WO2018061123A1 - 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法 - Google Patents

基地局装置、端末装置、無線通信システム及び無線通信システム制御方法 Download PDF

Info

Publication number
WO2018061123A1
WO2018061123A1 PCT/JP2016/078706 JP2016078706W WO2018061123A1 WO 2018061123 A1 WO2018061123 A1 WO 2018061123A1 JP 2016078706 W JP2016078706 W JP 2016078706W WO 2018061123 A1 WO2018061123 A1 WO 2018061123A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
base station
signal
transmission
information
Prior art date
Application number
PCT/JP2016/078706
Other languages
English (en)
French (fr)
Inventor
剛史 下村
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2018541786A priority Critical patent/JP6780703B2/ja
Priority to CN201680086697.6A priority patent/CN109314973B/zh
Priority to EP16917676.5A priority patent/EP3522646B1/en
Priority to PCT/JP2016/078706 priority patent/WO2018061123A1/ja
Priority to KR1020187035718A priority patent/KR102142363B1/ko
Publication of WO2018061123A1 publication Critical patent/WO2018061123A1/ja
Priority to US16/191,747 priority patent/US10447371B2/en
Priority to US16/564,778 priority patent/US11050477B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a base station device, a terminal device, a wireless communication system, and a wireless communication system control method.
  • a base station apparatus performs radio resource allocation and MCS (Modulation and Coding Scheme) determination based on channel quality information of each terminal apparatus. Therefore, in order to perform appropriate radio resource allocation and MCS determination for each terminal apparatus when performing downlink transmission, the base station apparatus acquires in advance feedback information regarding the channel from each terminal apparatus.
  • MCS Modulation and Coding Scheme
  • the feedback information about the channel is called CSI (Channel State Information).
  • the CSI includes, for example, CQI (Channel Quality Indicator), RI (Rank Indicator), PMI (Precoding Matrix Indicator), BI (Beam Indicator), CRI (CSI Reference signal resource Indicator), and the like.
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • BI Beam Indicator
  • CRI CSI Reference signal resource Indicator
  • the terminal apparatus sets the maximum CQI value not exceeding 0.1, which is the error rate set based on the channel measurement result, as the CQI. Feedback to the device.
  • Widband CQI is CQI calculated in units of the entire bandwidth.
  • Subband CQI is CQI calculated in units of continuous frequency bands.
  • URLLC Ultra Reliable Low Latency Communications
  • a wireless communication system using URLLC for example, in order to operate an application using highly reliable and low-delay communication, it is preferable that data transmission with a lower error rate than before is realized in a wireless section.
  • the required reliability and delay differ depending on the type of service to be provided, and the error rate also differs depending on the type of service to be provided.
  • Services using URLLC include, for example, fault response and control of substations, control of power supply systems using smart grid technology, provision of virtual presence environments, execution of industrial control applications, automatic operation or provision of tactile Internet And so on.
  • a wireless communication technique there is a conventional technique for notifying a terminal device whether to allocate a wireless resource that is not continuous in a frequency domain or a continuous wireless resource in wireless resource allocation.
  • radio resources are allocated in a centralized manner when continuous carrier aggregation is performed, and radio resources are distributed in a distributed manner when discontinuous carrier aggregation is performed.
  • the channel between the terminal apparatus and the base station apparatus fluctuates with time. Based on the CSI due to a delay between the measurement timing of CSI and the timing at which the base station apparatus actually transmits data to the terminal apparatus. The reliability of scheduling is reduced. As a result, the error rate may increase. When the error rate increases, it may be difficult to provide the required URLLC in the wireless communication system.
  • retransmission may not be performed or only limited retransmission may be allowed, and an increase in error rate may directly lead to a decrease in communication reliability.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a base station device, a terminal device, a wireless communication system, and a wireless communication system control method that can efficiently realize highly reliable and low-delay communication. .
  • the transmission unit transmits a signal using at least two discontinuous frequency bands.
  • the transmission setting determining unit is configured to obtain the overall information of the entire channels in the discontinuous frequency band calculated based on the individual information of the channels measured for each signal transmitted in each of the discontinuous frequency bands.
  • the transmission setting is determined from the received overall information.
  • the signal processing unit processes the signal using the transmission setting determined by the transmission setting determination unit, and causes the transmission unit to transmit the signal.
  • the base station device According to one aspect of the base station device, the terminal device, the wireless communication system, and the wireless communication system control method disclosed in the present application, there is an effect that high-reliability and low-delay communication can be realized efficiently.
  • FIG. 1 is a block diagram of a base station apparatus according to an embodiment.
  • FIG. 2 is a block diagram of the terminal device according to the embodiment.
  • FIG. 3 is a diagram for explaining selection of a resource set.
  • FIG. 4 is a diagram for explaining another example of resource set selection.
  • FIG. 5 is a diagram illustrating the relationship between the correlation value and the SINR offset.
  • FIG. 6 is a diagram illustrating an example of the MCS selection table.
  • FIG. 7 is a diagram for explaining a conversion function between SINR and CQI.
  • FIG. 8 is a sequence diagram of communication control using URLLC in the wireless communication system according to the embodiment.
  • FIG. 9 is a diagram illustrating an example of data transmission using a resource set.
  • FIG. 10 is a diagram illustrating another example of data transmission using a resource set.
  • FIG. 11 is a diagram for explaining the reliability when data is transmitted using continuous frequency bands.
  • FIG. 12 is a diagram for explaining the reliability when data is transmitted using a discontinuous frequency band.
  • FIG. 13 is a hardware configuration diagram of the base station apparatus.
  • FIG. 14 is a hardware configuration diagram of the terminal device.
  • a base station device a terminal device, a wireless communication system, and a wireless communication system control method disclosed in the present application will be described in detail with reference to the drawings.
  • the base station apparatus, terminal apparatus, wireless communication system, and wireless communication system control method disclosed in the present application are not limited by the following embodiments.
  • FIG. 1 is a block diagram of a base station apparatus according to an embodiment.
  • FIG. 2 is a block diagram of the terminal device according to the embodiment.
  • the base station apparatus 1 in FIG. 1 performs wireless communication with the terminal apparatus 2 in FIG.
  • the base station apparatus 1 and the terminal apparatus 2 perform both data transmission on the downlink from the base station apparatus 1 to the terminal apparatus 2 and data transmission on the uplink from the terminal apparatus 2 to the base station apparatus 1.
  • data transmission by downlink using URLLC will be mainly described.
  • the base station apparatus 1 includes a communication control unit 101, a reception unit 102, a transmission unit 103, a signal processing unit 104, a reliability determination unit 105, a CSI feedback setting notification unit 106, and an antenna. 107.
  • the receiving unit 102 receives a radio signal from the terminal device 2 via the antenna 107. Then, the reception unit 102 outputs the received signal to the signal processing unit 104.
  • the communication control unit 101 performs overall control of signal transmission / reception with the terminal device 2 such as communication scheduling.
  • the communication control unit 101 includes a connection processing unit 111, a resource set determination unit 112, a radio resource allocation unit 113, and an MCS selection unit 114.
  • the communication control unit 101 corresponds to an example of a “transmission setting determination unit”.
  • the connection processing unit 111 receives an input of a signal used for call connection processing such as a call connection request from the signal processing unit 104. Then, the connection processing unit 111 executes the call connection processing by causing the signal processing unit 104 to transmit a call connection response according to the signal used for the call connection processing, so that the connection between the terminal device 2 and the base station device 1 is performed. Establish a call. Subsequently, the terminal device 2 connects to a communication partner via the base station device 1 and the EPC (Evolved Packet Core) 3 that is a core network. Thereafter, the connection processing unit 111 acquires a transmission request for data transmitted from the counterpart of the terminal device 2 or the terminal device 2. Here, the data transmission request includes information on the type of service provided to the terminal device 2. Then, the connection processing unit 111 outputs information on the type of service provided to the terminal device 2 to the resource set determining unit 112 and the reliability determining unit 105.
  • a signal used for call connection processing such as a call connection request from the
  • the resource set determination unit 112 stores in advance a discontinuous frequency band that is divided into a plurality of frequency bands used in communication using URLLC.
  • the resource set determination unit 112 receives input of information on the type of service provided to the terminal device 2 from the connection processing unit 111. Then, the resource set determination unit 112 determines a set of discontinuous frequency bands used for signal transmission to the terminal device 2 from among the discontinuous frequency bands stored from the size of data to be transmitted in the service to be provided. To do.
  • FIG. 3 is a diagram for explaining selection of a resource set.
  • the usable frequency band 301 in FIG. 3 is a frequency band that the base station apparatus 1 can use for communication.
  • the resource set determination unit 112 stores a discontinuous frequency band 311 indicated by hatching in the usable frequency 301 illustrated in FIG. 3 as a frequency band used in communication using URLLC in advance. Then, the resource set determination unit 112 selects a resource set 312 indicated by a gray area in FIG. 3 as a set of discontinuous frequency bands used for signal transmission to the terminal device 2 from the discontinuous frequency band 311. .
  • FIG. 3 is a diagram for explaining selection of a resource set.
  • the usable frequency band 301 in FIG. 3 is a frequency band that the base station apparatus 1 can use for communication.
  • the resource set determination unit 112 stores a discontinuous frequency band 311 indicated by hatching in the usable frequency 301 illustrated in FIG. 3 as a frequency band used in communication using URLLC in advance. Then, the resource set determination unit 112
  • the resource set determination unit 112 secures the area from the beginning in all the discontinuous frequency bands included in the discontinuous frequency band 311 as the resource set 312, but secures the resource set 312. This method is not limited to this.
  • the resource set determination unit 112 may select some of the discontinuous frequency bands included in the discontinuous frequency band 311 and reserve the region of the resource set 312 from the selected frequency band. Further, the resource set determination unit 112 may reserve a region other than the head in each discontinuous frequency band included in the discontinuous frequency band 311 as the resource set 312.
  • the plurality of discontinuous frequency bands included in the resource set 312 are preferably separated from each other by 5 MHz or more.
  • the discontinuous frequency band in one signal transmission is a resource set.
  • the resource set determination unit 112 may determine the resource set by another method. it can.
  • FIG. 4 is a diagram for explaining another example of resource set selection.
  • the frequency band that can be used for communication by the base station apparatus 1 also exists in the time direction, and is represented as an available frequency band 302.
  • the resource set determination unit 112 may use discontinuous frequency bands 321 and 322 at different times in the usable frequency band 302 as resource sets.
  • the resource set determination unit 112 After determining the resource set used for signal transmission to the terminal device 2, the resource set determination unit 112 outputs information on the determined resource set to the radio resource allocation unit 113.
  • the radio resource allocating unit 113 receives an input of resource set information used for signal transmission to the terminal device 2 from the resource set determining unit 112. Then, the radio resource allocation unit 113 allocates radio resources to the CSI measurement reference signal from the resource set information. Next, the radio resource assignment unit 113 outputs information on the radio resources assigned to the CSI measurement reference signal to the signal processing unit 104 and the CSI feedback setting notification unit 106. Further, the radio resource allocation unit 113 determines the CSI transmission timing of the terminal device 2 and outputs the CSI transmission timing to the CSI feedback setting notification unit 106.
  • the CSI transmission timing is a timing at which the terminal device 2 transmits CSI to the base station device 1, and is set to periodically transmit CSI, for example.
  • the radio resource allocation unit 113 acquires the CSI transmitted from the terminal device 2 from the signal processing unit 104.
  • CSI includes, for example, CQI, RI, PMI, BI and CRI. Further, either or both of received signal power S and interference power (I + N) may be included.
  • wireless resource allocation part 113 determines the radio
  • the MCS selection unit 114 acquires the CSI transmitted from the terminal device 2 from the signal processing unit 104.
  • the CSI includes correlation value information and channel information measurement time information in addition to the information described above.
  • the correlation value is a value representing the strength of the relationship of signals transmitted using each of the discontinuous frequency bands determined as the resource set.
  • the channel information measurement time is a time when the terminal device 2 measures channel information including received signal power, interference power, and noise power.
  • the MCS selection unit 114 acquires CQI from CSI. Then, the MCS selection unit 114 converts the CQI into SINR (Signal-to-Interface plus Noise power Raito). SINR is a value representing the ratio of the power of the desired signal to the power other than the desired signal in the received signal. However, if either or both of received signal power S and interference power (I + N) are included in CSI instead of CQI, MCS selector 114 calculates SINR. For example, the SINR may be calculated from the interference power included in the CSI and the received signal power calculated from the uplink transmission from the terminal device 2.
  • the MCS selection unit 114 acquires a correlation value from the CSI.
  • the MCS selection unit 114 stores in advance a function that represents the relationship between the correlation value and the SINR offset as in the graph 401 illustrated in FIG. 5.
  • FIG. 5 is a diagram illustrating the relationship between the correlation value and the SINR offset. Then, the MCS selection unit 114 acquires an SINR offset corresponding to the acquired correlation value using a function representing the graph 401.
  • the MCS selection unit 114 stores in advance a function representing the relationship between the delay time and the SIRN offset. And the MCS selection part 114 acquires the measurement time of channel information from CSI. Next, the MCS selection unit 114 calculates a data transmission scheduled time. Then, the MCS selection unit 114 subtracts the channel information measurement time from the data transmission scheduled time, and calculates a delay time from when the channel information is measured until the data is transmitted.
  • the function representing the relationship between the delay time and the SIRN offset is a function corresponding to the graph representing the relationship between the delay time and the SIRN offset similar to the graph 401 shown in FIG.
  • the MCS selection unit 114 has, for example, the MCS selection table 402 shown in FIG.
  • FIG. 6 is a diagram illustrating an example of the MCS selection table.
  • the MCS is represented by a 5-bit value.
  • a modulation scheme and a coding rate are registered corresponding to each MCS.
  • the error occurrence rate decreases and the data transmission amount decreases in ascending order of the MCS number. That is, as the MCS number is younger, the reliability is improved, but it can be said that it takes time to transmit all the data to be transmitted and the delay increases.
  • the MCS selection unit 114 selects an MCS having a higher number to shorten the delay.
  • the MCS selection unit 114 calculates the SINR value for obtaining the MCS by subtracting the correlation value and the offset due to the delay time from the SINR obtained from the CQI. Next, the MCS selection unit 114 converts the calculated SINR value into a 5-bit value. Then, the MCS selection unit 114 specifies the MCS corresponding to the 5-bit value obtained by converting the SINR value from the MCS selection table 402. After that, the MCS selection unit 114 notifies the signal processing unit 104 of the modulation scheme and coding rate corresponding to the identified MCS.
  • the modulation scheme and coding rate notified by the MCS selection unit 114 and the radio resource used for signal transmission to the terminal device 2 notified by the radio resource assignment unit 113 correspond to an example of “communication setting”.
  • the transmission unit 103 receives input of various signals used for call connection processing such as a call connection response from the signal processing unit 104. Then, the transmission unit 103 transmits various signals used for the call connection process to the terminal device 2 via the antenna 107. Further, the transmission unit 103 receives an input of a data transmission signal from the signal processing unit 104 at the time of data transmission. Then, the transmission unit 103 transmits the acquired data transmission signal to the terminal device 2 via the antenna 107.
  • the transmission unit 103 receives an input of CSI feedback setting from the CSI feedback setting notification unit 106. Then, the transmission unit 103 transmits the acquired CSI feedback setting to the terminal device 2 via the antenna 107.
  • the signal processing unit 104 receives from the connection processing unit 111 transmission instructions for various signals used for call connection processing such as a connection response transmission instruction. Then, the signal processing unit 104 outputs various signals used for call connection processing to the transmission unit 103 in accordance with the transmission instruction.
  • the signal processing unit 104 receives an input of CSI transmitted from the terminal device 2 from the receiving unit 102. Then, the signal processing unit 104 outputs the acquired CSI to the radio resource allocation unit 113 and the MCS selection unit 114.
  • the signal processing unit 104 receives a transmission signal from the EPC 3.
  • the signal processing unit 1104 receives an input of a modulation scheme and a coding rate from the MCS selection unit 114.
  • the signal processing unit 104 receives a notification of a radio resource used for signal transmission to the terminal device 2 from the radio resource allocation unit 113.
  • the signal processing unit 104 performs modulation processing and coding processing on the transmission signal received from the EPC 3 using the designated modulation method and coding rate. Furthermore, the signal processing unit 104 allocates a specified radio resource for the transmission signal. Thereafter, the signal processing unit 104 outputs the transmission signal to the transmission unit 103.
  • the modulation processing and coding processing by the signal processing unit 104 and radio resource allocation correspond to an example of performing “processing on a signal using transmission settings”.
  • the reliability determination unit 105 stores in advance the required reliability for each service. For example, the reliability determination unit 105 stores the reliability of an error rate of 10 ⁇ 4 or less in the case of a substation fault response and control service.
  • the reliability determination unit 105 receives from the connection processing unit 111 input of information on the type of service provided to the terminal device 2. Then, the reliability determination unit 105 outputs information on the reliability of the service provided to the terminal device 2 to the CSI feedback setting notification unit 106.
  • the CSI feedback setting notification unit 106 receives from the radio resource allocation unit 113 the input of information on the radio resource allocated to the CSI measurement reference signal. Further, the CSI feedback setting notification unit 106 receives from the radio resource allocation unit 113 an input of information on radio resources used by the terminal device 2 for CSI transmission. In addition, the CSI feedback setting notification unit 106 receives information on reliability obtained by signal transmission to the terminal device 2 from the reliability determination unit 105.
  • the CSI feedback setting notification unit 106 notifies the transmission unit 103 of CSI feedback settings including CSI measurement reference signal information, CSI transmission timing, and CSI calculation conditions using the acquired information.
  • the reference signal information for CSI measurement includes the transmission timing, frequency, pattern, and the like of the reference signal for CSI measurement.
  • the CSI calculation condition includes the reliability obtained by signal transmission to the terminal device 2.
  • the terminal device 2 includes a reception unit 201, a signal processing unit 202, a communication control unit 203, a transmission unit 204, a channel measurement unit 205, a channel information calculation unit 206, and an antenna 207.
  • the receiving unit 201 receives a signal transmitted from the base station apparatus 1 via the antenna 207. Then, the reception unit 201 outputs the received signal to the signal processing unit 202.
  • the signal processing unit 202 receives an input of a signal transmitted from the base station device 1 from the receiving unit 201. Then, the signal processing unit 202 performs a decoding process, a demodulation process, and the like on the acquired signal. Then, the signal processing unit 202 outputs the processed signal to the communication control unit 203.
  • the signal processing unit 202 receives input of data to be transmitted from the communication control unit 203. Then, the signal processing unit 202 performs a modulation process and an encoding process on the acquired data to generate a transmission signal. Then, the signal processing unit 202 outputs the generated transmission signal to the transmission unit 204.
  • the signal processing unit 202 outputs data included in the signal transmitted from the base station apparatus 1 to the communication control unit 203.
  • the communication control unit 203 receives an input of a signal transmitted from the base station device 1 from the signal processing unit 202.
  • the communication control unit 203 executes call connection processing. After completing the call connection, the communication control unit 203 causes the signal processing unit 202 to transmit a service request to the base station apparatus 1.
  • the communication control unit 203 notifies the channel measuring unit 205 of the reference signal information for CSI measurement included in the CSI feedback setting. Also, the CSI calculation condition is output to the channel information calculation unit 206.
  • the communication control unit 203 acquires the correlation value of the signals in the discontinuous frequency band included in the resource set from the channel information calculation unit 206. Further, CQI, RI, PMI, BI, and CRI that summarize all the signals of the discontinuous frequency bands included in the resource set are acquired from the channel information calculation unit 206. In addition, the communication control unit 203 acquires the channel information of each signal in the discontinuous frequency band included in the resource set from the channel measurement unit 205 together with the measurement time of the channel information. After that, the communication control unit 203 collects the entire signals of the discontinuous frequency bands included in the resource set, CQI, RI, PMI, BI, CRI, and signals of the discontinuous frequency bands included in the resource set.
  • a CSI including a correlation value and a measurement time of channel information is created. Then, the communication control unit 203 outputs the created CSI to the signal processing unit 202 and transmits it to the base station apparatus 1. Thereafter, the communication control unit 203 outputs the CSI to the signal processing unit 202 according to the CSI transmission cycle, and transmits the CSI to the base station apparatus 1.
  • the communication control unit 203 provides the operator with the data acquired from the signal processing unit 202 by voice, characters, images, or the like.
  • the channel measurement unit 205 receives the reference signal information for CSI measurement from the communication control unit 203. Next, the channel measurement unit 205 acquires the transmission timing, frequency, and pattern of each reference signal in the discontinuous frequency band included in the resource set, which is included in the CSI measurement reference signal information. Then, using the acquired information, channel measurement section 205 acquires received signal power, interference power, and noise power of each signal in the discontinuous frequency band included in the resource set from the signal received by receiving section 201. .
  • the received signal power, interference power, and noise power of each signal in the discontinuous frequency band included in this resource set is an example of “individual information”.
  • the channel measurement unit 205 acquires a measurement time when channel information such as received signal power, interference power, and noise power is measured. Thereafter, the channel measurement unit 205 outputs the received signal power, interference power, and noise power of each signal in the discontinuous frequency band included in the acquired resource set to the channel information calculation unit 206. Further, the channel measurement unit 205 outputs the channel information measurement time to the communication control unit 203.
  • the measurement time is expressed by, for example, a subframe or slot number for defining the transmission time in the base station apparatus 1.
  • the channel information calculation unit 206 calculates the SINR of each signal in the discontinuous frequency band included in the resource set.
  • the SINR of each signal in the discontinuous frequency band included in the resource set is referred to as “individual SINR”.
  • the channel information calculation unit 206 calculates the entire SINR of the discontinuous frequency bands included in the resource set using the individual SINR.
  • the entire SINR of the discontinuous frequency bands included in the resource set is referred to as “total SINR”.
  • the channel information calculation unit 206 can calculate the overall SINR using Shannon's communication capacity theorem, Exponential effective SINR Mapping, Mutual Information based Effective SINR Mapping, or the like for the individual SINR. Further, the channel information calculation unit 206 may use the average value of the individual SINR as the overall SINR.
  • the total SINR may be obtained in any way as long as it represents the state of reception quality in which all the signals in the discontinuous frequency bands included in the resource set are represented. This total SINR is an example of “total information”.
  • channel information calculation section 206 has in advance a conversion function between SINR and CQI represented by the relationship shown in FIG.
  • FIG. 7 is a diagram for explaining a conversion function between SINR and CQI.
  • a graph 501 in FIG. 7 is a graph showing the relationship between SINR and CQI for satisfying the reliability with an error rate of 10 ⁇ 1 or less.
  • a graph 502 is a graph showing the relationship between SINR and CQI for satisfying the reliability with an error rate of 10 ⁇ 5 or less.
  • Graphs 501 and 502 are graphs for converting SINR into CQI having a value of 0 to 15 represented by 4 bits. As shown in FIG. 7, the higher the reliability, the higher the CQI corresponds to a larger SINR. That is, even with the same CQI value, the higher the reliability, the better the reception quality.
  • the channel information calculation unit 206 uses a function when the reliability is 10 ⁇ 1 as a function represented by the graph 501, and a function when the reliability is 10 ⁇ 5 as a function represented by the graph 502. And a conversion function corresponding to the reliability.
  • the channel information calculation unit 206 acquires the reliability included in the CSI feedback setting. Next, channel information calculation section 206 selects a conversion function between SINR and CQI corresponding to the obtained reliability. Channel information calculation section 206 then converts the calculated overall SINR into CQI using the selected conversion function.
  • the channel information calculation unit 206 calculates each correlation value by using a correlation function for each signal in a discontinuous frequency band included in the resource set.
  • the channel information calculation unit 206 may obtain a standard deviation as the correlation value.
  • the channel information calculation unit 206 transmits the calculated CQI and correlation value to the communication control unit 203.
  • the terminal apparatus 2 converts the SINR into CQI represented by 4 bits and notifies the base station apparatus 1 as implicit information. However, if transmission of large data to the base station apparatus 1 is acceptable, the terminal apparatus 2 may notify the base station apparatus 1 of the SINR as explicit information. Further, the terminal device 2 may explicitly or implicitly transmit either or both of the received signal power S and the interference power I instead of SINR.
  • FIG. 8 is a sequence diagram of communication control using URLLC in the wireless communication system according to the embodiment.
  • connection processing unit 111 of the base station device 1 and the communication control unit 203 of the terminal device 2 communicate with each other to execute call connection processing (step S1).
  • the communication control unit 203 of the terminal device 2 transmits a service request including service type information to the base station device 1 (step S2).
  • the connection processing unit 111 of the base station device 1 receives a service request. Then, the connection processing unit 111 outputs service type information to the resource set determination unit 112 and the reliability determination unit 105.
  • the resource set determination unit 112 acquires service type information from the connection processing unit 111. Then, the resource set determination unit 112 acquires the size of data used in the service provided from the type of service, and determines a resource set having a discontinuous frequency band (step S3). Then, the resource set determination unit 112 outputs the acquired reliability to the radio resource allocation unit 113.
  • the radio resource allocation unit 113 allocates radio resources to the CSI measurement reference signal from the resource set information. Next, the radio resource assignment unit 113 outputs information on the radio resources assigned to the CSI measurement reference signal to the signal processing unit 104 and the CSI feedback setting notification unit 106. Further, the radio resource allocation unit 113 determines the CSI transmission timing of the terminal device 2 and outputs the CSI transmission timing to the CSI feedback setting notification unit 106.
  • the reliability determination unit 105 acquires service type information from the connection processing unit 111. And the reliability determination part 105 determines the reliability requested
  • the CSI feedback setting notification unit 106 acquires from the radio resource allocation unit 113 information on the radio resources allocated to the CSI measurement reference signal and information on the CSI transmission timing. Further, the CSI feedback setting notification unit 106 acquires the reliability from the reliability determination unit 105. Then, using the acquired information, CSI feedback setting notification section 106 transmits CSI feedback setting including CSI measurement reference signal information, CSI transmission timing, and CSI calculation conditions to terminal apparatus 2 (step S5).
  • the communication control unit 203 of the terminal device 2 receives the CSI feedback setting. Then, the communication control unit 203 notifies the channel measurement unit 205 of CSI measurement reference signal information. Further, the communication control unit 203 notifies the channel information calculation unit 206 of the reliability.
  • the signal processing unit 104 transmits the reference signal for CSI measurement in each discontinuous frequency band included in the resource set using the radio resource allocated by the radio resource allocation unit 113 (step S6).
  • the channel measurement unit 205 acquires CSI measurement reference signal information from the communication control unit 203. Then, the channel measurement unit 205 measures channel information using the CSI measurement reference signal information. Further, the channel measurement unit 205 acquires the measurement time of the channel information (step S7). Channel measurement section 205 then outputs received signal power, interference power, and noise power included in the channel information to channel information calculation section 206. Further, the channel measurement unit 205 outputs the channel information and the measurement time of the channel information to the communication control unit 203.
  • the channel information calculation unit 206 receives input of received signal power, interference power, and noise power from the channel measurement unit 205. Then, the channel information calculation unit 206 calculates an individual SINR using the received signal power, interference power, and noise power (step S8).
  • the channel information calculation unit 206 calculates the overall SINR using the calculated individual SINR (step S9).
  • the channel information calculation unit 206 acquires a CQI corresponding to the overall SINR using a function representing the relationship between SINR and CQI according to the reliability (step S10).
  • the channel information calculation unit 206 calculates a correlation value between signals in each discontinuous frequency band included in the resource set using a correlation function (step S11).
  • Channel information calculation section 206 then outputs the acquired CQI and correlation value information to communication control section 203.
  • the communication control unit 203 acquires CQI and correlation value information from the channel information calculation unit 206. And the communication control part 203 produces
  • the MCS selection unit 114 of the base station apparatus 1 acquires the transmission time of the CQI, the correlation value, and the channel information. Then, the CQI is converted into SINR (step S13).
  • the MCS selection unit 114 calculates an offset for SINR margin from the correlation value (step S14).
  • the MCS selection unit 114 calculates a delay time from the transmission time of the channel information until the data is transmitted to the terminal device 2. Then, the MCS selection unit 114 calculates an SINR margin offset from the calculated delay time (step S15).
  • the MCS selection unit 114 selects the MCS corresponding to the value obtained by subtracting the offset calculated from the SINR from the MCS selection table 402 (step S16). After that, the MCS selection unit 114 notifies the signal processing unit 104 of the modulation scheme and coding rate corresponding to the selected MCS.
  • the signal processing unit 104 performs modulation processing and coding processing on a transmission signal for transmitting data to the terminal device 2 using the modulation scheme and coding rate notified from the MCS selection unit 114.
  • the radio resource allocation unit 113 determines a resource block to be allocated to data to be transmitted to the terminal device 2 using a resource set.
  • the signal processing unit 104 allocates the resource block specified by the radio resource allocation unit 113 to the transmission signal (step S17). Thereafter, the signal processing unit 104 outputs the transmission signal to the transmission unit 103.
  • the transmission part 103 transmits data to the terminal device 2 using the transmission signal acquired from the signal processing part 104 (step S18).
  • the signal processing unit 104 and the transmission unit 103 transmit data while repeating MCS selection and resource block allocation according to the delay time using the acquired CSI until the next CSI is transmitted from the terminal device 2. (Step S19).
  • the channel measurement unit 205, the channel information calculation unit 206, and the communication control unit 203 of the terminal device 2 perform the same processing as Steps S7 to S11, and acquire CSI. And the communication control part 203 transmits acquired CSI to the base station apparatus 1 (step S20).
  • the terminal device 2 periodically transmits CSI to the base station device 1. Then, the base station apparatus 1 repeats the transmission of data to the terminal apparatus 2 after performing the processes from step S13 to S17 using the received CSI.
  • the base station apparatus 1 obtains the SINR margin using the correlation function and the delay time from the measurement time of the channel information to the data transmission, and selects the MCS. However, if a certain amount of SINR error can be tolerated, the base station apparatus 1 may select the MCS corresponding to the SINR obtained from the notified CQI without using the correlation function and the delay time. Moreover, the base station apparatus 1 is. The MCS may be selected using an SINR offset obtained from one of the correlation function and the delay time.
  • FIG. 9 is a diagram illustrating an example of data transmission using a resource set.
  • FIG. 10 is a diagram illustrating another example of data transmission using a resource set.
  • resource blocks # 1 and # 2 of different discontinuous frequency bands are set as resource sets.
  • FIG. 9 shows a configuration in which there is one transmission point 601 and the terminal device 2 receives data from the one transmission point 601.
  • the transmission point 601 may be the base station apparatus 1 or an RRH (Remote Radio Head) that the base station apparatus 1 has.
  • the transmission point 601 transmits data to the terminal device 2 using the resource blocks # 1 and # 2.
  • FIG. 10 there are two transmission points, transmission points 602 and 603.
  • the terminal device 2 receives data from both the transmission points 602 and 603.
  • the transmission points 602 and 603 are, for example, different RRHs that one base station apparatus 1 has. Further, when two base station apparatuses 1 are performing cooperative communication, the transmission points 602 and 603 may be different base station apparatuses 1. In this case, for example, the transmission point 602 transmits data to the terminal device 2 using the resource block # 1. In addition, the transmission point 603 transmits data to the terminal device 2 using the resource block # 2.
  • FIG. 11 is a diagram for explaining the reliability when data is transmitted using continuous frequency bands.
  • FIG. 12 is a diagram for explaining the reliability when data is transmitted using a discontinuous frequency band.
  • FIG. 11 shows a case where data is transmitted using a plurality of continuous frequency bands 331 among the usable frequency bands 330.
  • the frequency band 331 is 10 MHz in total.
  • the left diagram in FIG. 11 represents a cumulative distribution function (CDF: Cumulative Distribution Function) when data is transmitted using the frequency band 331.
  • CDF Cumulative Distribution Function
  • the horizontal axis represents the received signal power fluctuation amount
  • the vertical axis represents the calculation result value used for the cumulative distribution function corresponding to each received signal power fluctuation amount.
  • Graphs 701 to 705 represent the cumulative distribution function corresponding to the delay time from the channel information measurement time to the data transmission.
  • a graph 701 is a cumulative distribution function when the delay time is 1 ms.
  • a graph 702 is a cumulative distribution function when the delay time is 2 ms.
  • a graph 703 is a cumulative distribution function when the delay time is 4 ms.
  • a graph 704 is a cumulative distribution function when the delay time is 8 ms.
  • a graph 705 is a cumulative distribution function when the delay time is 16 ms.
  • FIG. 12 shows a case where data is transmitted using a plurality of discontinuous frequency bands 341 in the usable frequency band 340.
  • the frequency band 341 is 10 MHz in total.
  • the left diagram in FIG. 12 represents a cumulative distribution function when data is transmitted using the frequency band 341.
  • the horizontal axis represents the received signal power fluctuation amount
  • the vertical axis represents the calculation result value used for the cumulative distribution function corresponding to each received signal power fluctuation amount.
  • a graph 711 is a cumulative distribution function when the delay time is 1 ms.
  • a graph 712 is a cumulative distribution function when the delay time is 2 ms.
  • a graph 713 is a cumulative distribution function when the delay time is 4 ms.
  • a graph 714 is a cumulative distribution function when the delay time is 8 ms.
  • a graph 715 is a cumulative distribution function when the delay time is 16 ms.
  • the graphs 711 to 715 have the same probability of occurrence as the graphs 701 to 705 when the amount of power fluctuation is smaller. That is, it can be seen that the amount of power fluctuation is suppressed when data is transmitted using a plurality of discontinuous frequency bands 341 compared to when data is transmitted using continuous frequency bands 331. In this way, by transmitting data using a plurality of discontinuous frequency bands 341, the amount of power fluctuation according to the delay can be reduced, and the reliability of communication by assignment of radio resources using CSI can be improved. Can be improved.
  • the radio communication system uses the channel information in which all the signals in the discontinuous frequency bands included in the resource set are used, and the radio allocated to the transmission signals in the MCS and the resource set. Determine resources. Thereby, it is possible to select an MCS that transmits as much data as possible while suppressing errors. In addition, data can be transmitted using a discontinuous frequency band. Therefore, the wireless communication system according to the present embodiment can efficiently realize highly reliable and low delay communication.
  • the base station apparatus provides a margin in the MCS in consideration of the correlation between signals in the discontinuous frequency bands included in the resource set and the delay time from the measurement time of channel information to data transmission. .
  • the base station apparatus which concerns on a present Example can select more suitable MCS, and can contribute by the reliable reduction in communication delay.
  • FIG. 13 is a hardware configuration diagram of the base station apparatus.
  • the base station apparatus 1 includes an antenna 107, a processor 91, a memory 92, an RF (Radio Frequency) circuit 93, and a network interface 94.
  • the processor 91 is connected to the memory 92, the RF circuit 93, and the network interface 94 via a bus.
  • the network interface 94 is an interface for connecting to the EPC 3 and other base station devices 1.
  • the RF circuit 93 is connected to the antenna 107.
  • the RF circuit 93 realizes the functions of the receiving unit 102 and the transmitting unit 103 illustrated in FIG.
  • the memory 92 stores various programs including programs for realizing the functions of the communication control unit 101, the signal processing unit 104, the reliability determination unit 105, and the CSI feedback setting notification unit 106 illustrated in FIG.
  • the processor 91 reads out various programs stored in the memory 92, develops them on the memory 92, and executes them, whereby the communication control unit 101, signal processing unit 104, reliability determination unit 105, and CSI feedback illustrated in FIG.
  • the function of the setting notification unit 106 is realized.
  • FIG. 14 is a hardware configuration diagram of the terminal device.
  • the terminal device 2 includes an antenna 207, a processor 95, a memory 96, and an RF circuit 97.
  • the processor 95 is connected to the memory 96 and the RF circuit 97 via a bus.
  • the RF circuit 97 is connected to the antenna 207.
  • the RF circuit 97 implements the functions of the receiving unit 201 and the transmitting unit 204 illustrated in FIG.
  • the memory 96 stores various programs including programs for realizing the functions of the signal processing unit 202, the communication control unit 203, the channel measurement unit 205, and the channel information calculation unit 206 illustrated in FIG.
  • the processor 95 reads out various programs stored in the memory 96, develops them on the memory 96, and executes them, whereby the signal processing unit 202, the communication control unit 203, the channel measurement unit 205, and the channel information calculation illustrated in FIG. The function of the unit 206 is realized.
  • Base station device 2 Terminal device 3 EPC DESCRIPTION OF SYMBOLS 101 Communication control part 102 Reception part 103 Transmission part 104 Signal processing part 105 Reliability determination part 106 CSI feedback setting notification part 107 Antenna 111 Connection processing part 112 Resource set determination part 113 Radio

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

効率よく高信頼低遅延通信を実現する基地局装置、端末装置、無線通信システム及び無線通信システム制御方法を提供する。送信部(103)は、少なくとも2つの不連続の周波数帯を用いて信号を送信する。通信制御部(101)は、不連続の周波数帯のそれぞれで送信される信号毎に測定されたチャネルの個別情報を基に算出された不連続の周波数帯の全体のチャネルの全体情報を端末装置から受信し、受信した全体情報から送信設定を決定する。信号処理部(104)は、通信制御部(101)により決定された送信設定を用いて信号に対して処理を行い、送信部(103)に信号を送信させる。

Description

基地局装置、端末装置、無線通信システム及び無線通信システム制御方法
 本発明は、基地局装置、端末装置、無線通信システム及び無線通信システム制御方法に関する。
 LTE(Long Term Evolution)を用いた無線通信システムでは、基地局装置は、各端末装置のチャネル品質情報に基づいて無線リソースの割り当て及びMCS(Modulation and Coding Scheme)の決定を行う。そこで、ダウンリンクの送信を行う際に各端末装置に対して適切な無線リソースの割り当て及びMCSの決定を行うために、基地局装置は、チャネルに関するフィードバック情報を各端末装置から予め取得する。
 チャネルに関するフィードバック情報は、CSI(Channel State Information)と呼ばれる。CSIには、例えば、CQI(Channel Quality Indicator)、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)、BI(Beam Indicator)及びCRI(CSI Reference signal resource Indicator)などが含まれる。例えば、端末装置は、予めエラー率が0.1と設定されている場合、チャネルの測定結果に基づいて設定されたエラー率である0.1を超えない最大のCQIの値をCQIとして基地局装置にフィードバックする。
 また、LTEを用いた無線通信システムでは、CQIについてWidebandとSubbandの2種類が規定されている。Widband CQIは、全帯域を単位として算出されるCQIである。また、Subband CQIは、連続した周波数帯域を単位として算出されるCQIである。
 さらに、近年、移動体通信システムとして5G(Generation)システムの研究開発が盛んになってきている。5Gシステムでは、通常のブロードバンド通信に加える技術として、URLLC(Ultra Reliable Low Latency Communications)が着目されている。URLLCを用いた無線通信システムでは、例えば、高信頼で低遅延な通信を用いるアプリケーションを動作させるために、無線区間において今まで以上に低いエラー率でのデータ伝送が実現されることが好ましい。この場合、提供するサービスの種類によって求められる信頼度及び遅延が異なり、エラー率も提供するサービスの種類に応じて異なる。URLLCを用いたサービスには、例えば、変電所の障害対応や制御、スマートグリッド技術を用いた電力供給システムの制御、バーチャルプレゼンス環境の提供、産業用制御アプリケーションの実行、自動運転又は触覚インターネットの提供などが考えられる。
 なお、無線通信の技術として、無線リソースの割り当てにおいて、周波数領域で連続しない無線リソースを割り当てるか、連続する無線リソースを割り当てるかを、端末装置に通知する従来技術がある。また、連続的なキャリアアグリゲーションを実行する場合は無線リソースの配分を集中型で行い、非連続的なキャリアアグリゲーションを実行する場合は無線リソースの配分を分散型で行う従来技術がある。
特開2011-244472号公報 特表2013-509120号公報
 しかしながら、端末装置と基地局装置との間のチャネルは時間とともに変動しており、CSIの測定タイミングと実際に基地局装置が端末装置へデータを送信するタイミングとの間の遅延により、CSIに基づいたスケジューリングの信頼度が低下する。そのため、エラー率が上昇するおそれがある。エラー率が上昇した場合、無線通信システムでは、求められるURLLCの提供が困難になるおそれがある。
 特に、URLLCのような低遅延通信では、再送が行われないもしくは限られた再送しか許容されない可能性があり、エラー率の上昇が通信の信頼性の低下に直結するおそれがある。
 また、周波数領域で連続しない無線リソースを割り当てるか、連続する無線リソースを割り当てるかを通知する従来技術を用いても、CSIに基づいたスケジューリングの信頼度の低下を解消することは困難である。また、キャリアアグリゲーションの種類により無線リソースの配分を集中型又は分散型の何れにするかを決定する従来技術を用いても、CSIに基づいたスケジューリングの信頼度の低下を解消することは困難である。
 開示の技術は、上記に鑑みてなされたものであって、効率よく高信頼低遅延通信を実現する基地局装置、端末装置、無線通信システム及び無線通信システム制御方法を提供することを目的とする。
 本願の開示する基地局装置、端末装置、無線通信システム及び無線通信システム制御方法の一つの態様において、送信部は、少なくとも2つの不連続の周波数帯を用いて信号を送信する。送信設定決定部は、前記不連続の周波数帯のそれぞれで送信される信号毎に測定されたチャネルの個別情報を基に算出された前記不連続の周波数帯の全体のチャネルの全体情報を端末装置から受信し、受信した前記全体情報から送信設定を決定する。信号処理部は、前記送信設定決定部により決定された前記送信設定を用いて信号に対して処理を行い、前記送信部に信号を送信させる。
 本願の開示する基地局装置、端末装置、無線通信システム及び無線通信システム制御方法の一つの態様によれば、効率よく高信頼低遅延通信を実現することができるという効果を奏する。
図1は、実施例に係る基地局装置のブロック図である。 図2は、実施例に係る端末装置のブロック図である。 図3は、リソースセットの選択を説明するための図である。 図4は、リソースセットの選択の他の例を説明するための図である。 図5は、相関値とSINRのオフセットとの関係を表す図である。 図6は、MCS選択表の一例を表す図である。 図7は、SINRとCQIとの変換関数を説明するための図である。 図8は、実施例に係る無線通信システムにおけるURLLCを用いた通信の制御のシーケンス図である。 図9は、リソースセットを用いたデータ送信の一例を表す図である。 図10は、リソースセットを用いたデータ送信の他の例を表す図である。 図11は、連続した周波数帯を用いてデータを送信した場合の信頼度を説明するための図である。 図12は、不連続な周波数帯を用いてデータを送信した場合の信頼度を説明するための図である。 図13は、基地局装置のハードウェア構成図である。 図14は、端末装置のハードウェア構成図である。
 以下に、本願の開示する基地局装置、端末装置、無線通信システム及び無線通信システム制御方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する基地局装置、端末装置、無線通信システム及び無線通信システム制御方法が限定されるものではない。
 図1は、実施例に係る基地局装置のブロック図である。また、図2は、実施例に係る端末装置のブロック図である。図1の基地局装置1は、図2の端末装置2と無線通信を行う。基地局装置1と端末装置2とは、基地局装置1から端末装置2へ向かうダウンリンクによるデータ送信及び端末装置2から基地局装置1へ向かうアップリンクによるデータ送信のいずれも行う。ただし、以下の説明では、URLLCを用いたダウンリンクによるデータ送信について主に説明する。
 図1に示すように、本実施例に係る基地局装置1は、通信制御部101、受信部102、送信部103、信号処理部104、信頼度決定部105、CSIフィードバック設定通知部106及びアンテナ107を有する。
 受信部102は、無線信号を端末装置2からアンテナ107を介して受信する。そして、受信部102は、受信した信号を信号処理部104へ出力する。
 通信制御部101は、通信のスケジューリングなどの端末装置2との間の信号の送受信の全般的な制御を行う。通信制御部101は、接続処理部111、リソースセット決定部112、無線リソース割当部113及びMCS選択部114を有する。この通信制御部101が、「送信設定決定部」の一例にあたる。
 接続処理部111は、呼接続要求などの呼接続処理に用いる信号の入力を信号処理部104から受ける。そして、接続処理部111は、呼接続処理に用いる信号に応じて、呼接続応答を信号処理部104に送信させるなどして呼接続処理を実行し、端末装置2と基地局装置1との間の呼を確立する。続いて、端末装置2は、基地局装置1及びコアネットワークであるEPC(Evolved Packet Core)3を介して通信相手と接続する。その後、接続処理部111は、端末装置2の相手もしくは端末装置2から送信されたデータの送信要求を取得する。ここで、データの送信要求には、端末装置2に対して提供するサービスの種類の情報が含まれる。そして、接続処理部111は、端末装置2に対して提供するサービスの種類の情報をリソースセット決定部112及び信頼度決定部105へ出力する。
 リソースセット決定部112は、URLLCを用いた通信において使用する複数の周波数帯に分割された不連続周波数帯を予め記憶する。リソースセット決定部112は、端末装置2に対して提供するサービスの種類の情報の入力を接続処理部111から受ける。そして、リソースセット決定部112は、提供するサービスにおいて送信するデータのサイズなどから記憶する不連続周波数帯の中から端末装置2への信号送信に用いる不連続な周波数帯の組をリソースセットとして決定する。
 図3は、リソースセットの選択を説明するための図である。図3の使用可能周波数帯301は、基地局装置1が通信に使用可能な周波数帯である。例えば、リソースセット決定部112は、図3に示す使用可能周波数301の中の斜線で示される不連続周波数帯311を予めURLLCを用いた通信において使用する周波数帯として記憶する。そして、リソースセット決定部112は、不連続周波数帯311の中から端末装置2への信号送信に用いる不連続な周波数帯の組として、図3のグレーの領域で示されるリソースセット312を選択する。ここで、図3では、リソースセット決定部112は、リソースセット312として、不連続周波数帯311に含まれる不連続な各周波数帯の全てにおいて先頭からの領域を確保したが、リソースセット312の確保の方法はこれに限らない。例えば、リソースセット決定部112は、不連続周波数帯311に含まれる不連続な各周波数帯からいくつか選択し、その選択された周波数帯からリソースセット312の領域を確保してもよい。また、リソースセット決定部112は、不連続周波数帯311に含まれる不連続な各周波数帯における先頭以外の領域をリソースセット312として確保してもよい。ただし、リソースセット312に含まれる複数の不連続な周波数帯は、互いに5MHz以上離されることが好ましい。
 また、図3では1回の信号送信における不連続な周波数帯をリソースセットとしたが、周波数帯が不連続であれば、リソースセット決定部112は、他の方法でリソースセットを決定することもできる。例えば、図4は、リソースセットの選択の他の例を説明するための図である。図4に示すように、基地局装置1が通信に使用可能な周波数帯は時間方向にも存在し、使用可能周波数帯302のように表される。この場合、リソースセット決定部112は、使用可能周波数帯302の中の異なる時間における不連続な周波数帯321及び322をリソースセットとしてもよい。
 図1に戻って説明を続ける。リソースセット決定部112は、端末装置2への信号送信に用いるリソースセットを決定後、決定したリソースセットの情報を無線リソース割当部113へ出力する。
 無線リソース割当部113は、端末装置2への信号送信に用いるリソースセットの情報の入力をリソースセット決定部112から受ける。そして、無線リソース割当部113は、リソースセットの情報からCSI測定用参照信号に無線リソースの割り当てを行う。次に、無線リソース割当部113は、CSI測定用参照信号に割り当てた無線リソースの情報を信号処理部104及びCSIフィードバック設定通知部106へ出力する。さらに、無線リソース割当部113は、端末装置2のCSI送信タイミングを決定し、CSIフィードバック設定通知部106へ出力する。CSI送信タイミングは、端末装置2がCSIを基地局装置1へ送信するタイミングであり、例えば、周期的にCSIを送信するように設定される。
 また、無線リソース割当部113は、端末装置2から送信されたCSIを信号処理部104から取得する。CSIには、例えば、CQI、RI、PMI、BI及びCRIなどが含まれる。また、受信信号電力Sと干渉電力(I+N)のいずれか又は両方が含まれてもよい。そして、無線リソース割当部113は、取得したCSI及びリソースセットの情報を用いて端末装置2への信号送信に用いる無線リソースを決定する。そして、無線リソース割当部113は、端末装置2への信号送信に使用する無線リソースを信号処理部104に通知する。
 MCS選択部114は、端末装置2から送信されたCSIを信号処理部104から取得する。本実施例では、CSIには、上述した情報に加えて、相関値の情報及びチャネル情報の測定時刻の情報が含まれる。ここで、相関値とは、リソースセットとして決定された不連続の周波数帯域のそれぞれを使用して送信された信号の関係の強弱を表す値である。また、チャネル情報の測定時刻は、端末装置2が受信信号電力、干渉電力及び雑音電力を含むチャネル情報の計測を行った時刻である。
 MCS選択部114は、CSIからCQIを取得する。そして、MCS選択部114は、CQIをSINR(Signal-to-Interface plus Noise power Raito)に変換する。SINRは、受信信号のうち所望信号の電力と所望信号以外の電力の比を表す値である。ただし、CQIの代わりに受信信号電力S又は干渉電力(I+N)のいずれかもしくは双方がCSIに含まれている場合は、MCS選択部114がSINRを計算する。例えば、CSIに含まれる干渉電力と、端末装置2からの上りリンクの送信から計算した受信信号電力からSINRを算出してもよい。
 また、MCS選択部114は、CSIから相関値を取得する。ここで、MCS選択部114は、図5に示すグラフ401のような相関値とSINRのオフセットとの関係を表す関数を予め記憶する。図5は、相関値とSINRのオフセットとの関係を表す図である。そして、MCS選択部114は、グラフ401を表す関数を用いて、取得した相関値に対応するSINRのオフセットを取得する。
 また、MCS選択部114は、遅延時間とSIRNのオフセットとの関係を表す関数を予め記憶する。そして、MCS選択部114は、CSIからチャネル情報の測定時刻を取得する。次に、MCS選択部114は、データの送信予定時刻を算出する。そして、MCS選択部114は、データの送信予定時刻からチャネル情報の測定時刻を減算し、チャネル情報が計測されてからデータの送信が行われるまでの遅延時間を算出する。ここで、遅延時間とSIRNのオフセットとの関係を表す関数は、図5に示されるグラフ401と同様の遅延時間とSIRNのオフセットとの関係を表すグラフに対応する関数である。
 ここで、MCS選択部114は、例えば、図6に示すMCS選択表402を有する。図6は、MCS選択表の一例を表す図である。図6に示すように、本実施例では、MCSは5ビットの値で表される。そしてMCS選択表402には、各MCSに対応させて変調方式及び符号化率が登録される。本実施例に係るMCS選択表402では、MCSの番号が若い順に、エラー発生率が低くなり且つデータの送信量が低くなる。すなわち、MCSの番号が若い程、信頼性は向上するが、送信対象のデータを全て送信するまでに時間がかかり遅延が大きくなるといえる。ここで、チャネルの通信品質が良ければエラーの発生率は低くなるため、変調や符号化によるエラーの発生をより多く許容することができる。したがって、MCS選択部114は、チャネルの通信品質が良い場合には、より番号の高いMCSを選択して、遅延を短くすることが好ましい。
 MCS選択部114は、CQIから求めたSINRから相関値及び遅延時間によるオフセットを減算してMCSを求めるためのSINRの値を算出する。次に、MCS選択部114は、算出したSINRの値を5ビットの値に変換する。そして、MCS選択部114は、SINRの値を変換した5ビットの値に対応するMCSをMCS選択表402から特定する。その後、MCS選択部114は、特定したMCSに対応する変調方式及び符号化率を信号処理部104へ通知する。このMCS選択部114が通知する変調方式及び符号化率、並びに、無線リソース割当部113が通知する端末装置2への信号送信に使用する無線リソースが、「通信設定」の一例にあたる。
 図1に戻って説明を続ける。送信部103は、呼接続応答などの呼接続処理に用いる各種信号の入力を信号処理部104から受ける。そして、送信部103は、呼接続処理に用いる各種信号をアンテナ107を介して端末装置2へ送信する。また、送信部103は、データ送信の際にデータ送信信号の入力を信号処理部104から受ける。そして、送信部103は、取得したデータ送信信号をアンテナ107を介して端末装置2へ送信する。
 また、送信部103は、CSIフィードバック設定の入力をCSIフィードバック設定通知部106から受ける。そして、送信部103は、取得したCSIフィードバック設定をアンテナ107を介して端末装置2へ送信する。
 信号処理部104は、接続応答の送信指示などの呼接続処理に用いる各種信号の送信指示を接続処理部111から受ける。そして、信号処理部104は、送信指示にしたがい呼接続処理に用いる各種信号を送信部103へ出力する。
 また、信号処理部104は、端末装置2から送信されたCSIの入力を受信部102から受ける。そして、信号処理部104は、取得したCSIを無線リソース割当部113及びMCS選択部114へ出力する。
 また、信号処理部104は、送信信号をEPC3から受信する。また、信号処理部1104は、変調方式及び符号化率の入力をMCS選択部114から受ける。さらに、信号処理部104は、端末装置2への信号送信に使用する無線リソースの通知を無線リソース割当部113から受ける。
 そして、信号処理部104は、指定された変調方式及び符号化率を用いて、EPC3から受信した送信信号に対し変調処理及び符号化処理を施す。さらに、信号処理部104は、送信信号に対して指定された無線リソースを割り当てる。その後、信号処理部104は、送信信号を送信部103へ出力する。この信号処理部104による変調処理及び符号化処理、並びに、無線リソースの割り当てが「送信設定を用いて信号に対して処理」を行うことの一例にあたる。
 信頼度決定部105は、サービス毎の要求される信頼度を予め記憶する。例えば、信頼度決定部105は、変電所の障害対応及び制御のサービスの場合、エラー率が10-4以下の信頼度などと記憶する。
 信頼度決定部105は、端末装置2に対して提供するサービスの種類の情報の入力を接続処理部111から受ける。そして、信頼度決定部105は、端末装置2に対して提供するサービスの信頼度の情報をCSIフィードバック設定通知部106へ出力する。
 CSIフィードバック設定通知部106は、CSI測定用参照信号に割り当てられた無線リソースの情報の入力を無線リソース割当部113から受ける。さらに、CSIフィードバック設定通知部106は、端末装置2がCSI送信に用いる無線リソースの情報の入力を無線リソース割当部113から受ける。また、CSIフィードバック設定通知部106は、端末装置2に対する信号送信で求められる信頼度の情報を信頼度決定部105から受ける。
 そして、CSIフィードバック設定通知部106は、取得した情報を用いて、CSI測定用参照信号情報、CSI送信タイミング、CSI計算条件を含むCSIフィードバック設定を送信部103へ通知する。ここで、CSI測定用参照信号情報には、CSI測定用参照信号の送信タイミング、周波数及びパターンなどが含まれる。また、CSI計算条件には、端末装置2に対する信号送信で求められる信頼度が含まれる。
 次に、図2を参照して、端末装置2について説明する。端末装置2は、図2に示すように、受信部201、信号処理部202、通信制御部203、送信部204、チャネル測定部205、チャネル情報算出部206及びアンテナ207を有する。
 受信部201は、アンテナ207を介して基地局装置1から送信された信号を受信する。そして、受信部201は、受信した信号を信号処理部202へ出力する。
 信号処理部202は、基地局装置1から送信された信号の入力を受信部201から受ける。そして、信号処理部202は、取得した信号に対して復号化処理及び復調処理などを施す。そして、信号処理部202は、処理を施した信号を通信制御部203へ出力する。
 また、信号処理部202は、送信するデータの入力を通信制御部203から受ける。そして、信号処理部202は、取得したデータに変調処理及び符号化処理などを施して送信信号を生成する。そして、信号処理部202は、生成した送信信号を送信部204へ出力する。
 また、信号処理部202は、基地局装置1から送信された信号に含まれるデータを通信制御部203へ出力する。
 通信制御部203は、基地局装置1から送信された信号の入力を信号処理部202から受ける。通信制御部203は、呼接続処理を実行する。呼接続完了後、通信制御部203は、サービス要求を信号処理部202に基地局装置1へ送信させる。
 その後、CSIフィードバック設定を受信すると、通信制御部203は、CSIフィードバック設定に含まれるCSI測定用参照信号情報をチャネル測定部205に通知する。また、CSI計算条件をチャネル情報算出部206へ出力する。
 その後、通信制御部203は、リソースセットに含まれる不連続な周波数帯の信号の相関値をチャネル情報算出部206から取得する。さらに、リソースセットに含まれる不連続な周波数帯のそれぞれの信号の全体をまとめたCQI、RI、PMI、BI及びCRIをチャネル情報算出部206から取得する。また、通信制御部203は、リソースセットに含まれる不連続な周波数帯のそれぞれの信号のチャネル情報をチャネル情報の測定時刻とともにチャネル測定部205から取得する。その後、通信制御部203は、リソースセットに含まれる不連続な周波数帯のそれぞれの信号の全体をまとめたCQI、RI、PMI、BI、CRI、リソースセットに含まれる不連続な周波数帯の信号の相関値及びチャネル情報の測定時刻を含むCSIを作成する。そして、通信制御部203は、作成したCSIを信号処理部202に出力し、基地局装置1へ送信させる。その後、通信制御部203は、CSIの送信周期にしたがって、CSIを信号処理部202に出力し、基地局装置1へ送信させる。
 また、通信制御部203は、信号処理部202から取得したデータを音声、文字又は画像などにより操作者に提供する。
 チャネル測定部205は、CSI測定用参照信号情報を通信制御部203から受ける。次に、チャネル測定部205は、CSI測定用参照信号情報に含まれる、リソースセットに含まれる不連続な周波数帯における各参照信号の送信タイミング、周波数及びパターンを取得する。そして、チャネル測定部205は、取得した情報を用いて、受信部201が受信した信号から、リソースセットに含まれる不連続な周波数帯における各信号の受信信号電力、干渉電力及び雑音電力を取得する。このリソースセットに含まれる不連続な周波数帯における各信号の受信信号電力、干渉電力及び雑音電力が、「個別情報」の一例にあたる。
 さらに、チャネル測定部205は、受信信号電力、干渉電力及び雑音電力などのチャネル情報を測定した測定時刻を取得する。その後、チャネル測定部205は、取得したリソースセットに含まれる不連続な周波数帯における各信号の受信信号電力、干渉電力及び雑音電力をチャネル情報算出部206へ出力する。また、チャネル測定部205は、チャネル情報の測定時刻を通信制御部203へ出力する。測定時刻は、例えば基地局装置1での送信時間を規定するためのサブフレームやスロットの番号で表現される。
 チャネル情報算出部206は、リソースセットに含まれる不連続な周波数帯における各信号のSINRを算出する。以下では、リソースセットに含まれる不連続な周波数帯における各信号のSINRを「個別SINR」という。
 次に、チャネル情報算出部206は、個別SINRを用いてリソースセットに含まれる不連続な周波数帯の全体のSINRを算出する。以下では、リソースセットに含まれる不連続な周波数帯の全体のSINRを「全体SINR」という。例えば、チャネル情報算出部206は、個別SINRにシャノンの通信容量の定理あるいはExponential effective SINR MappingやMutual Information based Effective SINR Mappingなどを用いて全体SINRを算出することができる。また、チャネル情報算出部206は、個別SINRの平均値を全体SINRとしてもよい。このように、全体SINRは、リソースセットに含まれる不連続な周波数帯における各信号の全体をまとめた受信品質の状態が表されるものであれば、どのように求めてもよい。この全体SINRが、「全体情報」の一例にあたる。
 ここで、チャネル情報算出部206は、図7に示すような関係により表されるSINRとCQIとの変換関数を予め有する。図7は、SINRとCQIとの変換関数を説明するための図である。図7のグラフ501は、エラー率が10-1以下の信頼度を満たすためのSINRとCQIとの関係を表すグラフである。また、グラフ502は、エラー率が10-5以下の信頼度を満たすためのSINRとCQIとの関係を表すグラフである。グラフ501及び502は、4ビットで表される0~15の値を有するCQIにSINRを変換するためのグラフである。図7に示すように、信頼度が高くなるほど、CQIはより大きな値のSINRに対応する。すなわち、同じCQIの値であっても、信頼度が高い方が受信品質の良い状態に対応する。
 チャネル情報算出部206は、例えば、信頼度が10-1の場合の関数をグラフ501で表される関数とし、信頼度が10-5の場合の関数をグラフ502で表される関数というように、信頼度に応じた変換関数を有する。
 チャネル情報算出部206は、CSIフィードバック設定に含まれる信頼度を取得する。次に、チャネル情報算出部206は、取得した信頼度に対応するSINRとCQIとの変換関数を選択する。そして、チャネル情報算出部206は、選択した変換関数を用いて、算出した全体SINRをCQIに変換する。
 次に、チャネル情報算出部206は、リソースセットに含まれる不連続な周波数帯における各信号に対して相関関数を用いるなどしてそれぞれの相関値を算出する。ここで、チャネル情報算出部206は、相関値として標準偏差を求めてもよい。
 そして、チャネル情報算出部206は、算出したCQI及び相関値を通信制御部203へ送信する。ここで、本実施例では、端末装置2は、SINRを4ビットで表されるCQIに変換して暗示的な情報として基地局装置1に通知した。ただし、大きなデータの基地局装置1への送信が許容可能であれば場合、端末装置2は、明示的な情報としてSINRをそのまま基地局装置1に通知してもよい。また、端末装置2は、SINRの代わりに受信信号電力S又は干渉電力Iの何れかもしくは双方を明示的にあるいは暗示的に送信してもよい。
 次に、図8を参照して、本実施例に係る無線通信システムにおけるURLLCを用いた通信の制御の流れについて説明する。図8は、実施例に係る無線通信システムにおけるURLLCを用いた通信の制御のシーケンス図である。
 基地局装置1の接続処理部111及び端末装置2の通信制御部203は、相互に通信を行い呼接続処理を実行する(ステップS1)。
 呼確立後、端末装置2の通信制御部203は、サービスの種類の情報を含むサービス要求を基地局装置1へ送信する(ステップS2)。基地局装置1の接続処理部111は、サービス要求を受信する。そして、接続処理部111は、サービスの種類の情報をリソースセット決定部112及び信頼度決定部105へ出力する。
 リソースセット決定部112は、サービスの種類の情報を接続処理部111から取得する。そして、リソースセット決定部112は、サービスの種類から提供するサービスで用いられるデータのサイズなどを取得し、不連続な周波数帯を有するリソースセットを決定する(ステップS3)。そして、リソースセット決定部112は、取得した信頼度を無線リソース割当部113へ出力する。無線リソース割当部113は、リソースセットの情報からCSI測定用参照信号に無線リソースの割り当てを行う。次に、無線リソース割当部113は、CSI測定用参照信号に割り当てた無線リソースの情報を信号処理部104及びCSIフィードバック設定通知部106へ出力する。さらに、無線リソース割当部113は、端末装置2のCSI送信タイミングを決定し、CSIフィードバック設定通知部106へ出力する。
 また、信頼度決定部105は、サービスの種類の情報を接続処理部111から取得する。そして、信頼度決定部105は、予め決められたサービス毎に要求される信頼度から、端末装置2に提供するサービスで要求される信頼度を決定する(ステップS4)。そして、信頼度決定部105は、取得した信頼度をCSIフィードバック設定通知部106へ出力する。
 CSIフィードバック設定通知部106は、CSI測定用参照信号に割り当てられた無線リソースの情報及びCSI送信タイミングの情報を無線リソース割当部113から取得する。さらに、CSIフィードバック設定通知部106は、信頼度を信頼度決定部105から取得する。そして、CSIフィードバック設定通知部106は、取得した情報を用いて、CSI測定用参照信号情報、CSI送信タイミング、CSI計算条件を含むCSIフィードバック設定を端末装置2へ送信する(ステップS5)。端末装置2の通信制御部203は、CSIフィードバック設定を受信する。そして、通信制御部203は、CSI測定用参照信号情報をチャネル測定部205へ通知する。また、通信制御部203は、信頼度をチャネル情報算出部206へ通知する。
 その後、信号処理部104は、無線リソース割当部113により割り当てられた無線リソースを用いて、リソースセットに含まれる不連続な各周波数帯でCSI測定用参照信号を送信する(ステップS6)。
 チャネル測定部205は、CSI測定用参照信号情報を通信制御部203から取得する。そして、チャネル測定部205は、CSI測定用参照信号情報を用いてチャネル情報を測定する。さらに、チャネル測定部205は、チャネル情報の測定時刻を取得する(ステップS7)。そして、チャネル測定部205は、チャネル情報に含まれる受信信号電力、干渉電力及び雑音電力をチャネル情報算出部206へ出力する。また、チャネル測定部205は、チャネル情報及びチャネル情報の測定時刻を通信制御部203へ出力する。
 チャネル情報算出部206は、受信信号電力、干渉電力及び雑音電力の入力をチャネル測定部205から受ける。そして、チャネル情報算出部206は、受信信号電力、干渉電力及び雑音電力を用いて、個別SINRを算出する(ステップS8)。
 さらに、チャネル情報算出部206は、算出した個別SINRを用いて全体SINRを算出する(ステップS9)。
 次に、チャネル情報算出部206は、信頼度に応じたSINRとCQIとの関係を表す関数を用いて、全体SINRに対応するCQIを取得する(ステップS10)。
 さらに、チャネル情報算出部206は、相関関数を用いて、リソースセットに含まれる不連続な各周波数帯における各信号間の相関値を算出する(ステップS11)。そして、チャネル情報算出部206は、取得したCQI及び相関値の情報を通信制御部203へ出力する。
 通信制御部203は、CQI及び相関値の情報をチャネル情報算出部206から取得する。そして、通信制御部203は、CQI、相関値及びチャネル情報の測定時刻を含むCSIを生成し、基地局装置1へ送信する(ステップS12)。
 基地局装置1のMCS選択部114は、CQI、相関値及びチャネル情報の送信時刻を取得する。そして、CQIをSINRに変換する(ステップS13)。
 次に、MCS選択部114は、相関値からSINRのマージン用のオフセットを算出する(ステップS14)。
 さらに、MCS選択部114は、チャネル情報の送信時刻からデータを端末装置2へ送信するまでの遅延時間を算出する。そして、MCS選択部114は、算出した遅延時間からSINRのマージン用のオフセットを算出する(ステップS15)。
 そして、MCS選択部114は、SINRから算出したオフセットを減算した値に対応するMCSをMCS選択表402から選択する(ステップS16)。その後、MCS選択部114は、選択したMCSに対応する変調方式及び符号化率を信号処理部104へ通知する。信号処理部104は、MCS選択部114から通知された変調方式及び符号化率を用いて、端末装置2へデータを送信する送信信号に対して変調処理及び符号化処理を施す。
 また、無線リソース割当部113は、リソースセットを用いて端末装置2へ送信するデータに割り当てるリソースブロックを決定する。信号処理部104は、無線リソース割当部113に指定されたリソースブロックを送信信号に割り当てる(ステップS17)。その後、信号処理部104は、送信信号を送信部103へ出力する。
 そして、送信部103は、信号処理部104から取得した送信信号を用いてデータを端末装置2へ送信する(ステップS18)。
 信号処理部104及び送信部103は、次のCSIが端末装置2から送られてくるまで取得済みのCSIを用いて遅延時間に応じてMCS選択及びリソースブロック割り当てを繰り返しながら、データの送信を行う(ステップS19)。
 その後、CSIの送信タイミングが到来すると、端末装置2のチャネル測定部205、チャネル情報算出部206及び通信制御部203は、ステップS7~S11と同様の処理を行いCSIを取得する。そして、通信制御部203は、取得したCSIを基地局装置1へ送信する(ステップS20)。
 以降は、周期的に端末装置2がCSIを基地局装置1へ送信する。そして、基地局装置1は、受信したCSIを用いてステップS13~S17までの処理を行った上で、端末装置2へデータを送信することを繰り返す。
 ここで、以上の説明では、基地局装置1は、相関関数及びチャネル情報の計測時刻からデータ送信までの遅延時間を用いてSINRのマージンを求めて、MCSの選択を行った。ただし、ある程度のSINRの誤差を許容できる場合であれば、基地局装置1は、相関関数及び遅延時間を用いずに、通知されたCQIから求めたSINRに対応するMCSを選択してもよい。また、基地局装置1は。相関関数又は遅延時間の一方から求めたSINRのオフセットを使用してMCSの選択を行ってもよい。
 さらに、図9及び10を参照して、リソースセットを用いたデータ送信の方式について説明する。図9は、リソースセットを用いたデータ送信の一例を表す図である。また、図10は、リソースセットを用いたデータ送信の他の例を表す図である。ここでは、リソースセットとして、異なる不連続な周波数帯のリソースブロック#1及び#2が設定されている場合で説明する。
 図9は、送信点601が1つであり、その1つの送信点601から端末装置2がデータを受信する構成である。送信点601は、基地局装置1でもよいし、また、基地局装置1が有するRRH(Remote Radio Head)でもよい。この場合、送信点601は、リソースブロック#1及び#2を用いてデータを端末装置2へ送信する。
 一方、図10では、送信点602及び603という2つの送信点が存在する。そして、送信点602及び603の双方から端末装置2がデータを受信する構成である。送信点602及び603は、例えば、それぞれが1つの基地局装置1が有する異なるRRHである。また、2つの基地局装置1が協調通信を行っている場合、送信点602及び603は、それぞれが異なる基地局装置1であってもよい。この場合、例えば、送信点602は、リソースブロック#1を用いてデータを端末装置2へ送信する。また、送信点603は、リソースブロック#2を用いてデータを端末装置2へ送信する。
 次に、図11及び12を参照して、不連続な周波数帯を用いてデータを送信した場合の効果について説明する。図11は、連続した周波数帯を用いてデータを送信した場合の信頼度を説明するための図である。また、図12は、不連続な周波数帯を用いてデータを送信した場合の信頼度を説明するための図である。
 図11では、使用可能周波数帯330の内、連続する複数の周波数帯331を使用してデータを送信した場合である。周波数帯331は全部で10MHzである。図11における左の図は、周波数帯331を用いてデータを送信した場合の累積分布関数(CDF:Cumulative Distribution Function)を表す。左の図は、横軸で受信信号電力変動量を表し、縦軸で各受信信号電力変動量に対応する累積分布関数に用いた計算結果値を表す。グラフ701~705は、チャネル情報の計測時刻からデータ送信までの遅延時間に応じた累積分布関数を表す。グラフ701は、遅延時間が1msの場合の累積分布関数である。グラフ702は、遅延時間が2msの場合の累積分布関数である。グラフ703は、遅延時間が4msの場合の累積分布関数である。グラフ704は、遅延時間が8msの場合の累積分布関数である。グラフ705は、遅延時間が16msの場合の累積分布関数である。
 また、図12では、使用可能周波数帯340の内、不連続な複数の周波数帯341を使用してデータを送信した場合である。周波数帯341は全部で10MHzである。図12における左の図は、周波数帯341を用いてデータを送信した場合の累積分布関数を表す。左の図は、横軸で受信信号電力変動量を表し、縦軸で各受信信号電力変動量に対応する累積分布関数に用いた計算結果値を表す。グラフ711は、遅延時間が1msの場合の累積分布関数である。グラフ712は、遅延時間が2msの場合の累積分布関数である。グラフ713は、遅延時間が4msの場合の累積分布関数である。グラフ714は、遅延時間が8msの場合の累積分布関数である。グラフ715は、遅延時間が16msの場合の累積分布関数である。
 グラフ711~715とグラフ701~705とを比べると、グラフ711~715の方が、より電力変動量が小さい状態でグラフ701~705と同じ発生確率となっている。すなわち、不連続な複数の周波数帯341を用いてデータを送信した場合の方が、連続した周波数帯331を用いてデータを送信した場合に比べて電力変動量を抑えられたことが分かる。このように、不連続な複数の周波数帯341を用いてデータを送信することで、遅延に応じた電力変動量を低減することができ、CSIを用いた無線リソースの割り当てによる通信の信頼性を向上させることができる。
 以上に説明したように、本実施例に係る無線通信システムは、リソースセットに含まれる不連続な周波数帯における信号の全てをまとめたチャネル情報を用いて、MCS及びリソースセットにおける送信信号に割り当てる無線リソースを決定する。これにより、エラーをなるべく抑えより多くのデータを送信するMCSを選択することができる。また、不連続な周波数帯を用いてデータを送信することができる。したがって、本実施例に係る無線通信システムは、効率よく高信頼低遅延通信を実現することができる。
 さらに、本実施例に係る基地局装置は、リソースセットに含まれる不連続な周波数帯における信号の相関関係及びチャネル情報の計測時刻からデータ送信までの遅延時間を考慮して、MCSにマージンを設ける。これにより、本実施例に係る基地局装置は、より適切なMCSを選択することができ、通信の高信頼低遅延化により寄与することができる。
(ハードウェア構成)
 次に、図13を参照して、基地局装置1のハードウェア構成について説明する。図13は、基地局装置のハードウェア構成図である。
 図13に示すように、基地局装置1は、アンテナ107、プロセッサ91、メモリ92、RF(Radio Frequency)回路93及びネットワークインタフェース94を有する。プロセッサ91は、メモリ92、RF回路93及びネットワークインタフェース94とバスで接続される。
 ネットワークインタフェース94は、EPC3や他の基地局装置1と接続するためのインタフェースである。また、RF回路93は、アンテナ107に接続される。RF回路93は、図1に例示した受信部102及び送信部103の機能を実現する。
 メモリ92は、図1に例示した通信制御部101、信号処理部104、信頼度決定部105及びCSIフィードバック設定通知部106の機能を実現するためのプログラムを含む各種プログラムを記憶する。
 プロセッサ91は、メモリ92に格納された各種プログラムを読み出し、メモリ92上に展開して実行することで、図1に例示した通信制御部101、信号処理部104、信頼度決定部105及びCSIフィードバック設定通知部106の機能を実現する。
 次に、図14を参照して、端末装置2のハードウェア構成について説明する。図14は、端末装置のハードウェア構成図である。
 図14に示すように、端末装置2は、アンテナ207、プロセッサ95、メモリ96及びRF回路97を有する。プロセッサ95は、メモリ96及びRF回路97とバスで接続される。RF回路97は、アンテナ207に接続される。そして、RF回路97は、図2に例示した受信部201及び送信部204の機能を実現する。
 メモリ96は、図2に例示した信号処理部202、通信制御部203、チャネル測定部205及びチャネル情報算出部206の機能を実現するためのプログラムを含む各種プログラムを記憶する。
 プロセッサ95は、メモリ96に格納された各種プログラムを読み出し、メモリ96上に展開して実行することで、図2に例示した信号処理部202、通信制御部203、チャネル測定部205及びチャネル情報算出部206の機能を実現する。
 1 基地局装置
 2 端末装置
 3 EPC
 101 通信制御部
 102 受信部
 103 送信部
 104 信号処理部
 105 信頼度決定部
 106 CSIフィードバック設定通知部
 107 アンテナ
 111 接続処理部
 112 リソースセット決定部
 113 無線リソース割当部
 114 MCS選択部
 201 受信部
 202 信号処理部
 203 通信制御部
 204 送信部
 205 チャネル測定部
 206 チャネル情報算出部
 207 アンテナ

Claims (11)

  1.  少なくとも2つの互いに不連続の周波数帯を用いて信号を送信する送信部と、
     前記不連続の周波数帯のそれぞれで送信される信号毎に測定されたチャネルの個別情報を基に算出された前記不連続の周波数帯の全体のチャネルの全体情報を端末装置から受信し、受信した前記全体情報から送信設定を決定する送信設定決定部と、
     前記送信設定決定部により決定された前記送信設定を用いて信号に対して処理を行い、前記送信部に信号を送信させる信号処理部と
     を備えたことを特徴とする基地局装置。
  2.  前記端末装置に対する信号の送信において要求される信頼度を前記端末装置に通知する通知部をさらに有し、
     前記送信設定決定部は、前記個別情報及び前記通知部が通知した信頼度を基に算出された前記全体情報を前記端末装置から受信することを特徴とする請求項1に記載の基地局装置。
  3.  前記送信設定決定部は、前記不連続の周波数帯のそれぞれで送信される各信号の相関関係を用いて前記送信設定を決定することを特徴とする請求項1又は2に記載の基地局装置。
  4.  前記送信設定決定部は、特定の個別情報の測定時刻から、前記特定の個別情報を基に算出された前記全体情報から決定された送信設定を用いて処理された信号を前記送信部が前記端末装置へ送信する時刻までの時間を用いて前記送信設定を決定することを特徴とする請求項1に記載の基地局装置。
  5.  前記送信設定決定部は、前記送信設定として、前記不連続の周波数帯における信号に割り当てる無線リソース、変調方式及び符号化率を決定することを特徴とする請求項1に記載の基地局装置。
  6.  少なくとも2つの互いに不連続の周波数帯のそれぞれを用いて基地局装置により送信される信号を受信する受信部と、
     前記受信部で受信された信号毎にチャネルの個別情報を測定するチャネル測定部と、
     前記チャネル測定部により測定された前記個別情報を基に前記不連続の周波数帯の全体のチャネルの全体情報を算出するチャネル情報算出部と、
     前記チャネル情報算出部が算出した前記全体情報を前記基地局装置へ送信する送信部と
     を備えたことを特徴とする端末装置。
  7.  前記チャネル情報算出部は、前記受信部により受信された前記不連続の周波数帯のそれぞれにおける各信号間の相関関係を算出し、
     前記送信部は、前記チャネル情報算出部により算出された前記相関関係を前記基地局装置へ送信する
     ことを特徴とする請求項6に記載の端末装置。
  8.  前記チャネル情報算出部は、前記基地局装置から送信された前記端末装置に対する信号の送信で要求される信頼度を取得し、前記個別情報及び前記信頼度を基に前記全体情報を算出することを特徴とする請求項6に記載の端末装置。
  9.  前記送信部は、前記チャネル測定部が前記個別情報を測定した時刻を前記基地局装置へ送信することを特徴とする請求項6に記載の端末装置。
  10.  基地局装置及び端末装置を有する無線通信システムであって、
     前記基地局装置は、
     少なくとも2つの互いに不連続の周波数帯を用いて信号を送信する送信部と、
     前記不連続の周波数帯の全体のチャネルの全体情報から送信設定を決定する送信設定決定部と、
     前記送信設定決定部により決定された前記送信設定を用いて信号に対して処理を行い、前記送信部に信号を送信させる信号処理部とを備え、
     前記端末装置は、
     前記基地局装置により送信される前記不連続の周波数帯を用いた信号を受信する受信部と、
     前記受信部で受信された信号毎にチャネルの個別情報を測定するチャネル測定部と、
     前記チャネル測定部により測定された前記個別情報を基に前記不連続の周波数帯の全体のチャネルの全体情報を算出するチャネル情報算出部と、
     前記チャネル情報算出部が算出した前記全体情報を前記基地局装置へ送信する送信部とを備えた
     ことを特徴とする無線通信システム。
  11.  基地局装置に、少なくとも2つの互いに不連続の周波数帯を用いて端末装置へ信号を送信させ、
     前記端末装置に、前記基地局装置により送信された前記不連続の周波数帯を用いた信号を受信させ、受信した前記不連続の周波数帯を用いた信号毎にチャネルの個別情報を測定させ、測定した前記個別情報を基に前記不連続の周波数帯の全体のチャネルの全体情報を算出させ、算出した前記全体情報を前記基地局装置へ送信させ、
     前記基地局装置に、前記端末装置により送信された前記全体情報を受信させ、受信した前記全体情報から送信設定を決定させ、決定した前記送信設定を用いて処理を行った信号を前記端末装置へ送信させる
     ことを特徴とする無線通信システム制御方法。
PCT/JP2016/078706 2016-09-28 2016-09-28 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法 WO2018061123A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018541786A JP6780703B2 (ja) 2016-09-28 2016-09-28 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法
CN201680086697.6A CN109314973B (zh) 2016-09-28 2016-09-28 基站装置、终端装置、无线通信***及其控制方法
EP16917676.5A EP3522646B1 (en) 2016-09-28 2016-09-28 Base station device, terminal device, wireless communication system, and method for controlling wireless communication system
PCT/JP2016/078706 WO2018061123A1 (ja) 2016-09-28 2016-09-28 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法
KR1020187035718A KR102142363B1 (ko) 2016-09-28 2016-09-28 기지국 장치, 단말 장치, 무선 통신 시스템 및 무선 통신 시스템 제어 방법
US16/191,747 US10447371B2 (en) 2016-09-28 2018-11-15 Base station apparatus, terminal apparatus, and wireless communication method
US16/564,778 US11050477B2 (en) 2016-09-28 2019-09-09 Base station apparatus, terminal apparatus, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/078706 WO2018061123A1 (ja) 2016-09-28 2016-09-28 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/191,747 Continuation US10447371B2 (en) 2016-09-28 2018-11-15 Base station apparatus, terminal apparatus, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2018061123A1 true WO2018061123A1 (ja) 2018-04-05

Family

ID=61759300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078706 WO2018061123A1 (ja) 2016-09-28 2016-09-28 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法

Country Status (6)

Country Link
US (2) US10447371B2 (ja)
EP (1) EP3522646B1 (ja)
JP (1) JP6780703B2 (ja)
KR (1) KR102142363B1 (ja)
CN (1) CN109314973B (ja)
WO (1) WO2018061123A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109314973B (zh) * 2016-09-28 2023-05-19 富士通株式会社 基站装置、终端装置、无线通信***及其控制方法
US11412534B2 (en) * 2016-11-04 2022-08-09 Qualcomm Incorporated System and method for mapping uplink control information
WO2018127765A1 (en) * 2017-01-06 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Reporting of channel quality indicators corresponding to target error rates in wireless communication networks
WO2020179214A1 (ja) * 2019-03-01 2020-09-10 日本電気株式会社 制御装置、制御方法、非一時的なコンピュータ可読媒体、及び通信システム
JP7099391B2 (ja) * 2019-04-02 2022-07-12 日本電信電話株式会社 無線通信特性評価方法および無線通信特性評価装置
CN111786704B (zh) * 2020-06-03 2022-05-31 Oppo广东移动通信有限公司 一种cri选择方法、装置、用户设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526323A (ja) * 2003-05-09 2006-11-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 基準時間の正確さを保証する測定レポートタイムスタンピング装置及び方法
JP2010041285A (ja) * 2008-08-04 2010-02-18 Mitsubishi Electric Corp マルチバンド無線通信システムおよび端末装置
WO2010026936A1 (ja) * 2008-09-04 2010-03-11 シャープ株式会社 無線通信装置及び無線通信システム
JP2011244472A (ja) 2006-04-28 2011-12-01 Panasonic Corp 移動局装置および通信方法
JP2013509120A (ja) 2009-10-30 2013-03-07 ソニー株式会社 通信ネットワークにおけるリソース配分方法及び装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055229A (en) * 1998-06-29 2000-04-25 Motorola, Inc. Method and apparatus in a wireless communication system for dynamically formatting application data to be transmitted
CN102594501B (zh) * 2004-02-07 2014-11-26 桥扬科技有限公司 具有自动重复请求(arq)的多载波通信***的方法和设备
CN100394826C (zh) * 2004-09-02 2008-06-11 上海贝尔阿尔卡特股份有限公司 信道质量内插方法
EP1842307A1 (en) * 2005-01-14 2007-10-10 Nokia Siemens Networks Oy Hsdpa parameters adjustment based on cqi age
EP3416321A1 (en) * 2005-06-16 2018-12-19 QUALCOMM Incorporated Negotiated channel information reporting in a wireless communication system
US10469205B2 (en) * 2005-07-27 2019-11-05 T-Mobile Usa, Inc. Application-based multi-band transmission
JP4734194B2 (ja) * 2006-08-07 2011-07-27 三菱電機株式会社 スケジューリング装置、通信装置、マルチキャリア通信システムおよびスケジューリング方法
US8948799B1 (en) * 2007-11-30 2015-02-03 Microsoft Corporation Channel quality indicator apparatus and method
KR101715397B1 (ko) * 2009-04-22 2017-03-13 엘지전자 주식회사 무선 통신 시스템에서 참조신호 전송 장치 및 방법
JP5206871B2 (ja) * 2009-05-15 2013-06-12 富士通株式会社 変調方式切り替え方法及び送信局と受信局
JP5031009B2 (ja) * 2009-09-15 2012-09-19 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び移動通信方法
WO2011053865A2 (en) * 2009-10-30 2011-05-05 Research In Motion Limited Downlink mcs selection in a type 2 relay network
WO2011093756A1 (en) * 2010-01-28 2011-08-04 Telefonaktiebolaget L M Ericsson (Publ) Selection of transport format in wireless communication systems
JP2012124585A (ja) * 2010-12-06 2012-06-28 Kddi Corp 通信品質推定装置、基地局装置、通信品質推定方法、及び通信品質推定プログラム
CN102611536A (zh) * 2011-01-20 2012-07-25 夏普株式会社 信道状态信息反馈方法和用户设备
WO2013111525A1 (ja) 2012-01-25 2013-08-01 パナソニック株式会社 端末、基地局、送信方法及び受信方法
EP2885948B1 (en) 2012-08-15 2018-02-14 Telefonaktiebolaget LM Ericsson (publ) Systems and methods for determining measurement power offsets
JP2016105526A (ja) * 2013-03-13 2016-06-09 シャープ株式会社 フィードバック情報通知方法、端末装置、基地局装置、無線通信システムおよび集積回路
US20160255579A1 (en) 2013-10-21 2016-09-01 Kyocera Corporation Base station, processor and terminal
CN106063214B (zh) * 2014-03-21 2019-07-02 株式会社Kt 用于发送和接收信道状态信息的方法和其设备
US9706517B2 (en) 2014-06-30 2017-07-11 Lg Electronics Inc. Position calculation method and apparatus in wireless communication system
US9674749B2 (en) * 2014-08-14 2017-06-06 Samsung Electronics Co., Ltd. Method and apparatus for selecting dedicated core network
US10171221B2 (en) * 2014-11-25 2019-01-01 Electronics And Telecommunications Research Institute Scheduling method and apparatus of multi-antenna communication system, and method and apparatus for feeding-back channel quality indicator
US10455514B2 (en) * 2015-07-17 2019-10-22 Samsung Electronics Co., Ltd. Method and device for transmitting signal in wireless communication system
US10602496B2 (en) * 2015-07-31 2020-03-24 Intel Corporation Channel quality index (CQI) reporting for superposition transmissions schemes
TWI553566B (zh) * 2015-10-13 2016-10-11 Univ Yuan Ze 干擾環境中建構於分時多工接取之室內小細胞自我優化佈署串接控 制方法與裝置
KR20170045016A (ko) * 2015-10-16 2017-04-26 삼성전자주식회사 통신 시스템에서 간섭 특성을 고려하여 사용자 단말기 동작을 제어하는 장치 및 방법
CN109314973B (zh) * 2016-09-28 2023-05-19 富士通株式会社 基站装置、终端装置、无线通信***及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526323A (ja) * 2003-05-09 2006-11-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 基準時間の正確さを保証する測定レポートタイムスタンピング装置及び方法
JP2011244472A (ja) 2006-04-28 2011-12-01 Panasonic Corp 移動局装置および通信方法
JP2010041285A (ja) * 2008-08-04 2010-02-18 Mitsubishi Electric Corp マルチバンド無線通信システムおよび端末装置
WO2010026936A1 (ja) * 2008-09-04 2010-03-11 シャープ株式会社 無線通信装置及び無線通信システム
JP2013509120A (ja) 2009-10-30 2013-03-07 ソニー株式会社 通信ネットワークにおけるリソース配分方法及び装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Overall discussion on URLLC", R1-166882, 3GPP, 13 August 2016 (2016-08-13), XP051132939 *
See also references of EP3522646A4
SPREADTRUM COMMUNICATIONS: "Discussion on numerology and frame structure", R1-162549 , 3GPP, 1 April 2016 (2016-04-01), XP051079608 *

Also Published As

Publication number Publication date
US10447371B2 (en) 2019-10-15
CN109314973B (zh) 2023-05-19
US11050477B2 (en) 2021-06-29
US20190089439A1 (en) 2019-03-21
JPWO2018061123A1 (ja) 2019-07-04
EP3522646A1 (en) 2019-08-07
JP6780703B2 (ja) 2020-11-04
CN109314973A (zh) 2019-02-05
EP3522646B1 (en) 2021-12-15
EP3522646A4 (en) 2019-08-14
KR102142363B1 (ko) 2020-08-07
KR20190007452A (ko) 2019-01-22
US20190393947A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
WO2018061123A1 (ja) 基地局装置、端末装置、無線通信システム及び無線通信システム制御方法
KR102276760B1 (ko) 송신 블록 크기를 결정하기 위한 방법 및 장치
US20200128529A1 (en) Data transmission method and apparatus
CN111769857B (zh) 一种上报终端设备能力的方法和通信装置
US20230171071A1 (en) Enhanced channel state information (csi) communication method and apparatus
EP2958388B1 (en) Method and device for scheduling frequency band resource
US20220173851A1 (en) Frequency domain resource allocation method and apparatus
JP5990331B2 (ja) 制御チャネル処理方法および装置
US11576177B2 (en) Method and terminal device for determining priorities of multiple BWPS
TW201830908A (zh) 通信方法及終端
EP3427424A1 (en) Configuring transmission parameters in a cellular system
JP6262642B2 (ja) 通信リソース制御装置および方法
KR20180132929A (ko) 다중 사용자 다중입력 다중출력(mu-mimo) 데이터 전송 방법 및 기지국
KR102368867B1 (ko) 이동 통신 시스템에서 기준 신호 측정 방법 및 장치
JP6234714B2 (ja) 基地局装置、ユーザ装置およびセルラーシステム
CN111436108A (zh) 一种功率控制的方法以及功率控制的装置
JP5324336B2 (ja) 閾値算出方法及び無線基地局
WO2018203436A1 (ja) 制御装置、方法、プログラム、及び記録媒体
JP5324335B2 (ja) 無線基地局及び補正値算出方法
CN106788640B (zh) 一种远近用户的配对方法、终端设备和基站设备
JP5547016B2 (ja) 基地局と基地局の制御方法
CN117652103A (zh) 用于多pdsch传输的csi反馈
CN112312546A (zh) 物理上行控制信道的传输、配置方法、终端及网络设备
WO2014091615A1 (ja) 通信制御装置、基地局装置及び通信制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541786

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035718

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016917676

Country of ref document: EP

Effective date: 20190429