WO2018059201A1 - 用于集装物检查***的组合输送装置、及集装物检查*** - Google Patents

用于集装物检查***的组合输送装置、及集装物检查*** Download PDF

Info

Publication number
WO2018059201A1
WO2018059201A1 PCT/CN2017/100724 CN2017100724W WO2018059201A1 WO 2018059201 A1 WO2018059201 A1 WO 2018059201A1 CN 2017100724 W CN2017100724 W CN 2017100724W WO 2018059201 A1 WO2018059201 A1 WO 2018059201A1
Authority
WO
WIPO (PCT)
Prior art keywords
translation
translating
combination
roller
cargo
Prior art date
Application number
PCT/CN2017/100724
Other languages
English (en)
French (fr)
Inventor
夏茂辉
孟辉
高克金
孙尚民
史俊平
胡煜
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2018059201A1 publication Critical patent/WO2018059201A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G37/00Combinations of mechanical conveyors of the same kind, or of different kinds, of interest apart from their application in particular machines or use in particular manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the invention relates to a combined conveying device used in a package inspection system, in particular to a combined inspection in a scanning inspection system with multiple scanning angles or multiple radiation sources, which is suitable for air boxes, cargo transfer pallets and other large-volume goods.
  • the device also relates to a container inspection system; the invention belongs to the field of radiation detection technology.
  • the basic working principle of an inspection system for a large container or a cargo transfer pallet that is common in the prior art is that the air box (transport tray) to be scanned smoothly passes through the detection channel through the conveying device, and the imaging device is generated under the control of the control device.
  • the image is scanned, and the generated image is, for example, a single- or dual-energy image in a horizontal direction (side view) single viewing angle or dual viewing angle.
  • the applicant's Chinese Patent Publication No. CN101000312B discloses a large-scale air cargo inspection system, which particularly employs an upper and a download roller conveyor, using the telescopic rod and the movable fork structure therein.
  • the high and low positions can be switched to form a working platform that can move up and down, which solves the problems of large inspection area and complicated equipment of the prior art inspection system. It is not only suitable for checking air cargo, but also for roads, trains, Large items such as seaports are not checked out.
  • the above-described solutions for the inspection system of packaged articles of the prior art also have deficiencies.
  • the above-described conventional inspection apparatus generally only implements one scanning mode, thereby limiting the selection of the imaging mode.
  • radiation imaging modalities have been proposed in the prior art, such as fluoroscopic imaging, multi-view imaging, and CT imaging
  • these different imaging modalities generally correspond to different scanning modalities of the scanning system for the cargo.
  • the currently used air box (transport tray) cargo inspection system the scan generated image is basically limited to the horizontal (side view) single-view or dual-view single-energy or dual-energy images, which cannot satisfy multiple viewing angles of the inspected goods.
  • the scanning requirements of different image types are slow to respond to user demands, and the design and production cycle are long.
  • the inspection system of the prior art packaged articles can only be a conventional container scanning inspection system having a limited single scanning function such as a conventional single-scanning function disposed at a constrained location of the civil construction area;
  • the scanning function superimposed container inspection system has high technical requirements for the integrated conveying device and is expensive to manufacture, once transported If the fault occurs, the overall shutdown maintenance and overhaul is required, and since the customer often only selects the specific scanning subsystem with different scanning angles, and according to the actual site conditions (such as the waiting space occupied by the left and right sides of the channel, uploading or downloading the goods) Space, the length of the detection channel required to set up multiple scanning subsystems, and the cost considerations of a particular type of conveyor (for example, although the plate transmission has a large carrying capacity, it increases with the size of the required cargo.
  • Site adjustment, cost, etc. are customized and customized, and the goods are transported frequently and efficiently, and can be transported reciprocally, with small floor space and simple structure.
  • Another object of the present invention is to provide a package inspection system using the above combined conveyor.
  • a combined conveying apparatus for a package inspection system is provided, the combined conveying apparatus being configured to pass a detection passage of the package inspection system Conveying the contents
  • the combined conveying device comprises: a translating device having a movable horizontal bearing surface carrying the contents, and a translating device arranged to extend through the detection channel; an uploading device having a drivable first bearing surface carrying and lifting the container; and a downloading device having a carrying device and a lowering device a driveable second bearing surface of the container; wherein the first starting end of the first bearing surface is movable to be positioned near the ground, and the first ending end of the first bearing surface is movable An initial end that is non-contactingly adjacent and at a level that is flush with the movable horizontal bearing surface of the translating device; the second starting end of the second bearing surface is movable to be in close contact with and The height is flush with the terminating end of the movable horizontal bearing surface of the translating device, and
  • the translation device comprises two translational mechanisms arranged in a segmented manner, the two translational mechanisms being configured as translational input devices and translations that are each immediately adjacent at an adjacent end in a contactless manner Output device.
  • the immediately adjacent ends of the translating input device and the translating output device are respective inner ends that abut each other in the vicinity of the detecting channel but do not interfere with each other.
  • the panning input device and the panning output device each have a substantially synchronized speed at the immediately adjacent ends thereof.
  • the uploading device, the downloading device is a roller conveying mechanism
  • the roller conveying mechanism includes: an upper platform; a lower platform disposed near the ground; and hinged by a midpoint in a length direction a movable fork frame formed by two struts arranged together in an intersecting manner, the movable fork frame being disposed between the upper platform and the lower platform, and each end portion is hingedly fixed to a corresponding end portion of the upper platform and the lower platform respectively; a telescopic rod actuator, the two ends being pivotally fixed to the intersections of the two rods of the movable fork respectively; and mounted on the upper platform and adjacent to each other in a direction orthogonal to the direction in which the contents are to be conveyed A plurality of roller units arranged.
  • the action of one of the extension and the shortening of the telescopic rod actuator causes the struts of the movable yoke to pivot about their intersection with the telescopic rod actuator, correspondingly achieving the upper platform Raise and lower one.
  • each end of the upper platform is pivotable angularly about the movable fork.
  • the panning input device and the panning output device At least one of them is the roller conveyor mechanism.
  • the translation input device and the translation output device are each one of a group including a conveying mechanism: the roller conveying mechanism; and the roller conveying mechanism
  • the conveying mechanism of the continuous surface is a roller conveyor mechanism, a chain conveyor mechanism, a plate chain conveying mechanism, and a skid type conveying mechanism which is conveyed step by step between the respective segments thereof.
  • At least one of the translating input device and the translating output device is a parallel chain-and-belt conveying device, the parallel chain-belt conveying device comprising: extending along the detecting channel An elongated frame, the frame being fixed by a plurality of upstanding support columns spaced along its length to be substantially parallel to the ground; a motor fixed to the frame; and being disposed in the middle of the frame and connected to a drive train of the motor, and an end tension roller fixed to both ends of the frame, the rotation axes of the drive train and the end tension roller are oriented perpendicular to the length of the frame and parallel to the horizontal plane; wherein the drive A plurality of traction chains extending parallel to the longitudinal direction of the frame and laterally spaced apart are embedded in the circumference of the driving roller and the end tensioning roller in the wheel train, and the plurality of traction chains are wound around the driving roller and the end a closed elliptical conveying path in which the tensioning rollers are in a tight state in
  • the panning input device and the panning output device are the same type of transport mechanism.
  • the panning input device and the panning output device are of the same size specification.
  • the combined conveying device further includes a buffer conveying device disposed between the loading device and the downloading device, the buffer conveying device including two shifting sections respectively located at both ends And a buffer section between the two, the shifting section at both ends and the intermediate buffer section each comprising a plurality of rollers arranged in parallel and having an axis of rotation perpendicular to the direction in which the contents are to be conveyed, each The idlers of the segments are connected to the respective motors via the overrunning clutch, and the overrunning clutch of the shifting section is also coupled to the electric machine via a motor reducer, wherein the contents are in the shifting section and the buffer section
  • the overrunning clutch causes the idler to become the driven idler while in the set In the section where the load is transferred, the idler acts as a driving idler; when the transfer of the aggregate is about to end, the overrunning clutch causes the idler to be driven in the section where the collected material is transferred out The idler, while in the section to
  • the length of the buffer segment is greater than or substantially equal to the length of the detection channel.
  • the buffer conveying device functions as the translation device, and the two shifting sections are respectively tight with the first terminating end of the uploading device and the second starting end of the downloading device, but Adjacent without contact.
  • the buffer conveying device is disposed between the translating input device and the translating output device, wherein the two shifting sections are respectively associated with the terminating end of the translating input device and the translating output device The initial ends are adjacent but not in contact.
  • an additional delivery device of the same type as the buffer delivery device is also disposed between the uploading device and the translational input device.
  • an additional delivery device of the same type as the buffer delivery device is also disposed between the translational output device and the download device.
  • At least one of the first terminating end of the uploading device and the second initiating end of the downloading device includes a blocking device, and a height of the blocking device is set to be no larger than the uploading device Or download the range of vertical movement of the device.
  • the buffer conveying device further includes a chassis that is laterally displaceable.
  • the buffer conveying device further includes a pair of tensioning pulleys disposed at both ends of the idler upstream thereof and a directional wheel disposed at a downstream thereof on the laterally displaceable chassis, and A laterally positioned belt tensioned between the tensioning wheel and the directional wheel.
  • the combined conveying device comprises a turning device comprising at least one inverting unit provided at the bottom or side of the carrying plane of the translating input device.
  • each of the at least one inverting unit includes a tilting shaft fixed to a frame of the translating input device, and radially extending along the inverting shaft and regularly circumferentially a plurality of flip members spaced apart, and a drive source coupled to the flip shaft.
  • a package inspection system comprising: a radiation source; a collimator; at least one probe boom assembly including a detector cross arm and a detector arm, the probe arm assembly and the collimator being coplanar and forming a gantry structure; from below the gantry structure
  • the combined delivery device according to the foregoing extends substantially vertically.
  • FIG. 1 is a plan view showing a schematic assembled structure of an X-ray horizontal viewing angle scanning system according to a first embodiment of the present invention
  • FIG 2 is a schematic view of the transporting device assembly 1 of the first embodiment of the present invention as in Figure 1, particularly the operating state of the uploading device 11 and the downloading device 12;
  • Figure 3 is a schematic view showing the working state of the conveying device assembly 1 of Figure 2 at the time of detection;
  • FIG. 4 is a schematic structural view of the ray horizontal viewing angle detecting boom assembly 2 of FIG. 1;
  • Figure 5 is a plan view showing a schematic assembled structure of an X-ray horizontal viewing angle plus vertical viewing angle scanning system in accordance with a second embodiment of the present invention
  • Figure 6 is a schematic structural view of a parallel chain-belt conveying device 4 in the conveying device assembly 1' of the second embodiment of the present invention as in Figure 5, and a partially enlarged view thereof;
  • Figure 7 is a schematic view showing the structure of the ray vertical viewing angle detecting boom assembly 2' as shown in Figure 5;
  • Figure 8 is a top plan view showing a schematic assembly structure of a ray horizontal viewing angle plus neutron horizontal viewing angle scanning system in accordance with a third embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of the neutron horizontal viewing angle detecting boom assembly 2" in Figure 8.
  • cargo inspection systems employing X-ray radiation sources, particularly air container/pallet cargo inspection systems, are in the field of radiation detection technology.
  • X-ray radiation sources particularly air container/pallet cargo inspection systems
  • the present embodiment is described by taking an X-ray scanning air container/pallet cargo inspection system as an example, it may be other types of radiation sources, such as X-ray tubes, electron linear accelerators, isotope sources, neutron radiation sources, and the like.
  • the following is an example of a common X-ray air container/pallet cargo inspection system, which illustrates the structure of the structure and the way in which the components work together.
  • an embodiment of the present invention provides a combined delivery device for a package inspection system.
  • a container/pallet cargo inspection system as a first embodiment of the ray (e.g., X-ray) radioactive source scanning as shown in Fig. 1 will be described with reference to Figs. 1 to 4, wherein the conveying device is a combined conveying device.
  • the delivery device assembly 1 comprises: a segmented detection channel translation device for translating the cargo to be inspected into and out of the detection channel of the inspection system, the detection channel
  • the translating device comprises a translating input device 13 for loading the cargo to be inspected into the detection channel, and a translating output device 14 for outputting the inspected cargo from the detection channel, as shown in Figure 1, for transporting the cargo from the ground
  • the uploading device 11 is uploaded and raised to a working height flush with the detecting channel translation device; and the downloading device 12 for lowering the cargo from the working height flush with the detecting channel translation device to the vicinity of the ground.
  • the inner ends of the translating input device 13 and the translating output device 14 are adjacent to each other in the vicinity of the detecting channel but do not interfere with each other, and have substantially synchronous speeds at respective inner ends of the intersection.
  • the detection channel translation device is generally a one-piece conveyor in conventional applications, but in view of the longer strokes on both sides of the detection channel, the flexibility of field installation, preferably using a segmented combination of translational input devices and translation
  • the output device is composed of on-site lap joints.
  • it is often necessary to make a short stay to facilitate Scanning such as the need to perform multi-angle, azimuth scanning in the inspection system due to the need to perform an attitude change of the cargo to be inspected or a component of the detector, detector arm, etc. in the system, is replaced in an embodiment of the present invention
  • the detection channel translation device including a translation input device 13, and a translating output device 14, such upstream and downstream segments of the translating input device 13 and the translating output device 14.
  • the arrangement is such that the cargo can be smoothly transferred from the translating input device 13 to the translating output device 14 and substantially maintains the trajectory unchanged without significantly changing its original trajectory, such as deviating from the translating input device 13 The trajectory of the transport carried.
  • the uploading device 11 includes a movable fork composed of an upper platform 112, a lower platform 116, and two struts that are hingedly arranged at their midpoints in respective length directions.
  • the upper platform 112 of the uploading device 11 acts as a drivable first bearing surface that carries and lifts the contents to be inspected.
  • the upper platform of the download device 12 also acts as a drivable second load bearing surface that carries and lowers the contents to be inspected.
  • the upper surface of the translational input device 13 and the translating output device 14 is a movable horizontal bearing surface for carrying the contents.
  • the outer upper end and the outer lower end of the movable fork 113 are hinged at the outer end portions of the upper platform 112 and the lower platform 116, respectively, with the upper hinge shaft 119 and the lower hinge shaft 118, respectively.
  • the upper inner end and the inner lower end of the movable fork 113 are provided with an upper guide wheel 114 and a lower guide wheel 115, and the upper upper guide wheel 114 and the lower guide wheel 115 are respectively placed in the side planes of the upper platform 112 and the lower platform 116. Inside the track, the guide wheels can be slid.
  • the two ends of the telescopic rod 117 are respectively hinged with the two rods of the movable fork 113, and when the telescopic rod 117 is contracted, the upper platform 112 is at a low position near the ground, that is, the starting end of the first bearing surface is movable Located near the ground, the container to be inspected is about to be transferred from the ground to the loading device 11; and when the telescopic rod 117 is extended, the upper platform 112 is at a level high with the detecting channel translation device, that is, the working height, That is, the terminating end of the first bearing surface is movable so as not to be in close contact with and the height is flush with the starting end of the movable horizontal bearing surface of the translation device, at which time the container is about to be moved from the loading device 11 is transferred to the translation input device 13.
  • the starting end of the second bearing surface is movable to be in close contact with and at a height without contact Flushing the terminating end of the movable horizontal bearing surface of the translating output device 14 in the translating device, at which point the inspected contents to be lowered to the ground are to be received from the translating output device 14; and the second carrier
  • the terminating end of the face is movable to be positioned near the ground where the contents are about to be removed from the downloading device 12 to the ground.
  • the movable fork frame 113 structure can also allow pivoting about one end to achieve a slightly angular delivery, which can be used, for example, to compensate for unevenness of the ground.
  • the outer ends of the uploading roller transport mechanism 11 and the download roller transport mechanism 12 are respectively provided with anti-collision frames 5, 5' for preventing the cargo from colliding with the transport device.
  • the inner end of the upper platform 112 is provided with a tractor 9 formed by the motor to drive the reel and the traction cable wound on the reel to assist the loading or unloading of the towed cargo.
  • the telescopic rod 117 adopts a screw type screw and its screw sleeve structure or other commonly used expansion and contraction methods.
  • FIG. 2 there is shown an uploading roller conveying mechanism 11 and a downloading roller conveying mechanism 12 which are both in an operating state, wherein the loading roller conveying mechanism 11 has been raised to a position near a high position, at this time, the first of the loading device 11
  • the bearing surface is flush with the movable horizontal bearing surface of the translation device (translation input device 13), ie for cargo delivery, for example to the translation input device 13; and the download roller conveyor 12 has been lowered to a low position near the ground To release/discharge the inspected goods.
  • the upload roller transport mechanism 11 and the download roller transport mechanism 12 are both substantially flush with the detection channel translating device to facilitate the smooth transport of cargo on them, when the cargo is inspected.
  • the roller conveying mechanism for uploading and downloading can also be used as a general translational conveying device to feed the package. Whole or scattered goods.
  • roller conveyor as shown in Figures 2 and 3 can be used to raise, lower, feed the cargo slightly angularly at one end, or translationally.
  • the uploading device 11 and the downloading device 12 are both roller conveyor mechanisms.
  • the uploading device 11, the downloading device 12, the translating input device 13, and the translating output device 14 may, for example, all be the same roller transport mechanism as described above, such as shown in FIG.
  • the output device 14 can also be of a different type, for example, the uploading device 11 and the downloading device 12 are the above-described roller conveyor, and the translational input and output device is any of the group of conveying mechanisms including: conveyor belt Conveyor, roller conveyor, chain conveyor, plate chain conveyor, or skid-type conveyor for slip-to-segment transport, and parallel chain-belt conveyor as described below.
  • roller conveyor Compared to conventional conveyor belts, slat conveyors, or improved slat chain conveyors with multiple carrier sheets on a closed endless belt drive, the inherent advantage of the roller conveyor is that not only translation is possible And it also starts with the vertical adjustment of the lifting, lowering and single-ended small-angle tilting, which has a stronger conveying attitude adjustment capability; especially in the case of, for example, a long-stroke detection channel, it is used separately.
  • the cargo input detection channel and the two conveying devices output from the detection channel, and the conveying device has a certain angle-adjusted conveying function to adapt to ground unevenness which may occur in the conveying stroke for even longer detecting channels, Therefore, the assembled conveyor assembly for installing the ground construction inspection system with insufficient infrastructure conditions can be matched, and the environment adaptability is strong.
  • the posture changing conveying mechanism may be additionally embedded, so that the cargo realizes the required scanning position when entering the detection channel.
  • posture which can be the same or different from the posture of the cargo when transported outside the detection channel.
  • an embodiment of the present invention also provides a container inspection system.
  • the transport container inspection system includes: a conveyor assembly 1; a probe boom assembly 2, as shown in FIG. 1, for example, an X-ray horizontal viewing angle detecting arm assembly 2, which includes a radiation source, a detector boom, and a probe. And an X-ray control cabin 3 disposed outside the conveyor assembly 1 and the probe boom assembly 2; and a radiation shielding wall (not shown) located outside the radiation source, the conveyor, and the detector boom assembly. The shield prevents radiation from leaking to the surrounding environment.
  • the radiation control cabin 3 is usually equipped with a scan control module, an image acquisition module, an operation checker, a control system, a data processing unit and the like.
  • the ray horizontal viewing angle detecting arm assembly 2 preferably includes an X-ray accelerator 210 located in an accelerator cabin 209 disposed near the ground as a radiation source for generating and emitting X Radiation, and the accelerator cabin 209 has a certain inclination angle with respect to the ground to ensure that the radiation exits
  • the angular extent covers the array of detectors disposed on the detector arm;
  • the calibration device 208 is disposed adjacent the front of the X-ray exit aperture of the accelerator compartment 209 for appropriate adjustment of the parameters of the inspection system prior to each operation
  • the emitted X-rays are calibrated to facilitate obtaining a reasonable detection image;
  • the collimator 207 mounted in the collimator column 206 adjusts, for example, the outgoing X-rays to a fan plane perpendicular to the horizontal direction to cover the
  • a detector on the range a detector boom column 201 and a detector arm 202 housed therein, and a detector beam 203 and a detector beam 204 received at a lower side thereof, the detector beam 203
  • the two ends are fixed on the top of the detector vertical arm column 201 and the top of the collimator column 206, so that the collimator column, the detector cross arm and the detector arm form a stable gantry structure in the same vertical plane.
  • the detectors are mounted in an array on the probe boom assembly 2, for example, respectively in the detector cross arm and the detector arm, such that the detector pen end and the ray plane in the horizontal and vertical arms are, for example, The fans are coplanar.
  • a transport device 205 for transporting the cargo to be inspected is located below the gantry structure and extends therethrough substantially vertically.
  • the delivery device 205 is part of the delivery device assembly 1, such as the translating input device 13 described above.
  • the gantry structure and the conveying device together form a detection passage that is closed around and open on both sides in the extending direction of the conveying device, and the detection passage serves as a place for radiation inspection.
  • the operation steps and working principle of the X-ray inspection system of the single-scanning function shown in FIG. 1 are illustrated as follows: when the conveying device assembly transports the container to be inspected and scanned In the ray zone, the X-rays emitted by the accelerator pass through the collimator and pass through the inspection container in a fan-shaped plane, and are received by the detectors in the cross arm and the vertical arm of the detector, and converted into electrical signals and input into the equipment cabin for image acquisition.
  • the module, the image acquisition module re-delivers the image signal to the data processing unit and the run checker, and finally visually displays all results, for example by a display on the console.
  • the entire inspection process is commanded by the operator station, and the control system controls the inspection process.
  • the segmented detection channel translation device is adapted to achieve a finely tuned flat track cargo transport over a longer stroke and is adapted to be on a translating output device, as well as a translating output device and panning
  • the reciprocating transport between the input devices is performed to achieve a forward and reverse horizontal viewing angle scan.
  • yet another embodiment of the present invention further provides a combined conveying apparatus for a bulk inspection system for a multi-detection function.
  • FIG. 5 still another embodiment of the present invention provides an inspection system and an integrated conveying device thereof, which simultaneously have an X-ray horizontal viewing angle detecting arm frame and a vertical viewing angle detecting arm frame to realize a composite detecting function.
  • FIG. 5 in some applications, such as simultaneous request for forward and reverse scanning of the horizontal viewing angle of the package and vertical viewing angle scanning to establish a more complete three-dimensional information image capture of the goods, along the detection channel Extension direction
  • a horizontal viewing angle detecting boom assembly and a vertical viewing angle detecting boom assembly respectively configured as gantry structures are arranged in parallel; accordingly, considering the further increased translational stroke of the detection channel direction, if two still are used as before
  • the roller-type translational conveying mechanism as a translational input and output device, inevitably further increases the size specifications and stroke requirements of the movable fork frame composed of the cross-arranged strut and the hydraulic cylinder bar as the driving device. This leads to more expensive costs.
  • the detection object to which the present invention is directed is mainly an integral, large-volume containerized goods or cargo transfer tray, so that continuous The conveying mechanism of the surface, and the post-inspection output process is not strictly required for cargo trajectory control other than the substantially horizontal translation, so another embodiment of the present invention also contemplates an existing conveyor belt or slat chain conveyor And an improved parallel chain-belt conveying device suitable for outputting large-volume assembled goods after inspection, for partially replacing the segmented detecting channel translation device constituted by the roller conveying mechanism in the first embodiment, In particular, the output device 14 is translated.
  • the two aforementioned roller conveyors serve as the uploading device 11' and the downloading device 12', respectively, and the parallel chain-belt conveying mechanism 4 described herein respectively Acts as a translation input device 13' and a translation output device 14'.
  • the length of the translation input device should ensure that the package is required to be uniformly transported in a smooth state during the detection.
  • Translating input device carrying The channel is detected, and after inspection, the length of the translational output device is not as important as the length of the panning input device, so that the panning input device and the panning output device do not have to be selected to be of the same type or size, such as may alternatively be
  • Three previously described roller conveyors act as an uploading device 11', a downloading device 12', a translational input device 13', respectively, and instead serve as a translational output device with the parallel chain-and-belt conveyor mechanism 4 described herein. .
  • the translating output device 4 of Fig. 5 specifically employs a parallel chain-belt conveying device, the specific structure of which is shown in a front view and a partially enlarged view in Fig. 6.
  • the translating output device 4 employs a parallel chain-and-belt conveyor improved on the basis of a conveyor belt or a chain conveyor, comprising a vertically elongated frame 403 extending in the direction of the detection passage, said machine
  • the frame 403 is fixed by a plurality of upright support columns 407 spaced apart along its length to be parallel to the ground; a motor 401 arranged along the length of the frame as a drive source; and a drive train 401' disposed at the middle of the frame
  • an end tensioning roller 405 fixed to both ends of the frame, the direction of the rotation axis thereof is perpendicular to the longitudinal direction of the frame and parallel to the horizontal plane, and the driving gear train 401' is rotated by the motor to change the direction of the driving torque.
  • a plurality of traction chains 404 extending in the longitudinal direction of the frame and laterally spaced apart are embedded in the periphery of the driving roller 402 of the driving train 401' and the end tensioning rollers at both ends of the frame.
  • the oblong transport path is arranged at a distance from each other in parallel with a transversely extending tensioning roller for ensuring that the traction chain is taut to apply effective static friction to the cargo thereon for movement with the traction chain, and Containerized goods serve as an auxiliary support.
  • the lateral spacing between the plurality of traction chains 404 is preferably equidistant, more preferably densely spaced and marginally spaced to facilitate support of the bulk cargo that is typically placed on the inside of the conveyor.
  • the traction chain 404 is tensioned in the whole process so that the lengths of the parallel reverse movements of the upper and lower sides are equal, and there is no difference between the loose side and the tight side.
  • the conveying device does not occur if the reverse operation is performed for the reverse scanning of the goods, for example.
  • the "stacking" phenomenon causes a drive failure.
  • the traction force of each part of the chain along the length direction of the frame is substantially unchanged, thereby realizing the free reciprocating transmission of the parallel chain-belt conveyor.
  • a plurality of longitudinally spaced plurality of tensioning rollers are used to support the packaged goods, thereby eliminating the need to lay, for example, a sheet of cushioning material or panel on the chain to form a continuous conveying surface, thereby saving material, reducing cost, and simplifying the structure.
  • the conventional conveyor belt or plate type and plate chain conveyor have the advantages of small footprint, simple structure and reasonable design. Because they can be used frequently and frequently, the efficiency of container cargo transportation and inspection is improved, and the expansion is expanded. Application range.
  • an embodiment of the present invention further provides a package inspection system that simultaneously has an X-ray horizontal angle of view detection boom and a vertical angle of view detection boom to realize a composite detection function.
  • the transport container inspection system includes: a conveyor assembly 1'; an X-ray horizontal viewing angle detecting arm assembly 2, and an X-ray vertical viewing angle detecting arm assembly 2', each of which includes a radiation source and a detector boom , detectors, etc.; an X-ray control cabin 3 disposed outside the conveyor assembly 1 and the probe boom assemblies 2, 2'; and a radiation shielding wall (not shown) located in the source comprising the radiation source, the conveyor and the detector arm
  • the outside of the frame assembly is used to shield against radiation leakage to the surrounding environment.
  • the radiation control cabin 3 is usually equipped with a scan control module, an image acquisition module, an operation checker, a control system, a data processing unit and the like.
  • the X-ray horizontal viewing angle detecting arm assembly 2 is as described above and will not be described again.
  • the ray vertical viewing angle detecting arm assembly 2 preferably includes a suspended accelerator cabin 209' fixed at the ends by two detector vertical arm columns on the left and right sides, located in the accelerator cabin 209.
  • the X-ray accelerator 210' with the exit port downward is used as a radiation source for generating and emitting X-rays, and the accelerator chamber 209' is arranged to ensure that the radiation exit angle range covers the detector arranged in the array on the detector arm; a collimator 207' mounted at a lower surface of the accelerator cabin to, for example, adjust the outgoing X-rays to a vertically downwardly fanned surface to cover the detector over the entire detector arm; the detector vertical arm post and housing a detector left vertical arm 2021 and a detector right vertical arm 2022 at an inner side thereof, and a detector cross arm 204' disposed between the detector left vertical arm 2021 and the detector right vertical arm 2022 near the ground,
  • the collimator 207', the detector cross arm 204', the detector left vertical arm 2021 and the detector right vertical arm 2022 form a stable gantry structure in the same vertical plane, and the detectors are mounted in an array on the detection boom assembly.
  • a conveyor 205' for conveying the cargo to be inspected is located below the gantry structure and extends therethrough substantially vertically.
  • Conveyor 205' is part of the conveyor assembly 1, such as the parallel chain-and-belt conveyor 4 described above.
  • the gantry structure and the conveying device together form a detection passage that is closed around and open on both sides in the extending direction of the conveying device, and the detection passage serves as a place for radiation inspection.
  • the vertical viewing angle detecting boom assembly operates similarly to the horizontal viewing angle detecting boom assembly except for the arrangement of the detector arms, and is well known to those skilled in the art and will not be described herein.
  • the segmented detection channel translation device which is formed by at least one parallel chain-and-belt conveyor 4 as described above, and the aforementioned roller conveyor, is adapted to achieve simultaneous horizontal viewing and alignment over a longer stroke.
  • the vertical viewing angle scans the assembly and enables a relatively low cost and simple structure of the cargo output, as well as facilitating reciprocating transport for forward and reverse horizontal viewing angle scanning.
  • a composite detection function of multiple radiation sources can be realized based on the single object or composite detection function of the package detection system and the combined delivery device thereof as described in the previous embodiments.
  • the container detection system and its combined delivery device For example, for example, a package inspection system having both an X-ray horizontal viewing angle detecting arm and a neutron scanning detecting arm frame to realize a multi-radiation source composite detecting function is also provided. As shown in FIG.
  • the combined conveying device is similar to the second embodiment, for example, including an uploading device 11", a downloading device 12", and a segmented detecting channel translation device, wherein the two aforementioned roller conveying mechanisms respectively Acting as an uploading device 11', a downloading device 12', and as described herein, the parallel chain-and-strip mechanism 4 acts as a translational input device 13' and a translational output device 14', respectively. That is, the parallel chain-belt conveyor 4 is used as both a translation input and output device.
  • the segmented detection channel translating device comprises a roller conveyor mechanism 13" as described above as a translation input device and a parallel chain-belt conveyor device 4 as a translational output device.
  • the length of the translation input device should ensure that the package is transported by the translation input device in a smooth delivery state during the detection.
  • the channel is detected, and after inspection, the length of the translation output device is not as important as the length of the translation input device, so that the translation input device and the translation output device do not have to be selected to be of the same type or size specification, such as
  • the segmented detection channel translation device comprises a roller conveyor mechanism 13" as described above as a translation input device and a parallel chain-belt conveyor mechanism 4 as a translational output device.
  • an embodiment of the present invention further provides a package inspection system that simultaneously has an X-ray horizontal viewing angle detecting boom and a neutron scanning detecting arm frame to realize a multi-radiation source composite detecting function.
  • the transport neutron scanning probe boom assembly 2" is similar in mechanism to the X-ray horizontal viewing angle probe boom assembly 2 except that the subchamber 209' is disposed substantially horizontally on the ground without inclination, as this The arrangement and neutron source emission characteristics are sufficient to ensure that the exit horn of the neutron ray covers the array of detectors on the detection arm.
  • outside the neutron chamber and the detector arm near the outside of the detection channel both are densely arranged.
  • the neutron shielding material is covered or filled to avoid radiation pollution of the environment by the leaking neutron rays.
  • the translating input device and the translating output device of the translating device of the combined transport device can be selected to be of different sizes, in particular, for example, for a container suitable for constructing different inspection modes.
  • Check the requirements of the system for example, as compared to the horizontal viewing angle X-ray inspection system as described in FIG. 4, the horizontal viewing angle as shown in FIG. 7 plus the vertical viewing angle X-ray inspection system, or the level as shown in FIG.
  • the translational output device of the combined delivery device in the X-ray plus neutron inspection system has a greater length.
  • the combined delivery device for example, further includes a buffer delivery device disposed between the translating input device and the translating output device.
  • the buffer conveying device comprises two shifting sections respectively located at the two ends and a buffer section between the two, and the shifting sections at the two ends are respectively translated
  • the end of the input device and the beginning of the translating output device abut but are in close contact with each other, and the length of the buffer segment is greater than or substantially equal to the length of the detection channel;
  • both the shifting section at both ends and the intermediate buffer segment are a plurality of rollers arranged in parallel and each having a rotation axis perpendicular to the conveying direction of the cargo, wherein the rollers of each segment are connected to the respective motors via the overrunning clutch, and the overrunning clutch of the shifting section is also via the motor reducer And connected to the motor
  • the buffer segment further includes a plurality of position sensors for emitting a fast slow conversion signal.
  • shifting The motor of the segment receives an instruction to cause the idler of the target section to become a driven roller via the overrunning clutch, thereby causing the cargo to gradually shift to the target section in a state of almost no speed difference; when the position sensor senses that the transfer process is basically At the end, an instruction is issued to cause the idler of the starting section to become a driven roller under the action of the overrunning clutch, so that the cargo is completely separated from the starting section almost in a state of no speed difference.
  • the buffer conveying device thus arranged between the translational input device and the translational output device, since there is no need for intermittent adjustment, stop or deceleration transfer between different segments, it is not only convenient to achieve no difference between different segments of the conveying combined conveying device.
  • the time-gap cargo is fed continuously and without slip impact to increase transport and detection efficiency, and the cargo can also travel through the detection channel at a uniform and adjustable speed throughout the buffer section.
  • the buffer conveying device can also be additionally arranged between the uploading device and the translating input device, or between the translating output device and the downloading device, so as to achieve smooth transfer/transition of the cargo without slip impact and facilitate continuous non-intermittent operation. Ground transportation.
  • a blocking element in addition to the buffer zone of the buffer conveyor, can additionally be provided for the relative fastening of the goods when the goods are integrated into the buffer zone.
  • a retractable blocking member such as a blocking plate, a barrier strip
  • the blocking member projects to prevent the cargo from escaping during transport.
  • the uploading device or the downloading device may also be provided with a blocking device, and the height of the blocking device is set to be smaller than or equal to the range of the vertical moving container of the uploading device or the downloading device, so that the conveying is performed Blocking from the bottom of the goods during the period
  • the lifting operation of the goods when it is required to be transferred from the uploading device or the downloading device is not hindered.
  • the combined transport may also, for example, be provided with the function of laterally shifting the cargo, for example by means of a buffer conveyor having a laterally displaceable frame.
  • a buffer conveyor having a laterally displaceable frame.
  • it further comprises a laterally displaceable frame, a pair of tensioning pulleys disposed at opposite ends of the upstream roller, and a centrally disposed downstream A directional wheel on the laterally displaced frame and a transversely positioned belt tensioned between the tensioning wheel and the directional wheel.
  • the frame When it is required to laterally displace the cargo carried on the buffer conveyor, the frame can be moved centrally along the lateral direction, so that the directional wheel disposed thereon is also displaced centrally,
  • the lateral centering position defined by the laterally positioned belt wrapped thereon is varied. This lateral centering operation accommodates items of different sizes and shapes and enables centering operations while conveying items.
  • the combined transport device further comprises, for example, a flipping preferably provided on the translational input device for automatically adjusting the turning of the goods before the goods enter the detection channel.
  • Apparatus comprising at least one inverting unit disposed at a bottom or side of a carriage plane of the translating input device, each of the at least one inverting unit including a flip mounted to a frame of the translating input device a shaft, and a plurality of flip members extending radially along the flip shaft and regularly spaced apart in the circumferential direction, such as a flip lever or a flip plate, and a drive source coupled to the flip shaft.
  • the plurality of flip bars or flip plates are regularly spaced apart, for example, in a circumferential direction by a fixed angle, such as 90 degrees.
  • the turning device also preferably, for example, comprises a plurality of inverting units arranged in sequence along the cargo conveying direction at an angle and distance to cooperate to effect the turning of the larger or irregularly shaped cargo.
  • the specific form of the translation device and the buffer delivery device in the combined delivery device is in addition to the roller conveyor mechanism and the parallel chain-belt conveyor described above. It may also include, for example, a roller conveyor mechanism, a chain conveyor mechanism, a plate chain conveyor mechanism, or a skid-type conveyor mechanism that transports segment by step, and the like.
  • the combination of the respective conveying devices of the inspection system in particular, facilitates lifting, translation and single-ended angled pivoting
  • a combination of a fine-tuned roller conveyor and a parallel chain-belt conveyor without a continuous surface in order not to obscure the main inventive aspects of the present invention, the rest of the inspection system and its workflow will not be described in detail.
  • the composition of the segmented detection channel translation device can be selected as needed, for example, according to site infrastructure conditions such as ground irregularity, length of stroke required for the detection channel,
  • site infrastructure conditions such as ground irregularity, length of stroke required for the detection channel
  • the selection and combination of specific conveying devices are carried out by round-trip transportation to realize the space requirement of the forward and reverse viewing angles, cost considerations, installation dimensions required for the site, etc., for example, including the above roller conveying mechanism and parallel chain-belt conveying device One, or both are parallel chain-belt conveyors, or both are roller conveyors.
  • the present invention provides an improved inspection system for a packaged article and a modular/combined delivery device suitable for the same, which is capable of integrating a multi-view scanning function and/or a multi-radiation source according to customer requirements in a limited space. And can be customized according to the site conditions, customer needs to customize the specific conveyor.
  • the beneficial technical effect of the present invention is that, firstly, the container conveying device of the combined mode component has a small footprint, can be selected according to site requirements, and the installation combination mode is flexible;
  • the optional roller conveyor mechanism and the parallel chain-belt conveyor each have different advantages, such as the former enabling lifting, translation, and pivoting of a single end of the plane to compensate for ground irregularities.
  • the latter can achieve efficient carrying and efficient transport of the container under a simple structure, and both are suitable for reciprocating transport for forward and reverse scanning.
  • the increased conveying stroke can select different conveying device combinations according to different requirements, and is convenient for keeping the structure simple, convenient to install, and efficient in operation. Maintain lower cost and customized customization flexibility.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种用于集装物检查***的组合输送装置及其集装物检查***,该组合输送装置包括:分段式检测通道平移装置,即用于平移待检查的货物进入和退出所述检查***的检测通道的平移输入装置(13)和平移输出装置(14);用于将货物从地面附近上载并抬升至与检测通道平移装置齐平的工作高度处的上载装置(11);以及用于将货物从与检测通道平移装置齐平的工作高度处下降至地面附近的下载装置(12)。其中,所述平移输入装置(13)和平移输出装置(14)各自的内侧端在检测通道内或附近处彼此邻接。该组合输送装置以组合方式实现集装物的输送,既能在根据实际需要构造多视角或多辐射源检查功能的前提下根据场地调节、成本等进行客制化定制,具备货物输送往复高效,占地少、结构简单等优点。

Description

用于集装物检查***的组合输送装置、及集装物检查***
相关申请的交叉引用
本申请要求于2016年9月29日递交中国专利局的、申请号为201610865028.0的中国专利申请的权益,该申请的全部内容以引用方式并入本文。
技术领域
本发明涉及用于集装物检查***中的组合输送装置,特别是适用于航空箱、载货转运托盘及其它场合大体积货物的具备多扫描视角或多辐射源的扫描检查***中的组合输送装置;还涉及集装物检查***;本发明属于辐射检测技术领域。
背景技术
目前国内外在重要公共场所诸如机场、海关、轨道交通站点对大宗物品的检查日益重视,特别是航空货运领域;但目前,在以上情景特别是在在航空货物(例如航空集装箱)检查领域内主要采用人工开箱检查或X光机透射检查(只能通过小型待检查物件)为主要检查方式。也有使用CT(计算机断层扫描-computed tomography)技术进行货物检查的装置。总体而言,现有检查技术中,检查时间长、日检量低、检查成本高。因而大宗货物检查***,特别是针对大型航空集装货物的检查***是航空、海关、轨道交通安检中急需的检测设备之一。现有技术中常见的针对大型集装箱或载货转运托盘的检查***的基本工作原理为,待扫描的航空箱(转运托盘)货物通过输送装置平稳地经过检测通道,成像装置在控制装置操控下生成扫描图像,生成的图像例如为水平方向(侧视)单视角或双视角的单能或双能图像。
由于例如X光机的穿透能力较低,放射源在使用管理上的严格控制,使得这两类产品在使用上有很多局限。特别是,例如,常见CT装置均采用水平通过式扫描进行CT成像检查,即被检物品水平通过,扫描***围绕该被检物品的通过路径进行旋转,这使得这些CT检查*** 的货物通过率较低。而且,这种CT检查***受到结构尺寸及穿透能力的严格限制,因此不能检查较大规格的航空集装箱。例如,现有的大部分装置都不能检查长、宽各2米以上的航空集装箱。而且,上述水平通过式扫描方式需要在检测通道左右两侧占用相等的占地面积,因此这样的装置占有空间较大。
目前,针对上述问题主要有以下的改进。例如,本申请人的中国专利公开号CN101000312B披露了一种大型航空集装货物检查***,其特别地采用了一种上、下载辊式输送机,利用其中的伸缩杆和活动叉架结构来在高位与低位见切换从而形成可以上下移动高度的作业平台,解决了现有技术的检查***占地面积大、配套设备复杂的问题,不仅适用于检查航空集装货物,也适用于公路、火车、海港等大宗货物的不开箱检查。
然而,现有技术的以上针对集装物品的检查***的方案也存在不足。例如,上述现有的检查装置通常仅能实现一种扫描方式,从而限制了成像方式的选择。虽然现有技术中已提出多种辐射成像方式,例如透视成像、多视角成像以及CT成像等,这些不同的成像方式通常对应于扫描***对货物进行的不同扫描方式。但目前广泛使用的航空箱(转运托盘)货物检查***,扫描生成图像基本上局限于水平方向(侧视)单视角或双视角的单能或双能图像,不能满足对被检查货物多个视角、不同图像类型的扫描需求,对用户需求响应速度慢,设计、生产周期长。但是,在货物检查过程中有时需要对同一货物进行不同方式的扫描成像,现有的检查装置不能满足这种需要。
从而,典型地,本领域技术人员在一些需要进行增强和复合扫描检查功能的场所,往往通过简单地叠加不同扫描功能的检查子***,来实现集成的针对集装物品的检查***。
综上,现有技术的集装物品的检查***要么只能是在土建面积受约束地点处布置的具备有限的例如常规的单一扫描功能的常规集装箱扫描检查***;要么是占地面积较大的扫描功能叠加式集装箱检查***、且相应地,其对一体式输送装置技术要求较高且造价昂贵,一旦输送装 置出现故障则需要整体停机维保和检修,且由于客户往往仅可选择具备不同扫描视角、的具体扫描子***,而根据实际场地条件(例如通道左右两侧占用的等待空间、上载或下载货物的空间、由于设置多个扫描子***而所需的检测通道长度)、以及特定类型输送装置的成本考虑(例如,板式传动装置虽然承载能力较大,但随着所需承载货物的尺寸规格加大,成本也更高;而以链轮驱动的间隔开的平行格栅式的输送带装置,虽然只适用于整体货物例如集装箱、转运托盘而无法适用于小件零散货物,但经济性好于前者)对于当前的一体化输送装置的选择余地很小。因而,根据客户所需的扫描子***选购的需求和安置场地条件进行客制化定制的余地较小。从而,无法兼顾在受约束空间中同时进行多视角和/或多辐射源扫描,也无法满足客户对于不仅扫描子***、而且输送装置选择的灵活性需求,从而使得以上所述缺陷制约了其实际应用。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
由于在货物特别是集装物的扫描检查***中需要整合多视角或多辐射源的需求,以及检查***安装场地对其输送装置在尺寸规格方面的限制,包括成本方面的考虑,因此,持续地需要一种的改进设计,包括对于检查***及其输送装置的改进的需求。
相应地,本发明的目的之一是提供一种用于集装物的检查***的输送装置,其以组合方式实现,既能够在根据实际需要构造多视角或多辐射源检查功能的前提下根据场地调节、成本等进行客制化定制,且保持货物输送频繁高效,可往复输送,占地面积小、结构简单等优点。
本发明的另一目的是提供一种使用上述组合输送装置的集装物检查***。
为实现上述目的,根据本发明的第一方面,提供了一种用于集装物检查***的组合输送装置,所述组合输送装置被配置用以通过所述集装物检查***的检测通道来输送集装物其中,所述组合输送装置包括:平移装置,所述平移装置具备承载所述集装物的可动水平承载面,且所述 平移装置布置成延伸穿过所述检测通道;上载装置,所述上载装置具备承载并抬升所述集装物的可驱动的第一承载面;以及下载装置,所述下载装置具备承载并降低所述集装物的可驱动的第二承载面;其中,所述第一承载面的第一起始端是可动的以定位于地面附近,且所述第一承载面的第一终止端是可动的以不接触地紧邻于并且所处高度齐平于所述平移装置的可动水平承载面的初始端;所述第二承载面的第二起始端是可动的以不接触地紧邻于并且所处高度齐平于所述平移装置的可动水平承载面的终结端,且所述第二承载面的第二终止端是可动的以定位于地面附近;并且所述平移装置包括至少一个平移机构。
根据本公开的一个实施例,所述平移装置包括呈分段式布置的两个平移机构,所述两个平移机构配置为各自在一相邻端部处以不接触方式紧邻的平移输入装置和平移输出装置。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置二者紧邻的端部是在检测通道内或附近处彼此邻接但不干扰地交会的各自的内侧端。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置各自在二者紧邻的端部处具备基本同步的速度。
根据本公开的一个实施例,所述上载装置、所述下载装置是辊式输送机构,所述辊式输送机构包括:上平台;下平台,设置于地面附近;由以长度方向的中点铰接在一起而交叉地布置的两个支杆所构成的活动叉架,所述活动叉架布置于上平台与下平台之间,且各端部分别铰接固定至上平台和下平台的相应端部;伸缩杆致动器,两端分别可枢转地固定至与活动叉架的两支杆的交点上;及安装于上平台上并且彼此并排紧邻地与待输送所述集装物的方向正交布置的多个辊单元。
根据本公开的一个实施例,所述伸缩杆致动器的伸长和缩短之一的动作导致活动叉架的支杆绕其与伸缩杆致动器的交点枢转,相应地实现上平台的抬升和降低之一。
根据本公开的一个实施例,所述上平台的每个端部可绕活动叉架成角度地枢转。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置 中的至少一个为所述辊式输送机构。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置分别为包括如下的输送机构的组中之一:所述辊式输送机构;以及除所述辊式输送机构以外的具备连续表面的如下输送机构:辊道输送机构、链条式输送机构、板链式输送机构、和在其各个分段之间逐段滑移输送的滑橇式输送机构。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置二者中的至少一个是并行链-带式输送装置,所述并行链-带式输送装置包括:沿检测通道延伸的纵长的机架,所述机架由沿其长度方向间隔布置的多个竖立的支撑柱固支成与地面基本上平行;固定于机架上的电机;和布置于机架中部且连接至电机的驱动轮系,以及固支于机架两端的端部张紧辊,所述驱动轮系和端部张紧辊的旋转轴被定向均垂直于机架长度方向且平行于水平面;其中驱动轮系中的主动辊轮、以及端部张紧辊的周缘中均嵌入有多条沿机架长度方向平行延伸且在横向间隔开的牵引链条,所述多条牵引链条绕主动辊轮和端部张紧辊呈绷紧状态的上下侧平行反向运行的封闭长椭圆形传送路径;以及所述多条牵引链条沿机架长度方向的封闭长椭圆形传送路径中每隔一段距离平行地布置有横向延伸的张紧辊。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置是相同类型的输送机构。
根据本公开的一个实施例,所述平移输入装置和所述平移输出装置具备相同尺寸规格。
根据本公开的一个实施例,所述组合输送装置还包括设置于所述上载装置与所述下载装置之间的缓冲输送装置,所述缓冲输送装置包括两个分别位于两端处的变速区段和位于二者之间的缓冲区段,两端的变速区段以及中间的缓冲区段各自包括平行布置的且旋转轴线均与待输送所述集装物的方向垂直的多个托辊,其中每个区段的托辊经由超越离合器与各自的电机相连,且所述变速区段的超越离合器还经由电机减速器而连接至电机,其中在所述集装物在变速区段与缓冲区段之间转移时,在待转移至的区段中,超越离合器使托辊成为从动托辊,同时在所述集 装物转移出的区段中,托辊充当驱动托辊;当所述集装物的转移即将结束时,在所述集装物转移出的区段中,超越离合器使托辊变为从动托辊,同时在待转移至的区段中,托辊充当驱动托辊。
根据本公开的一个实施例,所述缓冲区段的长度大于或基本上等于所述检测通道的长度。
根据本公开的一个实施例,所述缓冲输送装置充当所述平移装置,且所述两个变速区段分别与所述上载装置的第一终止端和所述下载装置的第二起始端紧密但不接触地邻接。
根据本公开的一个实施例,所述缓冲输送装置设置于平移输入装置与平移输出装置之间,其所述两个变速区段分别与所述平移输入装置的终结端和所述平移输出装置的初始端紧密但不接触地邻接。
根据本公开的一个实施例,与所述缓冲输送装置相同类型的额外的输送装置还布置于所述上载装置与所述平移输入装置之间。
根据本公开的一个实施例,与所述缓冲输送装置相同类型的额外的输送装置还布置于所述平移输出装置与所述下载装置之间。
根据本公开的一个实施例,所述上载装置的第一终止端和所述下载装置的第二起始端中的至少一个包括阻挡装置,且所述阻挡装置的高度设置为不大于所述上载装置或下载装置的竖直移动集装物的范围。
根据本公开的一个实施例,所述缓冲输送装置还包括具备可横向移位的底架。
根据本公开的一个实施例,所述缓冲输送装置还包括在其上游的托辊两端设置的一对张紧轮和在其下游居中设置于可横向移位的底架上的定向轮,以及张紧于张紧轮与定向轮之间的横向定位皮带。
根据本公开的一个实施例,所述组合输送装置包括翻转装置,所述翻转装置包括设置于所述平移输入装置的载运平面的底部或侧部处的至少一个翻转单元。
根据本公开的一个实施例,所述至少一个翻转单元中的每个包括固连至所述平移输入装置的机架上的翻转轴,和沿所述翻转轴径向延伸且沿周向规则地间隔开的多个翻转件,以及联接至所述翻转轴的驱动源。
在根据本公开的另一方面,还披露了一种集装物检查***,包括: 辐射源;准直器;至少一个探测臂架组件,包括探测器横臂和探测器竖臂,所述探测臂架组件和准直器共面且形成龙门架结构;从所述龙门架结构下方基本上垂直地延伸贯穿的根据前述的组合输送装置。
附图说明
现在参照随附的示意性附图,仅以举例的方式,描述本发明的实施例,其中,在附图中相应的附图标记表示相应的部件。附图的简要描述如下:
图1是根据本发明的第一实施例的X射线水平视角扫描***的示意性组装结构俯视图;
图2是如图1中的本发明的第一实施例的输送装置组件1,特别是其中的上载装置11和下载装置12的工作状态的示意图;
图3是如图2的输送装置组件1在检测时的工作状态的示意图;
图4是如图1中的射线水平视角探测臂架组件2的结构示意图;
图5是根据本发明的第二实施例的X射线水平视角扫描加竖直视角扫描***的示意性组装结构俯视图;
图6是如图5中的本发明的第二实施例的输送装置组件1’中的并行链-带式输送装置4的结构示意图,及其局部放大图;
图7是如图5中的射线竖直视角探测臂架组件2’的结构示意图;
图8是根据本发明的第三实施例的射线水平视角扫描加中子水平视角扫描***的示意性组装结构俯视图;
图9是如图8中的中子水平视角探测臂架组件2”的结构示意图。
具体实施方式
为使本公开的上述目的、特征和优点能够更加显而易见,下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号表示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节 以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
附图中各个件的尺寸和形状不反映本发明旨在保护的元件、部件、装置的真实比例,目的只是示意性说明本发明的内容。
通常,采用X射线辐射源的货物检查***特别是航空集装箱/托盘货物检查***属于辐射检测技术领域。虽然本实施例以X射线扫描的航空集装箱/托盘货物检查***为例进行描述,还可以是其他类型的辐射源,例如X光管、电子直线加速器、同位素放射源、中子辐射源等。以下首先以常见的X射线航空集装箱/托盘货物检查***为例,说明其结构构成和各部件协同工作的作用方式。
第一实施例
根据本发明的一种总体上的发明构思,本发明的实施例提供了一种用于集装物检查***的组合输送装置。例如,以图1至4为例对作为第一实施例的如图1所示射线(例如X射线)放射源扫描的集装箱/托盘货物检查***进行说明,其中的输送装置为组合式输送装置,如图1所示,即输送装置组件1,所述输送装置组件1包括:分段式检测通道平移装置,用于平移待检查的货物进入和退出所述检查***的检测通道,所述检测通道平移装置如图1所示包括用于将待检查的货物载入检测通道内的平移输入装置13、以及用于将检后货物从检测通道输出的平移输出装置14;用于将货物从地面附近上载并抬升至与检测通道平移装置齐平的工作高度处的上载装置11;以及用于将货物从与检测通道平移装置齐平的工作高度处下降至地面附近的下载装置12。其中,所述平移输入装置13和平移输出装置14各自的内侧端在检测通道内或附近处彼此邻接但不干扰地交会、且在交会处的各自的内侧端具备基本同步的速度。
所述检测通道平移装置虽然在常规应用中通常为一体式的输送机,但考虑到检测通道两侧的较长行程,现场安装的灵活性,优选地采用了分段组合的平移输入装置和平移输出装置进行现场搭接而组成。此外,例如由于通常在检测通道中进行检测时,往往需要做短暂的停留以便利 进行扫描,诸如满足在检查***中由于需要进行待检查的货物的姿态变化或***中的探测器、探测器臂等部件的动作来执行多角度、方位扫描的需要,本发明的实施例中替代地采用了如图1所示分段式平移装置作为检测通道平移装置,其包括平移输入装置13、以及平移输出装置14,所述平移输入装置13和平移输出装置14的这种上下游分段式的设置使得货物能从平移输入装置13平滑地转移至平移输出装置14且基本上保持运行轨迹不变,而不会较显著地改变其原有运行轨迹,例如不利地偏离由平移输入装置13所载运的运行轨迹。
下面针对所采用的例如作为上载、或下载用途的辊式输送机构进行具体说明。例如,优选地如图2所示,所述上载装置11包括由上平台112、下平台116、由两个以各自长度方向的中点铰接在一起而交叉地布置的支杆所构成的活动叉架113、以液压油缸活塞杆充当的伸缩杆117、及安装于上平台112上并排紧邻地与待输送方向正交布置的多个辊单元。其中,所述上载装置11的上平台112充当承载并抬升待检查的集装物的可驱动的第一承载面。类似地,所述下载装置12的上平台也充当承载并降低待检查的集装物的可驱动的第二承载面。相应地,所述平移输入装置13和平移输出装置14的上表面为用于承载所述集装物的可动水平承载面。活动叉架113的外上端和外下端分别以上铰轴119、下铰轴118与上平台112和下平台116的外侧端部处铰接。活动叉架113的内上端和内下端安置有上导轮114和下导轮115,输送上导轮114和下导轮115分别置于上平台112和下平台116的侧平面中所开设的滑道内并且可使各导轮滑动。伸缩杆117的两端分别与活动叉架113的两支杆铰接,并且当使伸缩杆117收缩时上平台112处于地面附近的低位,即所述第一承载面的起始端是可动的以定位于地面附近,此时待检查的集装物即将从地面转移到上载装置11;而当伸缩杆117伸长时上平台112处于与检测通道平移装置齐平的高位,即工作高度处,也即所述第一承载面的终止端是可动的以不接触地紧邻于并且所处高度齐平于所述平移装置的可动水平承载面的起始端,此时集装物即将从上载装置11转移至平移输入装置13。类似地,所述第二承载面的起始端是可动的以不接触地紧邻于并且所处高度 齐平于所述平移装置中的平移输出装置14的可动水平承载面的终止端,此时即将从平移输出装置14接收待降低至地面的已检查的集装物;且所述第二承载面的终止端是可动的以定位于地面附近,此时集装物即将从下载装置12移出至地面。并且,所述活动叉架113结构也可以允许绕一端进行的枢转从而实现略微成角度地输送,可用以例如补偿地面的不平度。上载辊式输送机构11、下载辊式输送机构12各自的外端处分别设有起防止货物与输送装置之前冲击的防撞架5,5’。上平台112的内端设有由电机带动卷筒及卷筒上缠绕的牵引索而形成的对于牵引集装货物上载或下载起辅助作用的牵引器9。当然,伸缩杆117若采用螺旋式的螺杆及其螺杆套结构或者其它常用的伸缩方式也是可行的。
如图2所示,其中示出了均处于工作状态的上载辊式输送机构11和下载辊式输送机构12,其中上载辊式输送机构11已抬升至高位附近,此时上载装置11的第一承载面与所述平移装置中(平移输入装置13)的可动水平承载面齐平,即将用于例如向平移输入装置13进行货物递送;以及下载辊式输送机构12已降低至地面附近的低位以释放/排出已检货物。如图3所示,示出了上载辊式输送机构11和下载辊式输送机构12均处于与检测通道平移装置基本上平齐的高度,以利于货物平滑地在它们之上输送,当货物检查后输送从所述平移输出装置14移动接近所述下载装置12时,此时下载装置12的第二承载面与所述平移装置中(平移输出装置14)的可动水平承载面齐平。且由于安装于上平台112上并排紧邻地与待输送方向正交布置的多个辊单元,所示用于上载和下载的辊式输送机构还可以作为通常的平移输送装置使用以馈送集装的整件货物、或零散货物。
因此,如图2和3所示的辊式输送机构可用于抬升、降低、绕一端略微成角度地、或平移地送进货物。
举例而言,至少所述上载装置11和下载装置12均为辊式输送机构。换言之,优选地,所述上载装置11、下载装置12、平移输入装置13和平移输出装置14可以例如均为相同的如上所述辊式输送机构,例如如图1所示。替代地,所述上载装置11、下载装置12、平移输入装置13和平移 输出装置14也可以为不同类型的,例如:所述上载装置11和下载装置12为上述辊式输送装置,而平移输入和输出装置为包括如下的输送机构的组中的任意输送机构:传送带式输送机、辊道输送机构、链条式输送机构、、板链式输送机、或逐段滑移输送的滑橇式输送机构,以及如下所述的并行链-带式输送机构。
相比于常规的输送带、板式输送装置、或改进的在闭合环带式传动链上覆以多个承载板片的板链式输送装置,辊式输送装置的固有优点在于,不仅可以实现平移,而且也始于在竖直方向进行抬升、降低以及单端小角度倾斜的微调,具备更强的输送姿态调节能力;特别是在在例如较长行程的检测通道的情况下,分立地设置用于货物输入检测通道和从检测通道输出的两个输送装置,且所述输送装置具备一定的角度调节的输送功能以适应于用于甚至较长检测通道的输送行程中可能出现的地面不平度,从而可以配合基建条件不够规范的安装地面搭建检查***的组装式输送装置组件,环境适应性强。
另外,举例而言,在所述平移输入装置13和平移输出装置14彼此交会的内侧端之间,还可以附加地嵌入姿态改变输送机构,从而使得货物在进入检测通道时实现所需的扫描位置或姿态,可以与检测通道以外进行输送时货物的姿态相同或不同。
并且,根据本发明的发明构思,本发明的实施例还提供了一种集装物检查***。如图1所示,输送集装箱检查***包括:输送装置组件1;探测臂架组件2,如图1所示例如为X射线水平视角探测臂组件2,其包含辐射源、探测器臂架、探测器等;在输送装置组件1和探测臂架组件2以外设置的X射线操控舱体3;以及辐射屏蔽墙(未示出),位于包含辐射源、输送装置和探测器臂架组件外侧,用于屏蔽防止射线泄露至周围环境。其中,例如,所述射线操控舱体3内通常安装有扫描控制模块、图像获取模块、运行检查器、控制***、数据处理单元等。且更具体地,如图4所示,所述射线水平视角探测臂组件2优选地包括:位于布置在地面附近的加速器舱209内的X射线加速器210,作为辐射源,用于产生并出射X射线,且加速器舱209相对于地面具备一定倾角以确保射线出射张 角范围覆盖探测器臂上按阵列布置的探测器;标定装置208,其安置于加速器舱209的X射线出射孔口前方邻近处,用于针对检查***的参数进行适当调整以在每次工作前对出射的X射线进行标定,从而利于得到合理的检测图像;安装于准直器立柱206内的准直器207,以例如将出射X射线调整为与水平方向垂直的扇面以覆盖整个探测器臂范围上的探测器;探测器竖臂立柱201和容纳于其中内侧处的探测器竖臂202、以及探测器横梁203和容纳于其中下侧处的探测器横臂204,所述探测器横梁203以两端固支于探测器竖臂立柱201的顶部与准直器立柱206的顶部,使得准直器立柱、探测器横臂、探测器竖臂在同一竖直面内组成稳定的龙门架结构,探测器以阵列方式安装于探测臂架组件2中例如分别安装于探测器横臂和探测器竖臂内,从而横、竖臂中的探测器笔端与射线平面例如扇面共面。其中,用于输送需检查货物的输送装置205位于所述龙门架结构下方并基本上垂直地延伸穿过其中。输送装置205是输送装置组件1的一部分,例如为前文所述的平移输入装置13。所述龙门架结构和输送装置共同构成周围封闭且沿输送装置的延伸方向在两侧敞开的检测通道,所述检测通道充当辐射检查的场所。
下面结合具体实施例,具体地如下阐述如图1所示的单扫描功能即仅水平视角正反向扫描的X射线检查***的运行步骤和工作原理:当输送装置组件输送待检查的集装箱经过扫描射线区吋,经加速器发出的X射线通过准直器后以扇形面穿过被检集裝箱,由探测器横臂、竖臂中的探测器接收,转换成电信号输入至设备舱中的图像获取模块,图像获取模块将图像信号再输送到数据处理单元和运行检查器,最后例如由操作台上的显示器直观地显示所有结果。而整个检测过程由操作台发出指令,控制***控制检查过程。
如图4结合图1所示,分段式检测通道平移装置适于在较长的行程中实现经微调后的平直轨迹货物输送,且适于在平移输出装置上、以及平移输出装置与平移输入装置之间进行往复输送以实现正反向水平视角扫描。
类似地,在其它实施例中,可以基于上述基本的第一实施例实现多 个修改和变型。
第二实施例
补充地或可替代地,根据本发明的发明构思,在如前实施例所述的单一检测功能的集装物检测***及其组合输送装置基础上,为了实现不同视角的扫描功能,例如兼具水平视角和垂直视角的X射线检查***,本发明的又一实施例进一步提供了一种用于多检测功能的集装物检查***的组合输送装置。如图5所示,本发明的又一实施例提供了同时具备X射线水平视角探测臂架和竖直视角探测臂架以实现复合探测功能的检查***及其组合输送装置。如图5所示,在某些应用场合中,诸如同时要求对集装货物进行水平视角的正反向扫描和竖直视角扫描以建立货物的更完整三维信息图像采集时,沿着检测通道的延伸方向
平行地设置分别呈龙门架结构的一个水平视角探测臂架组件和一个竖直视角探测臂架组件;相应地,考虑到进一步增加的检测通道方向送进的平移行程,若仍旧采用两个如前所述的辊式平移输送机构作为平移输入和输出装置,则必然对于由交叉地布置的支杆所构成的活动叉架和作为驱动器件的液压缸杠的尺寸规格和行程方面的需要进一步增加,从而导致成本更加昂贵。实际上,在从检测通道向外输出检测中的以及经检测的货物时,考虑到本发明所针对的检测对象,主要为整体式的、大体积的集装货物或货物转运托盘,因而无需连续表面的输送机构,且检后输出过程中对于除大致水平平移以外的货物轨迹控制并无严格要求,因而本发明的又一实施例还构思了一种基于现有的传送带或板链式输送装置而改进的、适于检后输出大体积集装货物的并行链-带式输送装置,用以部分地替代如第一实施例中的以辊式输送机构构成的分段式检测通道平移装置,特别是平移输出装置14。从而如图5示意性示出的,例如,以两个前述的辊式输送机构分别充当上载装置11’、下载装置12’,而以此处所述的的并行链-带式输送机构4分别充当平移输入装置13’和平移输出装置14’。当然,在实际应用中,考虑到在检测通道中额外布置了X射线竖直视角探测臂架,相应地,平移输入装置的长度应确保在检测期间集装物需整体以平稳输送状态被所述平移输入装置载运通过 检测通道,而检查之后,平移输出装置的长度的重要程度不如平移输入装置的长度般重要,从而平移输入装置和平移输出装置并不必选择为相同类型或尺寸规格,诸如也可以替代为优选地以三个如前所述的辊式输送机构分别充当上载装置11’、下载装置12’,平移输入装置13’,且以此处所述的并行链-带式输送机构4替代地充当平移输出装置。
下面以例示方式解释作为替代性平移输出装置的并行链-带式输送装置的结构和工作原理。如图5中的平移输出装置4具体地采用一种并行链-带式输送装置,其具体结构如图6中的正视示意图和局部放大图所示。
如图6所示,平移输出装置4采用在传送带或板链式输送装置基础上改进的一种并行链-带式输送装置,包括沿检测通道方向延伸的纵长的机架403,所述机架403由沿其长度方向间隔布置的多个竖立的支撑柱407固支成与地面平行的;作为驱动源的沿机架长度方向布置的电机401;布置于机架中部的驱动轮系401’和固支于机架两端的端部张紧辊405,它们的旋转轴方向均为垂直于机架长度方向且平行于水平面,所述驱动轮系401’由电机带动旋转以改变驱动力矩方向,驱动轮系401’的中的主动辊轮402以及机架两端的端部张紧辊的周缘中均嵌入有多条沿机架长度方向平行延伸且在横向间隔开的牵引链条404,所述多条牵引链条404在工作时绕主动辊轮和端部张紧辊呈绷紧状态的上下侧平行反向运行的封闭长椭圆形传送路径;沿机架的长度方向,所述多条牵引链条404的封闭长椭圆形传送路径每隔一段距离平行地布置有横向延伸的张紧辊,以用于确保牵引链条的绷紧状态以向其上的货物施加有效的静摩擦力以随着牵引链条运动,并且对集装货物起到辅助支撑作用。
所述多条牵引链条404之间的横向间隔优选地为等距的,更优选地为中间密集且边缘稀疏布置的以便利通常置于该输送装置较内侧的集装货物的支撑。牵引链条404全程张紧使其上下侧的平行反向运动的长度相等,不存在松边、紧边的差异,输送装置若为了实现例如对货物的反向扫描时进行反向运行也不会发生“堆链”现象导致驱动故障。并且链沿着机架长度方向的各部分牵引力大小基本不变,从而实现此并行链-带式输送机的自如往复传动。并且由于采用横向间隔开的多个平行链条 辅以纵向间隔的多个张紧辊来支撑集装货物,从而不需要在链条上敷设例如成片衬垫材料或面板以构成连续输送表面,从而节省了材料,降低了成本,简化了结构。同时仍旧保留了常规的传送带或板式、板链式输送装置的占地面积小、结构简单、设计合理的特点,由于可以正常频繁往复使用,更提高了集装货物输送与检查的效率,扩大了应用范围。
并且,根据本发明的发明构思,本发明的实施例还提供了一种同时具备X射线水平视角探测臂架和竖直视角探测臂架以实现复合探测功能的集装物检查***。如图5所示,输送集装箱检查***包括:输送装置组件1’;X射线水平视角探测臂组件2、和X射线竖直视角探测臂组件2’,二者各自包含辐射源、探测器臂架、探测器等;在输送装置组件1和探测臂架组件2、2’以外设置的X射线操控舱体3;以及辐射屏蔽墙(未示出),位于包含辐射源、输送装置和探测器臂架组件外侧,用于屏蔽防止射线泄露至周围环境。其中,例如,所述射线操控舱体3内通常安装有扫描控制模块、图像获取模块、运行检查器、控制***、数据处理单元等。且更具体地,X射线水平视角探测臂组件2如前所述,不再赘述。而如图7所示,所述射线竖直视角探测臂组件2优选地包括:由左右侧的两个探测器竖臂立柱在端部固支的悬空的加速器舱209’,位于加速器舱209内且出射口向下的X射线加速器210’,作为辐射源,用于产生并出射X射线,且加速器舱209’布置成确保射线出射张角范围覆盖探测器臂上按阵列布置的探测器;标定装置;安装于加速器舱下表面处的准直器207’,以例如将出射X射线调整为竖直向下传播的扇面以覆盖整个探测器臂范围上的探测器;探测器竖臂立柱和容纳于其中内侧处的探测器左竖臂2021和探测器右竖臂2022、以及在地面附近布置于探测器左竖臂2021和探测器右竖臂2022之间的探测器横臂204’,所述准直器207’、探测器横臂204’、探测器左竖臂2021和探测器右竖臂2022在同一竖直面内组成稳定的龙门架结构,探测器以阵列方式安装于探测臂架组件2中例如分别安装于探测器横臂和探测器竖臂内,从而横、竖臂中的探测器笔端与射线平面例如扇面共面。其中,用于输送需检查货物的输送装置205’位于所述龙门架结构下方并基本上垂直地延伸穿过其中。输送装置 205’是输送装置组件1的一部分,例如为前文所述的并行链-带式输送装置4。所述龙门架结构和输送装置共同构成周围封闭且沿输送装置的延伸方向在两侧敞开的检测通道,所述检测通道充当辐射检查的场所。
除了由于探测器臂布置的不同,竖直视角探测臂架组件的工作方式与水平视角探测臂架组件类似,均为本领域普通技术人员所熟知,在此不再赘述。
由此,由至少一个如上所述的并行链-带式输送装置4、以及前述的辊式输送机构共同构成的分段式检测通道平移装置适于在较长的行程中实现同时布置水平视角和竖直视角扫描组件,且可实现相对较低成本和简单结构的集装货物输出,以及便于往复输送以实现正反向水平视角扫描。
第三实施例
补充地或可替代地,根据本发明的发明构思,在如前实施例所述的单一或复合检测功能的集装物检测***及其组合输送装置基础上,可实现多辐射源的复合检测功能的集装物检测***及其组合输送装置。例如,,例如还提供了一种同时具备X射线水平视角探测臂架和中子扫描探测臂架以实现多辐射源复合探测功能的集装物检查***。如图8所示,其中,组合输送装置例如与第二实施例中类似,包括上载装置11”、下载装置12”,分段式检测通道平移装置,其中以两个前述的辊式输送机构分别充当上载装置11’、下载装置12’,而以此处所述的的并行链-带式输送机构4分别充当平移输入装置13’和平移输出装置14’。即采用并行链-带式输送装置4同时作为平移输入和输出装置。其中所述分段式检测通道平移装置包括如前所述的辊式输送机构13”作为平移输入装置、以及并行链-带式输送装置4作为平移输出装置。当然,如图9所述,在实际应用中,考虑到在检测通道中额外布置了中子扫描探测臂架,相应地,平移输入装置的长度应确保在检测期间集装物需整体以平稳输送状态被所述平移输入装置载运通过检测通道,而检查之后,平移输出装置的长度的重要程度不如平移输入装置的长度般重要,从而平移输入装置和平移输出装置并不必选择为相同类型或尺寸规格,诸如也可以替代为优 选地所述分段式检测通道平移装置包括如前所述的辊式输送机构13”作为平移输入装置、以及并行链-带式输送机构4作为平移输出装置。
并且,根据本发明的发明构思,本发明的实施例还提供了一种同时具备X射线水平视角探测臂架和中子扫描探测臂架以实现多辐射源复合探测功能的集装物检查***。如图9所示,输送中子扫描探测臂架组件2”在机构上类似于X射线水平视角探测臂架组件2,除了其中子舱209’基本上在地面上水平布置而无倾角,因为这样的布置和中子源发射特性足以确保中子射线的出射张角覆盖探测臂上的阵列布置的探测器。另外,在中子舱和检测通道外侧附近的探测器竖臂立柱外侧,均密布地覆盖或填充了中子屏蔽材料以避免外泄中子射线对环境的辐射污染。
类似地,在其它实施例中,基于上述优选实施例实现多个修改和变型。
在另一个实施例中,作为示例,所述组合输送装置的所述平移装置中的平移输入装置和平移输出装置可选择为不同尺寸,特别是例如长度,以适用于构造采用不同检查方式的集装箱检查***的需求,例如,较之如图4所述的水平视角X射线检查***而言,则如图7所示的水平视角加竖直视角X射线检查***,或如图8所示的水平视角X射线加中子检查***中的组合输送装置的平移输出装置具备更大的长度。
考虑到由于在进入检测通道之间和从检测通道退出之后需要以比在检测通道内更快的速度运行,并且在平移输入装置和平移输出装置二者交会处往往由于速度差异导致的滑动摩擦导致货物相对于承载其的组合输送装置不再保持相对静止而是滑移错位从而导致磕碰或冲击,不仅有损于检测质量,而且容易影响输送装置的传动和动力部件的寿命。从而,作为替代或补充,为了确保待检查的货物经受集装箱检查***的成像检查期间能够实现货物在检测通道中的平缓且检测时间可调的输送、并且实现在平移输入装置与平移输出装置之间的不相等速率的平滑转换,所述组合输送装置例如还包括设置于平移输入装置与平移输出装置之间的缓冲输送装置。所述缓冲输送装置包括两个分别位于两端处的变速区段和位于二者之间的缓冲区段,在两端处的变速区段分别与平移 输入装置的末端和平移输出装置的开始端紧密但不接触地邻接,且所述缓冲区段的长度大于或基本上等于所述检测通道的长度;两端的变速区段以及中间的缓冲区段均包括平行布置的且旋转轴线均与货物输送方向垂直的多个托辊,其中每个区段的托辊经由超越离合器与各自的电机相连,且所述变速区段的超越离合器还经由电机减速器而连接至电机,以及所述缓冲区段还包括多个位置传感器用于发出快慢速转换信号。当货物在变速区段与缓冲区段之间转移时,例如从变速区段向缓冲区段转移时,货物从二者中待脱离的起始区段向待转移至的目标区段移动,变速区段的电机接受指令,经由超越离合器使得目标区段的托辊变为从动辊,从而使得货物在几乎无速度差的状态下逐渐向目标区段转移;当位置传感器感测到转移过程基本结束时,发出指令使起始区段的托辊在超越离合器的作用下变为从动辊,从而使得货物几乎以无速度差的状态完全脱离起始区段。通过这样设置于平移输入装置与平移输出装置之间的缓冲输送装置,由于无需在不同段之间的间歇调整、停止或降速转移,不仅便利于在输送组合输送装置的不同段之间实现无时间间隙的货物连续且无滑移冲击地送进从而提高输送和检测效率,而且货物也可以在缓冲区段中整体以均匀且可调的速度行进经过检测通道。
作为补充,所述缓冲输送装置也可额外地布置于上载装置与平移输入装置之间,或者平移输出装置与下载装置之间,以实现无滑移冲击的货物平稳转移/过渡和便于连续无间歇地输送。
在又一个实施例中,作为示例,补充地,在所述缓冲输送装置的缓冲区段上还可额外地设置阻挡件,用于当货物整体进入所述缓冲区段时候相对固定所述货物,例如设置在所述缓冲区段至少一端处并且例如沿宽度方向可从所述缓冲区段的侧部向中部突伸的可伸缩的阻挡件(诸如阻挡板、阻挡条),当位置传感器感测到所述货物完全转移至所述缓冲区段上时,所述阻挡件突伸以防止货物在输送过程中脱离。
作为补充,所述上载装置或所述下载装置也可具备阻挡装置,并且所述阻挡装置的高度设置为小于等于所述上载装置或下载装置的竖直移动集装物的范围,从而使得在输送期间从货物的底部进行阻挡、而同 时不阻碍货物在需从所述上载装置或所述下载装置转移时的升降操作。
另外,在再一个实施例中,作为示例,补充地,为了确保待检查货物基本上在所述组合输送装置的宽度方向即横向上对中且沿基本上平行于长度方向输送,所述组合输送装置还例如可具备横向移位货物的功能,例如通过具备可横向移位的机架的缓冲输送装置而实现。优选地,例如,在一种如前所述的示例性缓冲输送装置中,其还具备可横向移位的机架、在上游辊两端设置的一对张紧轮和在下游居中设置于可横向移位的机架上的定向轮,以及张紧于张紧轮与定向轮之间的横向定位皮带。当需要对承载于所述缓冲输送装置上的货物进行横向移位时,所述机架能够沿着横向对中地移动,从而其上所安置的定向轮也随之对中地移位,以改变由其上所缠绕的横向定位皮带所限定的横向对中位置。这种横向对中操作可以适应不同尺寸和形状的物品,并能够在输送物品的同时实现对中操作。
并且额外地,在再又一个实施例中,作为示例,考虑到在同一组合输送装置上载运货物以进行成像检查时,由于通常情况下货物的形状、尺寸大小等有所不同,在货物达到上载装置、或从上载装置转移至平移输入装置时发生侧滚、倾覆等不利于成像检查的姿态变动的情况下,需要对输送带上的货物进行翻转调整。作为对手动或人工操作器械进行货物翻转操作的替代或补充,所述组合输送装置例如还包括优选地设置于所述平移输入装置上用于在货物进入检测通道之前自动对货物进行翻转调整的翻转装置,包括设置于所述平移输入装置的载运平面的底部或侧部处的至少一个翻转单元,所述至少一个翻转单元中的每个包括固连至所述平移输入装置的机架上的翻转轴,和沿所述翻转轴径向延伸且沿周向规则地间隔开的多个翻转件,诸如翻转杆或翻转板,以及联接至所述翻转轴的驱动源。所述多个翻转杆或翻转板例如沿周向规则地间隔开固定角度,诸如90度。
所述翻转装置还例如优选地包括沿着货物输送方向依序地以一定角度和距离间隔开布置的多个翻转单元,以协同工作实现对较大尺寸或不规则廓形的货物的翻转。
最后,在再有一个实施例中,作为替代或补充,所述组合输送装置中的平移装置以及缓冲输送装置的具体形式除了上文所述的辊式输送机构和并行链-带式输送装置,还可包括诸如辊道输送机构、链条式输送机构、板链式输送机构,或逐段滑移输送的滑橇式输送机构,等等。
在上述详细描述中,主要描述了为了实现在检测通道中同时布置多种扫描功能的检查***,检查***的相应输送装置的组合方式,特别是采取的可便利升降、平移和单端成角度枢转微调的辊式输送机构、和不具备连续表面的并行链-带式输送装置的组合。在此,为了不混淆本发明的主要发明方面,不再对检查***的其它部分及其工作流程进行详细描述。
针对于此,本发明的主要发明构思在于,在实际应用中,特别是可以根据需要选择分段式检测通道平移装置的组成,例如根据场地基建情况诸如地面不平度、检测通道所需行程长度、往返输送以实现正反向视角的空间需要、成本考虑、场地所需安装尺寸等进行综合考虑进行具体输送装置的选择和组合,例如包括以上的辊式输送机构和并行链-带式输送装置各一,或均为并行链-带式输送装置,或均为辊式输送装置。
因此,本发明提供一种改进的用于集装物品的检查***及适用于其中的模块化/组合式输送装置,不仅能够在有限空间中根据客户需求整合多视角扫描功能和/或多辐射源,并且可根据场地条件、客户需求定制具体的输送装置进行组合。
本发明的有益技术效果在于,首先,组合方式构件的集装物输送装置占地面积小,可根据场地需求选择且安装组合方式灵活;
进而,可选的辊式输送机构和并行链-带式输送装置各自具备不同的优点,例如前者可实现升降、平移、绕上平面单端的枢转以补偿地面不平度。后者则可以实现简单结构下仍旧保持对集装物的有效承载和高效输送,且二者均适于往复输送便于正反向扫描。
最后,在需要组合多种扫描视角的臂架***和多种辐射源时,增大的输送行程可以根据不同要求选择不同的输送装置组合方式,便于在保持结构简单、安装方便、运行高效的同时维持较低成本和客制化定制的 灵活性。
在下面的说明书中可能涉及个别特征以及涉及特征的组合。应了解前文的一般描述和下文的详细描述是只是示例性的和解释性的、且并非是对本文所公开的实施例所基于的广泛创造性构思的限制。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各实施例之间相同相似的部分互相参见即可。
以上的说明书、实例和数据提供对本发明所披露的一种用于集装物检查***的组合输送装置、及集装物检查***的完整描述,本文中对本发明的优选实施方式进行阐述,以上实施例的说明只是用于帮助理解本发明及其核心思想,而并非旨在对本发明的范围进行限定;同时,虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不脱离本发明设计精神和范围的前提下可对本发明技术方案做出的各种具体实施方式及应用范围方面的修改、等同替换、和改进,均应落入本发明后文中的权利要求书及其等同物所限定的保护范围内。且本发明的各实施例中记载的技术特征可以相互组合形成新技术方案,该组成的新技术方案也落入到本发明的权利要求的范围内。

Claims (24)

  1. 一种用于集装物检查***的组合输送装置,所述组合输送装置被配置用以通过所述集装物检查***的检测通道来输送集装物其中,所述组合输送装置包括:
    平移装置,所述平移装置具备承载所述集装物的可动水平承载面,且所述平移装置布置成延伸穿过所述检测通道;
    上载装置,所述上载装置具备承载并抬升所述集装物的可驱动的第一承载面;以及
    下载装置,所述下载装置具备承载并降低所述集装物的可驱动的第二承载面;
    其中,所述第一承载面的第一起始端是可动的以定位于地面附近,且所述第一承载面的第一终止端是可动的以不接触地紧邻于并且所处高度齐平于所述平移装置的可动水平承载面的初始端;
    所述第二承载面的第二起始端是可动的以不接触地紧邻于并且所处高度齐平于所述平移装置的可动水平承载面的终结端,且所述第二承载面的第二终止端是可动的以定位于地面附近;并且
    所述平移装置包括至少一个平移机构。
  2. 根据权利要求1所述的组合输送装置,其中,所述平移装置包括呈分段式布置的两个平移机构,所述两个平移机构配置为各自在一相邻端部处以不接触方式紧邻的平移输入装置和平移输出装置。
  3. 根据权利要求2所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置二者紧邻的端部是在检测通道内或附近处彼此邻接但不干扰地交会的各自的内侧端。
  4. 根据权利要求2所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置各自在二者紧邻的端部处具备基本同步的速度。
  5. 根据权利要求2所述的组合输送装置,其中,所述上载装置、所述下载装置是辊式输送机构,所述辊式输送机构包括:上平台;下平台,设置于地面附近;由以长度方向的中点铰接在一起而交叉地布置的两个支杆所构成的活动叉架,所述活动叉架布置于上平台与下平台之间,且两个支杆的各端部分别铰接固定至上平台和下平台的相应端部;伸缩 杆致动器,其两端分别可枢转地固定至与活动叉架的两支杆的交点上;及安装于上平台上并且彼此并排紧邻地与待输送所述集装物的方向正交布置的多个辊单元。
  6. 根据权利要求5所述的组合输送装置,其中,所述伸缩杆致动器的伸长和缩短之一的动作导致活动叉架的支杆绕其与伸缩杆致动器的交点枢转,相应地实现上平台的抬升和降低之一。
  7. 根据权利要求5所述的组合输送装置,其中,所述上平台的每个端部可绕活动叉架成角度地枢转。
  8. 根据权利要求5所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置中的至少一个为所述辊式输送机构。
  9. 根据权利要求5所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置分别为包括如下的输送机构的组中之一:
    所述辊式输送机构;
    以及除所述辊式输送机构以外的具备连续表面的如下输送机构:辊道输送机构、链条式输送机构、板链式输送机构、和在其各个分段之间逐段滑移输送的滑橇式输送机构。
  10. 根据权利要求5所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置二者中的至少一个是并行链-带式输送装置,所述并行链-带式输送装置包括:
    沿检测通道延伸的纵长的机架,所述机架由沿其长度方向间隔布置的多个竖立的支撑柱固支成与地面基本上平行;
    固定于机架上的电机;和
    布置于机架中部且连接至电机的驱动轮系,以及固支于机架两端的端部张紧辊,所述驱动轮系和端部张紧辊的旋转轴被定向成均垂直于机架长度方向且平行于水平面;
    其中,驱动轮系中的主动辊轮、以及端部张紧辊的周缘中均嵌入有多条沿机架长度方向平行延伸且在横向间隔开的牵引链条,所述多条牵引链条绕主动辊轮和端部张紧辊呈绷紧状态的上下侧平行反向运行的封闭长椭圆形传送路径;以及
    所述多条牵引链条沿机架长度方向的封闭长椭圆形传送路径中每 隔一段距离平行地布置有横向延伸的张紧辊。
  11. 根据权利要求9或10所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置是相同类型的输送机构。
  12. 根据权利要求11所述的组合输送装置,其中,所述平移输入装置和所述平移输出装置具备相同尺寸规格。
  13. 根据权利要求1或2所述的组合输送装置,其中,所述组合输送装置还包括设置于所述上载装置与所述下载装置之间的缓冲输送装置,所述缓冲输送装置包括两个分别位于两端处的变速区段和位于二者之间的缓冲区段,两端的变速区段以及中间的缓冲区段各自包括平行布置的且旋转轴线均与待输送所述集装物的方向垂直的多个托辊,
    其中每个区段的托辊经由超越离合器与各自的电机相连,且所述变速区段的超越离合器还经由电机减速器而连接至电机,
    其中在所述集装物在变速区段与缓冲区段之间转移时,在待转移至的区段中,超越离合器使托辊成为从动托辊,同时在所述集装物转移出的区段中,托辊充当驱动托辊;当所述集装物的转移即将结束时,在所述集装物转移出的区段中,超越离合器使托辊变为从动托辊,同时在待转移至的区段中,托辊充当驱动托辊。
  14. 根据权利要求13所述的组合输送装置,其中,所述缓冲区段的长度大于或基本上等于所述检测通道的长度。
  15. 根据权利要求13所述的组合输送装置,其中,所述缓冲输送装置充当所述平移装置,且所述两个变速区段分别与所述上载装置的第一终止端和所述下载装置的第二起始端紧密但不接触地邻接。
  16. 根据权利要求13所述的组合输送装置,其中,所述缓冲输送装置设置于平移输入装置与平移输出装置之间,其所述两个变速区段分别与所述平移输入装置的终结端和所述平移输出装置的初始端紧密但不接触地邻接。
  17. 根据权利要求16所述的组合输送装置,其中,与所述缓冲输送装置相同类型的额外的输送装置还被设置于所述上载装置与所述平移输入装置之间。
  18. 根据权利要求16所述的组合输送装置,其中,与所述缓冲输 送装置相同类型的额外的输送装置还被设置于所述平移输出装置与所述下载装置之间。
  19. 根据权利要求1所述的组合输送装置,其中,所述上载装置的第一终止端和所述下载装置的第二起始端中的至少一个包括阻挡装置,且所述阻挡装置的高度设置为不大于所述上载装置或下载装置的竖直移动集装物的范围。
  20. 根据权利要求13所述的组合输送装置,其中,所述缓冲输送装置还包括具备可横向移位的底架。
  21. 根据权利要求20所述的组合输送装置,其中,所述缓冲输送装置还包括在其上游的托辊两端设置的一对张紧轮和在其下游居中设置于可横向移位的底架上的定向轮,以及张紧于张紧轮与定向轮之间的横向定位皮带。
  22. 根据权利要求2所述的组合输送装置,其中,所述组合输送装置包括翻转装置,所述翻转装置包括设置于所述平移输入装置的载运平面的底部或侧部处的至少一个翻转单元。
  23. 根据权利要求22所述的组合输送装置,其中,所述至少一个翻转单元中的每个包括固连至所述平移输入装置的机架上的翻转轴,和沿所述翻转轴径向延伸且沿周向规则地间隔开的多个翻转件,以及联接至所述翻转轴的驱动源。
  24. 一种集装物检查***,包括:辐射源;准直器;至少一个探测臂架组件,包括探测器横臂和探测器竖臂,所述探测臂架组件和准直器共面且形成龙门架结构;从所述龙门架结构下方基本上垂直地延伸贯穿的根据前述权利要求中任一项所述的组合输送装置。
PCT/CN2017/100724 2016-09-29 2017-09-06 用于集装物检查***的组合输送装置、及集装物检查*** WO2018059201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610865028.0 2016-09-29
CN201610865028.0A CN106185226B (zh) 2016-09-29 2016-09-29 用于集装物检查***的检测通道的组合输送装置、及集装物检查***

Publications (1)

Publication Number Publication Date
WO2018059201A1 true WO2018059201A1 (zh) 2018-04-05

Family

ID=57521007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100724 WO2018059201A1 (zh) 2016-09-29 2017-09-06 用于集装物检查***的组合输送装置、及集装物检查***

Country Status (4)

Country Link
EP (1) EP3301486A1 (zh)
CN (1) CN106185226B (zh)
AU (1) AU2017236003B2 (zh)
WO (1) WO2018059201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963572A (zh) * 2021-10-08 2023-04-14 同方威视技术股份有限公司 姿态调整结构、传输装置、辐射成像***

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106185226B (zh) * 2016-09-29 2019-05-03 同方威视技术股份有限公司 用于集装物检查***的检测通道的组合输送装置、及集装物检查***
CN106768218A (zh) * 2016-12-13 2017-05-31 中车唐山机车车辆有限公司 测量装置
US10444400B2 (en) * 2017-02-20 2019-10-15 Morpho Detection, Llc Tray conveyor baggage handling and imaging system
CN107826787B (zh) * 2017-10-11 2024-01-12 湖北敏实汽车零部件有限公司 门框上条堆垛自动化线
CN108037542A (zh) 2017-12-27 2018-05-15 清华大学 车辆检测***
CN108715316A (zh) * 2018-07-12 2018-10-30 同方威视技术股份有限公司 输送装置及具有该输送装置的成像检测设备
CN109835687B (zh) * 2019-03-21 2024-05-07 北京华力兴科技发展有限责任公司 车辆输送装置和车辆辐射扫描检测***
CN110406924B (zh) * 2019-07-29 2024-06-25 博众精工科技股份有限公司 一种双向传输式装配流水线
CN111598147B (zh) * 2020-04-28 2021-02-05 合肥格泉智能科技有限公司 一种基于ct设备国际快件图像查验装置及***
CN112046998B (zh) * 2020-09-15 2021-12-07 中汽昌兴(洛阳)机电设备工程有限公司 一种滑橇及其汽车生产线
CN112278633B (zh) * 2020-10-28 2022-07-26 宁波伟隆港口机械有限公司 一种集装箱锁具自动拆装***
CN114604588B (zh) * 2020-12-04 2023-05-23 同方威视技术股份有限公司 输送装置、以及检查***
CN116812439B (zh) * 2022-07-04 2024-05-31 同方威视技术股份有限公司 传送***以及检测设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405555A (zh) * 2001-08-14 2003-03-26 清华大学 航空集装箱/托盘货物检查***
CN2645971Y (zh) * 2003-10-16 2004-10-06 清华大学 用于集装箱检查***的双辐射源框架结构
CN1778648A (zh) * 2004-11-26 2006-05-31 清华同方威视技术股份有限公司 一种适用于大型集装箱检查***的输送装置
CN2869856Y (zh) * 2006-01-11 2007-02-14 清华大学 一种大型航空集装货物检查装置
CN101000312A (zh) * 2006-01-11 2007-07-18 清华大学 一种大型航空集装货物检查***
CN200996943Y (zh) * 2006-10-09 2007-12-26 同方威视技术股份有限公司 一种货物检查设备
CN101209778A (zh) * 2006-12-28 2008-07-02 同方威视技术股份有限公司 翻转装置
CN101439804A (zh) * 2007-11-20 2009-05-27 同方威视技术股份有限公司 辊道输送缓冲段
CN106185226A (zh) * 2016-09-29 2016-12-07 同方威视技术股份有限公司 用于集装物检查***的组合输送装置、及集装物检查***
CN206384480U (zh) * 2016-09-29 2017-08-08 同方威视技术股份有限公司 用于集装物检查***的检测通道的组合输送装置、及集装物检查***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7241981A (en) * 1980-07-07 1982-01-14 Nominees, C.G.L. Pty. Ltd. Heavy duty conveyor
JP2003050216A (ja) * 2001-08-06 2003-02-21 Shimadzu Corp X線検査装置
US6542580B1 (en) * 2002-01-15 2003-04-01 Rapiscan Security Products (Usa), Inc. Relocatable X-ray imaging system and method for inspecting vehicles and containers
US7062011B1 (en) * 2002-12-10 2006-06-13 Analogic Corporation Cargo container tomography scanning system
US9733384B2 (en) * 2013-10-03 2017-08-15 System Square Inc. Package inspection system
CN104749649B (zh) * 2013-12-26 2019-02-22 同方威视技术股份有限公司 一种用于集装箱的检查***
CN204078732U (zh) * 2014-10-09 2015-01-07 毕玉玲 一种组合式辊道输送设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1405555A (zh) * 2001-08-14 2003-03-26 清华大学 航空集装箱/托盘货物检查***
CN2645971Y (zh) * 2003-10-16 2004-10-06 清华大学 用于集装箱检查***的双辐射源框架结构
CN1778648A (zh) * 2004-11-26 2006-05-31 清华同方威视技术股份有限公司 一种适用于大型集装箱检查***的输送装置
CN2869856Y (zh) * 2006-01-11 2007-02-14 清华大学 一种大型航空集装货物检查装置
CN101000312A (zh) * 2006-01-11 2007-07-18 清华大学 一种大型航空集装货物检查***
CN200996943Y (zh) * 2006-10-09 2007-12-26 同方威视技术股份有限公司 一种货物检查设备
CN101209778A (zh) * 2006-12-28 2008-07-02 同方威视技术股份有限公司 翻转装置
CN101439804A (zh) * 2007-11-20 2009-05-27 同方威视技术股份有限公司 辊道输送缓冲段
CN106185226A (zh) * 2016-09-29 2016-12-07 同方威视技术股份有限公司 用于集装物检查***的组合输送装置、及集装物检查***
CN206384480U (zh) * 2016-09-29 2017-08-08 同方威视技术股份有限公司 用于集装物检查***的检测通道的组合输送装置、及集装物检查***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963572A (zh) * 2021-10-08 2023-04-14 同方威视技术股份有限公司 姿态调整结构、传输装置、辐射成像***
CN115963572B (zh) * 2021-10-08 2024-05-07 同方威视技术股份有限公司 姿态调整结构、传输装置、辐射成像***

Also Published As

Publication number Publication date
AU2017236003A1 (en) 2018-04-12
AU2017236003B2 (en) 2019-02-14
CN106185226B (zh) 2019-05-03
CN106185226A (zh) 2016-12-07
EP3301486A1 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2018059201A1 (zh) 用于集装物检查***的组合输送装置、及集装物检查***
AU2007204529B2 (en) An inspection system for inspecting cargo using radiation
WO2021259238A1 (zh) 输送装置、以及检查***
US7317782B2 (en) Radiation scanning of cargo conveyances at seaports and the like
RU2291415C2 (ru) Система контроля авиационных грузов или транспортных средств
AU775376B2 (en) A container inspection device
US20050185757A1 (en) Apparatus and method for nonintrusively inspecting an object
CN107576991B (zh) 车辆检测***
CN101349657A (zh) 轿车辐射成像检测***
TWI309298B (zh)
CN206384480U (zh) 用于集装物检查***的检测通道的组合输送装置、及集装物检查***
CN201268301Y (zh) 车辆输送装置和具有该车辆输送装置的车辆辐射检测***
US20240103196A1 (en) Radiographic inspection device and method of inspecting object
JP2015001383A (ja) X線検査用車両搬送装置
JP2014153099A (ja) X線検査用車両搬送装置
WO2022143164A1 (zh) 辐射检查***
WO2021114858A1 (zh) 安检设备、安检方法和仓储***
JP2014153235A (ja) X線検査用車両搬送装置
US20240159694A1 (en) Radiographic inspection device and method of inspecting object
US20240210333A1 (en) Radiographic inspection device and method of inspecting object
US20240156293A1 (en) Radiographic inspection device and method of inspecting object
CN100445185C (zh) 一种适用于大型集装箱检查***的输送装置
CN115144923B (zh) 射线检查设备和车载安检***
CN115144919B (zh) 射线检查设备和车载安检***
CN115144921B (zh) 射线检查设备和车载安检***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854651

Country of ref document: EP

Kind code of ref document: A1