WO2018058794A1 - 一种适用于宽带平面振子天线的差分馈电结构及方法 - Google Patents

一种适用于宽带平面振子天线的差分馈电结构及方法 Download PDF

Info

Publication number
WO2018058794A1
WO2018058794A1 PCT/CN2016/109615 CN2016109615W WO2018058794A1 WO 2018058794 A1 WO2018058794 A1 WO 2018058794A1 CN 2016109615 W CN2016109615 W CN 2016109615W WO 2018058794 A1 WO2018058794 A1 WO 2018058794A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
feeding
microstrip line
differential
stub
Prior art date
Application number
PCT/CN2016/109615
Other languages
English (en)
French (fr)
Inventor
李融林
高晓娜
崔悦慧
刘辉
牛耀
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2018058794A1 publication Critical patent/WO2018058794A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the field of mobile communication antennas, and in particular to a differential feed structure and method suitable for a wideband planar oscillator antenna.
  • Differential feed antennas facilitate integration with differential active circuits and achieve high polarization purity and polarization isolation.
  • Most antenna designs are designed as single-port antennas.
  • the connection between the single-port antenna and the RF front-end differential system requires the differential signal to be converted into a single-ended signal and then fed into the single-port antenna.
  • the conversion method is usually balun.
  • the use of the balun will bring many adverse effects, such as causing the RF front-end. Loss, low integration, etc.
  • the differential antenna changes the single-port feeding mode.
  • the dual-feed port is used to directly input the differential signal to the two feeding ports, thereby avoiding the use of the balun, reducing the loss of the signal at the input port and improving the efficiency of the antenna.
  • the present invention provides a differential feed structure and method suitable for a broadband planar vibrator antenna.
  • the method realizes differential feeding of a vibrator antenna through a coplanar microstrip line, which is simple, novel, and simple to implement.
  • a differential feed structure suitable for a broadband planar oscillator antenna includes a coplanar microstrip line and a feed stub, and a feed port is disposed at both ends of the feed stub, and the feed The electrical stub is connected across the coplanar microstrip line, and the feeding stub and the coplanar microstrip line are respectively located on the upper and lower surfaces of the dielectric substrate.
  • the coplanar microstrip line has the function of impedance matching, and may be various forms of coplanar microstrip lines such as a gradual microstrip line or a segmented microstrip line.
  • One ends of the two feeding ports are respectively connected to the coplanar microstrip line, and the other end is connected to both ends of the feeding stub. [0009]
  • the two feeding ports feed a current having the same amplitude and a phase difference of 180 degrees to realize differential feeding of the antenna.
  • phase of the feed current of one feed port is 0 degrees, and the phase of the feed current of the other feed port is 180 degrees.
  • the present invention provides a differential power feeding method, which is advantageous for integration of an antenna fed by the method with a radio front end, thereby improving system integration.
  • the present invention realizes differential feeding of the vibrator antenna through the coplanar microstrip line, and the method is simple and easy to process.
  • FIG. 1 is a three-dimensional view of a differentially fed broadband broadband polarization planar antenna of the present invention.
  • FIG. 2 is an enlarged view of a feed structure of a differential feed broadband broadband polarization planar antenna of the present invention.
  • 3 is an impedance bandwidth of a differentially fed broadband broadband polarization planar antenna of the present invention.
  • 5 is a gain of a differentially fed broadband broadband polarization planar antenna of the present invention.
  • FIG. 6 is a directional view of a differentially fed broadband broadband polarization planar antenna of the present invention.
  • FIG. 7 is a three-dimensional view of a differential feed broadband dual-polarization planar antenna of the present invention.
  • FIG. 8 is an enlarged view of a feed structure of a differential feed broadband dual-polarization planar antenna of the present invention.
  • 10 is a gain of a differential feed broadband dual polarization planar antenna of the present invention.
  • FIG. 11 is a directional view of a differential feed broadband dual polarization planar antenna of the present invention.
  • Embodiment 1 is a specific implementation manner of a power feeding structure and method applied to a broadband circularly polarized planar antenna according to the present invention.
  • a differential feed broadband circularly polarized planar antenna includes an antenna radiating unit 1, a reflecting plate 2, a supporting column 3, and a two-port feeding network 4.
  • the antenna radiating element 1 is fixed above the reflecting plate 2 through the support post 3 at a distance of 0.27 ⁇ . , ⁇ .
  • the two-port feed network 4 includes a gradual coplanar microstrip line 7, a feed stub 8 and two feed ports 9 ⁇ , 9 ⁇ .
  • the gradual coplanar microstrip line is applied as two
  • the feeding stub is vertically connected to the two microstrip lines
  • the gradual coplanar microstrip line 7 is connected to the two pairs of non-center feeding bends.
  • the vibrator 6 ⁇ , 6 ⁇ is etched on the lower surface of the dielectric substrate, and the feeding stub 8 is perpendicular to the graded coplanar microstrip line 7 and etched on the upper and lower surfaces of the dielectric substrate;
  • the two feed ports 9 ⁇ , 9 ⁇ are two Feeding on the same axis, one end of the coaxial line passes through the reflector 2, the inner conductor of the same axis passes through the dielectric substrate and is connected to the feed stub 8 , and the outer conductor is connected to the coplanar microstrip line 7
  • the other end of the two coaxial lines feeds the same current amplitude and the phase difference is 180°.
  • the current is realized by a 180° hybrid network.
  • FIG. 3 shows the impedance bandwidth of a broadband circularly polarized differential feed planar antenna using the feed structure and method of the present invention, and the return loss reaches IJ-15 dB within 1.49-3.14 GHz.
  • the axial ratio of the broadband circularly polarized differential feed plane antenna using the feed structure and method of the present invention is SJ-15 dB in the range of 1.49-3.14 GHz.
  • the gain of the wideband circularly polarized differential feed planar antenna using the feed structure and method of the present invention is less than 3 dB in the range of 1.7-2.84 GHz.
  • the horizontal plane pattern of the broadband circularly polarized differential feed planar antenna obtained in the present embodiment. From this figure, it can be concluded that the broadband circularly polarized differential feed planar antenna has a stable pattern and the radiation before and after ratio is more than 15 dB.
  • a differential feed broadband dual-polarized planar antenna using the feed structure and method of the present invention The antenna radiating unit 1, the reflecting plate 2, the supporting column 3, and the four-port feeding network 11 are included.
  • the antenna radiating element is fixed above the reflecting plate by a support column at a distance of 0.25 ⁇ 0 , ⁇ .
  • the wavelength at which the center of the antenna is resonant in free space is resonant in free space.
  • the antenna radiating unit encloses a first vibrator, a second vibrator and a dielectric substrate, and the first vibrator includes a pair of first half-wave vibrators etched on a lower surface of the dielectric substrate; the second polarized vibrator includes a The second half-wave oscillator is etched on the upper surface of the dielectric substrate, and the radiation unit has a size of 0.42 ⁇ . *0.42 ⁇ . , ⁇ . The wavelength at which the center of the antenna is resonant in free space.
  • the four-port feed network 11 includes a first differential feed network and a second differential feed network.
  • the first differential feed network includes a first coplanar microstrip line 12A, a first feed stub 12B and two feed ports 12C, 12D, and the first coplanar microstrip line 12A is connected to the first vibrator, etched On the lower surface of the dielectric substrate 5, the first feed stub 12B is perpendicular to the first coplanar microstrip line 12A, and is etched on the upper surface of the dielectric substrate.
  • the two feed ports 12C, 12D are located on the first feed stub.
  • the second differential feed network includes a second coplanar microstrip line 13A, a second feed stub 13B and two feed ports 13C, 13D, a second coplanar microstrip line 13A and a second
  • the vibrator is connected to the upper surface of the dielectric substrate, the second feeding stub 13B is perpendicular to the second coplanar microstrip line 13A, and is etched on the lower surface of the dielectric substrate, and the two feeding ports 13C, 13D are located at the second surface. Both ends of the feed stub 13B;
  • a four-port feed network two feed ports 12C, 12D of the first differential feed network are fed by two coaxial lines, and one end of the same axis passes through the reflector.
  • the coaxial inner conductor is connected to the first feed stub 12B through the dielectric substrate through the via, the outer conductor is connected to the first coplanar microstrip line 12A, and the other end of the two coaxial lines is fed.
  • the current amplitude is the same, the phase difference is 180°, and the current is realized by a 180° hybrid network; the two feed ports 13C and 13D of the second differential feed network are fed by two coaxial lines, and one end of the same axis is worn.
  • the inner reflector of the coaxial line is connected to the second feeding stub 13B, and the outer conductor is connected to the second coplanar microstrip line 13A through the dielectric substrate through the via hole, and the two coaxial lines
  • the current fed at the other end has the same amplitude and phase difference of 180°, which is achieved by a 180° hybrid network.
  • the bandwidth of the broadband dual-polarized differential feed planar antenna obtained in this embodiment has an echo loss of 1.7-2.7 GHz up to IJ-15 dB and a polarization isolation of more than 60 dB.
  • the gain of the two polarizations of the broadband dual-polarization differential feed planar antenna obtained in the present embodiment is about 9.5 dBi in the 1.7-2.7 GHz.
  • the horizontal plane pattern of the broadband dual-polarization differential feed planar antenna obtained in this embodiment From this figure, it can be concluded that the broadband dual-polarized differential feed planar antenna has a stable pattern and the radiation front-to-back ratio is above 15 dB.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种适用于宽带平面振子天线的差分馈电结构及方法,包括一个共面微带线及一个馈电短截线,所述馈电短截线的两端设置馈电端口,所述馈电短截线与共面微带线垂直,所述馈电短截线与共面微带线分别位于介质基板的上、下表面,两个馈电端口馈入幅度相同,相位相差180度的电流,实现天线的差分馈电,本发明结构简单新颖。

Description

说明书 发明名称:一种适用于宽带平面振子天线的差分馈电结构及方法 技术领域
[0001] 本发明涉及移动通信天线领域, 具体涉及一种适用于宽带平面振子天线的差分 馈电结构及方法。
背景技术
[0002] 差分馈电天线便于与差分有源电路集成, 并可获得高极化纯度和极化隔离, 已 有的天线设计中, 大多数天线设计为单端口天线。 单端口天线与射频前端差分 ***的连接,需将差分信号转换为单端信号后馈入单端口天线, 而转换的方式通 常采用巴伦, 使用巴伦会带来诸多不利影响, 如引起射频前端损耗,集成度较低 等。 差分天线改变单端口馈电方式, 采用双馈电端口,对两馈电端口直接输入差 分信号,从而避免使用巴伦,减小了信号在输入端口的损耗,提高了天线的效率。 技术问题
[0003] 为了克服现有技术存在的缺点与不足, 本发明提供一种适用于宽带平面振子天 线的差分馈电结构及方法。
问题的解决方案
技术解决方案
[0004] 该方法通过共面微带线实现振子天线的差分馈电, 该方法简单, 新颖, 且实现 简便。
[0005] 本发明采用如下技术方案:
[0006] 一种适用于宽带平面振子天线的差分馈电结构, 包括一个共面微带线及一个馈 电短截线, 所述馈电短截线的两端设置馈电端口, 所述馈电短截线跨接在共面 微带线上, 所述馈电短截线与共面微带线分别位于介质基板的上、 下表面。
[0007] 所述共面微带线具有阻抗匹配的作用, 可以为渐变微带线或分段微带线等各种 形式的共面微带线。
[0008] 所述两个馈电端口的一端分别与共面微带线连接, 另一端与馈电短截线的两端 连接。 [0009] 所述两个馈电端口馈入幅度相同, 相位相差 180度的电流, 实现天线的差分馈 电。
[0010] 一个馈电端口馈入电流的相位为 0度, 另一个馈电端口馈入电流的相位为 180度
, 所述电流幅度相等。
发明的有益效果
有益效果
[0011] 本发明的有益效果:
[0012] (1) 本发明提供一种差分馈电方法, 有利于采用该方法馈电的天线与射频前 端集成, 提高***的集成度。
[0013] (2) 该差分馈电网络直接与天线的极化振子共面集成, 简单新颖, 实用性强
[0014] (3) 本发明通过共面微带线实现振子天线的差分馈电, 该方法实现简便, 易 于加工。
对附图的简要说明
附图说明
[0015] 图 1是本发明的差分馈电宽带圆极化平面天线的三维图。
[0016] 图 2是本发明的差分馈电宽带圆极化平面天线的馈电结构的放大图。
[0017] 图 3是本发明的差分馈电宽带圆极化平面天线的阻抗带宽。
[0018] 图 4是本发明的差分馈电宽带圆极化平面天线的轴比。
[0019] 图 5是本发明的差分馈电宽带圆极化平面天线的增益。
[0020] 图 6是本发明的差分馈电宽带圆极化平面天线的方向图。
[0021] 图 7是本发明的差分馈电宽带双极化平面天线的三维图。
[0022] 图 8是本发明的差分馈电宽带双极化平面天线的馈电结构的放大图。
[0023] 图 9是本发明的差分馈电宽带双极化平面天线的阻抗带宽。
[0024] 图 10是本发明的差分馈电宽带双极化平面天线的增益。
[0025] 图 11是本发明的差分馈电宽带双极化平面天线的方向图。
实施该发明的最佳实施例 本发明的最佳实施方式
[0026] 下面结合实施例及附图, 对本发明作进一步地详细说明, 但本发明的实施方式 不限于此。
[0027] 实施例 1
[0028] 实施例 1为本发明馈电结构及方法应用在宽带圆极化平面天线的具体实施方式
[0029] 如图 1所示, 一种差分馈电宽带圆极化平面天线, 包括天线辐射单元 1, 反射板 2, 支撑柱 3, 二端口馈电网络 4。 天线辐射单元 1通过支撑柱 3固定于反射板 2的 上方, 距离为 0.27λ。, λ。为该天线的中心谐振频率在自由空间中的波长。
[0030] 如图 2所示, 二端口馈电网络 4包括渐变共面微带线 7, 馈电短截线 8及两个馈电 端口 9Α, 9Β。 本实施例中所说的渐变共面微带线应用吋为两条, 馈电短截线垂 直跨接在两条微带线上, 渐变共面微带线 7连接两对非中心馈电弯折振子 6Α, 6Β , 蚀刻于介质基板的下表面, 馈电短截线 8与渐变共面微带线 7垂直且蚀刻于介 质基板上、 下表面; 两个馈电端口 9Α, 9Β由两根同轴线进行馈电, 同轴线的一 端穿过反射板 2, 同轴线的内导体通过孔穿过介质基板与馈电短截线 8相接, 外 导体与共面微带线 7相接, 两根同轴线的另一端馈入的电流幅度相同, 相位相差 180°, 该电流由 180°的混合网络实现。
[0031] 如图 3所示为采用本发明馈电结构及方法的宽带圆极化差分馈电平面天线阻抗 带宽, 回波损耗在 1.49-3.14GHz内达至 IJ-15dB。
[0032] 如图 4所示, 为采用本发明馈电结构及方法的宽带圆极化差分馈电平面天线轴 比, 轴比在 1.49-3.14GHz内达 SJ-15dB。
[0033] 如图 5所示, 为采用本发明馈电结构及方法的宽带圆极化差分馈电平面天线的 增益, 增益在 1.7-2.84GHz内在 3dB以下。
[0034] 如图 6所示, 为本实施例所得的此宽带圆极化差分馈电平面天线的水平面方向 图。 由此图可得出结论, 该宽带圆极化差分馈电平面天线具有稳定的方向图, 且辐射前后比在 15dB以上。
[0035] 实施例 2:
[0036] 如图 7所示, 采用本发明的馈电结构及方法的差分馈电宽带双极化平面天线, 包括天线辐射单元 1、 反射板 2、 支撑柱 3、 四端口馈电网络 11。 天线辐射单元通 过支撑柱固定于反射板的上方, 距离为 0.25λ 0,λ。为该天线的中心谐振频率在自 由空间中的波长。
[0037] 所述天线辐射单元包络第一振子, 第二振子和介质基板, 第一振子包括一对第 一半波振子,蚀刻于介质基板的下表面; 所述第二极化振子包括一对第二半波振 子, 蚀刻于介质基板的上表面, 辐射单元尺寸 0.42λ。*0.42λ。, λ。为该天线的中心 谐振频率在自由空间中的波长。
[0038] 如图 8所示, 四端口馈电网络 11包括第一差分馈电网络和第二差分馈电网络。
第一差分馈电网络包括第一共面微带线 12Α, 第一馈电短截线 12B和两个馈电端 口 12C, 12D, 第一共面微带线 12A与第一振子相接, 蚀刻于介质基板 5的下表面 , 第一馈电短截线 12B与第一共面微带线 12A垂直, 蚀刻于介质基板上表面, 两 个馈电端口 12C, 12D位于第一馈电短截线 12B的两端; 第二差分馈电网络包括 第二共面微带线 13A, 第二馈电短截线 13B和两个馈电端口 13C, 13D, 第二共面 微带线 13A与第二振子相接, 蚀刻于介质基板的上表面, 第二馈电短截线 13B与 第二共面微带线 13A垂直, 蚀刻于介质基板的下表面, 两个馈电端口 13C, 13D 位于第二馈电短截线 13B的两端;
[0039] 如图 8所示, 四端口馈电网络, 第一差分馈电网络的两个馈电端口 12C, 12D由 两根同轴线进行馈电, 同轴线的一端穿过反射板, 同轴线的内导体通过过孔穿 过介质基板与第一馈电短截线 12B相接, 外导体与第一共面微带线 12A相接, 两 根同轴线的另一端馈入的电流幅度相同, 相位相差 180°, 该电流由 180°的混合网 络实现; 第二差分馈电网络的两个馈电端口 13C, 13D由两根同轴线进行馈电, 同轴线的一端穿过反射板, 同轴线的内导体与第二馈电短截线 13B相接, 夕卜导体 通过过孔穿过介质基板与第二共面微带线 13A相接, 两根同轴线的另一端馈入的 电流幅度相同, 相位相差 180°, 该电流由 180°的混合网络实现。
[0040] 如图 9所示, 为本实施例所得的此宽带双极化差分馈电平面天线带宽, 回波损 耗在 1.7-2.7GHz内达至 IJ-15dB, 极化隔离度达 60dB以上。
[0041] 如图 10所示, 为本实施例所得的此宽带双极化差分馈电平面天线两种极化的增 益, 两种极化的增益在 1.7-2.7GHZ内达到 9.5dBi左右。 [0042] 如图 11所示, 为本实施例所得的此宽带双极化差分馈电平面天线的水平面方向 图。 由此图可得出结论, 该宽带双极化差分馈电平面天线具有稳定的方向图, 且辐射前后比在 15dB以上。
[0043] 上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受所述实施 例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内

Claims

权利要求书
[权利要求 1] 一种适用于宽带平面振子天线的差分馈电结构, 其特征在于, 包括一 个共面微带线及一个馈电短截线, 所述馈电短截线的两端设置馈电端 口, 所述馈电短截线跨接在共面微带线上, 所述馈电短截线与共面微 带线位于介质基板的上表面或下表面, 且不同面。
[权利要求 2] 根据权利要求 1所述的差分馈电结构, 其特征在于, 所述共面微带线 具有阻抗匹配的作用, 具体为渐变微带线或分段微带线。
[权利要求 3] 根据权利要求 1所述的差分馈电结构, 其特征在于, 两个馈电端口的 一端分别与共面微带线中连接, 另一端与馈电短截线的两端连接。
[权利要求 4] 根据权利要求 1所述的差分馈电结构, 其特征在于, 当共面微带线为 两个吋, 两个共面微带线相互垂直。
[权利要求 5] 根据权利要求 1所述的差分馈电结构, 其特征在于, 所述馈电短截线 与共面微带线垂直。
[权利要求 6] 一种根据权利要求 1-5任一项所述的适用于宽带平面振子天线的差分 馈电结构的馈电方法, 其特征在于, 两个馈电端口馈入幅度相同, 相 位相差 180度的电 、¾?
[权利要求 7] 根据权利要求 6所述的馈电方法, 其特征在于, 两个馈电端口中一个 馈入相位为 0度的电流, 另一个馈电端口馈入相位为 180度的电流, 所 述电流幅度相等。
PCT/CN2016/109615 2016-09-27 2016-12-13 一种适用于宽带平面振子天线的差分馈电结构及方法 WO2018058794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610860207.5A CN106450723A (zh) 2016-09-27 2016-09-27 一种适用于宽带平面振子天线的差分馈电结构及方法
CN201610860207.5 2016-09-27

Publications (1)

Publication Number Publication Date
WO2018058794A1 true WO2018058794A1 (zh) 2018-04-05

Family

ID=58171143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109615 WO2018058794A1 (zh) 2016-09-27 2016-12-13 一种适用于宽带平面振子天线的差分馈电结构及方法

Country Status (2)

Country Link
CN (1) CN106450723A (zh)
WO (1) WO2018058794A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448245B (zh) * 2018-05-21 2023-09-29 华南理工大学 一种差分馈电双频平面天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091974A1 (en) * 2004-10-29 2006-05-04 Anritsu Company Broadband 180° degree hybrid microwave planar transformer
CN104157968A (zh) * 2014-07-10 2014-11-19 华南理工大学 一种新概念宽带圆极化天线
CN104638347A (zh) * 2015-01-29 2015-05-20 华南理工大学 一种宽带双极化平面基站天线
CN105932410A (zh) * 2016-05-09 2016-09-07 中山大学 一种超宽带平面指向性辐射天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203983490U (zh) * 2014-07-10 2014-12-03 华南理工大学 一种新概念宽带圆极化天线
CN104993242A (zh) * 2015-06-18 2015-10-21 华南理工大学 一种高共模抑制的高阻带差分超宽带sir缝隙天线
CN204741073U (zh) * 2015-06-18 2015-11-04 华南理工大学 一种高共模抑制的高阻带差分超宽带sir缝隙天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060091974A1 (en) * 2004-10-29 2006-05-04 Anritsu Company Broadband 180° degree hybrid microwave planar transformer
CN104157968A (zh) * 2014-07-10 2014-11-19 华南理工大学 一种新概念宽带圆极化天线
CN104638347A (zh) * 2015-01-29 2015-05-20 华南理工大学 一种宽带双极化平面基站天线
CN105932410A (zh) * 2016-05-09 2016-09-07 中山大学 一种超宽带平面指向性辐射天线

Also Published As

Publication number Publication date
CN106450723A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
CN106252858B (zh) S/x波段共口径宽带小型化平面天线
Zhang et al. Wideband circularly polarized antenna with gain improvement
Lau et al. A novel wide-band circularly polarized patch antenna based on L-probe and aperture-coupling techniques
CN103247866B (zh) 基于耦合微带线耦合器的紧凑型宽带双圆极化贴片天线
CN107895846B (zh) 一种具有宽频带的圆极化贴片天线
CN101645538B (zh) 一种微带激励的低副瓣喇叭天线
CN106299668B (zh) 一种差分馈电宽带双极化平面基站天线
CN101719599A (zh) 圆极化介质谐振器阵列天线
CN104112903A (zh) 一种应用寄生馈电金属柱的微带天线
CN106299690A (zh) 一种差分馈电宽带圆极化天线
CN107104278A (zh) 一种在俯仰面具有宽轴比波束的低剖面全向圆极化天线
CN105048079A (zh) 一种全向性圆极化平面天线
Lau et al. A wideband dual-polarized L-probe stacked patch antenna array
CN107196053A (zh) 小尺寸低仰角全向辐射双圆极化天线
CN107611586B (zh) 一种差分圆极化定向天线
CN206271873U (zh) 一种具有宽频带宽波束的零相位中心卫星导航天线
CN109286075A (zh) 差分馈电的平面倒f型天线
CN215342996U (zh) 圆极化天线
CN206225547U (zh) 一种差分馈电宽带圆极化天线
CN104638347A (zh) 一种宽带双极化平面基站天线
WO2018058794A1 (zh) 一种适用于宽带平面振子天线的差分馈电结构及方法
CN204375927U (zh) 一种宽带双极化平面基站天线
CN109378580B (zh) 一种有宽轴比带宽的双频圆极化单极子天线
CN106816697A (zh) 低剖面的uhf宽带圆极化手持终端天线
Zhong et al. A foldable circular polarized microstrip antenna array for satellite communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917539

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16917539

Country of ref document: EP

Kind code of ref document: A1