WO2018059003A1 - 一种波束训练方法、终端及基站 - Google Patents

一种波束训练方法、终端及基站 Download PDF

Info

Publication number
WO2018059003A1
WO2018059003A1 PCT/CN2017/087509 CN2017087509W WO2018059003A1 WO 2018059003 A1 WO2018059003 A1 WO 2018059003A1 CN 2017087509 W CN2017087509 W CN 2017087509W WO 2018059003 A1 WO2018059003 A1 WO 2018059003A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
training signal
base station
terminal
receive
Prior art date
Application number
PCT/CN2017/087509
Other languages
English (en)
French (fr)
Inventor
高秋彬
塔玛拉卡拉盖施
陈润华
李辉
李传军
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2018059003A1 publication Critical patent/WO2018059003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular to a beam training method, a terminal, and a base station.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • Radio access technology standards such as evolution are based on MIMO+OFDM (Orthogonal Frequency Division Multiplexing) technology.
  • the performance gain of MIMO technology comes from the spatial freedom that multi-antenna systems can obtain. Therefore, one of the most important evolution directions of MIMO technology in the development of standardization is the expansion of dimensions.
  • Rel-8 up to 4 layers of MIMO transmission can be supported.
  • Rel-9 focuses on MU-MIMO (Multi-User MIMO, Multi-User Multiple Input Multiple Output) technology, and supports up to 4 downlink data layers in MU-MIMO transmission of TM (Transmission Mode)-8 .
  • Rel-10 introduces support for 8 antenna ports to further improve the spatial resolution of channel state information, and further expands the transmission capability of SU-MIMO (Single-User MIMO, single-user multiple input multiple output) to a maximum of 8 data layers.
  • Rel-13 and Rel-14 introduce FD-MIMO technology to support 32 ports for beamforming in both full and vertical directions.
  • large-scale antenna technology is introduced in mobile communication systems.
  • fully digital large-scale antennas can have up to 128/256/512 antenna elements and up to 128/256/512 transceivers, each connected to a transceiver.
  • the terminal measures channel state information and feeds back by transmitting pilot signals up to 128/256/512 antenna ports.
  • an antenna array of up to 32/64 antenna elements can also be configured.
  • the beam is shaped to obtain a large beamforming gain to compensate for the signal attenuation caused by path loss.
  • the path loss makes the coverage of wireless signals extremely limited.
  • the coverage of wireless signals can be expanded to a practical range.
  • All-digital antenna arrays each with an independent transceiver, will greatly increase the size, cost and power consumption of the device.
  • transceiver analog-to-digital converters ADCs
  • DACs digital-to-analog converters
  • power reduction and performance improvement are limited.
  • a technical solution based on analog beamforming has been proposed. As shown in Figure 1 and Figure 2.
  • the main feature of analog beamforming is the weighted shaping of the intermediate frequency ( Figure 1) or the RF signal ( Figure 2) by a phase shifter.
  • FIG. 3 a digital analog hybrid beamforming transceiver architecture scheme is proposed, as shown in FIG.
  • the sender and the receiver respectively have with Transceivers, number of antennas at the transmitting end Receiver antenna number
  • the maximum number of parallel transport streams supported by beamforming is
  • the hybrid beamforming structure of Figure 3 balances the flexibility of digital beamforming and the low complexity of analog beamforming.
  • Both analog beamforming and digital-to-analog hybrid beamforming require adjustment of the analog beamforming weights at both ends of the transceiver so that the resulting beam can be aligned with the opposite end of the communication.
  • the weight of beamforming is usually obtained by sending a training signal.
  • the terminal needs to re-search the corresponding receiving beam for each level of the beam training signal sent by the base station, which greatly increases the duration and complexity of the beam training.
  • An object of the present disclosure is to provide a beam training method, a terminal, and a base station, which are used to solve the beam training method in the related art.
  • the terminal needs to re-search for the corresponding receiving beam for each level of the beam training signal sent by the base station, which greatly increases the number of the beam.
  • the length and complexity of beam training is to provide a beam training method, a terminal, and a base station, which are used to solve the beam training method in the related art.
  • the present disclosure provides a beam training method applied to a terminal, including:
  • the step of determining the downlink receive beam of the second beam training signal according to the mapping between the downlink transmit beam and the downlink receive beam and the configuration information of the second beam training signal sent by the base station includes:
  • the step of determining the downlink receiving beam of the second beam training signal according to the first downlink receiving beam includes:
  • the first downlink receive beam as a downlink receive beam of the second beam training signal
  • the spatial correlation between the downlink receiving beam and the first downlink receiving beam in the downlink receiving beam set is greater than a first preset threshold or a downlink receiving beam and the first downlink in the downlink receiving beam set.
  • the angular difference of the spatial pointing of the row receiving beam is within a first predetermined range.
  • the configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • the step of receiving the second beam training signal by using the downlink receiving beam of the second beam training signal and determining the optimal downlink receiving beam includes:
  • the downlink receiving beam with the strongest received signal power is selected as the optimal downlink receiving beam.
  • the step of receiving the second beam training signal by using the downlink receiving beam of the second beam training signal and determining the optimal downlink transmitting beam includes:
  • the line receive beam is the best downlink transmit beam.
  • an embodiment of the present disclosure further provides a terminal, including:
  • a first determining module configured to determine, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink sending beam in the first downlink transmitting beam set;
  • a second determining module configured to determine, according to the correspondence between the downlink transmit beam and the downlink receive beam, and the configuration information of the second beam training signal sent by the base station, a downlink receive beam of the second beam training signal, where the configuration information is used And the information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to the first downlink transmission beam set;
  • a third determining module configured to receive the second beam training signal by using a downlink receiving beam of the second beam training signal, and determine an optimal downlink transmit beam or an optimal downlink receive beam.
  • the second determining module includes:
  • a first determining submodule configured to determine, according to configuration information of the second beam training signal sent by the base station, a downlink transmission beam of the base station related to the second beam training signal;
  • a second determining submodule configured to determine, according to the corresponding relationship between the downlink transmit beam and the downlink receive beam, a first downlink receive beam corresponding to the downlink transmit beam of the base station;
  • the third determining submodule determines, according to the first downlink receiving beam, a downlink receiving beam of the second beam training signal.
  • the third determining submodule is configured to use the first downlink receiving beam as a downlink receiving beam of the second beam training signal;
  • the spatial correlation between the downlink receiving beam and the first downlink receiving beam in the downlink receiving beam set is greater than a first preset threshold or a downlink receiving beam and the first downlink in the downlink receiving beam set.
  • the angular difference of the spatial pointing of the row receiving beam is within a first predetermined range.
  • the configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • the third determining module is configured to select, in the downlink receiving beam of the second beam training signal, that the downlink receiving beam with the strongest received signal power is the best downlink receiving beam.
  • the third determining module is configured to select, in the downlink transmit beam of the second beam training signal, that the downlink receive beam with the strongest received signal power is the best downlink transmit beam.
  • an embodiment of the present disclosure further provides a beam training method, which is applied to a base station, and includes:
  • the step of sending the first beam training signal to the terminal includes:
  • Determining a first downlink transmit beam set where the first downlink transmit beam set includes multiple downlink transmit beams, and each downlink transmit beam corresponds to a set of beamforming weights;
  • the first beam training signal is obtained and sent to the terminal.
  • the step of sending the second beam training signal to the terminal includes:
  • the second beam training signal is obtained and sent to the terminal.
  • the step of selecting a downlink transmit beam as the downlink transmit beam of the base station in the first downlink transmit beam set includes:
  • the spatial correlation between the downlink transmit beam in the second downlink transmit beam set and the downlink transmit beam of the base station is higher than a second preset threshold, or the downlink transmit beam in the second downlink transmit beam set is sent downstream from the base station.
  • the angular difference of the spatial pointing of the beam is within a second predetermined range.
  • the configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • an embodiment of the present disclosure further provides a base station, including:
  • a first transceiver module configured to send a first beam training signal to the terminal, and receive the terminal according to the a first recommended beam information sent by the first beam training signal, where the first beam training signal is a training signal corresponding to a downlink transmitting beam in the first downlink transmitting beam set;
  • a second transceiver module configured to send configuration information of the second beam training signal to the terminal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the base station sends the downlink information
  • the beam belongs to the first downlink transmit beam set
  • the third transceiver module is configured to send a second beam training signal to the terminal.
  • the first transceiver module includes:
  • a fourth determining submodule configured to determine a first downlink transmit beam set, where the first downlink transmit beam set includes multiple downlink transmit beams, and each downlink transmit beam corresponds to a set of beamforming weights;
  • the first sending submodule is configured to shape the downlink transmit beam in the first downlink transmit beam set according to a corresponding beamforming value, and obtain the first beam training signal and send the signal to the terminal.
  • the third transceiver module includes:
  • Selecting a sub-module configured to select a downlink transmit beam as a downlink transmit beam of the base station in the first downlink transmit beam set;
  • Constructing a submodule configured to construct a second downlink transmit beam set related to the downlink transmit beam of the base station
  • a second sending submodule configured to: after the downlink transmit beam in the second downlink transmit beam set is shaped according to a preset beamforming value, obtain the second beam training signal and send the signal to the terminal.
  • the selecting sub-module is configured to select, according to the first recommended beam information, a downlink transmit beam as the downlink transmit beam of the base station in the first downlink transmit beam set.
  • the spatial correlation between the downlink transmit beam in the second downlink transmit beam set and the downlink transmit beam of the base station is higher than a second preset threshold, or the downlink transmit beam in the second downlink transmit beam set is sent downstream from the base station.
  • the angular difference of the spatial pointing of the beam is within a second predetermined range.
  • the configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • Embodiments of the present disclosure also provide a terminal, including a processor, a transceiver, and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the configuration information of the beam training signal is used to determine a downlink receiving beam of the second beam training signal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the base station downlink transmission beam Belong to the first downlink transmit beam set;
  • the transceiver is configured to receive and transmit data
  • the memory is used to store data used by the processor to perform operations.
  • Embodiments of the present disclosure also provide a base station including a processor, a transceiver, and a memory;
  • the processor is configured to read a program in the memory and perform the following process:
  • the transceiver is configured to receive and transmit data
  • the memory is used to store data used by the processor to perform operations.
  • the foregoing technical solution of the embodiment of the present disclosure determines, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set; and the corresponding relationship between the downlink transmitting beam and the downlink receiving beam, and
  • the configuration information of the second beam training signal sent by the base station determines the downlink receiving beam of the second beam training signal, and the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to The first downlink transmit beam set; the downlink receive beam of the second beam training signal receives the second beam training signal, and determines an optimal downlink receive beam or an optimal downlink transmit beam.
  • the downlink receiving beam of the second beam training signal is determined according to the configuration information of the second beam training signal, and the terminal does not need to use the downlink receiving beam to receive the second beam training signal, thereby accelerating the terminal searching for the receiving beam.
  • the process reduces the time and complexity required for beam training.
  • 1 is a schematic diagram of weighting shaping of an intermediate frequency signal in analog beamforming in the related art
  • FIG. 2 is a schematic diagram of weighting shaping of a radio frequency signal in analog beamforming in the related art
  • FIG. 3 is a schematic diagram of digital-analog hybrid beamforming in the related art
  • FIG. 4 is a first operational flowchart of a beam training method according to some embodiments of the present disclosure
  • FIG. 5 is a second operational flowchart of a beam training method according to some embodiments of the present disclosure.
  • FIG. 6 is a flow chart of interaction between a base station and a terminal in some embodiments of the present disclosure
  • FIG. 7 is a first structural block diagram of a terminal according to some embodiments of the present disclosure.
  • FIG. 8 is a third operational flowchart of a beam training method according to some embodiments of the present disclosure.
  • FIG. 9 is a first structural block diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 10 is a second structural block diagram of a base station according to some embodiments of the present disclosure.
  • FIG. 11 is a block diagram of a second structure of a terminal according to some embodiments of the present disclosure.
  • Some embodiments of the present disclosure provide a beam training method, a terminal, and a base station.
  • the terminal needs to re-search for the corresponding receive beam for each level of the beam training signal sent by the base station, which is greatly increased.
  • a beam training method of some embodiments of the present disclosure is applied to a terminal, including:
  • Step 401 Determine, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set.
  • the first beam training signal may include a training signal corresponding to each beam in the first downlink transmission beam set.
  • the first downlink transmission beam set includes N 1 downlink transmission beams, and the base station may send N 1 training.
  • the signal, N 1 training signals may be TDM, FDM, CDM multiplexing, or a combination of various multiplexing methods.
  • the terminal determines, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to part or all of the downlink transmitting beams in the first downlink transmitting beam set.
  • the terminal receives the first beam training signal, performs measurement on the first beam training signal, selects a recommended downlink transmit beam (first recommended beam), and determines a pair for each first recommended beam. Determining a downlink receive beam, or determining a corresponding downlink receive beam for each downlink transmit beam in the first downlink transmit beam set, and storing each downlink transmit beam and downlink receive beam in the first downlink transmit beam set Correspondence.
  • the terminal may separately try to receive the training signal of the downlink transmit beam by using each candidate receive beam, and select the receive beam with the strongest received signal power as the receive beam of the downlink transmit beam.
  • Step 402 Determine, according to the correspondence between the downlink transmit beam and the downlink receive beam, and the configuration information of the second beam training signal sent by the base station, a downlink receive beam of the second beam training signal, where the configuration information is used to indicate the The information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to the first downlink transmission beam set.
  • the second beam training signal includes a training signal corresponding to each of the second downlink transmission beam sets.
  • the second downlink transmission beam set is configured by the base station to select one downlink transmission beam from the first downlink transmission beam set as the base station downlink transmission beam; and construct a second downlink transmission beam set related to the base station downlink transmission beam; After the downlink transmit beam in the second downlink transmit beam set is shaped according to a preset beamforming value, the second beam training signal is obtained and sent to the terminal.
  • the foregoing configuration information may be specifically QCL information used to indicate the training signal of the second beam training signal and the base station downlink transmission beam.
  • Some embodiments of the present disclosure accelerate the process of the terminal searching for the received beam according to the QCL information between the plurality of beam training signals indicated by the base station, which reduces the complexity.
  • Step 403 Receive the second beam training signal by using a downlink receiving beam of the second beam training signal, and determine an optimal downlink transmitting beam or an optimal downlink receiving beam.
  • the downlink receiving beam with the strongest received signal power is selected as the optimal downlink receiving beam; and the downlink transmitting beam of the second beam training signal is selected.
  • the downlink receiving beam with the strongest received signal power is the best downlink transmitting beam.
  • the beam training method of the embodiment of the present disclosure determines the downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set according to the first beam training signal sent by the base station; and according to the corresponding relationship between the downlink transmitting beam and the downlink receiving beam And determining configuration information of the second beam training signal sent by the base station, determining a downlink receiving beam of the second beam training signal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, and the downlink transmission beam of the base station Belonging to Decoding a first downlink transmit beam set; receiving a second beam training signal by using a downlink receive beam of the second beam training signal, and determining an optimal downlink receive beam or an optimal downlink transmit beam.
  • the downlink receiving beam of the second beam training signal is determined according to the configuration information of the second beam training signal, and the terminal does not need to use the downlink receiving beam to receive the second beam training signal, thereby accelerating the terminal to search for the receiving beam.
  • the process reduces the time and complexity required for beam training.
  • a beam training method of some embodiments of the present disclosure is applied to a terminal, including:
  • Step 501 Determine, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set.
  • This step is the same as step 401 above, and is not described here.
  • Step 502 Determine, according to configuration information of the second beam training signal sent by the base station, a downlink transmission beam of the base station related to the second beam training signal.
  • the training signal of the downlink transmission beam of the base station related to the second beam training signal is determined according to the foregoing configuration information, and the downlink transmission beam of the base station is determined according to the training signal of the downlink transmission beam of the base station.
  • the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station in the first downlink transmission beam set, such as the second beam training signal and the first
  • the QCL information of the training signal of the downlink transmission beam of the base station in the downlink transmission beam set and the terminal may determine the downlink transmission beam of the base station related to the second beam training signal according to the configuration information sent by the base station.
  • Step 503 Determine, according to the correspondence between the downlink transmit beam and the downlink receive beam, a first downlink receive beam corresponding to the downlink transmit beam of the base station.
  • Step 504 Determine a downlink receiving beam of the second beam training signal according to the first downlink receiving beam.
  • the first downlink receiving beam is used as a downlink receiving beam of the second beam training signal; or a downlink receiving beam set related to the first downlink receiving beam is configured, and the downlink receiving beam is configured A downlink receive beam is collected as the second beam training signal.
  • the spatial correlation between the downlink receiving beam and the first downlink receiving beam in the downlink receiving beam set is greater than a first preset threshold or the downlink receiving beam in the downlink receiving beam set and the first downlink receiving
  • the angular difference of the spatial pointing of the beam is within a first predetermined range.
  • Step 505 Receive the second beam training signal by using a downlink receiving beam of the second beam training signal, and determine an optimal downlink transmitting beam or an optimal downlink receiving beam.
  • This step is the same as step 403 above, and details are not described herein again.
  • the beam training method of the embodiment of the present disclosure according to the configuration information sent by the base station, the first downlink receiving beam or the downlink receiving beam set related to the first downlink receiving beam is used as the second beam training.
  • the downlink receiving beam of the signal accelerates the process of the terminal searching for the receiving beam under the premise of ensuring the training precision, and reduces the duration of the beam training and the training complexity.
  • the above workflow includes:
  • Step 601 The base station determines a first downlink transmit beam set.
  • the base station determines the first downlink transmit beam set (referred to as the first set), assuming that there are N 1 downlink transmit beams in the first set, each downlink beam corresponds to a set of beamforming weights, and the nth beam is sent by the beam.
  • Shape weight K is the number of beam-formed antenna elements, which can be smaller than the number of antenna elements of the base station.
  • all the beams in the first downlink transmit beam set may cover an area covered by the base station.
  • Step 602 The base station sends a first beam training signal.
  • the base station can transmit one beam training signal for each downlink transmit beam in the first set.
  • the base station can transmit N 1 training signals.
  • the N 1 training signals may be TDM, FDM, CDM multiplexing, or a combination of various multiplexing modes.
  • N 1 training signals may occupy N 1 OFDM symbols, each training signal occupies 1 OFDM symbol, and the training signals are TDM multiplexed. It is also possible to transmit training signals of a plurality of beams in one OFDM symbol, and the training signals are FDM multiplexed or CDM multiplexed.
  • the signal after shaping with the nth beam is:
  • the first beam training signal may be sent periodically, and may be sent aperiodically.
  • Step 603 The terminal measures the first beam training signal, selects the first recommended beam, and reports the first recommended beam related information to the base station, and determines a downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set.
  • the terminal receives the first training signal sent by the base station, and selects a recommended downlink transmission beam (first recommended beam) by measuring the first training signal. For example, the terminal can select the training signal receiving power The strongest beam is the recommended beam.
  • the first recommended beam is one beam or multiple beams.
  • the terminal Receiving, by the terminal, the first beam training signal, measuring the first beam training signal, selecting a recommended downlink transmit beam (first recommended beam), and determining a corresponding downlink receive beam for each first recommended beam, or for the first
  • Each downlink transmit beam in the downlink transmit beam set determines a corresponding downlink receive beam, and stores a correspondence between each downlink transmit beam and a downlink receive beam in the first downlink transmit beam set.
  • the receive beam of the terminal may be selected from candidate receive beams. Terminal sharing Receive beams, each receive beam corresponding to a set of beamforming weights, and the receive beam shaping weight of the nth beam Where L is the number of antenna elements of the beamforming, which may be smaller than the number of antenna elements of the terminal.
  • the terminal may separately try to receive each of the received beams, and select the receiving beam with the strongest received signal power as the receiving beam of the downlink transmitting beam.
  • the terminal reports the related information of the first recommended beam to the base station, where the related information includes an identifier of the first recommended beam, for example, a number of the downlink transmit beam.
  • the information of the recommended downlink transmit beam fed back by the terminal may be different according to the multiplexing mode of the downlink beam/beam training signal.
  • the downlink beamforming signal is multiplexed in different OFDM symbol symbols or frame subframes, and the terminal measures and feeds back the selected downlink time information (OFDM symbol or subframe index).
  • the downlink beamforming signal is multiplexed in different frequency resources (material resource block PRB, subband subband), and the terminal measures and feeds back the selected downlink frequency information (PRB or subband index).
  • the related information may further include downlink transmission beam training signal strength information received by the terminal, such as a received signal power level.
  • the terminal saves the downlink receiving beam corresponding to the first recommended beam.
  • the terminal needs to save the correspondence between the first recommended beam and the downlink receiving beam.
  • the terminal saves the downlink receiving beams corresponding to the beams in all the first sets, and saves the corresponding relationship.
  • the downlink receiving beam may refer to its number in all candidate downlink receiving beams, and may also refer to the weight itself of the downlink receiving beamforming.
  • Step 604 The base station determines a second downlink transmit beam set.
  • the base station selects a downlink transmission beam (base station downlink transmission beam) from the first set, and determines a second downlink transmission beam set (referred to as a second set) based on the downlink transmission beam of the base station.
  • the first base station transmit beam may be determined based on the first recommended beam related information reported by the terminal, for example, selecting the beam with the highest intensity.
  • the base station may also select the base station downlink transmission beam based on the first recommended beam information reported by the terminal.
  • the correlation between the downlink transmit beam in the second set and the downlink transmit beam of the base station is higher than a certain value, or the angular difference of the spatial direction is within a certain range.
  • the second set has one downlink transmit beam, and the downlink beam may be a base station downlink transmit beam.
  • Step 605 The base station sends configuration information of the second beam training signal.
  • the above configuration information includes time-frequency position information of the second beam training signal, and the like.
  • the configuration information further includes indication information of the downlink transmission beam of the base station, and indicates that the second beam training signal of the terminal and the beam training signal corresponding to the downlink transmission beam of the base station are for one or more spatial angle parameters (space arrival angle mean, or space arrival angle)
  • the extension, or the mean of the spatial departure angle, or the expansion of the spatial departure angle is Quasi-co-located QCL. If the two signals are QCL for a spatial angle parameter, the spatial angle parameter of the other signal can be inferred from the spatial angle parameter of one signal.
  • the second training signal may be sent periodically or non-periodically.
  • the second training signal may be a training signal of a transmitting beam or a training signal of a receiving beam (only one downlink transmitting beam in the second set).
  • Step 606 The base station sends a second beam training signal.
  • Step 607 The terminal determines, according to the configuration information of the second beam training signal, the training signal of the downlink transmission beam of the base station with the second beam training signal QCL.
  • Step 608 The terminal determines, according to the downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set, the first downlink receiving beam corresponding to the downlink transmitting beam of the base station.
  • Step 609 The terminal determines a downlink receiving beam of the second beam training signal according to the first downlink receiving beam, and receives the second beam training signal by using a downlink receiving beam of the second beam training signal to determine The best downlink receive beam or the best downlink transmit beam.
  • the terminal may receive the second beam training signal by using the first downlink receiving beam (terminal save) corresponding to the downlink downlink transmit beam of the terminal.
  • the terminal constructs a downlink receiving beam set (referred to as a third set) based on the first downlink receiving beam corresponding to the downlink downlink transmitting beam of the terminal.
  • the terminal selects an optimal receive beam in the third set according to the second beam training signal.
  • the terminal may separately try to receive the second training signal by using each receive beam in the third set, and select the receive beam with the strongest received signal power as the best receive beam, and in the downlink transmit beam of the second beam training signal. , select the downlink receiving with the strongest received signal power
  • the beam is the best downstream transmit beam.
  • the spatial correlation between the downlink receiving beam and the first downlink receiving beam in the third set is higher than a certain value, or the angular difference of the spatial pointing is within a certain range.
  • the weight of the transmit beam may consist of oversampled DFT vectors.
  • the oversampled DFT vector has O 1 N 1 , specifically:
  • the first set may include N 1 beams, and the beam shaping weights are respectively: Then with the beam in the first set
  • the beamforming weights of the beams in the associated second set may include: There are 1 O.
  • the weight of the transmit beam can be composed of oversampled 2D DFT vectors. Assuming that the number of antenna elements of the first dimension and the second dimension are N 1 and N 2 , respectively, and the oversampling rate factors of the two dimensions are O 1 and O 2 , respectively, the oversampled DFT vector has O 1 O 2 N 1 N 2 :
  • the first set may include N 1 N 2 beams, and the beamforming weights are:
  • the beamforming weights of the beams in the associated second set may include:
  • the beam training method of the embodiment of the present disclosure according to the configuration information sent by the base station, the first downlink receiving beam or a downlink receiving beam set related to the first downlink receiving beam is used as the second beam training signal.
  • the downlink receiving beam accelerates the process of the terminal searching for the receiving beam under the premise of ensuring the training precision, and reduces the length of the beam training and the training complexity.
  • the present disclosure employs two-stage beam training to achieve a good balance between training, overhead, and accuracy.
  • some embodiments of the present disclosure further provide a terminal, including:
  • the first determining module 71 is configured to determine, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink sending beam in the first downlink transmitting beam set;
  • the second determining module 72 is configured to determine, according to the correspondence between the downlink transmit beam and the downlink receive beam, and the configuration information of the second beam training signal sent by the base station, a downlink receive beam of the second beam training signal, where the configuration information is used by And the information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to the first downlink transmission beam set;
  • the third determining module 73 is configured to receive the second beam training signal by using a downlink receiving beam of the second beam training signal, and determine an optimal downlink transmit beam or an optimal downlink receive beam.
  • the second determining module 72 includes:
  • a first determining sub-module 721, configured to determine, according to configuration information of the second beam training signal sent by the base station, a downlink transmission beam of the base station related to the second beam training signal;
  • a second determining sub-module 722 configured to determine, according to the corresponding relationship between the downlink transmit beam and the downlink receive beam, a first downlink receive beam corresponding to the downlink transmit beam of the base station;
  • the third determining sub-module 723 is configured to determine, according to the first downlink receiving beam, a downlink receiving beam of the second beam training signal.
  • the third determining submodule 723 is configured to use the first downlink receiving beam as a downlink receiving beam of the second beam training signal;
  • the spatial correlation between the downlink receive beam and the first downlink receive beam in the downlink receive beam set is greater than a first preset threshold or downlink receive in the downlink receive beam set
  • the angle difference between the beam and the spatial direction of the first downlink receive beam is within a first preset range.
  • the configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • the third determining module 73 is configured to select, in the downlink receiving beam of the second beam training signal, that the downlink receiving beam with the strongest received signal power is the best downlink receiving beam.
  • the third determining module 73 is configured to select, in the downlink transmit beam of the second beam training signal, that the downlink receive beam with the strongest received signal power is the best downlink transmit beam.
  • the terminal of the embodiment of the present disclosure determines, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set; and the corresponding relationship between the downlink transmitting beam and the downlink receiving beam, and the base station
  • the configuration information of the second beam training signal is sent to determine a downlink receiving beam of the second beam training signal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, and the downlink transmission beam of the base station belongs to the Decoding a first downlink transmit beam set; receiving a second beam training signal by using a downlink receive beam of the second beam training signal, and determining an optimal downlink receive beam or an optimal downlink transmit beam.
  • the downlink receiving beam of the second beam training signal is determined according to the configuration information of the second beam training signal, and the terminal does not need to use the downlink receiving beam to receive the second beam training signal, thereby accelerating the terminal searching for the receiving beam.
  • the process reduces the time and complexity required for beam training.
  • some embodiments of the present disclosure further provide a beam training method applied to a base station, including:
  • Step 801 Send a first beam training signal to the terminal, and receive first recommended beam information sent by the terminal according to the first beam training signal, where the first beam training signal is downlink sending in the first downlink transmitting beam set.
  • the training signal corresponding to the beam.
  • the terminal receives the first beam training signal sent by the base station, performs measurement on the first beam training signal, selects the first recommended beam, and reports the first recommended beam related information to the base station. For example, the terminal may select the training signal to receive the strongest power.
  • the beam is the recommended beam.
  • the first recommended beam is one beam or multiple beams.
  • the first recommended beam information may include an identifier of the first recommended beam, such as a number of the downlink transmit beam.
  • the information of the recommended downlink transmit beam fed back by the terminal may be different according to the multiplexing mode of the downlink beam/beam training signal.
  • the downlink beamforming signal is multiplexed in different OFDM symbol symbols or frame subframes, and the terminal measures and feeds back the selected downlink time information (OFDM symbol or subframe index).
  • the downlink beamforming signal is multiplexed in different frequency resources (material resource block PRB, subband subband), and the terminal measures and feeds back the selected downlink frequency information (PRB or subband index).
  • the related information may further include downlink transmission beam training signal strength information received by the terminal, such as a received signal power level.
  • Step 802 Send configuration information of the second beam training signal to the terminal, where the configuration information is used to indicate information about the second beam training signal and the training signal of the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to the The first downlink transmit beam set.
  • Step 803 Send a second beam training signal to the terminal.
  • the base station sends the configuration information of the second beam training signal to the terminal, and the terminal determines, according to the correspondence relationship and the configuration information of the second beam training signal sent by the base station, the downlink receiving beam of the second beam training signal, by using the The downlink receive beam of the second beam training signal receives the second beam training signal and determines an optimal downlink receive beam or an optimal downlink transmit beam.
  • the foregoing configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • the configuration information is specifically used to indicate that the second beam training signal of the terminal and the beam training signal corresponding to the downlink transmission beam of the base station are for one or more spatial angle parameters (space arrival angle mean, or spatial arrival angle extension, or space departure angle mean , or the expansion of the spatial starting point) is Quasi-co-located QCL. If the two signals are QCL for a spatial angle parameter, the spatial angle parameter of the other signal can be inferred from the spatial angle parameter of one signal.
  • step of sending the first beam training signal to the terminal in the foregoing step 801 includes:
  • Determining a first downlink transmit beam set where the first downlink transmit beam set includes multiple downlink transmit beams, and each downlink transmit beam corresponds to a set of beamforming weights;
  • the first beam training signal is obtained and sent to the terminal.
  • step of sending the second beam training signal to the terminal in the foregoing step 802 includes:
  • the downlink transmit beam is selected as the downlink transmit beam of the base station in the first downlink transmit beam set according to the first recommended beam information. For example, select the beam with the highest intensity.
  • the spatial correlation between the downlink transmit beam in the second downlink transmit beam set and the downlink transmit beam of the base station is higher than a second preset threshold, or the downlink transmit beam and the base station in the second downlink transmit beam set are downlink.
  • the angular difference of the spatial direction of the transmit beam is within a second predetermined range.
  • the base station sends the configuration information of the second beam training signal to the terminal, so that the base station determines the downlink receiving beam of the second beam training signal according to the configuration information,
  • the terminal needs to receive the second beam training signal by using each downlink receiving beam, which accelerates the process of the terminal searching for the receiving beam, and reduces the time and complexity required for beam training.
  • some embodiments of the present disclosure further provide a base station, including:
  • the first transceiver module 91 is configured to send a first beam training signal to the terminal, and receive first recommended beam information that is sent by the terminal according to the first beam training signal, where the first beam training signal is a first downlink transmit beam. a training signal corresponding to a downlink transmit beam in the set;
  • the second transceiver module 92 is configured to send configuration information of the second beam training signal to the terminal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the base station is downlink.
  • the transmit beam belongs to the first downlink transmit beam set;
  • the third transceiver module 93 is configured to send a second beam training signal to the terminal.
  • the first transceiver module 91 includes:
  • a fourth determining sub-module 911 configured to determine a first downlink transmit beam set, where the first downlink transmit beam set includes multiple downlink transmit beams, and each downlink transmit beam corresponds to a set of beamforming weights;
  • the first sending sub-module 912 is configured to perform shaping of the downlink transmit beam in the first downlink transmit beam set according to a corresponding beamforming value, and obtain the first beam training signal and send the signal to the terminal.
  • the third transceiver module 93 includes:
  • the sub-module 931 is configured to select a downlink transmit beam as the downlink transmit beam of the base station in the first downlink transmit beam set.
  • the second sending sub-module 933 is configured to perform shaping of the downlink transmit beam in the second downlink transmit beam set according to a preset beamforming value, and obtain the second beam training signal and send the signal to the terminal.
  • the selecting sub-module 931 is configured to select, according to the first recommended beam information, a downlink transmit beam as the downlink transmit beam of the base station in the first downlink transmit beam set.
  • the spatial correlation between the downlink transmit beam in the second downlink transmit beam set and the downlink transmit beam of the base station is higher than a second preset threshold, or in the second downlink transmit beam set.
  • the angular difference between the downlink transmit beam and the base station downlink transmit beam is within the second preset range.
  • the configuration information is used to indicate quasi-co-site QCL information of the training signal of the second beam training signal and the downlink transmission beam of the base station.
  • the base station of the embodiment of the present disclosure sends configuration information of the second beam training signal to the terminal, so that the base station determines the downlink receiving beam of the second beam training signal according to the configuration information, and does not need the terminal to use each downlink receiving beam to train the second beam.
  • the signal is received, which speeds up the process of the terminal searching for the receiving beam, and reduces the time and complexity required for beam training.
  • some embodiments of the present disclosure further provide a base station, where the base station includes: a processor 1000; a memory 1020 connected to the processor 1000 through a bus interface, And a transceiver 1010 coupled to the processor 1000 via a bus interface; the memory 1020 for storing programs and data used by the processor in performing operations; transmitting data information or pilots through the transceiver 1010,
  • the uplink control channel is also received by the transceiver 1010; when the processor 1000 calls and executes the program and data stored in the memory 1020, the following functional modules are implemented:
  • a first transceiver module configured to send a first beam training signal to the terminal, and receive first recommended beam information that is sent by the terminal according to the first beam training signal, where the first beam training signal is a first downlink transmit beam set a training signal corresponding to the downlink transmission beam;
  • a second transceiver module configured to send configuration information of the second beam training signal to the terminal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the base station sends the downlink information
  • the beam belongs to the first downlink transmit beam set
  • the third transceiver module is configured to send a second beam training signal to the terminal.
  • the processor 1000 is configured to read a program in the memory 1020, and execute the following process: sending, by the transceiver 1010, a first beam training signal to the terminal, and receiving, by the terminal, the first recommended beam information sent by the terminal according to the first beam training signal.
  • the first beam training signal is a training signal corresponding to a downlink transmission beam in the first downlink transmission beam set; and the configuration information of the second beam training signal is sent to the terminal by the transceiver 1010, where the configuration information is used to indicate the The information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to the first downlink transmission beam set; and the second beam training signal is sent to the terminal.
  • the transceiver 1010 is configured to receive and transmit data under the control of the processor 1000.
  • the bus architecture can include any number of interconnected buses and bridges, One or more processors represented by processor 1000 and various circuits of memory represented by memory 1020 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1010 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 1000 is responsible for managing the bus architecture and general processing, and the memory 1020 can store data used by the processor 1000 in performing operations.
  • the processor 1000 is configured to send, by the transceiver 1010, a first beam training signal to the terminal, and receive first recommended beam information that is sent by the terminal according to the first beam training signal;
  • the configuration information of the second beam training signal is such that the base station determines the downlink receiving beam of the second beam training signal according to the configuration information, and does not need the terminal to receive the second beam training signal by using each downlink receiving beam, thereby accelerating the process of the terminal searching for the receiving beam. , reducing the time and complexity required for beam training.
  • some embodiments of the present disclosure further provide a terminal, including: a processor 1100; a memory 1120 connected to the processor 1100 through a bus interface, and a transceiver 1110 coupled to the processor 1100 via a bus interface; the memory for storing programs and data used by the processor in performing operations; receiving a downlink control channel through the transceiver 1110;
  • a terminal including: a processor 1100; a memory 1120 connected to the processor 1100 through a bus interface, and a transceiver 1110 coupled to the processor 1100 via a bus interface; the memory for storing programs and data used by the processor in performing operations; receiving a downlink control channel through the transceiver 1110;
  • a first determining module configured to determine, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink sending beam in the first downlink transmitting beam set;
  • a second determining module configured to determine, according to the correspondence between the downlink transmit beam and the downlink receive beam, and the configuration information of the second beam training signal sent by the base station, a downlink receive beam of the second beam training signal, where the configuration information is used And the information about the training signal of the second beam training signal and the downlink transmission beam of the base station, where the downlink transmission beam of the base station belongs to the first downlink transmission beam set;
  • a third determining module configured to receive the second beam training signal by using a downlink receiving beam of the second beam training signal, and determine an optimal downlink transmit beam or an optimal downlink receive beam.
  • the processor 1100 is configured to read the program in the memory 1120, and perform the following process: determining, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to the downlink transmitting beam in the first downlink transmitting beam set; Correspondence between the transmit beam and the downlink receive beam and the base station Determining, by the configuration information of the second beam training signal, the downlink receiving beam of the second beam training signal, where the configuration information is used to indicate information about the training signal of the second beam training signal and the downlink transmission beam of the base station,
  • the downlink transmission beam of the base station belongs to the first downlink transmission beam set; the second beam training signal is received by the transceiver 1110 by using the downlink reception beam of the second beam training signal, and the optimal downlink transmission beam is determined or optimized. Downstream receive beam.
  • the transceiver 1110 is configured to receive and transmit data under the control of the processor 1100.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 1100 and various circuits of memory represented by memory 1120.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the transceiver 1110 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 1130 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 can store data used by the processor 1100 in performing operations.
  • the processor 1100 is configured to determine, according to the first beam training signal sent by the base station, a downlink receiving beam corresponding to a downlink transmitting beam in the first downlink transmitting beam set; and according to the downlink transmitting beam and the downlink receiving.
  • the downlink receiving beam of the second beam training signal is determined according to the configuration information of the second beam training signal, and the terminal does not need to use the downlink receiving beam to receive the second beam training signal, thereby accelerating the terminal to search for the receiving beam.
  • the process reduces the time and complexity required for beam training.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供一种波束训练方法、终端及基站,解决相关技术中的波束训练方法中,终端对于基站发送的每级波束训练信号均需要重新搜索相应的接收波束,增加了波束训练的时长及复杂度。本公开的方法包括:根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;根据下行发送波束与下行接收波束的对应关系及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,配置信息用于指示第二波束训练信号与基站下行发送波束的训练信号的相关信息,基站下行发送波束属于第一下行发送波束集合;利用第二波束训练信号的下行接收波束接收第二波束训练信号,确定最佳下行接收波束或者下行发送波束。

Description

一种波束训练方法、终端及基站
相关申请的交叉引用
本申请主张在2016年9月30日在中国提交的中国专利申请号No.201610875307.5的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,特别是指一种波束训练方法、终端及基站。
背景技术
鉴于MIMO(Multiple-Input Multiple-Output,多输入多输出)技术对于提高峰值速率与***频谱利用率的重要作用,LTE(Long Term Evolution,长期演进)/LTE-A(LTE-Advanced,增强型长期演进)等无线接入技术标准都是以MIMO+OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术为基础构建起来的。MIMO技术的性能增益来自于多天线***所能获得的空间自由度,因此MIMO技术在标准化发展过程中的一个最重要的演进方向便是维度的扩展。
在LTE Rel-8中,最多可以支持4层的MIMO传输。Rel-9重点对MU-MIMO(Multi-User MIMO,多用户多输入多输出)技术进行了增强,TM(Transmission Mode,传输模式)-8的MU-MIMO传输中最多可以支持4个下行数据层。Rel-10则引入支持8天线端口进一步提高了信道状态信息的空间分辨率,并进一步将SU-MIMO(Single-User MIMO,单用户多输入多输出)的传输能力扩展至最多8个数据层。Rel-13和Rel-14引入了FD-MIMO技术支持到32端口,实现全维度以及垂直方向的波束赋形。
为了进一步提升MIMO技术,移动通信***中引入大规模天线技术。对于基站,全数字化的大规模天线可以有高达128/256/512个天线振子,以及高达128/256/512个收发信机,每个天线振子连接一个收发信机。通过发送高达128/256/512个天线端口的导频信号,使得终端测量信道状态信息并反馈。对于终端,也可以配置高达32/64个天线振子的天线阵列。通过基站和终端两侧 的波束赋形,获得巨大的波束赋形增益,以弥补路径损耗带来的信号衰减。尤其是在高频段通信,例如30GHz频点上,路径损耗使得无线信号的覆盖范围极其有限。通过大规模天线技术,可以将无线信号的覆盖范围扩大到可以实用的范围内。
全数字天线阵列,每个天线振子都有独立的收发信机,将会使得设备的尺寸、成本和功耗大幅度上升。特别是对于收发信机的模数转换器(ADC)和数模转换器(DAC),功耗降低和性能提升都比较有限。为了降低设备的尺寸、成本和功耗,基于模拟波束赋形的技术方案被提出。如图1和图2所示。模拟波束赋形的主要特点是通过移相器对中频(图1)或射频信号(图2)进行加权赋形。
为了进一步提升模拟波束赋形性能,一种数字模拟混合波束赋形收发架构方案被提出,如图3所示。在图3中,发送端和接收端分别有
Figure PCTCN2017087509-appb-000001
Figure PCTCN2017087509-appb-000002
个收发信机,发送端天线振子数
Figure PCTCN2017087509-appb-000003
接收端天线振子数
Figure PCTCN2017087509-appb-000004
波束赋形支持的最大并行传输流数量为
Figure PCTCN2017087509-appb-000005
图3的混合波束赋形结构在数字波束赋形灵活性和模拟波束赋形的低复杂度间做了平衡。
模拟波束赋形和数模混合波束赋形都需要调整收发两端的模拟波束赋形权值,以使得其所形成的波束能对准通信的对端。波束赋形的权值通常通过发送训练信号获得。但相关技术中的波束训练方法中,终端对于基站发送的每级波束训练信号均需要重新搜索相应的接收波束,大大增加了波束训练的时长及复杂度。
发明内容
本公开的目的在于提供一种波束训练方法、终端及基站,用以解决相关技术中的波束训练方法中,终端对于基站发送的每级波束训练信号均需要重新搜索相应的接收波束,大大增加了波束训练的时长及复杂度的问题。
为了实现上述目的,本公开提供了一种波束训练方法,应用于终端,包括:
根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置 信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
其中,所述根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定所述第二波束训练信号的下行接收波束的步骤包括:
根据基站发送的第二波束训练信号的配置信息,确定与所述第二波束训练信号相关的基站下行发送波束;
根据所述下行发送波束与下行接收波束的对应关系,确定与所述基站下行发送波束对应的第一下行接收波束;
根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束。
其中,所述根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束的步骤包括:
将所述第一下行接收波束,作为所述第二波束训练信号的下行接收波束;或者
构造与所述第一下行接收波束相关的下行接收波束集合,并将所述下行接收波束集合作为所述第二波束训练信号的下行接收波束。
其中,所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间相关性大于第一预设阈值或者所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间指向的角度差处于第一预设范围内。
其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
其中,利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行接收波束的步骤包括:
在所述第二波束训练信号的下行接收波束中,选择接收信号功率最强的下行接收波束为最佳下行接收波束。
其中,利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束的步骤包括:
在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下 行接收波束为最佳下行发送波束。
为解决上述技术问题,本公开的实施例还提供了一种终端,包括:
第一确定模块,用于根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
第二确定模块,用于根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
第三确定模块,用于利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
其中,所述第二确定模块包括:
第一确定子模块,用于根据基站发送的第二波束训练信号的配置信息,确定与所述第二波束训练信号相关的基站下行发送波束;
第二确定子模块,用于根据所述下行发送波束与下行接收波束的对应关系,确定与所述基站下行发送波束对应的第一下行接收波束;
第三确定子模块,根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束。
其中,所述第三确定子模块用于将所述第一下行接收波束,作为所述第二波束训练信号的下行接收波束;或者
构造与所述第一下行接收波束相关的下行接收波束集合,并将所述下行接收波束集合作为所述第二波束训练信号的下行接收波束。
其中,所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间相关性大于第一预设阈值或者所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间指向的角度差处于第一预设范围内。
其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
其中,所述第三确定模块用于在所述第二波束训练信号的下行接收波束中,选择接收信号功率最强的下行接收波束为最佳下行接收波束。
其中,所述第三确定模块用于在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下行接收波束为最佳下行发送波束。
为解决上述技术问题,本公开的实施例还提供了一种波束训练方法,应用于基站,包括:
向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
向所述终端发送第二波束训练信号。
其中,向终端发送第一波束训练信号的步骤包括:
确定第一下行发送波束集合,所述第一下行发送波束集合包括多个下行发送波束,每个下行发送波束对应一组波束赋形权值;
将所述第一下行发送波束集合中的下行发送波束按照对应的波束赋形取值进行赋形后,得到所述第一波束训练信号并发送给终端。
其中,向终端发送第二波束训练信号的步骤包括:
在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束;
构造与所述基站下行发送波束相关的第二下行发送波束集合;
将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
其中,在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束的步骤包括:
根据所述第一推荐波束信息,在所述第一下行发送波束集合中选取一下行发送波束作为所述基站下行发送波束。
其中,所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间相关性高于第二预设阈值,或者所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间指向的角度差处于第二预设范围内。
其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
为解决上述技术问题,本公开的实施例还提供了一种基站,包括:
第一收发模块,用于向终端发送第一波束训练信号,并接收终端根据所述 第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
第二收发模块,用于向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
第三收发模块,用于向所述终端发送第二波束训练信号。
其中,所述第一收发模块包括:
第四确定子模块,用于确定第一下行发送波束集合,所述第一下行发送波束集合包括多个下行发送波束,每个下行发送波束对应一组波束赋形权值;
第一发送子模块,用于将所述第一下行发送波束集合中的下行发送波束按照对应的波束赋形取值进行赋形后,得到所述第一波束训练信号并发送给终端。
其中,所述第三收发模块包括:
选取子模块,用于在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束;
构造子模块,用于构造与所述基站下行发送波束相关的第二下行发送波束集合;
第二发送子模块,用于将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
其中,所述选取子模块用于根据所述第一推荐波束信息,在所述第一下行发送波束集合中选取一下行发送波束作为所述基站下行发送波束。
其中,所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间相关性高于第二预设阈值,或者所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间指向的角度差处于第二预设范围内。
其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
本公开的实施例还提供了一种终端,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二 波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
本公开的实施例还提供了一种基站,包括处理器、收发机和存储器;
其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
向所述终端发送第二波束训练信号;
所述收发机用于接收和发送数据;
所述存储器用于保存所述处理器执行操作时所使用的数据。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;根据下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,配置信息用于指示第二波束训练信号与基站下行发送波束的训练信号的相关信息,基站下行发送波束属于所述第一下行发送波束集合;利用第二波束训练信号的下行接收波束接收第二波束训练信号,并确定最佳下行接收波束或者最佳下行发送波束。本公开实施例中根据第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,无需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
附图说明
图1为相关技术中的模拟波束赋形中对中频信号进行加权赋形的示意图;
图2为相关技术中的模拟波束赋形中对射频信号进行加权赋形的示意图;
图3为相关技术中的数模混合波束赋形示意图;
图4为本公开的一些实施例的波束训练方法的第一工作流程图;
图5为本公开的一些实施例的波束训练方法的第二工作流程图;
图6为本公开的一些实施例中基站与终端的交互流程图;
图7为本公开的一些实施例的终端的第一结构框图;
图8为本公开的一些实施例的波束训练方法的第三工作流程图;
图9为本公开的一些实施例的基站的第一结构框图;
图10为本公开的一些实施例的基站的第二结构框图;
图11为本公开的一些实施例的终端的第二结构框图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例及附图进行详细描述。
本公开的一些实施例提供了一种波束训练方法、终端及基站,解决了相关技术中的波束训练方法中,终端对于基站发送的每级波束训练信号均需要重新搜索相应的接收波束,大大增加了波束训练的时长及复杂度的问题。
如图4所示,本公开的一些实施例的波束训练方法,应用于终端,包括:
步骤401:根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束。
这里的第一波束训练信号可包括第一下行发送波束集合中每个波束对应的训练信号,例如,第一下行发送波束集合中包括N1个下行发送波束,基站可以发送N1个训练信号,N1个训练信号之间可以是TDM、FDM、CDM复用,或者各种复用方式的组合。
终端根据基站发送的第一波束训练信号,确定第一下行发送波束集合中部分或者全部的下行发送波束对应的下行接收波束。
具体的,终端接收上述第一波束训练信号,对第一波束训练信号进行测量,选择推荐的下行发送波束(第一推荐波束),并针对每个第一推荐波束确定对 应的下行接收波束,或者针对第一下行发送波束集合中的每个下行发送波束都确定一个对应的下行接收波束,保存第一下行发送波束集合中的每个下行发送波束与下行接收波束的对应关系。
终端可以分别尝试使用每个候选的接收波束对下行发送波束的训练信号进行接收,并选择接收信号功率最强的接收波束作为该下行发送波束的接收波束。
步骤402:根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合。
在本公开的一些实施例中,上述第二波束训练信号包括第二下行发送波束集合中每个波束对应的训练信号。该第二下行发送波束集合是由基站先从第一下行发送波束集合中选取一个下行发送波束为基站下行发送波束;构造与所述基站下行发送波束相关的第二下行发送波束集合;将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
进一步地,上述配置信息可具体为用于指示所述第二波束训练信号与基站下行发送波束的训练信号的QCL信息。本公开的一些实施例,根据基站指示的多个波束训练信号之间的QCL信息,加速了终端搜索接收波束的过程,降低了复杂度。
步骤403:利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
具体的,可在所述第二波束训练信号的下行接收波束中,选择接收信号功率最强的下行接收波束为最佳下行接收波束;在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下行接收波束为最佳下行发送波束。
本公开的实施例的波束训练方法,根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;根据下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,配置信息用于指示第二波束训练信号与基站下行发送波束的训练信号的相关信息,基站下行发送波束属于所 述第一下行发送波束集合;利用第二波束训练信号的下行接收波束接收第二波束训练信号,并确定最佳下行接收波束或者最佳下行发送波束。本公开的实施例中根据第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,无需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
如图5所示,本公开的一些实施例的波束训练方法,应用于终端,包括:
步骤501:根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束。
该步骤与上述步骤401相同,此处不在赘述。
步骤502:根据基站发送的第二波束训练信号的配置信息,确定与所述第二波束训练信号相关的基站下行发送波束。
具体的,根据上述配置信息确定与第二波束训练信号相关的基站下行发送波束的训练信号,根据基站下行发送波束的训练信号确定基站下行发送波束。
由上可知,该配置信息用于指示所述第二波束训练信号与所述第一下行发送波束集合中基站下行发送波束的训练信号的相关信息,如第二波束训练信号与所述第一下行发送波束集合中基站下行发送波束的训练信号的QCL信息,终端根据基站发送的配置信息,可确定与第二波束训练信号相关的基站下行发送波束。
步骤503:根据所述下行发送波束与下行接收波束的对应关系,确定与所述基站下行发送波束对应的第一下行接收波束。
步骤504:根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束。
具体的,将所述第一下行接收波束作为所述第二波束训练信号的下行接收波束;或者构造与所述第一下行接收波束相关的下行接收波束集合,并将所述下行接收波束集合作为所述第二波束训练信号的下行接收波束。
所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间相关性大于第一预设阈值或者所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间指向的角度差处于第一预设范围内。
步骤505:利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
该步骤与上述步骤403相同,此处不再赘述。
本公开的实施例的波束训练的方法,根据基站发送的配置信息,将上述第一下行接收波束或者将与所述第一下行接收波束相关的下行接收波束集合作为所述第二波束训练信号的下行接收波束,在保证训练精度的前提下,加速了终端搜索接收波束的过程,降低了波束训练的时长及训练复杂度。
下面结合图6具体说明本公开的一些实施例中基站与终端的工作流程。
如图6所示,上述工作流程包括:
步骤601:基站确定第一下行发送波束集合。
基站确定第一下行发送波束集合(简称第一集合),假设第一集合中共有N1个下行发送波束,每个下行波束对应一组波束赋形权值,第n个波束的发送波束赋形权值为
Figure PCTCN2017087509-appb-000006
其中K是波束赋形的天线振子数,可以小于基站的天线振子数。且第一下行发送波束集合中的所有波束可覆盖基站所覆盖的区域。
步骤602:基站发送第一波束训练信号。
基站可以为第一集合中每个下行发送波束发射一个波束训练信号。对于N1个下行发送波束,基站可以发送N1个训练信号。该N1个训练信号之间可以是TDM、FDM、CDM复用,或者各种复用方式的组合。例如,在以OFDM为基础的***中,N1个训练信号可以占用N1个OFDM符号,每个训练信号占用1个OFDM符号,训练信号之间为TDM复用。也可以在一个OFDM符号中发射多个波束的训练信号,训练信号之间为FDM复用,或者CDM复用。
假设一个资源单元上的待发送信号为s,则用第n个波束赋形之后的信号为:
y=[y1 y2 … yK]T=Wns
其中,yk将映射到天线振子k上发出。
另外,上述第一波束训练信号可以为周期性发送,与可以为非周期性发送。
步骤603:终端对第一波束训练信号进行测量,选择第一推荐波束并将第一推荐波束相关信息上报给基站,并确定第一下行发送波束集合中的下行发送波束对应的下行接收波束。
终端接收基站发送的第一训练信号,通过对第一训练信号的测量,选择推荐的下行发送波束(第一推荐波束)。例如,终端可以选择训练信号接收功率 最强的波束为推荐波束。第一推荐波束是一个波束,也可以是多个波束。
终端接收上述第一波束训练信号,对第一波束训练信号进行测量,选择推荐的下行发送波束(第一推荐波束),并针对每个第一推荐波束确定对应的下行接收波束,或者针对第一下行发送波束集合中的每个下行发送波束都确定一个对应的下行接收波束,保存第一下行发送波束集合中的每个下行发送波束与下行接收波束的对应关系。终端的接收波束可以是从候选的接收波束中选择得到。终端共有
Figure PCTCN2017087509-appb-000007
个接收波束,每个接收波束对应一组波束赋形权值,第n个波束的接收波束赋形权值为
Figure PCTCN2017087509-appb-000008
其中L是波束赋形的天线振子数,可以小于终端的天线振子数。对于一个下行波束训练信号(或者其他的信号),终端可以分别尝试使用每个接收波束对其进行接收,选择接收信号功率最强的接收波束作为该下行发送波束的接收波束。
终端将第一推荐波束的相关信息上报给基站,其中,相关信息包括第一推荐波束的标识,例如下行发送波束的编号。根据下行波束/波束训练信号的复用方式的不同,终端反馈的推荐下行发送波束的信息可以不同。例如,下行波束赋形信号在不同OFDM符号symbol或者帧subframe时分复用,终端测量并反馈选择的下行时间信息(OFDM symbol或者subframe index)。再例如,下行波束赋形信号在不同频率资源(物力资源块PRB,子带subband)复用,终端测量并反馈选择的下行频率信息(PRB or子带索引subband index)。上述相关的信息还可以进一步包括终端收到的下行发送波束训练信号强度信息,例如接收信号功率水平等。
终端保存第一推荐波束对应的下行接收波束。终端需要保存第一推荐波束与下行接收波束的对应关系。可选的,终端保存所有第一集合中波束对应的下行接收波束,保存其对应关系。这里下行接收波束可以是指其在所有候选下行接收波束中的编号,也可以是指下行接收波束赋形的权值本身。
步骤604:基站确定第二下行发送波束集合。
基站从第一集合中选择一个下行发送波束(基站下行发送波束),再以该基站下行发送波束为基础确定第二下行发送波束集合(简称第二集合)。该第一基站发送波束可以是基于终端上报的第一推荐波束相关信息确定,例如选择强度最高的波束。基站也可以不基于终端上报的第一推荐波束信息选择基站下行发送波束。
可选的,第二集合中的下行发送波束与基站下行发送波束空间相关性高于一定值,或者空间指向的角度差在一定范围之内。
假设第二集合中共有N2个下行发送波束。作为一个特例,第二集合中有1个下行发送波束,该下行波束可以是基站下行发送波束。
步骤605:基站发送第二波束训练信号的配置信息。
上述配置信息包括第二波束训练信号的时频位置信息等。该配置信息还包括基站下行发送波束的指示信息,指示终端所述第二波束训练信号与基站下行发送波束对应的波束训练信号针对一个或者多个空间角度参数(空间到达角度均值,或者空间到达角度扩展,或者空间出发角度均值,或者空间出发角度扩展)是准共站址的(Quasi-co-located QCL)的。如果两个信号针对一个空间角度参数是QCL的,则可以从一个信号的空间角度参数推测出另外一个信号的空间角度参数。
另外,第二训练信号可以是周期性发送的,也可以是非周期性发送的。上述第二训练信号可以是发送波束的训练信号,也可以是接收波束的训练信号(第二集合中只有一个下行发送波束)。
步骤606:基站发送第二波束训练信号。
步骤607:终端根据第二波束训练信号的配置信息,确定与第二波束训练信号QCL的基站下行发送波束的训练信号。
步骤608:终端根据第一下行发送波束集合中下行发送波束对应的下行接收波束,确定与所述基站下行发送波束对应的第一下行接收波束。
步骤609:终端根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束,并利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,确定最佳下行接收波束或者最佳下行发送波束。
终端可以采用终端下行发送波束对应的第一下行接收波束(终端保存)接收第二波束训练信号。
或者终端以终端下行发送波束对应的第一下行接收波束为基础构造下行接收波束集合(简称第三集合)。终端根据第二波束训练信号在第三集合中选择最佳的接收波束。终端可以分别尝试使用第三集合中每个接收波束对第二训练信号进行接收,选择接收信号功率最强的接收波束作为最佳接收波束,并在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下行接收 波束为最佳下行发送波束。
较佳的,第三集合中的下行接收波束与第一下行接收波束的空间相关性高于一定值,或者空间指向的角度差在一定范围之内。
下面具体说明上述第一集合和第二集合的关系。
如果基站的天线阵列为线性阵列,则发送波束的权值可以由过采样的DFT向量组成。对于线性阵列,假设天线振子数为N1,过采样率为O1,则过采样的DFT向量有O1N1个,具体为:
Figure PCTCN2017087509-appb-000009
则第一集合中可以包括N1个波束,其波束赋形权值分别为:
Figure PCTCN2017087509-appb-000010
则与第一集合中的波束
Figure PCTCN2017087509-appb-000011
关联的第二集合中的波束的波束赋形权值可以包括:
Figure PCTCN2017087509-appb-000012
共有O1个。
对于平面阵列,发送波束的权值可以由过采样的2D DFT向量组成。假设第一维度和第二维度的天线振子数分别为N1和N2,并且两个维度的过采样率因子分别为O1和O2,则过采样的DFT向量有O1O2N1N2个:
Figure PCTCN2017087509-appb-000013
Figure PCTCN2017087509-appb-000014
则第一集合中可以包括N1N2个波束,其波束赋形权值为:
{zk,l|k=0,O1,2O1,...,(N1-1)O1;l=0,O2,2O2,...,(N2-1)O2}
与第一集合中的波束
Figure PCTCN2017087509-appb-000015
关联的第二集合中的波束的波束赋形权值可以包括:
{zk,l|k=n1O1,n1O1+1,...,(n1+1)O1-1;l=n2O2,n2O2+1,...,(n2+1)O2-1}
共有O1O2个。
本公开的实施例的波束训练方法,根据基站发送的配置信息,将上述第一下行接收波束或者将与所述第一下行接收波束相关的下行接收波束集合作为所述第二波束训练信号的下行接收波束,在保证训练精度的前提下,加速了终端搜索接收波束的过程,降低了波束训练的时长及训练复杂度。另外,本公开采用两级波束训练在训练、开销和精度之间可以取得较好的平衡。
如图7所示,本公开的一些实施例还提供了一种终端,包括:
第一确定模块71,用于根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
第二确定模块72,用于根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
第三确定模块73,用于利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
本公开的一些实施例的终端,所述第二确定模块72包括:
第一确定子模块721,用于根据基站发送的第二波束训练信号的配置信息,确定与所述第二波束训练信号相关的基站下行发送波束;
第二确定子模块722,用于根据所述下行发送波束与下行接收波束的对应关系,确定与所述基站下行发送波束对应的第一下行接收波束;
第三确定子模块723,用于根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束。
本公开的一些实施例的终端,所述第三确定子模块723用于将所述第一下行接收波束,作为所述第二波束训练信号的下行接收波束;或者
构造与所述第一下行接收波束相关的下行接收波束集合,并将所述下行接收波束集合作为所述第二波束训练信号的下行接收波束。
本公开的一些实施例的终端,所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间相关性大于第一预设阈值或者所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间指向的角度差处于第一预设范围内。
本公开的一些实施例的终端,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
本公开的一些实施例的终端,所述第三确定模块73用于在所述第二波束训练信号的下行接收波束中,选择接收信号功率最强的下行接收波束为最佳下行接收波束。
本公开的一些实施例的终端,所述第三确定模块73用于在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下行接收波束为最佳下行发送波束。
本公开的实施例的终端,根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;根据下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,配置信息用于指示第二波束训练信号与基站下行发送波束的训练信号的相关信息,基站下行发送波束属于所述第一下行发送波束集合;利用第二波束训练信号的下行接收波束接收第二波束训练信号,并确定最佳下行接收波束或者最佳下行发送波束。本公开实施例中根据第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,无需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
如图8所示,本公开的一些实施例还提供了一种波束训练方法,应用于基站,包括:
步骤801:向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号。
这里,终端接收基站发送的第一波束训练信号,对第一波束训练信号进行测量,选择第一推荐波束并将第一推荐波束相关信息上报给基站,例如,终端可以选择训练信号接收功率最强的波束为推荐波束。第一推荐波束是一个波束,也可以是多个波束。
上述第一推荐波束信息可包括第一推荐波束的标识,例如下行发送波束的编号。根据下行波束/波束训练信号的复用方式的不同,终端反馈的推荐下行发送波束的信息可以不同。例如,下行波束赋形信号在不同OFDM符号symbol或者帧subframe时分复用,终端测量并反馈选择的下行时间信息(OFDM symbol或者subframe index)。再例如,下行波束赋形信号在不同频率资源(物力资源块PRB,子带subband)复用,终端测量并反馈选择的下行频率信息(PRB or子带索引subband index)。上述相关的信息还可以进一步包括终端收到的下行发送波束训练信号强度信息,例如接收信号功率水平等。
步骤802:向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合。
步骤803:向所述终端发送第二波束训练信号。
这里基站向终端发送第二波束训练信号的配置信息,使终端根据所述对应关系以及基站发送的第二波束训练信号的配置信息,确定所述第二波束训练信号的下行接收波束,利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行接收波束或者最佳下行发送波束。
具体的,上述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的准共站址QCL信息。该配置信息具体用于指示终端所述第二波束训练信号与基站下行发送波束对应的波束训练信号针对一个或者多个空间角度参数(空间到达角度均值,或者空间到达角度扩展,或者空间出发角度均值,或者空间出发角度扩展)是准共站址的(Quasi-co-located QCL)的。如果两个信号针对一个空间角度参数是QCL的,则可以从一个信号的空间角度参数推测出另外一个信号的空间角度参数。
进一步地,上述步骤801中向终端发送第一波束训练信号的步骤包括:
确定第一下行发送波束集合,所述第一下行发送波束集合包括多个下行发送波束,每个下行发送波束对应一组波束赋形权值;
将所述第一下行发送波束集合中的下行发送波束按照对应的波束赋形取值进行赋形后,得到所述第一波束训练信号并发送给终端。
进一步地,上述步骤802中向终端发送第二波束训练信号的步骤包括:
在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束;
构造与所述基站下行发送波束相关的第二下行发送波束集合;将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
并发送给终端。
可选的,根据所述第一推荐波束信息,在所述第一下行发送波束集合中选取一下行发送波束作为所述基站下行发送波束。例如选择强度最高的波束。
可选的,上述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间相关性高于第二预设阈值,或者所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间指向的角度差处于第二预设范围内。
本公开的实施例的波束训练方法,基站向终端发送第二波束训练信号的配置信息,使得基站根据该配置信息确定第二波束训练信号的下行接收波束,无 需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
如图9所示,本公开的一些实施例还提供了一种基站,包括:
第一收发模块91,用于向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
第二收发模块92,用于向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
第三收发模块93,用于向所述终端发送第二波束训练信号。
本公开的一些实施例的基站,所述第一收发模块91包括:
第四确定子模块911,用于确定第一下行发送波束集合,所述第一下行发送波束集合包括多个下行发送波束,每个下行发送波束对应一组波束赋形权值;
第一发送子模块912,用于将所述第一下行发送波束集合中的下行发送波束按照对应的波束赋形取值进行赋形后,得到所述第一波束训练信号并发送给终端。
本公开的一些实施例的基站,所述第三收发模块93包括:
选取子模块931,用于在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束;
构造子模块932,用于构造与所述基站下行发送波束相关的第二下行发送波束集合;
第二发送子模块933,用于将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
本公开的一些实施例的基站,所述选取子模块931用于根据所述第一推荐波束信息,在所述第一下行发送波束集合中选取一下行发送波束作为所述基站下行发送波束。
本公开的一些实施例的基站,所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间相关性高于第二预设阈值,或者所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间指向的角度差处于 第二预设范围内。
本公开的一些实施例的基站,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
本公开的实施例的基站,向终端发送第二波束训练信号的配置信息,使得基站根据该配置信息确定第二波束训练信号的下行接收波束,无需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
为了更好的实现上述目的,如图10所示,本公开的一些实施例还提供了一种基站,该基站包括:处理器1000;通过总线接口与所述处理器1000相连接的存储器1020,以及通过总线接口与处理器1000相连接的收发机1010;所述存储器1020用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机1010发送数据信息或者导频,还通过所述收发机1010接收上行控制信道;当处理器1000调用并执行所述存储器1020中所存储的程序和数据时,实现如下的功能模块:
第一收发模块,用于向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
第二收发模块,用于向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
第三收发模块,用于向所述终端发送第二波束训练信号。
处理器1000用于读取存储器1020中的程序,执行下列过程:通过收发机1010向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;通过收发机1010向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;向所述终端发送第二波束训练信号。
收发机1010,用于在处理器1000的控制下接收和发送数据。
其中,在图10中,总线架构可以包括任意数量的互联的总线和桥,具体 由处理器1000代表的一个或多个处理器和存储器1020代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1010可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1000负责管理总线架构和通常的处理,存储器1020可以存储处理器1000在执行操作时所使用的数据。
本公开的一些实施例的基站,处理器1000用于通过收发机1010向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息;向终端发送第二波束训练信号的配置信息,使得基站根据该配置信息确定第二波束训练信号的下行接收波束,无需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
为了更好的实现上述目的,如图11所示,本公开的一些实施例还提供一种终端,该终端包括:处理器1100;通过总线接口与所述处理器1100相连接的存储器1120,以及通过总线接口与处理器1100相连接的收发机1110;所述存储器用于存储所述处理器在执行操作时所使用的程序和数据;通过所述收发机1110接收下行控制信道;当处理器1100调用并执行所述存储器1120中所存储的程序和数据时,实现如下的功能模块:
第一确定模块,用于根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
第二确定模块,用于根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
第三确定模块,用于利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
处理器1100用于读取存储器1120中的程序,执行下列过程:根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;根据所述下行发送波束与下行接收波束的对应关系以及基站发 送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;通过收发机1110利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
收发机1110,用于在处理器1100的控制下接收和发送数据。
其中,在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口1130还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
本公开的一些实施例的终端,处理器1100用于根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;根据下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,配置信息用于指示第二波束训练信号与基站下行发送波束的训练信号的相关信息,基站下行发送波束属于所述第一下行发送波束集合;利用第二波束训练信号的下行接收波束接收第二波束训练信号,并确定最佳下行接收波束或者最佳下行发送波束。本公开的实施例中根据第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,无需终端使用每个下行接收波束对第二波束训练信号进行接收,加速了终端搜索接收波束的过程,降低了波束训练所需的时间及复杂度。
本公开是参照根据本公开的一些实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的一些实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (28)

  1. 一种波束训练方法,应用于终端,包括:
    根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
    根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
    利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
  2. 根据权利要求1所述的波束训练方法,其中,所述根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定所述第二波束训练信号的下行接收波束的步骤包括:
    根据基站发送的第二波束训练信号的配置信息,确定与所述第二波束训练信号相关的基站下行发送波束;
    根据所述下行发送波束与下行接收波束的对应关系,确定与所述基站下行发送波束对应的第一下行接收波束;
    根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束。
  3. 根据权利要求2所述的波束训练方法,其中,所述根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束的步骤包括:
    将所述第一下行接收波束,作为所述第二波束训练信号的下行接收波束;或者
    构造与所述第一下行接收波束相关的下行接收波束集合,并将所述下行接收波束集合作为所述第二波束训练信号的下行接收波束。
  4. 根据权利要求3所述的波束训练方法,其中,所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间相关性大于第一预设阈值或者所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间指向的角度差处于第一预设范围内。
  5. 根据权利要求1所述的波束训练方法,其中,所述配置信息用于指示 所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
  6. 根据权利要求1所述的波束训练方法,其中,利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行接收波束的步骤包括:
    在所述第二波束训练信号的下行接收波束中,选择接收信号功率最强的下行接收波束为最佳下行接收波束。
  7. 根据权利要求1所述的波束训练方法,其中,利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束的步骤包括:
    在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下行接收波束为最佳下行发送波束。
  8. 一种终端,包括:
    第一确定模块,用于根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
    第二确定模块,用于根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
    第三确定模块,用于利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束。
  9. 根据权利要求8所述的终端,其中,所述第二确定模块包括:
    第一确定子模块,用于根据基站发送的第二波束训练信号的配置信息,确定与所述第二波束训练信号相关的基站下行发送波束;
    第二确定子模块,用于根据所述下行发送波束与下行接收波束的对应关系,确定与所述基站下行发送波束对应的第一下行接收波束;
    第三确定子模块,根据所述第一下行接收波束,确定所述第二波束训练信号的下行接收波束。
  10. 根据权利要求9所述的终端,其中,所述第三确定子模块用于将所述第一下行接收波束,作为所述第二波束训练信号的下行接收波束;或者
    构造与所述第一下行接收波束相关的下行接收波束集合,并将所述下行接收波束集合作为所述第二波束训练信号的下行接收波束。
  11. 根据权利要求10所述的终端,其中,所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间相关性大于第一预设阈值或者所述下行接收波束集合中的下行接收波束与所述第一下行接收波束的空间指向的角度差处于第一预设范围内。
  12. 根据权利要求8所述的终端,其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
  13. 根据权利要求8所述的终端,其中,所述第三确定模块用于在所述第二波束训练信号的下行接收波束中,选择接收信号功率最强的下行接收波束为最佳下行接收波束。
  14. 根据权利要求8所述的终端,其中,所述第三确定模块用于在所述第二波束训练信号的下行发送波束中,选择接收信号功率最强的下行接收波束为最佳下行发送波束。
  15. 一种波束训练方法,应用于基站,包括:
    向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
    向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
    向所述终端发送第二波束训练信号。
  16. 根据权利要求15所述的波束训练方法,其中,向终端发送第一波束训练信号的步骤包括:
    确定第一下行发送波束集合,所述第一下行发送波束集合包括多个下行发送波束,每个下行发送波束对应一组波束赋形权值;
    将所述第一下行发送波束集合中的下行发送波束按照对应的波束赋形取值进行赋形后,得到所述第一波束训练信号并发送给终端。
  17. 根据权利要求15所述的波束训练方法,其中,向终端发送第二波束训练信号的步骤包括:
    在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束;
    构造与所述基站下行发送波束相关的第二下行发送波束集合;
    将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
  18. 根据权利要求17所述的波束训练方法,其中,在第一下行发送波束集合中选取一下行发送波束作为基站下行发送波束的步骤包括:
    根据所述第一推荐波束信息,在所述第一下行发送波束集合中选取一下行发送波束作为所述基站下行发送波束。
  19. 根据权利要求17所述的波束训练方法,其中,所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间相关性高于第二预设阈值,或者所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间指向的角度差处于第二预设范围内。
  20. 根据权利要求15所述的波束训练方法,其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
  21. 一种基站,包括:
    第一收发模块,用于向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的下行发送波束对应的训练信号;
    第二收发模块,用于向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
    第三收发模块,用于向所述终端发送第二波束训练信号。
  22. 根据权利要求21所述的基站,其中,所述第一收发模块包括:
    第四确定子模块,用于确定第一下行发送波束集合,所述第一下行发送波束集合包括多个下行发送波束,每个下行发送波束对应一组波束赋形权值;
    第一发送子模块,用于将所述第一下行发送波束集合中的下行发送波束按照对应的波束赋形取值进行赋形后,得到所述第一波束训练信号并发送给终端。
  23. 根据权利要求21所述的基站,其中,所述第三收发模块包括:
    选取子模块,用于在第一下行发送波束集合中选取一下行发送波束作为基 站下行发送波束;
    构造子模块,用于构造与所述基站下行发送波束相关的第二下行发送波束集合;
    第二发送子模块,用于将所述第二下行发送波束集合中的下行发送波束按照预设的波束赋形取值进行赋形后,得到所述第二波束训练信号并发送给终端。
  24. 根据权利要求23所述的基站,其中,所述选取子模块用于根据所述第一推荐波束信息,在所述第一下行发送波束集合中选取一下行发送波束作为所述基站下行发送波束。
  25. 根据权利要求23所述的基站,其中,所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间相关性高于第二预设阈值,或者所述第二下行发送波束集合中的下行发送波束与基站下行发送波束的空间指向的角度差处于第二预设范围内。
  26. 根据权利要求21所述的基站,其中,所述配置信息用于指示所述第二波束训练信号与所述基站下行发送波束的训练信号的准共站址QCL信息。
  27. 一种终端,包括处理器、收发机和存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    根据基站发送的第一波束训练信号,确定第一下行发送波束集合中的下行发送波束对应的下行接收波束;
    根据所述下行发送波束与下行接收波束的对应关系以及基站发送的第二波束训练信号的配置信息,确定第二波束训练信号的下行接收波束,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
    利用所述第二波束训练信号的下行接收波束接收所述第二波束训练信号,并确定最佳下行发送波束或者最佳下行接收波束;
    所述收发机用于接收和发送数据;
    所述存储器用于保存所述处理器执行操作时所使用的数据。
  28. 一种基站,包括处理器、收发机和存储器;
    其中,所述处理器用于读取所述存储器中的程序,执行下列过程:
    向终端发送第一波束训练信号,并接收终端根据所述第一波束训练信号发送的第一推荐波束信息,所述第一波束训练信号为第一下行发送波束集合中的 下行发送波束对应的训练信号;
    向终端发送第二波束训练信号的配置信息,所述配置信息用于指示所述第二波束训练信号与基站下行发送波束的训练信号的相关信息,所述基站下行发送波束属于所述第一下行发送波束集合;
    向所述终端发送第二波束训练信号;
    所述收发机用于接收和发送数据;
    所述存储器用于保存所述处理器执行操作时所使用的数据。
PCT/CN2017/087509 2016-09-30 2017-06-08 一种波束训练方法、终端及基站 WO2018059003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610875307.5 2016-09-30
CN201610875307.5A CN107888243B (zh) 2016-09-30 2016-09-30 一种波束训练方法、终端及基站

Publications (1)

Publication Number Publication Date
WO2018059003A1 true WO2018059003A1 (zh) 2018-04-05

Family

ID=61763313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/087509 WO2018059003A1 (zh) 2016-09-30 2017-06-08 一种波束训练方法、终端及基站

Country Status (3)

Country Link
CN (1) CN107888243B (zh)
TW (1) TWI679857B (zh)
WO (1) WO2018059003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445523A (zh) * 2018-05-04 2019-11-12 华为技术有限公司 波束训练方法、相关装置及***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110933749B (zh) 2018-09-20 2023-04-07 成都华为技术有限公司 指示波束的方法和装置
CN113517914B (zh) * 2020-04-10 2023-10-20 华为技术有限公司 一种波束训练方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130295852A1 (en) * 2012-05-04 2013-11-07 Samsung Electronics Co., Ltd Method and apparatus for beamforming in wireless communication system
CN103716081A (zh) * 2013-12-20 2014-04-09 中兴通讯股份有限公司 下行波束确定方法、装置及***
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信***中选择最佳波束的装置和方法
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信***中自适应性波束成形的装置和方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123336A1 (ko) * 2013-02-07 2014-08-14 엘지전자 주식회사 빔 제약적 서브프레임에 기반한 하향링크 데이터 전송 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875191A (zh) * 2011-08-12 2014-06-18 三星电子株式会社 在无线通信***中自适应性波束成形的装置和方法
CN103765794A (zh) * 2011-09-01 2014-04-30 三星电子株式会社 无线通信***中选择最佳波束的装置和方法
US20130295852A1 (en) * 2012-05-04 2013-11-07 Samsung Electronics Co., Ltd Method and apparatus for beamforming in wireless communication system
CN103716081A (zh) * 2013-12-20 2014-04-09 中兴通讯股份有限公司 下行波束确定方法、装置及***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445523A (zh) * 2018-05-04 2019-11-12 华为技术有限公司 波束训练方法、相关装置及***
CN110445523B (zh) * 2018-05-04 2023-02-14 华为技术有限公司 波束训练方法、相关装置及***
US11800375B2 (en) 2018-05-04 2023-10-24 Huawei Technologies Co., Ltd. Beam training method, related apparatus, and system

Also Published As

Publication number Publication date
TW201815087A (zh) 2018-04-16
CN107888243A (zh) 2018-04-06
CN107888243B (zh) 2020-03-20
TWI679857B (zh) 2019-12-11

Similar Documents

Publication Publication Date Title
CN110838856B (zh) 一种数据传输方法、终端及网络设备
TWI673964B (zh) 一種波束處理方法、基地台及移動終端
JP7273719B2 (ja) アップリンク送信ビーム特定方法および装置
CN108667496B (zh) 一种获取、反馈发送波束信息的方法及装置
CN110838857B (zh) 一种数据传输方法、终端及网络设备
US11664876B2 (en) Method and device for training downlink beams
CN110838862B (zh) 一种波束处理方法、装置、终端及网络侧设备
CN108631842B (zh) 一种确定设备波束互易性的方法、装置和电子设备
CN107733505B (zh) 一种波束赋形训练方法、终端和基站
WO2018059003A1 (zh) 一种波束训练方法、终端及基站
US11044002B2 (en) Beam control method, base station and user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854459

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17854459

Country of ref document: EP

Kind code of ref document: A1