WO2018059489A1 - 一种功率控制的方法及终端设备 - Google Patents

一种功率控制的方法及终端设备 Download PDF

Info

Publication number
WO2018059489A1
WO2018059489A1 PCT/CN2017/103995 CN2017103995W WO2018059489A1 WO 2018059489 A1 WO2018059489 A1 WO 2018059489A1 CN 2017103995 W CN2017103995 W CN 2017103995W WO 2018059489 A1 WO2018059489 A1 WO 2018059489A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
power
beams
power headroom
transmit power
Prior art date
Application number
PCT/CN2017/103995
Other languages
English (en)
French (fr)
Inventor
柴丽
唐珣
苗金华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854939.0A priority Critical patent/EP3515132B1/en
Publication of WO2018059489A1 publication Critical patent/WO2018059489A1/zh
Priority to US16/368,608 priority patent/US10588096B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a power control method and a terminal device.
  • the terminal In order for the eNodeB to dynamically allocate appropriate resources to the terminal, the terminal needs to report its power headroom information to the eNodeB.
  • the eNodeB will adjust the current transmit power of the terminal device according to the Power headroom report (PHR). If the power headroom report sent by the terminal to the base station is inaccurate, the scheduling resources allocated by the base station to the terminal are unreasonable, which further leads to problems such as increased interference between terminals, insufficient resource scheduling, or reduced uplink throughput.
  • PHR Power headroom report
  • the terminal calculates a power head room (PH) and an uplink shared channel based on a downlink path loss of a cell reference signal (Cell Reference Signal, CRS for short) and other related parameters.
  • the transmit power and the Physical Uplink Control Channel (PUCCH) transmit power, and report the power headroom report to the base station.
  • PH power head room
  • CRS Cell Reference Signal
  • the method of calculating the power headroom, the transmit power of the uplink shared channel, and the transmit power of the physical uplink control channel based on the downlink path loss of the serving cell's CRS and other related parameters and then the method of implementing the high-frequency networking phase in the high-frequency networking phase will be very difficult, then In the high frequency networking phase, a calculation power headroom and a transmit power of the uplink shared channel and a physical uplink control channel transmit power are found, and a power headroom report is sent to the base station, so that the base station adjusts the terminal device side according to the power headroom report.
  • the method of transmitting power is an urgent problem to be solved.
  • Embodiments of the present invention provide a method and a terminal device for power control.
  • the present invention provides a method for power control, the method comprising: receiving configuration information sent by a base station, where the configuration information includes: an uplink power control parameter;
  • the beam set includes n beams, and n is a positive integer greater than or equal to 1;
  • a power headroom report is generated according to the power headroom of the beam set in which the terminal device is located, and the power headroom report is sent to the base station.
  • the method after receiving the configuration information sent by the base station, the method further includes:
  • the transmit power of the physical uplink control channel of the beam set in which the terminal device is located is estimated according to the uplink power control parameter.
  • the method further includes: according to the maximum transmit power of the terminal device, the uplink of the beam set of the terminal device The transmit power of the shared channel and the transmit power of the physical uplink control channel of the beam set of the terminal device are calculated, and the power headroom of the beam set in which the terminal device is located is calculated.
  • the method for calculating the power headroom of the beam set at the terminal device according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set where the terminal device is located includes:
  • the power headroom of the p-th beam in the beam set is calculated according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the p-th beam in the beam set, until the power headroom of each beam in the beam set is calculated.
  • p is a positive integer greater than or equal to 1, and less than or equal to n;
  • the terminal device is calculated according to the maximum transmit power of the terminal device, the transmit power of the uplink shared channel of the beam set where the terminal device is located, and the transmit power of the physical uplink control channel of the beam set where the terminal device is located.
  • the way the power headroom of the beam set is, including:
  • the power headroom is calculated until the power headroom of each beam in the beam set is completed, where p is a positive integer greater than or equal to 1, and less than or equal to n;
  • the power headroom of the group beam is calculated until the power headroom of each group of beams in the k group of beams is completed, where q is a positive integer greater than or equal to 1, and less than or equal to k.
  • the present invention provides a terminal device, where the terminal device includes:
  • a receiving module configured to receive configuration information sent by the base station, where the configuration information includes: an uplink power control parameter;
  • a processing module configured to estimate, according to an uplink power control parameter, a transmit power of an uplink shared channel of a beam set in which the terminal device is located, where the beam set includes n beams, where n is a positive integer greater than or equal to 1;
  • a sending module configured to send a power headroom report to the base station.
  • the transmit power of the physical uplink control channel of the beam set in which the terminal device is located is estimated according to the uplink power control parameter.
  • processing module is further configured to: determine whether the terminal device sends the uplink shared channel and the physical uplink control channel to the base station simultaneously;
  • the transmit power of the uplink shared channel of the beam set where the terminal device is located is calculated, and the power headroom of the beam set in which the terminal device is located is calculated.
  • the processing module calculates a power headroom of the beam set at the terminal device according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set of the terminal device, including:
  • the power headroom of the p-th beam in the beam set is calculated according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the p-th beam in the beam set, until the power headroom of each beam in the beam set is calculated.
  • p is a positive integer greater than or equal to 1, and less than or equal to n;
  • the processing module calculates, according to a maximum transmit power of the terminal device, a transmit power of an uplink shared channel of the beam set where the terminal device is located, and a transmit power of a physical uplink control channel of the beam set where the terminal device is located.
  • the manner of the power headroom of the beam set in which the terminal device is located includes:
  • the power headroom is calculated until the power headroom of each beam in the beam set is completed, where p is a positive integer greater than or equal to 1, and less than or equal to n;
  • the power headroom of the group beam is calculated until the power headroom of each group of beams in the k group beam is completed, where q is greater than or equal to A positive integer of 1, and less than or equal to k.
  • a power control method and a terminal device calculate a transmit power of an uplink shared channel, a transmit power of a physical uplink control channel, and a power headroom of a beam set in a beam domain, and generate Power headroom report.
  • the power headroom report is sent to the base station, so that the base station adjusts the power of the terminal equipment side according to the power headroom report.
  • FIG. 1 is a schematic diagram of a cell formed by a beam set according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a communication interaction between a base station and a terminal device through a beam according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a power control method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a virtual device of a terminal device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a physical device of a terminal device according to Embodiment 3 of the present invention.
  • the present invention will employ active antenna array technology, combined with innovative pilot signal design and user channel high-accuracy estimation algorithm to form an extreme Precise user-level ultra-narrow beam, which delivers energy to the user's location, improves network coverage, and reduces the energy consumption of the wireless network.
  • the beam set can be composed of multiple user-level ultra-narrow beams, as shown in Figure 1.
  • FIG. 1 is a schematic diagram of a cell formed by a beam set according to an embodiment of the present invention.
  • the terminal device can receive the signals transmitted by the multiple beams at the same time. As shown in FIG. 2, FIG.
  • FIG. 2 is a schematic diagram of the communication interaction between the base station and the terminal device through the beam according to an embodiment of the present invention. That is to say, between the terminal device and the base station, signaling/data interaction can be performed through at least one beam in the beam set. Shown in Figure 2 is the signaling/data interaction between the terminal equipment and the base station via beams 5, 6, 7 and beams 14, 15, 16.
  • the beam resources in the present invention are visible or invisible to the UE. For example, the UE can only distinguish signals of different identification beams, and cannot distinguish different beams.
  • the terminal device first receives configuration information sent by the base station, where the configuration information includes an uplink power control parameter. And estimating, according to the uplink power control parameter, a transmit power of the uplink shared channel of the beam set where the terminal device is located, wherein the beam set includes n beams, where n is a positive integer greater than or equal to 1. Determining whether the terminal device sends the uplink shared channel and the physical uplink control channel to the base station at the same time. When not transmitting simultaneously, the terminal device may calculate according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set of the terminal device. The power headroom of the beam set in which the terminal device is located.
  • the terminal device sends the uplink shared channel and the physical uplink control channel to the base station at the same time.
  • the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set of the terminal device are required.
  • a transmit power of the physical uplink control channel of the set of beams in which the terminal device is located calculates a power headroom of the beam set in which the terminal device is located. Therefore, before calculating the power headroom, the method further comprises calculating a transmit power of the physical uplink control channel of the beam set in which the terminal device is located.
  • the calculated power headroom report is sent to the base station, so that the base station adjusts the transmit power of the terminal equipment side according to the power headroom report.
  • a method of specifically estimating the transmission power of the uplink shared channel and estimating the transmission power of the physical uplink control channel and a method of determining the final power headroom report will be described in detail in Embodiment 1 below.
  • FIG. 3 is a schematic flowchart 300 of a power control method according to Embodiment 1 of the present invention. Specifically, as shown in FIG. 3, the method includes:
  • Step 310 Receive configuration information sent by the base station.
  • the configuration information sent by the base station may include an uplink power control parameter.
  • the uplink power control parameter may mainly include: a transmit power of a nominal physical uplink control channel, such as a PUCCH, an e-PUCCH, a reference transmit power of the g-PUCCH (eg, p0-Nominal PUCCH), and a UE-specific physical uplink control channel.
  • Transmit power such as PUCCH, e-PUCCH, g-PUCCH reference transmit power (p0-UE-PUCCH), nominal uplink physical data (or shared) channel, such as Physical Uplink Shared Channel (PUSCH) , e-PUSCH, reference transmit power of g-PUSCH (eg, p0-Nominal PUSCH), transmit power of UE-specific uplink physical data (or shared) channel, such as PUSCH, e-PUSCH, g-PUSCH reference transmit power (eg, p0-UE-PUSCH), downlink loss compensation factor (alpha) and other information.
  • the reference transmission power here refers to the reception power level that the base station expects on the terminal device side.
  • the method for configuring the uplink power control parameter may include at least one of the following: a granularity of each of the beam sets, a granularity of each of the k sets of beams, a carrier-size, a serving cell granularity, and The terminal device is granular.
  • Step 320 Estimate the transmit power of the uplink shared channel corresponding to the beam set where the terminal device is located according to the uplink power control parameter.
  • the beam set referred to in the present invention is a beam set in which the terminal device is located, that is, a beam that the terminal can use to transmit or receive data/signals, which may be a service beam of the terminal or a beam that is geographically reachable; It is formed by beamforming technology of multi-antenna technology. Specifically, as shown in FIG. 1, one beam set is composed of at least one beam. The beam has a narrow beamwidth, typically less than 120 degrees.
  • the transmit power of the uplink shared channel corresponding to the beam set in which the terminal device is located is estimated according to the configuration information.
  • the transmit power of the uplink shared channel corresponding to the beam set in which the terminal device is located may include two representations, specifically:
  • k groups of beams constitute a beam set, and k is a positive integer greater than or equal to 1.
  • the formula for calculating the transmit power of the uplink shared channel of each beam can be obtained by Equation 3-1 to Equation 3-2, respectively.
  • the method further includes: determining, by the terminal device side, whether the uplink shared channel and the physical uplink control channel are simultaneously sent to the base station.
  • P PUSCH,c (i) _beam_p is the transmit power of the uplink shared channel corresponding to the p-th beam serving the terminal device
  • P CMAX,c_beam_p (i) is the corresponding p-beam for serving the terminal device.
  • the transmit power level of the uplink shared channel corresponding to the p- th beam, P o_UE_PUSCH,c (j) _beam_p is the power offset of the p- th beam relative to P o_NOMINAL_PUSCH,c serving the terminal device;
  • PL c_beam_p is the terminal
  • the downlink loss value corresponding to the p-th beam of the service provided by the device, ⁇ c (j) is the path loss compensation factor, ranging from 0 to 1; ⁇ TF,c (i) is different for different modulation and coding strategy formats
  • the maximum transmit power of the terminal device is the maximum transmit power of the nominal terminal device, that is, the allowed maximum power reduction (MPR), and the additional maximum power reduction (Additional Maximum Power Reduction). , referred to as A-MPR), meets the transmit power of a preset condition (eg, equal to 0db).
  • f c (i) _beam_p can be obtained in one or a combination of the following ways:
  • the transmit power control index and/or the transmit power control-radio network temporary identifier allocated by the radio resource control layer are allocated in a granularity for each of the beam or k groups of beams in the beam set, wherein the transmit power control is
  • the wireless network temporary identifier is used for decoding the physical control signaling
  • the tpc-Index is used to indicate the index number of the TPC command of the user terminal: (-TPC command number 1, TPC command number 2, ..., TPC command number N);
  • Radio resource control layer Transmit power control index binding by radio resource control layer, and/or transmit power control - radio network temporary identity binding, and / or beam resource binding, and / or k-group beam binding set.
  • the binding is At the RRC or MAC layer, the mapping relationship between the TPC index and/or the TPC-RNTI and each of the beam resources or the k-group beams is signaled.
  • P PUSCH,c (i) _beam_p is the transmit power of the uplink shared channel of the subframe i corresponding to the p-th beam serving the terminal device
  • p CMAX,c (i) _beam_p is the first service for the terminal device.
  • P PUCCH,c (i) _beam_p is the transmit power of the physical uplink control channel of the subframe i corresponding to the p-th beam serving the terminal device
  • 10 log 10 (M PUSCH,c (i)) _beam_p is the number of resource blocks allocated to the terminal device by the base station corresponding to the p-th beam corresponding to the p-th beam serving the terminal device
  • P o_PUSCH,c (j) _beam_p is the terminal desired by the base station
  • the transmit power level of the uplink shared channel corresponding to the p- th beam, P o_UE_PUSCH,c (j) _beam_p is the power offset of the p- th beam relative to P o_NOMINAL_PUSCH,c serving the terminal device;
  • PL c_beam_p is the terminal
  • the downlink loss value corresponding to the p-th beam of the service provided by the device, ⁇ c (j) is the path loss compensation factor, ranging from 0 to 1; ⁇ TF,c (i) is different for different modulation and coding strategy formats
  • the above formula for calculating the transmission power of the uplink shared channel only represents the formula of the transmission power of the uplink shared channel when the data is transmitted in the i-th subframe on each beam in the beam set.
  • another form of estimating the transmit power of the uplink shared channel corresponding to the beam set in which the terminal device is located is: estimating the k sets of beams in the beam set of the terminal device according to the uplink power control parameter.
  • the method determines that the transmit power of the uplink shared channel is calculated by using Equation 3-3.
  • P PUSCH,c (i) _beamq is the transmit power of the uplink shared channel corresponding to the q-th group beam serving the terminal device
  • P CMAX,c (i) _beamq is the q-th beam corresponding to the service provided by the terminal device.
  • the transmit power level of the uplink shared channel corresponding to the qth group beam, P o_UE_PUSCH,c (j) _beamq is the power offset of the qth group of beams serving the terminal device with respect to P o_NOMINAL_PUSCH,c ;
  • PL c_beamq is the terminal
  • the downlink loss value corresponding to the q-th beam of the service provided by the device, ⁇ c (j) is the path loss compensation factor, ranging from 0 to 1; ⁇ TF,c (i) is different for different modulation and coding strategy formats
  • the maximum transmit power of the terminal device is the maximum transmit power of the nominal terminal device, that is, the allowed maximum power reduction (MPR), and the additional maximum power reduction (Additional Maximum Power Reduction). , referred to as A-MPR), meets the transmit power of a preset condition (eg, equal to 0db).
  • f c (i) _beamq can be obtained in one or a combination of the following ways:
  • the transmit power control index and/or the transmit power control-radio network temporary identifier allocated by the radio resource control layer are allocated in a granularity for each of the beam or k groups of beams in the beam set, wherein the transmit power control is
  • the wireless network temporary identifier is used for decoding the physical control signaling
  • the tpc-Index is used to indicate the index number of the TPC command of the user terminal: (-TPC command number 1, TPC command number 2, ..., TPC command number N);
  • Radio resource control layer Transmit power control index binding by radio resource control layer, and/or transmit power control - radio network temporary identity binding, and / or beam resource binding, and / or k-group beam binding set.
  • the binding is At the RRC or MAC layer, the mapping relationship between the TPC index and/or the TPC-RNTI and each of the beam resources or the k-group beams is signaled.
  • P PUSCH,c (i) _beamq is the transmit power of the uplink shared channel corresponding to the q-th group beam serving the terminal device
  • p CMAX,c (i) _beamq is the q-th beam corresponding to the service provided by the terminal device.
  • P PUCCH,c (i) _beamq is the transmit power of the physical uplink control channel of the subframe i corresponding to the q-th beam serving the terminal device
  • P PUCCH,c (i) _beamq 10 kb 10 (M PUSCH,c (i) _beamq is the base station corresponding to the q-th beam of the q-th beam serving the terminal device on the transmit power of the physical uplink control channel corresponding to the q-th beam serving the terminal device
  • the transmit power level of the uplink shared channel corresponding to the qth group beam, P o_UE_PUSCH,c (j) _beamq is the power offset of the qth group of beams serving the terminal device with respect to P o_NOMINAL_PUSCH,c ;
  • PL c_beamq is the terminal
  • the downlink loss value corresponding to the q-th beam of the service provided by the device, ⁇ c (j) is the path loss compensation factor, ranging from 0 to 1; ⁇ TF,c (i) is different for different modulation and coding strategy formats
  • the maximum transmit power of the terminal device is the maximum transmit power of the nominal terminal device, that is, the allowed maximum power reduction (MPR), and the additional maximum power reduction (Additional Maximum Power Reduction). , referred to as A-MPR), meets the transmit power of a preset condition (eg, equal to 0db).
  • f c (i) _beamq can be obtained in one or a combination of the following ways:
  • the system-wireless network temporary identifier is used for decoding the physical control signaling
  • the tpc-Index is used to indicate the index number of the TPC command of the user terminal: (-TPC command number 1, TPC command number 2, ..., TPC command number N);
  • the terminal uses the information to obtain in the downlink physical control signaling TPC command;
  • Radio resource control layer Transmit power control index binding by radio resource control layer, and/or transmit power control - radio network temporary identity binding, and / or beam resource binding, and / or k-group beam binding Binding.
  • the binding is at the RRC or MAC layer, signaling the mapping relationship between the TPC index and/or the TPC-RNTI and each of the beam resources or the k-group beams.
  • the method further includes: estimating, according to the uplink power control parameter, the launch of the physical uplink control channel corresponding to the beam set of the terminal device. power. Similar to the transmit power of the uplink shared channel corresponding to the beam set in which the terminal device is located, the form of the transmit power of the physical uplink control channel corresponding to the beam set of the terminal device also includes two types. One of them is to estimate the transmit power of the physical uplink control channel corresponding to each beam in the beam set according to the uplink power control parameter; and the other is to estimate the k group beam in the beam set of the terminal device according to the uplink power control parameter. The transmit power of the physical uplink control channel.
  • P CMAX,c (i) _beam_p is the maximum transmit power of the p-th beam corresponding to the subframe i serving the terminal device;
  • PL c_beam_p is the downlink path loss value corresponding to the p-th beam serving the terminal device;
  • p O_PUCCH_beam_p is a power reference value corresponding to the p- th beam that is provided for the terminal device by the RRC signaling;
  • h(n CQI , n HARQ , n SR ) _beam_p is based on the carried channel quality indicator and the acknowledge bit
  • (F) _beam_p physical uplink control channel format F PUCCH format 1a is a power offset with respect to, ⁇ TxD (F ') _beam_p of the p-th beam serving the terminal equipment in accordance with the determined modulation and
  • g(i) _beam_k can be obtained by at least one of the following methods:
  • the control-radio network temporary identifier is used for decoding the physical control signaling
  • the tpc-Index is used to indicate the index number of the TPC command of the user terminal: (-TPC command number 1, TPC command number 2, ..., TPC command number N);
  • the information is obtained in the downlink physical control signaling TPC command;
  • the binding is a signaling relationship between the TPC index and/or the TPC-RNTI and each of the beam resources or the k-group beams in the radio resource control layer or the medium access control layer.
  • Equation 3-6 the formula for estimating the transmit power of the physical uplink control channel of each of the k groups of beams in which the terminal device is located is as shown in Equation 3-6:
  • C CMAX,c (i) _beamq is the maximum transmit power of the q-th beam corresponding to the subframe i serving the terminal device;
  • PL c_beamq is the downlink path loss value corresponding to the q-th beam serving the terminal device;
  • p O_PUCCH_beamq is a power reference value corresponding to the q-th group beam that is provided for the terminal device by the RRC signaling;
  • h(n CQI , n HARQ , n SR ) _beamq is based on the carried channel quality indicator and the acknowledge bit
  • (F) _beamq physical uplink control channel format F with respect to the PUCCH format 1a is a power offset, ⁇ TxD (F ') _beamq q for the first set of beam serving the terminal equipment in accordance with the determined modulation and coding scheme
  • Equations 3-3 and 3-5 actually calculate the transmit power of the uplink shared channel corresponding to the i-th subframe in the beam set and the transmit power of the physical uplink control channel, respectively.
  • the transmit power and physical uplink control of the uplink shared channel when each beam in the beam set transmits data in different subframes are respectively calculated according to the same or similar formula as 3-3 or 3-5.
  • Equations 3-4 and 3-6 actually calculate the transmit power of the uplink shared channel and the transmit power of the physical uplink control channel corresponding to the q-th beam of the k-group of the k-group beams divided by the beam set. .
  • Power and physical uplink control channel transmit power, and statistics.
  • Step 330 The root calculates a power headroom of the beam set where the terminal device is located according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel corresponding to the beam set of the terminal device.
  • the configured maximum UE output power (PCMAX) mentioned in all the formulas described in the present invention is a value configured by the base station, and the formula includes PCMAX, c_beam_p, and refers to the terminal in the beam set.
  • the method for calculating the power headroom is the same according to the maximum transmit power of the terminal device and the transmit power of the physical uplink control channel corresponding to the beam set of the terminal device.
  • the precondition for adopting the first calculation method is: determining that the terminal device sends the uplink shared channel and the physical uplink control channel to the base station when they are different; the precondition for adopting the second calculation mode is: The terminal device transmits the uplink shared channel and the physical uplink control channel to the base station simultaneously.
  • two subdivision calculation methods are respectively included. For example, when it is determined that the terminal device sends the base station when the uplink shared channel and the physical uplink control channel are different, the terminal device calculates the terminal device according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set where the terminal device is located. The power headroom of the set of beams.
  • the subdivision method includes: the first type, and calculating the power headroom of the p-th beam in the beam set according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the p-th beam in the beam set. Until the power headroom calculation for each beam in the beam set is completed, where p is a positive integer greater than or equal to 1, and less than or equal to n.
  • the second method calculates the power headroom of the q-th beam in the k-group beam according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the q-th beam in the k-group beam, until each of the k-group beams
  • the power headroom calculation for a set of beams is completed, where q is a positive integer greater than or equal to 1, and less than or equal to k.
  • the k sets of beams constitute the entire beam set.
  • Equations 3-7 and 3-8 The above two formulas for calculating the power headroom are shown in Equations 3-7 and 3-8, respectively.
  • the parameter in the formula may refer to the indication of each parameter in the calculation formula when estimating the transmit power of the uplink shared channel of the p-th beam in the beam set and the transmit power of the physical uplink control channel of the p-th beam in the beam set. Righteousness, no more details here.
  • the parameters in the formula may refer to the calculation formulas for estimating the transmit power of the uplink shared channel of the q-th beam in the k-group beam and the transmit power of the physical uplink control channel of the q-th beam in the k-group beam. The meaning of each parameter is not described here.
  • the terminal device When it is determined that the terminal device simultaneously transmits the uplink shared channel and the physical uplink control channel to the base station, the terminal device according to the maximum transmit power of the terminal device, the transmit power of the uplink shared channel of the beam set of the terminal device, and the beam where the terminal device is located The transmit power of the aggregated physical uplink control channel is calculated, and the power headroom of the beam set in which the terminal device is located is calculated.
  • the subdivision method includes: the first type, which is based on the maximum transmit power of the terminal device, the transmit power of the uplink shared channel of the p-th beam in the beam set, and the physical uplink control of the p-th beam in the beam set.
  • the transmit power of the channel is calculated, and the power headroom of the p-th beam in the beam set is calculated until the power headroom of each beam in the beam set is calculated, where p is a positive integer greater than or equal to 1, and less than or equal to n.
  • the second type is based on the maximum transmit power of the terminal device, the transmit power of the uplink shared channel of the q-th beam in the k-group beam, and the transmit power of the physical uplink control channel of the q-th beam in the k-group beam.
  • the power headroom of the qth group of beams in the beam, until the power headroom of each group of beams in the k group of beams is calculated, where q is A positive integer greater than or equal to 1, and less than or equal to k.
  • the k sets of beams constitute the entire beam set.
  • Equations 3-9 and 3-10 The above two formulas for calculating the power headroom are shown in Equations 3-9 and 3-10, respectively.
  • the parameter in the formula may refer to the indication of each parameter in the calculation formula when estimating the transmit power of the uplink shared channel of the p-th beam in the beam set and the transmit power of the physical uplink control channel of the p-th beam in the beam set. Righteousness, no more details here.
  • the parameters in the formula may refer to the calculation formulas for estimating the transmit power of the uplink shared channel of the q-th beam in the k-group beam and the transmit power of the physical uplink control channel of the q-th beam in the k-group beam. The meaning of each parameter is not described here.
  • each group of beams in the k group of beams is "unit", and each is estimated separately.
  • a set of beams is taken as a resource block as a whole, and then the transmit power of the uplink shared channel of the entire set of beams, the transmit power of the physical uplink control channel, and the corresponding power headroom are respectively estimated.
  • Step 340 Generate a power headroom report according to the power headroom of the beam set in which the terminal device is located, and send the power headroom report to the base station.
  • the power headroom report when the power headroom report is generated, one or a combination of the following parameters corresponding to each group of beams in the k group beam or each beam in the beam set: power headroom and physical uplink control channel transmission may be included. Power and uplink shared channel transmit power, etc. Alternatively, the subcarrier number corresponding to the beam set (for example, C1-C3 in Table 2, etc.) and other information may be included, as specifically shown in Tables 1 to 7.
  • the configuration information described in step 310 may further include first control signaling.
  • the first control signaling is used to indicate a report type of the terminal device configuring the power headroom.
  • the type of the power headroom report includes at least one of the following: a beam-based power headroom report applied to the beam technology, a beam group-based power headroom report applied to the beam technology, and a carrier-based sum applied to the carrier aggregation.
  • a first extended power headroom report of the beam a second extended power headroom report based on the carrier and the beam group applied to the carrier aggregation; a first dual connectivity power headroom report based on the serving cell and the beam applied to the dual connectivity scenario; A second dual connectivity power headroom report based on serving cell and beam group applied to the dual connectivity scenario; a third extended power headroom report based on carrier and beam applied to a large number of carrier aggregations; a carrier-based sum applied to a large number of carrier aggregations The fourth extended power headroom report for the beam set.
  • the terminal device Before generating the power headroom report, the terminal device configures the type of the power headroom report according to the first control signaling sent by the base station. After the power headroom report is configured, the terminal device reports the PHR MAC signaling to the base station through the MAC layer to notify the base station that the power headroom report has been configured.
  • the base station indicates that the terminal device configures the power headroom report type to be PH, and the terminal device sends the PHR to the base station in the form of a PH MAC CE.
  • the terminal device when the base station indicates that the UE configures the power headroom report type to be an extended power headroom report extendedPH, the terminal device will use the PHR as the extended PH MAC CE.
  • the base station indicates that the terminal device configuration power headroom report type is dual Connectivity PHR, that is, the serving cell-based dual Connectivity PHR applied to the dual connectivity scenario, and the terminal device will report the power headroom as the dual Connectivity PHR MAC.
  • dual Connectivity PHR that is, the serving cell-based dual Connectivity PHR applied to the dual connectivity scenario
  • the terminal device when the base station indicates that the UE configures the power headroom report type to be extendedPH2, that is, the power headroom report PHR applied to a large number of carriers (mass carrier aggregation), the terminal device will use the PHR as the extended PH2 MAC CE.
  • the terminal device when the base station indicates that the UE configures the power headroom report type to be the fifth type PH-B, that is, when the beam-based power headroom report type is applied to the beam technology, the terminal device will set the PHR to PH-
  • the B MAC CE form is sent to the base station as shown in Table 1.
  • the sixth type when the base station indicates that the terminal device configures the power headroom report type to be the sixth type extended PH-B, that is, the carrier-based and beam-based first extended power headroom report (extended PHR) applied to the carrier aggregation, Then the terminal device will report the power headroom to the extended PH-B MAC CE, as shown in Table 2 or Table 3 or Table 4.
  • Table 2 shows a MAC PDU indicating the power headroom of a certain beam on different carriers.
  • MAC PDUs When a power headroom report of multiple beams needs to be sent, multiple MAC PDUs need to be sent; Tables 3 and 4, one MAC PDU indicates the power headroom report of different beams of each carrier; only the pcell in the MAC PDU of Table 3 (primary cell primary carrier) Carrier aggregation applied, with multiple beams on the carrier.
  • the seventh type when the base station indicates that the terminal device configures the power headroom report type to be the seventh type of Dual Connectivity PHR-BPH, that is, the dual-connected scenario based service cell and beam-based dualConnectivity PHR-B, then the terminal device will put power The margin is reported in the Dual Connectivity PHR-B MAC, as shown in Table 5.
  • the eighth type when the base station indicates that the terminal device configures the power headroom report type to be extended PH2-B, that is, the carrier and beam-based power headroom reported to the PHR for a large number of carrier aggregations, the terminal device will Extended PH2-B MAC CE, as shown in Table 6 or Table 7, in Table 6, only pcell has PUCCH, and scell (secondary cell secondary cell) in Table 7 may have PUCCH.
  • the second extended power headroom report based on the carrier and the beam group applied to the carrier aggregation may be further included, and the table of the power headroom report sent by the terminal device to the base station is compared with Table 3 or Table 4 is similar, however, the power headroom in the table corresponds to the power headroom report for a group of beams.
  • the method further includes: a second dual connectivity power headroom report based on the serving cell and the beam group applied to the dual link scenario, and a table of the power headroom report sent by the terminal device to the base station is Table 5 is similar. Similarly, the power headroom in the table corresponds to the power headroom report of a group of beams.
  • the method further includes: a fourth extended power headroom report based on the carrier and the beam group applied to the plurality of carrier aggregations, and a table of the power headroom report sent by the terminal device to the base station, and Table 6 Or Table 7 is similar, however, the power headroom in the table corresponds to the power headroom report of a group of beams.
  • the specific PHR report can be expressed in the following table 1-7:
  • B1 to B7 are the labels of the beams in the beam set (for example, B1 represents beam 1 and B2 represents beam 2), R is a reserved bit, and PH1 is the power headroom of the beam corresponding to the beam number B1, PH2 The power headroom of the beam corresponding to the beam number B2, and so on, PH7 is the power headroom of the beam corresponding to the beam number B7.
  • Table 2 represents the representation of the PHR report in the case of carrier aggregation, where C1 to C7 represent the area code of the carrier, and B0 to B7 also represent the beam number.
  • Ci in C1 to C7 When the value corresponding to Ci in C1 to C7 is 1, the relevant parameters of the power headroom corresponding to Ci in the table appear. Where i is greater than or equal to 1, less than or equal to 7.
  • P represents powerbackoff, that is, power backoff. The value of P can be 1 or 0. When the value of P is 1, the power headroom is calculated, and the power backoff is used. If the value of P is 0, the power backoff will not be used when calculating the power headroom.
  • V is a formal parameter, which represents a virtual value, which is used to determine whether the PUSCH has actual data to be transmitted.
  • V When the value of V is 1, it means that no data is sent on the PUSCH, and 0 means that an actual data is sent, and R is the same. Represents a reserved symbol.
  • Pcmaxci represents the power headroom transmitted on the ith carrier.
  • Table 2 only the type 2 is used on the first table, that is, the first carrier carries the power head related parameters of the primary carrier.
  • the second to mth carriers carry the power headroom related parameters of the secondary carrier, and the type 1 type is used to calculate the power headroom (because the secondary carrier does not have a PUCCH).
  • Each physical carrier contains a set of beams, and each beam set contains 8 beams. Therefore, PH (Type1, SCelln) represents the power headroom calculated by the formula of type 1, and the main calculated PH is the power headroom of the secondary carrier n.
  • the parameters in Table 3 have the same or similar meanings as the parameters in Table 2, and are not described here.
  • Table 2 when transmitting the power headroom of the main beam set, beamk is added, which represents a specific beam in the main beam set. That is, the power headroom of the specific beam in the beam set corresponding to the main beam set will be clearly stated in the table. That is, the specific power headroom of all beams, and the conditions of the PUSCH transmission power and the transmission power of the PUCCH, etc., will be described in Table 3.
  • step 340 the method further includes: step 350, triggering a power headroom report.
  • the configuration information may further include parameter information corresponding to the power headroom report triggering condition.
  • the method for configuring the uplink power control parameter may include at least one of the following: a granularity of each of the beam sets; a granularity of each of the k sets of beams; a granularity of the carrier; and a granularity of the serving cell;
  • the terminal device is granular.
  • the manner of configuring the parameter information of the power headroom report trigger condition also includes at least one of the following Species: the granularity of each beam in the set of beams; the granularity of each group of beams in the k-group beams; the granularity of the carrier; the granularity of the serving cell; and the granularity of the terminal device.
  • the uplink power control parameter is configured or the parameter information corresponding to the power headroom report triggering condition is configured, if each beam in the beam set is used as the granularity, the beam needs to be included in the configuration information.
  • Identification or label Or an identification or label of the signal used to identify the beam.
  • the beam identifier or label is used to identify which beam the configured parameters are stored in.
  • the identification or labeling of the signal identifying the beam is equivalent to identifying which beam the configured parameters are stored in.
  • the signal used to identify the beam may include one or more of the following: a reference signal of the beam, a beam identification. Of course, it is also possible to include a reference signal of the beam in the discovery signal of the beam.
  • the granularity of each beam in the beam set indicates that a set of configuration parameters are configured for each beam in the beam set, including an uplink power control parameter and parameter information corresponding to the power headroom report trigger condition.
  • the parameter information corresponding to the trigger condition of the power headroom report is configured by using the terminal device as the granularity, and the parameter information corresponding to the trigger condition of the power headroom report is configured for each terminal device.
  • each group of the k groups of beams is granular or the carrier is granular, respectively, for each serving cell or for each group of beams or each carrier in the k group of beams respectively. Configure a set of configuration parameters.
  • the configuration parameter when configuring the uplink power control parameter and configuring the parameter information corresponding to the power headroom report triggering condition, if each group of the k groups of beams is used as the granularity, the configuration parameter further includes: identifying each of the k groups of beams An identification/label of a set of beams; or an identification/labeling of signals identifying each of the sets of beams in the k sets of beams.
  • the method may further include: Step 360: Determine, according to the parameter information corresponding to the power headroom report triggering condition, whether the terminal device side meets the condition of the trigger power headroom report at the current moment.
  • the power headroom report is triggered only when the terminal device side satisfies the condition of triggering the power headroom report.
  • the parameter information corresponding to the power headroom report triggering condition includes: a trigger period of the power headroom report, a power headroom report triggering period, and a downlink path loss value.
  • the conditions for triggering the power headroom report include one of the following conditions:
  • the current time is the time corresponding to the trigger period of the power headroom report
  • the downlink path loss corresponding to each of the m beams is greater than the threshold value of the downlink path loss, wherein the m beams are a subset of the set of beams, and m is a positive integer greater than or equal to 2, less than or equal to n, where n is a positive integer greater than or equal to 2;
  • the current time does not belong to the forbidden power headroom report triggering period, and the current time, the average value or the weighted average value of the downlink path loss corresponding to the beam in the beam set is greater than the threshold value of the downlink path loss;
  • the current time does not belong to the forbidden power margin report triggering period, and the current path, the downlink path loss of a preset beam in the beam set is greater than the threshold value of the downlink path loss.
  • the description is made by taking multiple beams in one beam or a set of beams as an example.
  • other similar scenarios can also be applied.
  • one of the conditions 1)-5) can be replaced with "a set of beams", “multiple beams” replaced by "multiple sets of beams", and so on.
  • a set of work can be set for multiple beams received by one terminal.
  • the rate margin reports trigger conditions, or sets a set of power headroom report trigger conditions for all beams in a serving cell, and so on.
  • a first timer is set for each beam in the beam set, for example, a periodic power headroom reporting timer, and the timer is used to determine whether the current time is the time corresponding to the trigger period of the power headroom report, for example, The period is 10ms, then after the timer starts, after 10ms, the timer expires, that is, the power headroom report can be triggered, and the timer will restart according to the interval of 10ms; or, in the second case, the second timing is set.
  • the threshold value of the downlink path loss corresponding to each beam in the beam set is set.
  • the second timer is used to set a disable power headroom report trigger period, for example, to disable the power headroom report timer.
  • the second timer sets the period for prohibiting the power headroom report triggering to be 1 hour.
  • the timer is started, and the timer starts from the moment, even within the current time range, the power is within 1 hour.
  • the margin has exceeded the threshold range and the triggering of the power headroom report is also prohibited.
  • the power headroom is triggered when the power headroom of the beam is allowed to exceed the threshold range after the timer expires.
  • the downlink path loss estimation may include: estimating a downlink path loss corresponding to each beam in the beam set, and/or estimating a downlink path loss corresponding to each group of the k groups of beams.
  • estimating downlink path loss corresponding to each beam in the beam set includes:
  • the downlink path loss corresponding to each beam in the beam set is estimated according to the reference signal power and the reference signal received power of each beam in the beam set, wherein the reference signal power is configured by the base station, and the reference signal received power is measured based on the beam.
  • Estimating the downlink path loss corresponding to each of the k sets of beams including:
  • the downlink path loss corresponding to each group of beam bindings in the k groups of beams is estimated, wherein the reference signal power is configured by the base station, and the reference signal is received.
  • the measurement of the power is based on a channel state information reference signal corresponding to each group of beams in the k group of beams, and/or based on a beam reference signal corresponding to each group of beams in the k group of beams.
  • the measurement form of the reference signal power corresponding to each beam or the reference signal received power of each group of the k groups of beams includes:
  • the RRC is filtered by: performing weighted averaging on the current reference signal received power value and the historical reference signal received power value.
  • the high frequency beam is not filtered by the radio resource control layer, and the low frequency beam is filtered by the radio resource control layer.
  • the RRC does not pass the RRC filtering: the terminal device directly uses the current reference signal received power value as the final reference signal received power value, where the current reference signal received power value and the historical reference signal received power value are both in the beam set.
  • the reference signal corresponding to each beam receives power, or refers to the reference signal received power corresponding to each group of beams in the k group of beams.
  • the setting of the measurement period of the specific reference signal received power may include one of the following forms:
  • the measurement period of the reference signal received power is set according to one or a combination of the following parameters, and the specific parameters include: frequency or band configuration, uplink-downlink subframe ratio, frame structure mode, radio access mode, and beam configuration mode, for example,
  • the measurement period of the high frequency band selects a shorter period
  • the measurement period of the low frequency band selects a longer period
  • the measurement period with a larger proportion of the downlink subframe selects a shorter period
  • the measurement period with a smaller proportion of the downlink subframe selects a shorter period
  • a wider period of the beam width is selected, and a shorter period of the beam width in the beam configuration is selected.
  • the radio access type includes at least one of the following parameters: the number of OFDM time symbols per subframe, the length of the subframe, the length of the cyclic prefix, the cost of the cyclic prefix, and the coding mode (for example, LDPC code, Turbo code, and polar code). ), HARQ timing, subcarrier spacing.
  • the specific beam configuration manner may include at least one of the following parameters:
  • Antenna information scrambling sequence index SCID, precoding information, channel matrix information, codebook information, layer information, number of antenna ports, antenna port number, beam optimization capability information, effective time, effective duration, control channel, beamwidth, and beam angle.
  • the content of the configured beam set may include: one or more CSI-RS/BEAM-RS configuration indexes and corresponding CSI-RS/BEAM-RS configuration information, where the CSI-RS/BEAM-RS configuration information may be A combination of one or more of an antenna port number (antennaPortsCount), a resource configuration (resourceConfig), a subframe configuration (subframeConfig), a CSI-RS/beam-RS reference signal power information, and the like.
  • the CSI-RS reference signal power information may be transmit power information, or ratio information of an energy shared resource element (EnergyPerResource Element, EPRE) and a CSI-RS/beam-RSEPRE.
  • EPRE Energy shared resource element
  • the content of the configured beam set may only include CSI-RS/BEAM-RS configuration index information, and other configuration information and the measured beam set or beam combination are included in different radio resource control information elements (IEs).
  • IEs radio resource control information elements
  • the content of the configured beam set may also include only the beam set index of the beam set and the list information of the corresponding beam identifier. Other configuration information and measurement sets are included in different radio resource control cells. How to estimate the downlink path loss is a prior art, and will not be described here.
  • the downlink path loss can be calculated based on the following situation: based on the minimum downlink path loss of all beams in the beam set, or the weighted average of the downlink path loss of all beams (different beams can take different factors, all factors)
  • n is less than or equal to the number of all beams in the beam set.
  • the content of the configured beam set may include: one or more CSI-RS/BEAM-RS configuration indexes and corresponding CSI-RS/BEAM-RS configuration information, where the CSI-RS/BEAM-RS configuration information may be A combination of one or more of an antenna port number (antennaPortsCount), a resource configuration (resourceConfig), a subframe configuration (subframeConfig), a CSI-RS/beam-RS reference signal power information, and the like.
  • the CSI-RS reference signal power information may be transmit power information, or ratio information of an energy shared resource element (EnergyPerResource Element, EPRE) and a CSI-RS/beam-RSEPRE.
  • the content of the configured beam set may only include CSI-RS/BEAM-RS configuration index information, and other configuration information and the measured beam set or beam combination are included in different radio resource control information elements (IEs).
  • IEs radio resource control information elements
  • the content of the configured beam set may further include only the beam set The cell index of the physical cell and the corresponding physical cell identification information. Other configuration information and measurement sets are included in different radio resource control cells.
  • the purpose of configuring the beam set is to determine which of the beam sets in the beam set is currently estimated based on the beam set content when estimating the downlink path loss. How to estimate the downlink path loss is a prior art, and will not be described here.
  • the downlink path loss can be calculated based on the following situation: based on the minimum downlink path loss of all beams in the beam set, or the weighted average of the downlink path loss of all beams (different beams can take different factors, all factors)
  • n is less than or equal to the number of all beams in the beam set.
  • estimating the downlink path loss of each beam in the beam set is actually estimating the downlink path loss of the downlink beam corresponding to each beam in the beam set, and then using the downlink path loss of the downlink beam as the Downlink path loss of the beam. That is, the beams in the beam set are actually referred to as the uplink beams.
  • the downlink path loss corresponding to each beam in the beam set first determine the downlink beam corresponding to each beam in the beam set. Estimate the path loss of the downlink beam. The time of each beam in the beam set is estimated according to the time of the corresponding downlink beam, and/or the frequency of each beam in the beam set is estimated according to the frequency of the corresponding downlink beam, and/or the beam set. The radio channel quality of each of the beams is estimated based on the radio channel quality of the corresponding downlink beam.
  • determining each of the beams in the beam set corresponding to the downlink beam may include:
  • a radio resource control layer in dedicated signaling and/or system information
  • a medium access control layer in dedicated signaling and/or system information
  • a radio resource control layer in dedicated signaling and/or system information
  • a medium access control layer in dedicated signaling and/or system information
  • the terminal device obtains a downlink beam paired with each of the beam sets in the beam initial access, and/or beam scanning, and/or beam training, respectively.
  • a set of uplink power control parameters may be configured for each beam set or beam set.
  • a set of the foregoing uplink power control parameters may be separately configured for each BEAM-RS (beam: BEAM, RS: reference signal) configuration information in the beam set.
  • the uplink power control parameter configuration information may be included in different radio resource control cells with other configuration information of the associated uplink beam set.
  • the power headroom corresponding to each beam, the transmit power of the uplink shared channel, and the transmit power of the physical uplink control channel are respectively calculated in the foregoing beam set, and the corresponding reference symbols corresponding to each beam may be calculated. Transmit power.
  • Equation 3-11 The specific calculation formula is shown in Equation 3-11:
  • (m) is the power offset value of the radio resource control layer semi-statically configured, m may take 0 and 1, respectively corresponding to Type 0 and Type 1 of the SRS transmission trigger; M SRS, c is the number of RBs used for SRS transmission, and the above formula
  • M SRS, c is the number of RBs used for SRS transmission
  • the corresponding transmitting power of the corresponding sounding reference symbol of each group of the corresponding k group beams may be according to formula 3- As shown in 12, calculate:
  • (m) is the power offset value of the radio resource control layer semi-statically configured, m may take 0 and 1, respectively corresponding to the SRS transmission trigger Type0 and Type1; M SRS, c is the number of RBs used for SRS transmission, and in the above formula
  • M SRS, c is the number of RBs used for SRS transmission, and in the above formula
  • a power control method calculates a transmit power of an uplink shared channel, a transmit power of a physical uplink control channel, and a power headroom of a beam set in a beam domain, and generates a power headroom report.
  • the power headroom report is sent to the base station, so that the base station adjusts the power of the terminal equipment side according to the power headroom report.
  • FIG. 4 is a terminal device according to an embodiment of the present invention. Schematic.
  • the terminal device includes: a receiving module 401, a processing module 402, and a sending module 403.
  • the receiving module 401 is configured to receive configuration information sent by the base station, where the configuration information includes: an uplink power control parameter.
  • the processing module 402 is configured to estimate, according to the uplink power control parameter, a transmit power of an uplink shared channel of the beam set in which the terminal device is located, where the beam set includes n beams, where n is a positive integer greater than or equal to 1.
  • the processing module 402 estimates the transmit power of the uplink shared channel of the beam set in which the terminal device is located according to the uplink power control parameter, and may include the following two forms:
  • Estimating the transmit power of the uplink shared channel of each beam in the beam set of the terminal device according to the uplink power control parameter; or estimating the k group of the terminal device according to the uplink power control parameter The transmit power of the uplink shared channel of each set of beams in the beam, wherein the k sets of beams constitute the set of beams, and k is a positive integer greater than or equal to one.
  • the power headroom of the beam set in which the terminal device is located is calculated according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set in which the terminal device is located.
  • the manner of calculating the power headroom of the beam set in which the terminal device is located may also include the following two types:
  • the power headroom of the p-th beam in the beam set is calculated according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the p-th beam in the beam set, until the power headroom of each beam in the beam set is calculated.
  • p is a positive integer greater than or equal to 1, and less than or equal to n; or, in turn, based on the maximum transmit power of the terminal device, and the transmit power of the uplink shared channel of the qth beam in the k sets of beams, the k sets of beams are calculated The power headroom of the qth group of beams until the power headroom of each group of beams in the k group of beams is calculated, where q is greater than Or a positive integer equal to 1, and less than or equal to k.
  • the precondition for using the above two methods for calculating the power headroom is that the processing module 402 determines that the terminal device transmits the uplink shared channel and the physical uplink control channel to the base station when they are different.
  • the processing module 402 is further configured to determine whether the terminal device sends the uplink shared channel and the physical uplink control channel to the base station simultaneously. When it is determined that the terminal device simultaneously transmits the uplink shared channel and the physical uplink control channel to the base station, the maximum transmit power of the terminal device, the transmit power of the uplink shared channel of the beam set of the terminal device, and the beam set of the terminal device are determined. The transmit power of the physical uplink control channel calculates the power headroom of the beam set in which the terminal device is located.
  • the processing module 402 further needs to estimate the transmit power of the physical uplink control channel of the beam set in which the terminal device is located according to the uplink power control parameter.
  • the method further includes: estimating, according to an uplink power control parameter, a transmit power of a physical uplink control channel of each beam in the beam set; or, respectively, estimating, according to the uplink power control parameter, a physical uplink control channel of each of the k sets of beams. Power, where k sets of beams form a beam set, and k is a positive integer greater than or equal to one.
  • the terminal device Similar to the method of calculating the power headroom of the beam set of the terminal device according to the maximum transmit power of the terminal device and the transmit power of the uplink shared channel of the beam set of the terminal device, according to the maximum transmit power of the terminal device, the terminal device
  • the manner in which the power of the uplink shared channel of the beam set and the transmit power of the physical uplink control channel of the beam set of the terminal device are calculated, and the manner of calculating the power headroom of the beam set where the terminal device is located also includes the following two types:
  • the power headroom is calculated until the power headroom of each beam in the beam set is completed, where p is a positive integer greater than or equal to 1, and less than or equal to n;
  • the power headroom of the group beam is calculated until the power headroom of each group of beams in the k group of beams is completed, where q is a positive integer greater than or equal to 1, and less than or equal to k.
  • the sending module 403 is configured to send a power headroom report to the base station.
  • the configuration information may further include a first control signaling, where the first control signaling is used to indicate that the terminal device configures a power headroom report type, where the type of the configured power headroom report includes at least one of the following:
  • the sending module 403 is further configured to:
  • the medium access control layer sends a power headroom report media access control signaling to the base station, where the power headroom report media access control signaling is used to indicate that the power headroom report has been configured.
  • the terminal device further includes a triggering module 404, configured to trigger a power headroom report before the sending module 403 sends the power headroom report to the base station.
  • a triggering module 404 configured to trigger a power headroom report before the sending module 403 sends the power headroom report to the base station.
  • the configuration information sent by the base station received by the receiving module further includes parameter information corresponding to the power headroom report triggering condition.
  • the triggering module 404 is further configured to: determine, according to the parameter information corresponding to the power headroom report triggering condition, whether the terminal equipment side meets the condition of the trigger power headroom report at the current moment, and only meets the trigger power headroom report on the terminal equipment side.
  • the power headroom report is triggered when the condition is met.
  • the parameter information corresponding to the power headroom report triggering condition includes: a trigger period of the power headroom report, a power headroom report triggering period, and a downlink path loss value.
  • the condition for triggering the power headroom report includes: the current time is a time corresponding to a trigger period of the power headroom report.
  • the current time does not belong to the forbidden power margin report trigger period, and the current path time, the downlink path loss of any one of the beam sets is greater than the threshold value of the downlink path loss.
  • the current time is not a trigger period for prohibiting the power headroom report, and at the current time, the downlink path loss corresponding to each of the m beams is greater than the threshold value of the downlink path loss, where the m beams are the sub-sets of the beam set.
  • m is a positive integer greater than or equal to 2, less than or equal to n, where n is a positive integer greater than or equal to 2.
  • the current time does not belong to the forbidden power headroom report trigger period, and the current time, the average or weighted average of the downlink path loss corresponding to the beam in the beam set is greater than the threshold value of the downlink path loss.
  • the current time does not belong to the forbidden power margin report trigger period, and the current path time, the downlink path loss of a preset beam in the beam set is greater than the threshold value of the downlink path loss.
  • the configuration of the uplink power control parameter may include at least one of the following:
  • Each group of beams in the k group of beams is granular
  • the terminal device is granular.
  • the manner of setting the parameter information of the triggering condition of the power headroom includes at least one of the following: a granularity of each beam in the beam set;
  • Each group of beams in the k group of beams is granular
  • the terminal device is granular.
  • the configuration parameter when configuring the uplink power control parameter and configuring the parameter information corresponding to the power headroom report triggering condition, if each of the beam sets is granular, the configuration parameter further includes:
  • the signal of the identification beam comprises one or a combination of: a reference signal of the beam, a discovery signal of the beam, and a beam identification.
  • the configuration parameter when configuring the uplink power control parameter and configuring the parameter information corresponding to the power headroom report triggering condition, if each group of the k groups of beams is used as the granularity, the configuration parameter further includes: identifying the k group beam. Identification/label of each set of beams;
  • the identification/labeling of the signals of each of the sets of beams in the k sets of beams is identified.
  • the processing module 402 is further configured to: estimate a downlink path loss corresponding to each beam in the beam set and/or estimate a downlink path loss corresponding to each group of the k groups of beams.
  • the processing module 402 estimates the downlink path loss corresponding to each beam in the beam set, and may include: estimating each beam in the beam set according to the reference signal power and the reference signal received power of each beam in the beam set respectively. Corresponding downlink path loss, wherein the measurement of the reference signal received power is based on a channel state information reference signal corresponding to each beam in the beam set, and/or based on a beam reference signal corresponding to each beam in the beam set.
  • the processing module 402 estimates the downlink path loss corresponding to each of the k groups of beams, which may include: estimating the k group according to the reference signal power and the reference signal received power of each group of the k groups of beams respectively. Each group of beams in the beam is bound to a corresponding downlink path loss, wherein the reference signal received power is measured based on a channel state information reference signal corresponding to each group of the k sets of beams, and/or based on each of the k sets of beams The beam reference signal corresponding to the group beam.
  • the measurement form of the reference signal power corresponding to each beam or the reference signal received power of each group of the k groups of beams includes:
  • the filtering through the RRC layer refers to: performing weighted averaging on the current reference signal received power value and the historical reference signal received power value;
  • the filtering by the RRC layer means that the terminal device directly uses the current reference signal received power value as the final reference signal received power value, wherein the current reference signal received power value and the historical reference signal received power value refer to the beam.
  • the reference signal received power corresponding to each beam in the set, or both refers to the reference signal received power corresponding to each group of the k sets of beams.
  • the measurement period of the reference signal received power may be set to a fixed value Fms, and F is a positive integer less than or equal to 100; or may be set according to one or a combination of the following parameters, including: frequency or frequency band configuration, uplink and downlink subframes Proportion, frame structure mode, radio access mode, and beam configuration mode.
  • the processing module 402 needs to first estimate the downlink beam corresponding to each beam in the beam set, whether it is estimating the downlink path loss of each beam in the beam set or estimating the downlink path loss of each group of the k groups of beams. Or a downlink beam corresponding to any one of the beams in the k group of beams. That is, each beam in the beam set is an uplink beam, and the estimated downlink path loss needs to be determined according to the downlink beam, and then roughly used as the downlink path loss of the uplink beam. Therefore, before estimating the downlink path loss, the processing module 402 is further configured to: determine a downlink beam corresponding to each beam in the beam set.
  • Estimating the path loss of the downlink beam wherein the beam in the beam set is an uplink beam, and the time of each beam in the beam set is estimated according to the time of the corresponding downlink beam, and/or each beam in the beam set
  • the frequency is estimated based on the frequency of the corresponding downlink beam, and/or the radio channel quality of each beam in the beam set is estimated according to the radio channel quality of the corresponding downlink beam.
  • the wireless resource can be used. Configuring a source control layer or a medium access control layer; or configuring a reference downlink beam for radio channel quality assessment for one or more beams in the beam set through a radio resource control layer or a medium access control layer; Alternatively, the terminal device determines the manner in which the downlink beam is paired with each of the beam sets in the initial beam access, and/or the beam scanning, and/or the beam training process.
  • the terminal device provided in the second embodiment calculates the transmit power of the uplink shared channel, the transmit power of the physical uplink control channel, and the power headroom of the beam set in the beam domain, and generates a power headroom report.
  • the power headroom report is sent to the base station, so that the base station adjusts the power of the terminal equipment side according to the power headroom report.
  • the third embodiment of the present invention further provides a terminal device, as shown in FIG. 5, the terminal device includes a receiver 501, a transmitter 502, and a processor 503. Memory 504, communication interface 505, and bus 506. Receiver 501, transmitter 502, processor 503, memory 504, and communication interface 505 in the terminal device can establish a communication connection over bus 506.
  • the receiver 501 is configured to receive configuration information sent by the base station.
  • the transmitter 502 is configured to send, to the base station, a response message that the configuration power headroom report is successful, and send a power headroom report to the base station.
  • the processor 503 can be a central processing unit (English: central processing unit, abbreviated as CPU), and is mainly used to execute the processing steps and the corresponding method steps of the processing module and the triggering module described in the second embodiment.
  • CPU central processing unit
  • the memory 504 is used to store instructions executed by the processor, as well as related parameter information of the power headroom report, and the like.
  • the memory 504 may include a volatile memory (English: volatile memory), such as a random access memory (English: random-access memory, abbreviation: RAM); the memory may also include a non-volatile memory (English: non-volatile memory) , for example, read-only memory (English: read-only memory, abbreviation: ROM), flash memory, hard disk (English: hard disk drive, abbreviation: HDD) or solid state drive (English: solid state drive, abbreviation: SSD); memory 504 may also include a combination of the above types of memory.
  • a power control method and a terminal device calculate a transmit power of an uplink shared channel, a transmit power of a physical uplink control channel, and a power headroom of a beam set in a beam domain, and generate Power headroom report.
  • the power headroom report is sent to the base station, so that the base station adjusts the power of the terminal equipment side according to the power headroom report.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be implemented in hardware, a software module executed by a processing module, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种功率控制的方法及终端设备。所述方法包括:接收基站发送的配置信息,其中配置信息包括:上行功率控制参数。根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率。根据终端设备的最大发射功率和终端设备所处波束集合的上行共享信道的发射功率,计算终端设备所处波束集合的功率余量。根据终端设备所处波束集合的功率余量,生成功率余量报告,并将功率余量报告发送至基站。在波束域计算波束集合的功率余量,并以功率余量报告形式发送至基站,以便基站对终端设备侧的功率进行调整。基于上述方法,可以避免由于功率控制不准确导致的终端设备之间干扰增加、资源调度不充分或者上行吞吐量降低等问题。

Description

一种功率控制的方法及终端设备
本申请要求于2016年09月29日提交中国专利局、申请号为201610871474.2、申请名称为“一种功率控制的方法及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术领域,尤其涉及一种功率控制的方法及终端设备。
背景技术
为了让eNodeB能够动态的为终端分配合适的资源,终端需要将其功率余量信息报告给eNodeB。eNodeB将会根据功率余量报告(Power headroom report,简称PHR)调整终端设备当前的发射功率。而如果终端向基站发送的功率余量报告不准确的话,就会导致基站对终端分配的调度资源不合理,进一步导致终端之间干扰增加、资源调度不充分或者上行吞吐量降低等问题。
为了解决上述问题,现有技术中,终端基于服务小区的小区参考信号(Cell Reference Signal,简称CRS)的下行路径损耗和其他相关参数计算功率余量(Power head room,简称PH)和上行共享信道的发射功率以及物理上行控制信道(Physical Uplink Control Channel,简称PUCCH)发射功率,并向基站报告功率余量报告。
但是,伴随移动宽带的迅猛发展和智能手机的普及,全球移动数据流量年复合增长率高达67%,同时网络流量的分布极度不平衡,热点区域的容量需求呈现出***式增长。现有的低频段组网所能实现的网络覆盖以及频谱利用率等已经完全不能够达到用户的需求。所以,在未来的5G网络中,将会在高频100G组网。然而利用现有的技术(在当前的LTE***中,小区覆盖是全天线覆盖),在高频段组网时,将会出现网络覆盖范围小、功率能耗大、路径损耗大、频谱效率低以及***容量小等一系列的问题。因此利用终端基于服务小区的CRS的下行路损和其他相关参数计算功率余量和上行共享信道的发射功率以及物理上行控制信道发射功率等的方法在高频组网阶段实现将会非常困难,那么在高频组网阶段,找到一种计算功率余量和上行共享信道的发射功率以及物理上行控制信道发射功率,并向基站发送功率余量报告,以便基站根据功率余量报告调整终端设备侧的发射功率的方法,是亟待解决的问题。
发明内容
本发明实施例提供了一种功率控制的方法及终端设备。
第一方面,本发明提供了一种功率控制的方法,该方法包括:接收基站发送的配置信息,其中配置信息包括:上行功率控制参数;
根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,其 中,波束集合包括n条波束,n为大于或者等于1的正整数;
根据终端设备的最大发射功率和终端设备所处波束集合的上行共享信道的发射功率,计算终端设备所处波束集合的功率余量;
根据终端设备所处波束集合的功率余量,生成功率余量报告,并将功率余量报告发送至基站。
在一个可选的实现方式中,接收基站发送的配置信息后,该方法还包括:
根据上行功率控制参数,估算终端设备所处波束集合的物理上行控制信道的发射功率。
在另一个可选的实现方式中,当确定终端设备将上行共享信道和物理上行控制信道同时发送至基站时,该方法还包括:根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率以及终端设备所处波束集合的物理上行控制信道的发射功率,计算终端设备所在波束集合的功率余量。
在又一个可选的实现方式中,根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率,计算终端设备处波束集合的功率余量的方式,包括:
依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中p为大于或者等于1,且小于或者等于n的正整数;
或者,
依次根据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,计算k组波束中的第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
在再一个可选的实现方式中,根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率以及终端设备所处波束集合的物理上行控制信道的发射功率,计算终端设备所处波束集合的功率余量的方式,包括:
依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,以及波束集合中第p条波束的物理上行控制信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中,p为大于或者等于1,且小于或者等于n的正整数;
或者,
依次根据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,以及k组波束中第q组波束的物理上行控制信道的发射功率,计算k组波束中第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
第二方面,本发明提供了一种终端设备,该终端设备包括:
接收模块,用于接收基站发送的配置信息,其中配置信息包括:上行功率控制参数;
处理模块,用于根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,其中,波束集合包括n条波束,n为大于或者等于1的正整数;
根据终端设备的最大发射功率和终端设备所处波束集合的上行共享信道的发射功率,计算终端设备所处波束集合的功率余量;
并根据终端设备所处波束集合的功率余量,生成功率余量报告;
发送模块,用于将功率余量报告发送至基站。
在一个可选的实现方式中:根据上行功率控制参数,估算终端设备所处波束集合的物理上行控制信道的发射功率。
在另一个可选的实现方式中,处理模块还用于:确定终端设备将上行共享信道和所述物理上行控制信道是否同时发送至基站;
且当确定终端设备将上行共享信道和物理上行控制信道同时发送至基站时,根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率以及终端设备所处波束集合的物理上行控制信道的发射功率,计算所述终端设备所在波束集合的功率余量。
在又一个可选的实现方式中,处理模块根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率,计算终端设备处波束集合的功率余量的方式,包括:
依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中p为大于或者等于1,且小于或者等于n的正整数;
或者,
依次根据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,计算k组波束中的第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
在再一个可选的实现方式中,处理模块根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率以及终端设备所处波束集合的物理上行控制信道的发射功率,计算终端设备所处波束集合的功率余量的方式,包括:
依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,以及波束集合中第p条波束的物理上行控制信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中,p为大于或者等于1,且小于或者等于n的正整数;
或者,
依次根据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,以及k组波束中第q组波束的物理上行控制信道的发射功率,计算k组波束中第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于或者等 于1,且小于或者等于k的正整数。
基于上述技术方案,本发明实施例提供的一种功率控制的方法及终端设备,在波束域计算上行共享信道的发射功率、物理上行控制信道的发射功率,以及波束集合的功率余量,并生成功率余量报告。将功率余量报告发送至基站,以便基站根据功率余量报告对终端设备侧的功率进行调整。基于上述方法,可以避免由于功率控制不准确,而导致的终端设备之间干扰增加、资源调度不充分或者上行吞吐量降低等问题。
附图说明
图1为本发明实施例提供的一种由波束集合构成小区的示意图;
图2为本发明实施例提供的,基站和终端设备之间通过波束实现通信交互的示意图;
图3为本发明实施例一提供的一种功率控制方法流程示意图;
图4为本发明实施例二提供的一种终端设备的虚拟装置结构示意图;
图5为本发明实施例三提供的一种终端设备的实体装置结构示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了帮助运营商最大限度的利用已有站址和频谱资源,改善网络覆盖和容量,本发明中将采用有源天线阵列技术,结合创新的导频信号设计和用户信道高精度估计算法,形成极其精确的用户级超窄波束,将能量定向投放到用户位置,改善网络覆盖能力,降低无线网络的能耗,尤其是在中高频组网的情况下,改善网络覆盖能力的效果尤为明显。波束集合可以由多个用户级超窄波束构成,具体如图1所示。图1为本发明实施例提供的一种由波束集合构成小区的示意图。而终端设备则可以同时接收通过多个波束发送的信号,具体如图2所示,图2为本发明实施例提供的,基站和终端设备之间通过波束实现通信交互的示意图。也即是说,终端设备和基站之间,可以通过波束集合中的至少一条波束进行信令/数据交互。图2中显示的是终端设备和基站之间,通过波束5、6、7,以及波束14、15、16进行进行信令/数据交互。其中,本发明中的波束资源,UE可见或者不可见.如,UE只能区分不同的识别波束的信号,并不能区分不同的波束。
终端设备首先接收基站发送的配置信息,该配置信息中包括上行功率控制参数。根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,其中,波束集合中包括n条波束,n为大于或者等于1的正整数。判断终端设备是否同时将上行共享信道和物理上行控制信道发送至基站,当并不同时发送时,则可以根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率,计算终端设备所处波束集合的功率余量。而如果判断终端设备同时将上行共享信道和物理上行控制信道发送至基站时,则需要根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率, 以及终端设备所处波束集合的物理上行控制信道的发射功率计算终端设备所处波束集合的功率余量。因此,在计算功率余量之前,该方法还包括计算终端设备所处波束集合的物理上行控制信道的发射功率。最终,将计算完成的功率余量报告发送至基站,以便基站根据功率余量报告对终端设备侧的发射功率进行调整。具体估算上行共享信道的发射功率和估算物理上行控制信道的发射功率的方法以及确定最终的功率余量报告的方法将在下文中的实施例一做详细的介绍。
图3为本发明实施例一提供的一种功率控制方法流程示意图300。具体如图3所示,该方法包括:
步骤310,接收基站发送的配置信息。
具体的,基站发送的配置信息可以包括上行功率控制参数。其中,上行功率控制参数主要可以包括:标称物理上行控制信道的发射功率,如PUCCH,e-PUCCH,g-PUCCH的基准发射功率(如,p0-NominalPUCCH)、UE特定的物理上行控制信道的发射功率,如PUCCH,e-PUCCH,g-PUCCH的基准发射功率(p0-UE-PUCCH)、标称上行物理数据(或共享)信道,如物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH),e-PUSCH,g-PUSCH的基准发射功率(如,p0-Nominal PUSCH)、UE特定的上行物理数据(或共享)信道的发射功率,如PUSCH,e-PUSCH,g-PUSCH的基准发射功率(如,p0-UE-PUSCH)、下行路损补偿因子(alpha)等信息。这里的基准发射功率指的是基站期望终端设备侧的接收功率水平。而配置上行功率控制参数的方式可以包括以下至少一种:以波束集合中的每一条波束为粒度、以k组波束中的每一组波束为粒度、以载波为粒度、以服务小区为粒度和以终端设备为粒度。
步骤320,根据上行功率控制参数,估算终端设备所处波束集合对应的上行共享信道的发射功率。
在本发明中所指的波束集合,是终端设备所处的波束集合,即,终端可以用来发送或接收数据/信号的波束,可以是终端的服务波束或是地理位置可达的波束;波束是由多天线技术的波束赋形技术形成的。具体如图1所示,一个波束集合由至少一条波束组成。该波束的波束宽度较窄,一般小于120度。
具体的,根据配置信息,估算终端设备所处波束集合对应的上行共享信道的发射功率。终端设备所处波束集合对应的上行共享信道的发射功率可以包括两种表现形式,具体为:
根据上行功率控制参数,分别估算波束集合中每一波束的上行共享信道的发射功率并统计;或者根据上行功率控制参数,分别估算终端设备所处波束集合中k组波束的上行共享信道的发射功率并统计,k组波束构成波束集合,k为大于或者等于1的正整数。
其中,计算每一条波束的上行共享信道的发射功率的公式可以分别由公式3-1至公式3-2获取。不过在此之前,该方法还包括:判断终端设备侧是否将上行共享信道和物理上行控制信道同时发送至基站。
如果判断终端设备侧将上行共享信道和物理上行控制信道不同时发送至基站时,确定利用公式3-1计算波束集合中每一条波束的上行共享信道的发射功率。
其中,具体公式如式(3-1)所示:
Figure PCTCN2017103995-appb-000001
其中,PPUSCH,c(i)_beam_p为为终端设备提供服务的第p条波束对应的上行共享信道的发射功率,PCMAX,c_beam_p(i)为为终端设备提供服务的第p条波束对应的子帧i的最大发射功率;10log10(MPUSCH,c(i))_beam_p为为终端设备提供服务的第p条波束对应的子帧i上基站分配给该终端设备的资源块个数;Po_PUSCH,c(j)_beam_p为基站期望的为终端设备提供服务的第p条波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
Po_PUSCH,c(j)_beam_p=Po_UE_PUSCH,c(j)_beam_p+Po_NOMINAL_PUSCH,c(j)_beam_p      ,Po_NOMINAL_PUSCH,c(j)_beam_p表示正常解调时,基站期望的为终端设备提供服务的第p条波束对应的上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beam_p为为终端设备提供服务的第p条波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beam_p为为终端设备提供服务的第p条波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beam_p为为终端设备提供服务的第p条波束对应的上行共享信道的发射功率的调整量;
Figure PCTCN2017103995-appb-000002
是PCMAX,c(i)_beam_p的线性值;beam_p则代表所述波束集合中的第p条波束,其中p为大于1且小于或者等于n的正整数。
其中,终端设备的最大发射功率是名义上的(nominal)终端设备的最大发射功率,即,允许的最大功率减少(the allowed Maximum Power Reduction,简称MPR),附加的最大功率减少(Additional Maximum Power Reduction,简称A-MPR)满足一个预设条件(如,等于0db)的发射功率。
fc(i)_beam_p可以通过以下方式之一或者组合获取:
通过下行物理控制信令获取,其中,下行物理控制信令中携带波束信息;
通过无线资源控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束为粒度分配,其中,发送功率控制-无线网络临时标识用于物理控制信令的解码,tpc-Index用于指示用户终端的TPC命令的索引号:(-TPC command number 1,TPC command number 2,…,TPC command number N);和或,通过媒体接入控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束为粒度分配,终端利用这些信息在下行物理控制信令TPC命令中获取;
通过无线资源控制层分配的发送功率控制索引绑定,和/或,发送功率控制-无线网络临时标识绑定,和/或,波束资源绑定,和/或k组波束中每一组波束绑定。这里,绑定即 是在RRC或MAC层,用信令指示TPC索引和/或TPC-RNTI和波束资源或k组波束中每一组波束的映射关系。
如果判断所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,确定利用公式(3-2)计算上行共享信道的发射功率。具体如公式(3-2)所示:
Figure PCTCN2017103995-appb-000003
其中,PPUSCH,c(i)_beam_p为为终端设备提供服务的第p条波束对应的子帧i的上行共享信道的发射功率,pCMAX,c(i)_beam_p为为终端设备提供服务的第p条波束对应的子帧i的最大发射功率;PPUCCH,c(i)_beam_p为为终端设备提供服务的第p条波束对应的子帧i的物理上行控制信道的发射功率,10log10(MPUSCH,c(i))_beam_p为终端设备提供服务的第p条波束对应的子帧i上基站分配给该终端设备的资源块个数;Po_PUSCH,c(j)_beam_p为基站期望的为终端设备提供服务的第p条波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
Po_PUSCH,c(j)_beam_p=Po_UE_PUSCH,c(j)_beam_p+Po_NOMINAL_PUSCH,c(j)_beam_p     ,Po_NOMINAL_PUSCH,c(j)_beam_p表示正常解调时,基站期望的为终端设备提供服务的第p条波束对应的上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beam_p为为终端设备提供服务的第p条波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beam_p为为终端设备提供服务的第p条波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beam_p为为终端设备提供服务的第p条波对应的上行共享信道的发射功率的调整量;
Figure PCTCN2017103995-appb-000004
是PCMAX,c(i)_beam_p的线性值;
Figure PCTCN2017103995-appb-000005
是PPUCCH,c(i)_beam_p的线性值;beam_p则代表所述波束集合中的第p条波束,其中p为大于1且小于或者等于k的正整数。
当然,读者应理解,上述计算上行共享信道的发射功率的公式,仅仅代表是在波束集合中每一条波束上第i子帧发送数据时的上行共享信道的发射功率的公式。
而在另一种情况中,估算终端设备所处波束集合对应的上行共享信道的发射功率的另一种表现形式则是:根据上行功率控制参数,分别估算终端设备所处波束集合中k组波束的上行共享信道的发射功率,其中,k组波束构成波束集合,k为大于或者等于1的正整数。
如果判断当确定所述终端设备将所述上行共享信道和所述物理上行控制信道不同时发送至基站时时,确定利用公式3-3计算上行共享信道的发射功率。
具体如下式所示,
Figure PCTCN2017103995-appb-000006
其中,PPUSCH,c(i)_beamq为为终端设备提供服务的第q组波束对应的上行共享信道的发射功率,PCMAX,c(i)_beamq为为终端设备提供服务的第q组波束对应的子帧i的最大发射功率;10log10(MPUSCH,c(i))_beamq为为终端设备提供服务的第q组波束对应的子帧i上基站分配给该终端设备的资源块个数;Po_PUSCH,c(j)_beamq为基站期望的为终端设备提供服务的第q组波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
Po_PUSCH,c(j)_beamq=Po_UE_PUSCH,c(j)_beamq+Po_NOMINAL_PUSCH,c(j)_beamq    ,Po_NOMINAL_PUSCH,c(j)_beamq表示正常解调时,基站期望的为终端设备提供服务的第q组波束对应的上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beamq为为终端设备提供服务的第q组波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beamq为为终端设备提供服务的第q组波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beamq为为终端设备提供服务的第q组波束对应的上行共享信道的发射功率的调整量;
Figure PCTCN2017103995-appb-000007
是PCMAX,c(i)_beamq的线性值;beamq则代表所述波束集合中的第q组波束,其中q为大于1且小于或者等于n的正整数。
其中,终端设备的最大发射功率是名义上的(nominal)终端设备的最大发射功率,即,允许的最大功率减少(the allowed Maximum Power Reduction,简称MPR),附加的最大功率减少(Additional Maximum Power Reduction,简称A-MPR)满足一个预设条件(如,等于0db)的发射功率。
fc(i)_beamq可以通过以下方式之一或者组合获取:
通过下行物理控制信令获取,其中,下行物理控制信令中携带波束信息;
通过无线资源控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束为粒度分配,其中,发送功率控制-无线网络临时标识用于物理控制信令的解码,tpc-Index用于指示用户终端的TPC命令的索引号:(-TPC command number 1,TPC command number 2,…,TPC command number N);和或,通过媒体接入控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束为粒度分配,终端利用这些信息在下行物理控制信令TPC命令中获取;
通过无线资源控制层分配的发送功率控制索引绑定,和/或,发送功率控制-无线网络临时标识绑定,和/或,波束资源绑定,和/或k组波束中每一组波束绑定。这里,绑定即 是在RRC或MAC层,用信令指示TPC索引和/或TPC-RNTI和波束资源或k组波束中每一组波束的映射关系。
如果判断终端设备侧将上行共享信道和物理上行控制信道同时发送至基站时,确定利用公式3-4计算上行共享信道的发射功率。
具体如下式所示:
Figure PCTCN2017103995-appb-000008
其中,PPUSCH,c(i)_beamq为为终端设备提供服务的第q组波束对应的上行共享信道的发射功率,pCMAX,c(i)_beamq为为终端设备提供服务的第q组波束对应的子帧i的最大发射功率;PPUCCH,c(i)_beamq为为终端设备提供服务的第q组波束对应的子帧i的物理上行控制信道的发射功率;PPUCCH,c(i)_beamq为为终端设备提供服务的第q组波束对应的物理上行控制信道的发射功率,10log10(MPUSCH,c(i)_beamq为为终端设备提供服务的第q组波束对应的子帧i上基站分配给该终端设备的资源块个数;Po_PUSCH,c(j)_beamq为基站期望的为终端设备提供服务的第q组波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
Po_PUSCH,c(j)_beamq=Po_UE_PUSCH,c(j)_beamq+Po_NOMINAL_PUSCH,c(j)_beamq    ,Po_NOMINAL_PUSCH,c(j)_beamq表示正常解调时,基站期望的为终端设备提供服务的第q组波束对应的上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beamq为为终端设备提供服务的第q组波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beamq为为终端设备提供服务的第q组波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beamq为为终端设备提供服务的第q组波束对应的上行共享信道的发射功率的调整量;
Figure PCTCN2017103995-appb-000009
是PCMAX,c(i)_beamq的线性值;
Figure PCTCN2017103995-appb-000010
是PPUCCH,c(i)_beamq的线性值;beamq则代表所述波束集合中的第q组波束,其中q为大于1且小于或者等于k的正整数。
其中,终端设备的最大发射功率是名义上的(nominal)终端设备的最大发射功率,即,允许的最大功率减少(the allowed Maximum Power Reduction,简称MPR),附加的最大功率减少(Additional Maximum Power Reduction,简称A-MPR)满足一个预设条件(如,等于0db)的发射功率。
fc(i)_beamq可以通过以下方式之一或者组合获取:
通过下行物理控制信令获取,其中,下行物理控制信令中携带波束信息;
通过无线资源控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束绑定为粒度分配,其中,发送功率控 制-无线网络临时标识用于物理控制信令的解码,tpc-Index用于指示用户终端的TPC命令的索引号:(-TPC command number 1,TPC command number 2,…,TPC command number N);和或,通过媒体接入控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束绑定为粒度分配,终端利用这些信息在下行物理控制信令TPC命令中获取;
通过无线资源控制层分配的发送功率控制索引绑定,和/或,发送功率控制-无线网络临时标识绑定,和/或,波束资源绑定,和/或k组波束中每一组波束绑定绑定。这里,绑定即是在RRC或MAC层,用信令指示TPC索引和/或TPC-RNTI和波束资源或k组波束中每一组波束绑定的映射关系。
而根据上行功率控制参数,估算终端设备所处波束集合对应的上行共享信道的发射功率之后,该方法还包括:根据上行功率控制参数,估算终端设备所处波束集合对应的物理上行控制信道的发射功率。与估算终端设备所处波束集合对应的上行共享信道的发射功率类似,终端设备所处波束集合对应的物理上行控制信道的发射功率的表现形式同样包括两种。其中一种为根据上行功率控制参数,估算波束集合中每一条波束分别对应的物理上行控制信道的发射功率;另一种为根据上行功率控制参数,分别估算终端设备所处波束集合中k组波束的物理上行控制信道的发射功率。
其中,根据上行功率控制参数,分别估算波束集合中第p条波束对应的物理上行控制信道的发射功率的公式,如式(3-5)所示:
Figure PCTCN2017103995-appb-000011
其中,PCMAX,c(i)_beam_p为为终端设备提供服务的第p条波束对应子帧i的最大发射功率;PLc_beam_p为为终端设备提供服务的第p条波束对应的下行路径损耗值;pO_PUCCH_beam_p为无线资源控制层信令设置的为终端设备提供服务的第p条波束对应的功率基准值;h(nCQI,nHARQ,nSR)_beam_p为根据所承载的信道质量指示和确认比特数量在为终端设备提供服务的第p条波束上设置的物理上行控制信道发送功率偏移量;
Figure PCTCN2017103995-appb-000012
(F)_beam_p为物理上行控制信道格式F相对于PUCCH格式1a的功率偏移量,ΔTxD(F′)_beam_p为根据调制编码方式和数据类型所确定的为终端设备提供服务的第p条波束对应的功率偏移量;g(i)_beam_p为为终端设备提供服务的第p条波束对应的终端闭环功率控制的调整值;beam_p示为终端设备提供服务的第p条波束,p小于或者等于波束集合中波束的总条数。
其中,g(i)_beam_k可以通过以下至少一种方式获取:
通过下行物理控制信令获取,其中,下行物理控制信令中携带波束信息;
通过无线资源控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束绑定为粒度分配,其中,发送功率控制-无线网络临时标识用于物理控制信令的解码,tpc-Index用于指示用户终端的TPC命令的索引号:(-TPC command number 1,TPC command number 2,…,TPC command number N);和或,通过媒体接入控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以波束集合中的每一条波束或k组波束中每一组波束绑定为粒度分配,终端利用这些 信息在下行物理控制信令TPC命令中获取;
通过无线资源控制层分配的发送功率控制索引绑定,和/或,发送功率控制-无线网络临时标识绑定,和/或,波束资源绑定,和/或k组波束中每一组波束绑定绑定。这里,绑定即是在无线资源控制层或媒体接入控制层,用信令指示TPC索引和/或TPC-RNTI和波束资源或k组波束中每一组波束绑定的映射关系。
而另一种情况中,根据上行功率控制参数,分别估算终端设备所处k组波束中每一组波束的物理上行控制信道的发射功率的公式,如式3-6所示:
Figure PCTCN2017103995-appb-000013
其中,PCMAX,c(i)_beamq为为终端设备提供服务的第q组波束对应子帧i的最大发射功率;PLc_beamq为为终端设备提供服务的第q组波束对应的下行路径损耗值;pO_PUCCH_beamq为无线资源控制层信令设置的为终端设备提供服务的第q组波束对应的功率基准值;h(nCQI,nHARQ,nSR)_beamq为根据所承载的信道质量指示和确认比特数量在为终端设备提供服务的第q组波束上设置的物理上行控制信道发送功率偏移量;
Figure PCTCN2017103995-appb-000014
(F)_beamq为物理上行控制信道格式F相对于PUCCH格式1a的功率偏移量,ΔTxD(F′)_beamq为根据调制编码方式和数据类型所确定的为终端设备提供服务的第q组波束对应的功率偏移量;g(i)_beamq为为终端设备提供服务的第q组波束对应的终端闭环功率控制的调整值;beamq示为终端设备提供服务的第q组波束,q小于或者等于k的总条数。
当然,公式3-3和3-5实际是分别计算波束集合中第p条波束在第i子帧时对应的上行共享信道的发射功率和物理上行控制信道的发射功率。而在实际计算过程中,需要根据与3-3或3-5相同或者相似的公式,分别计算波束集合中每一条波束在不同的子帧上发送数据时上行共享信道的发射功率和物理上行控制信道的发射功率,并统计。
与之类似的,公式3-4和3-6实际是计算波束集合分成的k组波束中的第q组波束在子帧i时对应的上行共享信道的发射功率和物理上行控制信道的发射功率。而在实际过程中,则需要根据与公式3-4,或公式3-6相同或相似的公式,分别计算k组波束中每一组波束分别在不同子帧上发送数据时上行共享信道的发射功率和物理上行控制信道的发射功率,并统计。
步骤330,根根据终端设备的最大发射功率、终端设备所处波束集合对应的所述上行共享信道的发射功率,计算所述终端设备所处波束集合的功率余量。
本发明中描述的所有公式中的提及的终端设备的最大发射功率(The configured maximum UE output power,简称PCMAX)是基站配置的数值,公式中提及到包括PCMAX,c_beam_p,指终端在波束集合中的第p个波束上的最大发射功率,或者公式中提及到包括PCMAX,c_beamq,指终端在波束集合中的第q组波束上的最大发射功率。与计算上行共享信道的发射功率和物理上行控制信道的发射功率相类似的,根据终端设备最大发射功率、终端设备所处波束集合对应的物理上行控制信道的发射功率,计算功率余量的方式同样可以包括两种。其中,采用第一种计算方式的前提条件是:确定终端设备将上行共享信道和物理上行控制信道不同时发送至基站;采用第二种计算方式的前提条件则是:确 定终端设备将上行共享信道和物理上行控制信道同时发送至基站。另外,计算功率余量时,针对上述所说的每一种计算方式,还分别包括两种细分的计算方式。例如,当确定终端设备将上行共享信道和物理上行控制信道不同时发送基站时,则终端设备将会根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率计算终端设备所处波束集合的功率余量。
而对应的,细分的方式包括:第一种,依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中,p为大于或等于1,且小于或者等于n的正整数。
第二种,依次依据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,计算k组波束中的第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。同上文所述,k组波束构成了整个波束集合。
上述两种计算功率余量的公式分别如式3-7和3-8所示。
Figure PCTCN2017103995-appb-000015
其中,该公式中的参数可以参照估算波束集合中第p条波束的上行共享信道的发射功率以及估算波束集合中第p条波束的物理上行控制信道的发射功率时的计算公式中各参数的示义,这里不再赘述。
Figure PCTCN2017103995-appb-000016
其中,该公式中的参数可以参照上文中估算k组波束中第q组波束的上行共享信道的发射功率以及估算k组波束中第q组波束的物理上行控制信道的发射功率时的计算公式中各参数的示义,这里不再赘述。
当确定终端设备将上行共享信道和物理上行控制信道同时发送基站时,则终端设备将会根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率和终端设备所处波束集合的物理上行控制信道的发射功率,计算终端设备所处波束集合的功率余量。
而对应的,细分的方式包括:第一种,依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,以及波束集合中第p条波束的物理上行控制信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中,p为大于或等于1,且小于或者等于n的正整数。
第二种,依次依据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,以及k组波束中第q组波束的物理上行控制信道的发射功率,计算k组波束中的第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为 大于或者等于1,且小于或者等于k的正整数。同上文所述,k组波束构成了整个波束集合。
上述两种计算功率余量的公式分别如式3-9和3-10所示。
Figure PCTCN2017103995-appb-000017
其中,该公式中的参数可以参照估算波束集合中第p条波束的上行共享信道的发射功率以及估算波束集合中第p条波束的物理上行控制信道的发射功率时的计算公式中各参数的示义,这里不再赘述。
Figure PCTCN2017103995-appb-000018
其中,该公式中的参数可以参照上文中估算k组波束中第q组波束的上行共享信道的发射功率以及估算k组波束中第q组波束的物理上行控制信道的发射功率时的计算公式中各参数的示义,这里不再赘述。
读者还应理解的是,上述公式3-2、3-4、3-6、3-8以及公式3-10中,均以k组波束中的每一组波束为“单位”,分别估算每一组波束的上行共享信道的发射功率、物理上行控制信道的发射功率以及对应的功率余量等。这里,是将一组波束作为一个资源块整体,然后分别估算的是整组波束的上行共享信道的发射功率、物理上行控制信道的发射功率以及对应的功率余量。
步骤340,根据终端设备所处波束集合的功率余量,生成功率余量报告,并将功率余量报告发送至基站。
具体的,在生成功率余量报告时,可以包括k组波束中每一组波束对应或者波束集合中每一条波束分别对应的如下参数之一或者组合:功率余量、物理上行控制信道的发射 功率和上行共享信道的发射功率等。或者,还可以包括波束集合对应的子载波号(例如如表2中的C1-C3等)以及其他信息,具体详见表1至表7中所呈现的内容。
步骤310中所述的配置信息中,还可以包括第一控制信令。该第一控制信令用于指示终端设备配置功率余量的报告类型。其中,配置功率余量报告的类型包括一下至少一种:应用于波束技术的基于波束的功率余量报告;应用于波束技术的基于波束组的功率余量报告;应用于载波聚合的基于载波和波束的第一扩展功率余量报告;应用于载波聚合的基于载波和波束组的第二扩展功率余量报告;应用于双连接场景的基于服务小区和波束的第一双连接功率余量报告;应用于双连接场景的基于服务小区和波束组的第二双连接功率余量报告;应用于大量载波聚合的基于载波和波束的第三扩展功率余量报告;应用于大量载波聚合的基于载波和波束组的第四扩展功率余量报告。
在生成功率余量报告之前,终端设备将会根据基站发送的第一控制信令,配置功率余量报告的类型。并且,终端设备在配置功率余量报告后,还会通过MAC层向基站上报PHR MAC信令,用以告知基站,功率余量报告已经配置完成。
与上述功率余量报告的类型对应的,例如,
第一种类型,基站指示终端设备配置功率余量报告类型为PH,那么终端设备将会把PHR以PH MAC CE形式发送给基站。
第二种类型,基站指示UE配置功率余量报告类型为扩展的功率余量报告extendedPH时,那么终端设备将会把PHR以extended PH MAC CE。
第三种类型,基站指示终端设备配置功率余量报告类型为dual Connectivity PHR,即应用于双连接场景的基于服务小区的dual ConnectivityPHR,那么终端设备将会把功率余量报告以dual Connectivity PHR MAC。
第四种类型,基站指示UE配置功率余量报告类型为extendedPH2时,即,应用于大量载波聚合(massive carrier aggregation)的功率余量报告PHR,那么终端设备将会把PHR以extendedPH2MAC CE。
第五种类型,基站指示UE配置功率余量报告类型为第五类型PH-B时,即,应用于波束技术的基于波束的功率余量报告类型时,那么终端设备将会把PHR以PH-B MAC CE形式发送给基站,如表1。
第六种类型,基站指示终端设备配置功率余量报告类型为第六类型extended PH-B时,即,应用于载波聚合的基于载波和波束的第一扩展功率余量报告(extended PHR),,那么终端设备将会把功率余量报告以extended PH-B MAC CE,如表2或表3或表4。表2表示的是一个MAC PDU指示某一个波束在不同载波的功率余量报告。而需要发送多个波束的的功率余量报告时,需要发多个MAC PDU;表3,4,一个MAC PDU指示每一个载波的不同波束的功率余量报告;表3的MAC PDU中只有pcell(primary cell主载波)应用的载波聚合,该载波上有多个波束。
第七种类型,基站指示终端设备配置功率余量报告类型为第七类型dual Connectivity PHR-BPH时,即,应用于双连接场景的基于服务小区和波束的dualConnectivityPHR-B那么终端设备将会把功率余量报告以dual Connectivity PHR-B MAC,如表5。
第八种类型,基站指示终端设备配置功率余量报告类型为extended PH2-B时,即,应用于大量载波聚合的基于载波和波束的功率余量报告PHR,那么终端设备将会把PHR以 extended PH2-B MAC CE,如表6或表7,表6中只有pcell有PUCCH,表7中的scell(secondary cell辅小区)可以有PUCCH。
当然,与上述第六种类型对应的,还可以包括应用于载波聚合的基于载波和波束组的第二扩展功率余量报告,终端设备向基站发送的功率余量报告的表格则与表3或表4类似,不过,表中功率余量对应的则是一组波束的功率余量报告。或者,与第七中类型对应的,还可以包括:应用于双链接场景的基于服务小区和波束组的第二双连接功率余量报告,终端设备向基站发送的功率余量报告的表格则与表5类似,同样的,表中功率余量对应的则是一组波束的功率余量报告。或者,与第八种类型对应的,还可以包括:应用于大量载波聚合的基于载波和波束组的第四扩展功率余量报告,终端设备向基站发送的功率余量报告的表格则与表6或表7类似,不过,表中功率余量对应的则是一组波束的功率余量报告。
具体的PHR报告的表现形式可以由如下表格1-7显示:
表格1
Figure PCTCN2017103995-appb-000019
在表格1中,B1~B7为波束集合中波束的标号(例如B1代表波束1,B2代表波束2),R为预留位,PH1为与波束标号为B1对应的波束的功率余量,PH2为与波束标号为B2对应的波束的功率余量,以此类推,PH7为与波束标号为B7对应的波束的功率余量。
表2:
Figure PCTCN2017103995-appb-000020
表2代表的是在载波聚合的情况下的PHR报告的表现形式,其中,C1~C7代表载波的区号,B0~B7同样代表波束标号。当C1~C7中Ci对应的值为1时,才会出现该表格中与Ci对应的功率余量的相关参数。其中i大于或者等于1,小于或者等于7。P代表powerbackoff,即功率回退,P的取值可以为1或0,当P的值为1时,计算功率余量,将会用到功率回退。而如果P的取值为0时,则计算功率余量时将不会用到功率回退。V是一个形式参数,代表一个虚拟值,用于确定PUSCH是否有发送实际的数据,当V的取值为1时代表PUSCH上没有发送数据,为0则代表发送了一个实际的数据,R同样代表预留符号。Pcmaxci代表功率余量在第i个载波上发送。而在表2中,只有第一个表格上采用的是type2类型,也即是说第一载波携带的是主载波的功率余量相关参数。而第2到第m个载波携带的是辅载波的功率余量相关参数,采用的是type1的类型计算功率余量(因为辅载波并没有PUCCH)。每一个物理载波中均包含一个波束集合,每个波束集合中包含8条波束。因此,PH(Type1,SCelln)则代表功率余量通过类型1的公式计算,主要计算的PH是辅载波n的功率余量。
表3
Figure PCTCN2017103995-appb-000021
表3中的参数与表2中的参数含义相同或者相似,这里不再赘述。但是在表2中,在发送主波束集合的功率余量时,加入beamk,其代表的是主波束集合中具体的某条波束。也即是表格中将明确说明主波束集合对应的波束集合中具体波束的功率余量。即表3中将介绍所有波束的具体功率余量、以及PUSCH发射功率和PUCCH的发射功率等的状况。 具体表格4~7:
表4
Figure PCTCN2017103995-appb-000022
表5
Figure PCTCN2017103995-appb-000023
表6
Figure PCTCN2017103995-appb-000024
表7
Figure PCTCN2017103995-appb-000025
表4至表7中的参数与表1至表3中的参数含义类似,不同的就是表4至表7中将功率余量报告的情况介绍的更详细一些,这里不再介绍。
不过,在步骤340之前,该方法还包括:步骤350,触发功率余量报告。
而在步骤310中所介绍的配置信息中,该配置信息中还可以包括与功率余量报告触发条件对应的参数信息。
而配置上行功率控制参数的方式可以包括以下至少一种:以波束集合中的每一条波束为粒度;以k组波束中的每一组波束为粒度;以载波为粒度;以服务小区为粒度;以终端设备为粒度。类似的,配置功率余量报告触发条件的参数信息的方式同样包括以下至少一 种:以波束集合中的每一条波束为粒度;以k组波束中的每一组波束为粒度;以载波为粒度;以服务小区为粒度;以终端设备为粒度。
需要说明的是,不论配置上行功率控制参数还是配置与功率余量报告触发条件对应的参数信息时,如果采用的是以波束集合中的每一条波束为粒度时,均需要在配置信息中包括波束标识或标号。又或者是用于识别波束的信号的标识或标号。其中,波束标识或者标号用于识别配置的参数存放于哪一条波束中。识别波束的信号的标识或标号的作用等同于识别配置的参数存放于哪一条波束中。用于识别波束的信号可以包括以下一种或多种:波束的参考信号、波束标识。当然,还可以是在波束的发现信号中包括波束的参考信号。以波束集合中的每一条波束为粒度,则是说明为波束集合中的每一条波束均配置一套配置参数,包括上行功率控制参数和与功率余量报告触发条件对应的参数信息。而以终端设备为粒度配置与功率余量报告触发条件对应的参数信息,则是为每一个终端设备配置一套与功率余量报告触发条件对应的参数信息。类似的,以服务小区、以k组波束中的每一组波束为粒度或者以载波为粒度,则分别是为每一个服务小区或者为以k组波束中的每一组波束或者每一个载波分别配置一套配置参数。
对应的,配置上行功率控制参数以及配置与功率余量报告触发条件对应的参数信息时,如果以k组波束中的每一组波束为粒度时,配置参数中还包括:识别k组波束中每一组波束的标识/标号;或者,识别k组波束中每一组波束的信号的标识/标号。
在步骤350之前,该方法还可以包括:步骤360:根据与功率余量报告触发条件对应的参数信息,确定当前时刻终端设备侧是否满足触发功率余量报告的条件。且仅在终端设备侧满足触发功率余量报告的条件时,触发功率余量报告。其中,与功率余量报告触发条件对应的参数信息包括:功率余量报告的触发周期、禁止功率余量报告触发周期和下行路径损耗值。
而对应的,触发功率余量报告的条件包括以下条件之一:
1)当前时刻为所述功率余量报告的触发周期对应的时间;
2)当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,所述波束集合中任一条波束的下行路径损耗大于下行路径损耗的门限值;
3)当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,m条波束中每一条波束对应的下行路径损耗均大于下行路径损耗的门限值,其中,所述m条波束为所述波束集合的子集,且m为大于或者等于2,小于或者等于n的正整数,此时n为大于或者等于2的正整数;
4)当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,所述波束集合中波束对应的下行路径损耗的平均值或者加权平均值大于下行路径损耗的门限值;
5)当前时刻不属于所述禁止功率余量报告触发周期,且所述当前时刻,所述波束集合中预先设定的一条波束的下行路径损耗大于下行路径损耗的门限值。
针对条件1)-5),均是以一条波束或者波束集合中的多条波束为例进行说明的,而在实际应用中,还可以应用其他类似的场景。例如,如果波束集合以k组形式出现时,那么条件1)-5)中的一条波束则可以替换为“一组波束”,“多条波束”替换为“多组波束”等等。当然,这仅仅是例举了两种不同的组合,本发明中同样可以包括与上述两种触发条件相类似的其他形式的触发条件。例如,可以为一种终端接收的多条波束设置一套功 率余量报告触发条件,或者为一个服务小区内的所有波束设置一套功率余量报告触发条件等等。
在一个具体例子中,为波束集合中每一条波束分别设置第一定时器,如,周期功率余量报告定时器,定时器用于确定当前时刻是否为功率余量报告的触发周期对应的时间,例如周期为10ms,那么定时器启动后,过了10ms,定时器超时,即可以触发功率余量报告,且定时器会按照以10ms为间隔重新启动;或者,第二种情况中,设置第二定时器的同时,设定与波束集合中每一条波束分别对应的下行路径损耗的门限值。第二定时器用于设定禁止功率余量报告触发周期,如,禁止功率余量报告定时器。设置这两个参数的目的是为了避免如果功率余量报告在一段时间内,多次超过门限值时,频繁的触发功率余量报告,由此导致的增加终端设备侧负载,浪费资源的发生。例如,第二定时器设定禁止功率余量报告触发的周期为1小时,当UE发送了一个PHR后,启动该定时器,并从此刻开始计时,1小时内,即使当前时间范围内,功率余量已经超出门限范围,也要禁止功率余量报告的触发。直至超过1小时后,定时器超时后,才允许该条波束的功率余量超出门限范围时,触发功率余量报告。
在上述参数中,不论是根据波束集合中每一条波束进行限定功率余量报告的触发,还是根据波束集合中不同分组进行限定,又或者是根据波束集合本身进行限定等等,均需要估计与之对应的下行路径损耗。对于下行路径损耗估计则可以包括:对波束集合中每一条波束对应的下行路径损耗进行估计,和/或,对k组波束中的每一组波束对应的下行路径损耗进行估计。
具体的,对所述波束集合中每一条波束对应的下行路径损耗进行估计包括:
分别根据波束集合中每一条波束对应的参考信号功率和参考信号接收功率,估计波束集合中每一条波束对应的下行路径损耗,其中,参考信号功率由基站配置,参考信号接收功率的测量是基于波束集合中每一条波束对应的信道状态信息参考信号,和/或者基于波束集合中每一条波束对应的波束参考信号。
对k组波束中的每一组波束对应的下行路径损耗进行估计,包括:
分别根据k组波束中每一组波束对应的参考信号功率和参考信号接收功率,估计k组波束中每一组波束绑定对应的下行路径损耗,其中,参考信号功率由基站配置,参考信号接收功率的测量是基于k组波束中每一组波束对应的信道状态信息参考信号,和/或者基于k组波束中每一组波束对应的波束参考信号。
其中,每一条波束对应的参考信号功率的接收功率或者k组波束中每一组波束对应的参考信号接收功率的测量形式包括:
经过无线资源控制层过滤,或者不经过无线资源控制层过滤。
具体的,经过无线资源控制层过滤为:对当前参考信号接收功率值与历史的参考信号接收功率值进行加权平均。如,对于高频波束不经过无线资源控制层过滤,对于低频波束经过无线资源控制层过滤。
不经过无线资源控制层过滤为:终端设备直接将当前参考信号接收功率值作为最终参考信号接收功率值,其中,当前参考信号接收功率值和历史的参考信号接收功率值均指的是波束集合中每一条波束对应的参考信号接收功率,或者均指的是k组波束中每一组波束对应的参考信号接收功率。
而具体参考信号接收功率的测量周期的设置则可以包括以下形式之一:
设置为固定值Fms,其中F为小于或者等于100的正整数;
或者,参考信号接收功率的测量周期依据如下参数之一或组合进行设置,具体参数包括:频率或频段配置、上下行子帧配比、帧结构模式、无线接入方式以及波束配置方式,比如,高频段的测量周期选择较短周期,低频带的测量周期选择较长的周期,下行子帧比例多的测量周期选择较短周期,下行子帧比例小的测量周期选择较短周期;波束配置中波束宽度较宽的选择较长周期,波束配置中波束宽度较窄的选择较短周期。
其中,无线接入类型,包括以下参数中的至少一种:每个子帧OFDM时间符号数目,子帧长度,循环前缀长度,循环前缀的开销,编码方式(比如,LDPC码,Turbo码和polar码),HARQ的定时,子载波间隔。
而具体的波束配置方式,可以包括以下参数中的至少一种:
天线信息、扰码序列索引SCID、预编码信息、信道矩阵信息、码本信息、层信息、天线端口数、天线端口号、波束优化能力信息、有效时间、有效时长、控制信道、波束宽度和波束角度。
另外,在估计下行路损时,还需要配置波束集合的内容。具体的,配置的波束集合的内容可以包括:一个或多个CSI-RS/BEAM-RS配置索引和对应的CSI-RS/BEAM-RS配置信息,其中CSI-RS/BEAM-RS配置信息可以为天线端口数(antennaPortsCount)、资源配置(resourceConfig)、子帧配置(subframeConfig)、CSI-RS/beam-RS参考信号功率信息等中的一种或者多种的组合。CSI-RS参考信号功率信息可以是发射功率信息,或上行共享信道每资源元素能量(EnergyPerResourceElement,EPRE)与CSI-RS/beam-RSEPRE的比例信息。或者,配置的波束集合的内容还可以仅包括CSI-RS/BEAM-RS配置索引信息,而其他配置信息和被测的波束集合或波束组合包含在不同的无线资源控制信元(informationelement,IE)中。又或者,配置的波束集合的内容还可以仅包括所述波束集合的波束集合索引和对应的波束标识的列表信息。而其它配置信息和测量集合包含在不同的无线资源控制信元中。具体如何估计下行路径损耗是现有技术,这里不再赘述。不过下行路径损耗可以基于如下一种情况进行计算:基于波束集合中所有波束中最小下行路损,或所有波束的下行路损的加权平均值(不同的波束可以取值为不同的因子,所有因子的和为1),或最小的m个波束的下行路损的平均值或加权平均值,或者下行路损与最小下行路损的差值不超过门限值的n个波束的下行路损的平均值或加权平均值。其中n小于等于波束集合中所有波束个数。
另外,在估计下行路损时,还需要配置波束集合的内容。具体的,配置的波束集合的内容可以包括:一个或多个CSI-RS/BEAM-RS配置索引和对应的CSI-RS/BEAM-RS配置信息,其中CSI-RS/BEAM-RS配置信息可以为天线端口数(antennaPortsCount)、资源配置(resourceConfig)、子帧配置(subframeConfig)、CSI-RS/beam-RS参考信号功率信息等中的一种或者多种的组合。CSI-RS参考信号功率信息可以是发射功率信息,或上行共享信道每资源元素能量(EnergyPerResourceElement,EPRE)与CSI-RS/beam-RSEPRE的比例信息。或者,配置的波束集合的内容还可以仅包括CSI-RS/BEAM-RS配置索引信息,而其他配置信息和被测的波束集合或波束组合包含在不同的无线资源控制信元(informationelement,IE)中。又或者,配置的波束集合的内容还可以仅包括所述波束集 合所在物理小区的小区索引和对应的物理小区标识信息。而其它配置信息和测量集合包含在不同的无线资源控制信元中。配置波束集合的目的在于,在估算下行路径损耗时,能够根据波束集合内容,确定当前估算的是波束集合中哪一条波束的下行路径损耗。具体如何估计下行路径损耗是现有技术,这里不再赘述。不过下行路径损耗可以基于如下一种情况进行计算:基于波束集合中所有波束中最小下行路损,或所有波束的下行路损的加权平均值(不同的波束可以取值为不同的因子,所有因子的和为1),或最小的m个波束的下行路损的平均值或加权平均值,或者下行路损与最小下行路损的差值不超过门限值的n个波束的下行路损的平均值。其中n小于等于波束集合中所有波束个数。
具体的,对波束集合中的每一条波束的下行路径损耗进行估计,实际上是首先估计与波束集合中每一条波束分别对应的下行波束的下行路径损耗,然后将下行波束的下行路径损耗作为该波束的下行路径损耗。也即是,波束集合中的波束其实均指的是上行波束。
因此,在对波束集合中每一条波束对应的下行路径损耗进行估计之前,首先要确定与波束集合中每一条波束对应的下行波束。对下行波束的路径损耗进行估计。其中,波束集合中每一条波束的时间根据与之对应的下行波束的时间进行估计,和/或波束集合中每一条波束的频率根据与之对应的下行波束的频率进行估计,和/或波束集合中每一条波束的无线信道质量根据与之对应的下行波束的无线信道质量进行估计。
而具体的,确定波束集合中每一条波束对应下行波束,可以包括:
通过无线资源控制层(专用信令和/或***信息中)或媒体接入控制层进行配置具体的上下行配对的波束和/或波束组合;
或者,
通过无线资源控制层(专用信令和/或***信息中)或媒体接入控制层为所述波束集合中的一条或多条波束配置一个用于无线信道质量评估的参考下行波束;
或者,
终端设备在波束初始接入,和/或波束扫描,和/或波束训练过程中获得分别与波束集合中每一条波束配对下行波束。
还需要说明的是,在本发明的一个具体例子中,可以为一个波束集合或者波束集合中的每一条波束配置一套上行功率控制参数。可选的,还可以针对波束集合中的每个BEAM-RS(波束:BEAM,RS:参考信号)配置信息分别配置一套上述上行功率控制参数。此时,上行功率控制参数配置信息可以和所关联的上行波束集合的其他配置信息包含在不同的无线资源控制信元中。
进一步可选的,在上述计算波束集合中每一条波束分别对应的功率余量、上行共享信道的发射功率以及物理上行控制信道的发射功率的同时,还可以计算每一条波束对应的探测参考符号对应的发射功率。
具体计算公式如式3-11所示:
Figure PCTCN2017103995-appb-000026
其中,
Figure PCTCN2017103995-appb-000027
(m)为无线资源控制层半静态配置的功率偏移值,m可取0和1,分别对应SRS发送触发的Type0和Type1;MSRS,c为SRS传输使用的RB个数,而上述公式 中的其他参数则可以参照上文中估算波束集合中第p条波束的上行共享信道的发射功率或者物理上行控制信道发射功率的参数释义,这里不再赘述。
对应的,如果计算终端设备所处波束集合的功率余量是以k组波束为基准计算时,对应的k组波束中每一组对应的探测参考符号对应的发射功率,则可以按照公式3-12所示,计算:
Figure PCTCN2017103995-appb-000028
其中,
Figure PCTCN2017103995-appb-000029
(m)为无线资源控制层半静态配置的功率偏移值,m可取0和1,分别对应SRS发送触发Type0和Type1;MSRS,c为SRS传输使用的RB个数,而上述公式中的其他参数则可以参照上文中估算k组波束中第q组波束的上行共享信道的发射功率或者物理上行控制信道发射功率的参数释义,这里不再赘述。
本发明实施例提供的一种功率控制方法,在波束域计算上行共享信道的发射功率、物理上行控制信道的发射功率,以及波束集合的功率余量,并生成功率余量报告。将功率余量报告发送至基站,以便基站根据功率余量报告对终端设备侧的功率进行调整。基于上述方法,可以避免由于功率控制不准确导致的终端设备之间增加干扰、资源调度不充分或者上行吞吐量降低等问题。
与本发明实施例一提供的一种功率控制方法相对应的,本发明实施例二提供了一种终端设备,具体如图4所示,图4为本发明实施例提供的一种终端设备的结构示意图。该终端设备包括:接收模块401,处理模块402,发送模块403。
接收模块401,用于接收基站发送的配置信息,其中配置信息包括:上行功率控制参数。
处理模块402,用于根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,其中,波束集合包括n条波束,n为大于或者等于1的正整数。
具体的,处理模块402根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,可以包括以下两种形式:
根据所述上行功率控制参数,分别估算所述终端设备所处波束集合中每一波束的上行共享信道的发射功率;或者,根据所述上行功率控制参数,分别估算所述终端设备所处k组波束中每一组波束的上行共享信道的发射功率,其中,所述k组波束构成所述波束集合,k为大于或者等于1的正整数。
然后,根据终端设备的最大发射功率和终端设备所处波束集合的上行共享信道的发射功率,计算终端设备所处波束集合的功率余量。
当然,与之对应的,计算终端设备所处波束集合的功率余量的方式同样可以包括以下两种:
依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中p为大于或者等于1,且小于或者等于n的正整数;或者,依次根据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,计算k组波束中的第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于 或者等于1,且小于或者等于k的正整数。
然而,利用上述两种计算功率余量的方式的前提条件是处理模块402确定终端设备将上行共享信道和物理上行控制信道不同时发送至基站。
即,处理模块402还用于,确定终端设备将上行共享信道和物理上行控制信道是否同时发送至基站。而当确定终端设备将上行共享信道和物理上行控制信道同时发送至基站时,则会根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率以及终端设备所处波束集合的物理上行控制信道的发射功率,计算终端设备所在波束集合的功率余量。
因此,在此之前,处理模块402还需要根据上行功率控制参数,估算终端设备所处波束集合的物理上行控制信道的发射功率。
具体包括:根据上行功率控制参数,分别估算波束集合中每一条波束的物理上行控制信道的发射功率;或者,根据上行功率控制参数,分别估算k组波束中每一组的物理上行控制信道的发射功率,其中,k组波束构成波束集合,k为大于或者等于1的正整数。
与上述根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率计算终端设备所在波束集合的功率余量的方式相类似的,根据终端设备的最大发射功率、终端设备所处波束集合的上行共享信道的发射功率以及终端设备所处波束集合的物理上行控制信道的发射功率,计算终端设备所在波束集合的功率余量的方式同样包括以下两种:
依次根据终端设备的最大发射功率、波束集合中第p条波束的上行共享信道的发射功率,以及波束集合中第p条波束的物理上行控制信道的发射功率,计算波束集合中第p条波束的功率余量,直至波束集合中每一条波束的功率余量计算完成,其中,p为大于或者等于1,且小于或者等于n的正整数;
或者,
依次根据终端设备的最大发射功率、k组波束中第q组波束的上行共享信道的发射功率,以及k组波束中第q组波束的物理上行控制信道的发射功率,计算k组波束中第q组波束的功率余量,直至k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
发送模块403,用于将功率余量报告发送至基站。
另外,在配置信息中还可以包括第一控制信令,第一控制信令用于指示终端设备配置功率余量报告类型,其中,配置功率余量报告的类型包括以下至少一种:
应用于波束技术的基于波束的功率余量报告;
应用于波束技术的基于波束组的功率余量报告;
应用于载波聚合的基于载波和波束的第一扩展功率余量报告;
应用于载波聚合的基于载波和波束组的第二扩展功率余量报告;
应用于双连接场景的基于服务小区和波束的第一双连接功率余量报告;
应用于双连接场景的基于服务小区和波束组的第二双连接功率余量报告
应用于大量载波聚合的基于载波和波束的第三扩展功率余量报告;
应用于大量载波聚合的基于载波和波束组的第四扩展功率余量报告。
在终端设备根据第一控制信令,配置功率余量报告类型后,发送模块403还用于:通 过媒体接入控制层向基站发送功率余量报告媒体访问控制信令,其中,功率余量报告媒体访问控制信令用于指示所述功率余量报告已经配置完成。
优选的,该终端设备中还可以包括触发模块404,用于在发送模块403将功率余量报告发送至基站之前,触发功率余量报告。
进一步优选的,在接收模块接收的基站发送的配置信息中,还包括与功率余量报告触发条件对应的参数信息。触发模块404则还用于:根据与功率余量报告触发条件对应的参数信息,确定当前时刻终端设备侧是否满足触发功率余量报告的条件,且仅在终端设备侧满足触发功率余量报告的条件时,触发功率余量报告。其中,与功率余量报告触发条件对应的参数信息包括:功率余量报告的触发周期、禁止功率余量报告触发周期和下行路径损耗值。
具体的,触发功率余量报告的条件包括:当前时刻为功率余量报告的触发周期对应的时间。
或者,当前时刻不属于禁止功率余量报告触发周期,且当前时刻,波束集合中任一条波束的下行路径损耗大于下行路径损耗的门限值。
或者,当前时刻不属于禁止功率余量报告触发周期,且当前时刻,m条波束中每一条波束对应的下行路径损耗均大于下行路径损耗的门限值,其中,m条波束为波束集合的子集,且m为大于或者等于2,小于或者等于n的正整数,此时n为大于或者等于2的正整数。
或者,当前时刻不属于禁止功率余量报告触发周期,且当前时刻,波束集合中波束对应的下行路径损耗的平均值或者加权平均值大于下行路径损耗的门限值。
或者,当前时刻不属于禁止功率余量报告触发周期,且当前时刻,波束集合中预先设定的一条波束的下行路径损耗大于下行路径损耗的门限值。
上行功率控制参数的配置方式可以包括以下至少一种:
以波束集合中的每一条波束为粒度;
以k组波束中的每一组波束为粒度;
以载波为粒度;
以服务小区为粒度;
以终端设备为粒度。
类似的,置功率余量报告触发条件的参数信息的方式也包括以下至少一种:以波束集合中的每一条波束为粒度;
以k组波束中的每一组波束为粒度;
以载波为粒度;
以服务小区为粒度;
以终端设备为粒度。
进一步的,配置上行功率控制参数以及配置与功率余量报告触发条件对应的参数信息时,如果以所述波束集合中的每一条波束为粒度时,所述配置参数中还包括:
波束的标识/标号;
或者,识别波束的信号的标识/标号,其中,所述识别波束的信号包括如下之一或组合:波束的参考信号、波束的发现信号、波束标识。
或者,配置上行功率控制参数以及配置与功率余量报告触发条件对应的参数信息时,如果以k组波束中的每一组波束为粒度时,那么配置参数中将还包括:识别k组波束中每一组波束的标识/标号;
或者,识别k组波束中每一组波束的信号的标识/标号。
而在确定触发功率余量报告的触发条件时,需要计算下行路径损耗。也即是,处理模块402还用于:对波束集合中每一条波束对应的下行路径损耗进行估计和/或对k组波束中的每一组波束对应的下行路径损耗进行估计。
具体的,处理模块402对波束集合中每一条波束对应的下行路径损耗进行估计,可以包括:分别根据波束集合中每一条波束对应的参考信号功率和参考信号接收功率,估计波束集合中每一条波束对应的下行路径损耗,其中,参考信号接收功率的测量是基于波束集合中每一条波束对应的信道状态信息参考信号,和/或者基于波束集合中每一条波束对应的波束参考信号。
而处理模块402对k组波束中的每一组波束对应的下行路径损耗进行估计,具体可以包括:分别根据k组波束中每一组波束对应的参考信号功率和参考信号接收功率,估计k组波束中每一组波束绑定对应的下行路径损耗,其中,参考信号接收功率的测量是基于k组波束中每一组波束对应的信道状态信息参考信号,和/或者基于k组波束中每一组波束对应的波束参考信号。
其中,每一条波束对应的参考信号功率的接收功率或者k组波束中每一组波束对应的参考信号接收功率的测量形式包括:
经过无线资源控制层过滤,或者不经过无线资源控制层过滤。
这里,经过无线资源控制层过滤指的是:对当前参考信号接收功率值与历史的参考信号接收功率值进行加权平均;
不经过无线资源控制层过滤指的是:终端设备直接将当前参考信号接收功率值作为最终参考信号接收功率值,其中,当前参考信号接收功率值和历史的参考信号接收功率值均指的是波束集合中每一条波束对应的参考信号接收功率,或者均指的是k组波束中每一组波束对应的参考信号接收功率。参考信号接收功率的测量周期可以设置为固定值Fms,F为小于或者等于100的正整数;或者,也可以依据如下参数之一或组合进行设置,参数包括:频率或频段配置、上下行子帧配比、帧结构模式、无线接入方式以及波束配置方式。
而处理模块402无论是估计波束集合中每一条波束的下行路损,还是估计k组波束中每一组波束的下行路径损耗,均需要首先估计与波束集合中每一条波束分别对应的下行波束,或者k组波束中,每一组波束里的任一条波束对应的下行波束。即,波束集合中每一条波束均是上行波束,而估计下行路径损耗需要根据下行波束确定,然后粗略作为上行波束的下行路径损耗。因此,在估计下行路径损耗之前,处理模块402还用于:确定与波束集合中每一条波束对应的下行波束。对下行波束的路径损耗进行估计,其中,波束集合中的波束为上行波束,所波束集合中每一条波束的时间根据与之对应的下行波束的时间进行估计,和/或波束集合中每一条波束的频率根据与之对应的下行波束的频率进行估计,和/或波束集合中每一条波束的无线信道质量根据与之对应的下行波束的无线信道质量进行估计。
而处理模块具体确定与波束集合中每一条波束对应的下行波束时,则可以通过无线资 源控制层或媒体接入控制层进行配置;或者,通过无线资源控制层或媒体接入控制层为所述波束集合中的一条或多条波束配置一个用于无线信道质量评估的参考下行波束;或者,终端设备在波束初始接入,和/或波束扫描,和/或波束训练过程中获得分别与波束集合中每一条波束配对下行波束等方式确定。
本发明实施例二提供的终端设备运行时执行本发明实施例一中提供的执行的方法步骤,其工作细节参考本发明实施例一提供的方法。
本实施例二提供的一种终端设备,在波束域计算上行共享信道的发射功率、物理上行控制信道的发射功率,以及波束集合的功率余量,并生成功率余量报告。将功率余量报告发送至基站,以便基站根据功率余量报告对终端设备侧的功率进行调整。基于上述方法,可以避免由于功率控制不准确,而导致的终端设备之间干扰增加、资源调度不充分或者上行吞吐量降低等问题。
与本发明实施例一和实施例二分别对应的,本发明实施例三还提供了一种终端设备,具体如图5所示,该终端设备包括接收器501、发射器502、处理器503、存储器504、通信接口505以及总线506。终端设备中的接收器501、发射器502、处理器503、存储器504和通信接口505可以通过总线506建立通信连接。
接收器501,用于接收基站发送的配置信息。
发射器502,用于向基站发送配置功率余量报告成功的响应消息,以及向基站发送功率余量报告。
处理器503可以为中央处理器(英文:central processing unit,缩写:CPU),主要用于执行实施例二中所述的处理模块和触发模块对应的方法步骤等。
存储器504用于存储处理器所执行的指令,以及功率余量报告的相关参数信息等。存储器504可以包括易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,缩写:RAM);存储器也可以包括非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,缩写:ROM),快闪存储器,硬盘(英文:hard disk drive,缩写:HDD)或固态硬盘(英文:solid state drive,缩写:SSD);存储器504还可以包括上述种类的存储器的组合。
具体终端设备中各个器件所执行均是本发明实施例一中提供的方法步骤,其工作细节参考本发明实施例一提供的方法。这里不再赘述。
基于上述技术方案,本发明实施例提供的一种功率控制的方法及终端设备,在波束域计算上行共享信道的发射功率、物理上行控制信道的发射功率,以及波束集合的功率余量,并生成功率余量报告。将功率余量报告发送至基站,以便基站根据功率余量报告对终端设备侧的功率进行调整。基于上述方法,可以避免由于功率控制不准确,而导致的终端设备之间干扰增加、资源调度不充分或者上行吞吐量降低等问题。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理模块执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (52)

  1. 一种功率控制的方法,所述方法包括:
    接收基站发送的配置信息,其中所述配置信息包括:上行功率控制参数;
    根据所述上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,其中,所述波束集合包括n条波束,n为大于或者等于1的正整数;
    根据所述终端设备的最大发射功率和所述终端设备所处波束集合的上行共享信道的发射功率,计算所述终端设备所处波束集合的功率余量;
    根据所述终端设备所处波束集合的功率余量,生成功率余量报告,并将所述功率余量报告发送至基站。
  2. 根据权利要求1所述的方法,其特征在于,所述接收基站发送的配置信息后,所述方法还包括:
    根据上行功率控制参数,估算终端设备所处波束集合的物理上行控制信道的发射功率。
  3. 根据权利要求2所述的方法,其特征在于,当确定所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,所述方法还包括:根据所述终端设备的最大发射功率、所述终端设备所处波束集合的所述上行共享信道的发射功率以及所述终端设备所处波束集合的物理上行控制信道的发射功率,计算所述终端设备所在波束集合的功率余量。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述根据上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率的方式包括:
    根据所述上行功率控制参数,分别估算所述终端设备所处波束集合中每一波束的上行共享信道的发射功率;
    或者,
    根据所述上行功率控制参数,分别估算所述终端设备所处k组波束中每一组波束的上行共享信道的发射功率,其中,所述k组波束构成所述波束集合,k为大于或者等于1的正整数。
  5. 根据权利要求2或3所述的方法,其特征在于,所述根据上行功率控制参数,估算终端设备所处波束集合对应的物理上行控制信道的发射功率的方式包括:
    根据上行功率控制参数,分别估算所述波束集合中每一条波束的物理上行控制信道的发射功率;
    或者,
    根据所述上行功率控制参数,分别估算k组波束中每一组的物理上行控制信道的发射功率,其中,所述k组波束构成所述波束集合,k为大于或者等于1的正整数。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述终端设备的最大发射功率、所述终端设备所处波束集合的所述上行共享信道的发射功率,计算所述终端设备处波束集合的功率余量的方式,包括:
    依次根据所述终端设备的最大发射功率、所述波束集合中第p条波束的所述上行共享信道的发射功率,计算所述波束集合中第p条波束的功率余量,直至所述波束集合中每一条波束的功率余量计算完成,其中p为大于或者等于1,且小于或者等于n的正整数;
    或者,
    依次根据所述终端设备的最大发射功率、所述k组波束中第q组波束的上行共享信道的发射功率,计算所述k组波束中的第q组波束的功率余量,直至所述k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述终端设备的最大发射功率、所述终端设备所处波束集合的所述上行共享信道的发射功率以及所述终端设备所处波束集合的物理上行控制信道的发射功率,计算所述终端设备所处波束集合的功率余量的方式,包括:
    依次根据终端设备的最大发射功率、所述波束集合中第p条波束的所述上行共享信道的发射功率,以及所述波束集合中第p条波束的所述物理上行控制信道的发射功率,计算所述波束集合中第p条波束的功率余量,直至所述波束集合中每一条波束的功率余量计算完成,其中,所述p为大于或者等于1,且小于或者等于n的正整数;
    或者,
    依次根据所述终端设备的最大发射功率、所述k组波束中第q组波束的上行共享信道的发射功率,以及所述k组波束中第q组波束的物理上行控制信道的发射功率,计算所述k组波束中第q组波束的功率余量,直至所述k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述将所述功率余量报告发送至基站之前,所述方法还包括:触发功率余量报告。
  9. 根据权利要求8所述的方法,其特征在于,所述配置信息中还包括与功率余量报告触发条件对应的参数信息,所述触发功率余量报告之前,所述方法还包括:
    根据所述与所述功率余量报告触发条件对应的参数信息,确定当前时刻终端设备侧是否满足触发功率余量报告的条件,且仅在所述终端设备侧满足触发功率余量报告的条件时,触发功率余量报告;
    其中,与功率余量报告触发条件对应的参数信息包括:
    功率余量报告的触发周期、禁止功率余量报告触发周期和下行路径损耗值。
  10. 根据权利要求9所述的方法,其特征在于,所述触发功率余量报告的条件包括:
    当前时刻为所述功率余量报告的触发周期对应的时间;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,所述波束集合中任一条波束的下行路径损耗大于下行路径损耗的门限值;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,m条波束中每一条波束对应的下行路径损耗均大于下行路径损耗的门限值,其中,所述m条波束为所述波束集合的子集,且m为大于或者等于2,小于或者等于n的正整数,此时n为大于或者等于2的正整数;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,所述波束集合中波束对应的下行路径损耗的平均值或者加权平均值大于下行路径损耗的门限值;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且所述当前时刻,所述波束集合中预先设定的一条波束的下行路径损耗大于下行路径损耗的门限值。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述配置上行功率控制参数的方式包括以下至少一种:
    以波束集合中的每一条波束为粒度;
    以k组波束中的每一组波束为粒度;
    以载波为粒度;
    以服务小区为粒度;
    以终端设备为粒度。
  12. 根据权利要求9或10所述的方法,其特征在于,所述配置功率余量报告触发条件的参数信息的方式包括以下至少一种:
    以波束集合中的每一条波束为粒度;
    以k组波束中的每一组波束为粒度;
    以载波为粒度;
    以服务小区为粒度;
    以终端设备为粒度。
  13. 根据权利要求12所述的方法,其特征在于,所述配置所述上行功率控制参数以及配置所述与功率余量报告触发条件对应的参数信息时,如果以所述波束集合中的每一条波束为粒度时,所述配置参数中还包括:
    波束的标识/标号;
    或者,识别波束的信号的标识/标号,其中,所述识别波束的信号包括如下之一或组合:波束的参考信号、波束的发现信号、波束标识。
  14. 根据权利要求12所述的方法,其特征在于,所述配置所述上行功率控制参数以及配置所述与功率余量报告触发条件对应的参数信息时,如果以所述k组波束中的每一组波束为粒度时,所述配置参数中还包括:
    识别k组波束中每一组波束的标识/标号;
    或者,识别k组波束中每一组波束的信号的标识/标号。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述触发功率余量报告之前所述方法还包括:对所述波束集合中每一条波束对应的下行路径损耗进行估计和/或对所述k组波束中的每一组波束对应的下行路径损耗进行估计。
  16. 根据权利要求15所述的方法,其特征在于,所述对所述波束集合中每一条波束对应的下行路径损耗进行估计包括:
    分别根据所述波束集合中每一条波束对应的参考信号功率和参考信号接收功率,估计所述波束集合中每一条波束对应的下行路径损耗,其中,所述参考信号接收功率的测量是基于所述波束集合中每一条波束对应的信道状态信息参考信号,和/或者基于所述波束集合中每一条波束对应的波束参考信号。
  17. 根据权利要求15所述的方法,其特征在于,对所述k组波束中的每一组波束对应的下行路径损耗进行估计,包括:
    分别根据所述k组波束中每一组波束对应的参考信号功率和参考信号接收功率,估计所述k组波束中每一组波束绑定对应的下行路径损耗,其中,所述参考信号接收功率的测量是基于所述k组波束中每一组波束对应的信道状态信息参考信号,和/或者基于所述k组波束中每一组波束对应的波束参考信号。
  18. 根据权利要求16或17所述的方法,其特征在于,所述波束集合中每一条波束对 应的参考信号功率的接收功率或者所述k组波束中每一组波束对应的参考信号接收功率的测量形式包括:
    经过无线资源控制层过滤,或者不经过无线资源控制层过滤,其中,所述经过无线资源控制层过滤为:对当前参考信号接收功率值与历史的参考信号接收功率值进行加权平均;
    不经过无线资源控制层过滤为:所述终端设备直接将所述当前参考信号接收功率值作为最终参考信号接收功率值,其中,所述当前参考信号接收功率值和所述历史的参考信号接收功率值均指的是所述波束集合中每一条波束对应的参考信号接收功率,或者均指的是所述k组波束中每一组波束对应的参考信号接收功率。
  19. 根据权利要求16-18所述的方法,其特征在于,所述参考信号接收功率的测量周期设置为固定值F毫秒,其中F为小于或者等于100的正整数;
    或者,所述参考信号接收功率的测量周期依据如下参数之一或组合进行设置,所述参数包括:频率或频段配置、上下行子帧配比、帧结构模式、无线接入方式以及波束配置方式。
  20. 根据权利要求4所述的方法,其特征在于,所述当确定所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,所述根据所述上行功率控制参数,估算所述波束集合中第p条波束的上行共享信道的发射功率的计算公式如下:
    Figure PCTCN2017103995-appb-100001
    其中,PPUSCH,c(i)_beam_p为为所述终端设备提供服务的第p条波束对应的子帧i的所述上行共享信道的发射功率,pCMAX,c(i)_beam_p为为所述终端设备提供服务的所述第p条波束对应的子帧i的最大发射功率;PPUCCH,c(i)_beam_p为为所述终端设备提供服务的所述第p条波束对应的子帧i的所述物理上行控制信道的发射功率,10log10(MPUSCH,c(i))_beam_p为为所述终端设备提供服务的所述第p条波束对应的子帧i上基站分配给所述终端设备的资源块个数;Po_PUSCH,c(j)_beam_p为基站期望的为所述终端设备提供服务的所述第p条波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
    Po_PUSCH,c(j)_beam_p=Po_UE_PUSCH,c(j)_beam_p+Po_NOMINAL_PUSCH,c(j)_beam_p,Po_NOMINAL_PUSCH,c(j)_beam_p表示正常解调时,基站期望的为所述终端设备提供服 务的所述第p条波束对应的所述上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beam_p为为所述终端设备提供服务的所述第p条波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beam_p为为所述终端设备提供服务的所述第p条波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beam_p为为所述终端设备提供服务的所述第p条波对应的所述上行共享信道的发射功率的调整量;
    Figure PCTCN2017103995-appb-100002
    是PCMAX,c(i)_beam_p的线性值;
    Figure PCTCN2017103995-appb-100003
    是PPUCCH,c(i)_beam_p的线性值;beam_p则代表所述波束集合中的第p条波束,其中p为大于1且小于或者等于n的正整数。
  21. 根据权利要求4所述的方法,其特征在于,所述当确定所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,所述根据所述上行功率控制参数,估算所述终端设备所处k组波束中第q组波束的上行共享信道的发射功率的计算公式如下:
    Figure PCTCN2017103995-appb-100004
    其中,PPUSCH,c(i)_beamq为为所述终端设备提供服务的第q组波束对应的所述上行共享信道的发射功率,pCMAX,c(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的子帧i的最大发射功率;PPUCCH,c(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的子帧i的物理上行控制信道的发射功率;PPUCCH,c(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的所述物理上行控制信道的发射功率,10log10(MPUSCH,c(i))beamq为为所述终端设备提供服务的所述第q组波束对应的子帧i上基站分配给该终端设备的资源块个数;Po_PUSCH,c(j)_beamq为基站期望的为所述终端设备提供服务的所述第q组波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
    Po_PUSCH,c(j)_beamq=Po_UE_PUSCH,c(j)_beamq+Po_NOMINAL_PUSCH,c(j)_beamq,Po_NOMINAL_PUSCH,c(j)_beamq表示正常解调时,基站期望的为所述终端设备提供服务的所述第q组波束对应的所述上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beamq为为所述终端设备提供服务的所述第q组波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beamq为为所述终端 设备提供服务的所述第q组波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的所述上行共享信道的发射功率的调整量;
    Figure PCTCN2017103995-appb-100005
    是PCMAX,c(i)_beamq的线性值;
    Figure PCTCN2017103995-appb-100006
    是PPUCCH,c(i)_beamq的线性值;beamq则代表所述波束集合中的第q组波束,其中q为大于1且小于或者等于k的正整数。
  22. 根据权利要求20或21所述的方法,其特征在于,所述终端设备的上行共享信道的发射功率的调整量和/或者物理上行控制信道的发射功率的调整量通过以下方式之一或者组合获取:
    通过下行物理控制信令获取,其中,所述下行物理控制信令中携带波束信息;
    通过无线资源控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以所述波束集合中的每一条波束或所述k组波束中每一组波束为粒度分配;
    通过媒体接入控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以所述波束集合中的每一条波束或所述k组波束中每一组波束为粒度分配;
    通过无线资源控制层分配的发送功率控制索引绑定,和/或,发送功率控制-无线网络临时标识绑定,和/或,波束资源绑定,和/或k组波束中每一组波束绑定。
  23. 根据权利要求15所述的方法,其特征在于,所述对所述波束集合中每一条波束对应的下行路径损耗进行估计之前,所述方法还包括:
    确定与所述波束集合中每一条波束对应的下行波束;
    对所述下行波束的路径损耗进行估计,其中,所述波束集合中的波束为上行波束,所述波束集合中每一条波束的时间根据与之对应的下行波束的时间进行估计,和/或所述波束集合中每一条波束的频率根据与之对应的下行波束的频率进行估计,和/或所述波束集合中每一条波束的无线信道质量根据与之对应的下行波束的无线信道质量进行估计。
  24. 根据权利要求23所述的方法,其特征在于,所述确定所述波束集合中每一条波束对应的下行波束,包括:
    通过无线资源控制层或媒体接入控制层进行配置;
    或者,
    通过无线资源控制层或媒体接入控制层为所述波束集合中的一条或多条波束配置一个用于无线信道质量评估的参考下行波束;
    或者,
    终端设备在波束初始接入,和/或波束扫描,和/或波束训练过程中获得分别与波束集合中每一条波束配对下行波束。
  25. 根据权利要求8所述的方法,其特征在于,所述配置信息中还包括:
    第一控制信令,所述第一控制信令用于指示所述终端设备配置功率余量报告类型,其中,所述配置功率余量报告的类型包括以下至少一种:
    应用于波束技术的基于波束的功率余量报告;
    应用于波束技术的基于波束组的功率余量报告;
    应用于载波聚合的基于载波和波束的第一扩展功率余量报告;
    应用于载波聚合的基于载波和波束组的第二扩展功率余量报告;
    应用于双连接场景的基于服务小区和波束的第一双连接功率余量报告;
    应用于双连接场景的基于服务小区和波束组的第二双连接功率余量报告
    应用于大量载波聚合的基于载波和波束的第三扩展功率余量报告;
    应用于大量载波聚合的基于载波和波束组的第四扩展功率余量报告。
  26. 根据权利要求25所述的方法,其特征在于,所述终端设备根据所述第一控制信令,配置所述功率余量报告类型后,所述方法还包括:通过媒体接入控制层向所述基站发送功率余量报告媒体访问控制信令,所述功率余量报告媒体访问控制信令用于指示所述功率余量报告已经配置完成。
  27. 一种终端设备,其特征在于,所述终端设备包括:
    接收模块,用于接收基站发送的配置信息,其中所述配置信息包括:上行功率控制参数;
    处理模块,用于根据所述上行功率控制参数,估算终端设备所处波束集合的上行共享信道的发射功率,其中,所述波束集合包括n条波束,n为大于或者等于1的正整数;
    根据所述终端设备的最大发射功率和所述终端设备所处波束集合的上行共享信道的发射功率,计算所述终端设备所处波束集合的功率余量;
    并根据所述终端设备所处波束集合的功率余量,生成功率余量报告;
    发送模块,用于将所述功率余量报告发送至基站。
  28. 根据权利要求27所述的终端设备,其特征在于,所述处理模块还用于:
    根据上行功率控制参数,估算终端设备所处波束集合的物理上行控制信道的发射功率。
  29. 根据权利要求28所述的终端设备,其特征在于,所述处理模块还用于:确定所述终端设备将所述上行共享信道和物理上行控制信道是否同时发送至基站;
    且当确定所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,根据所述终端设备的最大发射功率、所述终端设备所处波束集合的所述上行共享信道的发射功率以及所述终端设备所处波束集合的物理上行控制信道的发射功率,计算所述终端设备所在波束集合的功率余量。
  30. 根据权利要求27-29任一项所述的终端设备,其特征在于,所述处理模块根据所述上行功率控制参数,估算所述终端设备所处波束集合的上行共享信道的发射功率的方式包括:
    根据所述上行功率控制参数,分别估算所述终端设备所处波束集合中每一波束的上行共享信道的发射功率;
    或者,
    根据所述上行功率控制参数,分别估算所述终端设备所处k组波束中每一组波束的上行共享信道的发射功率,其中,所述k组波束构成所述波束集合,k为大于或者等于1的正整数。
  31. 根据权利要求28或29所述的终端设备,其特征在于,所述处理模块根据所述上行功率控制参数,估算所述终端设备所处波束集合对应的物理上行控制信道的发射功率的 方式包括:
    根据上行功率控制参数,分别估算所述波束集合中每一条波束的物理上行控制信道的发射功率;
    或者,
    根据所述上行功率控制参数,分别估算k组波束中每一组的物理上行控制信道的发射功率,其中,所述k组波束构成所述波束集合,k为大于或者等于1的正整数。
  32. 根据权利要求30所述的终端设备,其特征在于,所述处理模块根据所述终端设备的最大发射功率、所述终端设备所处波束集合的所述上行共享信道的发射功率,计算所述终端设备处波束集合的功率余量的方式,包括:
    依次根据所述终端设备的最大发射功率、所述波束集合中第p条波束的所述上行共享信道的发射功率,计算所述波束集合中第p条波束的功率余量,直至所述波束集合中每一条波束的功率余量计算完成,其中p为大于或者等于1,且小于或者等于n的正整数;
    或者,
    依次根据所述终端设备的最大发射功率、所述k组波束中第q组波束的上行共享信道的发射功率,计算所述k组波束中的第q组波束的功率余量,直至所述k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
  33. 根据权利要求31所述的终端设备,其特征在于,所述处理模块根据所述终端设备的最大发射功率、所述终端设备所处波束集合的所述上行共享信道的发射功率以及所述终端设备所处波束集合的物理上行控制信道的发射功率,计算所述终端设备所处波束集合的功率余量的方式,包括:
    依次根据终端设备的最大发射功率、所述波束集合中第p条波束的所述上行共享信道的发射功率,以及所述波束集合中第p条波束的所述物理上行控制信道的发射功率,计算所述波束集合中第p条波束的功率余量,直至所述波束集合中每一条波束的功率余量计算完成,其中,所述p为大于或者等于1,且小于或者等于n的正整数;
    或者,
    依次根据所述终端设备的最大发射功率、所述k组波束中第q组波束的上行共享信道的发射功率,以及所述k组波束中第q组波束的物理上行控制信道的发射功率,计算所述k组波束中第q组波束的功率余量,直至所述k组波束中每一组波束的功率余量计算完成,其中q为大于或者等于1,且小于或者等于k的正整数。
  34. 根据权利要求27-33任一项所述的终端设备,其特征在于,所述终端设备还包括:触发模块,用于触发功率余量报告。
  35. 根据权利要求34所述的终端设备,其特征在于,所述配置信息中还包括与功率余量报告触发条件对应的参数信息,所述触发模块还用于:
    根据所述与所述功率余量报告触发条件对应的参数信息,确定当前时刻终端设备侧是否满足触发功率余量报告的条件,且仅在所述终端设备侧满足触发功率余量报告的条件时,触发功率余量报告;
    其中,与功率余量报告触发条件对应的参数信息包括:
    功率余量报告的触发周期、禁止功率余量报告触发周期和下行路径损耗值。
  36. 根据权利要求35所述的终端设备,其特征在于,所述触发功率余量报告的条件 包括:
    当前时刻为所述功率余量报告的触发周期对应的时间;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,所述波束集合中任一条波束的下行路径损耗大于下行路径损耗的门限值;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,m条波束中每一条波束对应的下行路径损耗均大于下行路径损耗的门限值,其中,所述m条波束为所述波束集合的子集,且m为大于或者等于2,小于或者等于n的正整数,此时n为大于或者等于2的正整数;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且当前时刻,所述波束集合中波束对应的下行路径损耗的平均值或者加权平均值大于下行路径损耗的门限值;
    或者,当前时刻不属于所述禁止功率余量报告触发周期,且所述当前时刻,所述波束集合中预先设定的一条波束的下行路径损耗大于下行路径损耗的门限值。
  37. 根据权利要求27-36任一项所述的终端设备,其特征在于,所述配置上行功率控制参数的方式包括以下至少一种:
    以波束集合中的每一条波束为粒度;
    以k组波束中的每一组波束为粒度;
    以载波为粒度;
    以服务小区为粒度;
    以终端设备为粒度。
  38. 根据权利要求35或36所述的终端设备,其特征在于,所述配置功率余量报告触发条件的参数信息的方式包括以下至少一种:
    以波束集合中的每一条波束为粒度;
    以k组波束中的每一组波束为粒度;
    以载波为粒度;
    以服务小区为粒度;
    以终端设备为粒度。
  39. 根据权利要求38所述的终端设备,其特征在于,所述配置所述上行功率控制参数以及配置所述与功率余量报告触发条件对应的参数信息时,如果以所述波束集合中的每一条波束为粒度时,所述配置参数中还包括:
    波束的标识/标号;
    或者,识别波束的信号的标识/标号,其中,所述识别波束的信号包括如下之一或组合:波束的参考信号、波束的发现信号、波束标识。
  40. 根据权利要求38所述的终端设备,其特征在于,所述配置所述上行功率控制参数以及配置所述与功率余量报告触发条件对应的参数信息时,如果以所述k组波束中的每一组波束为粒度时,所述配置参数中还包括:
    识别k组波束中每一组波束的标识/标号;
    或者,识别k组波束中每一组波束的信号的标识/标号。
  41. 根据权利要求35-40任一项所述的终端设备,其特征在于,所述处理模块还用于:
    对所述波束集合中每一条波束对应的下行路径损耗进行估计和/或对所述k组波束中 的每一组波束对应的下行路径损耗进行估计。
  42. 根据权利要求41所述的终端设备,其特征在于,所述处理模块具体用于:
    分别根据所述波束集合中每一条波束对应的参考信号功率和参考信号接收功率,估计所述波束集合中每一条波束对应的下行路径损耗,其中,所述参考信号接收功率的测量是基于所述波束集合中每一条波束对应的信道状态信息参考信号,和/或者基于所述波束集合中每一条波束对应的波束参考信号。
  43. 根据权利要求41所述的终端设备,其特征在于,所述处理模块具体用于:
    分别根据所述k组波束中每一组波束对应的参考信号功率和参考信号接收功率,估计所述k组波束中每一组波束绑定对应的下行路径损耗,其中,所述参考信号接收功率的测量是基于所述k组波束中每一组波束对应的信道状态信息参考信号,和/或者基于所述k组波束中每一组波束对应的波束参考信号。
  44. 根据权利要求42或43所述的终端设备,其特征在于,所述每一条波束对应的参考信号功率的接收功率或者所述k组波束中每一组波束对应的参考信号接收功率的测量形式包括:
    经过无线资源控制层过滤,或者不经过无线资源控制层过滤,其中,所述经过无线资源控制层过滤为:对当前参考信号接收功率值与历史的参考信号接收功率值进行加权平均;
    不经过无线资源控制层过滤为:所述终端设备直接将所述当前参考信号接收功率值作为最终参考信号接收功率值,其中,所述当前参考信号接收功率值和所述历史的参考信号接收功率值均指的是所述波束集合中每一条波束对应的参考信号接收功率,或者均指的是所述k组波束中每一组波束对应的参考信号接收功率。
  45. 根据权利要求42-44任一项所述的终端设备,其特征在于,所述参考信号接收功率的测量周期设置为固定值Fms,其中F为小于或者等于100的正整数;
    或者,所述参考信号接收功率的测量周期依据如下参数之一或组合进行设置,所述参数包括:频率或频段配置、上下行子帧配比、帧结构模式、无线接入方式以及波束配置方式。
  46. 根据权利要求30所述的终端设备,其特征在于,所述当所述处理模块确定所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,所述根据所述上行功率控制参数,估算所述波束集合中第p条波束的上行共享信道的发射功率的计算公式如下:
    Figure PCTCN2017103995-appb-100007
    其中,PPUSCH,c(i)_beam_p为为所述终端设备提供服务的第p条波束对应的子帧i的所述上行共享信道的发射功率,pCMAX,c(i)_beam_p为为所述终端设备提供服务的所述第p条波束对应的子帧i的最大发射功率;PPUCCH,c(i)_beam_p为为所述终端设备提供服务的所述第p条波束对应的子帧i的所述物理上行控制信道的发射功率,10log10(MPUSCH,c(i))_beam_p为为所述终端设备提供服务的所述第p条波束对应的子帧i上基站分配给所述终端设备的资源 块个数;Po_PUSCH,c(j)_beam_p为基站期望的为所述终端设备提供服务的所述第p条波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
    Po_PUSCH,c(j)_beam_p=Po_UE_PUSCH,c(j)_beam_p+Po_NOMINAL_PUSCH,c(j)_beam_p,Po_NOMINAL_PUSCH,c(j)_beam_p表示正常解调时,基站期望的为所述终端设备提供服务的所述第p条波束对应的所述上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beam_p为为所述终端设备提供服务的所述第p条波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beam_p为为所述终端设备提供服务的所述第p条波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beam_p为为所述终端设备提供服务的所述第p条波对应的所述上行共享信道的发射功率的调整量;
    Figure PCTCN2017103995-appb-100008
    是PCMAX,c(i)_beam_p的线性值;
    Figure PCTCN2017103995-appb-100009
    是PPUCCH,c(i)_beam_p的线性值;beam_p则代表所述波束集合中的第p条波束,其中p为大于1且小于或者等于n的正整数。
  47. 根据权利要求30所述的终端设备,其特征在于,所述当所述处理模块确定所述终端设备将所述上行共享信道和所述物理上行控制信道同时发送至基站时,所述根据所述上行功率控制参数,估算所述终端设备所处k组波束中第q组波束的上行共享信道的发射功率的计算公式如下:
    Figure PCTCN2017103995-appb-100010
    其中,PPUSCH,c(i)_beamq为为所述终端设备提供服务的第q组波束对应的所述上行共享信道的发射功率,pCMAX,c(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的子帧i的最大发射功率;PPUCCH,c(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的子帧i的物理上行控制信道的发射功率;PPUCCH,c(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的所述物理上行控制信道的发射功率,10log10(MPUSCH,c(i))_beamq为为所述终端设备提供服务的所述第q组波束对应的子帧i上基站分配给该终端设备的资源块个数;Po_PUSCH,c(j)_beamq为基站期望的为所述终端设备提供服务的所述第q组波束的接收功率水平,j=0对应半静态调度,j=1对应动态调度,j=2对应随机接入响应中授权参数值,
    Po_PUSCH,c(j)_beamq=Po_UE_PUSCH,c(j)_beamq+Po_NOMINAL_PUSCH,c(j)_beamq,Po_NOMINAL_PUSCH,c(j)_beamq表示正常解调时,基站期望的为所述终端设备提供服务的所述第q组波束对应的所述上行共享信道的发射功率水平,Po_UE_PUSCH,c(j)_beamq为为所述终端设备提供服务的所述第q组波束上相对于Po_NOMINAL_PUSCH,c的功率偏置;PLc_beamq为为所述终端设备提供服务的所述第q组波束对应的下行路损值,αc(j)为路径损耗补偿因子,取值范围为 0到1;ΔTF,c(i)为不同的调制与编码策略格式相对于参考调制与编码策略格式的功率偏置值;fc(i)_beamq为为所述终端设备提供服务的所述第q组波束对应的所述上行共享信道的发射功率的调整量;
    Figure PCTCN2017103995-appb-100011
    是PCMAX,c(i)_beamq的线性值;
    Figure PCTCN2017103995-appb-100012
    是PPUCCH,c(i)_beamq的线性值;beamq则代表所述波束集合中的第q组波束,其中q为大于1且小于或者等于k的正整数。
  48. 根据权利要求46或47所述的终端设备,其特征在于,所述终端设备的上行共享信道的发射功率的调整量和/或者物理上行控制信道的发射功率的调整量通过以下方式之一或者组合获取:
    通过下行物理控制信令获取,其中,所述下行物理控制信令中携带波束信息;
    通过无线资源控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以所述波束集合中的每一条波束或所述k组波束中每一组波束为粒度分配;
    通过媒体接入控制层分配的发送功率控制索引和/或发送功率控制-无线网络临时标识,以所述波束集合中的每一条波束或所述k组波束中每一组波束为粒度分配;
    通过无线资源控制层分配的发送功率控制索引绑定,和/或,发送功率控制-无线网络临时标识绑定,和/或,波束资源绑定,和/或k组波束中每一组波束绑定。
  49. 根据权利要求41所述的终端设备,其特征在于,所述处理模块还用于:
    确定与所述波束集合中每一条波束对应的下行波束;
    对所述下行波束的路径损耗进行估计,其中,所述波束集合中的波束为上行波束,所述波束集合中每一条波束的时间根据与之对应的下行波束的时间进行估计,和/或所述波束集合中每一条波束的频率根据与之对应的下行波束的频率进行估计,和/或所述波束集合中每一条波束的无线信道质量根据与之对应的下行波束的无线信道质量进行估计。
  50. 根据权利要求49所述的终端设备,其特征在于,所述处理模块确定所述波束集合中每一条波束对应的下行波束,具体包括:
    通过无线资源控制层或媒体接入控制层进行配置;
    或者,
    通过无线资源控制层或媒体接入控制层为所述波束集合中的一条或多条波束配置一个用于无线信道质量评估的参考下行波束;
    或者,
    终端设备在波束初始接入,和/或波束扫描,和/或波束训练过程中获得分别与波束集合中每一条波束配对下行波束。
  51. 根据权利要求34所述的终端设备,其特征在于,所述配置信息中还包括:
    第一控制信令,所述第一控制信令用于指示所述终端设备配置功率余量报告类型,其中,所述配置功率余量报告的类型包括以下至少一种:
    应用于波束技术的基于波束的功率余量报告;
    应用于波束技术的基于波束组的功率余量报告;
    应用于载波聚合的基于载波和波束的第一扩展功率余量报告;
    应用于载波聚合的基于载波和波束组的第二扩展功率余量报告;
    应用于双连接场景的基于服务小区和波束的第一双连接功率余量报告;
    应用于双连接场景的基于服务小区和波束组的第二双连接功率余量报告
    应用于大量载波聚合的基于载波和波束的第三扩展功率余量报告;
    应用于大量载波聚合的基于载波和波束组的第四扩展功率余量报告。
  52. 根据权利要求51所述的终端设备,其特征在于,所述发送模块还用于:通过媒体接入控制层向所述基站发送功率余量报告媒体访问控制信令,所述功率余量报告媒体访问控制信令用于指示所述功率余量报告已经配置完成。
PCT/CN2017/103995 2016-09-29 2017-09-28 一种功率控制的方法及终端设备 WO2018059489A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854939.0A EP3515132B1 (en) 2016-09-29 2017-09-28 Method for power control and terminal device
US16/368,608 US10588096B2 (en) 2016-09-29 2019-03-28 Power control method and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610871474.2A CN107889209B (zh) 2016-09-29 2016-09-29 一种功率控制的方法及终端设备
CN201610871474.2 2016-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/368,608 Continuation US10588096B2 (en) 2016-09-29 2019-03-28 Power control method and terminal device

Publications (1)

Publication Number Publication Date
WO2018059489A1 true WO2018059489A1 (zh) 2018-04-05

Family

ID=61763218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103995 WO2018059489A1 (zh) 2016-09-29 2017-09-28 一种功率控制的方法及终端设备

Country Status (5)

Country Link
US (1) US10588096B2 (zh)
EP (1) EP3515132B1 (zh)
CN (1) CN107889209B (zh)
AR (1) AR109736A1 (zh)
WO (1) WO2018059489A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077508A1 (zh) * 2018-10-15 2020-04-23 华为技术有限公司 一种对内部存储器动态调频的方法及电子设备
CN111818657A (zh) * 2019-07-04 2020-10-23 维沃移动通信有限公司 上行发送丢弃方法、上行发送丢弃配置方法及相关设备

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397904B2 (en) * 2016-02-20 2019-08-27 Qualcomm Incorporated Communication of uplink control information
CN114071559B (zh) * 2016-09-30 2024-01-30 华为技术有限公司 一种数据处理方法、终端以及基站
KR102628147B1 (ko) * 2017-03-22 2024-01-23 아이디에이씨 홀딩스, 인크. 새로운 무선 (nr) 시스템에서 전력 제어를 수행하는 방법
KR102434749B1 (ko) 2017-03-22 2022-08-22 삼성전자 주식회사 통신 시스템에서 파워 헤드룸 정보의 전송 방법 및 장치
CN108632876B (zh) * 2017-03-23 2022-06-14 上海诺基亚贝尔股份有限公司 通信方法、终端设备和网络设备
CN108810931B (zh) 2017-05-05 2024-07-05 华为技术有限公司 测量方法、终端设备和接入网设备
CN109088661B (zh) * 2017-06-14 2021-01-08 维沃移动通信有限公司 一种基于多波束的功率控制方法、用户终端和基站
CN109089268B (zh) * 2017-06-14 2020-09-01 维沃移动通信有限公司 一种phr触发方法和用户终端
WO2019013485A1 (en) * 2017-07-10 2019-01-17 Lg Electronics Inc. METHOD OF TRANSMITTING POWER MARGIN RATIO IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE THEREFOR
WO2019028716A1 (en) * 2017-08-10 2019-02-14 Panasonic Intellectual Property Corporation Of America TERMINAL AND METHOD OF COMMUNICATION
CN109495959A (zh) * 2017-09-11 2019-03-19 维沃移动通信有限公司 功率控制方法、网络设备及终端
CN112005585B (zh) * 2018-04-23 2024-06-04 高通股份有限公司 用于通信***的网络辅助式功率节省技术
CN111989955B (zh) * 2018-04-26 2022-02-18 华为技术有限公司 一种功率调整方法及相关设备
EP3567939B1 (en) 2018-05-10 2020-07-08 ASUSTek Computer Inc. Method and apparatus for triggering power headroom report for multiple pathloss reference in a wireless communication system
CN113541905B (zh) * 2018-05-11 2022-11-15 中兴通讯股份有限公司 信道配置、功控方法和装置、用户设备、基站及存储介质
CN110677225B (zh) * 2018-07-02 2021-01-15 ***通信有限公司研究院 一种上报及接收参考信号的方法和设备
US11265825B2 (en) * 2018-07-16 2022-03-01 Qualcomm Incorporated Power headroom reporting for wireless communication
CN110831135B (zh) * 2018-08-10 2022-08-26 华为技术有限公司 一种功率控制的方法和装置
EP3644657B1 (en) 2018-08-18 2021-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power control method and device, and terminal
CN109151756B (zh) * 2018-09-13 2021-05-07 泉州市华祥工业设计有限公司 灵活性增强的移动网络化水污染环保监测方法及***
WO2020063560A1 (en) * 2018-09-25 2020-04-02 FG Innovation Company Limited Method and apparatus for triggering power headroom reports
CN111294818B (zh) * 2018-12-06 2023-08-15 ***通信集团陕西有限公司 一种信道质量估计方法、终端设备及网络设备
EP3909142B1 (en) 2019-01-11 2023-12-27 Lenovo (Singapore) Pte. Ltd. Generating a channel state information ("csi") report
US10856236B1 (en) 2019-05-20 2020-12-01 Qualcomm Incorporated Fallback procedures when the path loss or spatial transmit quasi-collocation (QCL) reference from neighboring cells is failing for sounding reference signals (SRS) for positioning
CN110337140B (zh) * 2019-05-31 2021-06-01 华为技术有限公司 一种通信方法及装置
KR20220045192A (ko) * 2019-08-07 2022-04-12 지티이 코포레이션 업링크 송신을 위한 전력 헤드룸을 결정하기 위한 방법, 장치 및 시스템
WO2021087977A1 (zh) * 2019-11-08 2021-05-14 Oppo广东移动通信有限公司 功率余量上报方法及其装置
WO2021088005A1 (en) * 2019-11-08 2021-05-14 Qualcomm Incorporated Methods and apparatus to facilitate dual connectivity power control mode
CN113133046B (zh) * 2019-12-30 2022-10-04 ***通信集团四川有限公司 网络覆盖评估方法及装置、电子设备和计算机存储介质
CN113365336B (zh) * 2020-03-06 2023-09-05 维沃移动通信有限公司 功率余量报告上报方法及终端
CN111885697B (zh) * 2020-07-28 2023-05-12 海能达通信股份有限公司 功率控制及上行同步的方法、相关设备及计算机存储介质
CN112532363B (zh) * 2020-09-14 2022-04-22 中兴通讯股份有限公司 Srs传输方法、终端及存储介质
WO2022077292A1 (en) * 2020-10-14 2022-04-21 Apple Inc. Uplink data transmission in wireless communications
CN112600615A (zh) * 2020-12-25 2021-04-02 普联技术有限公司 光发射功率监控方法、电子设备及存储介质
WO2023115434A1 (en) * 2021-12-23 2023-06-29 Qualcomm Incorporated Transmit power configurations at a panel or beam level
CN116744427A (zh) * 2022-03-03 2023-09-12 华为技术有限公司 一种功率余量上报方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340622A (zh) * 2007-07-06 2009-01-07 中兴通讯股份有限公司 多载波增强上行链路功率资源的分配方法
CN101925105A (zh) * 2009-06-15 2010-12-22 大唐移动通信设备有限公司 一种上报上行功率余量信息的方法及装置
CN102378239A (zh) * 2010-08-11 2012-03-14 电信科学技术研究院 功率余量的上报、获取方法和装置
US20140211647A1 (en) * 2013-01-28 2014-07-31 Innovative Sonic Corporation Method and apparatus of small cell enhancement in a wireless communication system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031146B2 (en) * 2009-10-02 2015-05-12 Interdigital Patent Holdings, Inc. Power control for devices having multiple antennas
CN102158894A (zh) * 2010-02-12 2011-08-17 上海交通大学 功率上升空间报告方法、基站及用户设备
CN105007148B (zh) * 2010-04-01 2018-07-20 Lg电子株式会社 无线接入***中报告/接收功率上升空间值的方法和装置
US9173178B2 (en) * 2010-09-21 2015-10-27 Broadcom Corporation Method and system for power headroom reporting in the presence of multiple transmit antennas
WO2014116928A1 (en) * 2013-01-25 2014-07-31 Interdigital Patent Holdings, Inc. Methods and apparatus for vertical beamforming
CN105766034B (zh) * 2013-03-28 2019-09-13 华为技术有限公司 一种协作多点通信的功率余量报告方法和装置
KR102160693B1 (ko) * 2013-04-23 2020-09-29 삼성전자주식회사 무선 통신 시스템에서 상향링크 전력 제어 방법 및 장치
US20160227485A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Drs based power control in communication systems
US10270514B2 (en) * 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system
US20170332333A1 (en) * 2016-05-13 2017-11-16 Qualcomm Incorporated Managing specific absorption rate for user equipments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340622A (zh) * 2007-07-06 2009-01-07 中兴通讯股份有限公司 多载波增强上行链路功率资源的分配方法
CN101925105A (zh) * 2009-06-15 2010-12-22 大唐移动通信设备有限公司 一种上报上行功率余量信息的方法及装置
CN102378239A (zh) * 2010-08-11 2012-03-14 电信科学技术研究院 功率余量的上报、获取方法和装置
US20140211647A1 (en) * 2013-01-28 2014-07-31 Innovative Sonic Corporation Method and apparatus of small cell enhancement in a wireless communication system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077508A1 (zh) * 2018-10-15 2020-04-23 华为技术有限公司 一种对内部存储器动态调频的方法及电子设备
CN112639675A (zh) * 2018-10-15 2021-04-09 华为技术有限公司 一种对内部存储器动态调频的方法及电子设备
CN112639675B (zh) * 2018-10-15 2023-10-20 华为技术有限公司 一种对内部存储器动态调频的方法及电子设备
CN111818657A (zh) * 2019-07-04 2020-10-23 维沃移动通信有限公司 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
WO2021000778A1 (zh) * 2019-07-04 2021-01-07 维沃移动通信有限公司 上行发送丢弃方法、上行发送丢弃配置方法及相关设备
CN111818657B (zh) * 2019-07-04 2022-06-03 维沃移动通信有限公司 上行发送丢弃方法、上行发送丢弃配置方法及相关设备

Also Published As

Publication number Publication date
EP3515132A4 (en) 2019-11-13
EP3515132B1 (en) 2021-09-01
US20190223117A1 (en) 2019-07-18
CN107889209B (zh) 2023-09-22
US10588096B2 (en) 2020-03-10
EP3515132A1 (en) 2019-07-24
CN107889209A (zh) 2018-04-06
AR109736A1 (es) 2019-01-16

Similar Documents

Publication Publication Date Title
WO2018059489A1 (zh) 一种功率控制的方法及终端设备
JP6818805B2 (ja) 無線通信システムにおいて複数のパスロス・リファレンスのための電力ヘッドルーム報告をトリガするのための方法と装置
US11711768B2 (en) Method and apparatus for power control for wireless transmissions on multiple component carriers associated with multiple timing advances
EP3641411B1 (en) Method and device for determining transmission power
TWI717570B (zh) 在無線通訊系統中觸發功率餘量回報用於波束運作之方法與設備
US9763205B2 (en) Methods and apparatuses for enabling power back-off indication in PHR in a telecommunications system
CN108810964B (zh) 功率余量的上报方法和装置
EP3402259B1 (en) Apparatus and method for transmitting a power headroom report in a wireless communication system supporting multi-carriers
CN107979869A (zh) 无线通信***中波束运作的功率余量回报的方法及设备
CN105191445A (zh) 用于基于累积传送功率控制命令和对应的上行链路子帧组控制上行链路传输功率的方法和装置
EP2744277A1 (en) Uplink power control method and device
CN103718594A (zh) 通信***、终端及基站
EP3539252B1 (en) Deriving configured output power for consecutive transmission time intervals (ttis) in shortened tti patterns
EP3998805A1 (en) Output power configured with different tti
WO2023139519A1 (en) Medium access control (mac) control element (ce) design for multiple power management maximum power reduction (p-mpr) reporting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854939

Country of ref document: EP

Effective date: 20190408