WO2018059095A1 - 一种波束扫描方法及相关设备 - Google Patents

一种波束扫描方法及相关设备 Download PDF

Info

Publication number
WO2018059095A1
WO2018059095A1 PCT/CN2017/094347 CN2017094347W WO2018059095A1 WO 2018059095 A1 WO2018059095 A1 WO 2018059095A1 CN 2017094347 W CN2017094347 W CN 2017094347W WO 2018059095 A1 WO2018059095 A1 WO 2018059095A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
transmit
beams
transmit beam
transmitter
Prior art date
Application number
PCT/CN2017/094347
Other languages
English (en)
French (fr)
Inventor
苏昕
高秋彬
陈润华
拉盖施
李传军
王蒙军
李辉
黄秋萍
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP17854549.7A priority Critical patent/EP3522385A4/en
Priority to US16/338,322 priority patent/US10892805B2/en
Publication of WO2018059095A1 publication Critical patent/WO2018059095A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a beam scanning method and related devices.
  • LTE Long Term Evolution
  • LTE-Advanced Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • LTE Rel-8 up to 4 layers of MIMO transmission can be supported.
  • Rel-9 focuses on multi-user MIMO (Multi-User MIMO, MU-MIMO) technology, and supports up to four downlink data layers in MU-MIMO transmission in Transmission Mode (TM)-8.
  • Rel-10 is further improved by the introduction of 8-port Channel State Information-Reference Signals (CSI-RS), UE-specific Reference Signal (URS) and multi-granular codebooks.
  • CSI-RS Channel State Information-Reference Signals
  • URS UE-specific Reference Signal
  • multi-granular codebooks multi-granular codebooks.
  • the spatial resolution of the channel state information is further extended to the single-user MIMO (Single-User MIMO, SU-MIMO) transmission capability to a maximum of 8 data layers.
  • a base station antenna system using a passive passive antenna system multiple antenna ports are horizontally arranged, and each port corresponds to an independent radio frequency-intermediate frequency-baseband channel, and each port corresponds to a plurality of vertical dimensions.
  • the antennas are connected by a radio frequency cable. Therefore, the existing MIMO technology can only optimize the horizontal dimensional characteristics of each terminal (User Equipment, UE) signal by adjusting the relative amplitude and/or phase between different ports in the horizontal dimension. Use a uniform sector level shaping.
  • AAS Active Antenna System
  • the base station antenna system can obtain greater degrees of freedom in the vertical dimension, and can realize signal optimization at the terminal level in a three-dimensional space.
  • Massive MIMO technology requires the use of large-scale antenna arrays. Although an all-digital array can achieve maximum spatial resolution and optimal MU-MIMO performance, this architecture requires a large number of AD/DA (analog-to-digital-to-analog conversion) devices and a large number of complete RF-baseband processing channels. Whether it is equipment cost or baseband processing complexity will be a huge burden. This problem is particularly prominent in high frequency bands and large bandwidths.
  • AD/DA analog-to-digital-to-analog conversion
  • digital-analog hybrid beamforming refers to adding a first-order analog beamforming to the radio frequency signal near the front end of the antenna system based on the traditional digital domain beamforming.
  • Analog beamforming enables a relatively coarse match between the transmitted signal and the channel in a relatively simple manner.
  • the dimension of the equivalent channel formed after the analog beamforming is smaller than the actual number of antennas, so the AD/DA conversion device, the number of digital channels and the corresponding baseband processing complexity required after the analog beamforming are greatly reduced.
  • the residual interference of the analog beamforming portion can be processed again in the digital domain to ensure the quality of the MU-MIMO transmission.
  • digital-analog hybrid beamforming is a compromise between performance and complexity. It has a high practical prospect in systems with high bandwidth and large antennas.
  • the channel state information accuracy that can be obtained by the network side directly determines the accuracy of precoding/beamforming and the performance of the scheduling algorithm, thereby affecting the overall system performance. Therefore, the acquisition of channel state information has always been one of the core issues in the standardization of MIMO technology.
  • the reference signals are all inserted in the baseband, so the channel state required for digital beamforming can be obtained by channel estimation of the reference signal in the baseband signal.
  • the dimension of the channel matrix obtained by the reference signal is much lower than the dimension of the complete channel matrix experienced by the antenna. Therefore, the spatial resolution and interference suppression capability that digital beamforming can achieve is somewhat lost.
  • the processing of the analog beamforming portion is closer to the physical antenna side, and the digital beamformed MIMO channel has a higher degree of freedom.
  • the analog beamforming part cannot directly utilize the channel obtained by the digital domain regardless of Frequency Division Duplex (FDD) or Time Division Duplex (TDD). status information.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the selection of the analog beam can only be searched by (or The method of training is called).
  • the transmitting end transmits a set of beams
  • the receiving end also uses a predetermined set of beams for tentative reception to determine the best combination of transmitting and receiving beams.
  • the channel conditions change (such as occlusion)
  • the system will re-enter the beam search phase, and a traversal search of the potential transceiver beam combination is required.
  • the embodiment of the present invention provides a beam scanning method and related equipment, which is used to solve the process of traversing and searching for a potential transmitting and receiving beam combination to determine an optimal transmitting and receiving beam, which requires a large amount of system overhead, reduces system efficiency, and reduces The problem of adaptability to channel time-varying.
  • an embodiment of the present application provides a beam scanning method, including:
  • the first communication node determines at least one transmit beam according to an optimal receive beam group between the receiver of the first communication node and the transmitter of the second communication node;
  • the first communication node sequentially transmits a signal to the second communication node through the transmitter according to the determined at least one transmit beam until an optimal transmit beam is determined.
  • the first communications node determines the at least one transmit beam according to an optimal receive beam group between the receiver of the first communications node and the transmitter of the second communications node, including:
  • the first communications node determines a transmit beam set according to at least one of the best received beam groups, including:
  • the first communication node selects part or all of the best received beam groups to form the transmit beam set; or
  • the first communications node carries the second communications corresponding to the best receiving beam group in a signal that is sent by the transmitter to the second communications node by using the determined transmit beam. Identification information for some or all of the beams in the best transmit beam group of the transmitter of the node.
  • the transmit beam satisfies a first transmit beam parameter, where the first transmit beam
  • the parameter includes a combination of any one or more of the number of the transmit beams, the manner in which each of the transmit beams is generated, and the relative relationship of the beams in the transmit beam.
  • the first communications node transmits a signal to the second communications node by using a transmitter according to the determined transmit beam, including:
  • the second transmit beam parameter includes a time of using the transmit beam and/or Or a frequency resource, a combination of any one or more of a time-frequency pattern and a sequence of signals transmitted to the second communication node according to the transmit beam.
  • an embodiment of the present application provides a beam scanning method, including:
  • the second communication node determines at least one receive beam according to an optimal transmit beam group between the transmitter of the second communication node and the receiver of the first communication node;
  • the second communication node sequentially receives signals transmitted by the transmitter of the first communication node through the receiver according to the determined at least one receive beam until an optimal receive beam is determined.
  • the second communications node determines the at least one receive beam according to the best transmit beam group between the transmitter of the second communications node and the receiver of the first communications node, including:
  • the second communication node Determining, by the second communication node, a set of receive beams according to at least one of the best transmit beam groups, and selecting at least one beam from the set of receive beams as the receive beam, wherein the receive beam set includes at least One beam.
  • the second communications node determines, according to at least one of the best transmit beam groups, a receive beam set, including:
  • the second communication node selects part or all of the best transmit beam groups to form the receive beam set; or
  • the second communication node determines all available beams centered on some or all of the best transmit beam groups, and selects a partial beam of the available beams to form the receive beam set.
  • the second communications node sequentially receives, according to the determined at least one receiving beam, a signal transmitted by a transmitter of the first communications node by using a receiver, until determining an optimal receiving beam, including:
  • the second communication node After the second communication node receives the signal transmitted by the transmitter of the first communication node according to the determined first receive beam, if it is determined that the received signal carries the part of the optimal transmit beam group of the first communication node And identifying information of all the beams, stopping receiving signals transmitted by the transmitter of the first communication node according to the determined remaining receiving beams, and determining an optimal receiving beam of the second communication node receiver according to the identification information.
  • an embodiment of the present application provides a communications node, including:
  • a first processing module configured to determine at least one transmit beam according to an optimal receive beam group between a receiver of the communication node and a transmitter of the second communication node;
  • the second processing module sequentially transmits a signal to the second communication node through the transmitter according to the determined at least one transmit beam until an optimal transmit beam is determined.
  • the first processing module is specifically configured to:
  • Determining a transmit beam set according to at least one of the best received beam groups selecting at least one beam from the set of transmit beams as the transmit beam, wherein the transmit beam set includes at least one beam.
  • the first processing module is specifically configured to:
  • All available beams are determined centering on some or all of the best received beam groups, and a partial beam of all available beams is selected to form the set of transmit beams.
  • the signal transmitted by the transmitter to the second communication node by the transmitter according to the determined transmit beam carries the most of the transmitters of the second communication node corresponding to the optimal receive beam group. Identification information of some or all of the beams in the best transmit beam group.
  • the transmit beam satisfies a first transmit beam parameter, where the first transmit beam parameter includes a quantity of the transmit beam, a manner of generating each beam in the transmit beam, and the transmitting Any one or more combinations of the relative relationships of the beams in the beam.
  • the second processing module is specifically configured to:
  • an embodiment of the present application provides a communications node, including:
  • a first processing module configured to determine at least one receive beam according to an optimal transmit beam group between a transmitter of the communication node and a receiver of the first communication node;
  • a second processing module configured to sequentially receive, by the receiver, the signal transmitted by the transmitter of the first communication node according to the determined at least one receive beam until determining an optimal receive beam.
  • the first processing module is specifically configured to:
  • Determining a set of receive beams according to at least one of the best set of transmit beams selecting at least one beam from the set of receive beams as the receive beam, wherein the set of receive beams comprises at least one beam.
  • the first processing module is specifically configured to:
  • All available beams are determined centering on some or all of the best transmit beam groups, and a partial beam of the available beams is selected to form the receive beam set.
  • the second processing module is specifically configured to:
  • the identification information After receiving the signal transmitted by the transmitter of the first communication node by the receiver according to the determined first receive beam, if it is determined that the received signal carries some or all of the best transmit beam groups of the first communication node The identification information stops receiving the signal transmitted by the transmitter of the first communication node according to the determined remaining receiving beams, and determines an optimal receiving beam of the communication node receiver according to the identification information.
  • an embodiment of the present application provides a communications node, including a processor, a memory, and a transceiver, wherein the transceiver receives and transmits data under the control of the processor, and the preset program is stored in the memory, and the processor reads Take the program in the memory, according to the program to perform the following process:
  • a signal is transmitted to the second communication node by the transmitter in accordance with the determined at least one transmit beam, until an optimal transmit beam is determined.
  • the processor determines a transmit beam set according to at least one of the best receive beam groups, and select at least one beam from the transmit beam set as the transmit beam, where the transmit beam set Includes at least one beam.
  • the processor selects some or all of the best received beam groups to form the transmit beam set; or, determining, by using some or all of the best receive beam groups, all available And selecting a partial beam of all available beams to form the set of transmit beams.
  • the best transmit beam of the transmitter of the second communication node corresponding to the optimal receive beam group is carried by the determined transmit beam to the second communication node. Identification information for some or all of the beams in the group.
  • the transmit beam satisfies a first transmit beam parameter, where the first transmit beam parameter includes a quantity of the transmit beam, a manner of generating each beam in the transmit beam, and the transmitting Any one or more combinations of the relative relationships of the beams in the beam.
  • the processor sends a signal to the second communications node according to the determined transmit beam according to the second transmit beam parameter, where the second transmit beam parameter includes the time of use of the transmit beam. And/or a frequency resource, a combination of any one or more of a time-frequency pattern and a sequence of signals transmitted to the second communication node in accordance with the transmit beam.
  • a communications node in the embodiment of the present application, including a processor, a memory, and a transceiver.
  • the transceiver receives and transmits data under the control of the processor, and the preset program is stored in the memory.
  • the program reads the program in the memory and executes the following process according to the program:
  • the signal transmitted by the transmitter of the first communication node is received by the receiver in accordance with the determined at least one receive beam in sequence until an optimal receive beam is determined.
  • the processor determines, according to at least one of the best transmit beam groups, a receive beam set, and select at least one beam from the receive beam set as the receive beam, where the receive beam set Includes at least one beam.
  • the processor selects some or all of the best transmit beam groups to form the receive beam set; or, determine, by using some or all of the best transmit beam groups, all available a beam that selects a portion of the available beams to form the set of receive beams.
  • the processor receives the signal transmitted by the transmitter of the first communication node by using the determined first receive beam, if the received signal is determined to carry the best transmit of the first communication node Identifying information of part or all of the beams in the beam group, stopping receiving signals transmitted by the transmitter of the first communication node according to the determined remaining receiving beams, and determining optimal reception of the receiver of the communication node according to the identification information Beam.
  • the first communication node directly determines the at least one transmit beam by using the best receive beam group between the receiver of the first communication node and the transmitter of the second communication node, and sequentially determines The at least one transmit beam transmits a signal to the second communication node through the transmitter until the optimal transmit beam is determined, which can greatly reduce the selection range of the transmit beam, effectively reduce the complexity of the beam scan, and reduce the need for occupation.
  • the second communication node directly determines the at least one receive beam by using the best transmit beam group between the transmitter of the second communication node and the receiver of the first communication node, and sequentially according to the determined Receiving, by the receiver, the signal transmitted by the transmitter of the first communication node by the receiver until determining the optimal receiving beam, which can greatly reduce the selection range of the receiving beam, effectively reducing the complexity of the beam scanning, and reducing the need to occupy
  • the system overhead increases system efficiency and improves adaptability to channel time-varying.
  • FIG. 1 is a schematic diagram of a process of performing beam scanning by a communication node as a transmitting end in the embodiment of the present application;
  • FIG. 2 is a schematic diagram of a process of performing beam scanning by a communication node as a receiving end in the embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of a communication node in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another communication node in the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another communication node in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another communication node in the embodiment of the present application.
  • a beam scanning method is available. The core idea of the method is: in the case that a transceiver link between the first communication node and the second communication node has determined the optimal transceiver beam set, the first communication node is directly determined by using the transceiver beam group of the link. The best transmit and receive beam set for another transceiving link between the second communication node.
  • the process of performing beam scanning as a communication node at the transmitting end is as follows:
  • Step 101 The first communication node determines at least one transmit beam according to an optimal receive beam group between the receiver of the first communication node and the transmitter of the second communication node.
  • the optimal receiving beam group between the receiver of the first communication node and the transmitter of the second communication node is the first communication node as the receiving end, and the second communication node acts as the transmitting end, through traditional beam searching or training. It can be obtained by other methods, or it can be obtained by improving the traditional beam search or training. This paper does not limit the way to obtain the optimal receive beam set.
  • the first communication node determines a transmit beam set according to at least one beam in the optimal receive beam group, and selects at least one beam from the transmit beam set as a transmit beam, where the transmit beam set includes at least one beam. For example, the first communication node determines a beam set centering on each of some or all of the best received beam groups, and uses the determined set of beams as a set of transmit beams.
  • the first communications node determines the transmit beam set according to the at least one beam in the optimal receive beam group, including but not limited to the following two specific implementation manners:
  • the first communication node selects part or all of the best received beam groups to form a set of transmit beams.
  • the process in which the first communication node selects a partial beam group from the optimal receive beam group to form a transmit beam set may be a random selection, or may be selected according to a preset rule, and the embodiment of the present application does not limit this.
  • the first communication node determines all available beams centered on part or all of the best received beam groups, and selects some of the available beams to form the set of transmit beams. For example, when selecting a beam centered on a certain beam, one of the correlations with the center beam (or the closest distance of other vector distance measures) can be selected based on the correlation of the weight vector (or other vector distance measure). Group beam.
  • the transmit beam determined by the first communications node meets the first transmit beam parameter, where the first transmit beam parameter includes the number of the transmit beams and the generation of each of the transmit beams. Any one or more combinations of the manner and the relative relationship of the beams in the transmit beam.
  • the first communication node determines the at least one transmit beam according to the optimal receive beam set and the first transmit beam parameter between the receiver of the first communication node and the second communication node.
  • the first communication node carries the best transmit beam of the transmitter of the second communication node corresponding to the optimal receive beam group in the signal transmitted by the first transmit node to the second communication node through the transmitter. Identification information for some or all of the beams in the group.
  • the second communication node when the second communication node receives the signal sent by the transmitter of the first communication node by using the beam scanning manner, the second communication node can determine the optimal receiving beam group according to the identification information carried in the signal, and extract Terminating the process of searching for the best received beam; or, when the second communication node receives the signal sent by the transmitter of the first communication node by using beam scanning, according to the identification information carried in the signal Determining a subset of the set of received beams, and scanning from the beams included in the subset to determine an optimal receive beam. For example, the second communication node determines one of the receive beam sets centering on all or part of the beams indicated by the identification information. Subset.
  • the first communications node transmits a signal to the second communications node through the transmitter according to the determined transmit beam according to the second transmit beam parameter, where the second transmit beam parameter includes the time and time of use of the transmit beam. And/or a frequency resource, a combination of any one or more of a time-frequency pattern and a sequence of signals transmitted to the second communication node in accordance with the transmit beam.
  • the manner in which the first communications node obtains the first transmit beam parameter and/or the second transmit beam parameter may be various, including but not limited to the following modes of obtaining:
  • the first communication node determines the first transmit beam parameter and/or the second transmit beam parameter according to the specified basic system information and its own capabilities.
  • the first communication node determines the first basic system information, such as bandwidth, frequency, network identifier of the second communication node, identifier of the network coverage area to which the second communication node belongs, and its own capabilities, such as calibration capability.
  • a transmit beam parameter and/or a second transmit beam parameter are examples of the first basic system information.
  • the first communications node determines the first transmit beam parameter and/or the second transmit beam parameter according to the indication of the second communication node.
  • the first communication node is configured according to any one or more of a system broadcast message, a radio resource control (RRC) signaling, and a downlink control information (DCI) signaling sent by the second communication node.
  • RRC radio resource control
  • DCI Downlink Control Information
  • the first communications node determines the first transmit beam parameter and/or the second transmit beam parameter according to the indication of the network side.
  • the first communications node determines the first transmit beam parameter and/or the second transmit beam parameter according to a combination of any one or more of system broadcast message, RRC signaling, and DCI signaling sent by the network side.
  • the configuration of the first transmit beam parameter and/or the second transmit beam parameter depends on the capabilities of the first communication node.
  • the second communication node or the network side can learn the capability of the first communication node, for example, the network side passes through the first communication node. Evaluating the capability of the first communication node, the second communication node or the network side may indicate the first transmit beam parameter and/or the second transmit beam parameter of the first communication node, the first transmit beam parameter and/or the second transmit
  • the beam parameters are reciprocal transmit beam parameters such that the first communication node scans at a particular time-frequency resource using a smaller number of transmit beams.
  • the first transmit beam parameter does not include the number of transmit beams
  • the first communication node and the second communication node pre-agreed the number of transmit beams
  • the second communication node performs beam scan according to the agreed number of the transmit beams.
  • the second communication node or the network side may indicate the first transmit beam parameter and/or the second transmit beam parameter of the first communication node, the first transmit beam parameter and/or the first transmit beam parameter and/or the transmit and receive reciprocity
  • the second transmit beam parameter is a transmit beam parameter having non-reciprocity such that the first communication node scans using a larger number of transmit beams at a particular time-frequency resource.
  • the so-called transceiving reciprocity generally means that the transmission characteristics of the transmitting part and the receiving part of the communication node are consistent.
  • the second communication node or the network side may also use an implicit manner to notify First transmit beam parameter and/or second transmit beam parameter.
  • First transmit beam parameter and/or second transmit beam parameter when the second communication node or the network side notifies the random access channel (RACH) resource used by the first communication node, the RACH resource is divided into several categories, and each type of RACH resource has a corresponding corresponding number.
  • RACH random access channel
  • a transmit beam parameter and/or a second transmit beam parameter different The first transmit beam parameter and/or the second transmit beam parameter corresponding to the RACH resource may correspond to the first communication node having different capabilities.
  • the first communication node uses the first transmit beam parameter and/or the second transmit beam parameter corresponding to the RACH resource on a specific RACH resource according to its own calibration capability.
  • the second communication node or the network side can learn the capability of the first communication node, the second communication node or network The side can still instruct the first communication node to use the first transmit beam parameter and/or the second transmit beam parameter with non-reciprocity.
  • the process of performing beam scanning as a communication node at the receiving end is as follows:
  • Step 201 The second communication node determines at least one receive beam according to an optimal transmit beam group between the transmitter of the second communication node and the receiver of the first communication node.
  • the optimal transmit beam group between the transmitter of the second communication node and the receiver of the first communication node is the first communication node as the receiving end, and the second communication node acts as the transmitting end, through traditional beam search or training. It can be obtained by other methods, or it can be obtained by improving the traditional beam search or training. This paper does not limit the way to obtain the best transmit beam set.
  • the second communication node determines a receive beam set according to at least one of the best transmit beam groups, and select at least one beam from the receive beam set as the receive beam, where the receive beam set Includes at least one beam. For example, the second communication node respectively determines a beam set centering on each of some or all of the beams in the optimal transmit beam group, and uses the determined set of beams as a set of receive beams.
  • the second communications node determines the set of receiving beams according to at least one of the best transmit beam groups, including but not limited to the following two implementation manners:
  • the second communication node selects part or all of the best transmit beam groups to form the receive beam set.
  • the second communication node selects a partial beam group from the optimal transmit beam group to form a receive beam set, and the selection principle may be a random selection, or may be selected according to a preset rule. limit.
  • the second communication node determines all available beams centering on part or all of the best transmit beam groups, and selects a partial beam of the available beams to form the receive beam set.
  • Step 202 The second communication node sequentially receives the signal transmitted by the transmitter of the first communication node by using the determined at least one receiving beam until the optimal receiving beam is determined.
  • the second communication node after the second communication node receives the signal transmitted by the transmitter of the first communication node by the receiver according to the determined first receive beam, if it is determined that the received signal carries the best transmission of the first communication node Identifying information of part or all of the beams in the beam group, stopping receiving the first communication node according to the determined remaining receive beams a signal transmitted by the transmitter, and determining an optimal receive beam of the second communication node receiver based on the identification information.
  • a communication node is provided in the embodiment of the present application.
  • the communication node mainly includes:
  • the first processing module 301 is configured to determine at least one transmit beam according to an optimal receive beam group between the receiver of the communication node and the transmitter of the second communication node;
  • the second processing module 302 sequentially transmits signals to the second communication node through the transmitter according to the determined at least one transmit beam until an optimal transmit beam is determined.
  • the first processing module is specifically configured to:
  • Determining a transmit beam set according to at least one of the best received beam groups selecting at least one beam from the set of transmit beams as the transmit beam, wherein the transmit beam set includes at least one beam.
  • the first processing module is specifically configured to:
  • All available beams are determined centering on some or all of the best received beam groups, and a partial beam of all available beams is selected to form the set of transmit beams.
  • the best transmit beam of the transmitter of the second communication node corresponding to the optimal receive beam group is carried by the determined transmit beam to the second communication node. Identification information for some or all of the beams in the group.
  • the transmit beam satisfies a first transmit beam parameter, where the first transmit beam parameter includes a quantity of the transmit beam, a manner of generating each beam in the transmit beam, and the transmitting Any one or more combinations of the relative relationships of the beams in the beam.
  • a communication node is provided in the embodiment of the present application.
  • the communication node mainly includes:
  • the first processing module 401 is configured to determine, according to an optimal transmit beam group between the transmitter of the communication node and the receiver of the first communication node, at least one receive beam;
  • the second processing module 402 is configured to sequentially receive, by the receiver, the signal transmitted by the transmitter of the first communication node according to the determined at least one receive beam until determining an optimal receive beam.
  • Determining a set of receive beams according to at least one of the best set of transmit beams selecting at least one beam from the set of receive beams as the receive beam, wherein the set of receive beams comprises at least one beam.
  • the first processing module is specifically configured to:
  • All available beams are determined centering on some or all of the best transmit beam groups, and a partial beam of the available beams is selected to form the receive beam set.
  • the second processing module is specifically configured to:
  • the identification information After receiving the signal transmitted by the transmitter of the first communication node by the receiver according to the determined first receive beam, if it is determined that the received signal carries some or all of the best transmit beam groups of the first communication node The identification information stops receiving the signal transmitted by the transmitter of the first communication node according to the determined remaining receiving beams, and determines an optimal receiving beam of the communication node receiver according to the identification information.
  • the device mainly includes a processor 501, a memory 502, and a transceiver 503.
  • the transceiver 503 receives and transmits data under the control of the processor 501.
  • the memory 502 stores a preset program, and the processor 501 reads the memory 502.
  • the program according to the program, performs the following process:
  • a signal is transmitted to the second communication node by the transmitter in accordance with the determined at least one transmit beam, until an optimal transmit beam is determined.
  • the processor determines a transmit beam set according to at least one of the best receive beam groups, and select at least one beam from the transmit beam set as the transmit beam, where the transmit beam set Includes at least one beam.
  • the processor selects some or all of the best received beam groups to form the transmit beam set; or, determining, by using some or all of the best receive beam groups, all available And selecting a partial beam of all available beams to form the set of transmit beams.
  • the best transmit beam of the transmitter of the second communication node corresponding to the optimal receive beam group is carried by the determined transmit beam to the second communication node. Part of the group Or identification information of all beams.
  • the transmit beam satisfies a first transmit beam parameter, where the first transmit beam parameter includes a quantity of the transmit beam, a manner of generating each beam in the transmit beam, and the transmitting Any one or more combinations of the relative relationships of the beams in the beam.
  • the processor sends a signal to the second communications node according to the determined transmit beam according to the second transmit beam parameter, where the second transmit beam parameter includes the time of use of the transmit beam. And/or a frequency resource, a combination of any one or more of a time-frequency pattern and a sequence of signals transmitted to the second communication node in accordance with the transmit beam.
  • the communication node mainly includes a processor 601, a memory 602, and a transceiver 603.
  • the transceiver 603 receives and transmits data under the control of the processor 601.
  • the memory 602 stores a preset program, and the processor 601 reads the memory.
  • the program in 602, according to the program performs the following process:
  • the signal transmitted by the transmitter of the first communication node is received by the receiver in accordance with the determined at least one receive beam in sequence until an optimal receive beam is determined.
  • the processor determines, according to at least one of the best transmit beam groups, a receive beam set, and select at least one beam from the receive beam set as the receive beam, where the receive beam set Includes at least one beam.
  • the processor selects some or all of the best transmit beam groups to form the receive beam set; or, determine, by using some or all of the best transmit beam groups, all available a beam that selects a portion of the available beams to form the set of receive beams.
  • the processor receives the signal transmitted by the transmitter of the first communication node by using the determined first receive beam, if the received signal is determined to carry the best transmit of the first communication node Identifying information of part or all of the beams in the beam group, stopping receiving signals transmitted by the transmitter of the first communication node according to the determined remaining receiving beams, and determining optimal reception of the receiver of the communication node according to the identification information Beam.
  • the processor, the memory and the transceiver are connected by a bus, and the bus architecture may include any number of interconnected buses and bridges, specifically represented by one or more processors and memories represented by the processor.
  • the various circuits of the memory are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, as is well known in the art, and therefore, this article does not One step description.
  • the bus interface provides an interface.
  • the transceiver can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor is responsible for managing the bus architecture and the usual processing, and the memory can store the data that the processor uses when performing operations.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种波束扫描方法及相关设备,用以解决现有对潜在的收发波束组合进行遍历搜索确定最佳收发波束的过程,需要占据大量的***开销,降低了***效率以及降低了对信道时变的适应能力的问题。方法为:第一通信节点根据所述第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;所述第一通信节点依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。

Description

一种波束扫描方法及相关设备
本申请要求在2016年9月30日提交中国专利局、申请号为201610877303.0、申请名称为“一种波束扫描方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束扫描方法及相关设备。
背景技术
鉴于多输入多输出(Multiple-Input Multiple-Output,MIMO)技术对于提高峰值速率与***频谱利用率的重要作用,长期演进(Long Term Evolution,LTE)/先进的长期演进(LTE-Advanced,LTE-A)等无线接入技术标准都是以MIMO+正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术为基础构建起来的。
MIMO技术的性能增益来自于多天线***所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对多用户MIMO(Multi-User MIMO,MU-MIMO)技术进行了增强,传输模式(Transmission Mode,TM)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则通过8端口信道状态信息参考信号(Channel State Information-Reference Signals,CSI-RS)、移动台特定的参考信号(UE-specific Reference Signal,URS)与多颗粒度码本的引入进一步提高了信道状态信息的空间分辨率,并进一步将单用户MIMO(Single-User MIMO,SU-MIMO)的传输能力扩展至最多8个数据层。
采用传统无源天线***(Passive Antenna System,PAS)结构的基站天线***中,多个天线端口水平排列,每个端口对应独立的射频-中频-基带通道,而每个端口对应的垂直维的多个阵子之间由射频电缆连接。因此现有的MIMO技术只能在水平维通过对不同端口间的相对幅度和/或相位的调整实现对各个终端(User Equipment,UE)信号在水平维空间特性的优化,在垂直维则只能采用统一的扇区级赋形。移动通信***中引入有源天线***(Active Antenna System,AAS)技术之后,基站天线***能够在垂直维获得更大的自由度,能够在三维空间实现对终端级的信号优化。
在上述研究、标准化与天线技术发展基础之上,产业界正在进一步地将MIMO技术向着三维化和大规模化的方向推进。目前,第三代移动通信标准化组织(3rd Generation  Partnership Project,3GPP)正在开展全维度MIMO(Full Dimension MIMO,FD-MIMO)技术研究与标准化工作。而学术界则更为前瞻地开展了针对基于更大规模天线阵列的MIMO技术的研究与测试工作。学术研究与初步的信道实测结果表明,大规模(Massive)MIMO技术将能够极大地提升***频带利用效率,支持更大数量的接入用户。因此各大研究组织均将Massive MIMO技术视为下一代移动通信***中最有潜力的物理层技术之一。
Massive MIMO技术需要使用大规模天线阵列。尽管采用全数字阵列可以实现最大化的空间分辨率以及最优MU-MIMO性能,但是这种结构需要大量的AD/DA(模数-数模转换)转换器件以及大量完整的射频-基带处理通道,无论是设备成本还是基带处理复杂度都将是巨大的负担。这一问题在高频段、大带宽时显得尤为突出。
为了降低Massive MIMO技术的实现成本与设备复杂度,近年来有人提出采用数模混合波束赋形技术。所谓数模混合波束赋形,是指在传统的数字域波束赋形基础上,在靠近天线***的前端,在射频信号上增加一级模拟波束赋形。模拟波束赋形能够通过较为简单的方式,使发送信号与信道实现较为粗略的匹配。模拟波束赋形后形成的等效信道的维度小于实际的天线数量,因此模拟波束赋形后所需的AD/DA转换器件、数字通道数以及相应的基带处理复杂度都大为降低。模拟波束赋形部分残余的干扰可以在数字域再进行一次处理,从而保证MU-MIMO传输的质量。
相对于全数字波束赋形而言,数模混合波束赋形是性能与复杂度的一种折中方案,在高频段大带宽或天线数量很大的***中具有较高的实用前景。
MIMO技术中,尤其是对MU-MIMO技术而言,网络侧能够获得的信道状态信息精度将直接决定预编码/波束赋形的精度与调度算法的性能,从而影响到整体***性能。因此,信道状态信息的获取一直是MIMO技术标准化中最核心的问题之一。
根据目前的LTE信号结构,参考信号都是安插在基带的,因此可以通过对基带信号中参考信号的信道估计获取数字波束赋形所需的信道状态。但是,由于模拟波束赋形形成的等效数字通道数少于实际天线数,通过参考信号获得的信道矩阵的维度已经远远低于天线端所经历的完整信道矩阵的维度。因此,数字波束赋形所能获得的空间分辨率以及干扰抑制能力受到了一定的损失。模拟波束赋形部分的处理过程更靠近物理天线一侧,数字波束赋形的MIMO信道具有更高的自由度。然而,由于没有办法对基带***的参考信号进行估计,因而无论对频分双工(FrequencyDivisionDuplex,FDD)还是时分双工(TimeDivisionDuplex,TDD),模拟波束赋形部分都无法直接利用数字域获得的信道状态信息。
因此,一般而言数模混合波束赋形***中,对模拟波束的选择一般只能通过搜索(或 称训练)的方式进行。在这一过程中,发送端发射一组波束,接收端也使用一组预定的波束进行试探性的接收,以判断出最佳的收发波束组合。当信道条件发生变化(如遮挡)时,***将重新进入波束搜索阶段,需要对潜在的收发波束组合进行遍历搜索。
由此可见,现有的波束搜索过程需要占据大量的***开销,降低了***效率以及降低了对信道时变的适应能力。
发明内容
本申请实施例提供一种波束扫描方法及相关设备,用以解决现有对潜在的收发波束组合进行遍历搜索确定最佳收发波束的过程,需要占据大量的***开销,降低了***效率以及降低了对信道时变的适应能力的问题。
本申请实施例提供的具体技术方案如下:
第一方面,本申请实施例提供了一种波束扫描方法,包括:
第一通信节点根据所述第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
所述第一通信节点依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
可能的实施方式中,所述第一通信节点根据所述第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束,包括:
所述第一通信节点根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
可能的实施方式中,所述第一通信节点根据所述最佳接收波束组中的至少一个波束确定发射波束集合,包括:
所述第一通信节点选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,
所述第一通信节点以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
可能的实施方式中,所述第一通信节点按照确定的所述发射波束通过发射机向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
可能的实施方式中,所述发射波束满足第一发射波束参数,其中,所述第一发射波束 参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
可能的实施方式中,所述第一通信节点按照确定的所述发射波束通过发射机向所述第二通信节点发射信号,包括:
所述第一通信节点根据第二发射波束参数,按照确定的所述发射波束向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
第二方面,本申请实施例提供了一种波束扫描方法,包括:
第二通信节点根据所述第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
所述第二通信节点依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
可能的实施方式中,所述第二通信节点根据所述第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束,包括:
所述第二通信节点根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
可能的实施方式中,所述第二通信节点根据所述最佳发射波束组中的至少一个波束确定接收波束集合,包括:
所述第二通信节点选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,
所述第二通信节点以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
可能的实施方式中,所述第二通信节点依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束,包括:
所述第二通信节点按照确定的第一接收波束接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述第二通信节点接收机的最佳接收波束。
第三方面,本申请实施例提供了一种通信节点,包括:
第一处理模块,用于根据所述通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
第二处理模块,依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
可能的实施方式中,所述第一处理模块具体用于:
根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
可能的实施方式中,所述第一处理模块具体用于:
选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,
以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
可能的实施方式中,按照确定的所述发射波束通过发射机向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
可能的实施方式中,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
可能的实施方式中,所述第二处理模块具体用于:
根据第二发射波束参数,按照确定的所述发射波束通过发射机向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
第四方面,本申请实施例提供了一种通信节点,包括:
第一处理模块,用于根据所述通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
第二处理模块,用于依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
可能的实施方式中,所述第一处理模块具体用于:
根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
可能的实施方式中,所述第一处理模块具体用于:
选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,
以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
可能的实施方式中,所述第二处理模块具体用于:
按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述通信节点接收机的最佳接收波束。
第五方面,本申请实施例提供了一种通信节点,包括处理器、存储器和收发机,其中收发机在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
根据所述通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
可能的实施方式中,处理器根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
可能的实施方式中,处理器选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
可能的实施方式中,按照确定的所述发射波束向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
可能的实施方式中,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
可能的实施方式中,处理器根据第二发射波束参数,按照确定的所述发射波束向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
第六方面,本申请实施例中提供了一种通信节点,包括处理器、存储器和收发机,其中,收发机在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
根据所述通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
可能的实施方式中,处理器根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
可能的实施方式中,处理器选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
可能的实施方式中,处理器按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述通信节点接收机的最佳接收波束。
基于上述技术方案,本申请实施例中,第一通信节点直接利用第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束,依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束,能够大大缩小发射波束的选取范围,有效降低了波束扫描的复杂度,减少了需要占据的***开销,提高了***效率以及提高了对信道时变的适应能力。
本申请实施例中,第二通信节点直接利用所述第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束,依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束,能够大大缩小接收波束的选取范围,有效降低了波束扫描的复杂度,减少了需要占据的***开销,提高了***效率以及提高了对信道时变的适应能力。
附图说明
图1为本申请实施例中作为发射端的通信节点进行波束扫描的过程示意图;
图2为本申请实施例中作为接收端的通信节点进行波束扫描的过程示意图;
图3为本申请实施例中通信节点的结构示意图;
图4为本申请实施例中另一通信节点的结构示意图;
图5为本申请实施例中另一通信节点的结构示意图;
图6为本申请实施例中另一通信节点的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
为了解决现有对潜在的收发波束组合进行遍历搜索确定最佳收发波束的过程,需要占据大量的***开销,降低了***效率以及降低了对信道时变的适应能力的问题,本申请实施例提出了一种波束扫描方法。该方法的核心思想在于:在第一通信节点和第二通信节点之间的一条收发链路已经确定最佳收发波束组的情况下,直接利用该链路的收发波束组确定第一通信节点和第二通信节点之间的另一收发链路的最佳收发波束组。
本申请第一实施例中,如图1所示,作为发射端的通信节点进行波束扫描的过程如下:
步骤101:第一通信节点根据该第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束。
其中,第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,为第一通信节点作为接收端,第二通信节点作为发射端,通过传统的波束搜索或训练等方式得到,或者,也可以通过对传统的波束搜索或训练等方式改进后的方式得到,本文并不限制该最佳接收波束组的获得方式。
具体实施中,第一通信节点根据该最佳接收波束组中的至少一个波束确定发射波束集合,从该发射波束集合中选择至少一个波束作为发射波束,其中,该发射波束集合包括至少一个波束。例如,第一通信节点分别以该最佳接收波束组中的部分或全部波束中的每个波束为中心,确定波束集合,将确定的该波束集合作为发射波束集合。
具体地,第一通信节点根据该最佳接收波束组中的至少一个波束确定发射波束集合,包括但不限于以下两种具体实现方式:
方式一,第一通信节点选取该最佳接收波束组中的部分或全部波束组成发射波束集合。
具体地,第一通信节点从最佳接收波束组中选取部分波束组组成发射波束集合的过程 中,选取原则可以是随机选择,也可以是按照预设规则选取,本申请实施例对此不做限制。
方式二,第一通信节点以该最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。例如,以某一波束为中心选择波束时,可以以权值向量的相关性(或其他向量距离测度)为依据,选择与中心波束相关性(或其他的向量距离测度下,距离最近)的一组波束。
一个具体实施方式中,第一通信节点所确定的发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。具体地,第一通信节点根据第一通信节点的接收机与第二通信节点之间的最佳接收波束组以及第一发射波束参数,确定至少一个发射波束。
步骤102:第一通信节点依次按照确定的该至少一个发射波束通过发射机向第二通信节点发射信号,直至确定最佳发射波束。
一个具体实施方式中,第一通信节点按照确定的发射波束通过发射机向第二通信节点发射的信号中,携带该最佳接收波束组所对应的第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。该实施方式,可以使得第二通信节点在采用波束扫描的方式接收到该第一通信节点的发射机发送的信号时,能够根据该信号中所携带的该标识信息确定最佳接收波束组,提取终止扫描搜索最佳接收波束的过程;或者,可以使得第二通信节点在采用波束扫描的方式接收到该第一通信节点的发射机发送的信号时,能够根据该信号中所携带的该标识信息确定接收波束集合的一个子集,从该子集中包含的波束中扫描确定最佳接收波束,例如,第二通信节点节点以该标识信息所指示的全部或部分波束为中心确定接收波束集合的一个子集。
一个具体实施方式中,第一通信节点根据第二发射波束参数,按照确定的发射波束通过发射机向第二通信节点发射信号,其中,第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
具体实施中,第一通信节点获取第一发射波束参数和/或第二发射波束参数的方式有多种,包括但不限于以下所列举的几种获得方式:
方式一,第一通信节点根据指定的基本***信息以及自身的能力确定第一发射波束参数和/或第二发射波束参数。
例如,第一通信节点根据指定的基本***信息,如带宽、频点、第二通信节点的网络标识、第二通信节点所属网络覆盖区域的标识等,以及自身的能力,如校准能力,确定第 一发射波束参数和/或第二发射波束参数。
方式二,第一通信节点根据第二通信节点的指示确定第一发射波束参数和/或第二发射波束参数。
具体地,第一通信节点根据第二通信节点发送的***广播消息、无线资源控制(Radio Resource Control,RRC)信令、下行控制信息(Downlink Control Information,DCI)信令中的任意一种或多种的组合,确定第一发射波束参数和/或第二发射波束参数。
方式三,第一通信节点根据网络侧的指示确定第一发射波束参数和/或第二发射波束参数。
具体地,第一通信节点根据网络侧发送的***广播消息、RRC信令、DCI信令中的任意一种或多种的组合,确定第一发射波束参数和/或第二发射波束参数。
具体实施中,第一发射波束参数和/或第二发射波束参数的配置取决于第一通信节点的能力。
具体地,若第一通信节点具有校准能力,或者能够在一定程度上保证收发互易性,且第二通信节点或网络侧能够获知第一通信节点的能力,例如网络侧通过第一通信节点的上报获知第一通信节点的能力,则第二通信节点或网络侧可以指示第一通信节点该第一发射波束参数和/或第二发射波束参数,该第一发射波束参数和/或第二发射波束参数为具有互易性的发射波束参数,使得第一通信节点在特定的时频资源、使用较少数量的发射波束进行扫描。
其中,若第一发射波束参数中不包含发射波束的数量,则第一通信节点和第二通信节点预先约定发射波束的数量,第二通信节点按照约定的该发射波束的数量进行波束扫描。
具体地,若第二通信节点或网络侧尚不能确定第一通信节点的能力,例如在第二通信节点发起随机接入的过程中,或者,第二通信节点或网络侧已经获知第一通信节点不具备校准能力或不具备收发互易性,则第二通信节点或网络侧可以指示第一通信节点该第一发射波束参数和/或第二发射波束参数,该第一发射波束参数和/或第二发射波束参数为具有非互易性的发射波束参数,使得第一通信节点在特定的时频资源使用较多数量的发射波束进行扫描。所谓收发互易性,一般是指通信节点的发射部分及接收部分的传输特性一致。
具体地,若第二通信节点或网络侧尚不能确定第一通信节点的能力,例如在第二通信节点发起随机接入的过程中,第二通信节点或网络侧也可采用隐含的方式通知第一发射波束参数和/或第二发射波束参数。例如第二通信节点或网络侧在通知第一通信节点所使用的随机接入信道(Random Access Channel,RACH)资源时,将RACH资源分为若干类,每一类RACH资源各自对应有相应的第一发射波束参数和/或第二发射波束参数,不同的 RACH资源所对应的第一发射波束参数和/或第二发射波束参数可能对应具有不同能力的第一通信节点。第一通信节点根据自身的校准能力,在特定的RACH资源上使用与该RACH资源对应的第一发射波束参数和/或第二发射波束参数。
需要说明的是,即使第一通信节点具有互易性,或者能在一定程度上保证收发互易性,且第二通信节点或网络侧能获知第一通信节点的能力,第二通信节点或网络侧仍然能够指示第一通信节点使用具有非互易性的第一发射波束参数和/或第二发射波束参数。
基于同一发明构思,本申请第二实施例中,如图2所示,作为接收端的通信节点进行波束扫描的过程如下:
步骤201:第二通信节点根据所述第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束。
其中,第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,为第一通信节点作为接收端,第二通信节点作为发射端,通过传统的波束搜索或训练等方式得到,或者,也可以通过对传统的波束搜索或训练等方式改进后的方式得到,本文并不限制该最佳发射波束组的获得方式。
具体实施中,第二通信节点根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。例如,第二通信节点分别以该最佳发射波束组中的部分或全部波束中的每个波束为中心,确定波束集合,将确定的该波束集合作为接收波束集合。
具体实施中,第二通信节点根据所述最佳发射波束组中的至少一个波束确定接收波束集合,包括但不限于以下两种实现方式:
方式一,第二通信节点选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合。
具体地,第二通信节点从最佳发射波束组中选取部分波束组组成接收波束集合的过程中,选取原则可以是随机选择,也可以是按照预设规则选取,本申请实施例对此不做限制。
方式二,第二通信节点以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
步骤202:第二通信节点依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
具体实施中,第二通信节点按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点 的发射机发射的信号,并根据所述标识信息确定所述第二通信节点接收机的最佳接收波束。
基于同一发明构思,本申请实施例中提供了一种通信节点,该通信节点的具体实施可参见第一实施例中关于第一通信节点的描述,重复之处不再赘述,如图3所示,该通信节点主要包括:
第一处理模块301,用于根据所述通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
第二处理模块302,依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
可能的实施方式中,所述第一处理模块具体用于:
根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
可能的实施方式中,所述第一处理模块具体用于:
选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,
以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
可能的实施方式中,按照确定的所述发射波束向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
可能的实施方式中,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
可能的实施方式中,所述第二处理模块具体用于:
根据第二发射波束参数,按照确定的所述发射波束向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
基于同一发明构思,本申请实施例中提供了一种通信节点,该通信节点的具体实施可参见第二实施例中关于第二通信节点的描述,重复之处不再赘述,如图4所示,该通信节点主要包括:
第一处理模块401,用于根据所述通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
第二处理模块402,用于依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
可能的实施方式中,所述第一处理模块具体用于:
根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
可能的实施方式中,所述第一处理模块具体用于::
选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,
以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
可能的实施方式中,所述第二处理模块具体用于:
按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述通信节点接收机的最佳接收波束。
基于同一发明构思,本申请实施例中提供了一种通信节点,该通信节点的具体实施可参见第一实施例中关于第一通信节点的描述,重复之处不再赘述,如图5所示,该装置主要包括处理器501、存储器502和收发机503,其中收发机503在处理器501的控制下接收和发送数据,存储器502中保存有预设的程序,处理器501读取存储器502中的程序,按照该程序执行以下过程:
根据所述通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
可能的实施方式中,处理器根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
可能的实施方式中,处理器选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
可能的实施方式中,按照确定的所述发射波束向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分 或全部波束的标识信息。
可能的实施方式中,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
可能的实施方式中,处理器根据第二发射波束参数,按照确定的所述发射波束向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
基于同一发明构思,本申请实施例中提供了一种通信节点,该通信节点的具体实施可参见第二实施例中关于第二通信节点的描述,重复之处不再赘述,如图6所示,该通信节点主要包括处理器601、存储器602和收发机603,其中,收发机603在处理器601的控制下接收和发送数据,存储器602中保存有预设的程序,处理器601读取存储器602中的程序,按照该程序执行以下过程:
根据所述通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
可能的实施方式中,处理器根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
可能的实施方式中,处理器选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
可能的实施方式中,处理器按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述通信节点接收机的最佳接收波束。
其中,图5至图6中,处理器、存储器和收发机之间通过总线连接,总线架构可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进 一步描述。总线接口提供接口。收发机可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种波束扫描方法,其特征在于,包括:
    第一通信节点根据所述第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
    所述第一通信节点依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
  2. 如权利要求1所述的方法,其特征在于,所述第一通信节点根据所述第一通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束,包括:
    所述第一通信节点根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
  3. 如权利要求2所述的方法,其特征在于,所述第一通信节点根据所述最佳接收波束组中的至少一个波束确定发射波束集合,包括:
    所述第一通信节点选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,
    所述第一通信节点以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
  4. 如权利要求1所述的方法,其特征在于,所述第一通信节点按照确定的所述发射波束通过发射机向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
  6. 如权利要求1-4任一项所述的方法,其特征在于,所述第一通信节点按照确定的所述发射波束通过发射机向所述第二通信节点发射信号,包括:
    所述第一通信节点根据第二发射波束参数,按照确定的所述发射波束向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
  7. 一种波束扫描方法,其特征在于,包括:
    第二通信节点根据所述第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
    所述第二通信节点依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
  8. 如权利要求7所述的方法,其特征在于,所述第二通信节点根据所述第二通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束,包括:
    所述第二通信节点根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
  9. 如权利要求8所述的方法,其特征在于,所述第二通信节点根据所述最佳发射波束组中的至少一个波束确定接收波束集合,包括:
    所述第二通信节点选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,
    所述第二通信节点以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
  10. 如权利要求8所述的方法,其特征在于,所述第二通信节点依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束,包括:
    所述第二通信节点按照确定的第一接收波束接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述第二通信节点接收机的最佳接收波束。
  11. 一种通信节点,其特征在于,包括:
    第一处理模块,用于根据所述通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;
    第二处理模块,依次按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
  12. 如权利要求11所述的通信节点,其特征在于,所述第一处理模块具体用于:
    根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合 中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
  13. 如权利要求12所述的通信节点,其特征在于,所述第一处理模块具体用于:
    选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,
    以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
  14. 如权利要求11所述的通信节点,其特征在于,按照确定的所述发射波束通过发射机向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
  15. 如权利要求11-14任一项所述的通信节点,其特征在于,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
  16. 如权利要求11-14任一项所述的通信节点,其特征在于,所述第二处理模块具体用于:
    根据第二发射波束参数,按照确定的所述发射波束通过发射机向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
  17. 一种通信节点,其特征在于,包括:
    第一处理模块,用于根据所述通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;
    第二处理模块,用于依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
  18. 如权利要求17所述的通信节点,其特征在于,所述第一处理模块具体用于:
    根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
  19. 如权利要求18所述的通信节点,其特征在于,所述第一处理模块具体用于:
    选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,
    以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
  20. 如权利要求18所述的通信节点,其特征在于,所述第二处理模块具体用于:
    按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述通信节点接收机的最佳接收波束。
  21. 一种通信节点,其特征在于,包括:处理器、存储器和收发机,其中收发机在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程序,按照该程序执行以下过程:
    根据所述通信节点的接收机与第二通信节点的发射机之间的最佳接收波束组,确定至少一个发射波束;按照确定的所述至少一个发射波束通过发射机向所述第二通信节点发射信号,直至确定最佳发射波束。
  22. 如权利要求21所述的通信节点,其特征在于,所述处理器具体用于:
    根据所述最佳接收波束组中的至少一个波束确定发射波束集合,从所述发射波束集合中选择至少一个波束作为所述发射波束,其中,所述发射波束集合包括至少一个波束。
  23. 如权利要求22所述的通信节点,其特征在于,所述处理器具体用于:
    选取所述最佳接收波束组中的部分或全部波束组成所述发射波束集合;或者,
    以所述最佳接收波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所有可用的波束中的部分波束组成所述发射波束集合。
  24. 如权利要求21所述的通信节点,其特征在于,按照确定的所述发射波束通过发射机向所述第二通信节点发射的信号中,携带所述最佳接收波束组所对应的所述第二通信节点的发射机的最佳发射波束组中的部分或全部波束的标识信息。
  25. 如权利要求21-24任一项所述的通信节点,其特征在于,所述发射波束满足第一发射波束参数,其中,所述第一发射波束参数中包括所述发射波束的数量、所述发射波束中每个波束的产生方式和所述发射波束中各波束的相对关系中的任意一种或一种以上的组合。
  26. 如权利要求21-24任一项所述的通信节点,其特征在于,所述处理器具体用于:
    根据第二发射波束参数,按照确定的所述发射波束通过发射机向所述第二通信节点发射信号,其中,所述第二发射波束参数中包括所述发射波束使用的时间和/或频率资源、按照所述发射波束向所述第二通信节点发射的信号的时频图样与序列中的任意一种或一种以上的组合。
  27. 一种通信节点,其特征在于,包括:处理器、存储器和收发机,其中,收发机在处理器的控制下接收和发送数据,存储器中保存有预设的程序,处理器读取存储器中的程 序,按照该程序执行以下过程:
    根据所述通信节点的发射机与第一通信节点的接收机之间的最佳发射波束组,确定至少一个接收波束;依次按照确定的所述至少一个接收波束通过接收机接收所述第一通信节点的发射机发射的信号,直至确定最佳接收波束。
  28. 如权利要求27所述的通信节点,其特征在于,所述处理器具体用于:
    根据所述最佳发射波束组中的至少一个波束确定接收波束集合,从所述接收波束集合中选择至少一个波束作为所述接收波束,其中,所述接收波束集合包括至少一个波束。
  29. 如权利要求28所述的通信节点,其特征在于,所述处理器具体用于:
    选取所述最佳发射波束组中的部分或全部波束组成所述接收波束集合;或者,
    以所述最佳发射波束组中的部分或全部波束为中心确定所有可用的波束,选择所述所述可用的波束中的部分波束组成所述接收波束集合。
  30. 如权利要求28所述的通信节点,其特征在于,所述处理器具体用于:
    按照确定的第一接收波束通过接收机接收所述第一通信节点的发射机发射的信号之后,若确定接收的信号中携带所述第一通信节点的最佳发射波束组中的部分或全部波束的标识信息,停止按照确定的其余接收波束接收所述第一通信节点的发射机发射的信号,并根据所述标识信息确定所述通信节点接收机的最佳接收波束。
PCT/CN2017/094347 2016-09-30 2017-07-25 一种波束扫描方法及相关设备 WO2018059095A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854549.7A EP3522385A4 (en) 2016-09-30 2017-07-25 BEAM METAL PROCESS AND RELATED DEVICE
US16/338,322 US10892805B2 (en) 2016-09-30 2017-07-25 Beam scanning method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877303.0 2016-09-30
CN201610877303.0A CN107888239B (zh) 2016-09-30 2016-09-30 一种波束扫描方法及相关设备

Publications (1)

Publication Number Publication Date
WO2018059095A1 true WO2018059095A1 (zh) 2018-04-05

Family

ID=61763737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094347 WO2018059095A1 (zh) 2016-09-30 2017-07-25 一种波束扫描方法及相关设备

Country Status (4)

Country Link
US (1) US10892805B2 (zh)
EP (1) EP3522385A4 (zh)
CN (1) CN107888239B (zh)
WO (1) WO2018059095A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220012251A (ko) * 2019-04-24 2022-02-03 오라 인텔리전트 시스템즈, 인크. 멀티-스트림 mimo/빔포밍 레이더
CN110380763B (zh) * 2019-07-23 2021-05-11 东南大学 收发方向图非互易全数字波束成形天线阵列及其实现方法
CN115189737A (zh) * 2021-04-06 2022-10-14 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875271A (zh) * 2011-08-23 2014-06-18 三星电子株式会社 用于在波束形成的无线通信***中调度波束扫描的使用的装置和方法
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和***
US20150326359A1 (en) * 2014-05-08 2015-11-12 Qualcomm Incorporated Cooperative techniques between lower-frequency carriers and millimeter-wave channels for discovery and synchronization and beamforming

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798549B2 (ja) * 1998-03-18 2006-07-19 富士通株式会社 無線基地局のマルチビームアンテナシステム
CN101237266B (zh) * 2007-01-31 2011-11-16 电信科学技术研究院 一种波束赋形方法及装置
US8422961B2 (en) 2009-02-23 2013-04-16 Nokia Corporation Beamforming training for functionally-limited apparatuses
US9397745B2 (en) * 2010-05-18 2016-07-19 Qualcomm Incorporated Hybrid satellite and mesh network system for aircraft and ship internet service
CN104796185A (zh) * 2014-01-21 2015-07-22 中兴通讯股份有限公司 波束信息获取方法、导频波束发送方法、通信节点及***
CN105007126B (zh) * 2014-04-23 2017-09-29 电信科学技术研究院 一种信道状态信息测量的方法、***及设备
US10659135B2 (en) * 2014-06-16 2020-05-19 Qualcomm Incorporated Coordinated discovery of MMW connection points and UES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875271A (zh) * 2011-08-23 2014-06-18 三星电子株式会社 用于在波束形成的无线通信***中调度波束扫描的使用的装置和方法
CN104734761A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种上下行波束混合指示的方法、基站、终端和***
US20150326359A1 (en) * 2014-05-08 2015-11-12 Qualcomm Incorporated Cooperative techniques between lower-frequency carriers and millimeter-wave channels for discovery and synchronization and beamforming

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522385A4 *

Also Published As

Publication number Publication date
EP3522385A1 (en) 2019-08-07
EP3522385A4 (en) 2019-09-11
CN107888239A (zh) 2018-04-06
US10892805B2 (en) 2021-01-12
CN107888239B (zh) 2020-05-15
US20200028549A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
TWI595759B (zh) Hybrid beamforming transmission method and network equipment
CN109600208B (zh) 一种上行传输、配置方法、终端及基站
WO2018082680A1 (zh) 信号传输方法和装置
US10530548B2 (en) Unifying message to support downlink beam management over multiple groups of beam paired links (MGBPL)
WO2018127151A1 (zh) 一种预编码矩阵指示方法、装置和***
EP3520228B1 (en) Reference signal with beamforming training and channel estimation
TWI681680B (zh) 一種獲取、回饋發送波束資訊的方法及裝置
US11510203B2 (en) Method and apparatus for determining uplink transmission beam
US20220094574A1 (en) Methods For Indicating And Determination Large-Scale Channel Parameter, Base Station And Terminal Device
WO2015042855A1 (zh) 通信方法、基站和用户设备
WO2014062195A1 (en) Csi feedback with elevation beamforming
WO2017114516A1 (zh) 一种广播信息传输方法及装置
CN107733505B (zh) 一种波束赋形训练方法、终端和基站
US20200244334A1 (en) Beam management method, network device and terminal
WO2018059095A1 (zh) 一种波束扫描方法及相关设备
US10554283B2 (en) Method and device for uplink information feedback and downlink data transmission
WO2017114054A1 (zh) 一种确定模拟波束的方法和设备
CN107888271B (zh) 一种波束确定方法及装置
CN108023630B (zh) 一种信息传输方法及相关设备
WO2017113885A1 (zh) 一种模拟通道测量方法及基站
CN107888258B (zh) 一种波束扫描与跟踪方法及装置
CN107888261B (zh) 一种信道矩阵确定方法及相关设备
CN109120321B (zh) 一种波束赋形的方法、装置、基站及计算机可读存储介质
WO2023019460A1 (en) Line of sight multiple-input multiple-output precoding based on slepian sequences
CN105282859B (zh) 一种用户设备、基站中的传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854549

Country of ref document: EP

Effective date: 20190430