WO2018059064A1 - 一种协同调度的方法及基站 - Google Patents

一种协同调度的方法及基站 Download PDF

Info

Publication number
WO2018059064A1
WO2018059064A1 PCT/CN2017/092347 CN2017092347W WO2018059064A1 WO 2018059064 A1 WO2018059064 A1 WO 2018059064A1 CN 2017092347 W CN2017092347 W CN 2017092347W WO 2018059064 A1 WO2018059064 A1 WO 2018059064A1
Authority
WO
WIPO (PCT)
Prior art keywords
component carrier
base station
cqi
primary component
frequency band
Prior art date
Application number
PCT/CN2017/092347
Other languages
English (en)
French (fr)
Inventor
徐凯
贾亮
谢东峰
楚志远
王超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018059064A1 publication Critical patent/WO2018059064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and a base station for cooperative scheduling.
  • CA carrier aggregation
  • Carrier aggregation is continuously enhanced by the LTE (Long Term Evolution) standard defined by the 3rd Generation Partnership Project (3GPP).
  • LTE Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • carrier aggregation technology is introduced, which stipulates that a maximum of five component carriers can be aggregated, which can provide a peak rate of 1 Gbit/s for users to provide 100 Mbit/s and low-speed mobile state in a high-speed mobile state, and support continuous carriers in a frequency band. Aggregation and inter-band carrier aggregation.
  • the Rel-11 version enhances the carrier aggregation technology, adds more CA configurations, and studies and standardizes the uplink carrier aggregation technology between bands.
  • the two spectrums Band7 (FDD) and Band38 (TDD) belong to the 2600M frequency band, and the two spectrums of Band7 and Band38 are close, due to the blockage and spurs between the spectrum.
  • the 3GPP LTE standard does not define the CA capabilities of Band7 and Band38.
  • Band7 and Band38 carriers with only 2600M spectrum are clustered, there will be severe spectrum interference.
  • only severe spectrum interference can occur when FDD and TDD spectrums are aggregated.
  • serious spectrum interference occurs.
  • the embodiment of the invention provides a method for cooperative scheduling, which is used to avoid spectrum interference generated when only the FDD spectrum and the TDD spectrum of the same standard frequency band are aggregated.
  • a first aspect of the embodiments of the present invention provides a method for cooperative scheduling, including: setting, by a base station, a first preset bandwidth and a second preset bandwidth according to a pre-defined rule, and determining, by the base station, a first preset in a TDD frequency band.
  • the spectrum of the bandwidth is used as the primary component carrier, and the base station determines the spectrum of the second preset bandwidth as the secondary component carrier in the FDD frequency band, and the primary component carrier and the secondary component carrier determined by the base station are aggregated by the base station, when the primary component carrier is used by the base station During scheduling, and the primary component carrier at this time is in a downlink state, the base station schedules a downlink subframe of the secondary component carrier, and the downlink subframe corresponds to a downlink subframe of the primary component carrier.
  • the downlink subframe of the secondary component carrier does not collide with the uplink subframe and the special subframe of the primary component carrier, and the FDD spectrum and the TDD spectrum aggregation of the same standard frequency band are avoided. Spectrum interference.
  • the method further includes: The base station sends an aggregation indication message indicating that the primary component carrier and the secondary component carrier are aggregated to the UE, and the UE configures a channel quality indicator CQI according to the received aggregation indication message, and the UE sends the CQI of the aggregated carrier to the base station, when the primary component carrier is in the When the CQI reports the uplink subframe, the base station does not schedule the downlink subframe corresponding to the secondary component carrier; when the primary component carrier is in the downlink scheduling, the base station selects the channel quality to be the first according to the CQI of the secondary component carrier in the received CQI.
  • the subframe corresponding to the threshold secondary component carrier is scheduled to serve the UE, and the subframe is a downlink subframe. It can be seen that after the carrier aggregation is completed, the UE configures the CQI process, which improves the implementation mode of the aggregation process and increases the achievability.
  • the CQI further includes a CQI of a primary component carrier
  • the base station is configured according to the CQI.
  • the method further includes: the base station selecting, according to the CQI of the primary component carrier in the received CQI, a sub-carrier corresponding to the primary component carrier whose channel quality reaches the second threshold.
  • a frame is scheduled to serve the UE, and the subframe is a downlink subframe.
  • the acquiring, by the base station, the channel quality of the primary component carrier according to the CQI of the primary component carrier includes: The base station acquires the channel quality of the primary component carrier according to the CQI of the UE transmitting the primary component carrier, where the primary component carrier includes a periodic primary component carrier or a non-periodic primary component carrier. It can be seen that the carrier property of the primary component carrier is refined, the carrier type of the configured primary component carrier CQI is increased, and a specific implementation manner is added.
  • the base station acquires a secondary component carrier according to a CQI of the secondary component carrier in the CQI.
  • the channel quality includes: the base station acquires a channel quality of the secondary component carrier according to the CQI of the UE transmitting the secondary component carrier, where the secondary component carrier includes a periodic secondary component carrier or a non-periodic secondary component carrier. It can be seen that the carrier property of the secondary component carrier is refined, the carrier type of the configured secondary component carrier CQI is increased, and a specific implementation manner is added.
  • a second aspect of the present invention provides a base station, where the base station includes: a first determining unit, configured to determine, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band; The frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band is determined as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band; an aggregation unit is configured to use the primary component carrier and the auxiliary A component scheduling unit is configured to: when the primary component carrier is in downlink scheduling, to schedule a downlink subframe corresponding to the secondary component carrier.
  • the downlink subframe of the secondary component carrier does not collide with the uplink subframe and the special subframe of the primary component carrier, and the FDD spectrum and the TDD spectrum aggregation of the same standard frequency band are avoided. Spectrum interference.
  • the base station further includes: a sending unit, configured to send an aggregation indication message to the user equipment UE, where the aggregation indication is The message is used to indicate that the primary component carrier and the secondary component carrier are aggregated, so that the UE configures a channel quality indicator CQI according to the aggregation indication message, and the receiving unit is configured to receive a CQI of the aggregated carrier sent by the UE.
  • a sending unit configured to send an aggregation indication message to the user equipment UE, where the aggregation indication is The message is used to indicate that the primary component carrier and the secondary component carrier are aggregated, so that the UE configures a channel quality indicator CQI according to the aggregation indication message
  • the receiving unit is configured to receive a CQI of the aggregated carrier sent by the UE.
  • the base station When the primary component carrier is in an uplink subframe reported by the CQI, the base station does not schedule a downlink subframe corresponding to the secondary component carrier; and the second scheduling unit, when the primary component carrier is in downlink scheduling, is used according to the The CQI of the secondary component carrier in the CQI acquires the channel quality of the secondary component carrier, and schedules the downlink component corresponding to the secondary component carrier whose channel quality reaches the first threshold. frame. It can be seen that after the carrier aggregation is completed, the UE configures the CQI process, which improves the implementation mode of the aggregation process and increases the achievability.
  • the CQI further includes a CQI of a primary component carrier, where the base station is configured according to the When the CQI of the secondary component carrier in the CQI acquires the channel quality of the secondary component carrier, the base station further includes: a third scheduling unit, configured to acquire a channel quality of the primary component carrier according to a CQI of the primary component carrier, and schedule the primary The downlink sub-frame corresponding to the primary component carrier whose channel quality of the component carrier reaches the second threshold. It can be seen that the CQI type sent by the UE is refined, and the implementation manner of the CQI is added.
  • the third scheduling unit includes: a first acquiring module, configured to The CQI of the periodic primary component carrier or the CQI of the aperiodic primary component carrier transmitted by the UE acquires the channel quality of the primary component carrier. It can be seen that the carrier property of the primary component carrier is refined, the carrier type of the configured primary component carrier CQI is increased, and a specific implementation manner is added.
  • the second scheduling unit includes: a second acquiring module, configured to The CQI of the periodic secondary component carrier or the CQI of the aperiodic secondary component carrier transmitted by the UE acquires the channel quality of the secondary component carrier. It can be seen that the carrier property of the secondary component carrier is refined, the carrier type of the configured secondary component carrier CQI is increased, and a specific implementation manner is added.
  • a third aspect of the present invention provides a base station configured to implement the functions of the method provided by the foregoing first aspect or any optional implementation manner of the first aspect, implemented by hardware, and the hardware includes a unit corresponding to the foregoing function. .
  • a fourth aspect of the present invention provides a computer storage medium storing a cooperative scheduling program of the first aspect or any of the alternative implementations of the first aspect.
  • a fifth aspect of the present invention provides a database management system, including: a base station and a UE, where the terminal device is the base station of the second aspect or the third aspect.
  • the base station determines a frequency band of the first preset bandwidth in the time division duplex TDD frequency band as a primary component carrier, and determines a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band;
  • the base station aggregates the primary component carrier and the secondary component carrier; when the primary component carrier is in downlink scheduling, the base station schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the downlink subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids spectrum interference generated only when the FDD spectrum and the TDD spectrum of the same standard frequency band are aggregated.
  • FIG. 1 is a schematic diagram of a network architecture in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of a method for cooperative scheduling according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another embodiment of a method for cooperative scheduling according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a specific application scenario of a method for collaborative scheduling according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for cooperative scheduling, which is used to avoid spectrum interference generated when only the FDD spectrum and the TDD spectrum of the same standard frequency band are aggregated.
  • the E-UTRAN includes an eNodeB and other eNodeBs, and may also include a Multicast Coordination Entity (MCE).
  • the eNodeB can connect to other eNodeBs via a backhaul (eg, an X2 interface).
  • the MCE may allocate time-frequency radio resources for the eMBMS and determine a wireless configuration (eg, MCS) for the eMBMS.
  • the MCE may be an entity independent of the eNodeB or part of the eNodeB.
  • the eNodeB provides UE access to the EPC, and the eNodeB connects to the EPC.
  • the EPC may include an MME, an HSS, other MMEs, SGWs, MBMS GWs, BM-SCs, PGWs.
  • the MME is a control node that handles signaling between the UE and the EPC, and provides bearer and connection management. All user IP packets are sent through the SGW, and the SGW is connected to the PGW.
  • the PGW provides UE IP address allocation as well as other functions.
  • the PGW and the BM-SC are connected to IP services, which may include the Internet, an intranet, an IP Multimedia Subsystem (IMS), a PS Streaming Service (PSS), and/or other IP services.
  • IMS IP Multimedia Subsystem
  • PSS PS Streaming Service
  • the BM-SC can be used to locate and deliver MBMS user services.
  • the BM-SC can serve as an entry for content provider MBMS transmission, can be used to authorize and initiate MBMS bearer services within the PLMN, and can also be used to schedule and transmit MBMS transmissions.
  • the MBMS Gateway can be used to publish MBMS services to eNodeBs belonging to an MBSFN area broadcasting a specific service, and can also be used for callback management (start/stop) and collecting eMBMS related charging information.
  • the UE can perform signal communication through an LTE network and a millimeter wave (mmW) system. Therefore, The UE may communicate with the eNodeB and/or other eNodeBs over the LTE link. In addition, it is also possible to communicate with other connection points (CPs) or base stations via the mmW link.
  • CPs connection points
  • the base station determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier, and determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier; the base station aggregates the primary component carrier and the secondary component carrier; When the primary component carrier is in downlink scheduling, the base station schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the downlink subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids spectrum interference generated only when the FDD spectrum and the TDD spectrum of the same standard frequency band are aggregated.
  • an embodiment of a method for cooperative scheduling in an embodiment of the present invention includes:
  • the base station determines, as the primary component carrier, a frequency band of the first preset bandwidth in the time division duplex TDD frequency band.
  • the base station determines the size of the first preset bandwidth according to the preset rule, and the base station selects the frequency band of the first preset bandwidth in the TDD frequency band, and uses the frequency band as the primary component carrier; the base station determines the frequency band other than the primary component carrier in the TDD frequency band.
  • the isolated band is used to suppress interference between the spectrum.
  • the base station determines, as the secondary component carrier, a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band.
  • the base station determines the size of the second preset bandwidth according to the preset rule, and the base station selects the frequency band of the second preset bandwidth in the FDD frequency band, and uses the frequency band as the secondary component carrier.
  • the secondary component carrier and the primary component carrier belong to the same standard frequency band, and the standard frequency band may be a standard frequency band of 2600M, or may be other standard frequency bands, such as a standard frequency band of 2100M, which is not limited herein.
  • the base station aggregates the primary component carrier and the secondary component carrier.
  • the base station aggregates the determined primary component carrier and secondary component carrier by carrier aggregation techniques according to preset rules.
  • the base station schedules a downlink subframe corresponding to the secondary component carrier.
  • the base station schedules the downlink subframe of the secondary component carrier when the primary component carrier is in the downlink scheduling state according to the service requirement, and the downlink subframe corresponds to the downlink subframe of the primary component carrier, and the uplink subframe and the special component of the primary component carrier Subframes do not conflict.
  • the base station determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier, determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier, and the FDD frequency band and the TDD frequency band belong to the same standard frequency band; the base station uses the primary component carrier and the auxiliary frequency band. Component carrier aggregation; when the primary component carrier is in downlink scheduling, the base station schedules a downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the downlink subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids spectrum interference generated only when the FDD spectrum and the TDD spectrum of the same standard frequency band are aggregated.
  • another embodiment of a method for cooperative scheduling in an embodiment of the present invention includes:
  • the base station determines, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band.
  • the base station determines, as the secondary component carrier, a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band.
  • the base station aggregates the primary component carrier and the secondary component carrier.
  • Steps 301 to 303 in this embodiment are similar to steps 201 to 203 in the foregoing embodiment shown in FIG. 2, and details are not described herein again.
  • the base station sends an aggregation indication message to the user equipment UE.
  • the base station determines that the UE that needs to use the aggregated carrier sends a message that the carrier aggregation is completed to the UE, so that the UE according to the UE
  • the aggregation indication message configures channel quality indication CQI information, and the base station schedules the primary component carrier and the secondary component carrier for the UE according to the CQI information.
  • the UE configures a CQI according to the aggregation indication message.
  • the UE receives the aggregation indication message sent by the base station, and the UE configures the CQI of the aggregated carrier according to the message.
  • the base station does not schedule the downlink subframe corresponding to the secondary component carrier.
  • the base station receives a CQI of the periodic primary component carrier or a CQI of the aperiodic primary component carrier that is sent by the UE.
  • the base station receives the CQI information sent by the UE, and the CQI information is generated according to an aggregation indication message sent by the base station, where the CQI information includes a CQI of the primary component carrier, and the primary component carrier may be a periodic carrier or an aperiodic carrier.
  • the base station receives a CQI of the periodic secondary component carrier sent by the UE or a CQI of the aperiodic secondary component carrier.
  • the base station receives the CQI information sent by the UE, and the CQI information is generated according to an aggregation indication message sent by the base station, where the CQI information includes a CQI of the secondary component carrier, and the secondary component carrier may be a periodic carrier or an aperiodic carrier.
  • the base station schedules the downlink subframe corresponding to the secondary component carrier according to the received CQI.
  • the UE has the capability of using the aggregated carrier service.
  • the base station acquires the channel quality of the carrier according to the received CQI information, and starts scheduling the aggregated carrier.
  • the base station schedules the downlink subframe corresponding to the secondary component carrier whose channel quality reaches the first threshold.
  • the base station also schedules the downlink subframe corresponding to the primary component carrier whose channel quality of the primary component carrier reaches the second threshold.
  • the base station determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier, determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier, and the FDD frequency band and the TDD frequency band belong to the same standard frequency band; the base station uses the primary component carrier and the auxiliary frequency band. Component carrier aggregation; when the primary component carrier is in downlink scheduling, the base station schedules a downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the downlink subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids spectrum interference generated only when the FDD spectrum and the TDD spectrum of the same standard frequency band are aggregated.
  • the carrier A will have the TMD spectrum 50M and the FDD spectrum up and down each 20M.
  • the base station K of the operator A determines the 40M spectrum in the TDD spectrum as the main component.
  • the carrier, the base station K determines the 20M size spectrum of the uplink and downlink in the FDD spectrum as the secondary component carrier, and the base station K determines the remaining 10M size TDD spectrum as the isolated frequency band, for reducing inter-spectral interference.
  • the size of the primary component carrier and the secondary component carrier can be preset according to the actual needs of the operator.
  • the base station K aggregates the primary component carrier and the secondary component carrier; the base station K sends an aggregation indication message of the carrier aggregation to the UE, and after receiving the aggregation indication message, the UE starts to configure CQI information, where the CQI information includes a periodic principal component. CQI of the carrier and CQI of the periodic secondary component carrier, and the base station K pairs the secondary component carrier according to the received CQI information Scheduling;
  • the base station K schedules the downlink subframe of the secondary component carrier whose channel quality reaches the first threshold, and the downlink subframe of the secondary component carrier and the uplink subframe and the special subframe of the primary component carrier are both invoked. Do not conflict. In other words, when the primary component carrier is in the downlink scheduling, the base station K only calls the partial downlink subframe corresponding to the primary component carrier downlink subframe in the secondary component carrier. When the primary component carrier is in the downlink scheduling, the base station K may schedule the uplink subframe of the secondary component carrier, and may not schedule the downlink subframe of the secondary component. The base station K sends the scheduling information to the UE, and the UE can perform the network service using the spectrum scheduled by the base station K.
  • the base station in the embodiment of the present invention includes:
  • a first determining unit 501 configured to determine, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band;
  • a second determining unit 502 configured to determine a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band;
  • An aggregating unit 503, configured to aggregate the primary component carrier and the secondary component carrier
  • the first scheduling unit 504 is configured to schedule a downlink subframe corresponding to the secondary component carrier when the primary component carrier is in downlink scheduling.
  • the first determining unit 501 determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier
  • the second determining unit 502 determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier; 503.
  • the primary component carrier and the secondary component carrier are aggregated.
  • the first scheduling unit 504 schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids the spectrum interference generated only when the FDD spectrum of the same standard frequency band and the TDD spectrum are aggregated.
  • another embodiment of a base station in an embodiment of the present invention includes:
  • a first determining unit 601 configured to determine, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band;
  • the second determining unit 602 is configured to determine a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band;
  • the aggregating unit 603 is configured to aggregate the primary component carrier and the secondary component carrier.
  • the first scheduling unit 604 is configured to schedule a downlink subframe corresponding to the secondary component carrier when the primary component carrier is in downlink scheduling.
  • the base station may further include:
  • the sending unit 605 is configured to send an aggregation indication message to the user equipment UE, where the aggregation indication message is used to indicate that the primary component carrier and the secondary component carrier are aggregated, so that the UE configures a channel quality indicator CQI according to the aggregation indication message.
  • the receiving unit 606 is configured to receive the CQI of the aggregated carrier that is sent by the UE.
  • the base station does not schedule the downlink subframe corresponding to the secondary component carrier.
  • the second scheduling unit 607 is configured to acquire, according to the CQI of the secondary component carrier in the CQI, the channel quality of the secondary component carrier, and the downlink component corresponding to the secondary component carrier whose channel quality reaches the first threshold, when the primary component carrier is in the downlink scheduling. frame.
  • the first determining unit 601 determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier
  • the second determining unit 602 determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier; 603.
  • the primary component carrier and the secondary component carrier are aggregated.
  • the first scheduling unit 604 schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids the spectrum interference generated only when the FDD spectrum of the same standard frequency band and the TDD spectrum are aggregated.
  • another embodiment of a base station in an embodiment of the present invention includes:
  • a first determining unit 701 configured to determine, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band;
  • a second determining unit 702 configured to determine a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band;
  • the aggregating unit 703 is configured to aggregate the primary component carrier and the secondary component carrier.
  • the first scheduling unit 704 is configured to schedule a downlink subframe corresponding to the secondary component carrier when the primary component carrier is in downlink scheduling.
  • the base station may further include:
  • the sending unit 705 is configured to send an aggregation indication message to the user equipment UE, where the aggregation indication message is used to indicate that the primary component carrier and the secondary component carrier are aggregated, so that the UE configures a channel quality indicator CQI according to the aggregation indication message.
  • the receiving unit 706 is configured to receive the CQI of the aggregated carrier that is sent by the UE.
  • the base station does not schedule the downlink subframe corresponding to the secondary component carrier.
  • the second scheduling unit 707 is configured to acquire, according to the CQI of the secondary component carrier in the CQI, the channel quality of the secondary component carrier, and the downlink subframe corresponding to the secondary component carrier whose channel quality reaches the first threshold.
  • the third scheduling unit 708 is configured to acquire, according to the CQI of the primary component carrier, a channel quality of the primary component carrier, and schedule a downlink subframe corresponding to the primary component carrier whose channel quality of the primary component carrier reaches a second threshold.
  • the first determining unit 701 determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier
  • the second determining unit 702 determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier
  • the 703 aggregates the primary component carrier and the secondary component carrier.
  • the first scheduling unit 704 schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids the spectrum interference generated only when the FDD spectrum of the same standard frequency band and the TDD spectrum are aggregated.
  • another embodiment of the base station in the embodiment of the present invention includes:
  • a first determining unit 801 configured to determine, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band;
  • a second determining unit 802 configured to determine a frequency band of a second preset bandwidth in a frequency division duplex FDD frequency band as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band;
  • the aggregating unit 803 is configured to aggregate the primary component carrier and the secondary component carrier.
  • the first scheduling unit 804 is configured to schedule a downlink subframe corresponding to the secondary component carrier when the primary component carrier is in downlink scheduling.
  • the base station may further include:
  • the sending unit 805 is configured to send an aggregation indication message to the user equipment UE, where the aggregation indication message is used to indicate that the primary component carrier and the secondary component carrier are aggregated, so that the UE configures a channel quality indicator CQI according to the aggregation indication message.
  • the receiving unit 806 is configured to receive the CQI of the aggregated carrier that is sent by the UE.
  • the base station does not schedule the downlink subframe corresponding to the secondary component carrier.
  • the second scheduling unit 807 is configured to: when the primary component carrier is in the downlink scheduling, acquire the channel quality of the secondary component carrier according to the CQI of the secondary component carrier in the CQI, and schedule the downlink subframe corresponding to the secondary component carrier whose channel quality reaches the first threshold.
  • the third scheduling unit 808 is configured to acquire, according to the CQI of the primary component carrier, a channel quality of the primary component carrier, and schedule a downlink subframe corresponding to the primary component carrier whose channel quality of the primary component carrier reaches a second threshold.
  • the third scheduling unit 808 includes:
  • the first obtaining module 8081 is configured to acquire a channel quality of the primary component carrier according to the CQI of the periodic primary component carrier or the CQI of the aperiodic primary component carrier sent by the UE.
  • the first determining unit 801 determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier
  • the second determining unit 802 determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier
  • the 803 aggregates the primary component carrier and the secondary component carrier.
  • the first scheduling unit 804 schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids the spectrum interference generated only when the FDD spectrum of the same standard frequency band and the TDD spectrum are aggregated.
  • another embodiment of the base station in the embodiment of the present invention includes:
  • a first determining unit 901 configured to determine, as a primary component carrier, a frequency band of a first preset bandwidth in a time division duplex TDD frequency band;
  • the second determining unit 902 is configured to determine a frequency band of the second preset bandwidth in the frequency division duplex FDD frequency band as a secondary component carrier, where the FDD frequency band and the TDD frequency band belong to the same standard frequency band;
  • the aggregating unit 903 is configured to aggregate the primary component carrier and the secondary component carrier.
  • the first scheduling unit 904 is configured to schedule a downlink subframe corresponding to the secondary component carrier when the primary component carrier is in downlink scheduling.
  • the base station may further include:
  • the sending unit 905 is configured to send, to the user equipment UE, an aggregation indication message, where the aggregation indication message is used to indicate that the primary component carrier and the secondary component carrier are aggregated, so that the UE configures a channel quality indicator CQI according to the aggregation indication message;
  • the receiving unit 906 is configured to receive the CQI of the aggregated carrier that is sent by the UE.
  • the base station does not schedule the downlink subframe corresponding to the secondary component carrier.
  • the second scheduling unit 907 is configured to acquire, according to the CQI of the secondary component carrier in the CQI, the channel quality of the secondary component carrier, and schedule the downlink subframe corresponding to the secondary component carrier whose channel quality reaches the first threshold.
  • the third scheduling unit 908 is configured to acquire a channel quality of the primary component carrier according to the CQI of the primary component carrier, and schedule a downlink subframe corresponding to the primary component carrier whose channel quality of the primary component carrier reaches a second threshold.
  • the second scheduling unit 907 includes:
  • the second obtaining module 9071 is configured to acquire a channel quality of the secondary component carrier according to the CQI of the periodic secondary component carrier or the CQI of the non-periodic secondary component carrier sent by the UE.
  • the first determining unit 901 determines the frequency band of the first preset bandwidth in the TDD frequency band as the primary component carrier
  • the second determining unit 902 determines the frequency band of the second preset bandwidth in the FDD frequency band as the secondary component carrier; 903.
  • the primary component carrier and the secondary component carrier are aggregated.
  • the first scheduling unit 904 schedules the downlink subframe corresponding to the secondary component carrier.
  • the base station ensures that the subframe of the secondary component carrier scheduled after the carrier aggregation does not collide with the special subframe and the uplink subframe of the primary component carrier, and avoids the spectrum interference generated only when the FDD spectrum of the same standard frequency band and the TDD spectrum are aggregated.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station 1000 may generate a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 1022 (for example, One or more processors and memory 1032, one or more storage media 1030 that store application 1042 or data 1044 (eg, one or one storage device in Shanghai).
  • the memory 1032 and the storage medium 1030 may be short-term storage or persistent storage.
  • the program stored on storage medium 1030 may include one or more modules (not shown), each of which may include a series of instruction operations in the base station.
  • the central processor 1022 can be configured to communicate with the storage medium 1030 to perform a series of instruction operations in the storage medium 1030 on the base station 1000.
  • Base station 1000 can also include one or more power sources 1026, one or more wired or wireless network interfaces 1050, one or more input and output interfaces 1058, and/or one or more operating systems 1041, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 1041 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the method embodiment of the cooperative scheduling described in FIG. 2 to FIG. 4 above may be implemented based on the base station structure shown in FIG.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit is It can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种协同调度的方法,用于避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。本发明实施例方法包括:基站确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;所述基站确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,所述FDD频段与所述TDD频段属于同一标准频段;所述基站将所述主分量载波与所述辅分量载波聚合;当所述主分量载波处于下行调度时,所述基站调度辅分量载波对应的下行子帧。本发明实施例还提供一种基站。本发明实施例能够有效避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。

Description

一种协同调度的方法及基站
本申请要求于2016年9月29日提交中国专利局、申请号为201610863948.9、发明名称为“一种协同调度的方法及基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种协同调度的方法及基站。
背景技术
随着移动通信技术的发展,用户对数据速率的要求越来越高,与此同时频谱资源紧缺的问题日益严重。为了满足LTE-Advanced(Long Term Evolution Advanced)***对带宽的需求而提出了载波聚合(CA,Carrier Aggregation)技术。与LTE***相比,LTE-Advanced***需要在上下行控制信道设计、功率控制等多方面做相应的改变以支持载波聚合的功能。
载波聚合在第三代合作伙伴计划(3GPP,3rd Generation Partnership Project)定义的LTE(Long Term Evolution)标准中由无到有,持续增强。在Rel-10版本中,引入载波聚合技术,规定最多聚合5个成员载波,可以为用户在高速移动状态下提供100Mbit/s和低速移动状态下提供1Gbit/s的峰值速率,支持频段内连续载波聚合和频段间载波聚合。随着上行业务需求的进一步凸显,Rel-11版本对载波聚合技术进行增强,增加了更多的CA配置,对频段间的上行载波聚合技术进行研究和标准化。
在现有3GPP定义的LTE***可用频谱中,Band7(FDD)和Band38(TDD)这两个频谱,都属于2600M频段,且Band7和Band38这两个频谱紧挨,由于频谱间存在阻塞和杂散等干扰,3GPP LTE标准没有定义Band7和Band38的CA能力,当只有2600M频谱的Band7和Band38载波聚波时会存在严重的频谱干扰。在其他标准频段中,只有FDD和TDD频谱聚合时也会存在严重的频谱干扰。现有技术中,当只有同一标准频段的FDD频谱和TDD频谱聚合时,会产生严重的频谱干扰。
发明内容
本发明实施例提供了一种协同调度的方法,用于避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
本发明实施例的第一方面提供一种协同调度的方法,包括:基站按照预先制定的规则设置好第一预置带宽和第二预置带宽的大小,基站在TDD频段中确定第一预置带宽大小的频谱作为主分量载波,基站在FDD频段中确定第二预置带宽大小的频谱作为辅分量载波,由基站确定的主分量载波和辅分量载波被基站聚合在一起,当主分量载波被基站调度时,且此时的主分量载波为下行状态,基站调度辅分量载波的下行子帧,该下行子帧与主分量载波的下行子帧对应。可以看出,当主分量载波处于下行调度时,辅分量载波的下行子帧不会与主分量载波的上行子帧和特殊子帧产生冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
结合本发明实施例的第一方面,在本发明实施例第一方面的第一种实现方式中,所述基站将所述主分量载波与所述辅分量载波聚合之后,所述方法还包括:基站向UE发送指示主分量载波和辅分量载波完成聚合的聚合指示消息,UE根据接收到的聚合指示消息配置信道质量指示CQI,UE将聚合载波的CQI发送至基站,当所述主分量载波处于CQI上报的上行子帧时,所述基站不调度辅分量载波对应的下行子帧;当主分量载波处于下行调度时,基站根据接收到的CQI中的辅分量载波的CQI,选择信道质量达到第一阈值的辅分量载波对应的子帧,调度该子帧为UE提供服务,该子帧为下行子帧。可以看出,追加了载波聚合完成后,UE配置CQI的过程,完善了该聚合过程的实施方式,增加了可实现性。
结合本发明实施例第一方面的第一种实现方式,本发明实施例的第一方面的第二种实现方式中,所述CQI中还包括主分量载波的CQI,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量时,所述方法还包括:基站根据接收到的CQI中的主分量载波的CQI,选择信道质量达到第二阈值的主分量载波对应的子帧,调度该子帧为UE提供服务,该子帧为下行子帧。
结合本发明实施例第一方面的第二种实现方式,本发明实施例的第一方面的第三种实现方式中,所述基站根据所述主分量载波的CQI获取主分量载波的信道质量包括:基站根据UE发送主分量载波的CQI获取主分量载波的信道质量,该主分量载波包括周期性的主分量载波或非周期性的主分量载波。可以看出,细化了主分量载波的载波性质,增加了配置的主分量载波CQI的载波种类,增加了具体的实现方式。
结合本发明实施例第一方面的第一种实现方式,本发明实施例的第一方面的第四种实现方式中,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量包括:基站根据UE发送辅分量载波的CQI获取辅分量载波的信道质量,该辅分量载波包括周期性的辅分量载波或非周期性的辅分量载波。可以看出,细化了辅分量载波的载波性质,增加了配置的辅分量载波CQI的载波种类,增加了具体的实现方式。
本发明实施例第二方面提供了一种基站,所述基站包括:第一确定单元,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;第二确定单元,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,所述FDD频段与所述TDD频段属于同一标准频段;聚合单元,用于将所述主分量载波与所述辅分量载波聚合;第一调度单元,当所述主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。可以看出,当主分量载波处于下行调度时,辅分量载波的下行子帧不会与主分量载波的上行子帧和特殊子帧产生冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
结合本发明实施例的第二方面,在本发明实施例第二方面的第一种实现方式中,所述基站还包括:发送单元,用于向用户设备UE发送聚合指示消息,所述聚合指示消息用于指示所述主分量载波与所述辅分量载波完成聚合,以使得所述UE根据所述聚合指示消息配置信道质量指示CQI;接收单元,用于接收所述UE发送的聚合载波的CQI,当所述主分量载波处于CQI上报的上行子帧时,所述基站不调度辅分量载波对应的下行子帧;第二调度单元,当所述主分量载波处于下行调度时,用于根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度所述信道质量达到第一阈值的辅分量载波对应的下行子 帧。可以看出,追加了载波聚合完成后,UE配置CQI的过程,完善了该聚合过程的实施方式,增加了可实现性。
结合本发明实施例的第二方面的第一种实现方式,在本发明实施例第二方面的第二种实现方式中,所述CQI中还包括主分量载波的CQI,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量时,所述基站还包括:第三调度单元,用于根据所述主分量载波的CQI获取主分量载波的信道质量,调度所述主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。可以看出,细化了UE发送的CQI种类,增加了CQI的实现方式。
结合本发明实施例的第二方面的第二种实现方式,在本发明实施例第二方面的第三种实现方式中,所述第三调度单元包括:第一获取模块,用于根据所述UE发送的周期性主分量载波的CQI或非周期性主分量载波的CQI获取主分量载波的信道质量。可以看出,细化了主分量载波的载波性质,增加了配置的主分量载波CQI的载波种类,增加了具体的实现方式。
结合本发明实施例的第二方面的第一种实现方式,在本发明实施例第二方面的第四种实现方式中,所述第二调度单元包括:第二获取模块,用于根据所述UE发送的周期性辅分量载波的CQI或非周期性辅分量载波的CQI获取辅分量载波的信道质量。可以看出,细化了辅分量载波的载波性质,增加了配置的辅分量载波CQI的载波种类,增加了具体的实现方式。
本发明第三方面提供一种基站,该基站被配置实现上述第一方面或第一方面任一可选的实现方式所提供的方法的功能,由硬件实现,其硬件包括与上述功能相应的单元。
本发明第四方面提供一种计算机存储介质,该计算机存储介质存储有上述第一方面或第一方面任一可选的实现方式的协同调度的程序。
本发明第五方面提供一种数据库管理***,包括:基站和UE,所述终端设备为上述第二方面或第三方面的基站。
从以上技术方案可以看出,本发明实施例具有以下优点:
基站确定时分双工TDD频段中第一预置带宽的频段作为主分量载波,确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;基站将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,基站调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的下行子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
附图说明
图1为本发明实施例中的网络架构示意图;
图2为本发明实施例中协同调度的方法一个实施例示意图;
图3为本发明实施例中协同调度的方法另一个实施例示意图;
图4为本发明实施例中协同调度的方法一个具体应用场景示意图;
图5为本发明实施例中的基站的一个实施例示意图;
图6为本发明实施例中的基站的另一个实施例示意图;
图7为本发明实施例中的基站的另一个实施例示意图;
图8为本发明实施例中的基站的另一个实施例示意图;
图9为本发明实施例中的基站的另一个实施例示意图;
图10为本发明实施例中的基站的另一个实施例示意图。
具体实施方式
本发明实施例提供了一种协同调度的方法,用于避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例可应用于如图1所示的网络架构,在该网络架构中,E-UTRAN包括eNodeB和其它eNodeB,还可以包括多播协调实体(Multicast Coordination Entity,MCE)。eNodeB可以通过回程(backhaul)(例如X2接口)与其它eNodeB连接。MCE可以为eMBMS分配时频无线资源,并且为eMBMS确定无线配置(例如,MCS)。MCE可以是独立于eNodeB的实体,也可以是eNodeB的一部分。
eNodeB提供UE到EPC的接入,eNodeB连接到EPC。EPC可以包括MME,HSS,其它MME,SGW,MBMS GW,BM-SC,PGW。MME是处理UE和EPC之间信令的控制节点,提供承载和连接管理。所有用户IP包通过SGW进行发送,SGW与PGW进行连接。PGW提供UE IP地址分配以及其它功能。PGW和BM-SC连接到IP业务,IP业务可以包括Internet、intranet、IP Multimedia Subsystem(IMS)、PS Streaming Service(PSS)和/或其它IP业务。BM-SC可以为MBMS用户服务定位和传递的功能。BM-SC可以作为内容供应商MBMS传输的入口,可以在PLMN内用于授权和发起MBMS承载业务,也可以用于调度和传送MBMS传输。MBMS Gateway可以用作发布MBMS业务到属于一个广播特定业务的MBSFN区域的eNodeB,也可以用于回话管理(开始/停止)和收集eMBMS相关的计费信息。
UE能够通过LTE网络和毫米波(millimeter wave,mmW)***进行信号通信。因此, UE可以通过LTE链路和eNodeB和/或其它eNodeB进行通信。此外也可以通过mmW链路与其它连接点(connection point,CP)或基站进行通信。
本发明实施例中,基站确定TDD频段中第一预置带宽的频段作为主分量载波,确定FDD频段中第二预置带宽的频段作为辅分量载波;基站将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,基站调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的下行子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
请参阅图2,本发明实施例中协同调度的方法一个实施例包括:
201、基站确定时分双工TDD频段中第一预置带宽的频段作为主分量载波。
基站根据预置的规则确定第一预置带宽的大小,基站在TDD频段中选择第一预置带宽大小的频段,将该频段作为主分量载波;基站确定TDD频段中主分量载波之外的频段为隔离频段,隔离频段用于抑制频谱间的干扰。
202、基站确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波。
基站根据预置的规则确定第二预置带宽的大小,基站在FDD频段中选择第二预置带宽大小的频段,将该频段作为辅分量载波。辅分量载波与主分量载波属于同一标准频段,该标准频段可以是2600M标准频段,还可以是其他标准频段,如2100M标准频段,具体此处不做限定。
203、基站将主分量载波与辅分量载波聚合。
基站根据预置的规则,将确定的主分量载波和辅分量载波利用载波聚合技术聚合在一起。
204、当主分量载波处于下行调度时,基站调度辅分量载波对应的下行子帧。
基站根据业务需要,在主分量载波处于下行调度状态时,基站调度辅分量载波的下行子帧,且该下行子帧与主分量载波的下行子帧对应,与主分量载波的上行子帧和特殊子帧都不冲突。
基站确定TDD频段中第一预置带宽的频段作为主分量载波,确定FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;基站将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,基站调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的下行子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
请参阅图3,本发明实施例中协同调度的方法另一个实施例包括:
301、基站确定时分双工TDD频段中第一预置带宽的频段作为主分量载波。
302、基站确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波。
303、基站将主分量载波与辅分量载波聚合。
本实施例中的步骤301至303与前述图2所示实施例中的步骤201至203类似,具体此处不再赘述。
304、基站向用户设备UE发送聚合指示消息。
基站确定需要使用聚合的载波的UE,向该UE发送载波聚合完成的消息,使得UE根据 该聚合指示消息配置信道质量指示CQI信息,基站根据CQI信息为UE调度主分量载波和辅分量载波。
305、UE根据聚合指示消息配置CQI。
UE接收到基站发送的聚合指示消息,UE根据该消息配置聚合后的载波的CQI,当主分量载波处于CQI上报的上行子帧时,基站不调度辅分量载波对应的下行子帧。
306、基站接收UE发送的周期性主分量载波的CQI或非周期性主分量载波的CQI。
基站接收UE发送的CQI信息,该CQI信息根据基站发送的聚合指示消息生成,该CQI信息包括主分量载波的CQI,该主分量载波可以是周期性的载波或者非周期性的载波。
307、基站接收UE发送的周期性辅分量载波的CQI或非周期性辅分量载波的CQI。
基站接收UE发送的CQI信息,该CQI信息根据基站发送的聚合指示消息生成,该CQI信息包括辅分量载波的CQI,该辅分量载波可以是周期性的载波或者非周期性的载波。
308、当主分量载波处于下行调度时,基站根据接收到的CQI调度辅分量载波对应的下行子帧。
UE具备使用聚合载波业务的能力,当UE需要使用聚合后的载波时,基站根据接收到的CQI信息获取载波的信道质量,开始调度聚合后的载波。在调度主分量载波的基础上,当主分量载波处于下行调度时,基站调度信道质量达到第一阈值的辅分量载波对应的下行子帧。当主分量载波处于下行调度时,基站还调度主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。
基站确定TDD频段中第一预置带宽的频段作为主分量载波,确定FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;基站将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,基站调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的下行子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
为便于理解,下面结合具体的应用场景对本实施例进行描述:
不同国家对于频谱有不同的划分,下面以波兰的频谱划分标准为基础进行详细的说明。如图4所示,波兰将2600M的标准频段的频谱划分给三个不同的运营商,分别是运营商A、运营商B和运营商C,其中运营商A拥有band7(FDD)和band38(TDD)两种频谱,运营商B和运营商C在2600M的标准频段中只拥有band38(TDD)一种频谱。运营商A拥有band7(FDD)和band38(TDD)两种频谱,所以该运营商A可以将两种频谱进行聚合。
运营商A将拥有TDD频谱50M和FDD频谱上下行各20M,当用户设备UE需要使用载波聚合业务功能时,此时,运营商A的基站K将TDD频谱中的40M大小的频谱确定为主分量载波,基站K将FDD频谱中的上下行各20M大小的频谱确定为辅分量载波,基站K将剩余的10M大小的TDD频谱确定为隔离频段,用于减少频谱间的干扰。主分量载波和辅分量载波的大小可以根据运营商的实际需要预先设置好。
基站K将主分量载波和辅分量载波聚合在一起;基站K向UE发送载波聚合完成的聚合指示消息,UE收到该聚合指示消息后,开始配置CQI信息,该CQI信息包括周期性的主分量载波的CQI和周期性的辅分量载波的CQI,基站K根据接收到的CQI信息对辅分量载波 进行调度;
当主分量载波处于下行调度时,基站K调度信道质量达到第一阈值的辅分量载波的下行子帧,且调用的该辅分量载波的下行子帧与主分量载波的上行子帧和特殊子帧都不冲突。换句话说,当主分量载波处于下行调度时,基站K只调用辅分量载波中与主分量载波下行子帧对应的部分下行子帧。当主分量载波处于下行调度时,基站K可以调度辅分量载波的上行子帧,不能调度辅分量的下行子帧。基站K将调度信息发送给UE,UE可以使用基站K调度的频谱进行网络服务。
上面对本发明实施例中协同调度的方法进行了描述,下面对本发明实施例中的基站进行描述,请参阅图5,本发明实施例中的基站包括:
第一确定单元501,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
第二确定单元502,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;
聚合单元503,用于将主分量载波与辅分量载波聚合;
第一调度单元504,当主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。
本发明实施例中,第一确定单元501确定TDD频段中第一预置带宽的频段作为主分量载波,第二确定单元502确定FDD频段中第二预置带宽的频段作为辅分量载波;聚合单元503将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,第一调度单元504调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
请参阅图6,本发明实施例中基站另一个实施例包括:
第一确定单元601,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
第二确定单元602,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;
聚合单元603,用于将主分量载波与辅分量载波聚合;
第一调度单元604,当主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。
本实施例中,该基站还可以进一步包括:
发送单元605,用于向用户设备UE发送聚合指示消息,该聚合指示消息用于指示主分量载波与辅分量载波完成聚合,以使得UE根据聚合指示消息配置信道质量指示CQI;
接收单元606,用于接收UE发送的聚合载波的CQI,当主分量载波处于CQI上报的上行子帧时,基站不调度辅分量载波对应的下行子帧;
第二调度单元607,当主分量载波处于下行调度时,用于根据CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度信道质量达到第一阈值的辅分量载波对应的下行子 帧。
本发明实施例中,第一确定单元601确定TDD频段中第一预置带宽的频段作为主分量载波,第二确定单元602确定FDD频段中第二预置带宽的频段作为辅分量载波;聚合单元603将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,第一调度单元604调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
请参阅图7,本发明实施例中基站另一个实施例包括:
第一确定单元701,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
第二确定单元702,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;
聚合单元703,用于将主分量载波与辅分量载波聚合;
第一调度单元704,当主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。
本实施例中,该基站还可以进一步包括:
发送单元705,用于向用户设备UE发送聚合指示消息,该聚合指示消息用于指示主分量载波与辅分量载波完成聚合,以使得UE根据聚合指示消息配置信道质量指示CQI;
接收单元706,用于接收UE发送的聚合载波的CQI,当主分量载波处于CQI上报的上行子帧时,基站不调度辅分量载波对应的下行子帧;
第二调度单元707,当主分量载波处于下行调度时,用于根据CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度信道质量达到第一阈值的辅分量载波对应的下行子帧。
第三调度单元708,用于根据主分量载波的CQI获取主分量载波的信道质量,调度主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。
本发明实施例中,第一确定单元701确定TDD频段中第一预置带宽的频段作为主分量载波,第二确定单元702确定FDD频段中第二预置带宽的频段作为辅分量载波;聚合单元703将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,第一调度单元704调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
请参阅图8,本发明实施例中基站另一实施例包括:
第一确定单元801,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
第二确定单元802,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;
聚合单元803,用于将主分量载波与辅分量载波聚合;
第一调度单元804,当主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。
本实施例中,该基站还可以进一步包括:
发送单元805,用于向用户设备UE发送聚合指示消息,该聚合指示消息用于指示主分量载波与辅分量载波完成聚合,以使得UE根据聚合指示消息配置信道质量指示CQI;
接收单元806,用于接收UE发送的聚合载波的CQI,当主分量载波处于CQI上报的上行子帧时,基站不调度辅分量载波对应的下行子帧;
第二调度单元807,当主分量载波处于下行调度时,用于根据CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度信道质量达到第一阈值的辅分量载波对应的下行子帧。
第三调度单元808,用于根据主分量载波的CQI获取主分量载波的信道质量,调度主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。
其中,第三调度单元808包括:
第一获取模块8081,用于根据UE发送的周期性主分量载波的CQI或非周期性主分量载波的CQI获取主分量载波的信道质量。
本发明实施例中,第一确定单元801确定TDD频段中第一预置带宽的频段作为主分量载波,第二确定单元802确定FDD频段中第二预置带宽的频段作为辅分量载波;聚合单元803将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,第一调度单元804调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
请参阅图9,本发明实施例中基站另一实施例包括:
第一确定单元901,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
第二确定单元902,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,FDD频段与TDD频段属于同一标准频段;
聚合单元903,用于将主分量载波与辅分量载波聚合;
第一调度单元904,当主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。
本实施例中,该基站还可以进一步包括:
发送单元905,用于向用户设备UE发送聚合指示消息,该聚合指示消息用于指示主分量载波与辅分量载波完成聚合,以使得UE根据聚合指示消息配置信道质量指示CQI;
接收单元906,用于接收UE发送的聚合载波的CQI,当主分量载波处于CQI上报的上行子帧时,基站不调度辅分量载波对应的下行子帧;
第二调度单元907,当主分量载波处于下行调度时,用于根据CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度信道质量达到第一阈值的辅分量载波对应的下行子帧。
第三调度单元908,用于根据主分量载波的CQI获取主分量载波的信道质量,调度主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。
其中,第二调度单元907包括:
第二获取模块9071,用于根据UE发送的周期性辅分量载波的CQI或非周期性辅分量载波的CQI获取辅分量载波的信道质量。
本发明实施例中,第一确定单元901确定TDD频段中第一预置带宽的频段作为主分量载波,第二确定单元902确定FDD频段中第二预置带宽的频段作为辅分量载波;聚合单元903将主分量载波与辅分量载波聚合;当主分量载波处于下行调度时,第一调度单元904调度辅分量载波对应的下行子帧。基站确保载波聚合后调度的辅分量载波的子帧与主分量载波的特殊子帧和上行子帧不冲突,避免只有同一标准频段的FDD频谱和TDD频谱聚合时产生的频谱干扰。
图10是本发明实施例提供的一种基站结构示意图,该基站1000可因配置或性能不同而产生比较大的差异,可以包括一个或一个以***处理器(central processing units,CPU)1022(例如,一个或一个以上处理器)和存储器1032,一个或一个以上存储应用程序1042或数据1044的存储介质1030(例如一个或一个以上海量存储设备)。其中,存储器1032和存储介质1030可以是短暂存储或持久存储。存储在存储介质1030的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对基站中的一系列指令操作。更进一步地,中央处理器1022可以设置为与存储介质1030通信,在基站1000上执行存储介质1030中的一系列指令操作。
基站1000还可以包括一个或一个以上电源1026,一个或一个以上有线或无线网络接口1050,一个或一个以上输入输出接口1058,和/或,一个或一个以上操作***1041,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述图2至图4所描述的协同调度的方法实施例可以基于该图10所示的基站结构来实现。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既 可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (11)

  1. 一种协同调度的方法,其特征在于,包括:
    基站确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
    所述基站确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,所述FDD频段与所述TDD频段属于同一标准频段;
    所述基站将所述主分量载波与所述辅分量载波聚合;
    当所述主分量载波处于下行调度时,所述基站调度辅分量载波对应的下行子帧。
  2. 根据权利要求1所述的方法,其特征在于,所述基站将所述主分量载波与所述辅分量载波聚合之后,所述方法还包括:
    所述基站向用户设备UE发送聚合指示消息,所述聚合指示消息用于指示所述主分量载波与所述辅分量载波完成聚合,以使得所述UE根据所述聚合指示消息配置信道质量指示CQI;
    所述基站接收所述UE发送的聚合载波的CQI,当所述主分量载波处于CQI上报的上行子帧时,所述基站不调度辅分量载波对应的下行子帧;
    当所述主分量载波处于下行调度时,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度所述信道质量达到第一阈值的辅分量载波对应的下行子帧。
  3. 根据权利要求2所述的方法,其特征在于,所述CQI中还包括主分量载波的CQI,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量时,所述方法还包括:
    所述基站根据所述主分量载波的CQI获取主分量载波的信道质量,调度所述主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。
  4. 根据权利要求3所述的方法,其特征在于,所述基站根据所述主分量载波的CQI获取主分量载波的信道质量包括:
    所述基站根据所述UE发送的周期性主分量载波的CQI或非周期性主分量载波的CQI获取主分量载波的信道质量。
  5. 根据权利要求2所述的方法,其特征在于,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量包括:
    所述基站根据所述UE发送的周期性辅分量载波的CQI或非周期性辅分量载波的CQI获取辅分量载波的信道质量。
  6. 一种基站,其特征在于,包括:
    第一确定单元,用于确定时分双工TDD频段中第一预置带宽的频段作为主分量载波;
    第二确定单元,用于确定频分双工FDD频段中第二预置带宽的频段作为辅分量载波,所述FDD频段与所述TDD频段属于同一标准频段;
    聚合单元,用于将所述主分量载波与所述辅分量载波聚合;
    第一调度单元,当所述主分量载波处于下行调度时,用于调度辅分量载波对应的下行子帧。
  7. 根据权利要求6所述的基站,其特征在于,所述基站还包括:
    发送单元,用于向用户设备UE发送聚合指示消息,所述聚合指示消息用于指示所述主分量载波与所述辅分量载波完成聚合,以使得所述UE根据所述聚合指示消息配置信道质量指示CQI;
    接收单元,用于接收所述UE发送的聚合载波的CQI,当所述主分量载波处于CQI上报的上行子帧时,所述基站不调度辅分量载波对应的下行子帧;
    第二调度单元,当所述主分量载波处于下行调度时,用于根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量,调度所述信道质量达到第一阈值的辅分量载波对应的下行子帧。
  8. 根据权利要求7所述的基站,其特征在于,所述CQI中还包括主分量载波的CQI,所述基站根据所述CQI中的辅分量载波的CQI获取辅分量载波的信道质量时,所述基站还包括:
    第三调度单元,用于根据所述主分量载波的CQI获取主分量载波的信道质量,调度所述主分量载波的信道质量达到第二阈值的主分量载波对应的下行子帧。
  9. 根据权利要求8所述的基站,其特征在于,所述第三调度单元包括:
    第一获取模块,用于根据所述UE发送的周期性主分量载波的CQI或非周期性主分量载波的CQI获取主分量载波的信道质量。
  10. 根据权利要求7所述的基站,其特征在于,所述第二调度单元包括:
    第二获取模块,用于根据所述UE发送的周期性辅分量载波的CQI或非周期性辅分量载波的CQI获取辅分量载波的信道质量。
  11. 一种基站,其特征在于,所述基站包括:
    输入装置、输出装置、中央处理器、存储器和总线;
    所述输入装置、所述输出装置、所述中央处理器、所述存储器通过所述总线连接;
    所述中央处理器调用所述存储器中的程序指令,使得基站执行如权利要求1-5任一所述的协同调度的方法。
PCT/CN2017/092347 2016-09-29 2017-07-10 一种协同调度的方法及基站 WO2018059064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610863948.9A CN106412989B (zh) 2016-09-29 2016-09-29 一种协同调度的方法及基站
CN201610863948.9 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018059064A1 true WO2018059064A1 (zh) 2018-04-05

Family

ID=59229488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092347 WO2018059064A1 (zh) 2016-09-29 2017-07-10 一种协同调度的方法及基站

Country Status (2)

Country Link
CN (1) CN106412989B (zh)
WO (1) WO2018059064A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132340A (zh) * 2019-12-23 2020-05-08 维沃移动通信有限公司 时隙调整方法、电子设备及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106412989B (zh) * 2016-09-29 2019-12-17 上海华为技术有限公司 一种协同调度的方法及基站
CN111491377B (zh) * 2019-01-28 2024-07-09 华为技术有限公司 资源分配方法、终端及基站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958064A (zh) * 2011-08-18 2013-03-06 ***通信集团公司 载波聚合***中降低干扰的方法、***及装置
CN104811411A (zh) * 2014-01-26 2015-07-29 ***通信集团公司 一种数据传输的方法、设备和***
CN105580293A (zh) * 2013-09-26 2016-05-11 高通股份有限公司 简化的fdd-tdd载波聚合
US20160270047A1 (en) * 2015-03-10 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) System And Method For Selecting And Adapting Carrier Aggregation Configurations
CN106412989A (zh) * 2016-09-29 2017-02-15 上海华为技术有限公司 一种协同调度的方法及基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413505A (zh) * 2010-09-21 2012-04-11 夏普株式会社 下行ack/nack反馈资源分配方法以及相应的基站和用户设备
US9295048B2 (en) * 2012-09-24 2016-03-22 Qualcomm Incorporated Method and apparatus for supporting hybrid carrier aggregation
CN104349487B (zh) * 2013-08-09 2017-12-15 上海贝尔股份有限公司 用于tdd‑fdd联合***的跨载波多子帧调度的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958064A (zh) * 2011-08-18 2013-03-06 ***通信集团公司 载波聚合***中降低干扰的方法、***及装置
CN105580293A (zh) * 2013-09-26 2016-05-11 高通股份有限公司 简化的fdd-tdd载波聚合
CN104811411A (zh) * 2014-01-26 2015-07-29 ***通信集团公司 一种数据传输的方法、设备和***
US20160270047A1 (en) * 2015-03-10 2016-09-15 Telefonaktiebolaget Lm Ericsson (Publ) System And Method For Selecting And Adapting Carrier Aggregation Configurations
CN106412989A (zh) * 2016-09-29 2017-02-15 上海华为技术有限公司 一种协同调度的方法及基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111132340A (zh) * 2019-12-23 2020-05-08 维沃移动通信有限公司 时隙调整方法、电子设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN106412989B (zh) 2019-12-17
CN106412989A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
CN110249587B (zh) 针对多媒体广播多播服务的能力和覆盖确定
JP5770363B2 (ja) マルチキャスト送信におけるサービス品質制御
WO2018095156A1 (zh) 一种v2x网络资源信息指示方法及基站
US11071089B2 (en) Dynamic switching of streaming service between broadcast and unicast delivery
US20200077287A1 (en) Apparatus, method and computer program
JP7249405B2 (ja) V2xトラフィックに対応するための制御チャネル構造設計
WO2018121527A1 (zh) 一种信息传输方法及无线接入网设备
US11395256B2 (en) Communication method, device, and system
TWI521987B (zh) A method, system and device for information transmission
CN108307423A (zh) 一种无线接入网络切片选择方法和装置
WO2016070660A1 (zh) 数据传输结束的指示、处理方法及装置
WO2015180157A1 (zh) 承载建立装置和方法
WO2018059064A1 (zh) 一种协同调度的方法及基站
US20220264359A1 (en) Methods and Apparatus for Packet Flow to Data Radio Bearer Mapping
WO2017070838A1 (zh) 资源调度方法、基站、调度器、节目源服务器和***
US20170187428A1 (en) CoMP JT COMMUNICATION METHOD AND BASE STATION
WO2020078248A1 (zh) 无线通信方法及设备
US10206144B2 (en) Scheduling based on data traffic patterns
US20200205147A1 (en) Resource allocation method and device
CN114402561B (zh) 选择特定于用户设备的时分双工时隙格式的方法和设备
US10623336B2 (en) Method for transmitting MBMS group service data, base station, and user equipment
JP7250128B2 (ja) 通信方法および装置
EP3297316B1 (en) Uplink transmission method and related device
EP3203763B1 (en) Data transmission methods, devices, and storage medium
CN107113618B (zh) 上行传输控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854518

Country of ref document: EP

Kind code of ref document: A1