable to consider the HAZE value described later.
  • the tensile elastic modulus of the polyimide film of the second embodiment is preferably in the range of 3.0 to 10.0 GPa, and preferably in the range of 4.5 to 8.0 GPa. If the tensile modulus of the polyimide film is less than 3.0 GPa, the strength of the polyimide itself will decrease, and handling problems such as film tearing may occur when processing a copper clad laminate on a circuit board. . On the other hand, when the tensile modulus of the polyimide film exceeds 10.0 GPa, the bending resistance of the copper clad laminate is increased, resulting in an increase in bending stress applied to the copper wiring when the copper clad laminate is folded. Bending resistance is reduced. By setting the tensile elastic modulus of the polyimide film within the above range, the strength and flexibility of the polyimide film are ensured.
  • the polyimide film of the third embodiment has a glass transition temperature of 300 ° C. or higher as defined in the above condition (c-ii).
  • the glass transition temperature is less than 300 ° C., problems such as film swell and peeling from the wiring tend to occur when a CCL using the polyimide film of the third form or an FPC is manufactured.
  • the glass transition temperature is set to 300 ° C. or higher, the solder heat resistance and dimensional stability of the polyimide film are enhanced.
  • the polyimide film of the third embodiment is prepared by applying a polyamic acid solution, which is a polyimide precursor, onto a copper foil having a ten-point average roughness (Rz) of 0.6 ⁇ m and imidizing it.
  • a polyamic acid solution which is a polyimide precursor
  • the HAZE value based on JIS K 7136 is preferably in the range of 62 to 75%. .
  • the HAZE value exceeds 75%, the visibility through the polyimide film of the third embodiment is lowered.
  • the alignment to the alignment mark becomes difficult, and the practicality may be reduced.
  • the HAZE value is less than 62%, the visibility becomes high, but the formation of an ordered structure of the polyimide polymer chain has not progressed, so that the moisture absorption characteristics and the dielectric characteristics may be impaired.
  • the preferable value of the HAZE value is set in the range of 62 to 75%. Yes.
  • the polyimide film of the third embodiment preferably has a film elongation of 30% or more.
  • the polyimide film of the third embodiment when used as an insulating layer of an FPC, it is necessary to bend and store it in a small space in a housing of a mobile device or the like. In such a usage pattern, if the film elongation is low, the wiring may be disconnected. Therefore, the polyimide film of the third embodiment has a preferable film elongation of 30% or more.
  • the polyimide film of 1st, 2nd or 3rd embodiment may contain an inorganic filler in a non-thermoplastic polyimide layer or a thermoplastic polyimide layer as needed.
  • an inorganic filler in a non-thermoplastic polyimide layer or a thermoplastic polyimide layer as needed.
  • Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride. These may be used alone or in combination of two or more.
  • a polyimide film is produced by applying and drying a polyamic acid solution on a supporting substrate and then imidizing it. [2] After applying and drying a polyamic acid solution on a supporting substrate, the polyamic acid gel film is peeled off from the supporting substrate and imidized to produce a polyimide film.
  • the polyimide film of 1st Embodiment or 2nd Embodiment is a polyimide film which consists of a polyimide layer of multiple layers
  • a method of applying and drying a polyamic acid solution a plurality of times and then imidizing (hereinafter referred to as a casting method), [4] Multilayer extrusion was simultaneously applied and dried in a state where the polyamic acid was laminated in multiple layers. Then, the method (henceforth a multilayer extrusion method) which performs imidation is mentioned.
  • the polyimide film of the third embodiment is applied as one layer in a multilayer polyimide film composed of a plurality of polyimide layers.
  • the method for applying the polyimide solution (or polyamic acid solution) on the substrate is not particularly limited, and for example, it can be applied by a coater such as a comma, die, knife, lip or the like.
  • a coater such as a comma, die, knife, lip or the like.
  • a method of repeatedly applying and drying a polyimide solution (or polyamic acid solution) on a substrate is preferable.
  • the method of [1] is, for example, the following steps 1a to 1c; (1a) applying a polyamic acid solution to a supporting substrate and drying; (1b) forming a polyimide layer by heat-treating polyamic acid on a supporting substrate and imidizing; (1c) a step of obtaining a polyimide film by separating the support substrate and the polyimide layer; Can be included.
  • the method of [2] is, for example, the following steps 2a to 2c; (2a) applying a polyamic acid solution to a supporting substrate and drying; (2b) a step of separating the support substrate and the polyamic acid gel film; (2c) a step of obtaining a polyimide film by heat-treating the polyamic acid gel film and imidizing; Can be included.
  • the method [3] is the same as the method [1] or [2] except that the step 1a or the step 2a is repeated a plurality of times to form a polyamic acid laminated structure on the support substrate. It can be carried out in the same manner as the method [1] or [2].
  • the method [4] is the same as the method [1] except that in step 1a of the method [2] or step 2a of the method [2], the laminated structure of polyamic acid is simultaneously applied and dried by multilayer extrusion. It can be carried out in the same manner as the method [1] or [2].
  • the polyimide film produced in the first, second or third embodiment preferably completes imidization of polyamic acid on a supporting substrate. Since the polyamic acid resin layer is imidized in a state of being fixed to the support substrate, it is possible to suppress the expansion and contraction change of the polyimide layer in the imidization process, and to maintain the thickness and dimensional accuracy of the polyimide film. Further, when the polyimide film of the third embodiment is applied as one layer in a multilayer polyimide film composed of a plurality of polyimide layers, a heat treatment for imidization is performed at a temperature within a range of 120 ° C. to 360 ° C., for example. In addition, the heat treatment time is controlled to 5 minutes or more, preferably within the range of 10 minutes to 20 minutes, so that foaming can be effectively suppressed and problems such as swelling of the polyimide layer can be prevented.
  • Polyimide film that has completed imidization of polyamic acid on the supporting substrate is generated when the polyimide film is separated from the supporting substrate by tension on the polyimide film, for example, when peeling using a knife edge or the like.
  • the polyimide film is stretched by stress or the like on the polyimide film, and variations in in-plane retardation (RO) of the polyimide film are likely to occur.
  • the polyimide film according to the second embodiment has a non-thermoplastic polyimide layer and a polyimide constituting the thermoplastic polyimide layer, both of which easily form an ordered structure.
  • the RO can be controlled by dispersing in the above.
  • in-plane retardation can be controlled.
  • conditions such as the stretching operation and the heating rate during imidization, the imidation completion temperature, and the load.
  • the copper clad laminate of the first, second or third embodiment includes an insulating layer and a copper foil on at least one surface of the insulating layer, and a part or all of the insulating layer is the first, What is necessary is just to be formed using the polyimide film of 2nd or 3rd Embodiment.
  • the layer which touches copper foil in an insulating layer is a thermoplastic polyimide layer. Therefore, about the polyimide film of 3rd Embodiment, it is preferable to use as a copper clad laminated board in the state laminated
  • the copper foil is provided on one side or both sides of the insulating layer. That is, the copper-clad laminate of the first, second, or third embodiment may be a single-sided copper-clad laminate (single-sided CCL) or a double-sided copper-clad laminate (double-sided CCL). In the case of single-sided CCL, the copper foil laminated on one side of the insulating layer is referred to as “first copper foil layer” in the present invention.
  • the copper foil laminated on one side of the insulating layer is referred to as the “first copper foil layer” in the present invention, and the surface of the insulating layer opposite to the side on which the first copper foil is laminated
  • the copper foil laminated on each other is referred to as a “second copper foil layer” in the present invention.
  • the copper-clad laminate of the first, second or third embodiment is used as an FPC by forming a copper wiring by etching a copper foil to form a wiring circuit.
  • the copper-clad laminate is prepared, for example, by preparing a resin film including the polyimide film of the first, second, or third embodiment, and sputtering a metal to form a seed layer. You may prepare by forming a copper foil layer by plating.
  • the copper-clad laminate is prepared by preparing a resin film including the polyimide film of the first, second or third embodiment, and laminating a copper foil on the resin film by a method such as thermocompression bonding. It may be prepared.
  • the copper-clad laminate casts a coating solution containing a polyamic acid which is a polyimide precursor on a copper foil, and after drying to form a coating film, heat treatment is imidized to form a polyimide layer. May be prepared.
  • first copper foil the copper foil used for the first copper foil layer
  • first copper foil is particularly For example, rolled copper foil or electrolytic copper foil may be used.
  • a commercially available copper foil can be used as the first copper foil.
  • the thickness of the first copper foil is preferably 18 ⁇ m or less, more preferably in the range of 6 to 13 ⁇ m, still more preferably in the range of 6 to 12 ⁇ m. Good.
  • the bendability of the copper clad laminate (or FPC) can be improved by setting the thickness of the first copper foil to 13 ⁇ m or less, preferably 13 ⁇ m or less, and more preferably 12 ⁇ m or less.
  • the lower limit value of the thickness of the first copper foil is preferably 6 ⁇ m.
  • the tensile elastic modulus of the first copper foil is preferably in the range of 10 to 35 GPa, for example, and more preferably in the range of 15 to 25 GPa.
  • the flexibility tends to be high when annealed by heat treatment. Therefore, if the tensile elastic modulus of the copper foil is less than the lower limit, the rigidity of the first copper foil itself is reduced by heating in the step of forming the insulating layer on the long first copper foil. .
  • the tensile modulus of the first copper foil may be in the above range.
  • the second copper foil layer is laminated on the surface of the insulating layer opposite to the first copper foil layer. It does not specifically limit as copper foil (2nd copper foil) used for a 2nd copper foil layer, For example, rolled copper foil or electrolytic copper foil may be sufficient. A commercially available copper foil can also be used as the second copper foil. In addition, you may use the same thing as 1st copper foil as 2nd copper foil.
  • the copper-clad laminate of the first, second or third embodiment is mainly useful as a circuit board material such as FPC. That is, the FPC according to one embodiment of the present invention is formed by processing the copper foil of the copper-clad laminate of the first, second, or third embodiment into a pattern by a conventional method to form a wiring layer. Can be manufactured.
  • Glass transition temperature is a rate of temperature increase from 30 ° C. to 400 ° C. using a polyimide film having a size of 5 mm ⁇ 20 mm, using a dynamic viscoelasticity measuring device (DMA: manufactured by UBM, trade name: E4000F). Measurement was performed at 4 ° C./min and a frequency of 11 Hz, and the temperature at which the change in elastic modulus (tan ⁇ ) was maximum was taken as the glass transition temperature.
  • DMA dynamic viscoelasticity measuring device
  • CTE coefficient of thermal expansion
  • the dielectric constant and dielectric loss tangent of the resin sheet at a frequency of 10 GHz were measured using a vector network analyzer (manufactured by Agilent, trade name E8363C) and a split post dielectric resonator (SPDR resonator). The material used for the measurement was left for 24 hours under the conditions of temperature: 24-26 ° C., humidity: 45-55%.
  • the surface roughness of the copper foil is AFM (manufactured by Bruker AXS, trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS, trade name: TESPA (NCHV), tip radius of curvature 10 nm, Using a spring constant of 42 N / m 2), a tapping mode was used to measure the 80 ⁇ m ⁇ 80 ⁇ m range of the copper foil surface, and the ten-point average roughness (Rz) was determined.
  • AFM manufactured by Bruker AXS, trade name: Dimension Icon type SPM
  • probe manufactured by Bruker AXS, trade name: TESPA (NCHV)
  • tip radius of curvature 10 nm Using a spring constant of 42 N / m 2), a tapping mode was used to measure the 80 ⁇ m ⁇ 80 ⁇ m range of the copper foil surface, and the ten-point average roughness (Rz) was determined.
  • the other copper foil was peeled off at a rate of 50 mm / min in the 90 ° direction by fixing to an aluminum plate with a tape, and the median strength when peeling from the resin layer by 10 mm was determined.
  • those having a peel strength of 1.0 kN / m or more are ⁇ (excellent)
  • those having a peel strength of 0.7 kN / m or more and less than 1.0 kN / m are ⁇ (good)
  • 0.4 kN / m or more and 0.7 kN / m Those less than m were evaluated as ⁇ (possible), and those less than 0.4 kN / m were evaluated as ⁇ (impossible).
  • the retardation in the in-plane direction of the polyimide film was determined using a birefringence meter (trade name; wide range birefringence evaluation system WPA-100, manufactured by Photonic Lattice). The measurement wavelength is 543 nm.
  • HAZE value The evaluation of the HAZE value was performed by a measurement method described in JIS K 7136 with respect to a polyimide film having a size of 5 cm ⁇ 5 cm using a haze measuring device (turbidimeter: manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH5000). .
  • BPDA 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • NTCDA 2,3,6,7-naphthalenetetracarboxylic dianhydride
  • TAHQ 1,4- Phenylenebis (trimellitic acid monoester) dianhydride
  • TMEG ethylene glycol bisanhydro trimellitate
  • m-TB 2,2'-dimethyl-4,4'-diaminobiphenyl
  • TPE-R 1,3-bis ( 4-Aminophenoxy) benzene
  • TPE-Q 1,4-bis (4-aminophenoxy) benzene
  • APB 1,3-bis (3-aminophenoxy) benzene
  • 3,3′-DAPM 3,3′-diamino- Diphenylmethane
  • DTBAB 1,4-bis (4-aminophenoxy) -2,5-di
  • the polyamic acid solution A-1 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-1 (thermoplastic, Tg; 256 ° C., moisture absorption rate: 0.36 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film A-1 was 26.4% by weight.
  • the polyamic acid solution A-2 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using a ferric chloride aqueous solution to prepare a polyimide film A-2 (thermoplastic, Tg; 242 ° C., moisture absorption rate: 0.35% by weight). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-2 was 26.5% by weight.
  • the polyamic acid solution A-3 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-3 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-3 was 26.9% by weight.
  • the polyamic acid solution A-4 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-4 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.29 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-4 was 27.1% by weight.
  • the polyamic acid solution A-5 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-5 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.27 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-5 was 27.4% by weight.
  • the polyamic acid solution A-6 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-6 (thermoplastic, Tg; 248 ° C., moisture absorption rate: 0.27 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film A-6 was 27.8% by weight.
  • the polyamic acid solution A-7 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using an aqueous ferric chloride solution to prepare polyimide film A-7 (thermoplastic, Tg: 239 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-7 was 27.0% by weight.
  • the polyamic acid solution A-8 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-8 (thermoplastic, Tg: 235 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-8 was 27.1% by weight.
  • the polyamic acid solution A-9 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-9 (thermoplastic, Tg; 278 ° C., moisture absorption rate: 0.34% by weight). did.
  • the imide group concentration of the polyimide constituting the polyimide film A-9 was 22.6% by weight.
  • the polyamic acid solution A-10 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-10 (thermoplastic, Tg; 276 ° C., moisture absorption rate: 0.41 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film A-10 was 28.0% by weight.
  • the polyamic acid solution A-11 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-11 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.39 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film A-11 was 26.5% by weight.
  • the polyamic acid solution A-12 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-12 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.57 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-12 was 31.8% by weight.
  • the polyamic acid solution A-13 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-13 (non-thermoplastic, Tg: 332 ° C., moisture absorption rate: 0.63% by weight) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-13 was 32.4% by weight.
  • the polyamic acid solution A-14 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-14 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.61 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-14 was 31.6% by weight.
  • the polyamic acid solution A-15 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-15 (non-thermoplastic, Tg: 324 ° C., moisture absorption rate: 0.58 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-15 was 31.4% by weight.
  • the polyamic acid solution A-16 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-16 (non-thermoplastic, Tg; 330 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-16 was 31.8% by weight.
  • the polyamic acid solution A-17 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film A-17 (non-thermoplastic, Tg: 342 ° C., moisture absorption rate: 0.56 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-17 was 32.3% by weight.
  • the polyamic acid solution A-18 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-18 (non-thermoplastic, Tg: 314 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-18 was 31.7% by weight.
  • the polyamic acid solution A-19 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-19 (non-thermoplastic, Tg: 311 ° C., moisture absorption rate: 0.58 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-19 was 31.4% by weight.
  • the polyamic acid solution A-20 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-20 (non-thermoplastic, Tg; 312 ° C., moisture absorption rate: 0.61% by weight) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-20 was 32.1% by weight.
  • the polyamic acid solution A-21 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-21 (non-thermoplastic, Tg; 320 ° C., moisture absorption rate: 0.65 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-21 was 31.9% by weight.
  • the polyamic acid solution A-22 was uniformly applied to one side (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-22 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.57 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-22 was 32.0% by weight.
  • the polyamic acid solution A-23 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-23 (non-thermoplastic, Tg: 291 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film A-23 was 30.7% by weight.
  • the polyamic acid solution A-24 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film A-24 (non-thermoplastic, Tg; 400 ° C. or higher, moisture absorption rate: 0.78 wt%) was prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-24 was 34.2% by weight.
  • the polyamic acid solution A-25 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film A-25 (non-thermoplastic, Tg; 400 ° C. or higher, moisture absorption rate: 0.57% by weight) was prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-25 was 30.2% by weight.
  • the polyamic acid solution A-26 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-26 (non-thermoplastic, Tg; 304 ° C., moisture absorption rate: 0.49 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-26 was 26.9% by weight.
  • Example A-1 After uniformly applying the polyamic acid solution A-1 to a thickness of about 2 to 3 ⁇ m on one side (surface roughness Rz; 0.6 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil, The solvent was removed by heating to dryness. Next, the polyamic acid solution A-15 was uniformly applied thereon so that the thickness after curing was about 21 ⁇ m, and dried by heating at 120 ° C. to remove the solvent. Further, the polyamic acid solution A-1 was uniformly applied thereon so that the thickness after curing was about 2 to 3 ⁇ m, and then dried by heating at 120 ° C. to remove the solvent.
  • stepwise heat processing was performed in 30 minutes from 120 degreeC to 360 degreeC, and imidation was completed.
  • the copper foil was etched away using an aqueous ferric chloride solution, and multilayer polyimide film A-1 (CTE; 22 ppm / K, moisture absorption; 0.54% by weight, dielectric constant; 3.58, dielectric loss tangent; 0.0031) was adjusted.
  • Example A-2 to Example A-21, Reference Example A-1 to Reference Example A-2 Example A-2 to Example A-21 and Reference Example A-1 to Reference Example A-2 were the same as Example A-1, except that the polyamic acid solutions shown in Tables 1 to 4 were used.
  • Multilayer polyimide films A-2 to A-23 were obtained.
  • CTE, moisture absorption, dielectric constant and dielectric loss tangent of the obtained multilayer polyimide films A-2 to A-23 were determined. The measurement results are shown in Tables 1 to 4.
  • Example A-22 to Example A-23 The multilayer polyimide films A-24 to A-25 of Examples A-22 to A-23 were obtained in the same manner as in Example A-1, except that the polyamic acid solution shown in Table 5 was used. CTE, moisture absorption rate, dielectric constant, and dielectric loss tangent of the obtained multilayer polyimide films A-24 to A-25 were determined. Table 5 shows the measurement results.
  • the polyamic acid solution B-1 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare a polyimide film B-1 (thermoplastic, Tg; 256 ° C., moisture absorption rate: 0.36 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-1 was 26.4% by weight.
  • the polyamic acid solution B-2 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-2 (thermoplastic, Tg; 242 ° C., moisture absorption rate: 0.35 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-2 was 26.5% by weight.
  • the polyamic acid solution B-3 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-3 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.31 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film B-3 was 26.9% by weight.
  • the reaction vessel contains 68.586 parts by weight of m-TB (0.323 mole part) and 535.190 parts by weight of TPE-R (1.831 mole part) and the solid content concentration after polymerization. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 143.758 parts by weight of PMDA (0.659 parts by mole) and 452.466 parts by weight of BPDA (1.538 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-4 was obtained. The solution viscosity of the polyamic acid solution B-4 was 1,580 cps.
  • the polyamic acid solution B-4 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-4 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.29 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-4 was 27.1% by weight.
  • the polyamic acid solution B-5 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-5 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.27 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-5 was 27.4% by weight.
  • the polyamic acid solution B-6 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-6 (thermoplastic, Tg; 248 ° C., moisture absorption rate: 0.27 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film B-6 was 27.8% by weight.
  • the polyamic acid solution B-7 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-7 (thermoplastic, Tg: 239 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-7 was 27.0% by weight.
  • the polyamic acid solution B-8 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-8 (thermoplastic, Tg: 235 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-8 was 27.1% by weight.
  • the polyamic acid solution B-9 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-9 (thermoplastic, Tg: 278 ° C., moisture absorption: 0.34 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-9 was 22.6% by weight.
  • the polyamic acid solution B-10 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using an aqueous ferric chloride solution to prepare polyimide film B-10 (thermoplastic, Tg; 276 ° C., moisture absorption rate: 0.41 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-10 was 28.0% by weight.
  • the polyamic acid solution B-11 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-11 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.39 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-11 was 26.5% by weight.
  • the polyamic acid solution B-12 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using an aqueous ferric chloride solution to prepare polyimide film B-12 (thermoplastic, Tg: 260 ° C., moisture absorption rate: 0.28 wt%). did.
  • the imide group concentration of the polyimide constituting the polyimide film B-12 was 28.7% by weight.
  • the polyamic acid solution B-13 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-13 (non-thermoplastic, Tg: 305 ° C., moisture absorption rate: 0.52% by weight) was obtained. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film B-13 was 31.2% by weight.
  • the polyamic acid solution B-14 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-14 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.57 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-14 was 31.8% by weight.
  • the polyamic acid solution B-15 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of a 12 ⁇ m thick electrolytic copper foil so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-15 (non-thermoplastic, Tg: 332 ° C., moisture absorption rate: 0.63% by weight) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-15 was 32.4% by weight.
  • the polyamic acid solution B-16 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-16 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.61 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-16 was 31.6% by weight.
  • the polyamic acid solution B-17 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-17 (non-thermoplastic, Tg; 324 ° C., moisture absorption rate: 0.58 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-17 was 31.4% by weight.
  • the polyamic acid solution B-18 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-18 (non-thermoplastic, Tg; 330 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-18 was 31.8% by weight.
  • the reaction vessel contained 616.159 parts by weight of m-TB (2.902 mole part) and 94.275 parts by weight of TPE-R (0.322 mole part) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 415.723 parts by weight of PMDA (1.906 parts by mole) and 373.843 parts by weight of BPDA (1.271 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-19 was obtained. The solution viscosity of the polyamic acid solution B-19 was 31,500 cps.
  • the polyamic acid solution B-19 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-19 (non-thermoplastic, Tg; 342 ° C., moisture absorption rate: 0.56 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-19 was 32.3% by weight.
  • the polyamic acid solution B-20 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-20 (non-thermoplastic, Tg: 364 ° C., moisture absorption rate: 0.68 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-20 was 32.9% by weight.
  • the polyamic acid solution B-21 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using an aqueous ferric chloride solution, and polyimide film B-21 (non-thermoplastic, Tg; 296 ° C., moisture absorption rate: 0.54% by weight) was prepared. The imide group concentration of the polyimide constituting the polyimide film B-21 was 26.8% by weight.
  • the reaction vessel contained 587.744 parts by weight of m-TB (2.769 mole parts) and 89.927 parts by weight of TPE-R (0.308 mole parts) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 198.275 parts by weight of PMDA (0.909 mole parts) and 624.054 parts by weight of BPDA (2.121 mole parts), the polymerization reaction was continued for 3 hours at room temperature, A polyamic acid solution B-22 was obtained. The solution viscosity of the polyamic acid solution B-22 was 26,800 cps.
  • the polyamic acid solution B-22 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-22 (non-thermoplastic, Tg; 291 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared.
  • the imide group concentration of the polyimide constituting the polyimide film B-22 was 30.7% by weight.
  • the polyamic acid solution B-23 was uniformly applied to one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-23 (non-thermoplastic, Tg: 285 ° C., moisture absorption rate: 0.53% by weight) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-23 was 30.7% by weight.
  • the polyamic acid solution B-24 was uniformly applied on one surface (surface roughness Rz; 2.1 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-24 (non-thermoplastic, Tg; 400 ° C. or higher, moisture absorption rate: 0.78 wt%) was prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-24 was 34.2% by weight.
  • Example B-1 Using a multi-manifold type three-coextrusion multi-layer die on an endless belt-like stainless steel support substrate, the polyamic acid solution B-2 / polyamic acid solution B-18 / polyamic acid solution B-2 in the order 3 The solvent was removed by continuously extruding and applying in a layer structure and drying by heating at 130 ° C. for 3 minutes. Thereafter, stepwise heat treatment is performed from 130 ° C. to 360 ° C. to complete imidization, and the thickness of the thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.0 ⁇ m / 21 ⁇ m / 2.0 ⁇ m, respectively.
  • a polyimide film B-1 ′ was prepared.
  • the polyimide film B-1 ′ on the supporting substrate was peeled off by a knife edge method to prepare a long polyimide film B-1 having a length in the width direction of 1100 mm.
  • the evaluation results of the long polyimide film B-1 are as follows. CTE; 19ppm / K In-plane retardation (RO); 9 nm Variation in in-plane retardation (RO) in width direction (TD direction) ( ⁇ RO); 2 nm Change amount of in-plane retardation (RO) before and after pressurization under a temperature of 320 ° C. under a pressure of 340 MPa / m 2 and a holding period of 15 minutes; 13 nm Moisture absorption rate: 0.56% by weight Dielectric constant (10 GHz); 3.56, dielectric loss tangent (10 GHz); 0.0032
  • Example B-2 to Example B-18, Reference Example B-1 to Reference Example B-5 Example B-2 to Example B-18 and Reference Example B-1 to Reference Example B-5 were the same as Example B-1, except that the polyamic acid solutions shown in Tables 6 to 9 were used.
  • Long polyimide films B-2 to B-23 were obtained.
  • the amount of change in in-plane retardation (RO) before and after pressurization with a pressure of 340 MPa / m 2 and a holding period of 15 minutes, and the moisture absorption rate were determined.
  • the measurement results are shown in Tables 6 to 9.
  • Example B-19 On the surface of a long copper foil (rolled copper foil, manufactured by JX Metals Co., Ltd., trade name: GHY5-93F-HA-V2 foil, thickness: 12 ⁇ m, tensile modulus after heat treatment: 18 GPa), polyamic acid solution B -2 was uniformly applied so that the thickness after curing was 2.0 ⁇ m, and then dried by heating at 120 ° C. for 1 minute to remove the solvent. On top of this, the polyamic acid solution B-18 was uniformly applied so as to have a cured thickness of 21 ⁇ m, and then dried by heating at 120 ° C. for 3 minutes to remove the solvent.
  • the polyamic acid B-2 was uniformly applied thereon so that the thickness after curing was 2.0 ⁇ m, and then dried by heating at 120 ° C. for 1 minute to remove the solvent. Thereafter, stepwise heat treatment was performed from 130 ° C. to 360 ° C., and after imidization was completed, a single-sided copper-clad laminate B-1 was prepared. Copper foil is laminated on the polyimide layer side of this single-sided copper-clad laminate B-1, and thermocompression bonded for 15 minutes at a temperature of 320 ° C. and a pressure of 340 MPa / m 2 to prepare a double-sided copper-clad laminate B-1. did. Cast surface side peel strength: ⁇ , crimp side peel strength: ⁇
  • Example B-20 to Example B-36, Reference Example B-6 to Reference Example B-10 Example B-20 to Example B-36 and Reference Example B-6 to Reference Example B-10 were the same as Example B-19 except that the polyamic acid solutions shown in Table 10 to Table 13 were used. Double-sided copper-clad laminates B-2 to B-23 were obtained. Cast surface side peel strength and pressure-bonded surface side peel strength of the obtained double-sided copper clad laminates B-2 to B-23 were determined. Tables 10 to 13 show the measurement results.
  • the reaction vessel contained 616.159 parts by weight of m-TB (2.902 mole part) and 94.275 parts by weight of TPE-R (0.322 mole part) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 415.723 parts by weight of PMDA (1.906 parts by mole) and 373.843 parts by weight of BPDA (1.271 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-3 was prepared. The solution viscosity of the polyamic acid solution C-3 was 31,500 cps.
  • Example C-1 A polyamic acid solution C-1 was uniformly applied to one side (surface roughness Rz; 0.6 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 25 ⁇ m, and then heat-dried at 120 ° C. The solvent was removed. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization.
  • the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film C-1 (CTE; 18.1 ppm / K, Tg; 322 ° C., moisture absorption rate: 0.57 wt%, HAZE; 74.5 %, Film elongation; 48%, dielectric constant; 3.42, dielectric loss tangent; 0.0028).
  • CTE 18.1 ppm / K, Tg; 322 ° C.
  • moisture absorption rate 0.57 wt%, HAZE; 74.5 %, Film elongation; 48%, dielectric constant; 3.42, dielectric loss tangent; 0.0028.
  • Example C-2 to Example C-9 and Reference Example C-1 to Reference Example C-2 Polyimide films C-2 to C-11 were prepared in the same manner as in Example C-1, except that the polyamic acid solution shown in Table 14 and Table 15 was used.
  • CTE, Tg, moisture absorption, HAZE, film elongation, dielectric constant and dielectric loss tangent were determined. These measurement results are shown in Tables 14 and 15.
  • Example C-10 A polyimide film C-12 (CTE; 10.2 ppm) was prepared in the same manner as in Example C-1, except that the polyamic acid solution C-11 was used and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 5 hours. / K, Tg: 307 ° C., moisture absorption: 0.61 wt%, HAZE: 74.2%, film elongation: 41%).
  • Example C-11 A polyamic acid solution C-15 was uniformly applied to one side (surface roughness Rz; 0.6 ⁇ m) of an electrolytic copper foil having a thickness of 12 ⁇ m so that the thickness after curing was about 2 to 3 ⁇ m, and then at 120 ° C. The solvent was removed by heating to dryness. Next, the polyamic acid solution C-1 was uniformly applied thereon so that the thickness after curing was about 21 ⁇ m, and dried by heating at 120 ° C. to remove the solvent. Further, the polyamic acid solution C-15 was uniformly applied thereon so that the thickness after curing was about 2 to 3 ⁇ m, and then dried by heating at 120 ° C. to remove the solvent.
  • a stepwise heat treatment from 120 ° C. to 360 ° C. was performed in 30 minutes to complete imidization, and a metal-clad laminate C-11 was prepared. Inconveniences such as swelling of the polyimide layer in the metal-clad laminate C-11 were not confirmed.
  • Example C-12 to Example C-17 Metal-clad laminates C-12 to C-17 were prepared in the same manner as in Example C-11 except that the polyamic acid solutions C-2 to C-7 were used instead of the polyamic acid solution C-1. . In any of the metal-clad laminates C-12 to C-17, problems such as swelling of the polyimide layer were not confirmed.
  • Example C-3 A metal-clad laminate was prepared in the same manner as in Example C-11 except that the stepwise heat treatment from 120 ° C. to 360 ° C. in Example C-11 was performed in 15 minutes, but it was confirmed that the polyimide layer was swollen. It was done.
  • Example C-18 to Example C-20 The procedure was carried out except that the polyamic acid solutions C-4 to C-6 were used in place of the polyamic acid solution C-1 in Example C-11, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes.
  • metal-clad laminates C-18 to C-20 were prepared. In any of the metal-clad laminates C-18 to C-20, defects such as swelling of the polyimide layer were not confirmed.
  • Example C-6 In place of the polyamic acid solution C-1 in Example C-11, the polyamic acid solutions C-2, C-3, and C-7 were used, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes. Except for the above, a metal-clad laminate was prepared in the same manner as in Example C-11. In any of the metal-clad laminates, swelling was confirmed in the polyimide layer.
  • Example C-21 to Example C-26 Polyimide films C-13 to C-18 were prepared in the same manner as in Example C-1, except that the polyamic acid solution shown in Table 16 was used. For polyimide films C-13 to C-18, CTE, Tg, dielectric constant and dielectric loss tangent were determined. These measurement results are shown in Table 16.
  • Example C-27 to Example C-30 The procedure was carried out except that the polyamic acid solutions C-15 to C-18 were used instead of the polyamic acid solution C-1 in Example C-11, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes.
  • metal-clad laminates C-27 to C-30 were prepared. In any of the metal-clad laminates C-27 to C-30, defects such as swelling of the polyimide layer were not confirmed.
  • Example C-31 to Example C-32 Polyimide films C-19 to C-20 were prepared in the same manner as in Example C-1, except that the polyamic acid solution shown in Table 17 was used. For the polyimide films C-19 to C-20, the CTE, Tg, dielectric constant and dielectric loss tangent were determined. These measurement results are shown in Table 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

Provided is a polyimide film having a non-thermoplastic polyimide layer, wherein: the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer preferably contains at least one of a biphenyl-tetracarboxylic dianhydride (BPDA) residue derived from 3,3',4,4'-BPDA and a phenylenebis(trimellitic monoester) dianhydride (TAHQ) residue derived from 1,4-TAHQ, as well as at least one of a pyromellitic dianhydride (PMDA) residue derived from PMDA and a napthalenetetracarboxylic dianhydride (NTCDA) residue derived from 2,3,6,7-NTCDA, the total amount of these residues being at least 80 mol parts with respect to 100 mol parts of a tetracarboxylic acid residue; and the dielectric loss tangent (Df) is preferably 0.004 or less.

Description

ポリイミドフィルム、銅張積層板及び回路基板Polyimide film, copper clad laminate and circuit board
 本発明は、ポリイミドフィルム、銅張積層板及び回路基板に関する。 The present invention relates to a polyimide film, a copper clad laminate, and a circuit board.
 近年、電子機器の小型化、軽量化、省スペース化の進展に伴い、薄く軽量で、可撓性を有し、屈曲を繰り返しても優れた耐久性を持つフレキシブルプリント配線板(FPC;Flexible Printed Circuits)の需要が増大している。FPCは、限られたスペースでも立体的かつ高密度の実装が可能であるため、例えば、HDD、DVD、スマートフォン等の電子機器の可動部分の配線や、ケーブル、コネクター等の部品にその用途が拡大しつつある。 In recent years, with the progress of miniaturization, weight reduction, and space saving of electronic devices, flexible printed wiring boards (FPCs) that are thin, lightweight, flexible, and have excellent durability even after repeated bending are used. The demand for Circuits) is increasing. FPC can be mounted in three-dimensional and high-density even in a limited space. For example, its application is expanded to wiring of movable parts of electronic devices such as HDDs, DVDs and smartphones, and parts such as cables and connectors. I am doing.
 上述した高密度化に加えて、機器の高性能化が進んだことから、伝送信号の高周波化への対応も必要とされている。高周波信号を伝送する際に、信号の伝送経路の伝送損失が大きい場合、電気信号のロスや信号の遅延時間が長くなるなどの不都合が生じる。そのため、FPCの伝送損失の低減が重要となる。高周波化に対応するために、低誘電率、低誘電正接を特徴とした液晶ポリマーを誘電体層としたFPCが用いられている。しかしながら、液晶ポリマーは、誘電特性に優れているものの、耐熱性や金属箔との接着性に改善の余地がある。 In addition to the above-mentioned higher density, equipment has become more sophisticated, so there is a need for higher frequency transmission signals. When transmitting a high-frequency signal, if the transmission loss of the signal transmission path is large, inconveniences such as loss of the electric signal and long signal delay time occur. For this reason, it is important to reduce the transmission loss of the FPC. In order to cope with higher frequencies, FPC using a liquid crystal polymer characterized by a low dielectric constant and a low dielectric loss tangent as a dielectric layer is used. However, although the liquid crystal polymer is excellent in dielectric properties, there is room for improvement in heat resistance and adhesion to metal foil.
 耐熱性や接着性を改善するため、ポリイミドを絶縁層にした金属張積層板が提案されている(特許文献1)。特許文献1によると、一般的に高分子材料のモノマーに脂肪族系のものを用いることにより誘電率が低下することが知られており、脂肪族(鎖状)テトラカルボン酸二無水物を用いて得られたポリイミドの耐熱性は著しく低いために、はんだ付けなどの加工に供する事が不可能となり実用上問題があるが、脂環族テトラカルボン酸二無水物を用いると鎖状のものに比べて耐熱性が向上したポリイミドが得られるとしている。しかしながら、このようなポリイミドから形成されるポリイミドフィルムは、10GHzにおける誘電率が3.2以下であるものの、誘電正接は0.01を超えるものであり、誘電特性は未だ十分ではなかった。また、上述の脂肪族モノマーを使用したポリイミドは線熱膨張係数が大きいものが多く、ポリイミドフィルムの寸法変化率が大きいことや、難燃性が低下する、という課題があった。 In order to improve heat resistance and adhesiveness, a metal-clad laminate using polyimide as an insulating layer has been proposed (Patent Document 1). According to Patent Document 1, it is known that the dielectric constant is generally lowered by using an aliphatic monomer as a polymer material, and an aliphatic (chain) tetracarboxylic dianhydride is used. Since the heat resistance of the polyimide obtained in this way is extremely low, it cannot be used for processing such as soldering, and there is a problem in practical use. However, when alicyclic tetracarboxylic dianhydride is used, it becomes a chain-like one It is said that polyimide having improved heat resistance can be obtained. However, although the polyimide film formed from such a polyimide has a dielectric constant of 10 or less at 10 GHz, the dielectric loss tangent exceeds 0.01, and the dielectric properties have not been sufficient. Moreover, many polyimides using the above-mentioned aliphatic monomers have a large linear thermal expansion coefficient, and there are problems that the dimensional change rate of the polyimide film is large and flame retardancy is reduced.
特開2004-358961号公報JP 2004-358916 A
 本発明の目的は、寸法安定性が高く、かつ、低吸湿性を有するとともに、絶縁層の誘電正接を小さくすることにより、伝送損失の低減が可能で、高周波用回路基板に好適に使用することができるポリイミドフィルムを提供することである。 The object of the present invention is to have high dimensional stability and low hygroscopicity, and by reducing the dielectric loss tangent of the insulating layer, it is possible to reduce transmission loss and to be suitably used for a high-frequency circuit board. It is providing the polyimide film which can be performed.
 本発明者らは、鋭意研究の結果、回路基板において、主に寸法変化率を制御する機能を担う非熱可塑性ポリイミド層について、さらに必要に応じて銅箔との接着の機能を担う熱可塑性ポリイミド層について、ポリイミドの原料となるモノマーを選択することによって、回路基板として必要な寸法安定性の担保と、ポリイミドの秩序性(結晶性)を制御することによる低吸湿率化及び低誘電正接化が可能となることを見出し、本発明を完成した。 As a result of diligent research, the inventors of the present invention have made a non-thermoplastic polyimide layer mainly responsible for controlling the rate of dimensional change in the circuit board, and further, if necessary, thermoplastic polyimide responsible for adhesion to the copper foil. For the layer, by selecting the monomer that will be the raw material of the polyimide, ensuring the dimensional stability required for the circuit board, and reducing the moisture absorption and lowering the dielectric loss tangent by controlling the ordering (crystallinity) of the polyimide As a result, the present invention has been completed.
 すなわち、本発明の第1の観点のポリイミドフィルムは、非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有するポリイミドフィルムである。
 そして、本発明の第1の観点のポリイミドフィルムは、下記の条件(a-i)~(a-iv)を満たすことを特徴とする。
(a-i)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、
 前記テトラカルボン酸残基の100モル部に対して、
 3,3’、4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)から誘導されるテトラカルボン酸残基(BPDA残基)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)から誘導されるテトラカルボン酸残基(TAHQ残基)の少なくとも1種並びにピロメリット酸二無水物(PMDA)から誘導されるテトラカルボン酸残基(PMDA残基)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)から誘導されるテトラカルボン酸残基(NTCDA残基)の少なくとも1種の合計が80モル部以上であり、
 前記BPDA残基及び前記TAHQ残基の少なくとも1種と、前記PMDA残基及び前記NTCDA残基の少なくとも1種とのモル比{(BPDA残基+TAHQ残基)/(PMDA残基+NTCDA残基)}が0.6~1.3の範囲内にあること。
(a-ii)前記熱可塑性ポリイミド層を構成する熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、前記ジアミン残基の100モル部に対して、
 下記の一般式(B1)~(B7)で表されるジアミン化合物から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基が70モル部以上であること。
(a-iii)熱膨張係数が10ppm/K~30ppm/Kの範囲内であること。
(a-iv)10GHzにおける誘電正接(Df)が0.004以下であること。
That is, the polyimide film of the 1st viewpoint of this invention is a polyimide film which has a thermoplastic polyimide layer containing a thermoplastic polyimide in at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide.
The polyimide film according to the first aspect of the present invention is characterized by satisfying the following conditions (ai) to (a-iv).
(Ai) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
For 100 mole parts of the tetracarboxylic acid residue,
Tetracarboxylic acid residue (BPDA residue) derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride At least one tetracarboxylic acid residue (TAHQ residue) derived from the product (TAHQ) and tetracarboxylic acid residue (PMDA residue) derived from pyromellitic dianhydride (PMDA) and a few The total of at least one tetracarboxylic acid residue (NTCDA residue) derived from 1,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) is 80 parts by mole or more,
Molar ratio of at least one of the BPDA residue and the TAHQ residue and at least one of the PMDA residue and the NTCDA residue {(BPDA residue + TAHQ residue) / (PMDA residue + NTCDA residue) } Is in the range of 0.6 to 1.3.
(A-ii) The thermoplastic polyimide constituting the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and relative to 100 mole parts of the diamine residue,
The diamine residue derived from at least one diamine compound selected from the diamine compounds represented by the following general formulas (B1) to (B7) is 70 mol parts or more.
(A-iii) The coefficient of thermal expansion is within the range of 10 ppm / K to 30 ppm / K.
(A-iv) The dielectric loss tangent (Df) at 10 GHz is 0.004 or less.
Figure JPOXMLDOC01-appb-C000007
[式(B1)~(B7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-若しくは-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(B3)中から式(B2)と重複するものは除き、式(B5)中から式(B4)と重複するものは除くものとする。]
Figure JPOXMLDOC01-appb-C000007
[In the formulas (B1) to (B7), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and the linking group A is independently —O—, —S—, —CO A divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—, wherein n 1 is independent Represents an integer of 0 to 4. However, in the formula (B3), those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded. ]
 本発明の第1の観点のポリイミドフィルムは、前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおけるジアミン残基の100モル部に対して、下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が80モル部以上であってもよい。 The polyimide film of the 1st viewpoint of this invention is a diamine compound represented with the following general formula (A1) with respect to 100 mol part of the diamine residue in the non-thermoplastic polyimide which comprises the said non-thermoplastic polyimide layer. The diamine residue derived from may be 80 mol parts or more.
Figure JPOXMLDOC01-appb-C000008
[式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基、若しくはアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
Figure JPOXMLDOC01-appb-C000008
[In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group. N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. ]
 本発明の第1の観点のポリイミドフィルムは、前記熱可塑性ポリイミドを構成する熱可塑性ポリイミドにおける前記ジアミン残基の100モル部に対して、前記一般式(B1)~(B7)で表されるジアミン化合物から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基が70モル部以上99モル部以下の範囲内であり、前記一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が1モル部以上30モル部以下の範囲内であってもよい。 The polyimide film of the first aspect of the present invention is a diamine represented by the general formulas (B1) to (B7) with respect to 100 mole parts of the diamine residue in the thermoplastic polyimide constituting the thermoplastic polyimide. A diamine residue derived from the diamine compound represented by the general formula (A1), wherein the diamine residue derived from at least one diamine compound selected from the compounds is in the range of 70 to 99 mol parts May be in the range of 1 to 30 mole parts.
 本発明の第2の観点のポリイミドフィルムは、非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有するポリイミドフィルムである。
 そして、本発明の第2の観点のポリイミドフィルムは、下記の条件(b-i)~(b-iv)を満たすことを特徴とする。
(b-i)熱膨張係数が10ppm/K~30ppm/Kの範囲内であること。
(b-ii)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、
 前記テトラカルボン酸残基の100モル部に対して、
 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)から選ばれる少なくとも一種のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が30モル部以上60モル部以下の範囲内であり、
 ピロメリット酸二無水物(PMDA)から誘導されるテトラカルボン酸残基が40モル部以上70モル部以下の範囲内であること。
(b-iii)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおけるジアミン残基の100モル部に対して、
 下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が80モル部以上であること。
(b-iv)前記熱可塑性ポリイミド層を構成する熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、前記ジアミン残基の100モル部に対して、
 下記の一般式(B1)~(B7)で表されるジアミン化合物から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基が70モル部以上99モル部以下の範囲内であり、
 下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が1モル部以上30モル部以下の範囲内であること。
The polyimide film of the 2nd viewpoint of this invention is a polyimide film which has a thermoplastic polyimide layer containing a thermoplastic polyimide in at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide.
The polyimide film according to the second aspect of the present invention is characterized by satisfying the following conditions (bi) to (b-iv).
(Bi) The coefficient of thermal expansion is in the range of 10 ppm / K to 30 ppm / K.
(B-ii) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
For 100 mole parts of the tetracarboxylic acid residue,
At least one tetracarboxylic dianhydride selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride (TAHQ) The tetracarboxylic acid residue derived from the anhydride is in the range of 30 to 60 parts by mole,
The tetracarboxylic acid residue derived from pyromellitic dianhydride (PMDA) is in the range of 40 to 70 parts by mole.
(B-iii) For 100 mole parts of the diamine residue in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer,
The diamine residue derived from the diamine compound represented by the following general formula (A1) is 80 parts by mole or more.
(B-iv) The thermoplastic polyimide composing the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and with respect to 100 mole parts of the diamine residue,
The diamine residue derived from at least one diamine compound selected from the diamine compounds represented by the following general formulas (B1) to (B7) is in the range of 70 to 99 parts by mole,
The diamine residue derived from the diamine compound represented by the following general formula (A1) is in the range of 1 to 30 mol parts.
Figure JPOXMLDOC01-appb-C000009
[式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基、若しくはアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
Figure JPOXMLDOC01-appb-C000009
[In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group. N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. ]
Figure JPOXMLDOC01-appb-C000010
[式(B1)~(B7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-若しくは-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(B3)中から式(B2)と重複するものは除き、式(B5)中から式(B4)と重複するものは除くものとする。]
Figure JPOXMLDOC01-appb-C000010
[In the formulas (B1) to (B7), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and the linking group A is independently —O—, —S—, —CO A divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—, wherein n 1 is independent Represents an integer of 0 to 4. However, in the formula (B3), those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded. ]
 本発明の第1又は第2の観点のポリイミドフィルムは、前記非熱可塑性ポリイミド及び前記熱可塑性ポリイミドのイミド基濃度がいずれも33重量%以下であってもよい。 In the polyimide film of the first or second aspect of the present invention, the non-thermoplastic polyimide and the thermoplastic polyimide may each have an imide group concentration of 33% by weight or less.
 本発明の第3の観点のポリイミドフィルムは、少なくとも1層の非熱可塑性ポリイミド層を有するポリイミドフィルムであって、下記の条件(c-i)~(c-iii)を満たすことを特徴とする。
 (c-i)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むものであり、
 前記テトラカルボン酸残基の100モル部に対して、3,3’、4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)の少なくとも1種から誘導されるテトラカルボン酸残基を30~60モル部の範囲内、ピロメリット酸二無水物(PMDA)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)の少なくとも1種から誘導されるテトラカルボン酸残基を40~70モル部の範囲内で含有し、
 前記ジアミン残基の100モル部に対して、下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基を70モル部以上含有すること。
(c-ii)ガラス転移温度が300℃以上であること。
(c-iii)10GHzにおける誘電正接(Df)が0.004以下であること。
A polyimide film according to a third aspect of the present invention is a polyimide film having at least one non-thermoplastic polyimide layer, and satisfies the following conditions (ci) to (c-iii): .
(C-i) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride per 100 mole parts of the tetracarboxylic acid residue Of tetracarboxylic acid residues derived from at least one of the products (TAHQ) within a range of 30 to 60 mole parts, pyromellitic dianhydride (PMDA) and 2,3,6,7-naphthalenetetracarboxylic acid Containing tetracarboxylic acid residues derived from at least one anhydride (NTCDA) in the range of 40 to 70 mole parts,
70 mol parts or more of diamine residues derived from the diamine compound represented by the following general formula (A1) are contained with respect to 100 mol parts of the diamine residues.
(C-ii) The glass transition temperature is 300 ° C. or higher.
(C-iii) The dielectric loss tangent (Df) at 10 GHz is 0.004 or less.
Figure JPOXMLDOC01-appb-C000011
[式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素、又はアルコキシ基を示し、nは0~2の整数を示し、pおよびqは独立して0~4の整数を示す。]
Figure JPOXMLDOC01-appb-C000011
[In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon having 1 to 3 carbon atoms, or an alkoxy group. , N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. ]
 本発明の第3の観点のポリイミドフィルムは、前記ジアミン残基の100モル部に対して、下記の一般式(C1)~(C4)で表されるジアミン化合物から誘導されるジアミン残基を2~15モル部の範囲内で含有するものであってもよい。 The polyimide film of the third aspect of the present invention has 2 diamine residues derived from diamine compounds represented by the following general formulas (C1) to (C4) with respect to 100 mol parts of the diamine residues. It may be contained within a range of ˜15 mol parts.
Figure JPOXMLDOC01-appb-C000012
[式(C1)~(C4)において、Rは独立に炭素数1~6の1価の炭化水素基、アルコキシ基又はアルキルチオ基を示し、連結基A’は独立に-O-、-SO-、-CH-又は-C(CH-から選ばれる2価の基を示し、連結基X1は独立に-CH-、-O-CH-O-、-O-C-O-、-O-C-O-、-O-C-O-、-O-C10-O-、-O-CH-C(CH-CH-O-、-C(CH-、-C(CF-又は-SO-を示し、nは独立に1~4の整数を示し、nは独立に0~4の整数を示すが、式(C3)において、連結基A’が、-CH-、-C(CH-、-C(CF-又は-SO-を含まない場合、nのいずれかは1以上である。ただし、n=0の場合、式(C1)中の2つのアミノ基はパラ位ではないものとする。]
Figure JPOXMLDOC01-appb-C000012
[In the formulas (C1) to (C4), R 2 independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group or an alkylthio group, and the linking group A ′ is independently —O— or —SO 2. 2 represents a divalent group selected from —CH 2 — or —C (CH 3 ) 2 —, and the linking group X1 is independently —CH 2 —, —O—CH 2 —O—, —O—C. 2 H 4 —O—, —O—C 3 H 6 —O—, —O—C 4 H 8 —O—, —O—C 5 H 10 —O—, —O—CH 2 —C (CH 3 ) 2 —CH 2 —O—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —, n 3 independently represents an integer of 1 to 4, and n 4 represents Independently represents an integer of 0 to 4, but in the formula (C3), the linking group A ′ is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. Not including In the case, any of n 4 is 1 or more. However, when n 3 = 0, the two amino groups in formula (C1) are not in the para position. ]
 本発明の第1、第2又は第3の観点の銅張積層板は、絶縁層と、該絶縁層の少なくとも一方の面に銅箔を備え、前記絶縁層が、上記いずれかに記載のポリイミドフィルムを含むことを特徴とする。 The copper clad laminate according to the first, second or third aspect of the present invention comprises an insulating layer and a copper foil on at least one surface of the insulating layer, and the insulating layer is a polyimide according to any one of the above. It is characterized by including a film.
 本発明の第1、第2又は第3の観点の回路基板は、上記銅張積層板の銅箔を配線に加工してなるものである。 The circuit board according to the first, second or third aspect of the present invention is obtained by processing the copper foil of the copper-clad laminate into a wiring.
 本発明の第1~第3の観点のポリイミドフィルムは、特定の酸無水物を原料として非熱可塑性ポリイミド層を形成することによって、ベース樹脂層としての物性の担保と低吸湿率化の両立を可能とし、低誘電正接化を可能とする。
 また、本発明の第1又は第2の観点のポリイミドフィルムは、特定のジアミン化合物を導入した熱可塑性ポリイミドによって熱可塑性ポリイミド層を形成することで、低吸湿率化及び低誘電正接化を可能とした。そして、両樹脂層を組み合わせた多層フィルムは、吸湿性及び誘電正接が低く、且つ、銅箔の熱圧着後の寸法安定性においても優れるものである。
 従って、本発明のポリイミドフィルム及びそれを用いた銅張積層板をFPC材料として利用することによって、回路基板において信頼性と歩留まりの向上を図ることができ、例えば、10GHz以上という高周波信号を伝送する回路基板等への適用も可能となる。
The polyimide film according to the first to third aspects of the present invention can achieve both of ensuring physical properties as a base resin layer and lowering the moisture absorption rate by forming a non-thermoplastic polyimide layer using a specific acid anhydride as a raw material. And low dielectric loss tangent.
In addition, the polyimide film of the first or second aspect of the present invention enables low moisture absorption and low dielectric loss tangent by forming a thermoplastic polyimide layer from a thermoplastic polyimide into which a specific diamine compound is introduced. did. And the multilayer film which combined both resin layers has a low hygroscopic property and a dielectric loss tangent, and is excellent also in the dimensional stability after thermocompression bonding of copper foil.
Therefore, by using the polyimide film of the present invention and the copper-clad laminate using the same as an FPC material, it is possible to improve the reliability and yield in the circuit board, for example, transmitting a high frequency signal of 10 GHz or more. Application to a circuit board or the like is also possible.
 次に、本発明の実施の形態について説明する。 Next, an embodiment of the present invention will be described.
[ポリイミドフィルム]
 本発明の第1の実施の形態のポリイミドフィルムは、非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有し、上記条件(a-i)~(a-iv)を満たすものである。
 また、本発明の第2の実施の形態のポリイミドフィルムは、非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有し、上記条件(b-i)~(b-iv)を満たすものである。
 なお、第1又は第2の実施の形態において、熱可塑性ポリイミド層は、非熱可塑性ポリイミド層の片面又は両面に設けられている。例えば、第1又は第2の実施の形態のポリイミドフィルムと銅箔を積層して銅張積層板とする場合、銅箔は熱可塑性ポリイミド層の面に積層することができる。非熱可塑性ポリイミド層の両側に熱可塑性ポリイミド層を有する場合は、片方の熱可塑性ポリイミド層が上記条件(a-ii)又は条件(b-iv)を満たせばよいが、両側の熱可塑性ポリイミド層が共に上記条件(a-ii)又は条件(b-iv)を満たすことが好ましい。
 また、本発明の第3の実施の形態のポリイミドフィルムは、少なくとも1層の、非熱可塑性ポリイミドからなる非熱可塑性ポリイミド層を有し、上記条件(c-i)~(c-iii)を満たすものである。
[Polyimide film]
The polyimide film of the first embodiment of the present invention has a thermoplastic polyimide layer containing a thermoplastic polyimide on at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide, and the above conditions (ai) to (a -iv).
The polyimide film of the second embodiment of the present invention has a thermoplastic polyimide layer containing a thermoplastic polyimide on at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide, and the above conditions (bi) to (B-iv) is satisfied.
In the first or second embodiment, the thermoplastic polyimide layer is provided on one side or both sides of the non-thermoplastic polyimide layer. For example, when the polyimide film and the copper foil of the first or second embodiment are laminated to form a copper-clad laminate, the copper foil can be laminated on the surface of the thermoplastic polyimide layer. When thermoplastic polyimide layers are provided on both sides of a non-thermoplastic polyimide layer, one thermoplastic polyimide layer may satisfy the above condition (a-ii) or condition (b-iv). Both preferably satisfy the above condition (a-ii) or condition (b-iv).
The polyimide film of the third embodiment of the present invention has at least one non-thermoplastic polyimide layer made of non-thermoplastic polyimide and satisfies the above conditions (ci) to (c-iii). It is.
 以下、第1~第3の実施の形態について、共通する点についてはまとめて説明し、異なる点については、個別に説明する。 Hereinafter, in the first to third embodiments, common points will be described together, and different points will be described individually.
 「非熱可塑性ポリイミド」とは、一般に加熱しても軟化、接着性を示さないポリイミドのことであるが、本発明では、動的粘弾性測定装置(DMA)を用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、280℃における貯蔵弾性率が3.0×10Pa以上であるポリイミドをいう。
 また、「熱可塑性ポリイミド」とは、一般にガラス転移温度(Tg)が明確に確認できるポリイミドのことであるが、本発明では、DMAを用いて測定した、30℃における貯蔵弾性率が1.0×10Pa以上であり、280℃における貯蔵弾性率が3.0×10Pa未満であるポリイミドをいう。
“Non-thermoplastic polyimide” generally means a polyimide that does not soften or show adhesiveness even when heated. In the present invention, it is measured using a dynamic viscoelasticity measuring device (DMA) at 30 ° C. The storage elastic modulus is 1.0 × 10 9 Pa or higher, and the storage elastic modulus at 280 ° C. is 3.0 × 10 8 Pa or higher.
The “thermoplastic polyimide” is generally a polyimide whose glass transition temperature (Tg) can be clearly confirmed. In the present invention, the storage elastic modulus at 30 ° C. measured by DMA is 1.0. X10 9 Pa or higher, which means a polyimide having a storage elastic modulus at 280 ° C. of less than 3.0 × 10 8 Pa.
 第1、第2又は第3の実施の形態のポリイミドフィルムにおいて、非熱可塑性ポリイミド層の樹脂成分は、非熱可塑性ポリイミドからなることが好ましく、第1又は第2の実施の形態において、熱可塑性ポリイミド層の樹脂成分は、熱可塑性ポリイミドからなることが好ましい。また、非熱可塑性ポリイミド層は低熱膨張性のポリイミド層を構成し、熱可塑性ポリイミド層は高熱膨張性のポリイミド層を構成する。ここで、低熱膨張性のポリイミド層は、熱膨張係数(CTE)が好ましくは1ppm/K以上25ppm/K以下の範囲内、より好ましくは3ppm/K以上25ppm/K以下の範囲内のポリイミド層をいう。また、高熱膨張性のポリイミド層は、CTEが好ましくは35ppm/K以上、より好ましくは35ppm/K以上80ppm/K以下の範囲内、更に好ましくは35ppm/K以上70ppm/K以下の範囲内のポリイミド層をいう。ポリイミド層は、使用する原料の組合せ、厚み、乾燥・硬化条件を適宜変更することで所望のCTEを有するポリイミド層とすることができる。 In the polyimide film of the first, second, or third embodiment, the resin component of the non-thermoplastic polyimide layer is preferably made of non-thermoplastic polyimide. In the first or second embodiment, the thermoplastic resin The resin component of the polyimide layer is preferably made of thermoplastic polyimide. The non-thermoplastic polyimide layer constitutes a low thermal expansion polyimide layer, and the thermoplastic polyimide layer constitutes a high thermal expansion polyimide layer. Here, the low thermal expansion polyimide layer is preferably a polyimide layer having a coefficient of thermal expansion (CTE) in the range of 1 ppm / K to 25 ppm / K, more preferably in the range of 3 ppm / K to 25 ppm / K. Say. The high thermal expansion polyimide layer preferably has a CTE of 35 ppm / K or more, more preferably in the range of 35 ppm / K or more and 80 ppm / K or less, and still more preferably in the range of 35 ppm / K or more and 70 ppm / K or less. Refers to the layer. A polyimide layer can be made into the polyimide layer which has desired CTE by changing suitably the combination of the raw material to be used, thickness, and drying / curing conditions.
 一般にポリイミドは、テトラカルボン酸二無水物と、ジアミン化合物を溶媒中で反応させ、ポリアミド酸を生成したのち加熱閉環させることにより製造できる。例えば、テトラカルボン酸二無水物とジアミン化合物をほぼ等モルで有機溶媒中に溶解させて、0~100℃の範囲内の温度で30分~24時間撹拌し重合反応させることでポリイミドの前駆体であるポリアミド酸が得られる。反応にあたっては、生成する前駆体が有機溶媒中に5~30重量%の範囲内、好ましくは10~20重量%の範囲内となるように反応成分を溶解する。重合反応に用いる有機溶媒としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン(NMP)、2-ブタノン、ジメチルスホキシド(DMSO)、ヘキサメチルホスホルアミド、N-メチルカプロラクタム、硫酸ジメチル、シクロヘキサノン、ジオキサン、テトラヒドロフラン、ジグライム、トリグライム、クレゾール等が挙げられる。これらの溶媒を2種以上併用して使用することもでき、更にはキシレン、トルエンのような芳香族炭化水素の併用も可能である。また、このような有機溶媒の使用量としては特に制限されるものではないが、重合反応によって得られるポリアミド酸溶液の濃度が5~30重量%程度になるような使用量に調整して用いることが好ましい。 Generally, a polyimide can be produced by reacting a tetracarboxylic dianhydride and a diamine compound in a solvent to form a polyamic acid and then ring-closing with heating. For example, a precursor of polyimide is obtained by dissolving a tetracarboxylic dianhydride and a diamine compound in an organic solvent in approximately equimolar amounts and stirring for 30 minutes to 24 hours at a temperature within a range of 0 to 100 ° C. A polyamic acid is obtained. In the reaction, the reaction components are dissolved so that the precursor to be produced is in the range of 5 to 30% by weight, preferably in the range of 10 to 20% by weight, in the organic solvent. Examples of the organic solvent used in the polymerization reaction include N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N, N-diethylacetamide, N-methyl-2-pyrrolidone (NMP), 2 -Butanone, dimethyl sulfoxide (DMSO), hexamethylphosphoramide, N-methylcaprolactam, dimethyl sulfate, cyclohexanone, dioxane, tetrahydrofuran, diglyme, triglyme, cresol and the like. Two or more of these solvents can be used in combination, and further, aromatic hydrocarbons such as xylene and toluene can be used in combination. The amount of such organic solvent used is not particularly limited, but it should be adjusted so that the concentration of the polyamic acid solution obtained by the polymerization reaction is about 5 to 30% by weight. Is preferred.
 合成されたポリアミド酸は、通常、反応溶媒溶液として使用することが有利であるが、必要により濃縮、希釈又は他の有機溶媒に置換することができる。また、ポリアミド酸は一般に溶媒可溶性に優れるので、有利に使用される。ポリアミド酸の溶液の粘度は、500cps~100,000cpsの範囲内であることが好ましい。この範囲を外れると、コーター等による塗工作業の際にフィルムに厚みムラ、スジ等の不良が発生し易くなる。ポリアミド酸をイミド化させる方法は、特に制限されず、例えば前記溶媒中で、80~400℃の範囲内の温度条件で1~24時間かけて加熱するといった熱処理が好適に採用される。 The synthesized polyamic acid is usually advantageously used as a reaction solvent solution, but can be concentrated, diluted or substituted with another organic solvent as necessary. Moreover, since polyamic acid is generally excellent in solvent solubility, it is advantageously used. The viscosity of the polyamic acid solution is preferably in the range of 500 cps to 100,000 cps. If it is out of this range, defects such as uneven thickness and streaks are likely to occur in the film during coating by a coater or the like. The method for imidizing the polyamic acid is not particularly limited, and for example, heat treatment such as heating in the above-mentioned solvent under a temperature condition in the range of 80 to 400 ° C. for 1 to 24 hours is suitably employed.
 ポリイミドは、上記ポリアミド酸をイミド化してなるものであり、特定の酸無水物とジアミン化合物とを反応させて製造されるので、酸無水物とジアミン化合物を説明することにより、第1、第2又は第3の実施の形態の非熱可塑性ポリイミド及び第1又は第2の実施の形態の熱可塑性ポリイミドの具体例が理解される。 Polyimide is formed by imidizing the above polyamic acid, and is produced by reacting a specific acid anhydride with a diamine compound. Therefore, by explaining the acid anhydride and diamine compound, the first, second Or the specific example of the non-thermoplastic polyimide of 3rd Embodiment and the thermoplastic polyimide of 1st or 2nd Embodiment is understood.
<非熱可塑性ポリイミド>
 第1、第2又は第3の実施の形態のポリイミドフィルムにおいて、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むものである。なお、本発明において、テトラカルボン酸残基とは、テトラカルボン酸二無水物から誘導された4価の基のことを表し、ジアミン残基とは、ジアミン化合物から誘導された2価の基のことを表す。第1、第2又は第3の実施の形態のポリイミドフィルムは、芳香族テトラカルボン酸二無水物から誘導される芳香族テトラカルボン酸残基及び芳香族ジアミンから誘導される芳香族ジアミン残基を含むことが好ましい。
<Non-thermoplastic polyimide>
In the polyimide film of the first, second, or third embodiment, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue. In the present invention, the tetracarboxylic acid residue means a tetravalent group derived from tetracarboxylic dianhydride, and the diamine residue means a divalent group derived from a diamine compound. Represents that. The polyimide film of the first, second or third embodiment has an aromatic tetracarboxylic acid residue derived from an aromatic tetracarboxylic dianhydride and an aromatic diamine residue derived from an aromatic diamine. It is preferable to include.
(テトラカルボン酸残基)
 第1、第2又は第3の実施の形態において、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドに含まれるテトラカルボン酸残基としては、3,3’、4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)の少なくとも1種から誘導されるテトラカルボン酸残基並びにピロメリット酸二無水物(PMDA)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)の少なくとも1種から誘導されるテトラカルボン酸残基を含有する。
(Tetracarboxylic acid residue)
In the first, second or third embodiment, the tetracarboxylic acid residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer may be 3,3 ′, 4,4′-biphenyltetracarboxylic Tetracarboxylic acid residues derived from at least one of acid dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride (TAHQ) and pyromellitic dianhydride (PMDA) And a tetracarboxylic acid residue derived from at least one of 2,3,6,7-naphthalenetetracarboxylic dianhydride (NTCDA).
 BPDAから誘導されるテトラカルボン酸残基(以下、「BPDA残基」ともいう。)及びTAHQから誘導されるテトラカルボン酸残基(以下、「TAHQ残基」ともいう。)は、ポリマーの秩序構造を形成しやすく、分子の運動抑制により誘電正接や吸湿性を低下させることができる。しかし、一方でBPDA残基は、ポリイミド前駆体のポリアミド酸としてのゲル膜の自己支持性を付与できるが、イミド化後のCTEを増大させるとともに、ガラス転移温度を低くして耐熱性を低下させる傾向になる。 A tetracarboxylic acid residue derived from BPDA (hereinafter also referred to as “BPDA residue”) and a tetracarboxylic acid residue derived from TAHQ (hereinafter also referred to as “TAHQ residue”) are polymer ordered. It is easy to form a structure, and the loss tangent and hygroscopicity can be reduced by suppressing the movement of molecules. However, on the other hand, the BPDA residue can give the self-supporting property of the gel film as the polyamic acid of the polyimide precursor, but increases the CTE after imidization and lowers the glass transition temperature to lower the heat resistance. Become a trend.
 このような観点から、第1、第2又は第3の実施の形態のポリイミドフィルムは、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドが、テトラカルボン酸残基の100モル部に対して、BPDA残基及びTAHQ残基の合計を好ましくは30モル部以上60モル部以下の範囲内、より好ましくは40モル部以上50モル部以下の範囲内で含有するように制御する。BPDA残基及びTAHQ残基の合計が30モル部未満では、ポリマーの秩序構造の形成が不十分となって、耐吸湿性が低下したり、誘電正接の低減が不十分となり、60モル部を超えると、CTEの増加や面内リタデーション(RO)の変化量の増大のほか、耐熱性が低下したりするおそれがある。 From such a viewpoint, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer in the polyimide film of the first, second or third embodiment is based on 100 mol parts of the tetracarboxylic acid residue. The total of the BPDA residue and the TAHQ residue is preferably controlled to be contained in the range of 30 to 60 parts by mole, more preferably in the range of 40 to 50 parts by mole. If the total of the BPDA residue and the TAHQ residue is less than 30 parts by mole, the formation of the ordered structure of the polymer becomes insufficient, the hygroscopic resistance is lowered, and the reduction of the dielectric loss tangent is insufficient. When it exceeds, there exists a possibility that heat resistance may fall besides the increase in the amount of change of CTE and in-plane retardation (RO).
 また、ピロメリット酸二無水物から誘導されるテトラカルボン酸残基(以下、「PMDA残基」ともいう。)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基(以下、「NTCDA残基」ともいう。)は、剛直性を有するため、面内配向性を高め、CTEを低く抑えるとともに、ROの制御や、ガラス転移温度の制御の役割を担う残基である。一方で、PMDA残基は、分子量が小さいため、その量が多くなり過ぎると、ポリマーのイミド基濃度が高くなり、極性基が増加して吸湿性が大きくなってしまい、分子鎖内部の水分の影響により誘電正接が増加する。また、NTCDA残基は、剛直性が高いナフタレン骨格によりフィルムが脆くなりやすく、弾性率を増大させる傾向になる。 In addition, a tetracarboxylic acid residue derived from pyromellitic dianhydride (hereinafter also referred to as “PMDA residue”) and a tetracarboxylic acid dianhydride derived from 2,3,6,7-naphthalenetetracarboxylic dianhydride. Carboxylic acid residues (hereinafter also referred to as “NTCDA residues”) have rigidity, so that they increase the in-plane orientation, keep CTE low, and control RO and glass transition temperature. Responsible residue. On the other hand, since the molecular weight of the PMDA residue is small, if the amount is too large, the imide group concentration of the polymer is increased, the polar group is increased and the hygroscopicity is increased, and the moisture content in the molecular chain is increased. The dielectric loss tangent increases due to the influence. Moreover, the NTCDA residue tends to be brittle due to a highly rigid naphthalene skeleton, and tends to increase the elastic modulus.
 そのため、第1、第2又は第3の実施の形態において、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基の100モル部に対して、PMDA残基及びNTCDA残基の合計を好ましくは40モル部以上70モル部以下の範囲内、より好ましくは50モル部以上60モル部以下の範囲内、さらに好ましくは50~55モル部の範囲内で含有する。PMDA残基及びNTCDA残基の合計が40モル部未満では、CTEが増加したり、耐熱性が低下したりするおそれがあり、70モル部を超えると、ポリマーのイミド基濃度が高くなり、極性基が増加して低吸湿性が損なわれ、誘電正接が増加するおそれやフィルムが脆くなりフィルムの自己支持性が低下するおそれがある。 Therefore, in the first, second, or third embodiment, the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer is a PMDA residue and an NTCDA residue with respect to 100 mole parts of the tetracarboxylic acid residue. Is preferably in the range of 40 to 70 mole parts, more preferably in the range of 50 to 60 mole parts, and still more preferably in the range of 50 to 55 mole parts. If the total of PMDA residues and NTCDA residues is less than 40 parts by mole, CTE may increase or heat resistance may decrease. If it exceeds 70 parts by mole, the imide group concentration of the polymer increases, There is a risk that low hygroscopicity is impaired due to an increase in the group, and that the dielectric loss tangent may increase or the film becomes brittle and the self-supporting property of the film is lowered.
 また、第1の実施の形態では、上記条件(a-i)に規定するように、BPDA残基及びTAHQ残基の少なくとも1種並びにPMDA残基NTCDA残基の少なくとも1種の合計が、テトラカルボン酸残基の100モル部に対して80モル部以上、好ましくは90モル部以上である。 In the first embodiment, as defined in the above condition (ai), the total of at least one of the BPDA residue and the TAHQ residue and at least one of the PMDA residue NTCDA residue is a tetracarboxylic acid. It is 80 mol parts or more, preferably 90 mol parts or more with respect to 100 mol parts of the residue.
 また、第1の実施の形態では、上記条件(a-i)に規定するように、BPDA残基及びTAHQ残基の少なくとも1種と、PMDA残基及びNTCDA残基少なくとも1種のモル比{(BPDA残基+TAHQ残基)/(PMDA残基+NTCDA残基)}を0.6以上1.3以下の範囲内、好ましくは0.7以上1.3以下の範囲内、より好ましくは0.8以上1.2以下の範囲内とし、CTEとポリマーの秩序構造の形成を制御する。 In the first embodiment, as defined in the above condition (ai), a molar ratio {(BPDA) of at least one BPDA residue and TAHQ residue and at least one PMDA residue and NTCDA residue is defined. Residue + TAHQ residue) / (PMDA residue + NTCDA residue)} in the range of 0.6 to 1.3, preferably in the range of 0.7 to 1.3, more preferably 0.8 or more. Within the range of 1.2 or less, the formation of an ordered structure of CTE and polymer is controlled.
 第1、第2又は第3の実施の形態において、PMDA及びNTCDAは、剛直骨格を有するため、他の一般的な酸無水物成分に比べて、ポリイミド中の分子の面内配向性の制御が可能であり、熱膨張係数(CTE)の抑制とガラス転移温度(Tg)の向上効果がある。また、BPDA及びTAHQは、PMDAと比較し分子量が大きいため、仕込み比率の増加によりイミド基濃度が低下することで、誘電正接の低下や吸湿率の低下に効果がある。一方でBPDA及びTAHQの仕込み比率が増加すると、ポリイミド中の分子の面内配向性が低下し、CTEの増加に繋がる。さらに分子内の秩序構造の形成が進み、ヘイズ値が増加する。このような観点から、PMDA及びNTCDAの合計の仕込み量は、原料の全酸無水物成分の100モル部に対し、40~70モル部の範囲内、好ましくは50~60モル部の範囲内、より好ましくは50~55モル部の範囲内がよい。原料の全酸無水物成分の100モル部に対し、PMDA及びNTCDAの合計の仕込み量が40モル部未満であると、分子の面内配向性が低下し、低CTE化が困難となり、またTgの低下による加熱時におけるフィルムの耐熱性や寸法安定性が低下する。一方、PMDA及びNTCDAの合計の仕込み量が70モル部を超えると、イミド基濃度の増加により吸湿率が悪化したり、弾性率を増大させる傾向になる。 In the first, second or third embodiment, since PMDA and NTCDA have a rigid skeleton, the control of the in-plane orientation of the molecules in the polyimide is greater than that of other general acid anhydride components. This is possible and has the effect of suppressing the coefficient of thermal expansion (CTE) and improving the glass transition temperature (Tg). Moreover, since BPDA and TAHQ have a higher molecular weight than PMDA, the imide group concentration is reduced by increasing the charging ratio, and this is effective in reducing dielectric loss tangent and moisture absorption. On the other hand, when the preparation ratio of BPDA and TAHQ is increased, the in-plane orientation of molecules in the polyimide is lowered, leading to an increase in CTE. Furthermore, the formation of an ordered structure in the molecule proceeds, and the haze value increases. From this point of view, the total amount of PMDA and NTCDA is in the range of 40 to 70 mol parts, preferably in the range of 50 to 60 mol parts, with respect to 100 mol parts of the total acid anhydride component of the raw material. More preferably, it is in the range of 50 to 55 mole parts. When the total charge amount of PMDA and NTCDA is less than 40 mol parts with respect to 100 mol parts of the total acid anhydride component of the raw material, the in-plane orientation of the molecule is lowered, making it difficult to reduce CTE, and Tg The heat resistance and dimensional stability of the film at the time of heating due to the decrease in the thickness are reduced. On the other hand, when the total amount of PMDA and NTCDA exceeds 70 mol parts, the moisture absorption rate tends to deteriorate due to an increase in the imide group concentration, or the elastic modulus tends to increase.
 また、BPDA及びTAHQは、分子運動の抑制やイミド基濃度の低下による低誘電正接化、吸湿率低下に効果があるが、イミド化後のポリイミドフィルムとしてのCTEを増大させる。このような観点から、BPDA及びTAHQの合計の仕込み量は、原料の全酸無水物成分の100モル部に対し、30~60モル部の範囲内、好ましくは40~50モル部の範囲内、より好ましくは40~45モル部の範囲内がよい。 BPDA and TAHQ are effective in suppressing molecular motion and lowering the dielectric loss tangent and lowering the moisture absorption rate by lowering the imide group concentration, but increase the CTE as a polyimide film after imidization. From this point of view, the total charge amount of BPDA and TAHQ is in the range of 30 to 60 mol parts, preferably in the range of 40 to 50 mol parts, with respect to 100 mol parts of the total acid anhydride component of the raw material. More preferably, it is within the range of 40 to 45 mole parts.
 非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドに含まれる、上記BPDA残基、TAHQ残基、PMDA残基、NTCDA残基以外のテトラカルボン酸残基としては、例えば、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、2,3',3,4'-ビフェニルテトラカルボン酸二無水物、2,2',3,3'-、2,3,3',4'-又は3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、2,3',3,4'-ジフェニルエーテルテトラカルボン酸二無水物、ビス(2,3-ジカルボキシフェニル)エーテル二無水物、3,3'',4,4''-、2,3,3'',4''-又は2,2'',3,3''-p-テルフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-又は3,4-ジカルボキシフェニル)-プロパン二無水物、ビス(2,3-又は3.4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-又は3,4-ジカルボキシフェニル)スルホン二無水物、1,1-ビス(2,3-又は3,4-ジカルボキシフェニル)エタン二無水物、1,2,7,8-、1,2,6,7-又は1,2,9,10-フェナンスレン-テトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)テトラフルオロプロパン二無水物、2,3,5,6-シクロヘキサン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、2,6-又は2,7-ジクロロナフタレン-1,4,5,8-テトラカルボン酸二無水物、2,3,6,7-(又は1,4,5,8-)テトラクロロナフタレン-1,4,5,8-(又は2,3,6,7-)テトラカルボン酸二無水物、2,3,8,9-、3,4,9,10-、4,5,10,11-又は5,6,11,12-ペリレン-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、4,4’-ビス(2,3-ジカルボキシフェノキシ)ジフェニルメタン二無水物、エチレングリコール ビスアンヒドロトリメリテート等の芳香族テトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が挙げられる。 Examples of tetracarboxylic acid residues other than the BPDA residue, TAHQ residue, PMDA residue, and NTCDA residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer include, for example, 3, 3 ′, 4 , 4'-Diphenylsulfonetetracarboxylic dianhydride, 4,4'-oxydiphthalic anhydride, 2,3 ', 3,4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3 ' -2,3,3 ', 4'- or 3,3', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3 ', 3,4'-diphenyl ether tetracarboxylic dianhydride, bis (2,3-Dicarboxyphenyl) ether dianhydride, 3,3 ″, 4,4 ″-, 2,3,3 ″, 4 ″-or 2,2 ″, 3,3 ′ '-p-terphenyltetracarboxylic dianhydride, 2,2-bis (2,3- or 3,4-dicarboxyphenyl) -propane dianhydride, bis (2,3- or 3.4-di Ruboxyphenyl) methane dianhydride, bis (2,3- or 3,4-dicarboxyphenyl) sulfone dianhydride, 1,1-bis (2,3- or 3,4-dicarboxyphenyl) ethane Anhydride, 1,2,7,8-, 1,2,6,7- or 1,2,9,10-phenanthrene-tetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) tetrafluoropropane dianhydride, 2,3,5,6-cyclohexane dianhydride, 1,2,5,6-naphthalenetetracarboxylic acid Dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,8-dimethyl-1,2,3,5,6,7-hexahydronaphthalene-1,2,5,6- Tetracarboxylic dianhydride, 2,6- or 2,7-dichloronaphthalene-1,4,5,8-tetracarboxylic dianhydride, 2,3,6,7- (or 1,4,5, 8 -) Tetrachloronaphthalene-1,4,5,8- (or 2,3,6,7-) tetracarboxylic dianhydride, 2,3,8,9-, 3,4,9,10-, 4,5,10,11- or 5,6,11,12-perylene-tetracarboxylic dianhydride, cyclopentane-1,2,3,4-tetracarboxylic dianhydride, pyrazine-2,3, 5,6-tetracarboxylic dianhydride, pyrrolidine-2,3,4,5-tetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 4,4'- Examples thereof include tetracarboxylic acid residues derived from aromatic tetracarboxylic dianhydrides such as bis (2,3-dicarboxyphenoxy) diphenylmethane dianhydride and ethylene glycol-bisanhydro trimellitate.
(ジアミン残基)
 第1、第2又は第3の実施の形態において、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が好ましい。
(Diamine residue)
In the first, second, or third embodiment, the diamine residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer is derived from a diamine compound represented by the general formula (A1). A diamine residue is preferred.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基、若しくはアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。ここで、「独立に」とは、上記式(A1)において、複数の連結基A、複数の置換基Y、さらに整数p、qが、同一でもよいし、異なっていてもよいことを意味する。なお、上記式(A1)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。 In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group. , N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. Here, “independently” means that in the above formula (A1), the plurality of linking groups A, the plurality of substituents Y, and the integers p and q may be the same or different. . In the above formula (A1), the hydrogen atoms in the two terminal amino groups may be substituted. For example, —NR 3 R 4 (wherein R 3 and R 4 are independently alkyl groups, etc. Meaning any substituent).
 一般式(A1)で表されるジアミン化合物(以下、「ジアミン(A1)」と記すことがある)は、2つのベンゼン環を有する芳香族ジアミンである。ジアミン(A1)は、剛直構造を有しているため、ポリマー全体に秩序構造を付与する作用を有している。そのため、ガス透過性が低く、低吸湿性のポリイミドが得られ、分子鎖内部の水分を低減できるため、誘電正接を下げることができる。ここで、連結基Xとしては、単結合が好ましい。 The diamine compound represented by the general formula (A1) (hereinafter sometimes referred to as “diamine (A1)”) is an aromatic diamine having two benzene rings. Since the diamine (A1) has a rigid structure, it has an action of imparting an ordered structure to the entire polymer. Therefore, a low gas permeability and low hygroscopic polyimide can be obtained, and moisture inside the molecular chain can be reduced, so that the dielectric loss tangent can be lowered. Here, the linking group X is preferably a single bond.
 ジアミン(A1)としては、例えば、1,4-ジアミノベンゼン(p-PDA;パラフェニレンジアミン)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、2,2’-n-プロピル-4,4’-ジアミノビフェニル(m-NPB)、4-アミノフェニル-4’-アミノベンゾエート(APAB)等を挙げることができる。 Examples of the diamine (A1) include 1,4-diaminobenzene (p-PDA; paraphenylenediamine), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), and 2,2′-. Examples thereof include n-propyl-4,4′-diaminobiphenyl (m-NPB) and 4-aminophenyl-4′-aminobenzoate (APAB).
 第1又は第2の実施の形態の非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、ジアミン(A1)から誘導されるジアミン残基を、ジアミン残基の100モル部に対して、好ましくは80モル部以上、より好ましくは85モル部以上含有することがよい。ジアミン(A1)を上記範囲内の量で使用することによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されやすくなり、ガス透過性が低く、低吸湿性、かつ低誘電正接である非熱可塑性ポリイミドが得られやすい。 The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer of the first or second embodiment preferably has a diamine residue derived from the diamine (A1) with respect to 100 mole parts of the diamine residue. 80 mol parts or more, more preferably 85 mol parts or more. By using the diamine (A1) in an amount within the above range, the rigid structure derived from the monomer facilitates the formation of an ordered structure throughout the polymer, has low gas permeability, low hygroscopicity, and low dielectric loss tangent. Non-thermoplastic polyimide is easily obtained.
 また、第1又は第2の実施の形態において、非熱可塑性ポリイミドにおけるジアミン残基の100モル部に対して、ジアミン(A1)から誘導されるジアミン残基が80モル部以上85モル部以下の範囲内である場合は、より剛直であり、面内配向性に優れる構造であるという観点から、ジアミン(A1)として、1,4-ジアミノベンゼンを用いることが好ましい。 In the first or second embodiment, the diamine residue derived from the diamine (A1) is from 80 to 85 parts by mole with respect to 100 parts by mole of the diamine residue in the non-thermoplastic polyimide. When it is within the range, 1,4-diaminobenzene is preferably used as the diamine (A1) from the viewpoint of being more rigid and having an excellent in-plane orientation.
 第1又は第2の実施の形態において、非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドに含まれるその他のジアミン残基としては、例えば、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2-ビス-[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、3,3’-ジアミノジフェニルエタン、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、3,3''-ジアミノ-p-テルフェニル、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2'-メトキシ-4,4'-ジアミノベンズアニリド、4,4'-ジアミノベンズアニリド、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、6-アミノ-2-(4-アミノフェノキシ)ベンゾオキサゾール等の芳香族ジアミン化合物から誘導されるジアミン残基、ダイマー酸の二つの末端カルボン酸基が1級のアミノメチル基又はアミノ基に置換されてなるダイマー酸型ジアミン等の脂肪族ジアミン化合物から誘導されるジアミン残基が挙げられる。 In the first or second embodiment, the other diamine residue contained in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer is, for example, 2,2-bis- [4- (3-aminophenoxy ) Phenyl] propane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (3 -Aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy)] benzophenone, 9,9-bis [4- (3-aminophenoxy) phenyl ] Fluorene, 2,2-bis- [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 3,3′- Dimethyl-4 , 4'-diaminobiphenyl, 4,4'-methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 3,3'- Diaminodiphenylethane, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 3,3 ''-diamino-p-terphenyl, 4,4 '-[1,4-phenylenebis (1-methylethylidene )] Bisaniline, 4,4 '-[1,3-phenylenebis (1-methylethylidene)] bisaniline, bis (p-aminocyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p-bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5- Diaminonaphthalene, 2,6-diaminonaphthalene, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine p-xylene-2,5-diamine, m-xylylenediamine, p-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadi Azole, piperazine, 2'-methoxy-4,4'-diaminobenzanilide, 4,4'-diaminobenzanilide, 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene, 6- A diamine residue derived from an aromatic diamine compound such as amino-2- (4-aminophenoxy) benzoxazole, or two terminal carboxylic acid groups of dimer acid are substituted with primary aminomethyl group or amino group Examples thereof include diamine residues derived from aliphatic diamine compounds such as dimer acid type diamines.
 また、第3の実施の形態の非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおいて、ジアミン(A1)は、上記条件(c-i)に規定するように、原料の全ジアミン成分の100モル部に対し、70モル部以上、例えば70~90モル部の範囲内、好ましくは80~90モル部の範囲内がよい。一方でジアミン(A1)の仕込み量が90モル部を超えるとフィルムの伸度が低下することがある。 Further, in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer of the third embodiment, the diamine (A1) is added to 100 mol parts of the total diamine component of the raw material as defined in the above condition (ci). On the other hand, it is 70 mol parts or more, for example, in the range of 70 to 90 mol parts, preferably in the range of 80 to 90 mol parts. On the other hand, when the amount of diamine (A1) charged exceeds 90 mol parts, the elongation of the film may decrease.
 また、第3の実施の形態で用いる非熱可塑性ポリイミドは、原料のジアミン成分として、一般式(C1)~(C4)で表される芳香族ジアミンからなる群より選ばれる少なくとも1種の芳香族ジアミンを使用することが好ましい。ジアミン(C1)~(C4)は、嵩高い置換基や屈曲性の部位を有するので、ポリイミドに柔軟性を付与することができる。また、ジアミン(C1)~(C4)は、気体透過性を向上させることができるため、多層フィルムおよび金属張積層板製造時における発泡を抑制する効果がある。このような観点から、原料の全ジアミン成分の100モル部に対し、ジアミン(C1)~(C4)から選ばれる1種以上の芳香族ジアミンを2~15モル部の範囲内で使用することが好ましい。ジアミン(C1)~(C4)の仕込み量が2モル部未満であると、多層フィルムおよび金属張積層板を製造した場合に発泡が発生することがある。またジアミン(C1)~(C4)の仕込み量が15モル部を超えると分子の配向性が低下し、低CTE化が困難となる。 The non-thermoplastic polyimide used in the third embodiment is at least one aromatic selected from the group consisting of aromatic diamines represented by the general formulas (C1) to (C4) as a diamine component of the raw material. Preference is given to using diamines. Since the diamines (C1) to (C4) have bulky substituents and flexible portions, flexibility can be imparted to the polyimide. Further, since the diamines (C1) to (C4) can improve gas permeability, they have an effect of suppressing foaming during the production of the multilayer film and the metal-clad laminate. From such a viewpoint, one or more aromatic diamines selected from diamines (C1) to (C4) may be used within a range of 2 to 15 parts by mole with respect to 100 parts by mole of the total diamine component. preferable. When the amount of diamine (C1) to (C4) is less than 2 mole parts, foaming may occur when a multilayer film and a metal-clad laminate are produced. On the other hand, if the amount of diamine (C1) to (C4) charged exceeds 15 parts by mole, the molecular orientation is lowered and it is difficult to reduce the CTE.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記式(C1)~(C4)において、Rは独立に炭素数1~6の1価の炭化水素基、アルコキシ基又はアルキルチオ基を示し、連結基A’は独立に-O-、-SO-、-CH-又は-C(CH-から選ばれる2価の基、好ましくは-O-、-CH-又は-C(CH-から選ばれる2価の基を示し、連結基X1は独立に-CH-、-O-CH-O-、-O-C-O-、-O-C-O-、-O-C-O-、-O-C10-O-、-O-CH-C(CH-CH-O-、-C(CH-、-C(CF-又は-SO-を示し、nは独立に1~4の整数を示し、nは独立に0~4の整数を示すが、式(C3)において、連結基A’が、-CH-、-C(CH-、-C(CF-又は-SO-を含まない場合、nのいずれかは1以上である。ただし、n=0の場合、式(C1)中の2つのアミノ基はパラ位ではないものとする。ここで、「独立に」とは、上記式(C1)~(C4)の内の一つにおいて、または二つ以上において、複数の連結基A’、複数の連結基X1、複数の置換基R若しくは複数のn、nが、同一でもよいし、異なっていてもよいことを意味する。なお、上記式(C1)~(C4)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。 In the above formulas (C1) to (C4), R 2 independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group or an alkylthio group, and the linking group A ′ is independently —O—, —SO A divalent group selected from 2 —, —CH 2 — or —C (CH 3 ) 2 —, preferably a divalent group selected from —O—, —CH 2 — or —C (CH 3 ) 2 —. And the linking group X1 is independently —CH 2 —, —O—CH 2 —O—, —O—C 2 H 4 —O—, —O—C 3 H 6 —O—, —O—C 4. H 8 —O—, —O—C 5 H 10 —O—, —O—CH 2 —C (CH 3 ) 2 —CH 2 —O—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 -or -SO 2- , n 3 independently represents an integer of 1 to 4, n 4 independently represents an integer of 0 to 4, but in formula (C3), the linking group A ' - H 2 -, - C (CH 3) 2 -, - C (CF 3) 2 - or -SO 2 - when it contains no, one of n 4 is 1 or more. However, when n 3 = 0, the two amino groups in formula (C1) are not in the para position. Here, “independently” refers to a plurality of linking groups A ′, a plurality of linking groups X1, a plurality of substituents R in one or more of the above formulas (C1) to (C4). It means that two or a plurality of n 3 and n 4 may be the same or different. In the above formulas (C1) to (C4), hydrogen atoms in the two terminal amino groups may be substituted. For example, —NR 3 R 4 (wherein R 3 and R 4 are independently Meaning an arbitrary substituent such as an alkyl group).
 一般式(C1)で表される芳香族ジアミンとしては、例えば2,6-ジアミノ-3,5-ジエチルトルエン、2,4-ジアミノ-3,5-ジエチルトルエンなどを挙げることができる。 Examples of the aromatic diamine represented by the general formula (C1) include 2,6-diamino-3,5-diethyltoluene and 2,4-diamino-3,5-diethyltoluene.
 一般式(C2)で表される芳香族ジアミンとしては、例えば、2,4-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、ビス(4-アミノ-3-エチル-5-メチルフェニル)メタンなどを挙げることができる。 Examples of the aromatic diamine represented by the general formula (C2) include 2,4-diamino-3,3′-diethyl-5,5′-dimethyldiphenylmethane and bis (4-amino-3-ethyl-5- And methylphenyl) methane.
 一般式(C3)で表される芳香族ジアミンとしては、例えば、1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼンなどを挙げることができる。 Examples of the aromatic diamine represented by the general formula (C3) include 1,3-bis [2- (4-aminophenyl) -2-propyl] benzene and 1,4-bis [2- (4-amino). Phenyl) -2-propyl] benzene, 1,4-bis (4-aminophenoxy) -2,5-di-tert-butylbenzene, and the like.
 一般式(C4)で表される芳香族ジアミンとしては、例えば2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパンなどを挙げることができる。 Examples of the aromatic diamine represented by the general formula (C4) include 2,2-bis [4- (4-aminophenoxy) phenyl] propane.
 以上のように、第3の実施の形態のポリイミドフィルムを構成する非熱可塑性ポリイミドは、ジアミン残基の100モル部に対して、ジアミン(A1)から誘導される残基を70モル部以上、好ましくは70~90モル部の範囲内、ジアミン(C1)~(C4)から誘導される残基を2~15モル部の範囲内で含有するように制御することがよい。 As described above, the non-thermoplastic polyimide constituting the polyimide film of the third embodiment has 70 mol parts or more of residues derived from diamine (A1) with respect to 100 mol parts of diamine residues, The residue is preferably controlled so as to contain a residue derived from diamines (C1) to (C4) within a range of 2 to 15 mol parts within a range of 70 to 90 mol parts.
 第3の実施の形態において、ポリイミドの原料として使用可能な、他のジアミンとしては、例えば、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス[4-(2-トリフルオロ-4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4-ビス(4‐アミノフェノキシ)2,3,6-トリメチル-ベンゼン、1,4-ビス(4‐アミノフェノキシメチル)プロパン、1,3-ビス(4‐アミノフェノキシ)ベンゼン、1,4-ビス(4‐アミノフェノキシ)ベンゼン、1,3-ビス(3‐アミノフェノキシ)ベンゼン、1,4-ビス(4‐アミノフェノキシ)メタン、1,4-ビス(4‐アミノフェノキシ)エタン、1,4-ビス(4‐アミノフェノキシ)プロパン、1,4-ビス(4‐アミノフェノキシ)ブタン、1,4-ビス(4‐アミノフェノキシ)ペンタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)ビフェニル、ビス[1-(3-アミノフェノキシ)]ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,4-ビス(4‐アミノフェノキシ)2-フェニル-ベンゼン、1,4-ビス(2-トリフルオロメチル-4‐アミノフェノキシ)ベンゼン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、9,9-ビス[4-(3-アミノフェノキシ)フェニル]フルオレン、2,2-ビス-[4-(3-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-メチレンジ-o-トルイジン、4,4’-メチレンジ-2,6-キシリジン、4,4’-メチレン-2,6-ジエチルアニリン、3,3’-ジアミノジフェニルエタン、2-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、2,2’-ジトリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノビフェニル、3,3’-ジメトキシベンジジン、3,3''-ジアミノ-p-テルフェニル、4,4'-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4'-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、ビス(p-アミノシクロヘキシル)メタン、ビス(p-β-アミノ-t-ブチルフェニル)エーテル、ビス(p-β-メチル-δ-アミノペンチル)ベンゼン、p-ビス(2-メチル-4-アミノペンチル)ベンゼン、p-ビス(1,1-ジメチル-5-アミノペンチル)ベンゼン、1,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,4-ビス(β-アミノ-t-ブチル)トルエン、2,4-ジアミノトルエン、m-キシレン-2,5-ジアミン、p-キシレン-2,5-ジアミン、m-キシリレンジアミン、p-キシリレンジアミン、2,6-ジアミノピリジン、2,5-ジアミノピリジン、2,5-ジアミノ-1,3,4-オキサジアゾール、ピペラジン、2'-メトキシ-4,4'-ジアミノベンズアニリド、4,4'-ジアミノベンズアニリド等の芳香族ジアミン化合物が挙げられる。 In the third embodiment, other diamines that can be used as a raw material for polyimide include, for example, 2,2-bis- [4- (3-aminophenoxy) phenyl] propane, 2,2-bis [4 -(4-Aminophenoxy) phenyl] hexafluoropropane, 2,2-bis [4- (2-trifluoro-4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-aminophenoxy) 2 , 3,6-trimethyl-benzene, 1,4-bis (4-aminophenoxymethyl) propane, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) methane, 1,4-bis (4-aminophenoxy) ethane, 1,4-bis (4-aminophenoxy) propane 1,4-bis (4-aminophen Noxy) butane, 1,4-bis (4-aminophenoxy) pentane, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- ( 3-aminophenoxy) biphenyl, bis [1- (3-aminophenoxy)] biphenyl, bis [4- (3-aminophenoxy) phenyl] methane, 1,4-bis (4-aminophenoxy) 2-phenyl-benzene 1,4-bis (2-trifluoromethyl-4-aminophenoxy) benzene, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy)] benzophenone, 9,9 -Bis [4- (3-aminophenoxy) phenyl] fluorene, 2,2-bis- [4- (3-aminophenoxy) phenyl] hexafluoropropane, 3,3'-dimethyl-4,4'-diaminobiphenyl , 4,4 -Methylenedi-o-toluidine, 4,4'-methylenedi-2,6-xylidine, 4,4'-methylene-2,6-diethylaniline, 3,3'-diaminodiphenylethane, 2-trifluoromethyl-4 , 4'-diaminodiphenyl ether, 2,2'-ditrifluoromethyl-4,4'-diaminodiphenyl ether, 3,3'-diaminobiphenyl, 3,3'-dimethoxybenzidine, 3,3 ''-diamino-p- Terphenyl, 4,4 '-[1,4-phenylenebis (1-methylethylidene)] bisaniline, 4,4'-[1,3-phenylenebis (1-methylethylidene)] bisaniline, bis (p-amino (Cyclohexyl) methane, bis (p-β-amino-t-butylphenyl) ether, bis (p-β-methyl-δ-aminopentyl) benzene, p-bis (2-methyl-4-aminopentyl) benzene, p -Bis (1,1-dimethyl-5-aminopentyl) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphth Talen, 2,4-bis (β-amino-t-butyl) toluene, 2,4-diaminotoluene, m-xylene-2,5-diamine, p-xylene-2,5-diamine, m-xylylenediamine , P-xylylenediamine, 2,6-diaminopyridine, 2,5-diaminopyridine, 2,5-diamino-1,3,4-oxadiazole, piperazine, 2'-methoxy-4,4'-diamino And aromatic diamine compounds such as benzanilide and 4,4′-diaminobenzanilide.
 第3の実施の形態では、ポリイミドの原料となる酸無水物成分としてBPDA、TAHQ、PMDA及びNTCDA、ジアミン成分としてジアミン(A1)及びジアミン(C1)~(C4)を、それぞれ上記のモル比で用いることによって、これらの原料化合物から誘導される残基の量を制御し、誘電正接及び吸湿率の低減と、多層フィルムおよび金属張積層板製造時における発泡抑制とを両立させることができる。 In the third embodiment, BPDA, TAHQ, PMDA, and NTCDA are used as the acid anhydride component that is a raw material for polyimide, and diamine (A1) and diamines (C1) to (C4) are used as the diamine components in the above molar ratios, respectively. By using it, the amount of residues derived from these raw material compounds can be controlled, and both reduction of dielectric loss tangent and moisture absorption, and suppression of foaming during the production of multilayer films and metal-clad laminates can be achieved.
 第3の実施の形態のポリイミドフィルムは、低誘電率及び低誘電正接と低吸湿性とが両立されているので、例えばFPCの原料となる銅張積層板の絶縁樹脂層におけるベース樹脂として好ましいものである。また、ポリイミドの原料となるモノマーとして、芳香族テトラカルボン酸無水物と芳香族ジアミンを用いているので、加熱による寸法変化の問題が生じにくく、また難燃性を有しており、難燃剤を配合する必要がない。従って、第3の実施の形態のポリイミドフィルム及びそれを用いた銅張積層板を利用することによって、FPC等の回路基板の信頼性と歩留まりの向上を図ることができる。 The polyimide film of the third embodiment has a low dielectric constant, a low dielectric loss tangent, and a low hygroscopicity, so that it is preferable as a base resin in an insulating resin layer of a copper clad laminate that is a raw material for FPC, for example. It is. In addition, since aromatic tetracarboxylic acid anhydride and aromatic diamine are used as the raw material for polyimide, the problem of dimensional change due to heating is less likely to occur, and it has flame retardancy. There is no need to blend. Therefore, by using the polyimide film of the third embodiment and the copper-clad laminate using the polyimide film, it is possible to improve the reliability and yield of a circuit board such as an FPC.
 第1、第2又は第3の実施の形態の非熱可塑性ポリイミドにおいて、上記テトラカルボン酸残基及びジアミン残基の種類や、2種以上のテトラカルボン酸残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、貯蔵弾性率、引張弾性率等を制御することができる。また、非熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、面内リタデーション(RO)のばらつきを抑制する観点から、ランダムに存在することが好ましい。 In the non-thermoplastic polyimide of the first, second or third embodiment, when the types of the tetracarboxylic acid residue and diamine residue, or two or more kinds of tetracarboxylic acid residues or diamine residues are applied By selecting the respective molar ratios, the thermal expansion coefficient, storage elastic modulus, tensile elastic modulus and the like can be controlled. In addition, in a non-thermoplastic polyimide, when it has a plurality of polyimide structural units, it may exist as a block or randomly, but it is random from the viewpoint of suppressing variation in in-plane retardation (RO). It is preferable that it exists in.
 なお、第1又は第2の実施の形態では、非熱可塑性ポリイミドに含まれるテトラカルボン酸残基及びジアミン残基を、いずれも芳香族基とすることで、ポリイミドフィルムの高温環境下での寸法精度を向上させ、面内リタデーション(RO)の変化量を小さくすることができるため好ましい。 In the first or second embodiment, the tetracarboxylic acid residue and the diamine residue contained in the non-thermoplastic polyimide are both aromatic groups, so that the dimensions of the polyimide film in a high temperature environment are as follows. This is preferable because accuracy can be improved and the amount of change in in-plane retardation (RO) can be reduced.
 第1又は第2の実施の形態において、非熱可塑性ポリイミドのイミド基濃度は、33重量%以下であることが好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が33重量%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。第1又は第2の実施の形態では、上記酸無水物とジアミン化合物の組み合わせを選択することによって、非熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。 In 1st or 2nd embodiment, it is preferable that the imide group density | concentration of a non-thermoplastic polyimide is 33 weight% or less. Here, the “imide group concentration” means a value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) in the polyimide by the molecular weight of the entire polyimide structure. When the imide group concentration exceeds 33% by weight, the molecular weight of the resin itself is reduced, and the low hygroscopicity is also deteriorated due to an increase in polar groups. In 1st or 2nd embodiment, by selecting the combination of the said acid anhydride and a diamine compound, by controlling the orientation of the molecule | numerator in non-thermoplastic polyimide, CTE of a imide group concentration fall is accompanied. The increase is suppressed and low hygroscopicity is secured.
 第1、第2又は第3の実施の形態において、非熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。 In the first, second or third embodiment, the weight average molecular weight of the non-thermoplastic polyimide is preferably in the range of, for example, 10,000 to 400,000, more preferably in the range of 50,000 to 350,000. preferable. When the weight average molecular weight is less than 10,000, the strength of the film tends to decrease and the film tends to become brittle. On the other hand, when the weight average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as film thickness unevenness and streaks tend to occur during the coating operation.
<熱可塑性ポリイミド>
 第1又は第2の実施の形態のポリイミドフィルムにおいて、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むものであり、芳香族テトラカルボン酸二無水物から誘導される芳香族テトラカルボン酸残基及び芳香族ジアミンから誘導される芳香族ジアミン残基を含むことが好ましい。
<Thermoplastic polyimide>
In the polyimide film of the first or second embodiment, the thermoplastic polyimide constituting the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and is from an aromatic tetracarboxylic dianhydride. It preferably contains an aromatic tetracarboxylic acid residue derived from and an aromatic diamine residue derived from an aromatic diamine.
(テトラカルボン酸残基)
 熱可塑性ポリイミド層を構成する熱可塑性ポリイミドに用いるテトラカルボン酸残基としては、上記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおけるテトラカルボン酸残基として例示したものと同様のものを用いることができる。
(Tetracarboxylic acid residue)
The tetracarboxylic acid residue used in the thermoplastic polyimide constituting the thermoplastic polyimide layer should be the same as the tetracarboxylic acid residue exemplified in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer. Can do.
(ジアミン残基)
 熱可塑性ポリイミド層を構成する熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(B1)~(B7)で表されるジアミン化合物から誘導されるジアミン残基が好ましい。
(Diamine residue)
As the diamine residue contained in the thermoplastic polyimide constituting the thermoplastic polyimide layer, a diamine residue derived from a diamine compound represented by the general formulas (B1) to (B7) is preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(B1)~(B7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-若しくは-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(B3)中から式(B2)と重複するものは除き、式(B5)中から式(B4)と重複するものは除くものとする。ここで、「独立に」とは、上記式(B1)~(B7)の内の一つにおいて、または二つ以上において、複数の連結基A、複数のR若しくは複数のnが、同一でもよいし、異なっていてもよいことを意味する。なお、上記式(B1)~(B7)において、末端の二つのアミノ基における水素原子は置換されていてもよく、例えば-NR(ここで、R,Rは、独立してアルキル基などの任意の置換基を意味する)であってもよい。 In the formulas (B1) to (B7), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and the linking group A is independently —O—, —S—, —CO—. , —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—, wherein n 1 is independently An integer from 0 to 4 is shown. However, in the formula (B3), those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded. Here, “independently” means that in one or more of the above formulas (B1) to (B7), a plurality of linking groups A, a plurality of R 1 s, or a plurality of n 1 are the same. It means that it may be different or different. In the above formulas (B1) to (B7), hydrogen atoms in the two terminal amino groups may be substituted. For example, —NR 3 R 4 (wherein R 3 and R 4 are independently Meaning an arbitrary substituent such as an alkyl group).
 式(B1)で表されるジアミン(以下、「ジアミン(B1)」と記すことがある)は、2つのベンゼン環を有する芳香族ジアミンである。このジアミン(B1)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B1)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-CO-、-SO-、-S-が好ましい。 The diamine represented by the formula (B1) (hereinafter sometimes referred to as “diamine (B1)”) is an aromatic diamine having two benzene rings. This diamine (B1) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of a polyimide increases by using diamine (B1). Here, the linking group A is preferably —O—, —CH 2 —, —C (CH 3 ) 2 —, —CO—, —SO 2 —, —S—.
 ジアミン(B1)としては、例えば、3,3’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルプロパン、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルプロパン、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノベンゾフェノン、(3,3’-ビスアミノ)ジフェニルアミン等を挙げることができる。 Examples of the diamine (B1) include 3,3′-diaminodiphenylmethane, 3,3′-diaminodiphenylpropane, 3,3′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, and 3,3′-diamino. Diphenyl ether, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylpropane, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminobenzophenone, (3,3'- Bisamino) diphenylamine and the like.
 式(B2)で表されるジアミン(以下、「ジアミン(B2)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(B2)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B2)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 The diamine represented by the formula (B2) (hereinafter sometimes referred to as “diamine (B2)”) is an aromatic diamine having three benzene rings. This diamine (B2) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the use of diamine (B2) increases the thermoplasticity of the polyimide. Here, the linking group A is preferably —O—.
 ジアミン(B2)としては、例えば1,4-ビス(3-アミノフェノキシ)ベンゼン、3-[4-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン、3-[3-(4-アミノフェノキシ)フェノキシ]ベンゼンアミン等を挙げることができる。 Examples of the diamine (B2) include 1,4-bis (3-aminophenoxy) benzene, 3- [4- (4-aminophenoxy) phenoxy] benzenamine, 3- [3- (4-aminophenoxy) phenoxy] Examples thereof include benzeneamine.
 式(B3)で表されるジアミン(以下、「ジアミン(B3)」と記すことがある)は、3つのベンゼン環を有する芳香族ジアミンである。このジアミン(B3)は、1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B3)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 The diamine represented by the formula (B3) (hereinafter sometimes referred to as “diamine (B3)”) is an aromatic diamine having three benzene rings. This diamine (B3) has high flexibility because the degree of freedom of the polyimide molecular chain is increased because two divalent linking groups A directly connected to one benzene ring are in the meta position. Therefore, it is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the use of diamine (B3) increases the thermoplasticity of the polyimide. Here, the linking group A is preferably —O—.
 ジアミン(B3)としては、例えば1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、4,4'-[2-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[4-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン、4,4'-[5-メチル-(1,3-フェニレン)ビスオキシ]ビスアニリン等を挙げることができる。 Examples of the diamine (B3) include 1,3-bis (4-aminophenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 4,4 ′-[2- Methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4 '-[4-methyl- (1,3-phenylene) bisoxy] bisaniline, 4,4'-[5-methyl- (1,3-phenylene) ) Bisoxy] bisaniline and the like.
 式(B4)で表されるジアミン(以下、「ジアミン(B4)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B4)は、少なくとも1つのベンゼン環に直結したアミノ基と2価の連結基Aとがメタ位にあることで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B4)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-、-CH-、-C(CH-、-SO-、-CO-、-CONH-が好ましい。 The diamine represented by the formula (B4) (hereinafter sometimes referred to as “diamine (B4)”) is an aromatic diamine having four benzene rings. This diamine (B4) has a high flexibility because the amino group directly connected to at least one benzene ring and the divalent linking group A are in the meta position, thereby improving the flexibility of the polyimide molecular chain. It is thought to contribute. Therefore, the use of diamine (B4) increases the thermoplasticity of the polyimide. Here, the linking group A is preferably —O—, —CH 2 —, —C (CH 3 ) 2 —, —SO 2 —, —CO—, —CONH—.
 ジアミン(B4)としては、ビス[4-(3-アミノフェノキシ)フェニル]メタン、ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)]ベンゾフェノン、ビス[4,4'-(3-アミノフェノキシ)]ベンズアニリド等を挙げることができる。 Examples of the diamine (B4) include bis [4- (3-aminophenoxy) phenyl] methane, bis [4- (3-aminophenoxy) phenyl] propane, bis [4- (3-aminophenoxy) phenyl] ether, bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy)] benzophenone, bis [4,4 ′-(3-aminophenoxy)] benzanilide and the like can be mentioned.
 式(B5)で表されるジアミン(以下、「ジアミン(B5)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B5)は、少なくとも1つのベンゼン環に直結した、2つの2価の連結基Aが互いにメタ位にあることで、ポリイミド分子鎖が有する自由度が増加して高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B5)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 The diamine represented by the formula (B5) (hereinafter sometimes referred to as “diamine (B5)”) is an aromatic diamine having four benzene rings. This diamine (B5) has high flexibility because the degree of freedom of the polyimide molecular chain is increased by having two divalent linking groups A directly connected to at least one benzene ring in the meta position. It is thought that it contributes to the improvement of the flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (B5). Here, the linking group A is preferably —O—.
 ジアミン(B5)としては、4-[3-[4-(4-アミノフェノキシ)フェノキシ]フェノキシ]アニリン、4,4’-[オキシビス(3,1-フェニレンオキシ)]ビスアニリン等を挙げることができる。 Examples of the diamine (B5) include 4- [3- [4- (4-aminophenoxy) phenoxy] phenoxy] aniline, 4,4 ′-[oxybis (3,1-phenyleneoxy)] bisaniline, and the like. .
 式(B6)で表されるジアミン(以下、「ジアミン(B6)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B6)は、少なくとも2つのエーテル結合を有することで高い屈曲性を有しており、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B6)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-C(CH-、-O-、-SO-、-CO-が好ましい。 The diamine represented by the formula (B6) (hereinafter sometimes referred to as “diamine (B6)”) is an aromatic diamine having four benzene rings. This diamine (B6) has high flexibility by having at least two ether bonds, and is considered to contribute to the improvement of the flexibility of the polyimide molecular chain. Therefore, the use of diamine (B6) increases the thermoplasticity of the polyimide. Here, the linking group A is preferably —C (CH 3 ) 2 —, —O—, —SO 2 —, or —CO—.
 ジアミン(B6)としては、例えば、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4-(4-アミノフェノキシ)フェニル]エーテル(BAPE)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、ビス[4-(4-アミノフェノキシ)フェニル]ケトン(BAPK)等を挙げることができる。 Examples of the diamine (B6) include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (4-aminophenoxy) phenyl] ether (BAPE), and bis [4 -(4-Aminophenoxy) phenyl] sulfone (BAPS), bis [4- (4-aminophenoxy) phenyl] ketone (BAPK) and the like can be mentioned.
 式(B7)で表されるジアミン(以下、「ジアミン(B7)」と記すことがある)は、4つのベンゼン環を有する芳香族ジアミンである。このジアミン(B7)は、ジフェニル骨格の両側に、それぞれ屈曲性の高い2価の連結基Aを有するため、ポリイミド分子鎖の柔軟性の向上に寄与すると考えられる。従って、ジアミン(B7)を用いることで、ポリイミドの熱可塑性が高まる。ここで、連結基Aとしては、-O-が好ましい。 The diamine represented by the formula (B7) (hereinafter sometimes referred to as “diamine (B7)”) is an aromatic diamine having four benzene rings. Since this diamine (B7) has divalent linking groups A having high flexibility on both sides of the diphenyl skeleton, it is considered that this diamine (B7) contributes to improvement in flexibility of the polyimide molecular chain. Therefore, the thermoplasticity of polyimide increases by using diamine (B7). Here, the linking group A is preferably —O—.
 ジアミン(B7)としては、例えば、ビス[4-(3-アミノフェノキシ)]ビフェニル、ビス[4-(4-アミノフェノキシ)]ビフェニル等を挙げることができる。 Examples of the diamine (B7) include bis [4- (3-aminophenoxy)] biphenyl, bis [4- (4-aminophenoxy)] biphenyl, and the like.
 第1又は第2の実施の形態において、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、ジアミン残基の100モル部に対して、ジアミン(B1)~ジアミン(B7)から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基を70モル部以上、好ましくは70モル部以上99モル部以下の範囲内、より好ましくは80モル部以上95モル部以下の範囲内で含有する。ジアミン(B1)~ジアミン(B7)は、屈曲性を有する分子構造を持つため、これらから選ばれる少なくとも一種のジアミン化合物を上記範囲内の量で使用することによって、ポリイミド分子鎖の柔軟性を向上させ、熱可塑性を付与することができる。ジアミン(B1)~ジアミン(B7)の合計量が全ジアミン成分の100モル部に対して70モル部未満であるとポリイミド樹脂の柔軟性不足で十分な熱可塑性が得られない。 In the first or second embodiment, the thermoplastic polyimide constituting the thermoplastic polyimide layer is at least one diamine selected from diamine (B1) to diamine (B7) with respect to 100 mole parts of the diamine residue. A diamine residue derived from the compound is contained in an amount of 70 mol parts or more, preferably 70 mol parts or more and 99 mol parts or less, more preferably 80 mol parts or more and 95 mol parts or less. Since diamine (B1) to diamine (B7) have a flexible molecular structure, the flexibility of the polyimide molecular chain is improved by using at least one diamine compound selected from these in an amount within the above range. And thermoplasticity can be imparted. If the total amount of diamine (B1) to diamine (B7) is less than 70 parts by mole with respect to 100 parts by mole of the total diamine component, sufficient thermoplasticity cannot be obtained due to insufficient flexibility of the polyimide resin.
 また、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドに含まれるジアミン残基としては、一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基も好ましい。式(A1)で表されるジアミン化合物[ジアミン(A1)]については、非熱可塑性ポリイミドの説明で述べたとおりである。ジアミン(A1)は、剛直構造を有し、ポリマー全体に秩序構造を付与する作用を有しているため、分子の運動抑制により誘電正接や吸湿性を低下させることができる。更に、熱可塑性ポリイミドの原料として使用することで、ガス透過性が低く、長期耐熱接着性に優れたポリイミドが得られる。 Further, as the diamine residue contained in the thermoplastic polyimide constituting the thermoplastic polyimide layer, a diamine residue derived from a diamine compound represented by the general formula (A1) is also preferable. The diamine compound [diamine (A1)] represented by the formula (A1) is as described in the description of the non-thermoplastic polyimide. Since the diamine (A1) has a rigid structure and has an action of imparting an ordered structure to the entire polymer, the dielectric loss tangent and hygroscopicity can be reduced by suppressing the movement of molecules. Furthermore, by using it as a raw material for thermoplastic polyimide, a polyimide having low gas permeability and excellent long-term heat-resistant adhesion can be obtained.
 第1又は第2の実施の形態において、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、ジアミン(A1)から誘導されるジアミン残基を、好ましくは1モル部以上30モル部以下の範囲内、より好ましくは5モル部以上20モル部以下の範囲内で含有してもよい。ジアミン(A1)を上記範囲内の量で使用することによって、モノマー由来の剛直構造により、ポリマー全体に秩序構造が形成されるので、熱可塑性でありながら、ガス透過性及び吸湿性が低く、長期耐熱接着性に優れたポリイミドが得られる。 In the first or second embodiment, the thermoplastic polyimide constituting the thermoplastic polyimide layer is preferably a diamine residue derived from the diamine (A1), preferably in the range of 1 to 30 mol parts, More preferably, it may be contained within the range of 5 mol parts or more and 20 mol parts or less. By using the diamine (A1) in an amount within the above range, an ordered structure is formed in the entire polymer due to the rigid structure derived from the monomer, so that the gas permeability and hygroscopicity are low while being thermoplastic, A polyimide having excellent heat-resistant adhesion can be obtained.
 熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、発明の効果を損なわない範囲で、ジアミン(A1)、(B1)~(B7)以外のジアミン化合物から誘導されるジアミン残基を含むことができる。 The thermoplastic polyimide constituting the thermoplastic polyimide layer can contain a diamine residue derived from a diamine compound other than the diamines (A1) and (B1) to (B7) as long as the effects of the invention are not impaired.
 熱可塑性ポリイミドにおいて、上記テトラカルボン酸残基及びジアミン残基の種類や、2種以上のテトラカルボン酸残基又はジアミン残基を適用する場合のそれぞれのモル比を選定することにより、熱膨張係数、引張弾性率、ガラス転移温度等を制御することができる。また、熱可塑性ポリイミドにおいて、ポリイミドの構造単位を複数有する場合は、ブロックとして存在しても、ランダムに存在していてもよいが、ランダムに存在することが好ましい。 In the thermoplastic polyimide, the coefficient of thermal expansion is determined by selecting the types of the tetracarboxylic acid residue and diamine residue, and the molar ratios when two or more tetracarboxylic acid residues or diamine residues are applied. , Tensile modulus, glass transition temperature and the like can be controlled. Further, in the thermoplastic polyimide, when having a plurality of polyimide structural units, they may exist as a block or randomly, but are preferably present at random.
 なお、第1又は第2の実施の形態では、熱可塑性ポリイミドに含まれるテトラカルボン酸残基及びジアミン残基を、いずれも芳香族基とすることで、ポリイミドフィルムの高温環境下での寸法精度を向上させ、面内リタデーション(RO)の変化量を抑制することができる。 In the first or second embodiment, the tetracarboxylic acid residue and the diamine residue contained in the thermoplastic polyimide are both aromatic groups, so that the dimensional accuracy of the polyimide film in a high-temperature environment is increased. The amount of change in in-plane retardation (RO) can be suppressed.
 熱可塑性ポリイミドのイミド基濃度は、33重量%以下であることが好ましい。ここで、「イミド基濃度」は、ポリイミド中のイミド基部(-(CO)-N-)の分子量を、ポリイミドの構造全体の分子量で除した値を意味する。イミド基濃度が33重量%を超えると、樹脂自体の分子量が小さくなるとともに、極性基の増加によって低吸湿性も悪化する。第1又は第2の実施の形態では、上記ジアミン化合物の組み合わせを選択することによって、熱可塑性ポリイミド中の分子の配向性を制御することで、イミド基濃度低下に伴うCTEの増加を抑制し、低吸湿性を担保している。 The imide group concentration of the thermoplastic polyimide is preferably 33% by weight or less. Here, the “imide group concentration” means a value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) in the polyimide by the molecular weight of the entire polyimide structure. When the imide group concentration exceeds 33% by weight, the molecular weight of the resin itself is reduced, and the low hygroscopicity is also deteriorated due to an increase in polar groups. In the first or second embodiment, by controlling the orientation of the molecules in the thermoplastic polyimide by selecting the combination of the diamine compounds, the increase in CTE accompanying the decrease in imide group concentration is suppressed, Ensures low hygroscopicity.
 熱可塑性ポリイミドの重量平均分子量は、例えば10,000~400,000の範囲内が好ましく、50,000~350,000の範囲内がより好ましい。重量平均分子量が10,000未満であると、フィルムの強度が低下して脆化しやすい傾向となる。一方、重量平均分子量が400,000を超えると、過度に粘度が増加して塗工作業の際にフィルム厚みムラ、スジ等の不良が発生しやすい傾向になる。 The weight average molecular weight of the thermoplastic polyimide is preferably in the range of, for example, 10,000 to 400,000, and more preferably in the range of 50,000 to 350,000. When the weight average molecular weight is less than 10,000, the strength of the film tends to decrease and the film tends to become brittle. On the other hand, when the weight average molecular weight exceeds 400,000, the viscosity increases excessively, and defects such as film thickness unevenness and streaks tend to occur during the coating operation.
 第1又は第2の実施の形態のポリイミドフィルムにおいて、熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、銅箔との密着性を向上させることができる。このような熱可塑性ポリイミドは、ガラス転移温度が200℃以上350℃以下の範囲内、好ましくは200℃以上320℃以下の範囲内である。 In the polyimide film of the first or second embodiment, the thermoplastic polyimide constituting the thermoplastic polyimide layer can improve the adhesion with the copper foil. Such thermoplastic polyimide has a glass transition temperature in the range of 200 ° C. to 350 ° C., preferably in the range of 200 ° C. to 320 ° C.
 熱可塑性ポリイミド層を構成する熱可塑性ポリイミドは、例えば回路基板の絶縁樹脂における接着層となるため、銅の拡散を抑制するために完全にイミド化された構造が最も好ましい。但し、ポリイミドの一部がアミド酸となっていてもよい。そのイミド化率は、フーリエ変換赤外分光光度計(市販品:日本分光製FT/IR620)を用い、1回反射ATR法にてポリイミド薄膜の赤外線吸収スペクトルを測定することによって、1015cm-1付近のベンゼン環吸収体を基準とし、1780cm-1のイミド基に由来するC=O伸縮の吸光度から算出される。 The thermoplastic polyimide constituting the thermoplastic polyimide layer is, for example, an adhesive layer in an insulating resin of a circuit board. Therefore, a completely imidized structure is most preferable in order to suppress copper diffusion. However, a part of the polyimide may be amic acid. The imidation ratio was measured at about 1015 cm −1 by measuring the infrared absorption spectrum of the polyimide thin film by a single reflection ATR method using a Fourier transform infrared spectrophotometer (commercial product: FT / IR620 manufactured by JASCO). And the absorbance of C═O stretching derived from an imide group of 1780 cm −1 , based on the benzene ring absorber.
<ポリイミドフィルムの形態>
 第1、第2又は第3の実施の形態のポリイミドフィルムは、上記条件を満たすものであれば特に限定されるものではなく、絶縁樹脂からなるフィルム(シート)であってもよく、銅箔、ガラス板、ポリイミド系フィルム、ポリアミド系フィルム、ポリエステル系フィルムなどの樹脂シート等の基材に積層された状態の絶縁樹脂のフィルムであってもよい。
<Form of polyimide film>
The polyimide film of the first, second or third embodiment is not particularly limited as long as it satisfies the above conditions, and may be a film (sheet) made of an insulating resin, copper foil, It may be an insulating resin film laminated on a substrate such as a resin sheet such as a glass plate, a polyimide film, a polyamide film, or a polyester film.
<厚み>
 第1、第2又は第3の実施の形態のポリイミドフィルムの厚みは、使用する目的に応じて、所定の範囲内の厚みに設定することができる。ポリイミドフィルムの厚みは、例えば8~50μmの範囲内にあることが好ましく、11~26μmの範囲内にあることがより好ましい。ポリイミドフィルムの厚みが上記下限値に満たないと、電気絶縁性が担保出来ないことや、ハンドリング性の低下により製造工程にて取扱いが困難になるなどの問題が生じることがある。一方、ポリイミドフィルムの厚みが上記上限値を超えると、例えば面内リタデーション(RO)を制御するための製造条件を高精度に制御する必要があり、生産性低下などの不具合が生じる。
<Thickness>
The thickness of the polyimide film of 1st, 2nd or 3rd embodiment can be set to the thickness within a predetermined range according to the purpose to be used. The thickness of the polyimide film is preferably in the range of 8 to 50 μm, for example, and more preferably in the range of 11 to 26 μm. If the thickness of the polyimide film is less than the lower limit, problems such as inability to ensure electrical insulation and difficulty in handling in the production process due to a decrease in handling properties may occur. On the other hand, when the thickness of the polyimide film exceeds the above upper limit value, for example, it is necessary to control the manufacturing conditions for controlling the in-plane retardation (RO) with high accuracy, resulting in problems such as a decrease in productivity.
 また、第1又は第2の実施の形態のポリイミドフィルムにおいて、非熱可塑性ポリイミド層と熱可塑性ポリイミド層との厚み比(非熱可塑性ポリイミド層/熱可塑性ポリイミド層)が1.5~6.0の範囲内であることがよい。この比の値が、1.5に満たないとポリイミドフィルム全体に対する非熱可塑性ポリイミド層が薄くなるため、面内リタデーション(RO)のばらつきが大きくなりやすく、6.0を超えると熱可塑性ポリイミド層が薄くなるため、ポリイミドフィルムと銅箔との接着信頼性が低下しやすくなる。この面内リタデーション(RO)の制御は、ポリイミドフィルムを構成する各ポリイミド層の樹脂構成とその厚みに相関がある。接着性すなわち高熱膨張性又は軟化を付与した樹脂構成である熱可塑性ポリイミド層は、その厚みが大きくなる程、ポリイミドフィルムのROの値に大きく影響するので、非熱可塑性ポリイミド層の厚みの比率を大きくし、熱可塑性ポリイミド層の厚みの比率を小さくして、ポリイミドフィルムのROの値とそのばらつきを小さくする。 In the polyimide film of the first or second embodiment, the thickness ratio of the non-thermoplastic polyimide layer to the thermoplastic polyimide layer (non-thermoplastic polyimide layer / thermoplastic polyimide layer) is 1.5 to 6.0. It is good to be within the range. If the value of this ratio is less than 1.5, the non-thermoplastic polyimide layer with respect to the entire polyimide film becomes thin, so that the variation in in-plane retardation (RO) tends to be large, and if it exceeds 6.0, the thermoplastic polyimide layer Therefore, the adhesion reliability between the polyimide film and the copper foil is likely to decrease. Control of this in-plane retardation (RO) has a correlation with the resin structure of each polyimide layer which comprises a polyimide film, and its thickness. The thermoplastic polyimide layer, which is a resin structure with adhesiveness, that is, high thermal expansion or softening, greatly affects the value of RO of the polyimide film as the thickness increases, so the ratio of the thickness of the non-thermoplastic polyimide layer Increase the thickness and decrease the thickness ratio of the thermoplastic polyimide layer to reduce the RO value of the polyimide film and its variation.
<フィルム幅>
 第2の実施の形態では、ポリイミドフィルムの寸法精度の改善効果をより大きく発現させる観点から、ポリイミドフィルムは、フィルム幅が490mm以上1100mm以下の範囲内であり、長尺状の長さが20m以上のものが好ましい。第2の実施の形態のポリイミドフィルムが連続的に製造される場合、幅方向(以下、TD方向ともいう。)が広いフィルムほど発明の効果が特に顕著となる。なお、第2の実施の形態のポリイミドフィルムが連続的に製造される場合、長尺なポリイミドフィルムの長手方向を、MD方向という。
<Film width>
In the second embodiment, the polyimide film has a film width in the range of 490 mm or more and 1100 mm or less and a long length of 20 m or more from the viewpoint of increasing the effect of improving the dimensional accuracy of the polyimide film. Are preferred. When the polyimide film of 2nd Embodiment is manufactured continuously, the effect of invention becomes especially remarkable, so that the width direction (henceforth TD direction) is wide. In addition, when the polyimide film of 2nd Embodiment is manufactured continuously, the longitudinal direction of a long polyimide film is called MD direction.
<面内リタデーション(RO)>
 第2の実施の形態のポリイミドフィルムは、面内リタデーション(RO)の値が5nm以上50nm以下の範囲内、好ましくは5nm以上20nm以下の範囲内、より好ましくは5nm以上15nm以下の範囲内である。また、TD方向のROのばらつき(△RO)が10nm以下、好ましくは5nm以下、より好ましくは3nm以下であり、このような範囲内で制御されているので、特に厚みが25μm以上のフィルムであっても、寸法精度が高いものとなっている。
<In-plane retardation (RO)>
The polyimide film of the second embodiment has an in-plane retardation (RO) value in the range of 5 nm to 50 nm, preferably in the range of 5 nm to 20 nm, more preferably in the range of 5 nm to 15 nm. . Further, the variation in the TD direction (ΔRO) is 10 nm or less, preferably 5 nm or less, more preferably 3 nm or less, and is controlled within such a range, so that the film has a thickness of 25 μm or more. However, the dimensional accuracy is high.
 第2の実施の形態のポリイミドフィルムは、温度320℃の環境下、圧力340MPa/m、保持時間15分間の加圧前後における面内リタデーション(RO)の変化量が20nm以下、好ましくは10nm以下、より好ましくは5nm以下である。第2の実施の形態のポリイミドフィルムは、熱可塑性ポリイミド層を構成するポリイミドのガラス転移温度を超える温度であっても、ROの変化量が上記上限値以下に制御されており、例えば第2の実施の形態のポリイミドフィルムと銅箔とを熱ラミネートにより貼り合せる工程の前後においても、ROが変化しにくいので、寸法安定性に優れたポリイミドフィルムとなる。 The polyimide film of the second embodiment has an in-plane retardation (RO) change amount of 20 nm or less, preferably 10 nm or less before and after pressurization at a pressure of 340 MPa / m 2 and a holding time of 15 minutes in an environment at a temperature of 320 ° C. More preferably, it is 5 nm or less. Even if the polyimide film of 2nd Embodiment is the temperature exceeding the glass transition temperature of the polyimide which comprises a thermoplastic polyimide layer, the variation | change_quantity of RO is controlled below the said upper limit, for example, 2nd Since the RO hardly changes before and after the step of bonding the polyimide film and the copper foil of the embodiment by thermal lamination, the polyimide film is excellent in dimensional stability.
<熱膨張係数>
 第1又は第2の実施の形態のポリイミドフィルムは、例えば回路基板の絶縁層として適用する場合において、反りの発生や寸法安定性の低下を防止するために、上記条件(a-iii)又は条件(b-i)に規定するように、フィルム全体の熱膨張係数(CTE)が10ppm/K以上30ppm/K以下の範囲内であることが重要であり、好ましくは10ppm/K以上25ppm/K以下の範囲内がよく、10~20ppm/Kの範囲内がより好ましい。CTEが10ppm/K未満であるか、又は30ppm/Kを超えると、反りが発生したり、寸法安定性が低下したりする。また、第3の実施の形態のポリイミドフィルムの熱膨張係数(CTE)についても、第1又は第2の実施の形態と同様である。
<Coefficient of thermal expansion>
When the polyimide film of the first or second embodiment is applied as, for example, an insulating layer of a circuit board, the above condition (a-iii) or condition is used in order to prevent warpage and dimensional stability from being reduced. As defined in (bi), it is important that the coefficient of thermal expansion (CTE) of the entire film is in the range of 10 ppm / K to 30 ppm / K, preferably in the range of 10 ppm / K to 25 ppm / K. The inside is good, and the range of 10 to 20 ppm / K is more preferable. When the CTE is less than 10 ppm / K or exceeds 30 ppm / K, warpage occurs or dimensional stability decreases. Further, the coefficient of thermal expansion (CTE) of the polyimide film of the third embodiment is the same as that of the first or second embodiment.
<誘電正接>
 第1、第2又は第3の実施の形態のポリイミドフィルムは、例えば、上記条件(a-iv)又は条件(c-iii)に規定するように、例えば回路基板の絶縁層として適用する場合において、インピーダンス整合性を確保するために、絶縁層全体として、スプリットポスト誘導体共振器(SPDR)により測定したときの10GHzにおける誘電正接(Tanδ)が、0.004以下、より好ましくは0.001以上0.004以下の範囲内、更に好ましくは0.002以上0.003以下の範囲内がよい。回路基板の誘電特性を改善するためには、特に絶縁層の誘電正接を制御することが重要であり、誘電正接を上記範囲内とすることで、伝送損失を下げる効果が増大する。従って、ポリイミドフィルムを、例えば高周波回路基板の絶縁層として適用する場合、伝送損失を効率よく低減できる。絶縁層の10GHzにおける誘電正接が0.004を超えると、FPC等の回路基板に使用した際に、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。絶縁層の10GHzにおける誘電正接の下限値は特に制限されないが、ポリイミドを回路基板の絶縁層として適用する場合の物性制御を考慮している。
<Dielectric loss tangent>
In the case where the polyimide film of the first, second or third embodiment is applied as an insulating layer of a circuit board, for example, as defined in the above condition (a-iv) or condition (c-iii), In order to ensure impedance matching, the dielectric loss tangent (Tanδ) at 10 GHz as measured by a split post-derivative resonator (SPDR) as the whole insulating layer is 0.004 or less, more preferably 0.001 or more and 0. Within the range of 0.004 or less, more preferably within the range of 0.002 or more and 0.003 or less. In order to improve the dielectric characteristics of the circuit board, it is particularly important to control the dielectric loss tangent of the insulating layer. By setting the dielectric loss tangent within the above range, the effect of reducing transmission loss increases. Therefore, when applying a polyimide film as an insulating layer of a high frequency circuit board, for example, transmission loss can be reduced efficiently. When the dielectric tangent of the insulating layer at 10 GHz exceeds 0.004, when used for a circuit board such as an FPC, inconveniences such as loss of an electric signal are likely to occur on a high-frequency signal transmission path. The lower limit value of the dielectric loss tangent at 10 GHz of the insulating layer is not particularly limited, but physical property control in the case of applying polyimide as the insulating layer of the circuit board is considered.
<誘電率>
 第1、第2又は第3の実施の形態のポリイミドフィルムは、例えば回路基板の絶縁層として適用する場合において、インピーダンス整合性を確保するために、絶縁層全体として、10GHzにおける誘電率が4.0以下であることが好ましい。絶縁層の10GHzにおける誘電率が4.0を超えると、FPC等の回路基板に使用した際に、絶縁層の誘電損失の悪化に繋がり、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
<Dielectric constant>
When the polyimide film of the first, second or third embodiment is applied as, for example, an insulating layer of a circuit board, the dielectric constant at 10 GHz as a whole is 4 to ensure impedance matching. It is preferably 0 or less. When the dielectric constant at 10 GHz of the insulating layer exceeds 4.0, when used on a circuit board such as an FPC, the dielectric loss of the insulating layer is deteriorated, and the inconvenience such as loss of an electric signal on a high-frequency signal transmission path. Is likely to occur.
<吸湿率>
 第1の実施の形態又は第2の実施の形態のポリイミドフィルムは、FPC等の回路基板に使用した際の湿度による影響を低減するために、23℃、50%RHでの吸湿率が0.7重量%以下であることが好ましい。ポリイミドフィルムの吸湿率が0.7重量%を超えると、FPC等の回路基板に使用した際に、湿度の影響を受けやすくなり、高周波信号の伝送速度の変動などの不都合が生じやすくなる。つまり、ポリイミドフィルムの吸湿率が上記範囲を上回ると、誘電率及び誘電正接の高い水を吸収しやすくなるので、誘電率及び誘電正接の上昇を招き、高周波信号の伝送経路上で電気信号のロスなどの不都合が生じやすくなる。
<Hygroscopic rate>
The polyimide film of the first embodiment or the second embodiment has a moisture absorption rate of 0. 23 ° C. and 50% RH in order to reduce the influence of humidity when used for a circuit board such as an FPC. It is preferably 7% by weight or less. When the moisture absorption rate of the polyimide film exceeds 0.7% by weight, when used for a circuit board such as an FPC, it is easily affected by humidity, and inconveniences such as fluctuations in the transmission speed of high-frequency signals are likely to occur. In other words, if the moisture absorption rate of the polyimide film exceeds the above range, it becomes easy to absorb water having a high dielectric constant and dielectric loss tangent, leading to an increase in the dielectric constant and dielectric loss tangent, and loss of an electric signal on the high-frequency signal transmission path. Such inconveniences are likely to occur.
 また、第3の実施の形態のポリイミドフィルムは、ポリイミドフィルムの寸法安定性や誘電特性への影響を考慮し、23℃、50%RHのもと24時間調湿したときの吸湿率が0.65重量%以下であることが好ましい。吸湿率が0.65重量%を超えると、ポリイミドフィルムの寸法安定性や誘電特性を悪化させる場合がある。吸湿率が0.65重量%以下であるということは、ポリイミド中の極性基濃度が低く、また、高分子鎖の秩序構造が形成されやすくなっていると考えられるため、寸法安定性や誘電特性の改善にとって好ましい。ただし、吸湿率が低くなると、高分子鎖の秩序構造の形成に伴ってHAZE値が高くなる傾向があるため、後述するHAZE値も考慮することが好ましい。 In addition, the polyimide film of the third embodiment takes into consideration the influence on the dimensional stability and dielectric properties of the polyimide film, and has a moisture absorption rate of 0.2 when humidity is adjusted at 23 ° C. and 50% RH for 24 hours. It is preferable that it is 65 weight% or less. If the moisture absorption rate exceeds 0.65% by weight, the dimensional stability and dielectric characteristics of the polyimide film may be deteriorated. The fact that the moisture absorption is 0.65% by weight or less means that the polar group concentration in the polyimide is low and that the ordered structure of the polymer chain is likely to be formed. It is preferable for improvement. However, since the HAZE value tends to increase with the formation of the ordered structure of the polymer chain when the moisture absorption rate decreases, it is preferable to consider the HAZE value described later.
<引張弾性率>
 また、第2の実施の形態のポリイミドフィルムの引張弾性率は3.0~10.0GPaの範囲内であることが好ましく、4.5~8.0GPaの範囲内であるのがよい。ポリイミドフィルムの引張弾性率が3.0GPaに満たないとポリイミド自体の強度が低下することによって、銅張積層板を回路基板へ加工する際にフィルムの裂けなどのハンドリング上の問題が生じることがある。反対に、ポリイミドフィルムの引張弾性率が10.0GPaを超えると、銅張積層板の折り曲げに対する剛性が上昇する結果、銅張積層板を折り曲げた際に銅配線に加わる曲げ応力が上昇し、耐折り曲げ耐性が低下してしまう。ポリイミドフィルムの引張弾性率を上記範囲内とすることで、ポリイミドフィルムの強度と柔軟性を担保する。
<Tensile modulus>
Further, the tensile elastic modulus of the polyimide film of the second embodiment is preferably in the range of 3.0 to 10.0 GPa, and preferably in the range of 4.5 to 8.0 GPa. If the tensile modulus of the polyimide film is less than 3.0 GPa, the strength of the polyimide itself will decrease, and handling problems such as film tearing may occur when processing a copper clad laminate on a circuit board. . On the other hand, when the tensile modulus of the polyimide film exceeds 10.0 GPa, the bending resistance of the copper clad laminate is increased, resulting in an increase in bending stress applied to the copper wiring when the copper clad laminate is folded. Bending resistance is reduced. By setting the tensile elastic modulus of the polyimide film within the above range, the strength and flexibility of the polyimide film are ensured.
<ガラス転移温度>
 第3の実施の形態のポリイミドフィルムは、上記条件(c-ii)に規定するように、ガラス転移温度が300℃以上である。ガラス転移温度が300℃未満であると、第3の形態のポリイミドフィルムを使用したCCLや、FPCを製造した際にフィルムの膨れや配線からの剥がれといった問題が生じやすくなる。一方、ガラス転移温度を300℃以上とすることによって、ポリイミドフィルムの半田耐熱性や寸法安定性が高まる。
<Glass transition temperature>
The polyimide film of the third embodiment has a glass transition temperature of 300 ° C. or higher as defined in the above condition (c-ii). When the glass transition temperature is less than 300 ° C., problems such as film swell and peeling from the wiring tend to occur when a CCL using the polyimide film of the third form or an FPC is manufactured. On the other hand, by setting the glass transition temperature to 300 ° C. or higher, the solder heat resistance and dimensional stability of the polyimide film are enhanced.
<HAZE値>
 また、第3の実施の形態のポリイミドフィルムは、十点平均粗さ(Rz)が0.6μmの銅箔の上に、ポリイミドの前駆体であるポリアミド酸の溶液を塗工し、イミド化して形成した積層板の前記銅箔をエッチングにより除去して得られる厚さ25μmのポリイミドフィルムに加工したとき、JIS K 7136に基づくHAZE(ヘイズ)値が62~75%の範囲内であることが好ましい。HAZE値が75%を超えると、第3の実施の形態のポリイミドフィルムを介しての視認性が低くなる。そのため、ポリイミドフィルムを使用して得られる銅張積層板(CCL)に対するフォトリソグラフィ工程や、該CCLを使用するFPC(フレキシブルプリント基板)実装の過程において、CCL上に設けられたアライメントマークの視認性が低下し、アライメントマークへの位置合わせが困難となり、実用性が低下する場合がある。一方、HAZE値が62%を下回ると、視認性は高くなるが、ポリイミド高分子鎖の秩序構造の形成が進んでいないため、吸湿特性や誘電特性が損なわれるおそれがある。第3の実施の形態では、秩序構造の形成による低誘電正接化及び低吸湿率化と、視認性の維持と、を両立するために、HAZE値の好ましい値を62~75%の範囲内としている。
<HAZE value>
In addition, the polyimide film of the third embodiment is prepared by applying a polyamic acid solution, which is a polyimide precursor, onto a copper foil having a ten-point average roughness (Rz) of 0.6 μm and imidizing it. When processed into a 25 μm thick polyimide film obtained by etching away the copper foil of the formed laminate, the HAZE value based on JIS K 7136 is preferably in the range of 62 to 75%. . When the HAZE value exceeds 75%, the visibility through the polyimide film of the third embodiment is lowered. Therefore, the visibility of the alignment mark provided on the CCL in the photolithography process for the copper clad laminate (CCL) obtained using the polyimide film and the FPC (flexible printed circuit board) mounting process using the CCL. , The alignment to the alignment mark becomes difficult, and the practicality may be reduced. On the other hand, when the HAZE value is less than 62%, the visibility becomes high, but the formation of an ordered structure of the polyimide polymer chain has not progressed, so that the moisture absorption characteristics and the dielectric characteristics may be impaired. In the third embodiment, in order to achieve both low dielectric loss tangent and low moisture absorption by formation of an ordered structure and maintenance of visibility, the preferable value of the HAZE value is set in the range of 62 to 75%. Yes.
<フィルム伸度>
 第3の実施の形態のポリイミドフィルムは、フィルム伸度が30%以上であることが好ましい。第3の実施の形態のポリイミドフィルムを、例えばFPCの絶縁層として使用する際には、モバイル機器等の筐体内の小さなスペースに折り曲げて収納する必要がある。そのような使用形態では、フィルム伸度が低いと、配線の断線の原因となる。そこで、第3の実施の形態のポリイミドフィルムは、好ましいフィルム伸度を30%以上とする。
<Film elongation>
The polyimide film of the third embodiment preferably has a film elongation of 30% or more. For example, when the polyimide film of the third embodiment is used as an insulating layer of an FPC, it is necessary to bend and store it in a small space in a housing of a mobile device or the like. In such a usage pattern, if the film elongation is low, the wiring may be disconnected. Therefore, the polyimide film of the third embodiment has a preferable film elongation of 30% or more.
<フィラー>
 第1、第2又は第3の実施の形態のポリイミドフィルムは、必要に応じて、非熱可塑性ポリイミド層又は熱可塑性ポリイミド層中に、無機フィラーを含有してもよい。具体的には、例えば二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ベリリウム、窒化ホウ素、窒化アルミニウム、窒化ケイ素、フッ化アルミニウム、フッ化カルシウム等が挙げられる。これらは1種又は2種以上を混合して用いることができる。
<Filler>
The polyimide film of 1st, 2nd or 3rd embodiment may contain an inorganic filler in a non-thermoplastic polyimide layer or a thermoplastic polyimide layer as needed. Specific examples include silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride, aluminum fluoride, and calcium fluoride. These may be used alone or in combination of two or more.
[製造方法]
 第1、第2又は第3の実施の形態のポリイミドフィルムの製造方法の態様として、例えば、[1]支持基材に、ポリアミド酸の溶液を塗布・乾燥した後、イミド化してポリイミドフィルムを製造する方法、[2]支持基材に、ポリアミド酸の溶液を塗布・乾燥した後、ポリアミド酸のゲルフィルムを支持基材から剥がし、イミド化してポリイミドフィルムを製造する方法がある。また、第1の実施の形態又は第2の実施の形態のポリイミドフィルムは、複数層のポリイミド層からなるポリイミドフィルムであるので、その製造方法の態様としては、例えば[3]支持基材に、ポリアミド酸の溶液を塗布・乾燥することを複数回繰り返した後、イミド化を行う方法(以下、キャスト法)、[4]多層押出により、同時にポリアミド酸を多層に積層した状態で塗布・乾燥した後、イミド化を行う方法(以下、多層押出法)などが挙げられる。第3の実施の形態のポリイミドフィルムを、複数層のポリイミド層からなる多層ポリイミドフィルムの中の一層として適用する場合についても同様である。ポリイミド溶液(又はポリアミド酸溶液)を基材上に塗布する方法としては特に制限されず、例えばコンマ、ダイ、ナイフ、リップ等のコーターにて塗布することが可能である。多層のポリイミド層の形成に際しては、ポリイミド溶液(又はポリアミド酸溶液)を基材に塗布、乾燥する操作を繰り返す方法が好ましい。
[Production method]
As an aspect of the method for producing a polyimide film of the first, second or third embodiment, for example, [1] A polyimide film is produced by applying and drying a polyamic acid solution on a supporting substrate and then imidizing it. [2] After applying and drying a polyamic acid solution on a supporting substrate, the polyamic acid gel film is peeled off from the supporting substrate and imidized to produce a polyimide film. Moreover, since the polyimide film of 1st Embodiment or 2nd Embodiment is a polyimide film which consists of a polyimide layer of multiple layers, as an aspect of the manufacturing method, for example, [3] To a support substrate, A method of applying and drying a polyamic acid solution a plurality of times and then imidizing (hereinafter referred to as a casting method), [4] Multilayer extrusion was simultaneously applied and dried in a state where the polyamic acid was laminated in multiple layers. Then, the method (henceforth a multilayer extrusion method) which performs imidation is mentioned. The same applies to the case where the polyimide film of the third embodiment is applied as one layer in a multilayer polyimide film composed of a plurality of polyimide layers. The method for applying the polyimide solution (or polyamic acid solution) on the substrate is not particularly limited, and for example, it can be applied by a coater such as a comma, die, knife, lip or the like. In forming a multi-layer polyimide layer, a method of repeatedly applying and drying a polyimide solution (or polyamic acid solution) on a substrate is preferable.
 上記[1]の方法は、例えば、次の工程1a~1c;
(1a)支持基材にポリアミド酸の溶液を塗布し、乾燥させる工程と、
(1b)支持基材上でポリアミド酸を熱処理してイミド化することによりポリイミド層を形成する工程と、
(1c)支持基材とポリイミド層とを分離することによりポリイミドフィルムを得る工程と、
を含むことができる。
The method of [1] is, for example, the following steps 1a to 1c;
(1a) applying a polyamic acid solution to a supporting substrate and drying;
(1b) forming a polyimide layer by heat-treating polyamic acid on a supporting substrate and imidizing;
(1c) a step of obtaining a polyimide film by separating the support substrate and the polyimide layer;
Can be included.
 上記[2]の方法は、例えば、次の工程2a~2c;
(2a)支持基材にポリアミド酸の溶液を塗布し、乾燥させる工程と、
(2b)支持基材とポリアミド酸のゲルフィルムとを分離する工程と、
(2c)ポリアミド酸のゲルフィルムを熱処理してイミド化することによりポリイミドフィルムを得る工程と、
を含むことができる。
The method of [2] is, for example, the following steps 2a to 2c;
(2a) applying a polyamic acid solution to a supporting substrate and drying;
(2b) a step of separating the support substrate and the polyamic acid gel film;
(2c) a step of obtaining a polyimide film by heat-treating the polyamic acid gel film and imidizing;
Can be included.
 上記[3]の方法は、上記[1]の方法又は[2]の方法において、工程1a又は工程2aを複数回繰り返し、支持基材上にポリアミド酸の積層構造体を形成する以外は、上記[1]の方法又は[2]の方法と同様に実施できる。 The method [3] is the same as the method [1] or [2] except that the step 1a or the step 2a is repeated a plurality of times to form a polyamic acid laminated structure on the support substrate. It can be carried out in the same manner as the method [1] or [2].
 上記[4]の方法は、上記[1]の方法の工程1a、又は[2]の方法の工程2aにおいて、多層押出により、同時にポリアミド酸の積層構造体を塗布し、乾燥させる以外は、上記[1]の方法又は[2]の方法と同様に実施できる。 The method [4] is the same as the method [1] except that in step 1a of the method [2] or step 2a of the method [2], the laminated structure of polyamic acid is simultaneously applied and dried by multilayer extrusion. It can be carried out in the same manner as the method [1] or [2].
 第1、第2又は第3の実施の形態で製造されるポリイミドフィルムは、支持基材上でポリアミド酸のイミド化を完結させることが好ましい。ポリアミド酸の樹脂層が支持基材に固定された状態でイミド化されるので、イミド化過程におけるポリイミド層の伸縮変化を抑制して、ポリイミドフィルムの厚みや寸法精度を維持することができる。また、第3の実施の形態のポリイミドフィルムを、複数層のポリイミド層からなる多層ポリイミドフィルムの中の一層として適用する場合、イミド化のための熱処理を例えば120℃から360℃の範囲内の温度で段階的に行うとともに、熱処理時間を5分以上、好ましくは10分~20分の範囲内に制御することによって、発泡を効果的に抑制し、ポリイミド層の膨れなどの不具合を防止できる。 The polyimide film produced in the first, second or third embodiment preferably completes imidization of polyamic acid on a supporting substrate. Since the polyamic acid resin layer is imidized in a state of being fixed to the support substrate, it is possible to suppress the expansion and contraction change of the polyimide layer in the imidization process, and to maintain the thickness and dimensional accuracy of the polyimide film. Further, when the polyimide film of the third embodiment is applied as one layer in a multilayer polyimide film composed of a plurality of polyimide layers, a heat treatment for imidization is performed at a temperature within a range of 120 ° C. to 360 ° C., for example. In addition, the heat treatment time is controlled to 5 minutes or more, preferably within the range of 10 minutes to 20 minutes, so that foaming can be effectively suppressed and problems such as swelling of the polyimide layer can be prevented.
 支持基材上でポリアミド酸のイミド化を完結させたポリイミドフィルムは、支持基材からポリイミドフィルムを分離する際に加わるポリイミドフィルムへのテンションや、例えばナイフエッジ等を用いた剥離の際に発生するポリイミドフィルムへの応力等によって、ポリイミドフィルムが延伸され、ポリイミドフィルムの面内リタデーション(RO)のばらつきが生じやすくなる。特に、第2の実施の形態のポリイミドフィルムは、非熱可塑性ポリイミド層及び熱可塑性ポリイミド層を構成するポリイミドのいずれもが、秩序構造を形成しやすいため、剥離に必要な応力をポリイミドフィルムの各層に分散させることによって、ROを制御できる。 Polyimide film that has completed imidization of polyamic acid on the supporting substrate is generated when the polyimide film is separated from the supporting substrate by tension on the polyimide film, for example, when peeling using a knife edge or the like. The polyimide film is stretched by stress or the like on the polyimide film, and variations in in-plane retardation (RO) of the polyimide film are likely to occur. In particular, the polyimide film according to the second embodiment has a non-thermoplastic polyimide layer and a polyimide constituting the thermoplastic polyimide layer, both of which easily form an ordered structure. The RO can be controlled by dispersing in the above.
 また、支持基材上のポリアミド酸のゲルフィルムを分離し、ポリアミド酸のゲルフィルムを一軸延伸又は二軸延伸と同時あるいは連続的にイミド化を行う方法であっても、面内リタデ-ション(RO)を制御できる。この際、ROをより精密に高度に制御するために、延伸操作及びイミド化時の昇温速度、イミド化の完結温度、荷重等の条件を適宜調整することが好ましい。 Even in a method in which the polyamic acid gel film on the support substrate is separated and the polyamic acid gel film is imidized simultaneously or continuously with uniaxial stretching or biaxial stretching, in-plane retardation ( RO) can be controlled. At this time, in order to control RO more precisely and highly, it is preferable to appropriately adjust conditions such as the stretching operation and the heating rate during imidization, the imidation completion temperature, and the load.
[銅張積層板]
 第1、第2又は第3の実施の形態の銅張積層板は、絶縁層と、該絶縁層の少なくとも一方の面に銅箔を備えており、絶縁層の一部分又は全部が、第1、第2又は第3の実施の形態のポリイミドフィルムを用いて形成されていればよい。また、絶縁層と銅箔の接着性を高めるために、絶縁層における銅箔に接する層が、熱可塑性ポリイミド層であることが好ましい。従って、第3の実施の形態のポリイミドフィルムについては、熱可塑性ポリイミド層と積層した状態で銅張積層板として用いることが好ましい。銅箔は、絶縁層の片面又は両面に設けられている。つまり、第1、第2又は第3の実施の形態の銅張積層板は、片面銅張積層板(片面CCL)でもよいし、両面銅張積層板(両面CCL)でもよい。片面CCLの場合、絶縁層の片面に積層された銅箔を、本発明における「第1の銅箔層」とする。両面CCLの場合、絶縁層の片面に積層された銅箔を、本発明における「第1の銅箔層」とし、絶縁層において、第1の銅箔が積層された面とは反対側の面に積層された銅箔を、本発明における「第2の銅箔層」とする。第1、第2又は第3の実施の形態の銅張積層板は、銅箔をエッチングするなどして配線回路加工して銅配線を形成し、FPCとして使用される。
[Copper-clad laminate]
The copper clad laminate of the first, second or third embodiment includes an insulating layer and a copper foil on at least one surface of the insulating layer, and a part or all of the insulating layer is the first, What is necessary is just to be formed using the polyimide film of 2nd or 3rd Embodiment. Moreover, in order to improve the adhesiveness of an insulating layer and copper foil, it is preferable that the layer which touches copper foil in an insulating layer is a thermoplastic polyimide layer. Therefore, about the polyimide film of 3rd Embodiment, it is preferable to use as a copper clad laminated board in the state laminated | stacked with the thermoplastic polyimide layer. The copper foil is provided on one side or both sides of the insulating layer. That is, the copper-clad laminate of the first, second, or third embodiment may be a single-sided copper-clad laminate (single-sided CCL) or a double-sided copper-clad laminate (double-sided CCL). In the case of single-sided CCL, the copper foil laminated on one side of the insulating layer is referred to as “first copper foil layer” in the present invention. In the case of double-sided CCL, the copper foil laminated on one side of the insulating layer is referred to as the “first copper foil layer” in the present invention, and the surface of the insulating layer opposite to the side on which the first copper foil is laminated The copper foil laminated on each other is referred to as a “second copper foil layer” in the present invention. The copper-clad laminate of the first, second or third embodiment is used as an FPC by forming a copper wiring by etching a copper foil to form a wiring circuit.
 銅張積層板は、例えば第1、第2又は第3の実施の形態のポリイミドフィルムを含んで構成される樹脂フィルムを用意し、これに金属をスパッタリングしてシード層を形成した後、例えば銅メッキによって銅箔層を形成することによって調製してもよい。 The copper-clad laminate is prepared, for example, by preparing a resin film including the polyimide film of the first, second, or third embodiment, and sputtering a metal to form a seed layer. You may prepare by forming a copper foil layer by plating.
 また、銅張積層板は、第1、第2又は第3の実施の形態のポリイミドフィルムを含んで構成される樹脂フィルムを用意し、これに銅箔を熱圧着などの方法でラミネートすることによって調製してもよい。 The copper-clad laminate is prepared by preparing a resin film including the polyimide film of the first, second or third embodiment, and laminating a copper foil on the resin film by a method such as thermocompression bonding. It may be prepared.
 さらに、銅張積層板は、銅箔の上にポリイミドの前駆体であるポリアミド酸を含有する塗布液をキャストし、乾燥して塗布膜とした後、熱処理してイミド化し、ポリイミド層を形成することによって調製してもよい。 Further, the copper-clad laminate casts a coating solution containing a polyamic acid which is a polyimide precursor on a copper foil, and after drying to form a coating film, heat treatment is imidized to form a polyimide layer. May be prepared.
<第1の銅箔層>
 第1、第2又は第3の実施の形態の銅張積層板において、第1の銅箔層に使用される銅箔(以下、「第1の銅箔」と記すことがある)は、特に限定されるものではなく、例えば、圧延銅箔でも電解銅箔でもよい。第1の銅箔としては、市販されている銅箔を用いることができる。
<First copper foil layer>
In the copper clad laminate of the first, second or third embodiment, the copper foil used for the first copper foil layer (hereinafter sometimes referred to as “first copper foil”) is particularly For example, rolled copper foil or electrolytic copper foil may be used. A commercially available copper foil can be used as the first copper foil.
 第1、第2又は第3の実施の形態において、第1の銅箔の厚みは、好ましくは18μm以下であり、より好ましくは6~13μmの範囲内、更に好ましくは6~12μmの範囲内がよい。第1の銅箔の厚みを13μm以下、好ましくは13μm以下、更に好ましくは12μm以下とすることで、銅張積層板(又はFPC)の折り曲げ性を向上させることができる。また、生産安定性及びハンドリング性の観点から、第1の銅箔の厚みの下限値は6μmとすることが好ましい。 In the first, second or third embodiment, the thickness of the first copper foil is preferably 18 μm or less, more preferably in the range of 6 to 13 μm, still more preferably in the range of 6 to 12 μm. Good. The bendability of the copper clad laminate (or FPC) can be improved by setting the thickness of the first copper foil to 13 μm or less, preferably 13 μm or less, and more preferably 12 μm or less. In addition, from the viewpoint of production stability and handling properties, the lower limit value of the thickness of the first copper foil is preferably 6 μm.
 また、第1、第2又は第3の実施の形態において、第1の銅箔の引張弾性率は、例えば、10~35GPaの範囲内であることが好ましく、15~25GPaの範囲内がより好ましい。第1の銅箔として圧延銅箔を使用する場合は、熱処理によってアニールされると、柔軟性が高くなりやすい。従って、銅箔の引張弾性率が上記下限値に満たないと、長尺な第1の銅箔上に絶縁層を形成する工程において、加熱によって第1の銅箔自体の剛性が低下してしまう。一方、引張弾性率が上記上限値を超えるとFPCを折り曲げた際に銅配線により大きな曲げ応力が加わることとなり、その耐折り曲げ性が低下する。なお、圧延銅箔は、銅箔上に絶縁層を形成する際の熱処理条件や、絶縁層を形成した後の銅箔のアニール処理などにより、その引張弾性率が変化する傾向がある。従って、第1、第2又は第3の実施の形態では、最終的に得られた銅張積層板において、第1の銅箔の引張弾性率が上記範囲内にあればよい。 In the first, second or third embodiment, the tensile elastic modulus of the first copper foil is preferably in the range of 10 to 35 GPa, for example, and more preferably in the range of 15 to 25 GPa. . When a rolled copper foil is used as the first copper foil, the flexibility tends to be high when annealed by heat treatment. Therefore, if the tensile elastic modulus of the copper foil is less than the lower limit, the rigidity of the first copper foil itself is reduced by heating in the step of forming the insulating layer on the long first copper foil. . On the other hand, if the tensile modulus exceeds the above upper limit value, a large bending stress is applied to the copper wiring when the FPC is bent, and the bending resistance is lowered. Note that the rolled copper foil tends to change its tensile elastic modulus depending on heat treatment conditions when forming an insulating layer on the copper foil, annealing treatment of the copper foil after forming the insulating layer, and the like. Therefore, in the first, second or third embodiment, in the finally obtained copper-clad laminate, the tensile elastic modulus of the first copper foil may be in the above range.
<第2の銅箔層>
 第1、第2又は第3の実施の形態において、第2の銅箔層は、絶縁層における第1の銅箔層とは反対側の面に積層されている。第2の銅箔層に使用される銅箔(第2の銅箔)としては、特に限定されるものではなく、例えば、圧延銅箔でも電解銅箔でもよい。また、第2の銅箔として、市販されている銅箔を用いることもできる。なお、第2の銅箔として、第1の銅箔と同じものを使用してもよい。
<Second copper foil layer>
In the first, second or third embodiment, the second copper foil layer is laminated on the surface of the insulating layer opposite to the first copper foil layer. It does not specifically limit as copper foil (2nd copper foil) used for a 2nd copper foil layer, For example, rolled copper foil or electrolytic copper foil may be sufficient. A commercially available copper foil can also be used as the second copper foil. In addition, you may use the same thing as 1st copper foil as 2nd copper foil.
[回路基板]
 第1、第2又は第3の実施の形態の銅張積層板は、主にFPCなどの回路基板材料として有用である。すなわち、第1、第2又は第3の実施の形態の銅張積層板の銅箔を常法によってパターン状に加工して配線層を形成することによって、本発明の一実施の形態であるFPCを製造できる。
[Circuit board]
The copper-clad laminate of the first, second or third embodiment is mainly useful as a circuit board material such as FPC. That is, the FPC according to one embodiment of the present invention is formed by processing the copper foil of the copper-clad laminate of the first, second, or third embodiment into a pattern by a conventional method to form a wiring layer. Can be manufactured.
 以下に実施例を示し、本発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。なお、以下の実施例において、特にことわりのない限り各種測定、評価は下記によるものである。 Hereinafter, the features of the present invention will be described more specifically with reference to examples. However, the scope of the present invention is not limited to the examples. In the following examples, various measurements and evaluations are as follows unless otherwise specified.
[粘度の測定]
 E型粘度計(ブルックフィールド社製、商品名;DV-II+Pro)を用いて、25℃における粘度を測定した。トルクが10%~90%になるよう回転数を設定し、測定を開始してから2分経過後、粘度が安定した時の値を読み取った。
[Measurement of viscosity]
The viscosity at 25 ° C. was measured using an E-type viscometer (Brookfield, trade name: DV-II + Pro). The number of revolutions was set so that the torque was 10% to 90%, and after 2 minutes from the start of measurement, the value when the viscosity was stabilized was read.
[ガラス転移温度(Tg)の測定]
 ガラス転移温度は、5mm×20mmのサイズのポリイミドフィルムを、動的粘弾性測定装置(DMA:ユー・ビー・エム社製、商品名;E4000F)を用いて、30℃から400℃まで昇温速度4℃/分、周波数11Hzで測定を行い、弾性率変化(tanδ)が最大となる温度をガラス転移温度とした。なお、DMAを用いて測定された30℃における貯蔵弾性率が1.0×10Pa以上であり、280℃における貯蔵弾性率が3.0×10Pa未満を示すものを「熱可塑性」とし、30℃における貯蔵弾性率が1.0×10Pa以上であり、280℃における貯蔵弾性率が3.0×10Pa以上を示すものを「非熱可塑性」とした。
[Measurement of glass transition temperature (Tg)]
Glass transition temperature is a rate of temperature increase from 30 ° C. to 400 ° C. using a polyimide film having a size of 5 mm × 20 mm, using a dynamic viscoelasticity measuring device (DMA: manufactured by UBM, trade name: E4000F). Measurement was performed at 4 ° C./min and a frequency of 11 Hz, and the temperature at which the change in elastic modulus (tan δ) was maximum was taken as the glass transition temperature. In addition, what shows the storage elastic modulus in 30 degreeC measured using DMA at 1.0 * 10 < 9 > Pa or more, and the storage elastic modulus in 280 degreeC is less than 3.0 * 10 < 8 > Pa is "thermoplastic". A non-thermoplastic material having a storage elastic modulus at 30 ° C. of 1.0 × 10 9 Pa or higher and a storage elastic modulus at 280 ° C. of 3.0 × 10 8 Pa or higher was determined.
[熱膨張係数(CTE)の測定]
 3mm×20mmのサイズのポリイミドフィルムを、サーモメカニカルアナライザー(Bruker社製、商品名;4000SA)を用い、5.0gの荷重を加えながら一定の昇温速度で30℃から265℃まで昇温させ、更にその温度で10分保持した後、5℃/分の速度で冷却し、250℃から100℃までの平均熱膨張係数(熱膨張係数)を求めた。
[Measurement of coefficient of thermal expansion (CTE)]
Using a thermomechanical analyzer (manufactured by Bruker, trade name: 4000SA), a polyimide film having a size of 3 mm × 20 mm was heated from 30 ° C. to 265 ° C. at a constant heating rate while applying a load of 5.0 g. Furthermore, after maintaining at that temperature for 10 minutes, it was cooled at a rate of 5 ° C./minute, and an average thermal expansion coefficient (thermal expansion coefficient) from 250 ° C. to 100 ° C. was determined.
 [吸湿率測定] 
 ポリイミドフィルムの試験片(幅4cm×長さ25cm)を2枚用意し、80℃で1時間乾燥した。乾燥後直ちに23℃/50%RHの恒温恒湿室に入れ、24時間以上静置し、その前後の重量変化から次式により求めた。
  吸湿率(重量%)=[(吸湿後重量-乾燥後重量)/乾燥後重量]×100
[Measurement of moisture absorption rate]
Two test pieces of polyimide film (width 4 cm × length 25 cm) were prepared and dried at 80 ° C. for 1 hour. Immediately after drying, it was placed in a constant temperature / humidity chamber of 23 ° C./50% RH and left to stand for 24 hours or more.
Moisture absorption rate (% by weight) = [(weight after moisture absorption−weight after drying) / weight after drying] × 100
[誘電率及び誘電正接の測定]
 ベクトルネットワークアナライザ(Agilent社製、商品名E8363C)及びスプリットポスト誘電体共振器(SPDR共振器)を用いて、周波数10GHzにおける樹脂シートの誘電率および誘電正接を測定した。なお、測定に使用した材料は、温度;24~26℃、湿度;45~55%の条件下で、24時間放置したものである。
[Measurement of dielectric constant and dissipation factor]
The dielectric constant and dielectric loss tangent of the resin sheet at a frequency of 10 GHz were measured using a vector network analyzer (manufactured by Agilent, trade name E8363C) and a split post dielectric resonator (SPDR resonator). The material used for the measurement was left for 24 hours under the conditions of temperature: 24-26 ° C., humidity: 45-55%.
[イミド基濃度の計算]
 イミド基部(-(CO)-N-)の分子量をポリイミドの構造全体の分子量で除した値をイミド基濃度とした。
[Calculation of imide group concentration]
The value obtained by dividing the molecular weight of the imide group (— (CO) 2 —N—) by the molecular weight of the entire polyimide structure was taken as the imide group concentration.
[銅箔の表面粗度の測定]
 銅箔の表面粗度は、AFM(ブルカー・エイエックスエス社製、商品名:Dimension Icon型SPM)、プローブ(ブルカー・エイエックスエス社製、商品名:TESPA(NCHV)、先端曲率半径10nm、ばね定数42N/m )を用いて、タッピングモードで、銅箔表面の80μm×80μmの範囲について測定し、十点平均粗さ(Rz)を求めた。
[Measurement of surface roughness of copper foil]
The surface roughness of the copper foil is AFM (manufactured by Bruker AXS, trade name: Dimension Icon type SPM), probe (manufactured by Bruker AXS, trade name: TESPA (NCHV), tip radius of curvature 10 nm, Using a spring constant of 42 N / m 2), a tapping mode was used to measure the 80 μm × 80 μm range of the copper foil surface, and the ten-point average roughness (Rz) was determined.
[ピール強度の測定]
 両面銅張積層板(銅箔/樹脂層/銅箔)の熱圧着側とキャスト側の両面の銅箔を幅0.8mmに回路加工(両面の銅箔が同じ位置になるように配線加工)した後、幅;8cm×長さ;4cmに切断し、測定サンプルを調製した。測定サンプルのキャスト側および熱圧着側のピール強度は、テンシロンテスター(東洋精機製作所製、商品名;ストログラフVE-1D)を用いて、測定サンプルの熱圧着側もしくはキャスト側の銅箔面を両面テープによりアルミ板に固定し、他方の銅箔を90°方向に50mm/分の速度で剥離していき、樹脂層から10mm剥離したときの中央値強度を求めた。この際、ピール強度が1.0kN/m以上のものを◎(優)、0.7kN/m以上1.0kN/m未満のものを○(良)、0.4kN/m以上0.7kN/m未満のものを△(可)、0.4kN/m未満のものを×(不可)とした。
[Measurement of peel strength]
Circuit processing of copper foil on both sides of thermocompression bonding and cast side of double-sided copper-clad laminate (copper foil / resin layer / copper foil) to a width of 0.8 mm (wiring processing so that copper foils on both sides are in the same position) After that, the sample was cut into a width of 8 cm × a length of 4 cm to prepare a measurement sample. The peel strength on the cast side and thermocompression bonding side of the measurement sample is measured on both sides of the copper foil surface on the thermocompression bonding side or the cast side of the measurement sample using a Tensilon tester (trade name: Strograph VE-1D, manufactured by Toyo Seiki Seisakusho). The other copper foil was peeled off at a rate of 50 mm / min in the 90 ° direction by fixing to an aluminum plate with a tape, and the median strength when peeling from the resin layer by 10 mm was determined. At this time, those having a peel strength of 1.0 kN / m or more are ◎ (excellent), those having a peel strength of 0.7 kN / m or more and less than 1.0 kN / m are ○ (good), 0.4 kN / m or more and 0.7 kN / m. Those less than m were evaluated as Δ (possible), and those less than 0.4 kN / m were evaluated as × (impossible).
[面内リタデーション(RO)の測定]
面内リタデーション(RO)は、複屈折率計(フォトニックラティス社製、商品名;ワイドレンジ複屈折評価システムWPA-100)を用いて、ポリイミドフィルムの面内方向のリタデーションを求めた。測定波長は、543nmである。
[Measurement of in-plane retardation (RO)]
For the in-plane retardation (RO), the retardation in the in-plane direction of the polyimide film was determined using a birefringence meter (trade name; wide range birefringence evaluation system WPA-100, manufactured by Photonic Lattice). The measurement wavelength is 543 nm.
 [HAZE値の測定]
 HAZE値の評価は、ヘーズ測定装置(濁度計:日本電色工業社製、商品名;NDH5000)を用い、5cm×5cmのサイズのポリイミドフィルムについて、JIS K 7136に記載の測定方法により行った。
[Measurement of HAZE value]
The evaluation of the HAZE value was performed by a measurement method described in JIS K 7136 with respect to a polyimide film having a size of 5 cm × 5 cm using a haze measuring device (turbidimeter: manufactured by Nippon Denshoku Industries Co., Ltd., trade name: NDH5000). .
[フィルム伸度の測定]
 幅12.7mm×長さ127mmにカットしたポリイミドフィルムについて、テンションテスター(オリエンテック製テンシロン)を用いて、50mm/minで引張り試験を行い、25℃におけるフィルム伸度を求めた。
[Measurement of film elongation]
About the polyimide film cut into width 12.7mm x length 127mm, the tension tester (Orientec Tensilon) was used, the tension test was done at 50 mm / min, and the film elongation in 25 degreeC was calculated | required.
 実施例及び参考例に用いた略号は、以下の化合物を示す。
BPDA:3,3',4,4'‐ビフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
NTCDA:2,3,6,7-ナフタレンテトラカルボン酸二無水物
TAHQ:1,4-フェニレンビス(トリメリット酸モノエステル)二無水物
TMEG:エチレングリコール ビスアンヒドロトリメリテート
m‐TB:2,2'‐ジメチル‐4,4'‐ジアミノビフェニル
TPE-R:1,3-ビス(4‐アミノフェノキシ)ベンゼン
TPE-Q:1,4-ビス(4‐アミノフェノキシ)ベンゼン
APB:1,3-ビス(3‐アミノフェノキシ)ベンゼン
3,3’-DAPM:3,3’-ジアミノ-ジフェニルメタン
DTBAB:1,4ビス(4-アミノフェノキシ)-2,5-ジ-tert-ブチルベンゼン
BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
APAB:4-アミノフェニル-4’-アミノベンゾエート
ビスアニリン-M:1,3-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン
ビスアニリン-P:1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン(三井化学ファイン社製、商品名;ビスアニリン-P)
AABOZ:6-アミノ-2-(4-アミノフェノキシ)ベンゾオキサゾール
DTAm:2,6-ジアミノ-3,5-ジエチルトルエン及び2,4-ジアミノ-3,5-ジエチルトルエンの混合物(イハラケミカル工業社製、商品名;ハートキュア10、アミン価;629KOHmg/g)
BAPM:ビス(4-アミノ-3-エチル-5-メチルフェニル)メタン(イハラケミカル工業社製、商品名;キュアハートMED)
DMAc:N,N‐ジメチルアセトアミド
Abbreviations used in Examples and Reference Examples indicate the following compounds.
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride PMDA: pyromellitic dianhydride NTCDA: 2,3,6,7-naphthalenetetracarboxylic dianhydride TAHQ: 1,4- Phenylenebis (trimellitic acid monoester) dianhydride TMEG: ethylene glycol bisanhydro trimellitate m-TB: 2,2'-dimethyl-4,4'-diaminobiphenyl TPE-R: 1,3-bis ( 4-Aminophenoxy) benzene TPE-Q: 1,4-bis (4-aminophenoxy) benzene APB: 1,3-bis (3-aminophenoxy) benzene 3,3′-DAPM: 3,3′-diamino- Diphenylmethane DTBAB: 1,4-bis (4-aminophenoxy) -2,5-di-tert-butylbenzene BAPP: 2,2-bis [4- (4-aminophenoxy) phenyl] propyl Lopan APAB: 4-aminophenyl-4'-aminobenzoate bisaniline-M: 1,3-bis [2- (4-aminophenyl) -2-propyl] benzenebisaniline-P: 1,4-bis [2 -(4-Aminophenyl) -2-propyl] benzene (Mitsui Chemicals Fine, trade name: Bisaniline-P)
AABOZ: 6-amino-2- (4-aminophenoxy) benzoxazole DTAm: a mixture of 2,6-diamino-3,5-diethyltoluene and 2,4-diamino-3,5-diethyltoluene (Ihara Chemical Industry Co., Ltd.) Manufactured, trade name: Heart Cure 10, amine value: 629 KOHmg / g)
BAPM: Bis (4-amino-3-ethyl-5-methylphenyl) methane (trade name; Cure Heart MED, manufactured by Ihara Chemical Industry Co., Ltd.)
DMAc: N, N-dimethylacetamide
(合成例A-1)
 窒素気流下で、300mlのセパラブルフラスコに、1.335gのm-TB(0.0063モル)及び10.414gのTPE-R(0.0356モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、0.932gのPMDA(0.0043モル)及び11.319gのBPDA(0.0385モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-1を得た。ポリアミド酸溶液A-1の溶液粘度は1,420cpsであった。
(Synthesis Example A-1)
Under a nitrogen stream, 1.335 g of m-TB (0.0063 mol) and 10.414 g of TPE-R (0.0356 mol) and a solid content concentration after polymerization of 12% by weight in a 300 ml separable flask A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 0.932 g of PMDA (0.0043 mol) and 11.319 g of BPDA (0.0385 mol) were added, and the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain a polyamic acid solution A-1. Got. The solution viscosity of the polyamic acid solution A-1 was 1,420 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-1を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-1(熱可塑性、Tg;256℃、吸湿率;0.36重量%)を調製した。また、ポリイミドフィルムA-1を構成するポリイミドのイミド基濃度は26.4重量%であった。 Next, the polyamic acid solution A-1 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-1 (thermoplastic, Tg; 256 ° C., moisture absorption rate: 0.36 wt%). did. The imide group concentration of the polyimide constituting the polyimide film A-1 was 26.4% by weight.
(合成例A-2)
 窒素気流下で、300mlのセパラブルフラスコに、0.451gのm-TB(0.0021モル)及び11.794gのTPE-R(0.0403モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.834gのPMDA(0.0130モル)及び8.921gのBPDA(0.0303モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-2を得た。ポリアミド酸溶液A-2の溶液粘度は1,510cpsであった。
(Synthesis Example A-2)
Under a nitrogen stream, 0.451 g of m-TB (0.0021 mol) and 11.794 g of TPE-R (0.0403 mol) and a solid content concentration after polymerization of 12% by weight in a 300 ml separable flask A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 2.834 g of PMDA (0.0130 mol) and 8.921 g of BPDA (0.0303 mol) were added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A-2. Got. The solution viscosity of the polyamic acid solution A-2 was 1,510 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-2を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-2(熱可塑性、Tg;242℃、吸湿率;0.35重量%)を調製した。また、ポリイミドフィルムA-2を構成するポリイミドのイミド基濃度は26.5重量%であった。 Next, the polyamic acid solution A-2 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution to prepare a polyimide film A-2 (thermoplastic, Tg; 242 ° C., moisture absorption rate: 0.35% by weight). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-2 was 26.5% by weight.
(合成例A-3)
 窒素気流下で、300mlのセパラブルフラスコに、0.908gのm-TB(0.0043モル)及び11.253gのTPE-R(0.0385モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.855gのPMDA(0.0131モル)及び8.985gのBPDA(0.0305モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-3を得た。ポリアミド酸溶液A-3の溶液粘度は1,550cpsであった。
(Synthesis Example A-3)
Under a nitrogen stream, 0.908 g of m-TB (0.0043 mol) and 11.253 g of TPE-R (0.0385 mol) and a solid content concentration after polymerization of 12% by weight in a 300 ml separable flask A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 2.855 g of PMDA (0.0131 mol) and 8.985 g of BPDA (0.0305 mol) were added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A-3. Got. The solution viscosity of the polyamic acid solution A-3 was 1,550 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-3を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-3(熱可塑性、Tg;240℃、吸湿率;0.31重量%)を調製した。また、ポリイミドフィルムA-3を構成するポリイミドのイミド基濃度は26.9重量%であった。 Next, the polyamic acid solution A-3 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-3 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-3 was 26.9% by weight.
(合成例A-4)
 窒素気流下で、300mlのセパラブルフラスコに、1.372gのm-TB(0.0065モル)及び10.704gのTPE-R(0.0366モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.875gのPMDA(0.0132モル)及び9.049gのBPDA(0.0308モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-4を得た。ポリアミド酸溶液A-4の溶液粘度は1,580cpsであった。
(Synthesis Example A-4)
Under a nitrogen stream, 1.372 g of m-TB (0.0065 mol) and 10.704 g of TPE-R (0.0366 mol) and a solid content concentration after polymerization of 12% by weight in a 300 ml separable flask A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 2.875 g of PMDA (0.0132 mol) and 9.049 g of BPDA (0.0308 mol) were added, and the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A-4. Got. The solution viscosity of the polyamic acid solution A-4 was 1,580 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-4を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-4(熱可塑性、Tg;240℃、吸湿率;0.29重量%)を調製した。また、ポリイミドフィルムA-4を構成するポリイミドのイミド基濃度は27.1重量%であった。 Next, the polyamic acid solution A-4 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-4 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.29 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-4 was 27.1% by weight.
(合成例A-5)
 窒素気流下で、300mlのセパラブルフラスコに、1.842gのm-TB(0.0087モル)及び10.147gのTPE-R(0.0347モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.896gのPMDA(0.0133モル)及び9.115gのBPDA(0.0310モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-5を得た。ポリアミド酸溶液A-5の溶液粘度は1,610cpsであった。
(Synthesis Example A-5)
Under a nitrogen stream, 1.842 g of m-TB (0.0087 mol) and 10.147 g of TPE-R (0.0347 mol) and a solid content concentration after polymerization of 12% by weight in a 300 ml separable flask A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 2.896 g of PMDA (0.0133 mol) and 9.115 g of BPDA (0.0310 mol) were added, and then the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-5. Got. The solution viscosity of the polyamic acid solution A-5 was 1,610 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-5を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-5(熱可塑性、Tg;244℃、吸湿率;0.27重量%)を調製した。また、ポリイミドフィルムA-5を構成するポリイミドのイミド基濃度は27.4重量%であった。 Next, the polyamic acid solution A-5 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-5 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.27 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-5 was 27.4% by weight.
(合成例A-6)
 窒素気流下で、300mlのセパラブルフラスコに、2.804gのm-TB(0.0132モル)及び9.009gのTPE-R(0.0308モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.938gのPMDA(0.0135モル)及び9.249量部のBPDA(0.0314モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-6を得た。ポリアミド酸溶液A-6の溶液粘度は1,720cpsであった。
(Synthesis Example A-6)
Under a nitrogen stream, a 300 ml separable flask was charged with 2.804 g of m-TB (0.0132 mol) and 9.009 g of TPE-R (0.0308 mol) and a solid content concentration of 12% by weight after polymerization. A quantity of DMAc was added and dissolved by stirring at room temperature. Next, after adding 2.938 g of PMDA (0.0135 mol) and 9.249 parts by weight of BPDA (0.0314 mol), the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A. -6 was obtained. The solution viscosity of the polyamic acid solution A-6 was 1,720 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-6を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-6(熱可塑性、Tg;248℃、吸湿率;0.27重量%)を調製した。また、ポリイミドフィルムA-6を構成するポリイミドのイミド基濃度は27.8重量%であった。 Next, the polyamic acid solution A-6 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-6 (thermoplastic, Tg; 248 ° C., moisture absorption rate: 0.27 wt%). did. The imide group concentration of the polyimide constituting the polyimide film A-6 was 27.8% by weight.
(合成例A-7)
 窒素気流下で、300mlのセパラブルフラスコに、1.469gのAPAB(0.0064モル)及び10.658gのTPE-R(0.0365モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.863gのPMDA(0.0131モル部)及び9.011gのBPDA(0.0306モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-7を得た。ポリアミド酸溶液A-7の溶液粘度は1,280cpsであった。
(Synthesis Example A-7)
Under a nitrogen stream, 1.469 g of APAB (0.0064 mol) and 10.658 g of TPE-R (0.0365 mol) and a solid content concentration after polymerization of 12% by weight in a 300 ml separable flask An amount of DMAc was added and dissolved by stirring at room temperature. Next, 2.863 g of PMDA (0.0131 mol part) and 9.011 g of BPDA (0.0306 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A- 7 was obtained. The solution viscosity of the polyamic acid solution A-7 was 1,280 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-7を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-7(熱可塑性、Tg;239℃、吸湿率;0.31重量%)を調製した。また、ポリイミドフィルムA-7を構成するポリイミドのイミド基濃度は27.0重量%であった。 Next, the polyamic acid solution A-7 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using an aqueous ferric chloride solution to prepare polyimide film A-7 (thermoplastic, Tg: 239 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-7 was 27.0% by weight.
(合成例A-8)
 窒素気流下で、300mlのセパラブルフラスコに、1.372gのm-TB(0.0065モル)及び10.704gのAPB(0.0366モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.875gのPMDA(0.0132モル)及び9.049gのBPDA(0.0308モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-8を得た。ポリアミド酸溶液A-8の溶液粘度は1,190cpsであった。
(Synthesis Example A-8)
Under a nitrogen stream, 1.372 g of m-TB (0.0065 mol) and 10.704 g of APB (0.0366 mol) and a solid content concentration after polymerization become 12% by weight in a 300 ml separable flask. An amount of DMAc was added and dissolved by stirring at room temperature. Next, 2.875 g of PMDA (0.0132 mol) and 9.049 g of BPDA (0.0308 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-8. Got. The solution viscosity of the polyamic acid solution A-8 was 1,190 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-8を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-8(熱可塑性、Tg;235℃、吸湿率;0.31重量%)を調製した。また、ポリイミドフィルムA-8を構成するポリイミドのイミド基濃度は27.1重量%であった。 Next, the polyamic acid solution A-8 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-8 (thermoplastic, Tg: 235 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film A-8 was 27.1% by weight.
(合成例A-9)
 窒素気流下で、300mlのセパラブルフラスコに、1.162gのm-TB(0.0055モル)及び12.735gのBAPP(0.0310モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.436gのPMDA(0.0112モル)及び7.667gのBPDA(0.0261モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-9を得た。ポリアミド酸溶液A-9の溶液粘度は1,780cpsであった。
(Synthesis Example A-9)
Under a nitrogen stream, 1.162 g of m-TB (0.0055 mol) and 12.735 g of BAPP (0.0310 mol) and a solid content concentration after polymerization of 12 wt% in a 300 ml separable flask An amount of DMAc was added and dissolved by stirring at room temperature. Next, 2.436 g of PMDA (0.0112 mol) and 7.667 g of BPDA (0.0261 mol) were added, and then the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A-9. Got. The solution viscosity of the polyamic acid solution A-9 was 1,780 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-9を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-9(熱可塑性、Tg;278℃、吸湿率;0.34重量%)を調製した。また、ポリイミドフィルムA-9を構成するポリイミドのイミド基濃度は22.6重量%であった。 Next, the polyamic acid solution A-9 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-9 (thermoplastic, Tg; 278 ° C., moisture absorption rate: 0.34% by weight). did. The imide group concentration of the polyimide constituting the polyimide film A-9 was 22.6% by weight.
(合成例A-10)
 窒素気流下で、300mlのセパラブルフラスコに、1.411gのm-TB(0.0066モル)及び11.011gのTPE-R(0.0377モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、4.929gのPMDA(0.0226モル)及び6.649gのBPDA(0.0226モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-10を得た。ポリアミド酸溶液A-10の溶液粘度は2,330cpsであった。
(Synthesis Example A-10)
Under a nitrogen stream, in a 300 ml separable flask, 1.411 g of m-TB (0.0066 mol) and 11.0111 g of TPE-R (0.0377 mol) and a solid content concentration after polymerization of 12% by weight A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 4.929 g of PMDA (0.0226 mol) and 6.649 g of BPDA (0.0226 mol) were added, and the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain a polyamic acid solution A-10. Got. The solution viscosity of the polyamic acid solution A-10 was 2,330 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-10を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-10(熱可塑性、Tg;276℃、吸湿率;0.41重量%)を調製した。また、ポリイミドフィルムA-10を構成するポリイミドのイミド基濃度は28.0重量%であった。 Next, the polyamic acid solution A-10 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-10 (thermoplastic, Tg; 276 ° C., moisture absorption rate: 0.41 wt%). did. The imide group concentration of the polyimide constituting the polyimide film A-10 was 28.0% by weight.
(合成例A-11)
 窒素気流下で、300mlのセパラブルフラスコに、12.327重量部のTPE-R(0.0422モル)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、2.815gのPMDA(0.0129モル)及び8.858gのBPDA(0.0301モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-11を得た。ポリアミド酸溶液A-11の溶液粘度は1,530cpsであった。
(Synthesis Example A-11)
Under a nitrogen stream, 12.327 parts by weight of TPE-R (0.0422 mol) and DMAc in an amount such that the solid content after polymerization was 12% by weight were charged into a 300 ml separable flask and stirred at room temperature. And dissolved. Next, 2.815 g of PMDA (0.0129 mol) and 8.858 g of BPDA (0.0301 mol) were added, and the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain a polyamic acid solution A-11. Got. The solution viscosity of the polyamic acid solution A-11 was 1,530 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-11を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-11(熱可塑性、Tg;244℃、吸湿率;0.39重量%)を調製した。また、ポリイミドフィルムA-11を構成するポリイミドのイミド基濃度は26.5重量%であった。 Next, the polyamic acid solution A-11 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film A-11 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.39 wt%). did. The imide group concentration of the polyimide constituting the polyimide film A-11 was 26.5% by weight.
(合成例A-12)
 窒素気流下で、300mlのセパラブルフラスコに、12.128gのm-TB(0.0571モル)及び1.856gのTPE-R(0.0063モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.819gのPMDA(0.0313モル)及び9.198gのBPDA(0.0313モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-12を得た。ポリアミド酸溶液A-12の溶液粘度は29,100cpsであった。
(Synthesis Example A-12)
Under a nitrogen stream, a 300 ml separable flask was charged with 12.128 g of m-TB (0.0571 mol) and 1.856 g of TPE-R (0.0063 mol) and a solid content concentration after polymerization of 15% by weight. A quantity of DMAc was added and dissolved by stirring at room temperature. Next, after adding 6.819 g of PMDA (0.0313 mol) and 9.198 g of BPDA (0.0313 mol), the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A-12. Got. The solution viscosity of the polyamic acid solution A-12 was 29,100 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-12を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-12(非熱可塑性、Tg;322℃、吸湿率;0.57重量%)を調製した。また、ポリイミドフィルムA-12を構成するポリイミドのイミド基濃度は31.8重量%であった。 Next, the polyamic acid solution A-12 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-12 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.57 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-12 was 31.8% by weight.
(合成例A-13)
 窒素気流下で、300mlのセパラブルフラスコに、13.707gのm-TB(0.0646モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.936gのPMDA(0.0318モル)及び9.356gのBPDA(0.0318モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-13を得た。ポリアミド酸溶液A-13の溶液粘度は29,900cpsであった。
(Synthesis Example A-13)
Under a nitrogen stream, 13.707 g of m-TB (0.0646 mol) and DMAc in an amount such that the solid content after polymerization was 15% by weight were charged into a 300 ml separable flask and stirred at room temperature. Dissolved. Next, 6.936 g of PMDA (0.0318 mol) and 9.356 g of BPDA (0.0318 mol) were added, and then the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-13. Got. The solution viscosity of the polyamic acid solution A-13 was 29,900 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-13を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-13(非熱可塑性、Tg;332℃、吸湿率;0.63重量%)を調製した。また、ポリイミドフィルムA-13を構成するポリイミドのイミド基濃度は32.4重量%であった。 Next, the polyamic acid solution A-13 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-13 (non-thermoplastic, Tg: 332 ° C., moisture absorption rate: 0.63% by weight) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-13 was 32.4% by weight.
(合成例A-14)
 窒素気流下で、300mlのセパラブルフラスコに、12.061gのm-TB(0.0568モル)、0.923gのTPE-Q(0.0032モル)及び1.0874gのビスアニリン-M(0.0032モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.781gのPMDA(0.0311モル)及び9.147gのBPDA(0.0311モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-14を得た。ポリアミド酸溶液A-14の溶液粘度は29,800cpsであった。
(Synthesis Example A-14)
Under a nitrogen stream, a 300 ml separable flask was charged with 12.611 g of m-TB (0.0568 mol), 0.923 g of TPE-Q (0.0032 mol) and 1.0874 g of bisaniline-M (0. In addition, DMAc was added in an amount such that the solid content after polymerization was 15% by weight, and dissolved by stirring at room temperature. Next, 6.781 g of PMDA (0.0311 mol) and 9.147 g of BPDA (0.0311 mol) were added, and then the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-14. Got. The solution viscosity of the polyamic acid solution A-14 was 29,800 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-14を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-14(非熱可塑性、Tg;322℃、吸湿率;0.61重量%)を調製した。また、ポリイミドフィルムA-14を構成するポリイミドのイミド基濃度は31.6重量%であった。 Next, the polyamic acid solution A-14 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-14 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.61 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-14 was 31.6% by weight.
(合成例A-15)
 窒素気流下で、300mlのセパラブルフラスコに、11.978gのm-TB(0.0564モル)、0.916gのTPE-Q(0.0031モル)及び1.287gのBAPP(0.0031モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.735gのPMDA(0.0309モル)及び9.084gのBPDA(0.0309モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-15を得た。ポリアミド酸溶液A-15の溶液粘度は29,200cpsであった。
(Synthesis Example A-15)
Under a nitrogen stream, 11.978 g of m-TB (0.0564 mol), 0.916 g of TPE-Q (0.0031 mol) and 1.287 g of BAPP (0.0031 mol) were placed in a 300 ml separable flask. Part) and DMAc in an amount such that the solid concentration after polymerization is 15% by weight was added and dissolved by stirring at room temperature. Next, 6.735 g of PMDA (0.0309 mol) and 9.084 g of BPDA (0.0309 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-15. Got. The solution viscosity of the polyamic acid solution A-15 was 29,200 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-15を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-15(非熱可塑性、Tg;324℃、吸湿率;0.58重量%)を調製した。また、ポリイミドフィルムA-15を構成するポリイミドのイミド基濃度は31.4重量%であった。 Next, the polyamic acid solution A-15 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-15 (non-thermoplastic, Tg: 324 ° C., moisture absorption rate: 0.58 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-15 was 31.4% by weight.
(合成例A-16)
 窒素気流下で、300mlのセパラブルフラスコに、12.128gのm-TB(0.0571モル)及び1.856gのTPE-Q(0.0063モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.819gのPMDA(0.0313モル)及び9.198gのBPDA(0.0313モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-16を得た。ポリアミド酸溶液A-16の溶液粘度は32,800cpsであった。
(Synthesis Example A-16)
In a 300 ml separable flask under nitrogen flow, 12.128 g of m-TB (0.0571 mol) and 1.856 g of TPE-Q (0.0063 mol) and a solid content concentration after polymerization of 15% by weight A quantity of DMAc was added and dissolved by stirring at room temperature. Next, after adding 6.819 g of PMDA (0.0313 mol) and 9.198 g of BPDA (0.0313 mol), the polymerization reaction was continued by stirring at room temperature for 3 hours to obtain a polyamic acid solution A-16. Got. The solution viscosity of the polyamic acid solution A-16 was 32,800 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-16を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-16(非熱可塑性、Tg;330℃、吸湿率;0.59重量%)を調製した。また、ポリイミドフィルムA-16を構成するポリイミドのイミド基濃度は31.8重量%であった。 Next, the polyamic acid solution A-16 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-16 (non-thermoplastic, Tg; 330 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-16 was 31.8% by weight.
(合成例A-17)
 窒素気流下で、300mlのセパラブルフラスコに、12.323gのm-TB(0.0580モル)及び1.886gのTPE―R(0.0064モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、8.314gのPMDA(0.0381モル)及び7.477gのBPDA(0.0254モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-17を得た。ポリアミド酸溶液A-17の溶液粘度は31,500cpsであった。
(Synthesis Example A-17)
Under a nitrogen stream, a 300 ml separable flask was charged with 12.323 g of m-TB (0.0580 mol) and 1.886 g of TPE-R (0.0064 mol) and a solid content concentration after polymerization of 15% by weight. A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 8.314 g of PMDA (0.0381 mol) and 7.477 g of BPDA (0.0254 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-17. Got. The solution viscosity of the polyamic acid solution A-17 was 31,500 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-17を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-17(非熱可塑性、Tg;342℃、吸湿率;0.56重量%)を調製した。また、ポリイミドフィルムA-17を構成するポリイミドのイミド基濃度は32.3重量%であった。 Next, the polyamic acid solution A-17 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film A-17 (non-thermoplastic, Tg: 342 ° C., moisture absorption rate: 0.56 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-17 was 32.3% by weight.
(合成例A-18)
 窒素気流下で、300mlのセパラブルフラスコに、13.434gのm-TB(0.0633モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、6.118gのPMDA(0.0281モル)、9.170gのBPDA(0.0312モル)及び1.279gのTMEG(0.0031モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-18を得た。ポリアミド酸溶液A-18の溶液粘度は14,100cpsであった。
(Synthesis Example A-18)
Under a nitrogen stream, 13.434 g of m-TB (0.0633 mol) and DMAc in an amount such that the solid content after polymerization was 15% by weight were charged into a 300 ml separable flask and stirred at room temperature. Dissolved. Next, 6.118 g PMDA (0.0281 mol), 9.170 g BPDA (0.0312 mol) and 1.279 g TMEG (0.0031 mol) were added, and stirring was continued at room temperature for 3 hours. The polymerization reaction was carried out to obtain a polyamic acid solution A-18. The solution viscosity of the polyamic acid solution A-18 was 14,100 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-18を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-18(非熱可塑性、Tg;314℃、吸湿率;0.59重量%)を調製した。また、ポリイミドフィルムA-18を構成するポリイミドのイミド基濃度は31.7重量%であった。 Next, the polyamic acid solution A-18 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-18 (non-thermoplastic, Tg: 314 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-18 was 31.7% by weight.
(合成例A-19)
 窒素気流下で、300mlのセパラブルフラスコに、12.003gのm-TB(0.0565モル)及び1.836gのTPE―R(0.0063モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、5.399gのPMDA(0.0248モル)、9.103gのBPDA(0.0309モル)及び1.659gのNTCDA(0.0062モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-19を得た。ポリアミド酸溶液A-19の溶液粘度は31,200cpsであった。
(Synthesis Example A-19)
Under a nitrogen stream, a 300 ml separable flask was charged with 12.003 g of m-TB (0.0565 mol) and 1.836 g of TPE-R (0.0063 mol) and a solid content concentration after polymerization of 15% by weight. A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 5.399 g PMDA (0.0248 mol), 9.103 g BPDA (0.0309 mol) and 1.659 g NTCDA (0.0062 mol) were added and stirring was continued at room temperature for 3 hours. A polymerization reaction was carried out to obtain a polyamic acid solution A-19. The solution viscosity of the polyamic acid solution A-19 was 31,200 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-19を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-19(非熱可塑性、Tg;311℃、吸湿率;0.58重量%)を調製した。また、ポリイミドフィルムA-19を構成するポリイミドのイミド基濃度は31.4重量%であった。 Next, the polyamic acid solution A-19 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-19 (non-thermoplastic, Tg: 311 ° C., moisture absorption rate: 0.58 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-19 was 31.4% by weight.
(合成例A-20)
 窒素気流下で、300mlのセパラブルフラスコに、8.778gのm-TB(0.0414モル)、1.860gのTPE―R(0.0064モル)及び3.582gのAABOZ(0.0159モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、8.309gのPMDA(0.0381モル)及び7.472gのBPDA(0.0254モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-20を得た。ポリアミド酸溶液A-20の溶液粘度は42,300cpsであった。
(Synthesis Example A-20)
Under a nitrogen stream, in a 300 ml separable flask, 8.778 g of m-TB (0.0414 mol), 1.860 g of TPE-R (0.0064 mol) and 3.582 g of AABOZ (0.0159 mol). ) And DMAc in an amount such that the solid concentration after polymerization was 15% by weight was added and dissolved by stirring at room temperature. Next, 8.309 g of PMDA (0.0381 mol) and 7.472 g of BPDA (0.0254 mol) were added, and then the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-20. Got. The solution viscosity of the polyamic acid solution A-20 was 42,300 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-20を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-20(非熱可塑性、Tg;312℃、吸湿率;0.61重量%)を調製した。また、ポリイミドフィルムA-20を構成するポリイミドのイミド基濃度は32.1重量%であった。 Next, the polyamic acid solution A-20 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-20 (non-thermoplastic, Tg; 312 ° C., moisture absorption rate: 0.61% by weight) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-20 was 32.1% by weight.
(合成例A-21)
 窒素気流下で、300mlのセパラブルフラスコに、5.365gのm-TB(0.0253モル)、1.847gのTPE―R(0.0063モル)及び7.116gのAABOZ(0.0316モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、8.252gのPMDA(0.0378モル)及び7.421gのBPDA(0.0252モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-21を得た。ポリアミド酸溶液A-21の溶液粘度は22,700cpsであった。
(Synthesis Example A-21)
Under a nitrogen stream, a 300 ml separable flask was charged with 5.365 g m-TB (0.0253 mol), 1.847 g TPE-R (0.0063 mol) and 7.116 g AABOZ (0.0316 mol). ) And DMAc in an amount such that the solid concentration after polymerization was 15% by weight was added and dissolved by stirring at room temperature. Next, 8.252 g of PMDA (0.0378 mol) and 7.421 g of BPDA (0.0252 mol) were added, and the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain a polyamic acid solution A-21. Got. The solution viscosity of the polyamic acid solution A-21 was 22,700 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-21を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-21(非熱可塑性、Tg;320℃、吸湿率;0.65重量%)を調製した。また、ポリイミドフィルムA-21を構成するポリイミドのイミド基濃度は31.9重量%であった。 Next, the polyamic acid solution A-21 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-21 (non-thermoplastic, Tg; 320 ° C., moisture absorption rate: 0.65 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-21 was 31.9% by weight.
(合成例A-22)
 窒素気流下で、300mlのセパラブルフラスコに、8.110gのm-TB(0.0382モル)、1.861gのTPE―R(0.0064モル)及び4.360gのAPAB(0.0191モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、8.250gのPMDA(0.0378モル)及び7.419gのBPDA(0.0252モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-22を得た。ポリアミド酸溶液A-22の溶液粘度は24,500cpsであった。
(Synthesis Example A-22)
Under a nitrogen stream, in a 300 ml separable flask, 8.110 g m-TB (0.0382 mol), 1.861 g TPE-R (0.0064 mol) and 4.360 g APAB (0.0191 mol). ) And DMAc in an amount such that the solid concentration after polymerization was 15% by weight was added and dissolved by stirring at room temperature. Next, 8.250 g of PMDA (0.0378 mol) and 7.419 g of BPDA (0.0252 mol) were added, and the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours to obtain a polyamic acid solution A-22. Got. The solution viscosity of the polyamic acid solution A-22 was 24,500 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-22を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-22(非熱可塑性、Tg;322℃、吸湿率;0.57重量%)を調製した。また、ポリイミドフィルムA-22を構成するポリイミドのイミド基濃度は32.0重量%であった。 Next, the polyamic acid solution A-22 was uniformly applied to one side (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-22 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.57 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-22 was 32.0% by weight.
(合成例A-23)
 窒素気流下で、300mlのセパラブルフラスコに、11.755gのm-TB(0.0554モル)及び1.799gのTPE―R(0.0062モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、3.966gのPMDA(0.0182モル)及び12.481gのBPDA(0.0424モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-23を得た。ポリアミド酸溶液A-23の溶液粘度は26,800cpsであった。
(Synthesis Example A-23)
Under a nitrogen stream, in a 300 ml separable flask, 11.755 g of m-TB (0.0554 mol) and 1.799 g of TPE-R (0.0062 mol) and a solid content concentration after polymerization of 15 wt% A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 3.966 g of PMDA (0.0182 mol) and 12.481 g of BPDA (0.0424 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-23. Got. The solution viscosity of the polyamic acid solution A-23 was 26,800 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-23を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-23(非熱可塑性、Tg;291℃、吸湿率;0.59重量%)を調製した。また、ポリイミドフィルムA-23を構成するポリイミドのイミド基濃度は30.7重量%であった。 Next, the polyamic acid solution A-23 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-23 (non-thermoplastic, Tg: 291 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film A-23 was 30.7% by weight.
(合成例A-24)
 窒素気流下で、300mlのセパラブルフラスコに、14.405gのm-TB(0.0679モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、11.663gのPMDA(0.0535モル)及び3.933gのBPDA(0.0134モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-24を得た。ポリアミド酸溶液A-24の溶液粘度は33,600cpsであった。
(Synthesis Example A-24)
Under a nitrogen stream, 14.405 g of m-TB (0.0679 mol) and DMAc in an amount such that the solid content after polymerization was 15% by weight were charged into a 300 ml separable flask and stirred at room temperature. Dissolved. Next, 11.663 g of PMDA (0.0535 mol) and 3.933 g of BPDA (0.0134 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-24. Got. The solution viscosity of the polyamic acid solution A-24 was 33,600 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-24を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-24(非熱可塑性、Tg;400℃以上、吸湿率;0.78重量%)を調製した。また、ポリイミドフィルムA-24を構成するポリイミドのイミド基濃度は34.2重量%であった。 Next, the polyamic acid solution A-24 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film A-24 (non-thermoplastic, Tg; 400 ° C. or higher, moisture absorption rate: 0.78 wt%) Was prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-24 was 34.2% by weight.
(合成例A-25)
 窒素気流下で、300mlのセパラブルフラスコに、12.201gのm-TB(0.0575モル)及び1.042gのビスアニリン-M(0.0030モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、7.991gのNTCDA(0.0298モル)及び8.766gのBPDA(0.0298モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-25を得た。ポリアミド酸溶液A-25の溶液粘度は30,100cpsであった。
(Synthesis Example A-25)
Under a nitrogen stream, in a 300 ml separable flask, 12.201 g of m-TB (0.0575 mol) and 1.042 g of bisaniline-M (0.0030 mol) and a solid content concentration after polymerization of 15% by weight A quantity of DMAc was added and dissolved by stirring at room temperature. Next, 7.991 g of NTCDA (0.0298 mol) and 8.766 g of BPDA (0.0298 mol) were added, and the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-25. Got. The solution viscosity of the polyamic acid solution A-25 was 30,100 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-25を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-25(非熱可塑性、Tg;400℃以上、吸湿率;0.57重量%)を調製した。また、ポリイミドフィルムA-25を構成するポリイミドのイミド基濃度は30.2重量%であった。 Next, the polyamic acid solution A-25 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film A-25 (non-thermoplastic, Tg; 400 ° C. or higher, moisture absorption rate: 0.57% by weight) Was prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-25 was 30.2% by weight.
(合成例A-26)
 窒素気流下で、300mlのセパラブルフラスコに、11.204gのm-TB(0.0528モル)及び0.670gのBAPP(0.0016モル)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、5.845gのPMDA(0.0268モル)及び12.281gのTAHQ(0.0268モル)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液A-26を得た。ポリアミド酸溶液A-26の溶液粘度は26,600cpsであった。
(Synthesis Example A-26)
Under a nitrogen stream, 11.204 g of m-TB (0.0528 mol) and 0.670 g of BAPP (0.0016 mol) and a solid content concentration after polymerization of 15 wt% in a 300 ml separable flask An amount of DMAc was added and dissolved by stirring at room temperature. Next, 5.845 g of PMDA (0.0268 mol) and 12.281 g of TAHQ (0.0268 mol) were added, and then the polymerization reaction was continued for 3 hours at room temperature to obtain a polyamic acid solution A-26. Got. The solution viscosity of the polyamic acid solution A-26 was 26,600 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液A-26を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムA-26(非熱可塑性、Tg;304℃、吸湿率;0.49重量%)を調製した。また、ポリイミドフィルムA-26を構成するポリイミドのイミド基濃度は26.9重量%であった。 Next, the polyamic acid solution A-26 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film A-26 (non-thermoplastic, Tg; 304 ° C., moisture absorption rate: 0.49 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film A-26 was 26.9% by weight.
[実施例A-1]
 厚さ12μmの電解銅箔の片面(表面粗さRz;0.6μm)に、ポリアミド酸溶液A-1を硬化後の厚みが約2~3μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。次にその上にポリアミド酸溶液A-15を硬化後の厚みが、約21μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、その上にポリアミド酸溶液A-1を硬化後の厚みが約2~3μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。このようにして、3層のポリアミド酸層を形成した後、120℃から360℃まで段階的な熱処理を30分で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、多層ポリイミドフィルムA-1(CTE;22ppm/K、吸湿率;0.54重量%、誘電率;3.58、誘電正接;0.0031)を調整した。
[Example A-1]
After uniformly applying the polyamic acid solution A-1 to a thickness of about 2 to 3 μm on one side (surface roughness Rz; 0.6 μm) of a 12 μm thick electrolytic copper foil, The solvent was removed by heating to dryness. Next, the polyamic acid solution A-15 was uniformly applied thereon so that the thickness after curing was about 21 μm, and dried by heating at 120 ° C. to remove the solvent. Further, the polyamic acid solution A-1 was uniformly applied thereon so that the thickness after curing was about 2 to 3 μm, and then dried by heating at 120 ° C. to remove the solvent. Thus, after forming the polyamic acid layer of 3 layers, stepwise heat processing was performed in 30 minutes from 120 degreeC to 360 degreeC, and imidation was completed. About the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and multilayer polyimide film A-1 (CTE; 22 ppm / K, moisture absorption; 0.54% by weight, dielectric constant; 3.58, dielectric loss tangent; 0.0031) was adjusted.
[実施例A-2~実施例A-21、参考例A-1~参考例A-2]
 表1~表4に示すポリアミド酸溶液を使用した他は、実施例A-1と同様にして、実施例A-2~実施例A-21、参考例A-1~参考例A-2の多層ポリイミドフィルムA-2~A-23を得た。得られた多層ポリイミドフィルムA-2~A-23のCTE、吸湿率、誘電率、誘電正接を求めた。各測定結果を表1~表4に示す。
[Example A-2 to Example A-21, Reference Example A-1 to Reference Example A-2]
Example A-2 to Example A-21 and Reference Example A-1 to Reference Example A-2 were the same as Example A-1, except that the polyamic acid solutions shown in Tables 1 to 4 were used. Multilayer polyimide films A-2 to A-23 were obtained. CTE, moisture absorption, dielectric constant and dielectric loss tangent of the obtained multilayer polyimide films A-2 to A-23 were determined. The measurement results are shown in Tables 1 to 4.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
[実施例A-22~実施例A-23]
 表5に示すポリアミド酸溶液を使用した他は、実施例A-1と同様にして、実施例A-22~実施例A-23の多層ポリイミドフィルムA-24~A-25を得た。得られた多層ポリイミドフィルムA-24~A-25のCTE、吸湿率、誘電率、誘電正接を求めた。各測定結果を表5に示す。
[Example A-22 to Example A-23]
The multilayer polyimide films A-24 to A-25 of Examples A-22 to A-23 were obtained in the same manner as in Example A-1, except that the polyamic acid solution shown in Table 5 was used. CTE, moisture absorption rate, dielectric constant, and dielectric loss tangent of the obtained multilayer polyimide films A-24 to A-25 were determined. Table 5 shows the measurement results.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
(合成例B-1)
 窒素気流下で、反応槽に、66.727重量部のm-TB(0.314モル部)及び520.681重量部のTPE-R(1.781モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、46.620重量部のPMDA(0.214モル部)及び565.972重量部のBPDA(1.924モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-1を得た。ポリアミド酸溶液B-1の溶液粘度は1,420cpsであった。
(Synthesis Example B-1)
Under a nitrogen stream, 66.727 parts by weight of m-TB (0.314 mole part) and 520.681 parts by weight of TPE-R (1.781 mole part) and a solid content concentration after polymerization were placed in the reaction vessel. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 46.620 parts by weight of PMDA (0.214 mole part) and 565.972 parts by weight of BPDA (1.924 mole part), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-1 was obtained. The solution viscosity of the polyamic acid solution B-1 was 1,420 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-1を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-1(熱可塑性、Tg;256℃、吸湿率;0.36重量%)を調製した。また、ポリイミドフィルムB-1を構成するポリイミドのイミド基濃度は26.4重量%であった。 Next, the polyamic acid solution B-1 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare a polyimide film B-1 (thermoplastic, Tg; 256 ° C., moisture absorption rate: 0.36 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-1 was 26.4% by weight.
(合成例B-2)
 窒素気流下で、反応槽に、22.538重量部のm-TB(0.106モル部)及び589.682重量部のTPE-R(2.017モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、141.722重量部のPMDA(0.650モル部)及び446.058重量部のBPDA(1.516モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-2を得た。ポリアミド酸溶液B-2の溶液粘度は1,510cpsであった。
(Synthesis Example B-2)
Under a nitrogen stream, the reaction vessel had 22.538 parts by weight of m-TB (0.106 mole part) and 589.682 parts by weight of TPE-R (2.017 mole part) and the solid content concentration after polymerization. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, 141.722 parts by weight of PMDA (0.650 mole part) and 446.058 parts by weight of BPDA (1.516 mole part) were added, and then the polymerization reaction was continued for 3 hours at room temperature. A polyamic acid solution B-2 was obtained. The solution viscosity of the polyamic acid solution B-2 was 1,510 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-2を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-2(熱可塑性、Tg;242℃、吸湿率;0.35重量%)を調製した。また、ポリイミドフィルムB-2を構成するポリイミドのイミド基濃度は26.5重量%であった。 Next, the polyamic acid solution B-2 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-2 (thermoplastic, Tg; 242 ° C., moisture absorption rate: 0.35 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-2 was 26.5% by weight.
(合成例B-3)
 窒素気流下で、反応槽に、45.398重量部のm-TB(0.214モル部)及び562.630重量部のTPE-R(1.925モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、142.733重量部のPMDA(0.654モル部)及び449.239重量部のBPDA(1.527モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-3を得た。ポリアミド酸溶液B-3の溶液粘度は1,550cpsであった。
(Synthesis Example B-3)
Under a nitrogen stream, 45.398 parts by weight of m-TB (0.214 mole part) and 562.630 parts by weight of TPE-R (1.925 mole part) and a solid content concentration after polymerization in the reaction vessel DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 142.733 parts by weight of PMDA (0.654 parts by mole) and 449.239 parts by weight of BPDA (1.527 parts by mole), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-3 was obtained. The solution viscosity of the polyamic acid solution B-3 was 1,550 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-3を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-3(熱可塑性、Tg;240℃、吸湿率;0.31重量%)を調製した。また、ポリイミドフィルムB-3を構成するポリイミドのイミド基濃度は26.9重量%であった。 Next, the polyamic acid solution B-3 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-3 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.31 wt%). did. The imide group concentration of the polyimide constituting the polyimide film B-3 was 26.9% by weight.
(合成例B-4)
 窒素気流下で、反応槽に、68.586重量部のm-TB(0.323モル部)及び535.190重量部のTPE-R(1.831モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、143.758重量部のPMDA(0.659モル部)及び452.466重量部のBPDA(1.538モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-4を得た。ポリアミド酸溶液B-4の溶液粘度は1,580cpsであった。
(Synthesis Example B-4)
Under a nitrogen stream, the reaction vessel contains 68.586 parts by weight of m-TB (0.323 mole part) and 535.190 parts by weight of TPE-R (1.831 mole part) and the solid content concentration after polymerization. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 143.758 parts by weight of PMDA (0.659 parts by mole) and 452.466 parts by weight of BPDA (1.538 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-4 was obtained. The solution viscosity of the polyamic acid solution B-4 was 1,580 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-4を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-4(熱可塑性、Tg;240℃、吸湿率;0.29重量%)を調製した。また、ポリイミドフィルムB-4を構成するポリイミドのイミド基濃度は27.1重量%であった。 Next, the polyamic acid solution B-4 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-4 (thermoplastic, Tg; 240 ° C., moisture absorption rate: 0.29 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-4 was 27.1% by weight.
(合成例B-5)
 窒素気流下で、反応槽に、92.110重量部のm-TB(0.434モル部)及び507.352重量部のTPE-R(1.736モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、144.798重量部のPMDA(0.664モル部)及び455.740量部のBPDA(1.549モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-5を得た。ポリアミド酸溶液B-5の溶液粘度は1,610cpsであった。
(Synthesis Example B-5)
Under a nitrogen stream, 92.110 parts by weight of m-TB (0.434 mole part) and 507.352 parts by weight of TPE-R (1.736 mole part) and the solid content concentration after polymerization were in the reaction vessel. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 144.798 parts by weight of PMDA (0.664 mole part) and 455.740 parts by weight of BPDA (1.549 mole part), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-5 was obtained. The solution viscosity of the polyamic acid solution B-5 was 1,610 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-5を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-5(熱可塑性、Tg;244℃、吸湿率;0.27重量%)を調製した。また、ポリイミドフィルムB-5を構成するポリイミドのイミド基濃度は27.4重量%であった。 Next, the polyamic acid solution B-5 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-5 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.27 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-5 was 27.4% by weight.
(合成例B-6)
 窒素気流下で、反応槽に、140.193重量部のm-TB(0.660モル部)及び450.451重量部のTPE-R(1.541モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、146.924重量部のPMDA(0.674モル部)及び462.431量部のBPDA(1.572モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-6を得た。ポリアミド酸溶液B-6の溶液粘度は1,720cpsであった。
(Synthesis Example B-6)
Under a nitrogen stream, 140.193 parts by weight of m-TB (0.660 mole part) and 450.451 parts by weight of TPE-R (1.541 mole part) and the solid content concentration after polymerization were placed in a reaction vessel. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 146.924 parts by weight of PMDA (0.674 mol parts) and 462.431 parts by weight of BPDA (1.572 mol parts), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-6 was obtained. The solution viscosity of the polyamic acid solution B-6 was 1,720 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-6を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-6(熱可塑性、Tg;248℃、吸湿率;0.27重量%)を調製した。また、ポリイミドフィルムB-6を構成するポリイミドのイミド基濃度は27.8重量%であった。 Next, the polyamic acid solution B-6 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-6 (thermoplastic, Tg; 248 ° C., moisture absorption rate: 0.27 wt%). did. The imide group concentration of the polyimide constituting the polyimide film B-6 was 27.8% by weight.
(合成例B-7)
 窒素気流下で、反応槽に、73.427重量部のAPAB(0.322モル部)及び532.900重量部のTPE-R(1.823モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、143.143重量部のPMDA(0.656モル部)及び450.530量部のBPDA(1.531モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-7を得た。ポリアミド酸溶液B-7の溶液粘度は1,280cpsであった。
(Synthesis Example B-7)
Under a nitrogen stream, 73.427 parts by weight of APAB (0.322 mol part) and 532.900 parts by weight of TPE-R (1.823 mol part) and a solid content concentration after polymerization of 12 wt. % Of DMAc was added and dissolved by stirring at room temperature. Next, after adding 143.143 parts by weight of PMDA (0.656 parts by mole) and 450.530 parts by weight of BPDA (1.531 parts by mole), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-7 was obtained. The solution viscosity of the polyamic acid solution B-7 was 1,280 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-7を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-7(熱可塑性、Tg;239℃、吸湿率;0.31重量%)を調製した。また、ポリイミドフィルムB-7を構成するポリイミドのイミド基濃度は27.0重量%であった。 Next, the polyamic acid solution B-7 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-7 (thermoplastic, Tg: 239 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-7 was 27.0% by weight.
(合成例B-8)
 窒素気流下で、反応槽に、68.586重量部のm-TB(0.323モル部)及び535.190重量部のAPB(1.831モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、143.758重量部のPMDA(0.659モル部)及び452.466重量部のBPDA(1.538モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-8を得た。ポリアミド酸溶液B-8の溶液粘度は1,190cpsであった。
(Synthesis Example B-8)
Under a nitrogen stream, 68.586 parts by weight of m-TB (0.323 mole part) and 535.190 parts by weight of APB (1.831 mole part) and a solid content concentration after polymerization of 12 weights were placed in the reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, after adding 143.758 parts by weight of PMDA (0.659 parts by mole) and 452.466 parts by weight of BPDA (1.538 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-8 was obtained. The solution viscosity of the polyamic acid solution B-8 was 1,190 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-8を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-8(熱可塑性、Tg;235℃、吸湿率;0.31重量%)を調製した。また、ポリイミドフィルムB-8を構成するポリイミドのイミド基濃度は27.1重量%であった。 Next, the polyamic acid solution B-8 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-8 (thermoplastic, Tg: 235 ° C., moisture absorption rate: 0.31 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-8 was 27.1% by weight.
(合成例B-9)
 窒素気流下で、反応槽に、58.109重量部のm-TB(0.274モル部)及び636.745重量部のBAPP(1.551モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、121.798重量部のPMDA(0.558モル部)及び383.348重量部のBPDA(1.303モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-9を得た。ポリアミド酸溶液B-9の溶液粘度は1,780cpsであった。
(Synthesis Example B-9)
Under a nitrogen stream, 58.109 parts by weight of m-TB (0.274 parts by mole) and 636.745 parts by weight of BAPP (1.551 parts by weight) and a solid content concentration after polymerization of 12 parts by weight were added to the reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, 121.798 parts by weight of PMDA (0.558 mole part) and 383.348 parts by weight of BPDA (1.303 mole part) were added, and then the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours. A polyamic acid solution B-9 was obtained. The solution viscosity of the polyamic acid solution B-9 was 1,780 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-9を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-9(熱可塑性、Tg;278℃、吸湿率;0.34重量%)を調製した。また、ポリイミドフィルムB-9を構成するポリイミドのイミド基濃度は22.6重量%であった。 Next, the polyamic acid solution B-9 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-9 (thermoplastic, Tg: 278 ° C., moisture absorption: 0.34 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-9 was 22.6% by weight.
(合成例B-10)
 窒素気流下で、反応槽に、70.552重量部のm-TB(0.332モル部)及び550.530重量部のTPE-R(1.883モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、246.465重量部のPMDA(1.130モル部)及び332.454重量部のBPDA(1.130モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-10を得た。ポリアミド酸溶液B-10の溶液粘度は2,330cpsであった。
(Synthesis Example B-10)
Under a nitrogen stream, 70.552 parts by weight of m-TB (0.332 parts by mole) and 550.530 parts by weight of TPE-R (1.883 parts by weight) and the solid content concentration after polymerization were placed in a reaction vessel. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, after adding 246.465 parts by weight of PMDA (1.130 mol parts) and 332.454 parts by weight of BPDA (1.130 mol parts), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-10 was obtained. The solution viscosity of the polyamic acid solution B-10 was 2,330 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-10を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-10(熱可塑性、Tg;276℃、吸湿率;0.41重量%)を調製した。また、ポリイミドフィルムB-10を構成するポリイミドのイミド基濃度は28.0重量%であった。 Next, the polyamic acid solution B-10 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using an aqueous ferric chloride solution to prepare polyimide film B-10 (thermoplastic, Tg; 276 ° C., moisture absorption rate: 0.41 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-10 was 28.0% by weight.
(合成例B-11)
 窒素気流下で、反応槽に、616.353重量部のTPE-R(2.108モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、140.726重量部のPMDA(0.645モル部)及び442.921重量部のBPDA(1.505モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-11を得た。ポリアミド酸溶液B-11の溶液粘度は1,530cpsであった。
(Synthesis Example B-11)
Under a nitrogen stream, 616.353 parts by weight of TPE-R (2.108 parts by mole) and DMAc in an amount such that the solid content after polymerization was 12% by weight were added to the reaction vessel, and the mixture was stirred at room temperature. Dissolved. Next, after adding 140.726 parts by weight of PMDA (0.645 mol parts) and 442.921 parts by weight of BPDA (1.505 mol parts), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-11 was obtained. The solution viscosity of the polyamic acid solution B-11 was 1,530 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-11を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-11(熱可塑性、Tg;244℃、吸湿率;0.39重量%)を調製した。また、ポリイミドフィルムB-11を構成するポリイミドのイミド基濃度は26.5重量%であった。 Next, the polyamic acid solution B-11 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution to prepare polyimide film B-11 (thermoplastic, Tg; 244 ° C., moisture absorption rate: 0.39 wt%). did. Further, the imide group concentration of the polyimide constituting the polyimide film B-11 was 26.5% by weight.
(合成例B-12)
 窒素気流下で、反応槽に、240.725重量部のm-TB(1.134モル部)及び331.485重量部のTPE-R(1.134モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、151.369重量部のPMDA(0.694モル部)及び476.421重量部のBPDA(1.619モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-12を得た。ポリアミド酸溶液B-12の溶液粘度は3,240cpsであった。
(Synthesis Example B-12)
Under a nitrogen stream, 240.725 parts by weight of m-TB (1.134 mole part) and 331.485 parts by weight of TPE-R (1.134 mole part) and the solid content concentration after polymerization were placed in a reaction vessel. DMAc in an amount of 12% by weight was added and dissolved by stirring at room temperature. Next, 151.369 parts by weight of PMDA (0.694 parts by weight) and 476.421 parts by weight of BPDA (1.619 parts by weight) were added, and then the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours. A polyamic acid solution B-12 was obtained. The solution viscosity of the polyamic acid solution B-12 was 3,240 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-12を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-12(熱可塑性、Tg;260℃、吸湿率;0.28重量%)を調製した。また、ポリイミドフィルムB-12を構成するポリイミドのイミド基濃度は28.7重量%であった。 Next, the polyamic acid solution B-12 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using an aqueous ferric chloride solution to prepare polyimide film B-12 (thermoplastic, Tg: 260 ° C., moisture absorption rate: 0.28 wt%). did. The imide group concentration of the polyimide constituting the polyimide film B-12 was 28.7% by weight.
(合成例B-13)
 窒素気流下で、反応槽に、596.920重量部のm-TB(2.812モル部)及び91.331重量部のTPE-R(0.312モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、268.495重量部のPMDA(1.231モル部)及び543.255重量部のBPDA(1.846モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-13を得た。ポリアミド酸溶液B-13の溶液粘度は27,310cpsであった。
(Synthesis Example B-13)
Under a nitrogen stream, 596.920 parts by weight of m-TB (2.812 mole parts) and 91.331 parts by weight of TPE-R (0.312 mole parts) and the solid content concentration after polymerization were in the reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 268.495 parts by weight of PMDA (1.231 parts by mole) and 543.255 parts by weight of BPDA (1.846 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-13 was obtained. The solution viscosity of the polyamic acid solution B-13 was 27,310 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-13を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-13(非熱可塑性、Tg;305℃、吸湿率;0.52重量%)を調製した。また、ポリイミドフィルムB-13を構成するポリイミドのイミド基濃度は31.2重量%であった。 Next, the polyamic acid solution B-13 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-13 (non-thermoplastic, Tg: 305 ° C., moisture absorption rate: 0.52% by weight) was obtained. Prepared. The imide group concentration of the polyimide constituting the polyimide film B-13 was 31.2% by weight.
(合成例B-14)
 窒素気流下で、反応槽に、606.387重量部のm-TB(2.856モル部)及び92.779重量部のTPE-R(0.317モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、340.941重量部のPMDA(1.563モル部)及び459.892重量部のBPDA(1.563モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-14を得た。ポリアミド酸溶液B-14の溶液粘度は29,100cpsであった。
(Synthesis Example B-14)
Under a nitrogen stream, 606.387 parts by weight of m-TB (2.856 mole parts) and 92.779 parts by weight of TPE-R (0.317 mole parts) and a solid content concentration after polymerization in the reaction vessel DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after 340.941 parts by weight of PMDA (1.563 parts by mole) and 459.892 parts by weight of BPDA (1.563 parts by weight) were added, stirring was continued at room temperature for 3 hours to conduct a polymerization reaction, A polyamic acid solution B-14 was obtained. The solution viscosity of the polyamic acid solution B-14 was 29,100 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-14を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-14(非熱可塑性、Tg;322℃、吸湿率;0.57重量%)を調製した。また、ポリイミドフィルムB-14を構成するポリイミドのイミド基濃度は31.8重量%であった。 Next, the polyamic acid solution B-14 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-14 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.57 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-14 was 31.8% by weight.
(合成例B-15)
 窒素気流下で、反応槽に、685.370重量部のm-TB(3.228モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、346.815重量部のPMDA(1.590モル部)及び467.815重量部のBPDA(1.590モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-15を得た。ポリアミド酸溶液B-15の溶液粘度は29,900cpsであった。
(Synthesis Example B-15)
Under a nitrogen stream, 68.370 parts by weight of m-TB (3.228 mole parts) and DMAc in an amount such that the solid content after polymerization was 15% by weight were charged into the reaction vessel and stirred at room temperature. Dissolved. Next, after adding 346.815 parts by weight of PMDA (1.590 parts by mole) and 467.815 parts by weight of BPDA (1.590 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-15 was obtained. The solution viscosity of the polyamic acid solution B-15 was 29,900 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-15を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-15(非熱可塑性、Tg;332℃、吸湿率;0.63重量%)を調製した。また、ポリイミドフィルムB-15を構成するポリイミドのイミド基濃度は32.4重量%であった。 Next, the polyamic acid solution B-15 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of a 12 μm thick electrolytic copper foil so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-15 (non-thermoplastic, Tg: 332 ° C., moisture absorption rate: 0.63% by weight) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-15 was 32.4% by weight.
(合成例B-16)
 窒素気流下で、反応槽に、603.059重量部のm-TB(2.841モル部)、46.135重量部のTPE-Q(0.158モル部)及び54.368重量部のビスアニリン-M(0.158モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、339.070重量部のPMDA(1.555モル部)及び457.368重量部のBPDA(1.555モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-16を得た。ポリアミド酸溶液B-16の溶液粘度は29,800cpsであった。
(Synthesis Example B-16)
Under a nitrogen stream, 603.059 parts by weight of m-TB (2.841 parts by mole), 46.135 parts by weight of TPE-Q (0.158 parts by weight) and 54.368 parts by weight of bisaniline were placed in a reaction vessel. -M (0.158 mole part) and DMAc in an amount such that the solid content concentration after polymerization was 15% by weight were added and dissolved by stirring at room temperature. Next, 339.070 parts by weight of PMDA (1.555 mole parts) and 457.368 parts by weight of BPDA (1.555 mole parts) were added, and then the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours. A polyamic acid solution B-16 was obtained. The solution viscosity of the polyamic acid solution B-16 was 29,800 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-16を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-16(非熱可塑性、Tg;322℃、吸湿率;0.61重量%)を調製した。また、ポリイミドフィルムB-16を構成するポリイミドのイミド基濃度は31.6重量%であった。 Next, the polyamic acid solution B-16 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-16 (non-thermoplastic, Tg: 322 ° C., moisture absorption rate: 0.61 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-16 was 31.6% by weight.
(合成例B-17)
 窒素気流下で、反応槽に、598.899重量部のm-TB(2.821モル部)、45.817重量部のTPE-Q(0.157モル部)及び64.339重量部のBAPP(0.157モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、336.731重量部のPMDA(1.544モル部)及び454.214重量部のBPDA(1.544モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-17を得た。ポリアミド酸溶液B-17の溶液粘度は29,200cpsであった。
(Synthesis Example B-17)
Under a nitrogen stream, 598.899 parts by weight of m-TB (2.821 parts by mole), 45.817 parts by weight of TPE-Q (0.157 parts by weight) and 64.339 parts by weight of BAPP were placed in the reaction vessel. (0.157 mol part) and DMAc in an amount such that the solid content after polymerization was 15% by weight were added and dissolved by stirring at room temperature. Next, after adding 336.731 parts by weight of PMDA (1.544 parts by mole) and 454.214 parts by weight of BPDA (1.544 parts by mole), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-17 was obtained. The solution viscosity of the polyamic acid solution B-17 was 29,200 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-17を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-17(非熱可塑性、Tg;324℃、吸湿率;0.58重量%)を調製した。また、ポリイミドフィルムB-17を構成するポリイミドのイミド基濃度は31.4重量%であった。 Next, the polyamic acid solution B-17 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-17 (non-thermoplastic, Tg; 324 ° C., moisture absorption rate: 0.58 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-17 was 31.4% by weight.
(合成例B-18)
 窒素気流下で、反応槽に、606.387重量部のm-TB(2.856モル部)及び92.779重量部のTPE-Q(0.317モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、340.941重量部のPMDA(1.563モル部)及び459.892重量部のBPDA(1.563モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-18を得た。ポリアミド酸溶液B-18の溶液粘度は32,800cpsであった。
(Synthesis Example B-18)
Under a nitrogen stream, 606.387 parts by weight of m-TB (2.856 parts by mole) and 92.779 parts by weight of TPE-Q (0.317 parts by weight) and the solid content concentration after polymerization were placed in a reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after 340.941 parts by weight of PMDA (1.563 parts by mole) and 459.892 parts by weight of BPDA (1.563 parts by weight) were added, stirring was continued at room temperature for 3 hours to conduct a polymerization reaction, A polyamic acid solution B-18 was obtained. The solution viscosity of the polyamic acid solution B-18 was 32,800 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-18を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-18(非熱可塑性、Tg;330℃、吸湿率;0.59重量%)を調製した。また、ポリイミドフィルムB-18を構成するポリイミドのイミド基濃度は31.8重量%であった。 Next, the polyamic acid solution B-18 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-18 (non-thermoplastic, Tg; 330 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-18 was 31.8% by weight.
(合成例B-19)
 窒素気流下で、反応槽に、616.159重量部のm-TB(2.902モル部)及び94.275重量部のTPE―R(0.322モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、415.723重量部のPMDA(1.906モル部)及び373.843重量部のBPDA(1.271モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-19を得た。ポリアミド酸溶液B-19の溶液粘度は31,500cpsであった。
(Synthesis Example B-19)
Under a nitrogen stream, the reaction vessel contained 616.159 parts by weight of m-TB (2.902 mole part) and 94.275 parts by weight of TPE-R (0.322 mole part) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 415.723 parts by weight of PMDA (1.906 parts by mole) and 373.843 parts by weight of BPDA (1.271 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-19 was obtained. The solution viscosity of the polyamic acid solution B-19 was 31,500 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-19を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-19(非熱可塑性、Tg;342℃、吸湿率;0.56重量%)を調製した。また、ポリイミドフィルムB-19を構成するポリイミドのイミド基濃度は32.3重量%であった。 Next, the polyamic acid solution B-19 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-19 (non-thermoplastic, Tg; 342 ° C., moisture absorption rate: 0.56 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-19 was 32.3% by weight.
(合成例B-20)
 窒素気流下で、反応槽に、626.252重量部のm-TB(2.950モル部)及び95.819重量部のTPE―R(0.328モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、492.954重量部のPMDA(2.260モル部)及び284.975重量部のBPDA(0.969モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-20を得た。ポリアミド酸溶液B-20の溶液粘度は34,100cpsであった。
(Synthesis Example B-20)
Under a nitrogen stream, 626.252 parts by weight of m-TB (2.950 mole part) and 95.819 parts by weight of TPE-R (0.328 mole part) and the solid content concentration after polymerization were placed in a reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after 492.954 parts by weight of PMDA (2.260 mol parts) and 284.975 parts by weight of BPDA (0.969 mol parts) were added, the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-20 was obtained. The solution viscosity of the polyamic acid solution B-20 was 34,100 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-20を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-20(非熱可塑性、Tg;364℃、吸湿率;0.68重量%)を調製した。また、ポリイミドフィルムB-20を構成するポリイミドのイミド基濃度は32.9重量%であった。 Next, the polyamic acid solution B-20 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-20 (non-thermoplastic, Tg: 364 ° C., moisture absorption rate: 0.68 wt%) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-20 was 32.9% by weight.
(合成例B-21)
 窒素気流下で、反応槽に、517.831重量部のm-TB(2.439モル部)及び79.230重量部のTPE―R(0.271モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、291.151重量部のPMDA(1.335モル部)及び611.788重量部のTAHQ(1.335モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-21を得た。ポリアミド酸溶液B-21の溶液粘度は33,200cpsであった。
(Synthesis Example B-21)
Under a nitrogen stream, 517.831 parts by weight of m-TB (2.439 parts by mole) and 79.230 parts by weight of TPE-R (0.271 parts by weight) and a solid content concentration after polymerization in the reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 291.151 parts by weight of PMDA (1.335 parts by mole) and 611.188 parts by weight of TAHQ (1.335 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-21 was obtained. The solution viscosity of the polyamic acid solution B-21 was 33,200 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-21を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、、ポリイミドフィルムB-21(非熱可塑性、Tg;296℃、吸湿率;0.54重量%)を調製した。また、ポリイミドフィルムB-21を構成するポリイミドのイミド基濃度は26.8重量%であった。 Next, the polyamic acid solution B-21 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using an aqueous ferric chloride solution, and polyimide film B-21 (non-thermoplastic, Tg; 296 ° C., moisture absorption rate: 0.54% by weight) Was prepared. The imide group concentration of the polyimide constituting the polyimide film B-21 was 26.8% by weight.
(合成例B-22)
 窒素気流下で、反応槽に、587.744重量部のm-TB(2.769モル部)及び89.927重量部のTPE―R(0.308モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、198.275重量部のPMDA(0.909モル部)及び624.054重量部のBPDA(2.121モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-22を得た。ポリアミド酸溶液B-22の溶液粘度は26,800cpsであった。
(Synthesis Example B-22)
Under a nitrogen stream, the reaction vessel contained 587.744 parts by weight of m-TB (2.769 mole parts) and 89.927 parts by weight of TPE-R (0.308 mole parts) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 198.275 parts by weight of PMDA (0.909 mole parts) and 624.054 parts by weight of BPDA (2.121 mole parts), the polymerization reaction was continued for 3 hours at room temperature, A polyamic acid solution B-22 was obtained. The solution viscosity of the polyamic acid solution B-22 was 26,800 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-22を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-22(非熱可塑性、Tg;291℃、吸湿率;0.59重量%)を調製した。また、ポリイミドフィルムB-22を構成するポリイミドのイミド基濃度は30.7重量%であった。 Next, the polyamic acid solution B-22 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was etched away using an aqueous ferric chloride solution, and polyimide film B-22 (non-thermoplastic, Tg; 291 ° C., moisture absorption rate: 0.59 wt%) was removed. Prepared. The imide group concentration of the polyimide constituting the polyimide film B-22 was 30.7% by weight.
(合成例B-23)
 窒素気流下で、反応槽に、456.183重量部のm-TB(2.149モル部)及び269.219重量部のTPE―R(0.921モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、329.772重量部のPMDA(1.512モル部)及び444.826重量部のBPDA(1.512モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-23を得た。ポリアミド酸溶液B-23の溶液粘度は26,400cpsであった。
(Synthesis Example B-23)
Under nitrogen flow, 456.183 parts by weight of m-TB (2.149 mole parts) and 269.219 parts by weight of TPE-R (0.921 mole parts) and the solid content concentration after polymerization were DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, 329.772 parts by weight of PMDA (1.512 parts by mole) and 444.826 parts by weight of BPDA (1.512 parts by weight) were added, and then the polymerization reaction was continued by stirring at room temperature for 3 hours. A polyamic acid solution B-23 was obtained. The solution viscosity of the polyamic acid solution B-23 was 26,400 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-23を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-23(非熱可塑性、Tg;285℃、吸湿率;0.53重量%)を調製した。また、ポリイミドフィルムB-23を構成するポリイミドのイミド基濃度は30.7重量%であった。 Next, the polyamic acid solution B-23 was uniformly applied to one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. For the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-23 (non-thermoplastic, Tg: 285 ° C., moisture absorption rate: 0.53% by weight) was removed. Prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-23 was 30.7% by weight.
(合成例B-24)
 窒素気流下で、反応槽に、720.230重量部のm-TB(3.393モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、583.127重量部のPMDA(2.673モル部)及び196.644重量部のBPDA(0.668モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液B-24を得た。ポリアミド酸溶液B-24の溶液粘度は33,600cpsであった。
(Synthesis Example B-24)
Under a nitrogen stream, 720.230 parts by weight of m-TB (3.393 mole parts) and DMAc in an amount such that the solid content concentration after polymerization was 15% by weight were charged into the reaction vessel and stirred at room temperature. Dissolved. Next, after adding 583.127 parts by weight of PMDA (2.673 parts by mole) and 196.644 parts by weight of BPDA (0.668 parts by mole), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution B-24 was obtained. The solution viscosity of the polyamic acid solution B-24 was 33,600 cps.
 次に、厚さ12μmの電解銅箔の片面(表面粗さRz;2.1μm)に、ポリアミド酸溶液B-24を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。得られた金属張積層板について、塩化第二鉄水溶液を用いて銅箔をエッチング除去して、ポリイミドフィルムB-24(非熱可塑性、Tg;400℃以上、吸湿率;0.78重量%)を調製した。また、ポリイミドフィルムB-24を構成するポリイミドのイミド基濃度は34.2重量%であった。 Next, the polyamic acid solution B-24 was uniformly applied on one surface (surface roughness Rz; 2.1 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then 120 ° C. And dried by heating to remove the solvent. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. About the obtained metal-clad laminate, the copper foil was removed by etching using a ferric chloride aqueous solution, and polyimide film B-24 (non-thermoplastic, Tg; 400 ° C. or higher, moisture absorption rate: 0.78 wt%) Was prepared. Further, the imide group concentration of the polyimide constituting the polyimide film B-24 was 34.2% by weight.
[実施例B-1]
 エンドレスベルト状のステンレス製の支持基材上に、マルチマニホールド式の3共押出多層ダイを用いて、ポリアミド酸溶液B-2/ポリアミド酸溶液B-18/ポリアミド酸溶液B-2の順の3層構造で連続的に押し出して塗布し、130℃で3分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的な熱処理を行い、イミド化を完結し、熱可塑性ポリイミド層/非熱可塑性ポリイミド層/熱可塑性ポリイミド層の厚みが、それぞれ2.0μm/21μm/2.0μmのポリイミドフィルムB-1’を調製した。支持基材上のポリイミドフィルムB-1’をナイフエッジ法により剥離して、幅方向の長さが1100mmの長尺状ポリイミドフィルムB-1を調製した。
長尺状ポリイミドフィルムB-1の評価結果は以下のとおりである。
CTE;19ppm/K
面内リタデーション(RO);9nm
幅方向(TD方向)の面内リタデーション(RO)のばらつき(ΔRO);2nm
温度320℃の環境下、圧力340MPa/m、保持期間15分間の加圧前後における面内リタデーション(RO)の変化量;13nm
吸湿率;0.56重量%
誘電率(10GHz);3.56、誘電正接(10GHz);0.0032
[Example B-1]
Using a multi-manifold type three-coextrusion multi-layer die on an endless belt-like stainless steel support substrate, the polyamic acid solution B-2 / polyamic acid solution B-18 / polyamic acid solution B-2 in the order 3 The solvent was removed by continuously extruding and applying in a layer structure and drying by heating at 130 ° C. for 3 minutes. Thereafter, stepwise heat treatment is performed from 130 ° C. to 360 ° C. to complete imidization, and the thickness of the thermoplastic polyimide layer / non-thermoplastic polyimide layer / thermoplastic polyimide layer is 2.0 μm / 21 μm / 2.0 μm, respectively. A polyimide film B-1 ′ was prepared. The polyimide film B-1 ′ on the supporting substrate was peeled off by a knife edge method to prepare a long polyimide film B-1 having a length in the width direction of 1100 mm.
The evaluation results of the long polyimide film B-1 are as follows.
CTE; 19ppm / K
In-plane retardation (RO); 9 nm
Variation in in-plane retardation (RO) in width direction (TD direction) (ΔRO); 2 nm
Change amount of in-plane retardation (RO) before and after pressurization under a temperature of 320 ° C. under a pressure of 340 MPa / m 2 and a holding period of 15 minutes; 13 nm
Moisture absorption rate: 0.56% by weight
Dielectric constant (10 GHz); 3.56, dielectric loss tangent (10 GHz); 0.0032
[実施例B-2~実施例B-18、参考例B-1~参考例B-5]
 表6~表9に示すポリアミド酸溶液を使用した他は、実施例B-1と同様にして、実施例B-2~実施例B-18、参考例B-1~参考例B-5の長尺状ポリイミドフィルムB-2~B-23を得た。得られた長尺状ポリイミドフィルムB-2~B-23のCTE、面内リタデーション(RO)、幅方向(TD方向)の面内リタデーション(RO)のばらつき(ΔRO)、温度320℃の環境下、圧力340MPa/m、保持期間15分間の加圧前後における面内リタデーション(RO)の変化量、吸湿率を求めた。各測定結果を表6~表9に示す。
[Example B-2 to Example B-18, Reference Example B-1 to Reference Example B-5]
Example B-2 to Example B-18 and Reference Example B-1 to Reference Example B-5 were the same as Example B-1, except that the polyamic acid solutions shown in Tables 6 to 9 were used. Long polyimide films B-2 to B-23 were obtained. CTE of the obtained long polyimide films B-2 to B-23, in-plane retardation (RO), variation in in-plane retardation (RO) in the width direction (TD direction) (ΔRO), at an environment of 320 ° C. The amount of change in in-plane retardation (RO) before and after pressurization with a pressure of 340 MPa / m 2 and a holding period of 15 minutes, and the moisture absorption rate were determined. The measurement results are shown in Tables 6 to 9.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
[実施例B-19]
 長尺状の銅箔(圧延銅箔、JX金属株式会社製、商品名;GHY5-93F-HA-V2箔、厚み;12μm、熱処理後の引張弾性率;18GPa)の表面に、ポリアミド酸溶液B-2を硬化後の厚みが2.0μmとなるように均一に塗布した後、120℃で1分間加熱乾燥して溶媒を除去した。その上にポリアミド酸溶液B-18を硬化後の厚みが21μmとなるように均一に塗布した後、120℃で3分間加熱乾燥して溶媒を除去した。更に、その上にポリアミド酸B-2を硬化後の厚みが2.0μmとなるように均一に塗布した後、120℃で1分間加熱乾燥して溶媒を除去した。その後、130℃から360℃まで段階的な熱処理を行い、イミド化後を完結して、片面銅張積層板B-1を調製した。この片面銅張積層板B-1のポリイミド層側に、銅箔を重ね合わせ、温度320℃、圧力340MPa/mの条件で15分間熱圧着して、両面銅張積層板B-1を調製した。
キャスト面側ピール強度;◎、圧着面側ピール強度;○
[Example B-19]
On the surface of a long copper foil (rolled copper foil, manufactured by JX Metals Co., Ltd., trade name: GHY5-93F-HA-V2 foil, thickness: 12 μm, tensile modulus after heat treatment: 18 GPa), polyamic acid solution B -2 was uniformly applied so that the thickness after curing was 2.0 μm, and then dried by heating at 120 ° C. for 1 minute to remove the solvent. On top of this, the polyamic acid solution B-18 was uniformly applied so as to have a cured thickness of 21 μm, and then dried by heating at 120 ° C. for 3 minutes to remove the solvent. Further, the polyamic acid B-2 was uniformly applied thereon so that the thickness after curing was 2.0 μm, and then dried by heating at 120 ° C. for 1 minute to remove the solvent. Thereafter, stepwise heat treatment was performed from 130 ° C. to 360 ° C., and after imidization was completed, a single-sided copper-clad laminate B-1 was prepared. Copper foil is laminated on the polyimide layer side of this single-sided copper-clad laminate B-1, and thermocompression bonded for 15 minutes at a temperature of 320 ° C. and a pressure of 340 MPa / m 2 to prepare a double-sided copper-clad laminate B-1. did.
Cast surface side peel strength: ◎, crimp side peel strength: ○
[実施例B-20~実施例B-36、参考例B-6~参考例B-10]
 表10~表13に示すポリアミド酸溶液を使用した他は、実施例B-19と同様にして、実施例B-20~実施例B-36、参考例B-6~参考例B-10の両面銅張積層板B-2~B-23を得た。得られた両面銅張積層板B-2~B-23のキャスト面側ピール強度、圧着面側ピール強度を求めた。各測定結果を表10~表13に示す。
[Example B-20 to Example B-36, Reference Example B-6 to Reference Example B-10]
Example B-20 to Example B-36 and Reference Example B-6 to Reference Example B-10 were the same as Example B-19 except that the polyamic acid solutions shown in Table 10 to Table 13 were used. Double-sided copper-clad laminates B-2 to B-23 were obtained. Cast surface side peel strength and pressure-bonded surface side peel strength of the obtained double-sided copper clad laminates B-2 to B-23 were determined. Tables 10 to 13 show the measurement results.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
(合成例C-1)
 窒素気流下で、反応槽に、606.387重量部のm-TB(2.856モル部)及び92.779重量部のTPE-R(0.317モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、340.941重量部のPMDA(1.563モル部)及び459.892重量部のBPDA(1.563モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-1を調製した。ポリアミド酸溶液C-1の溶液粘度は29,100cpsであった。
(Synthesis Example C-1)
Under a nitrogen stream, 606.387 parts by weight of m-TB (2.856 mole parts) and 92.779 parts by weight of TPE-R (0.317 mole parts) and a solid content concentration after polymerization in the reaction vessel DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after 340.941 parts by weight of PMDA (1.563 parts by mole) and 459.892 parts by weight of BPDA (1.563 parts by weight) were added, stirring was continued at room temperature for 3 hours to conduct a polymerization reaction, A polyamic acid solution C-1 was prepared. The solution viscosity of the polyamic acid solution C-1 was 29,100 cps.
(合成例C-2)
 窒素気流下で、反応槽に、606.387重量部のm-TB(2.856モル部)及び92.779重量部のTPE-Q(0.317モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、340.941重量部のPMDA(1.563モル部)及び459.892重量部のBPDA(1.563モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-2を調製した。ポリアミド酸溶液C-2の溶液粘度は32,800cpsであった。
(Synthesis Example C-2)
Under a nitrogen stream, 606.387 parts by weight of m-TB (2.856 parts by mole) and 92.779 parts by weight of TPE-Q (0.317 parts by weight) and the solid content concentration after polymerization were placed in a reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after 340.941 parts by weight of PMDA (1.563 parts by mole) and 459.892 parts by weight of BPDA (1.563 parts by weight) were added, stirring was continued at room temperature for 3 hours to conduct a polymerization reaction, A polyamic acid solution C-2 was prepared. The solution viscosity of the polyamic acid solution C-2 was 32,800 cps.
(合成例C-3)
 窒素気流下で、反応槽に、616.159重量部のm-TB(2.902モル部)及び94.275重量部のTPE―R(0.322モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、415.723重量部のPMDA(1.906モル部)及び373.843重量部のBPDA(1.271モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-3を調製した。ポリアミド酸溶液C-3の溶液粘度は31,500cpsであった。
(Synthesis Example C-3)
Under a nitrogen stream, the reaction vessel contained 616.159 parts by weight of m-TB (2.902 mole part) and 94.275 parts by weight of TPE-R (0.322 mole part) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 415.723 parts by weight of PMDA (1.906 parts by mole) and 373.843 parts by weight of BPDA (1.271 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-3 was prepared. The solution viscosity of the polyamic acid solution C-3 was 31,500 cps.
(合成例C-4)
 窒素気流下で、反応槽に、637.503重量部のm-TB(3.003モル部)及び64.882重量部のBAPP(0.158モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、339.571重量部のPMDA(1.557モル部)及び458.044重量部のBPDA(1.557モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-4を調製した。ポリアミド酸溶液C-4の溶液粘度は24,100cpsであった。
(Synthesis Example C-4)
Under a nitrogen stream, 735.503 parts by weight of m-TB (3.003 parts by mole) and 64.882 parts by weight of BAPP (0.158 parts by weight) and a solid content concentration after polymerization of 15 parts by weight in a reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, 339.571 parts by weight of PMDA (1.557 parts by mole) and 458.044 parts by weight of BPDA (1.557 parts by weight) were added, and the polymerization reaction was then continued for 3 hours at room temperature. A polyamic acid solution C-4 was prepared. The solution viscosity of the polyamic acid solution C-4 was 24,100 cps.
(合成例C-5)
 窒素気流下で、反応槽に、591.594重量部のm-TB(2.787モル部)及び127.109重量部のBAPP(0.310モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、332.624重量部のPMDA(1.525モル部)及び448.673重量部のBPDA(1.525モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-5を調製した。ポリアミド酸溶液C-5の溶液粘度は23,200cpsであった。
(Synthesis Example C-5)
In a nitrogen stream, 591.594 parts by weight of m-TB (2.787 mole parts) and 127.109 parts by weight of BAPP (0.310 mole parts) and a solid content concentration after polymerization of 15 weights were placed in a reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, after adding 332.624 parts by weight of PMDA (1.525 parts by mole) and 448.673 parts by weight of BPDA (1.525 parts by weight), the polymerization reaction was continued for 3 hours at room temperature, A polyamic acid solution C-5 was prepared. The solution viscosity of the polyamic acid solution C-5 was 23,200 cps.
(合成例C-6)
 窒素気流下で、反応槽に、641.968重量部のm-TB(3.024モル部)及び54.830重量部のビスアニリン-M(0.159モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、341.950重量部のPMDA(1.568モル部)及び461.252重量部のBPDA(1.568モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-6を調製した。ポリアミド酸溶液C-6の溶液粘度は26,500cpsであった。
(Synthesis Example C-6)
Under a nitrogen stream, 64.968 parts by weight of m-TB (3.024 parts by mole) and 54.830 parts by weight of bisaniline-M (0.159 parts by weight) and a solid content concentration after polymerization were charged in the reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 341.950 parts by weight of PMDA (1.568 parts by mole) and 461.252 parts by weight of BPDA (1.568 parts by mole), the polymerization reaction is continued by stirring at room temperature for 3 hours, A polyamic acid solution C-6 was prepared. The solution viscosity of the polyamic acid solution C-6 was 26,500 cps.
(合成例C-7)
 窒素気流下で、反応槽に、538.432重量部のm-TB(2.536モル部)及び185.359重量部のTPE-R(0.634モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、408.690重量部のPMDA(1.874モル部)及び367.519重量部のBPDA(1.249モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-7を調製した。ポリアミド酸溶液C-7の溶液粘度は31,100cpsであった。
(Synthesis Example C-7)
Under a nitrogen stream, the reaction vessel contained 538.432 parts by weight of m-TB (2.536 parts by mole) and 185.359 parts by weight of TPE-R (0.634 parts by weight) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 408.690 parts by weight of PMDA (1.874 parts by weight) and 367.519 parts by weight of BPDA (1.249 parts by weight), the polymerization reaction is continued by stirring at room temperature for 3 hours, A polyamic acid solution C-7 was prepared. The solution viscosity of the polyamic acid solution C-7 was 31,100 cps.
(合成例C-8)
 窒素気流下で、反応槽に、674.489重量部のm-TB(3.177モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、273.047重量部のPMDA(1.252モル部)及び552.465重量部のBPDA(1.878モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-8を調製した。ポリアミド酸溶液C-8の溶液粘度は26,400cpsであった。
(Synthesis Example C-8)
Under a nitrogen stream, 674.489 parts by weight of m-TB (3.177 parts by mole) and DMAc in an amount such that the solid content after polymerization was 15% by weight were charged into the reaction vessel and stirred at room temperature. Dissolved. Next, after adding 273.047 parts by weight of PMDA (1.252 parts by weight) and 552.465 parts by weight of BPDA (1.878 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-8 was prepared. The solution viscosity of the polyamic acid solution C-8 was 26,400 cps.
(合成例C-9)
 窒素気流下で、反応槽に、463.290重量部のm-TB(2.182モル部)及び273.414重量部のTPE-R(0.935モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、401.891重量部のPMDA(1.843モル部)及び361.405重量部のBPDA(1.228モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-9を調製した。ポリアミド酸溶液C-9の溶液粘度は29,000cpsであった。
(Synthesis Example C-9)
Under a nitrogen stream, 463.290 parts by weight of m-TB (2.182 parts by mole) and 273.414 parts by weight of TPE-R (0.935 parts by weight) and a solid content concentration after polymerization were placed in the reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 401.891 parts by weight of PMDA (1.843 parts by mole) and 361.405 parts by weight of BPDA (1.228 parts by mole), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-9 was prepared. The solution viscosity of the polyamic acid solution C-9 was 29,000 cps.
(合成例C-10)
 窒素気流下で、反応槽に、589.033重量部のm-TB(2.775モル部)及び111.762重量部のAPAB(0.490モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、420.798重量部のPMDA(1.929モル部)及び378.407重量部のBPDA(1.286モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-10を調製した。ポリアミド酸溶液C-10の溶液粘度は22,700cpsであった。
(Synthesis Example C-10)
Under a nitrogen stream, 589.033 parts by weight of m-TB (2.775 parts by mole) and 111.762 parts by weight of APAB (0.490 parts by weight) and a solid content concentration after polymerization of 15 parts by weight were added to the reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, after adding 420.798 parts by weight of PMDA (1.929 mole parts) and 378.407 parts by weight of BPDA (1.286 mole parts), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-10 was prepared. The solution viscosity of the polyamic acid solution C-10 was 22,700 cps.
(合成例C-11)
 窒素気流下で、反応槽に、500.546重量部のm-TB(2.358モル部)及び229.756重量部のTPE―R(0.786モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、405.262重量部のPMDA(1.858モル部)及び364.436重量部のBPDA(1.239モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-11を調製した。ポリアミド酸溶液C-11の溶液粘度は29,600cpsであった。
(Synthesis Example C-11)
Under a nitrogen stream, the reactor was charged with 50.546 parts by weight of m-TB (2.358 mole parts) and 229.756 parts by weight of TPE-R (0.786 mole parts) and the solid content concentration after polymerization. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 405.262 parts by weight of PMDA (1.858 parts by mole) and 364.436 parts by weight of BPDA (1.239 parts by weight), the polymerization reaction was continued for 3 hours at room temperature, A polyamic acid solution C-11 was prepared. The solution viscosity of the polyamic acid solution C-11 was 29,600 cps.
(合成例C-12)
 窒素気流下で、反応槽に、779.571重量部のBAPP(1.899モル部)並びに重合後の固形分濃度が12重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、420.430重量部のPMDA(1.928モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-12を調製した。ポリアミド酸溶液C-12の溶液粘度は2,210cpsであった。
(Synthesis Example C-12)
Under a nitrogen stream, 779.571 parts by weight of BAPP (1.899 parts by mole) and DMAc in an amount such that the solid content concentration after polymerization was 12% by weight were charged into a reaction vessel and dissolved by stirring at room temperature. It was. Next, 420.430 parts by weight of PMDA (1.928 mol parts) was added, and then the polymerization reaction was continued for 3 hours at room temperature to prepare a polyamic acid solution C-12. The solution viscosity of the polyamic acid solution C-12 was 2,210 cps.
(合成例C-13)
 窒素気流下で、反応槽に、616.159重量部のm-TB(2.902モル部)及び94.275重量部のAPB(0.322モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、415.723重量部のPMDA(1.906モル部)及び373.843重量部のBPDA(1.271モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-13を調製した。ポリアミド酸溶液C-13の溶液粘度は12,700cpsであった。
(Synthesis Example C-13)
Under a nitrogen stream, 616.159 parts by weight of m-TB (2.902 parts by mole) and 94.275 parts by weight of APB (0.322 parts by weight) and a solid content concentration after polymerization of 15 parts by weight were added to the reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, after adding 415.723 parts by weight of PMDA (1.906 parts by mole) and 373.843 parts by weight of BPDA (1.271 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-13 was prepared. The solution viscosity of the polyamic acid solution C-13 was 12,700 cps.
(合成例C-14)
 窒素気流下で、反応槽に、628.877重量部のm-TB(2.962モル部)及び65.261重量部の3,3’-DAPM(0.329モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、424.303重量部のPMDA(1.945モル部)及び381.559重量部のBPDA(1.297モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-14を調製した。ポリアミド酸溶液C-14の溶液粘度は31,400cpsであった。
(Synthesis Example C-14)
Under a nitrogen stream, 62.877 parts by weight of m-TB (2.962 parts by weight) and 65.261 parts by weight of 3,3′-DAPM (0.329 parts by weight) and a solid after polymerization were placed in a reaction vessel. DMAc was added in an amount such that the partial concentration was 15% by weight, and dissolved by stirring at room temperature. Next, after adding 424.303 parts by weight of PMDA (1.945 parts by mole) and 381.559 parts by weight of BPDA (1.297 parts by mole), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-14 was prepared. The solution viscosity of the polyamic acid solution C-14 was 31,400 cps.
(合成例C-15)
 窒素気流下で、反応槽に、613.786重量部のm-TB(2.891モル部)、28.652重量部のDTAm(0.161モル部)及び46.956重量部のTPE-Q(0.161モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、345.102重量部のPMDA(1.582モル部)及び465.504重量部のBPDA(1.582モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-15を調製した。ポリアミド酸溶液C-15の溶液粘度は24,400cpsであった。
(Synthesis Example C-15)
Under a nitrogen stream, 613.786 parts by weight of m-TB (2.891 mole parts), 28.652 parts by weight of DTAm (0.161 mole parts) and 46.956 parts by weight of TPE-Q were placed in a reaction vessel. (0.161 mol part) and DMAc in an amount such that the solid content after polymerization was 15% by weight were added and dissolved by stirring at room temperature. Next, after adding 345.102 parts by weight of PMDA (1.582 parts by mole) and 465.504 parts by weight of BPDA (1.582 parts by weight), the polymerization reaction was continued for 3 hours at room temperature, A polyamic acid solution C-15 was prepared. The solution viscosity of the polyamic acid solution C-15 was 24,400 cps.
(合成例C-16)
 窒素気流下で、反応槽に、607.034重量部のm-TB(2.859モル部)、44.840重量部のBAPM(0.159モル部)及び46.439重量部のTPE-Q(0.159モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、341.305重量部のPMDA(1.565モル部)及び460.383重量部のBPDA(1.565モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-16を調製した。ポリアミド酸溶液C-16の溶液粘度は27,100cpsであった。
(Synthesis Example C-16)
Under a nitrogen stream, 607.034 parts by weight of m-TB (2.859 parts by weight), 44.840 parts by weight of BAPM (0.159 parts by weight) and 46.439 parts by weight of TPE-Q were placed in a reaction vessel. (0.159 mol part) and DMAc in an amount such that the solid content after polymerization was 15% by weight were added and dissolved by stirring at room temperature. Next, after adding 341.305 parts by weight of PMDA (1.565 parts by mole) and 460.383 parts by weight of BPDA (1.565 parts by weight), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-16 was prepared. The solution viscosity of the polyamic acid solution C-16 was 27,100 cps.
(合成例C-17)
 窒素気流下で、反応槽に、603.059重量部のm-TB(2.841モル部)、54.368重量部のビスアニリン-P(0.158モル部)及び46.135重量部のTPE-Q(0.158モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、339.070重量部のPMDA(1.555モル部)及び457.368重量部のBPDA(1.555モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-17を調製した。ポリアミド酸溶液C-17の溶液粘度は29,200cpsであった。
(Synthesis Example C-17)
Under a nitrogen stream, 603.059 parts by weight of m-TB (2.841 mole parts), 54.368 parts by weight of bisaniline-P (0.158 mole parts) and 46.135 parts by weight of TPE were added to the reaction vessel. -Q (0.158 mol part) and DMAc in an amount such that the solid content after polymerization was 15% by weight were added and dissolved by stirring at room temperature. Next, 339.070 parts by weight of PMDA (1.555 mole parts) and 457.368 parts by weight of BPDA (1.555 mole parts) were added, and then the polymerization reaction was carried out by continuing stirring at room temperature for 3 hours. A polyamic acid solution C-17 was prepared. The solution viscosity of the polyamic acid solution C-17 was 29,200 cps.
(合成例C-18)
 窒素気流下で、反応槽に、599.272重量部のm-TB(2.823モル部)、63.445重量部のDTBAB(0.157モル部)及び45.845重量部のTPE-Q(0.157モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、336.941重量部のPMDA(1.545モル部)及び454.497重量部のBPDA(1.545モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-18を調製した。ポリアミド酸溶液C-18の溶液粘度は28,800cpsであった。
(Synthesis Example C-18)
Under a nitrogen stream, 599.272 parts by weight of m-TB (2.823 moles), 63.445 parts by weight of DTBAB (0.157 moles) and 45.845 parts by weight of TPE-Q were placed in the reaction vessel. (0.157 mol part) and DMAc in an amount such that the solid content after polymerization was 15% by weight were added and dissolved by stirring at room temperature. Next, 336.941 parts by weight of PMDA (1.545 parts by mole) and 454.497 parts by weight of BPDA (1.545 parts by weight) were added, and the polymerization reaction was then continued for 3 hours at room temperature. A polyamic acid solution C-18 was prepared. The solution viscosity of the polyamic acid solution C-18 was 28,800 cps.
(合成例C-19)
 窒素気流下で、反応槽に、610.050重量部のm-TB(2.874モル部)及び52.104重量部のビスアニリン-M(0.151モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、399.526重量部のNTCDA(1.490モル部)及び438.320重量部のBPDA(1.490モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-19を調製した。ポリアミド酸溶液C-19の溶液粘度は29,200cpsであった。
(Synthesis Example C-19)
Under a nitrogen stream, 610.050 parts by weight of m-TB (2.874 parts by weight) and 52.104 parts by weight of bisaniline-M (0.151 parts by weight) and a solid content concentration after polymerization were placed in the reaction vessel. DMAc in an amount of 15% by weight was added and dissolved by stirring at room temperature. Next, after adding 399.526 parts by weight of NTCDA (1.490 parts by mole) and 438.320 parts by weight of BPDA (1.490 parts by weight), the polymerization reaction was continued for 3 hours at room temperature, A polyamic acid solution C-19 was prepared. The solution viscosity of the polyamic acid solution C-19 was 29,200 cps.
(合成例C-20)
 窒素気流下で、反応槽に、560.190重量部のm-TB(2.639モル部)及び33.503重量部のBAPP(0.082モル部)並びに重合後の固形分濃度が15重量%となる量のDMAcを投入し、室温で撹拌して溶解させた。次に、292.237重量部のPMDA(1.340モル部)及び614.071重量部のTAHQ(1.340モル部)を添加した後、室温で3時間撹拌を続けて重合反応を行い、ポリアミド酸溶液C-20を調製した。ポリアミド酸溶液C-20の溶液粘度は26,100cpsであった。
(Synthesis Example C-20)
Under a nitrogen stream, 560.190 parts by weight of m-TB (2.639 parts by weight) and 33.503 parts by weight of BAPP (0.082 parts by weight) and a solid content concentration after polymerization of 15 parts by weight in a reaction vessel. % Of DMAc was added and dissolved by stirring at room temperature. Next, after adding 292.237 parts by weight of PMDA (1.340 mole part) and 614.071 parts by weight of TAHQ (1.340 mole part), the polymerization reaction was continued by stirring at room temperature for 3 hours, A polyamic acid solution C-20 was prepared. The solution viscosity of the polyamic acid solution C-20 was 26,100 cps.
[実施例C-1]
 厚さ12μmの電解銅箔の片面(表面粗さRz;0.6μm)に、ポリアミド酸溶液C-1を硬化後の厚みが約25μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。更に、120℃から360℃まで段階的な熱処理を30分以内で行い、イミド化を完結した。塩化第二鉄水溶液を用いて、銅箔をエッチング除去して、ポリイミドフィルムC-1(CTE;18.1ppm/K、Tg;322℃、吸湿率;0.57重量%、HAZE;74.5%、フィルム伸度;48%、誘電率;3.42、誘電正接;0.0028)を調製した。
[Example C-1]
A polyamic acid solution C-1 was uniformly applied to one side (surface roughness Rz; 0.6 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 25 μm, and then heat-dried at 120 ° C. The solvent was removed. Furthermore, stepwise heat treatment from 120 ° C. to 360 ° C. was performed within 30 minutes to complete imidization. The copper foil was etched away using an aqueous ferric chloride solution, and polyimide film C-1 (CTE; 18.1 ppm / K, Tg; 322 ° C., moisture absorption rate: 0.57 wt%, HAZE; 74.5 %, Film elongation; 48%, dielectric constant; 3.42, dielectric loss tangent; 0.0028).
[実施例C-2~実施例C-9及び参考例C-1~参考例C-2]
 表14及び表15に示すポリアミド酸溶液を使用した他は、実施例C-1と同様にして、ポリイミドフィルムC-2~C-11を調製した。ポリイミドフィルムC-2~C-11について、CTE、Tg、吸湿率、HAZE、フィルム伸度、誘電率及び誘電正接を求めた。これらの測定結果を表14及び表15に示す。
[Example C-2 to Example C-9 and Reference Example C-1 to Reference Example C-2]
Polyimide films C-2 to C-11 were prepared in the same manner as in Example C-1, except that the polyamic acid solution shown in Table 14 and Table 15 was used. For the polyimide films C-2 to C-11, CTE, Tg, moisture absorption, HAZE, film elongation, dielectric constant and dielectric loss tangent were determined. These measurement results are shown in Tables 14 and 15.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
[実施例C-10]
 ポリアミド酸溶液C-11を使用し、120℃から360℃まで段階的な熱処理を5時間で行ったこと以外、実施例C-1と同様にして、ポリイミドフィルムC-12(CTE;10.2ppm/K、Tg;307℃、吸湿率;0.61重量%、HAZE;74.2%、フィルム伸度;41%)を調製した。
[Example C-10]
A polyimide film C-12 (CTE; 10.2 ppm) was prepared in the same manner as in Example C-1, except that the polyamic acid solution C-11 was used and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 5 hours. / K, Tg: 307 ° C., moisture absorption: 0.61 wt%, HAZE: 74.2%, film elongation: 41%).
[実施例C-11]
厚さ12μmの電解銅箔の片面(表面粗さRz;0.6μm)に、ポリアミド酸溶液C-15を硬化後の厚みが約2~3μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。次にその上にポリアミド酸溶液C-1を硬化後の厚みが、約21μmとなるように均一に塗布し、120℃で加熱乾燥し溶媒を除去した。更に、その上にポリアミド酸溶液C-15を硬化後の厚みが約2~3μmとなるように均一に塗布した後、120℃で加熱乾燥し溶媒を除去した。このようにして、3層のポリアミド酸層を形成した後、120℃から360℃まで段階的な熱処理を30分で行い、イミド化を完結して、金属張積層板C-11を調製した。金属張積層板C-11におけるポリイミド層の膨れ等の不具合は確認されなかった。
[Example C-11]
A polyamic acid solution C-15 was uniformly applied to one side (surface roughness Rz; 0.6 μm) of an electrolytic copper foil having a thickness of 12 μm so that the thickness after curing was about 2 to 3 μm, and then at 120 ° C. The solvent was removed by heating to dryness. Next, the polyamic acid solution C-1 was uniformly applied thereon so that the thickness after curing was about 21 μm, and dried by heating at 120 ° C. to remove the solvent. Further, the polyamic acid solution C-15 was uniformly applied thereon so that the thickness after curing was about 2 to 3 μm, and then dried by heating at 120 ° C. to remove the solvent. After forming the three polyamic acid layers in this way, a stepwise heat treatment from 120 ° C. to 360 ° C. was performed in 30 minutes to complete imidization, and a metal-clad laminate C-11 was prepared. Inconveniences such as swelling of the polyimide layer in the metal-clad laminate C-11 were not confirmed.
[実施例C-12~実施例C-17]
 ポリアミド酸溶液C-1の代わりに、ポリアミド酸溶液C-2~C-7を使用したこと以外、実施例C-11と同様にして、金属張積層板C-12~C-17を調製した。金属張積層板C-12~C-17のいずれにおいても、ポリイミド層の膨れ等の不具合は確認されなかった。
[Example C-12 to Example C-17]
Metal-clad laminates C-12 to C-17 were prepared in the same manner as in Example C-11 except that the polyamic acid solutions C-2 to C-7 were used instead of the polyamic acid solution C-1. . In any of the metal-clad laminates C-12 to C-17, problems such as swelling of the polyimide layer were not confirmed.
(参考例C-3)
実施例C-11における120℃から360℃まで段階的な熱処理を15分で行ったこと以外、実施例C-11と同様にして、金属張積層板を調製したが、ポリイミド層に膨れが確認された。
(Reference Example C-3)
A metal-clad laminate was prepared in the same manner as in Example C-11 except that the stepwise heat treatment from 120 ° C. to 360 ° C. in Example C-11 was performed in 15 minutes, but it was confirmed that the polyimide layer was swollen. It was done.
[実施例C-18~実施例C-20]
 実施例C-11におけるポリアミド酸溶液C-1の代わりに、ポリアミド酸溶液C-4~C-6を使用し、120℃から360℃まで段階的な熱処理を15分で行ったこと以外、実施例C-11と同様にして、金属張積層板C-18~C-20を調製した。金属張積層板C-18~C-20のいずれにおいても、ポリイミド層の膨れ等の不具合は確認されなかった。
[Example C-18 to Example C-20]
The procedure was carried out except that the polyamic acid solutions C-4 to C-6 were used in place of the polyamic acid solution C-1 in Example C-11, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes. In the same manner as in Example C-11, metal-clad laminates C-18 to C-20 were prepared. In any of the metal-clad laminates C-18 to C-20, defects such as swelling of the polyimide layer were not confirmed.
(参考例C-4~参考例C-6)
 実施例C-11におけるポリアミド酸溶液C-1の代わりに、ポリアミド酸溶液C-2、C-3及びC-7を使用し、120℃から360℃まで段階的な熱処理を15分で行ったこと以外、実施例C-11と同様にして、金属張積層板を調製したが、いずれの金属張積層板においても、ポリイミド層に膨れが確認された。
(Reference Example C-4 to Reference Example C-6)
In place of the polyamic acid solution C-1 in Example C-11, the polyamic acid solutions C-2, C-3, and C-7 were used, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes. Except for the above, a metal-clad laminate was prepared in the same manner as in Example C-11. In any of the metal-clad laminates, swelling was confirmed in the polyimide layer.
[実施例C-21~実施例C-26]
 表16に示すポリアミド酸溶液を使用した他は、実施例C-1と同様にして、ポリイミドフィルムC-13~C-18を調製した。ポリイミドフィルムC-13~C-18について、CTE、Tg、誘電率および誘電正接を求めた。これらの測定結果を表16に示す。
[Example C-21 to Example C-26]
Polyimide films C-13 to C-18 were prepared in the same manner as in Example C-1, except that the polyamic acid solution shown in Table 16 was used. For polyimide films C-13 to C-18, CTE, Tg, dielectric constant and dielectric loss tangent were determined. These measurement results are shown in Table 16.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
[実施例C-27~実施例C-30]
 実施例C-11におけるポリアミド酸溶液C-1の代わりに、ポリアミド酸溶液C-15~C-18を使用し、120℃から360℃まで段階的な熱処理を15分で行ったこと以外、実施例C-11と同様にして、金属張積層板C-27~C-30を調製した。金属張積層板C-27~C-30のいずれにおいても、ポリイミド層の膨れ等の不具合は確認されなかった。
[Example C-27 to Example C-30]
The procedure was carried out except that the polyamic acid solutions C-15 to C-18 were used instead of the polyamic acid solution C-1 in Example C-11, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes. In the same manner as in Example C-11, metal-clad laminates C-27 to C-30 were prepared. In any of the metal-clad laminates C-27 to C-30, defects such as swelling of the polyimide layer were not confirmed.
(参考例C-7~参考例C-8)
 実施例C-11におけるポリアミド酸溶液C-1の代わりに、ポリアミド酸溶液C-13及びC-14を使用し、120℃から360℃まで段階的な熱処理を15分で行ったこと以外、実施例C-11と同様にして、金属張積層板を調製したが、いずれの金属張積層板においても、ポリイミド層に膨れが確認された。
(Reference Example C-7 to Reference Example C-8)
The procedure was carried out except that the polyamic acid solutions C-13 and C-14 were used instead of the polyamic acid solution C-1 in Example C-11, and stepwise heat treatment was performed from 120 ° C. to 360 ° C. in 15 minutes. A metal-clad laminate was prepared in the same manner as in Example C-11, but swelling was confirmed in the polyimide layer in any of the metal-clad laminates.
[実施例C-31~実施例C-32]
 表17に示すポリアミド酸溶液を使用した他は、実施例C-1と同様にして、ポリイミドフィルムC-19~C-20を調製した。ポリイミドフィルムC-19~C-20について、CTE、Tg、誘電率および誘電正接を求めた。これらの測定結果を表17に示す。
[Example C-31 to Example C-32]
Polyimide films C-19 to C-20 were prepared in the same manner as in Example C-1, except that the polyamic acid solution shown in Table 17 was used. For the polyimide films C-19 to C-20, the CTE, Tg, dielectric constant and dielectric loss tangent were determined. These measurement results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。 As described above, the embodiments of the present invention have been described in detail for the purpose of illustration, but the present invention is not limited to the above-described embodiments, and various modifications are possible.
 本出願は、2016年9月29日に出願された日本国特許出願2016-191786号、2016年9月29日に出願された日本国特許出願2016-191787号、2016年12月28日に出願された日本国特許出願2016-256927号、及び、2016年12月28日に出願された日本国特許出願2016-256928号に基づく優先権を主張するものであり、当該出願の全内容をここに援用する。 This application is Japanese Patent Application No. 2016-191786, filed on September 29, 2016, Japanese Patent Application No. 2016-191787, filed on September 29, 2016, and filed on December 28, 2016. Claiming priority based on Japanese Patent Application No. 2016-256927 and Japanese Patent Application No. 2016-2566928 filed on Dec. 28, 2016, the entire contents of which are hereby incorporated by reference herein. Incorporate.

Claims (9)

  1.  非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有するポリイミドフィルムであって、
     下記の条件(a-i)~(a-iv);
    (a-i)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、
     前記テトラカルボン酸残基の100モル部に対して、
     3,3’、4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)から誘導されるテトラカルボン酸残基(BPDA残基)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)から誘導されるテトラカルボン酸残基(TAHQ残基)の少なくとも1種並びにピロメリット酸二無水物(PMDA)から誘導されるテトラカルボン酸残基(PMDA残基)及び2,3,6,7-ナフタレンテトラカルボン酸二無水物(NTCDA)から誘導されるテトラカルボン酸残基(NTCDA残基)の少なくとも1種の合計が80モル部以上であり、
     前記BPDA残基及び前記TAHQ残基の少なくとも1種と、前記PMDA残基及び前記NTCDA残基の少なくとも1種とのモル比{(BPDA残基+TAHQ残基)/(PMDA残基+NTCDA残基)}が0.6~1.3の範囲内にあること;
    (a-ii)前記熱可塑性ポリイミド層を構成する熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、前記ジアミン残基の100モル部に対して、
     下記の一般式(B1)~(B7)で表されるジアミン化合物から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基が70モル部以上であること;
    (a-iii)熱膨張係数が10ppm/K~30ppm/Kの範囲内であること;
    (a-iv)10GHzにおける誘電正接(Df)が0.004以下であること;
    を満たすことを特徴とするポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000001
    [式(B1)~(B7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-若しくは-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(B3)中から式(B2)と重複するものは除き、式(B5)中から式(B4)と重複するものは除くものとする。]
    A polyimide film having a thermoplastic polyimide layer containing a thermoplastic polyimide in at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide,
    The following conditions (ai) to (a-iv);
    (Ai) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
    For 100 mole parts of the tetracarboxylic acid residue,
    Tetracarboxylic acid residue (BPDA residue) derived from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride At least one tetracarboxylic acid residue (TAHQ residue) derived from the product (TAHQ) and tetracarboxylic acid residue (PMDA residue) derived from pyromellitic dianhydride (PMDA) and a few The total of at least one tetracarboxylic acid residue (NTCDA residue) derived from 1,6,7-naphthalenetetracarboxylic dianhydride (NTCDA) is 80 parts by mole or more,
    Molar ratio of at least one of the BPDA residue and the TAHQ residue and at least one of the PMDA residue and the NTCDA residue {(BPDA residue + TAHQ residue) / (PMDA residue + NTCDA residue) } Is in the range of 0.6 to 1.3;
    (A-ii) The thermoplastic polyimide constituting the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and relative to 100 mole parts of the diamine residue,
    The diamine residue derived from at least one diamine compound selected from the diamine compounds represented by the following general formulas (B1) to (B7) is 70 mol parts or more;
    (A-iii) the coefficient of thermal expansion is within the range of 10 ppm / K to 30 ppm / K;
    (A-iv) The dielectric loss tangent (Df) at 10 GHz is 0.004 or less;
    The polyimide film characterized by satisfy | filling.
    Figure JPOXMLDOC01-appb-C000001
    [In the formulas (B1) to (B7), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and the linking group A is independently —O—, —S—, —CO A divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—, wherein n 1 is independent Represents an integer of 0 to 4. However, in the formula (B3), those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded. ]
  2.  前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおけるジアミン残基の100モル部に対して、下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が80モル部以上であることを特徴とする請求項1に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000002
    [式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基、若しくはアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
    The diamine residue derived from the diamine compound represented by the following general formula (A1) is 80 mol parts or more with respect to 100 mol parts of the diamine residues in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer. The polyimide film according to claim 1, wherein:
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group. N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. ]
  3.  前記熱可塑性ポリイミドを構成する熱可塑性ポリイミドにおける前記ジアミン残基の100モル部に対して、前記一般式(B1)~(B7)で表されるジアミン化合物から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基が70モル部以上99モル部以下の範囲内であり、前記一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が1モル部以上30モル部以下の範囲内である請求項1に記載のポリイミドフィルム。 It is derived from at least one diamine compound selected from the diamine compounds represented by the general formulas (B1) to (B7) with respect to 100 mole parts of the diamine residue in the thermoplastic polyimide constituting the thermoplastic polyimide. The diamine residue is in the range of 70 to 99 mol parts, and the diamine residue derived from the diamine compound represented by the general formula (A1) is in the range of 1 to 30 mol parts. The polyimide film according to claim 1.
  4.  非熱可塑性ポリイミドを含む非熱可塑性ポリイミド層の少なくとも一方に熱可塑性ポリイミドを含む熱可塑性ポリイミド層を有するポリイミドフィルムであって、
     下記の条件(b-i)~(b-iv);
    (b-i)熱膨張係数が10ppm/K~30ppm/Kの範囲内であること;
    (b-ii)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、
     前記テトラカルボン酸残基の100モル部に対して、
     3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物(TAHQ)から選ばれる少なくとも一種のテトラカルボン酸二無水物から誘導されるテトラカルボン酸残基が30モル部以上60モル部以下の範囲内であり、
     ピロメリット酸二無水物(PMDA)から誘導されるテトラカルボン酸残基が40モル部以上70モル部以下の範囲内であること;
    (b-iii)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドにおけるジアミン残基の100モル部に対して、
     下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が80モル部以上であること;
    (b-iv)前記熱可塑性ポリイミド層を構成する熱可塑性ポリイミドはテトラカルボン酸残基及びジアミン残基を含むものであって、前記ジアミン残基の100モル部に対して、
     下記の一般式(B1)~(B7)で表されるジアミン化合物から選ばれる少なくとも一種のジアミン化合物から誘導されるジアミン残基が70モル部以上99モル部以下の範囲内であり、
     下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基が1モル部以上30モル部以下の範囲内であること;
    を満たすことを特徴とするポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000003
    [式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素基、若しくはアルコキシ基を示し、nは0~2の整数を示し、p及びqは独立して0~4の整数を示す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(B1)~(B7)において、Rは独立に炭素数1~6の1価の炭化水素基又はアルコキシ基を示し、連結基Aは独立に-O-、-S-、-CO-、-SO-、-SO-、-COO-、-CH-、-C(CH-、-NH-若しくは-CONH-から選ばれる2価の基を示し、nは独立に0~4の整数を示す。ただし、式(B3)中から式(B2)と重複するものは除き、式(B5)中から式(B4)と重複するものは除くものとする。]
    A polyimide film having a thermoplastic polyimide layer containing a thermoplastic polyimide in at least one of the non-thermoplastic polyimide layers containing a non-thermoplastic polyimide,
    The following conditions (bi) to (b-iv);
    (Bi) the coefficient of thermal expansion is in the range of 10 ppm / K to 30 ppm / K;
    (B-ii) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
    For 100 mole parts of the tetracarboxylic acid residue,
    At least one tetracarboxylic dianhydride selected from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 1,4-phenylenebis (trimellitic acid monoester) dianhydride (TAHQ) The tetracarboxylic acid residue derived from the anhydride is in the range of 30 to 60 parts by mole,
    The tetracarboxylic acid residue derived from pyromellitic dianhydride (PMDA) is in the range of 40 to 70 mole parts;
    (B-iii) For 100 mole parts of the diamine residue in the non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer,
    The diamine residue derived from the diamine compound represented by the following general formula (A1) is 80 parts by mole or more;
    (B-iv) The thermoplastic polyimide composing the thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue, and with respect to 100 mole parts of the diamine residue,
    The diamine residue derived from at least one diamine compound selected from the diamine compounds represented by the following general formulas (B1) to (B7) is in the range of 70 to 99 parts by mole,
    The diamine residue derived from the diamine compound represented by the following general formula (A1) is in the range of 1 to 30 mol parts;
    The polyimide film characterized by satisfy | filling.
    Figure JPOXMLDOC01-appb-C000003
    [In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon group having 1 to 3 carbon atoms, or an alkoxy group. N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. ]
    Figure JPOXMLDOC01-appb-C000004
    [In the formulas (B1) to (B7), R 1 independently represents a monovalent hydrocarbon group or alkoxy group having 1 to 6 carbon atoms, and the linking group A is independently —O—, —S—, —CO A divalent group selected from —, —SO—, —SO 2 —, —COO—, —CH 2 —, —C (CH 3 ) 2 —, —NH— or —CONH—, wherein n 1 is independent Represents an integer of 0 to 4. However, in the formula (B3), those that overlap with the formula (B2) are excluded, and in the formula (B5), those that overlap with the formula (B4) are excluded. ]
  5.  前記非熱可塑性ポリイミド及び前記熱可塑性ポリイミドのイミド基濃度がいずれも33重量%以下であることを特徴とする請求項1又は4に記載のポリイミドフィルム。 The polyimide film according to claim 1 or 4, wherein the non-thermoplastic polyimide and the thermoplastic polyimide each have an imide group concentration of 33% by weight or less.
  6.  少なくとも1層の非熱可塑性ポリイミド層を有するポリイミドフィルムであって、
     下記の条件(c-i)~(c-iii);
     (c-i)前記非熱可塑性ポリイミド層を構成する非熱可塑性ポリイミドは、テトラカルボン酸残基及びジアミン残基を含むものであり、
     前記テトラカルボン酸残基の100モル部に対して、3,3’、4,4’-ビフェニルテトラカルボン酸二無水物及び1,4-フェニレンビス(トリメリット酸モノエステル)二無水物の少なくとも1種から誘導されるテトラカルボン酸残基を30~60モル部の範囲内、ピロメリット酸二無水物及び2,3,6,7-ナフタレンテトラカルボン酸二無水物の少なくとも1種から誘導されるテトラカルボン酸残基を40~70モル部の範囲内で含有し、
     前記ジアミン残基の100モル部に対して、下記の一般式(A1)で表されるジアミン化合物から誘導されるジアミン残基を70モル部以上含有すること;
    (c-ii)ガラス転移温度が300℃以上であること;
    (c-iii)10GHzにおける誘電正接(Df)が0.004以下であること;
    を満たすことを特徴とするポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000005
    [式(A1)において、連結基Xは単結合若しくは-COO-から選ばれる2価の基を示し、Yは独立に水素、炭素数1~3の1価の炭化水素、又はアルコキシ基を示し、nは0~2の整数を示し、pおよびqは独立して0~4の整数を示す。]
    A polyimide film having at least one non-thermoplastic polyimide layer,
    The following conditions (c-i) to (c-iii);
    (C-i) The non-thermoplastic polyimide constituting the non-thermoplastic polyimide layer contains a tetracarboxylic acid residue and a diamine residue,
    At least one of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 1,4-phenylenebis (trimellitic acid monoester) dianhydride with respect to 100 mole parts of the tetracarboxylic acid residue. A tetracarboxylic acid residue derived from one kind is derived from at least one of pyromellitic dianhydride and 2,3,6,7-naphthalenetetracarboxylic dianhydride within a range of 30 to 60 mole parts. A tetracarboxylic acid residue in the range of 40 to 70 mol parts,
    70 parts by mole or more of a diamine residue derived from a diamine compound represented by the following general formula (A1) with respect to 100 parts by mole of the diamine residue;
    (C-ii) glass transition temperature is 300 ° C. or higher;
    (C-iii) Dissipation factor (Df) at 10 GHz is 0.004 or less;
    The polyimide film characterized by satisfy | filling.
    Figure JPOXMLDOC01-appb-C000005
    [In the formula (A1), the linking group X represents a single bond or a divalent group selected from —COO—, and Y independently represents hydrogen, a monovalent hydrocarbon having 1 to 3 carbon atoms, or an alkoxy group. , N represents an integer of 0 to 2, and p and q independently represent an integer of 0 to 4. ]
  7.  前記ジアミン残基の100モル部に対して、下記の一般式(C1)~(C4)で表されるジアミン化合物から誘導されるジアミン残基を2~15モル部の範囲内で含有することを特徴とする請求項6に記載のポリイミドフィルム。
    Figure JPOXMLDOC01-appb-C000006
    [式(C1)~(C4)において、Rは独立に炭素数1~6の1価の炭化水素基、アルコキシ基又はアルキルチオ基を示し、連結基A’は独立に-O-、-SO-、-CH-又は-C(CH-から選ばれる2価の基を示し、連結基X1は独立に-CH-、-O-CH-O-、-O-C-O-、-O-C-O-、-O-C-O-、-O-C10-O-、-O-CH-C(CH-CH-O-、-C(CH-、-C(CF-又は-SO-を示し、nは独立に1~4の整数を示し、nは独立に0~4の整数を示すが、式(C3)において、連結基A’が、-CH-、-C(CH-、-C(CF-又は-SO-を含まない場合、nのいずれかは1以上である。ただし、n=0の場合、式(C1)中の2つのアミノ基はパラ位ではないものとする。]
    A diamine residue derived from a diamine compound represented by the following general formulas (C1) to (C4) is contained within a range of 2 to 15 mol parts with respect to 100 mol parts of the diamine residues. The polyimide film according to claim 6.
    Figure JPOXMLDOC01-appb-C000006
    [In the formulas (C1) to (C4), R 2 independently represents a monovalent hydrocarbon group having 1 to 6 carbon atoms, an alkoxy group or an alkylthio group, and the linking group A ′ is independently —O— or —SO 2. 2 represents a divalent group selected from —CH 2 — or —C (CH 3 ) 2 —, and the linking group X1 is independently —CH 2 —, —O—CH 2 —O—, —O—C. 2 H 4 —O—, —O—C 3 H 6 —O—, —O—C 4 H 8 —O—, —O—C 5 H 10 —O—, —O—CH 2 —C (CH 3 ) 2 —CH 2 —O—, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —, n 3 independently represents an integer of 1 to 4, and n 4 represents Independently represents an integer of 0 to 4, but in the formula (C3), the linking group A ′ is —CH 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — or —SO 2 —. Not including If any of the n 4 is 1 or more. However, when n 3 = 0, the two amino groups in formula (C1) are not in the para position. ]
  8.  絶縁層と、該絶縁層の少なくとも一方の面に銅箔を備えた銅張積層板であって、
     前記絶縁層が、請求項1、4又は6のいずれか1項に記載のポリイミドフィルムを含むことを特徴とする銅張積層板。
    An insulating layer, and a copper clad laminate comprising a copper foil on at least one surface of the insulating layer,
    The said insulation layer contains the polyimide film of any one of Claim 1, 4 or 6, The copper clad laminated board characterized by the above-mentioned.
  9.  請求項8に記載の銅張積層板の銅箔を配線に加工してなる回路基板。
     
     
     

     
    The circuit board formed by processing the copper foil of the copper clad laminated board of Claim 8 into wiring.




PCT/JP2017/032642 2016-09-29 2017-09-11 Polyimide film, copper-clad laminate, and circuit substrate WO2018061727A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202210504040.4A CN114716707A (en) 2016-09-29 2017-09-11 Polyimide film, copper sheet laminated plate, and circuit board
CN201780059180.2A CN109789689A (en) 2016-09-29 2017-09-11 Polyimide film, copper plywood and circuit substrate
JP2018542342A JP6936239B2 (en) 2016-09-29 2017-09-11 Polyimide film, copper-clad laminate and circuit board
KR1020197008643A KR102290631B1 (en) 2016-09-29 2017-09-11 Polyimide film, copper clad laminate and circuit board

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-191787 2016-09-29
JP2016-191786 2016-09-29
JP2016191786 2016-09-29
JP2016191787 2016-09-29
JP2016256927 2016-12-28
JP2016256928 2016-12-28
JP2016-256927 2016-12-28
JP2016-256928 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018061727A1 true WO2018061727A1 (en) 2018-04-05

Family

ID=61762827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032642 WO2018061727A1 (en) 2016-09-29 2017-09-11 Polyimide film, copper-clad laminate, and circuit substrate

Country Status (5)

Country Link
JP (1) JP6936239B2 (en)
KR (1) KR102290631B1 (en)
CN (2) CN114716707A (en)
TW (2) TWI775775B (en)
WO (1) WO2018061727A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181436A1 (en) * 2017-03-28 2018-10-04 東レ・デュポン株式会社 Polyimide film
WO2020022129A1 (en) * 2018-07-25 2020-01-30 日鉄ケミカル&マテリアル株式会社 Metal-cladded laminate plate, and circuit board
JP2020044690A (en) * 2018-09-18 2020-03-26 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and patterned metal-clad laminate
CN110962410A (en) * 2018-09-28 2020-04-07 日铁化学材料株式会社 Metal-clad laminate and circuit board
JP2020055186A (en) * 2018-09-29 2020-04-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
JP2020072197A (en) * 2018-10-31 2020-05-07 日鉄ケミカル&マテリアル株式会社 Circuit board and multilayer circuit board
JP2020186288A (en) * 2019-05-10 2020-11-19 ユニチカ株式会社 Polyimide film
JPWO2020262450A1 (en) * 2019-06-27 2020-12-30
JP2021008062A (en) * 2019-06-28 2021-01-28 日鉄ケミカル&マテリアル株式会社 Metal-clad laminated plate and patterned metal-clad laminated plate
KR20210038331A (en) 2019-09-28 2021-04-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide film, metal clad laminate and circuit board
JPWO2021070232A1 (en) * 2019-10-07 2021-04-15
JP2021074894A (en) * 2019-11-05 2021-05-20 株式会社カネカ Multilayer polyimide film
KR20210155012A (en) 2019-04-16 2021-12-21 에이지씨 가부시키가이샤 A laminate, a method for manufacturing a printed circuit board, a printed circuit board, and an antenna
KR20220044147A (en) 2020-09-30 2022-04-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, method for producing same, and circuit substrate
WO2022080314A1 (en) * 2020-10-14 2022-04-21 株式会社カネカ Multilayer polyimide film, metal-clad laminated plate, and method for producing multilayer polyimide film
WO2022138666A1 (en) * 2020-12-21 2022-06-30 富士フイルム株式会社 Layered body and polymer film
KR20220134475A (en) 2021-03-26 2022-10-05 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Circuit board
KR20220133806A (en) 2021-03-25 2022-10-05 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate plate, and circuit board
KR20230078556A (en) 2021-11-26 2023-06-02 스미또모 가가꾸 가부시키가이샤 Polyimide-based film
KR20230078550A (en) 2021-11-26 2023-06-02 스미또모 가가꾸 가부시키가이샤 Polyimide-based resin precursor
WO2023189319A1 (en) * 2022-03-30 2023-10-05 日鉄ケミカル&マテリアル株式会社 Amino compound, polyamide acid and polyimide using said amino compound, and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210134641A (en) * 2019-03-01 2021-11-10 제이에스알 가부시끼가이샤 Laminate for high-frequency circuits and manufacturing method thereof, flexible printed circuit board, B-stage sheet, and wound laminated body
KR20200135028A (en) * 2019-05-24 2020-12-02 피아이첨단소재 주식회사 High Modulus Polyimide Film And Flexible Metal Foil Clad Laminate Comprising the Same
KR102435973B1 (en) * 2020-07-06 2022-08-25 한화솔루션 주식회사 Flexible copper clad laminate having excellent bendability with low dielectric properties
WO2021010783A1 (en) * 2019-07-17 2021-01-21 한화솔루션 주식회사 Highly flexible and low-k flexible copper clad laminate
KR20210116311A (en) * 2020-03-17 2021-09-27 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide, crosslinked polyimide, adhesive film, laminate, coverlay film, copper foil with resin, metal-clad laminate, circuit board and multilayer circuit board
CN116507667A (en) * 2020-10-14 2023-07-28 株式会社钟化 Multilayer polyimide film, metal foil-clad laminate, and method for producing multilayer polyimide film
KR102458949B1 (en) * 2020-11-09 2022-10-26 엘지전자 주식회사 Base film for felxible printed circuit substrate
CN112409621B (en) * 2020-11-27 2022-09-09 桂林电器科学研究院有限公司 High-strength low-dielectric-property polyimide multilayer film and preparation method thereof
CN112375221B (en) * 2020-11-27 2023-05-02 桂林电器科学研究院有限公司 Polyimide composite film with low dielectric property and preparation method thereof
TWI827897B (en) * 2020-12-29 2024-01-01 達邁科技股份有限公司 Low dielectric loss polyimide film
US11746083B2 (en) 2020-12-30 2023-09-05 Industrial Technology Research Institute Compound, resin composition and laminated substrate thereof
KR20240046171A (en) * 2021-08-13 2024-04-08 엘지전자 주식회사 Composite polyimide substrate, composite polyimide composition, and printed circuit board using the same
CN113604045B (en) * 2021-08-31 2022-09-02 烟台丰鲁精细化工有限责任公司 Thermoplastic polyimide resin composite film with low dielectric property and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271438A (en) * 1992-07-21 1993-10-19 Ube Ind Ltd Composite polyimide sheet
JP2002307608A (en) * 2001-04-10 2002-10-23 Kanegafuchi Chem Ind Co Ltd Laminate manufacturing method and multilayered printed wiring board
CN101121819A (en) * 2007-09-27 2008-02-13 湖北省化学研究院 Modified maleimide end-sealed type polyimide resin composite and application thereof
JP2011177929A (en) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd Metal-insulating resin substrate and method of manufacturing the same
JP2016069646A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Polyamic acid, polyamide, resin film and metal-clad laminate
JP2017165909A (en) * 2016-03-17 2017-09-21 新日鉄住金化学株式会社 Polyimide, resin film, and metal clad laminate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872185B2 (en) 2003-05-06 2012-02-08 三菱瓦斯化学株式会社 Metal-clad laminate
KR20090111797A (en) * 2006-07-06 2009-10-27 도레이 카부시키가이샤 Thermoplastic polyimide, and laminated polyimide film and metal foil-laminated polyimide film using the thermoplastic polyimide
JP5181618B2 (en) * 2007-10-24 2013-04-10 宇部興産株式会社 Metal foil laminated polyimide resin substrate
KR101680556B1 (en) * 2010-01-18 2016-11-29 가부시키가이샤 가네카 Multilayer polyimide film and flexible metal laminated board
CN105339416B (en) * 2013-06-28 2017-07-14 新日铁住金化学株式会社 Polyimides, resin film and metallic cover layered product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271438A (en) * 1992-07-21 1993-10-19 Ube Ind Ltd Composite polyimide sheet
JP2002307608A (en) * 2001-04-10 2002-10-23 Kanegafuchi Chem Ind Co Ltd Laminate manufacturing method and multilayered printed wiring board
CN101121819A (en) * 2007-09-27 2008-02-13 湖北省化学研究院 Modified maleimide end-sealed type polyimide resin composite and application thereof
JP2011177929A (en) * 2010-02-26 2011-09-15 Nippon Steel Chem Co Ltd Metal-insulating resin substrate and method of manufacturing the same
JP2016069646A (en) * 2014-09-30 2016-05-09 新日鉄住金化学株式会社 Polyamic acid, polyamide, resin film and metal-clad laminate
JP2017165909A (en) * 2016-03-17 2017-09-21 新日鉄住金化学株式会社 Polyimide, resin film, and metal clad laminate

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181436A1 (en) * 2017-03-28 2018-10-04 東レ・デュポン株式会社 Polyimide film
JP7428646B2 (en) 2018-07-25 2024-02-06 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards
CN112469560B (en) * 2018-07-25 2023-05-16 日铁化学材料株式会社 Metal-clad laminate and circuit board
JPWO2020022129A1 (en) * 2018-07-25 2021-08-05 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
WO2020022129A1 (en) * 2018-07-25 2020-01-30 日鉄ケミカル&マテリアル株式会社 Metal-cladded laminate plate, and circuit board
CN112469560A (en) * 2018-07-25 2021-03-09 日铁化学材料株式会社 Metal-clad laminate and circuit board
KR20210036342A (en) 2018-07-25 2021-04-02 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal Clad Laminates and Circuit Boards
TWI804658B (en) * 2018-07-25 2023-06-11 日商日鐵化學材料股份有限公司 Metal-clad laminates and circuit boards
JP2020044690A (en) * 2018-09-18 2020-03-26 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and patterned metal-clad laminate
JP7156877B2 (en) 2018-09-18 2022-10-19 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and patterned metal-clad laminate
CN110962410B (en) * 2018-09-28 2023-09-05 日铁化学材料株式会社 Metal-clad laminate and circuit board
CN110962410A (en) * 2018-09-28 2020-04-07 日铁化学材料株式会社 Metal-clad laminate and circuit board
JP7093282B2 (en) 2018-09-29 2022-06-29 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
JP2020055186A (en) * 2018-09-29 2020-04-09 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
JP2020072197A (en) * 2018-10-31 2020-05-07 日鉄ケミカル&マテリアル株式会社 Circuit board and multilayer circuit board
JP7413489B2 (en) 2018-10-31 2024-01-15 日鉄ケミカル&マテリアル株式会社 Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
JP7381197B2 (en) 2018-10-31 2023-11-15 日鉄ケミカル&マテリアル株式会社 Circuit boards and multilayer circuit boards
KR20210155012A (en) 2019-04-16 2021-12-21 에이지씨 가부시키가이샤 A laminate, a method for manufacturing a printed circuit board, a printed circuit board, and an antenna
JP2020186288A (en) * 2019-05-10 2020-11-19 ユニチカ株式会社 Polyimide film
JP7231932B2 (en) 2019-05-10 2023-03-02 ユニチカ株式会社 polyimide film
CN113874420B (en) * 2019-06-27 2023-09-26 日铁化学材料株式会社 Resin film and metal-clad laminate
CN113874420A (en) * 2019-06-27 2021-12-31 日铁化学材料株式会社 Resin film, metal-clad laminate, and method for producing same
JPWO2020262450A1 (en) * 2019-06-27 2020-12-30
JP7222089B2 (en) 2019-06-27 2023-02-14 日鉄ケミカル&マテリアル株式会社 Resin film, metal-clad laminate and method for producing the same
JP2021008062A (en) * 2019-06-28 2021-01-28 日鉄ケミカル&マテリアル株式会社 Metal-clad laminated plate and patterned metal-clad laminated plate
JP7247037B2 (en) 2019-06-28 2023-03-28 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and patterned metal-clad laminate
KR20210038331A (en) 2019-09-28 2021-04-07 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Polyimide film, metal clad laminate and circuit board
KR20210118024A (en) 2019-09-28 2021-09-29 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal clad laminate and circuit board
JP7184858B2 (en) 2019-09-28 2022-12-06 日鉄ケミカル&マテリアル株式会社 Polyimide films, metal-clad laminates and circuit boards
JP7230148B2 (en) 2019-09-28 2023-02-28 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards
JP2021054062A (en) * 2019-09-28 2021-04-08 日鉄ケミカル&マテリアル株式会社 Polyimide film, metal-clad laminate and circuit board
JP2022017273A (en) * 2019-09-28 2022-01-25 日鉄ケミカル&マテリアル株式会社 Metal-clad laminate and circuit board
KR20230117670A (en) 2019-09-28 2023-08-08 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal clad laminate and circuit board
JP7484926B2 (en) 2019-10-07 2024-05-16 Hdマイクロシステムズ株式会社 Polyimide precursor, resin composition, photosensitive resin composition, method for producing patterned cured film, cured film, interlayer insulating film, cover coat layer, surface protective film, and electronic component
JPWO2021070232A1 (en) * 2019-10-07 2021-04-15
WO2021070232A1 (en) * 2019-10-07 2021-04-15 Hdマイクロシステムズ株式会社 Polyimide precursor, resin composition, photosensitive resin composition, method for manufacturing patterned cured film, cured film, interlayer insulating film, cover coat layer, surface-protective film, and electronic component
JP7429519B2 (en) 2019-11-05 2024-02-08 株式会社カネカ multilayer polyimide film
JP2021074894A (en) * 2019-11-05 2021-05-20 株式会社カネカ Multilayer polyimide film
KR20220044147A (en) 2020-09-30 2022-04-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate, method for producing same, and circuit substrate
WO2022080314A1 (en) * 2020-10-14 2022-04-21 株式会社カネカ Multilayer polyimide film, metal-clad laminated plate, and method for producing multilayer polyimide film
KR20230086706A (en) 2020-10-14 2023-06-15 가부시키가이샤 가네카 Multi-layer polyimide film, metal-clad laminate, and manufacturing method of multi-layer polyimide film
WO2022138666A1 (en) * 2020-12-21 2022-06-30 富士フイルム株式会社 Layered body and polymer film
KR20220133806A (en) 2021-03-25 2022-10-05 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Metal-clad laminate plate, and circuit board
KR20220134475A (en) 2021-03-26 2022-10-05 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 Circuit board
KR20230078550A (en) 2021-11-26 2023-06-02 스미또모 가가꾸 가부시키가이샤 Polyimide-based resin precursor
KR20230078556A (en) 2021-11-26 2023-06-02 스미또모 가가꾸 가부시키가이샤 Polyimide-based film
WO2023189319A1 (en) * 2022-03-30 2023-10-05 日鉄ケミカル&マテリアル株式会社 Amino compound, polyamide acid and polyimide using said amino compound, and method for producing same

Also Published As

Publication number Publication date
TW201825295A (en) 2018-07-16
JPWO2018061727A1 (en) 2019-07-25
TWI775775B (en) 2022-09-01
CN114716707A (en) 2022-07-08
KR20190055809A (en) 2019-05-23
JP6936239B2 (en) 2021-09-15
TW202233433A (en) 2022-09-01
CN109789689A (en) 2019-05-21
TWI781901B (en) 2022-10-21
KR102290631B1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP6936239B2 (en) Polyimide film, copper-clad laminate and circuit board
JP7029006B2 (en) Polyimide film and copper-clad laminate
JP7053208B2 (en) Polyimide film, metal-clad laminate and circuit board
CN109575283B (en) Polyimide film, metal-clad laminate, and circuit board
JP7453432B2 (en) Metal-clad laminates and circuit boards
JP7428646B2 (en) Metal-clad laminates and circuit boards
KR102560356B1 (en) Polyimide film and metal-clad laminated body
TW202319444A (en) Polyamide acid, polyimide, polyimide film, metal-clad laminate and circuit
JP7405644B2 (en) Metal-clad laminates and circuit boards
JP2022017273A (en) Metal-clad laminate and circuit board
JP7453434B2 (en) Metal-clad laminates and circuit boards
JP7453433B2 (en) Metal-clad laminates and circuit boards
JP7413489B2 (en) Method for manufacturing circuit board with adhesive layer and method for manufacturing multilayer circuit board
KR102543928B1 (en) Metal-clad laminate and circuit board
JP2019119113A (en) Metal-clad laminate and circuit board
JP2024000978A (en) Metal-clad laminate plate, circuit board, electronic device and electronic apparatus
JP2020006561A (en) Production method of patterned metal-clad laminate

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542342

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008643

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855684

Country of ref document: EP

Kind code of ref document: A1