WO2018058599A1 - Reliable channel state information (csi) reporting - Google Patents

Reliable channel state information (csi) reporting Download PDF

Info

Publication number
WO2018058599A1
WO2018058599A1 PCT/CN2016/101250 CN2016101250W WO2018058599A1 WO 2018058599 A1 WO2018058599 A1 WO 2018058599A1 CN 2016101250 W CN2016101250 W CN 2016101250W WO 2018058599 A1 WO2018058599 A1 WO 2018058599A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi report
csi
report
transmission
request
Prior art date
Application number
PCT/CN2016/101250
Other languages
French (fr)
Inventor
Yu Zhang
Wanshi Chen
Chao Wei
Hao Xu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2016/101250 priority Critical patent/WO2018058599A1/en
Priority to PCT/CN2017/102898 priority patent/WO2018059318A1/en
Publication of WO2018058599A1 publication Critical patent/WO2018058599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • H04L1/0073Special arrangements for feedback channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • aspects of the present disclosure relate generally to wireless communications systems, and more particularly, to supporting reliable reporting for channel state information (CSI) measurements.
  • CSI channel state information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) .
  • multiple-access technologies include Long Term Evolution (LTE) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
  • LTE Long Term Evolution
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • a wireless multiple-access communication system may include a number of base stations, each simultaneously supporting communication for multiple communication devices, otherwise known as user equipment (UEs) .
  • UEs user equipment
  • a set of one or more base stations may define an e NodeB (eNB) .
  • eNB e NodeB
  • a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc.
  • DUs distributed units
  • EUs edge units
  • ENs edge nodes
  • RHs radio heads
  • SSRHs smart radio heads
  • TRPs transmission reception points
  • CUs central units
  • CUs central units
  • CNs central nodes
  • ANCs access node controllers
  • a set of one or more distributed units, in communication with a central unit may define an access node (e.g., a new radio base station (NR BS) , a new radio node-B (NR NB) , a network node, 5G NB, gNB, etc. ) .
  • NR BS new radio base station
  • NR NB new radio node-B
  • 5G NB 5G NB
  • gNB network node
  • a base station or DU may communicate with a set of UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
  • downlink channels e.g., for transmissions from a base station or to a UE
  • uplink channels e.g., for transmissions from a UE to a base station or distributed unit
  • NR new radio
  • 3GPP Third Generation Partnership Project
  • Certain aspects of the present disclosure generally relate to methods and apparatus for supporting dynamic change to reference transmission schemes used by a user equipment (UE) for CSI measurement.
  • UE user equipment
  • Certain aspects of the present disclosure provide a method for wireless communication that may be performed, for example, by a UE.
  • the method generally includes determining a reference transmission scheme (TS) for channel state information (CSI) measurement based on signaling received from a base station (BS) , performing CSI measurement based on the determination, and transmitting a CSI report based on the measurement.
  • TS reference transmission scheme
  • CSI channel state information
  • Certain aspects of the present disclosure provide a method for wireless communication that may be performed, for example, by a base station (BS) .
  • the method generally includes providing signaling to a user equipment (UE) allowing the UE to determine a reference transmission scheme (TS) for channel state information (CSI) measurement and receiving a CSI report from the UE based on the measurement performed according to the reference TS.
  • UE user equipment
  • TS reference transmission scheme
  • CSI channel state information
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
  • FIG. 2 is a block diagram illustrating an example logical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
  • FIG. 4 is a block diagram conceptually illustrating a design of an example BS and user equipment (UE) , in accordance with certain aspects of the present disclosure.
  • FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates an example of a DL-centric subframe, in accordance with certain aspects of the present disclosure.
  • FIG. 7 illustrates an example of an UL-centric subframe, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates an example of a wireless communication system supporting zones, in accordance with certain aspects of the present disclosure.
  • FIG. 9 illustrates example operations performed by a UE, in accordance with certain aspects of the present disclosure.
  • FIG. 10 illustrates example operations performed by a base station, in accordance with certain aspects of the present disclosure.
  • FIG. 11 illustrates examples of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
  • FIG. 12 illustrates an example of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
  • FIG. 13 illustrates examples of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
  • FIG. 14 illustrates examples of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
  • FIG. 15 illustrates example mappings for reliable CSI reporting via a physical uplink shared channel, in accordance with certain aspects of the present disclosure.
  • aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for operations that may be performed in new radio (NR) applications (new radio access technology or 5G technology) .
  • NR new radio
  • 5G technology new radio access technology
  • NR may support various wireless communication services, such as Enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g. 80 MHz beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g. 60 GHz) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) .
  • eMBB Enhanced mobile broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra reliable low latency communications
  • These services may include latency and reliability requirements.
  • These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements.
  • TTI transmission time intervals
  • QoS quality of service
  • these services may co-exist in the same subframe.
  • aspects of the present disclosure provide techniques and apparatus for supporting reliable CSI reporting.
  • a CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • cdma2000 covers IS-2000, IS-95 and IS-856 standards.
  • a TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • An OFDMA network may implement a radio technology such as NR (e.g.
  • E-UTRA Evolved UTRA
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDMA
  • UMTS Universal Mobile Telecommunication System
  • NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
  • FIG. 1 illustrates an example wireless network 100 in which aspects of the present disclosure may be performed.
  • the wireless network may be a new radio (NR) or 5G network.
  • a UE 120 may perform certain actions to determine reference transmission schemes for CSI-measurements.
  • a UE 120 may perform certain actions to reliable transmit CSI reports.
  • base stations 110 may perform complementary operations to reliably receive CSI reports.
  • a UE may be in a zone including a serving TRP and one or more non-serving TRPs.
  • the serving and non-serving TRPs may be managed by the same ANC (see e.g., ANC 202 managing three TRPs 208 in FIG. 2) .
  • Base station (BS) 110 may comprise a transmission reception point (TRP) , Node B (NB) , 5G NB, access point (AP) , new radio (NR) BS, etc. ) .
  • TRP transmission reception point
  • NB Node B
  • AP access point
  • NR new radio
  • the NR network 100 may include the central unit.
  • the wireless network 100 may include a number of BSs 110 and other network entities.
  • a BS may be a station that communicates with UEs.
  • Each BS 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a Node B and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used.
  • the term “cell” and gNB, Node B, 5G NB, AP, NR BS, NR BS, or TRP may be interchangeable.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, etc.
  • a frequency may also be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) .
  • CSG Closed Subscriber Group
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • the BSs 110a, 110b and 110c may be macro BSs for the macro cells 102a, 102b and 102c, respectively.
  • the BS 110x may be a pico BS for a pico cell 102x.
  • the BSs 110y and 110z may be femto BS for the femto cells 102y and 102z, respectively.
  • a BS may support one or multiple (e.g., three) cells.
  • the wireless network 100 may also include relay stations.
  • a relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that relays transmissions for other UEs.
  • a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r.
  • a relay station may also be referred to as a relay BS, a relay, etc.
  • the wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
  • the wireless network 100 may support synchronous or asynchronous operation.
  • the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time.
  • the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time.
  • the techniques described herein may be used for both synchronous and asynchronous operation.
  • a network controller 130 may couple to a set of BSs and provide coordination and control for these BSs.
  • the network controller 130 may communicate with the BSs 110 via a backhaul.
  • the BSs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc.
  • MTC machine-type communication
  • eMTC evolved MTC
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • a network e.g., a wide area network such as Internet or a cellular network
  • Some UEs may be considered Internet-of-Things (IoT) devices.
  • IoT Internet-of-Things
  • a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the downlink and/or uplink.
  • a dashed line with double arrows indicates interfering transmissions between a UE and a BS.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR.
  • NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD.
  • a single component carrier bandwidth of 100 MHz may be supported.
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration.
  • Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 6 and 7.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • MIMO transmissions with precoding may also be supported.
  • MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE.
  • Multi-layer transmissions with up to 2 streams per UE may be supported.
  • Aggregation of multiple cells may be supported with up to 8 serving cells.
  • NR may support a different air interface, other than an OFDM-based.
  • NR networks may include entities such CUs and/or DUs.
  • a scheduling entity e.g., a base station
  • the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity.
  • Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) .
  • the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication.
  • a UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network.
  • P2P peer-to-peer
  • UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
  • a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
  • a RAN may include a CU and DUs.
  • a NR BS e.g., gNB, 5G Node B, Node B, transmission reception point (TRP) , access point (AP)
  • NR cells can be configured as access cell (ACells) or data only cells (DCells) .
  • the RAN e.g., a central unit or distributed unit
  • DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals—in some case cases DCells may transmit SS.
  • NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS. For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.
  • FIG. 2 illustrates an example logical architecture of a distributed radio access network (RAN) 200, which may be implemented in the wireless communication system illustrated in FIG. 1.
  • a 5G access node 206 may include an access node controller (ANC) 202.
  • the ANC may be a central unit (CU) of the distributed RAN 200.
  • the backhaul interface to the next generation core network (NG-CN) 204 may terminate at the ANC.
  • the backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC.
  • the ANC may include one or more TRPs 208 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term) .
  • TRPs 208 which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term.
  • TRP may be used interchangeably with “cell. ”
  • the TRPs 208 may be a DU.
  • the TRPs may be connected to one ANC (ANC 202) or more than one ANC (not illustrated) .
  • ANC ANC
  • RaaS radio as a service
  • a TRP may include one or more antenna ports.
  • the TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
  • the local architecture 200 may be used to illustrate fronthaul definition.
  • the architecture may be defined that support fronthauling solutions across different deployment types.
  • the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
  • the architecture may share features and/or components with LTE.
  • the next generation AN (NG-AN) 210 may support dual connectivity with NR.
  • the NG-AN may share a common fronthaul for LTE and NR.
  • the architecture may enable cooperation between and among TRPs 208. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 202. According to aspects, no inter-TRP interface may be needed/present.
  • a dynamic configuration of split logical functions may be present within the architecture 200.
  • the Radio Resource Control (RRC) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU or CU (e.g., TRP or ANC, respectively) .
  • a BS may include a central unit (CU) (e.g., ANC 202) and/or one or more distributed units (e.g., one or more TRPs 208) .
  • CU central unit
  • distributed units e.g., one or more TRPs 208 .
  • FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure.
  • a centralized core network unit (C-CU) 302 may host core network functions.
  • the C-CU may be centrally deployed.
  • C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
  • AWS advanced wireless services
  • a centralized RAN unit (C-RU) 304 may host one or more ANC functions.
  • the C-RU may host core network functions locally.
  • the C-RU may have distributed deployment.
  • the C-RU may be closer to the network edge.
  • a DU 306 may host one or more TRPs (edge node (EN) , an edge unit (EU) , a radio head (RH) , a smart radio head (SRH) , or the like) .
  • the DU may be located at edges of the network with radio frequency (RF) functionality.
  • RF radio frequency
  • FIG. 4 illustrates example components of the BS 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure.
  • UE 120 may be configured to reliably transmit CSI reports.
  • the BS may include a TRP.
  • One or more components of the BS 110 and UE 120 may be used to practice aspects of the present disclosure.
  • antennas 452, Tx/Rx 222, processors 466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434, processors 460, 420, 438, and/or controller/processor 440 of the BS 110 may be used to perform the operations described herein and illustrated with reference to FIGs. 9-10.
  • FIG. 4 shows a block diagram of a design of a BS 110 and a UE 120, which may be one of the BSs and one of the UEs in FIG. 1.
  • the base station 110 may be the macro BS 110c in FIG. 1, and the UE 120 may be the UE 120y.
  • the base station 110 may also be a base station of some other type.
  • the base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
  • a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440.
  • the control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc.
  • the data may be for the Physical Downlink Shared Channel (PDSCH) , etc.
  • the processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively.
  • the processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal.
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t.
  • Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
  • the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively.
  • Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each demodulator 454 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
  • a transmit processor 464 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 462 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 480.
  • the transmit processor 464 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110.
  • the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
  • the controllers/processors 440 and 480 may direct the operation at the base station 110 and the UE 120, respectively.
  • the processor 440 and/or other processors and modules at the base station 110 may perform or direct, e.g., the execution of the functional blocks illustrated in FIG. 12, and/or other processes for the techniques described herein. processes for the techniques described herein.
  • the processor 480 and/or other processors and modules at the UE 120 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIGs. 10 and 11, and/or other processes for the techniques described herein.
  • the memories 442 and 482 may store data and program codes for the BS 110 and the UE 120, respectively.
  • a scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
  • FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure.
  • the illustrated communications protocol stacks may be implemented by devices operating in a in a 5G system (e.g., a system that supports uplink-based mobility) .
  • Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530.
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • PHY Physical
  • the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non- collocated devices connected by a communications link, or various combinations thereof.
  • Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
  • a network access device e.g., ANs, CUs, and/or DUs
  • a first option 505-a shows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) .
  • a centralized network access device e.g., an ANC 202 in FIG. 2
  • distributed network access device e.g., DU 208 in FIG. 2
  • an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit
  • an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU.
  • the CU and the DU may be collocated or non-collocated.
  • the first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
  • a second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device (e.g., access node (AN) , new radio base station (NR BS) , a new radio Node-B (NR NB) , a network node (NN) , or the like. ) .
  • the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530 may each be implemented by the AN.
  • the second option 505-b may be useful in a femto cell deployment.
  • a UE may implement an entire protocol stack (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
  • an entire protocol stack e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530.
  • FIG. 6 is a diagram 600 showing an example of a DL-centric subframe.
  • the DL-centric subframe may include a control portion 602.
  • the control portion 602 may exist in the initial or beginning portion of the DL-centric subframe.
  • the control portion 602 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe.
  • the control portion 602 may be a physical DL control channel (PDCCH) , as indicated in FIG. 6.
  • the DL-centric subframe may also include a DL data portion 604.
  • the DL data portion 604 may sometimes be referred to as the payload of the DL-centric subframe.
  • the DL data portion 604 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate entity (e.g., UE) .
  • the DL data portion 604 may be a physical DL shared channel (PDSCH) .
  • PDSCH physical DL shared channel
  • the DL-centric subframe may also include a common UL portion 606.
  • the common UL portion 606 may sometimes be referred to as an UL burst, a common UL burst, and/or various other suitable terms.
  • the common UL portion 606 may include feedback information corresponding to various other portions of the DL-centric subframe.
  • the common UL portion 606 may include feedback information corresponding to the control portion 602.
  • Non-limiting examples of feedback information may include an ACK signal, a NACK signal, a HARQ indicator, and/or various other suitable types of information.
  • the common UL portion 606 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests (SRs) , and various other suitable types of information.
  • RACH random access channel
  • SRs scheduling requests
  • the end of the DL data portion 604 may be separated in time from the beginning of the common UL portion 606.
  • This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms.
  • This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE)) to UL communication (e.g., transmission by the subordinate entity (e.g., UE) ) .
  • DL communication e.g., reception operation by the subordinate entity (e.g., UE)
  • UL communication e.g., transmission by the subordinate entity (e.g., UE)
  • FIG. 7 is a diagram 700 showing an example of an UL-centric subframe.
  • the UL -centric subframe may include a control portion 702.
  • the control portion 702 may exist in the initial or beginning portion of the UL-centric subframe.
  • the control portion 702 in FIG. 7 may be similar to the control portion described above with reference to FIG. 6.
  • the UL-centric subframe may also include an UL data portion 704.
  • the UL data portion 704 may sometimes be referred to as the payload of the UL-centric subframe.
  • the UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS) .
  • the control portion 702 may be a physical UL control channel (PUCCH) .
  • PUCCH physical UL control channel
  • the end of the control portion 702 may be separated in time from the beginning of the UL data portion 704. This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity) .
  • the UL-centric subframe may also include a common UL portion 706.
  • the common UL portion 706 in FIG. 7 may be similar to the common UL portion 706 described above with reference to FIG. 7.
  • the common UL portion 706 may additional or alternative include information pertaining to channel quality indicator (CQI) , sounding reference signals (SRSs) , and various other suitable types of information.
  • CQI channel quality indicator
  • SRSs sounding reference signals
  • a frame may include both UL centric subframes and DL centric subframes.
  • the ratio of UL centric subframes to DL subframes in a frame may be dynamically adjusted based on the amount of UL data and the amount of DL data that are transmitted.
  • the ratio of UL centric subframes to DL subframes may be increased. Conversely, if there is more DL data, then the ratio of UL centric subframes to DL subframes may be decreased.
  • two or more subordinate entities may communicate with each other using sidelink signals.
  • Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications.
  • a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes.
  • the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
  • a UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) .
  • RRC radio resource control
  • the UE may select a dedicated set of resources for transmitting a pilot signal to a network.
  • the UE may select a common set of resources for transmitting a pilot signal to the network.
  • a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof.
  • Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE.
  • One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
  • FIG. 8 illustrates an example of a wireless communication system 800 supporting a number of zones, in accordance with aspects of the present disclosure.
  • the wireless communication system 800 may include a number of zones (including, e.g., a first zone 805-a (Zone 1) , a second zone 805-b (Zone 2) , and a third zone 805-c (Zone 3) ).
  • a number of UEs may move within or between the zones.
  • a zone may include multiple cells, and the cells within a zone may be synchronized (e.g., the cells may share the same timing) .
  • Wireless communication system 800 may include examples of both non-overlapping zones (e.g., the first zone 805-a and the second zone 805-b) and overlapping zones (e.g., the first zone 805-a and the third zone 805-c) .
  • the first zone 805-a and the second zone 805-b may each include one or more macro cells, micro cells, or pico cells
  • the third zone 805-c may include one or more femto cells.
  • the UE 850 is shown to be located in the first zone 805-a. If the UE 850 is operating with a radio resource configuration associated with transmitting pilot signals using a common set of resources, such as an RRC common state, the UE 850 may transmit a pilot signal using a common set of resources. Cells (e.g., ANs, DUs, etc. ) within the first zone 805-amay monitor the common set of resources for a pilot signal from the UE 850. If the UE 850 is operating with a radio resource configuration associated with transmitting pilot signals using a dedicated set of resource, such as an RRC dedicated state, the UE 850 may transmit a pilot signal using a dedicated set of resources.
  • a radio resource configuration associated with transmitting pilot signals using a common set of resources such as an RRC common state
  • Cells of a monitoring set of cells established for the UE 850 within the first zone 805-a may monitor the dedicated set of resources for the pilot signal of the UE 850.
  • the UE 850 performs one or more operations without relying on a zone signal.
  • the UE may perform an inter-zone handover using synchronization signals associated with a cell/TRP as opposed to a zone synchronization signal.
  • MIMO is seen as a key technology enabler for satisfying the NR coverage and capacity requirements, but not without tradeoffs.
  • the advantages of using MIMO come at the price of accurate channel state information (CSI) at the transmission/reception point (TRP) .
  • CSI channel state information
  • the CSI may be available at the TRP by exploiting the UL-DL channel reciprocity.
  • the CSI has to be obtained at the TRP via UE feedback based on DL channel estimation aided by DL reference signals (RS) .
  • RS DL reference signals
  • CSI may be implicit or explicit and the contents reported may vary accordingly.
  • implicit CSI feedback some hypotheses are made regarding the transmission and/or reception processing.
  • Typical contents for implicit CSI reports include CQI, PMI and RI.
  • a UE may assume that it will be scheduled in single-user (SU) MIMO transmission and that the receiver processing is based on MMSE. The UE may then evaluate the spectral efficiency achievable for each PMI/RI hypothesis in a predefined codebook. The best PMI/RI and associated CQI (e.g., with the highest spectral efficiency) may then be reported.
  • SU single-user
  • Explicit CSI feedback may be generated without assuming any hypothetical transmission scheme or any receiver processing.
  • Typical contents for explicit CSI reports may include channel state (e.g., channel matrix or its dominant Eigen-components) , and/or channel statistical information (e.g., channel covariance matrix or its dominant Eigen-components) .
  • Challenges for explicit feedback include an increased feedback payload size (e.g., ⁇ 100s bits using element-wise quantization) .
  • This increased payload size makes explicit feedback more vulnerable to UL transmission failure. While it is desirable to improve reliability of explicit CSI reporting, with no knowledge of receiver processing it is difficult to perform link adaptation at the BS side.
  • FIG. 9 illustrates example operations 900 which may be performed by a UE, in accordance with aspects of the present disclosure.
  • the UE may include one or more modules of UE 120 illustrated in FIG. 4.
  • the UE receives a request, from a base station, for a channel state information (CSI) report.
  • the UE determining to transmit the CSI report with repetition based on one or more factors.
  • the UE transmitting the CSI report to the BS in accordance with the determination.
  • CSI channel state information
  • FIG. 10 illustrates example operations 1000 which may be performed by a BS, in accordance with aspects of the present disclosure.
  • the operations 1000 may be considered complementary (BS-side) operations to the UE-side operations 900 shown in FIG. 10.
  • the BS may include one or more modules of BS 110 illustrated in FIG. 4.
  • the BS transmits a request, to a user equipment (UE) , for a channel state information (CSI) report.
  • the BS determines if the CSI report is to be transmitted by the UE with repetition based on one or more factors.
  • the BS processes the CSI report in accordance with the determination.
  • Transmission of CSI reporting may be with or without repetition (with repetition providing time diversity) .
  • Repetition may or may not be supported for the transmission of CSI reporting, depending on several transmission repetition options. Examples of such transmission repetition options that may be supported include HARQ based transmission.
  • a BS may transmit an ACK/NACK to indicate if the CSI report has been successfully decoded.
  • the UE retransmits CSI report (using different redundancy version) automatically when receiving a NACK (or, in some cases, if an ACK is not received) .
  • a BS may transmit a UL grant to request retransmission of previously reported CSI (using different redundancy version) .
  • a CSI report may be sent as a TTI-bundling based transmission.
  • the UE may transmit a CSI report in a number of consecutive UL TTIs/subframes.
  • bundling may be terminated early (e.g., if the BS successfully decodes before the end of the bundle) .
  • repetition may be requested by a NACK (HARQ-based transmission) .
  • a BS may indicate a request for an CSI report from the UE at certain time instance (s) in a UL grant.
  • the request may include a maximum number of retransmission attempts.
  • the UE may generate a bit sequence (code block) including the CSI based on the request.
  • the CSI report may include, at least, a CRC attachment, channel coding, and rate matching.
  • the UE transmits the encoded CSI to the BS at the indicated time instance (s) .
  • the BS attempts to decode the received CSI report and transmits an ACK/NACK to indicate if the CSI report is successfully decoded or not (e.g., at a specified time instance with respect to the requested report instance) .
  • the UE may receive the ACK/NACK indication at the specific time instance. If a NACK is received and the maximum number of retransmission is not reached yet, the UE may generate another bit sequence (e.g., different redundancy version) for the reported CSI and retransmit the encoded CSI to the BS again.
  • CSI report repetition may be requested via an UL grant.
  • the BS indicates a request for CSI report from the UE at certain time instance (s) in UL grant.
  • the request may include an indication of how to do rate matching (e.g., a redundancy version) .
  • the request may also include a new CSI indicator to indicate if the UE shall report an updated CSI or another redundancy version of the previously reported CSI.
  • the UE generates a bit sequence (code block) including the CSI based on the request.
  • the code block may be encoded to include at least a CRC attachment, channel coding, and rate matching.
  • the UE may then transmit the encoded CSI to the BS at the indicated time instance (s) and the BS attempts to decode the received CSI report.
  • the UE may retransmit a CSI report if it receives a NACK, and the BS may combine different versions (e.g., RV1 and RV0) in an attempt to successfully decode the CSI-report.
  • the BS may prompt a retransmission by sending another request for a CSI-report and may indicate the UE is to send a new redundancy version.
  • FIG. 12 illustrates an example 1200 of sending a CSI report as a TTI-Bundling based transmission.
  • the BS indicates a request for explicit CSI report from the UE at certain time instance (s) in UL grant.
  • the request may include an indication of how to do rate matching for a number of consecutive reporting instances, e.g., redundancy versions for each reporting instance.
  • the request may include an new CSI indicator to indicate if the UE shall report an updated CSI or another redundancy version of the previously reported CSI.
  • the UE generates a bit sequence (code block) including the explicit CSI based on the request for each reporting instance.
  • the UE transmits the encoded explicit CSI to the BS at the indicated time instances.
  • the CSI reports (which may or may not be identical-with or without different redundancy versions) are sent at times t 1 , t 2 , and t 3 .
  • the reports are combined by the BS.
  • the BS may request the UE to stop bundled transmission if the reported explicit CSI is successfully decoded before the bundled transmission is not completed (early termination) .
  • FIG. 13A illustrates a case where a CSI-report is sent across three TTIs with no early termination.
  • the BS sends an early termination signal after the second CSI-report.
  • the third TTI e.g., a subframe that would otherwise have been used for the third transmission of the CSI report
  • a BS may send another CSI request which effectively serves as an implicit early termination of the previous CSI-report.
  • a CSI report may be under repetition or not may be a factor for prioritizing transmissions on different channels. For example, re-transmission of CSI on a first CC may have a higher priority than new transmission on a second CC.
  • different types of repetitions may be utilized for different stages (e.g., whether to use repetition or not can be configured at a per RS resource basis) .
  • repetition may be performed in a periodic but bursty manner.
  • a CSI-report is sent periodically every 10-subframes, but with a transmission of 2 subframes per transmissions.
  • Such repetition may be done differently for different CSI types. For example, repetition may only be used for CSI reports having a relatively large payload (e.g., explicit CSI) or repetition may only be used for higher priority CSI types (e.g., CSI reports including rank indication “RI” ) .
  • RI rank indication
  • MIMO transmission may be used for CSI reporting using PUSCH (e.g., to achieve spatial diversity) .
  • PUSCH e.g., to achieve spatial diversity
  • the CSI report codeword may be mapped to one or multiple UL spatial layers.
  • the CSI report may be multiplexed with data only on the UL-SCH transport block with highest MCS on the initial grant. In case the transport blocks have the same MCS value in the corresponding initial UL grant, the CSI report is multiplexed with data only on the first transport block.
  • the CSI report may be mapped to all UL spatial layers and the layer to antenna port mapping is same as that for data.
  • the CSI report may be mapped to all UL spatial layers and the layer to antenna port mapping can be different from that for data.
  • the CSI report and UL data may use different MIMO transmission schemes. In some cases, the transmission schemes for CSI reports may be indicated in the CSI request.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • determining encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
  • the various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions.
  • the means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • PLD programmable logic device
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • an example hardware configuration may comprise a processing system in a wireless node.
  • the processing system may be implemented with a bus architecture.
  • the bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints.
  • the bus may link together various circuits including a processor, machine-readable media, and a bus interface.
  • the bus interface may be used to connect a network adapter, among other things, to the processing system via the bus.
  • the network adapter may be used to implement the signal processing functions of the PHY layer.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • a user interface e.g., keypad, display, mouse, joystick, etc.
  • the bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further.
  • the processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
  • the functions may be stored or transmitted over as one or more instructions or code on a computer-readable medium.
  • Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • the processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media.
  • a computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface.
  • the machine-readable media, or any portion thereof may be integrated into the processor, such as the case may be with cache and/or general register files.
  • machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read- Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • PROM Programmable Read- Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrical Erasable Programmable Read-Only Memory
  • registers magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof.
  • the machine-readable media may be embodied in a computer-program product.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • the computer-readable media may comprise a number of software modules.
  • the software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions.
  • the software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices.
  • a software module may be loaded into RAM from a hard drive when a triggering event occurs.
  • the processor may load some of the instructions into cache to increase access speed.
  • One or more cache lines may then be loaded into a general register file for execution by the processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) .
  • computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
  • certain aspects may comprise a computer program product for performing the operations presented herein.
  • a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein.
  • instructions for perform the operations described herein and illustrated in FIGs. 10-12 For example, instructions for perform the operations described herein and illustrated in FIGs. 10-12.
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Certain aspects of the present disclosure provide techniques for utilizing repetition when sending channel state information (CSI) reports.

Description

RELIABLE CHANNEL STATE INFORMATION (CSI) REPORTING BACKGROUND
Field of the Disclosure
Aspects of the present disclosure relate generally to wireless communications systems, and more particularly, to supporting reliable reporting for channel state information (CSI) measurements.
Description of Related Art
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power) . Examples of such multiple-access technologies include Long Term Evolution (LTE) systems, code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
In some examples, a wireless multiple-access communication system may include a number of base stations, each simultaneously supporting communication for multiple communication devices, otherwise known as user equipment (UEs) . In LTE or LTE-Anetwork, a set of one or more base stations may define an e NodeB (eNB) . In other examples (e.g., in a next generation or 5G network) , a wireless multiple access communication system may include a number of distributed units (DUs) (e.g., edge units (EUs) , edge nodes (ENs) , radio heads (RHs) , smart radio heads (SRHs) , transmission reception points (TRPs) , etc. ) in communication with a number of central units (CUs) (e.g., central nodes (CNs) , access node controllers (ANCs) , etc. ) , where a set of one or more distributed units, in communication with a central unit, may define an access node (e.g., a new radio base station (NR BS) , a new radio node-B (NR NB) , a network node, 5G NB, gNB, etc. ) . A base station or DU may communicate with a set of  UEs on downlink channels (e.g., for transmissions from a base station or to a UE) and uplink channels (e.g., for transmissions from a UE to a base station or distributed unit) .
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example of an emerging telecommunication standard is new radio (NR) , for example, 5G radio access. NR is a set of enhancements to the LTE mobile standard promulgated by Third Generation Partnership Project (3GPP) . It is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using OFDMA with a cyclic prefix (CP) on the downlink (DL) and on the uplink (UL) as well as support beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in NR technology. Preferably, these improvements should be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
BRIEF SUMMARY
The systems, methods, and devices of the disclosure each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure as expressed by the claims which follow, some features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this disclosure provide advantages that include improved communications between access points and stations in a wireless network.
Certain aspects of the present disclosure generally relate to methods and apparatus for supporting dynamic change to reference transmission schemes used by a user equipment (UE) for CSI measurement.
Certain aspects of the present disclosure provide a method for wireless communication that may be performed, for example, by a UE. The method generally  includes determining a reference transmission scheme (TS) for channel state information (CSI) measurement based on signaling received from a base station (BS) , performing CSI measurement based on the determination, and transmitting a CSI report based on the measurement.
Certain aspects of the present disclosure provide a method for wireless communication that may be performed, for example, by a base station (BS) . The method generally includes providing signaling to a user equipment (UE) allowing the UE to determine a reference transmission scheme (TS) for channel state information (CSI) measurement and receiving a CSI report from the UE based on the measurement performed according to the reference TS.
Aspects generally include methods, apparatus, systems, computer readable mediums, and processing systems, as substantially described herein with reference to and as illustrated by the accompanying drawings.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.
FIG. 1 is a block diagram conceptually illustrating an example telecommunications system, in accordance with certain aspects of the present disclosure.
FIG. 2 is a block diagram illustrating an example logical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 3 is a diagram illustrating an example physical architecture of a distributed RAN, in accordance with certain aspects of the present disclosure.
FIG. 4 is a block diagram conceptually illustrating a design of an example BS and user equipment (UE) , in accordance with certain aspects of the present disclosure.
FIG. 5 is a diagram showing examples for implementing a communication protocol stack, in accordance with certain aspects of the present disclosure.
FIG. 6 illustrates an example of a DL-centric subframe, in accordance with certain aspects of the present disclosure.
FIG. 7 illustrates an example of an UL-centric subframe, in accordance with certain aspects of the present disclosure.
FIG. 8 illustrates an example of a wireless communication system supporting zones, in accordance with certain aspects of the present disclosure.
FIG. 9 illustrates example operations performed by a UE, in accordance with certain aspects of the present disclosure.
FIG. 10 illustrates example operations performed by a base station, in accordance with certain aspects of the present disclosure.
FIG. 11 illustrates examples of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
FIG. 12 illustrates an example of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
FIG. 13 illustrates examples of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
FIG. 14 illustrates examples of reliable CSI reporting, in accordance with certain aspects of the present disclosure.
FIG. 15 illustrates example mappings for reliable CSI reporting via a physical uplink shared channel, in accordance with certain aspects of the present disclosure.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
DETAILED DESCRIPTION
Aspects of the present disclosure provide apparatus, methods, processing systems, and computer readable mediums for operations that may be performed in new radio (NR) applications (new radio access technology or 5G technology) .
NR may support various wireless communication services, such as Enhanced mobile broadband (eMBB) targeting wide bandwidth (e.g. 80 MHz beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g. 60 GHz) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra reliable low latency communications (URLLC) . These services may include latency and reliability requirements. These services may also have different transmission time intervals (TTI) to meet respective quality of service (QoS) requirements. In addition, these services may co-exist in the same subframe.
Aspects of the present disclosure provide techniques and apparatus for supporting reliable CSI reporting.
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in some other examples. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of  the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration. ” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects.
The techniques described herein may be used for various wireless communication networks such as LTE, CDMA, TDMA, FDMA, OFDMA, SC-FDMA and other networks. The terms “network” and “system” are often used interchangeably. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access (UTRA) , cdma2000, etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. cdma2000 covers IS-2000, IS-95 and IS-856 standards. A TDMA network may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA network may implement a radio technology such as NR (e.g. 5G RA) , Evolved UTRA (E-UTRA) , Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDMA, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . NR is an emerging wireless communications technology under development in conjunction with the 5G Technology Forum (5GTF) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-Aand GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . cdma2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
EXAMPLE WIRELESS COMMUNICATIONS SYSTEM
FIG. 1 illustrates an example wireless network 100 in which aspects of the present disclosure may be performed. For example, the wireless network may be a new radio (NR) or 5G network. According to aspects of the present disclosure, a UE 120 may perform certain actions to determine reference transmission schemes for CSI-measurements. According to aspects of the present disclosure, a UE 120 may perform certain actions to reliable transmit CSI reports. Similarly, base stations 110 may perform complementary operations to reliably receive CSI reports.
As will be described in more detail herein, a UE may be in a zone including a serving TRP and one or more non-serving TRPs. The serving and non-serving TRPs may be managed by the same ANC (see e.g., ANC 202 managing three TRPs 208 in FIG. 2) .
UEs 120 may be configured to perform the operations 1100 and other methods described herein and discussed in more detail below which may help improve DL-based mobility. Base station (BS) 110 may comprise a transmission reception point (TRP) , Node B (NB) , 5G NB, access point (AP) , new radio (NR) BS, etc. ) . The NR network 100 may include the central unit.
As illustrated in FIG. 1, the wireless network 100 may include a number of BSs 110 and other network entities. A BS may be a station that communicates with UEs. Each BS 110 may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a Node B and/or a Node B subsystem serving this coverage area, depending on the context in which the term is used. In NR systems, the term “cell” and gNB, Node B, 5G NB, AP, NR BS, NR BS, or TRP may be interchangeable. In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations may be interconnected to one another and/or to one or more other base stations or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, or the like using any suitable transport network.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be  referred to as a radio technology, an air interface, etc. A frequency may also be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or other types of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a Closed Subscriber Group (CSG) , UEs for users in the home, etc. ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIG. 1, the  BSs  110a, 110b and 110c may be macro BSs for the  macro cells  102a, 102b and 102c, respectively. The BS 110x may be a pico BS for a pico cell 102x. The BSs 110y and 110z may be femto BS for the femto cells 102y and 102z, respectively. A BS may support one or multiple (e.g., three) cells.
The wireless network 100 may also include relay stations. A relay station is a station that receives a transmission of data and/or other information from an upstream station (e.g., a BS or a UE) and sends a transmission of the data and/or other information to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that relays transmissions for other UEs. In the example shown in FIG. 1, a relay station 110r may communicate with the BS 110a and a UE 120r in order to facilitate communication between the BS 110a and the UE 120r. A relay station may also be referred to as a relay BS, a relay, etc.
The wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BS, pico BS, femto BS, relays, etc. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro BS may have a high transmit power level (e.g., 20 Watts) whereas pico BS, femto BS, and relays may have a lower transmit power level (e.g., 1 Watt) .
The wireless network 100 may support synchronous or asynchronous operation. For synchronous operation, the BSs may have similar frame timing, and transmissions from different BSs may be approximately aligned in time. For asynchronous operation, the BSs may have different frame timing, and transmissions from different BSs may not be aligned in time. The techniques described herein may be used for both synchronous and asynchronous operation.
network controller 130 may couple to a set of BSs and provide coordination and control for these BSs. The network controller 130 may communicate with the BSs 110 via a backhaul. The BSs 110 may also communicate with one another, e.g., directly or indirectly via wireless or wireline backhaul.
The UEs 120 (e.g., 120x, 120y, etc. ) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as a mobile station, a terminal, an access terminal, a subscriber unit, a station, a Customer Premises Equipment (CPE) , a cellular phone, a smart phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or medical equipment, a biometric sensor/device, a wearable device such as a smart watch, smart clothing, smart glasses, a smart wrist band, smart jewelry (e.g., a smart ring, a smart bracelet, etc. ) , an entertainment device (e.g., a music device, a video device, a satellite radio, etc. ) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium. Some UEs may be considered evolved or machine-type communication (MTC) devices or evolved MTC (eMTC) devices. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a BS, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices.
In FIG. 1, a solid line with double arrows indicates desired transmissions between a UE and a serving BS, which is a BS designated to serve the UE on the  downlink and/or uplink. A dashed line with double arrows indicates interfering transmissions between a UE and a BS.
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a ‘resource block’ ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal FFT size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth may also be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While aspects of the examples described herein may be associated with LTE technologies, aspects of the present disclosure may be applicable with other wireless communications systems, such as NR.
NR may utilize OFDM with a CP on the uplink and downlink and include support for half-duplex operation using TDD. A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 ms duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. UL and DL subframes for NR may be as described in more detail below with respect to FIGs. 6 and 7. Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8  streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based. NR networks may include entities such CUs and/or DUs.
In some examples, access to the air interface may be scheduled, wherein a scheduling entity (e.g., a base station) allocates resources for communication among some or all devices and equipment within its service area or cell. Within the present disclosure, as discussed further below, the scheduling entity may be responsible for scheduling, assigning, reconfiguring, and releasing resources for one or more subordinate entities. That is, for scheduled communication, subordinate entities utilize resources allocated by the scheduling entity. Base stations are not the only entities that may function as a scheduling entity. That is, in some examples, a UE may function as a scheduling entity, scheduling resources for one or more subordinate entities (e.g., one or more other UEs) . In this example, the UE is functioning as a scheduling entity, and other UEs utilize resources scheduled by the UE for wireless communication. A UE may function as a scheduling entity in a peer-to-peer (P2P) network, and/or in a mesh network. In a mesh network example, UEs may optionally communicate directly with one another in addition to communicating with the scheduling entity.
Thus, in a wireless communication network with a scheduled access to time–frequency resources and having a cellular configuration, a P2P configuration, and a mesh configuration, a scheduling entity and one or more subordinate entities may communicate utilizing the scheduled resources.
As noted above, a RAN may include a CU and DUs. A NR BS (e.g., gNB, 5G Node B, Node B, transmission reception point (TRP) , access point (AP)) may correspond to one or multiple BSs. NR cells can be configured as access cell (ACells) or data only cells (DCells) . For example, the RAN (e.g., a central unit or distributed unit) can configure the cells. DCells may be cells used for carrier aggregation or dual connectivity, but not used for initial access, cell selection/reselection, or handover. In some cases DCells may not transmit synchronization signals—in some case cases DCells may transmit SS. NR BSs may transmit downlink signals to UEs indicating the cell type. Based on the cell type indication, the UE may communicate with the NR BS.  For example, the UE may determine NR BSs to consider for cell selection, access, handover, and/or measurement based on the indicated cell type.
FIG. 2 illustrates an example logical architecture of a distributed radio access network (RAN) 200, which may be implemented in the wireless communication system illustrated in FIG. 1. A 5G access node 206 may include an access node controller (ANC) 202. The ANC may be a central unit (CU) of the distributed RAN 200. The backhaul interface to the next generation core network (NG-CN) 204 may terminate at the ANC. The backhaul interface to neighboring next generation access nodes (NG-ANs) may terminate at the ANC. The ANC may include one or more TRPs 208 (which may also be referred to as BSs, NR BSs, Node Bs, 5G NBs, APs, or some other term) . As described above, a TRP may be used interchangeably with “cell. ”
The TRPs 208 may be a DU. The TRPs may be connected to one ANC (ANC 202) or more than one ANC (not illustrated) . For example, for RAN sharing, radio as a service (RaaS) , and service specific AND deployments, the TRP may be connected to more than one ANC. A TRP may include one or more antenna ports. The TRPs may be configured to individually (e.g., dynamic selection) or jointly (e.g., joint transmission) serve traffic to a UE.
The local architecture 200 may be used to illustrate fronthaul definition. The architecture may be defined that support fronthauling solutions across different deployment types. For example, the architecture may be based on transmit network capabilities (e.g., bandwidth, latency, and/or jitter) .
The architecture may share features and/or components with LTE. According to aspects, the next generation AN (NG-AN) 210 may support dual connectivity with NR. The NG-AN may share a common fronthaul for LTE and NR.
The architecture may enable cooperation between and among TRPs 208. For example, cooperation may be preset within a TRP and/or across TRPs via the ANC 202. According to aspects, no inter-TRP interface may be needed/present.
According to aspects, a dynamic configuration of split logical functions may be present within the architecture 200. As will be described in more detail with reference to FIG. 5, the Radio Resource Control (RRC) layer, Packet Data Convergence  Protocol (PDCP) layer, Radio Link Control (RLC) layer, Medium Access Control (MAC) layer, and a Physical (PHY) layers may be adaptably placed at the DU or CU (e.g., TRP or ANC, respectively) . According to certain aspects, a BS may include a central unit (CU) (e.g., ANC 202) and/or one or more distributed units (e.g., one or more TRPs 208) .
FIG. 3 illustrates an example physical architecture of a distributed RAN 300, according to aspects of the present disclosure. A centralized core network unit (C-CU) 302 may host core network functions. The C-CU may be centrally deployed. C-CU functionality may be offloaded (e.g., to advanced wireless services (AWS) ) , in an effort to handle peak capacity.
A centralized RAN unit (C-RU) 304 may host one or more ANC functions. Optionally, the C-RU may host core network functions locally. The C-RU may have distributed deployment. The C-RU may be closer to the network edge.
DU 306 may host one or more TRPs (edge node (EN) , an edge unit (EU) , a radio head (RH) , a smart radio head (SRH) , or the like) . The DU may be located at edges of the network with radio frequency (RF) functionality.
FIG. 4 illustrates example components of the BS 110 and UE 120 illustrated in FIG. 1, which may be used to implement aspects of the present disclosure. For example, UE 120 may be configured to reliably transmit CSI reports.
As described above, the BS may include a TRP. One or more components of the BS 110 and UE 120 may be used to practice aspects of the present disclosure. For example, antennas 452, Tx/Rx 222,  processors  466, 458, 464, and/or controller/processor 480 of the UE 120 and/or antennas 434,  processors  460, 420, 438, and/or controller/processor 440 of the BS 110 may be used to perform the operations described herein and illustrated with reference to FIGs. 9-10.
FIG. 4 shows a block diagram of a design of a BS 110 and a UE 120, which may be one of the BSs and one of the UEs in FIG. 1. For a restricted association scenario, the base station 110 may be the macro BS 110c in FIG. 1, and the UE 120 may be the UE 120y. The base station 110 may also be a base station of some other type.  The base station 110 may be equipped with antennas 434a through 434t, and the UE 120 may be equipped with antennas 452a through 452r.
At the base station 110, a transmit processor 420 may receive data from a data source 412 and control information from a controller/processor 440. The control information may be for the Physical Broadcast Channel (PBCH) , Physical Control Format Indicator Channel (PCFICH) , Physical Hybrid ARQ Indicator Channel (PHICH) , Physical Downlink Control Channel (PDCCH) , etc. The data may be for the Physical Downlink Shared Channel (PDSCH) , etc. The processor 420 may process (e.g., encode and symbol map) the data and control information to obtain data symbols and control symbols, respectively. The processor 420 may also generate reference symbols, e.g., for the PSS, SSS, and cell-specific reference signal. A transmit (TX) multiple-input multiple-output (MIMO) processor 430 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, and/or the reference symbols, if applicable, and may provide output symbol streams to the modulators (MODs) 432a through 432t. Each modulator 432 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator 432 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. Downlink signals from modulators 432a through 432t may be transmitted via the antennas 434a through 434t, respectively.
At the UE 120, the antennas 452a through 452r may receive the downlink signals from the base station 110 and may provide received signals to the demodulators (DEMODs) 454a through 454r, respectively. Each demodulator 454 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each demodulator 454 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 456 may obtain received symbols from all the demodulators 454a through 454r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 458 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 460, and provide decoded control information to a controller/processor 480.
On the uplink, at the UE 120, a transmit processor 464 may receive and process data (e.g., for the Physical Uplink Shared Channel (PUSCH) ) from a data source 462 and control information (e.g., for the Physical Uplink Control Channel (PUCCH) from the controller/processor 480. The transmit processor 464 may also generate reference symbols for a reference signal. The symbols from the transmit processor 464 may be precoded by a TX MIMO processor 466 if applicable, further processed by the demodulators 454a through 454r (e.g., for SC-FDM, etc. ) , and transmitted to the base station 110. At the BS 110, the uplink signals from the UE 120 may be received by the antennas 434, processed by the modulators 432, detected by a MIMO detector 436 if applicable, and further processed by a receive processor 438 to obtain decoded data and control information sent by the UE 120. The receive processor 438 may provide the decoded data to a data sink 439 and the decoded control information to the controller/processor 440.
The controllers/ processors  440 and 480 may direct the operation at the base station 110 and the UE 120, respectively. The processor 440 and/or other processors and modules at the base station 110 may perform or direct, e.g., the execution of the functional blocks illustrated in FIG. 12, and/or other processes for the techniques described herein. processes for the techniques described herein. The processor 480 and/or other processors and modules at the UE 120 may also perform or direct, e.g., the execution of the functional blocks illustrated in FIGs. 10 and 11, and/or other processes for the techniques described herein. The  memories  442 and 482 may store data and program codes for the BS 110 and the UE 120, respectively. A scheduler 444 may schedule UEs for data transmission on the downlink and/or uplink.
FIG. 5 illustrates a diagram 500 showing examples for implementing a communications protocol stack, according to aspects of the present disclosure. The illustrated communications protocol stacks may be implemented by devices operating in a in a 5G system (e.g., a system that supports uplink-based mobility) . Diagram 500 illustrates a communications protocol stack including a Radio Resource Control (RRC) layer 510, a Packet Data Convergence Protocol (PDCP) layer 515, a Radio Link Control (RLC) layer 520, a Medium Access Control (MAC) layer 525, and a Physical (PHY) layer 530. In various examples the layers of a protocol stack may be implemented as separate modules of software, portions of a processor or ASIC, portions of non- collocated devices connected by a communications link, or various combinations thereof. Collocated and non-collocated implementations may be used, for example, in a protocol stack for a network access device (e.g., ANs, CUs, and/or DUs) or a UE.
A first option 505-ashows a split implementation of a protocol stack, in which implementation of the protocol stack is split between a centralized network access device (e.g., an ANC 202 in FIG. 2) and distributed network access device (e.g., DU 208 in FIG. 2) . In the first option 505-a, an RRC layer 510 and a PDCP layer 515 may be implemented by the central unit, and an RLC layer 520, a MAC layer 525, and a PHY layer 530 may be implemented by the DU. In various examples the CU and the DU may be collocated or non-collocated. The first option 505-a may be useful in a macro cell, micro cell, or pico cell deployment.
A second option 505-b shows a unified implementation of a protocol stack, in which the protocol stack is implemented in a single network access device (e.g., access node (AN) , new radio base station (NR BS) , a new radio Node-B (NR NB) , a network node (NN) , or the like. ) . In the second option, the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530 may each be implemented by the AN. The second option 505-b may be useful in a femto cell deployment.
Regardless of whether a network access device implements part or all of a protocol stack, a UE may implement an entire protocol stack (e.g., the RRC layer 510, the PDCP layer 515, the RLC layer 520, the MAC layer 525, and the PHY layer 530) .
FIG. 6 is a diagram 600 showing an example of a DL-centric subframe. The DL-centric subframe may include a control portion 602. The control portion 602 may exist in the initial or beginning portion of the DL-centric subframe. The control portion 602 may include various scheduling information and/or control information corresponding to various portions of the DL-centric subframe. In some configurations, the control portion 602 may be a physical DL control channel (PDCCH) , as indicated in FIG. 6. The DL-centric subframe may also include a DL data portion 604. The DL data portion 604 may sometimes be referred to as the payload of the DL-centric subframe. The DL data portion 604 may include the communication resources utilized to communicate DL data from the scheduling entity (e.g., UE or BS) to the subordinate  entity (e.g., UE) . In some configurations, the DL data portion 604 may be a physical DL shared channel (PDSCH) .
The DL-centric subframe may also include a common UL portion 606. The common UL portion 606 may sometimes be referred to as an UL burst, a common UL burst, and/or various other suitable terms. The common UL portion 606 may include feedback information corresponding to various other portions of the DL-centric subframe. For example, the common UL portion 606 may include feedback information corresponding to the control portion 602. Non-limiting examples of feedback information may include an ACK signal, a NACK signal, a HARQ indicator, and/or various other suitable types of information. The common UL portion 606 may include additional or alternative information, such as information pertaining to random access channel (RACH) procedures, scheduling requests (SRs) , and various other suitable types of information. As illustrated in FIG. 6, the end of the DL data portion 604 may be separated in time from the beginning of the common UL portion 606. This time separation may sometimes be referred to as a gap, a guard period, a guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the subordinate entity (e.g., UE)) to UL communication (e.g., transmission by the subordinate entity (e.g., UE) ) . One of ordinary skill in the art will understand that the foregoing is merely one example of a DL-centric subframe and alternative structures having similar features may exist without necessarily deviating from the aspects described herein.
FIG. 7 is a diagram 700 showing an example of an UL-centric subframe. The UL -centric subframe may include a control portion 702. The control portion 702 may exist in the initial or beginning portion of the UL-centric subframe. The control portion 702 in FIG. 7 may be similar to the control portion described above with reference to FIG. 6. The UL-centric subframe may also include an UL data portion 704. The UL data portion 704 may sometimes be referred to as the payload of the UL-centric subframe. The UL portion may refer to the communication resources utilized to communicate UL data from the subordinate entity (e.g., UE) to the scheduling entity (e.g., UE or BS) . In some configurations, the control portion 702 may be a physical UL control channel (PUCCH) .
As illustrated in FIG. 7, the end of the control portion 702 may be separated in time from the beginning of the UL data portion 704. This time separation may sometimes be referred to as a gap, guard period, guard interval, and/or various other suitable terms. This separation provides time for the switch-over from DL communication (e.g., reception operation by the scheduling entity) to UL communication (e.g., transmission by the scheduling entity) . The UL-centric subframe may also include a common UL portion 706. The common UL portion 706 in FIG. 7 may be similar to the common UL portion 706 described above with reference to FIG. 7. The common UL portion 706 may additional or alternative include information pertaining to channel quality indicator (CQI) , sounding reference signals (SRSs) , and various other suitable types of information. One of ordinary skill in the art will understand that the foregoing is merely one example of an UL-centric subframe and alternative structures having similar features may exist without necessarily deviating from the aspects described herein. In one example, a frame may include both UL centric subframes and DL centric subframes. In this example, the ratio of UL centric subframes to DL subframes in a frame may be dynamically adjusted based on the amount of UL data and the amount of DL data that are transmitted. For example, if there is more UL data, then the ratio of UL centric subframes to DL subframes may be increased. Conversely, if there is more DL data, then the ratio of UL centric subframes to DL subframes may be decreased.
In some circumstances, two or more subordinate entities (e.g., UEs) may communicate with each other using sidelink signals. Real-world applications of such sidelink communications may include public safety, proximity services, UE-to-network relaying, vehicle-to-vehicle (V2V) communications, Internet of Everything (IoE) communications, IoT communications, mission-critical mesh, and/or various other suitable applications. Generally, a sidelink signal may refer to a signal communicated from one subordinate entity (e.g., UE1) to another subordinate entity (e.g., UE2) without relaying that communication through the scheduling entity (e.g., UE or BS) , even though the scheduling entity may be utilized for scheduling and/or control purposes. In some examples, the sidelink signals may be communicated using a licensed spectrum (unlike wireless local area networks, which typically use an unlicensed spectrum) .
A UE may operate in various radio resource configurations, including a configuration associated with transmitting pilots using a dedicated set of resources (e.g., a radio resource control (RRC) dedicated state, etc. ) or a configuration associated with transmitting pilots using a common set of resources (e.g., an RRC common state, etc. ) . When operating in the RRC dedicated state, the UE may select a dedicated set of resources for transmitting a pilot signal to a network. When operating in the RRC common state, the UE may select a common set of resources for transmitting a pilot signal to the network. In either case, a pilot signal transmitted by the UE may be received by one or more network access devices, such as an AN, or a DU, or portions thereof. Each receiving network access device may be configured to receive and measure pilot signals transmitted on the common set of resources, and also receive and measure pilot signals transmitted on dedicated sets of resources allocated to the UEs for which the network access device is a member of a monitoring set of network access devices for the UE. One or more of the receiving network access devices, or a CU to which receiving network access device (s) transmit the measurements of the pilot signals, may use the measurements to identify serving cells for the UEs, or to initiate a change of serving cell for one or more of the UEs.
FIG. 8 illustrates an example of a wireless communication system 800 supporting a number of zones, in accordance with aspects of the present disclosure. The wireless communication system 800 may include a number of zones (including, e.g., a first zone 805-a (Zone 1) , a second zone 805-b (Zone 2) , and a third zone 805-c (Zone 3) ). A number of UEs may move within or between the zones.
A zone may include multiple cells, and the cells within a zone may be synchronized (e.g., the cells may share the same timing) . Wireless communication system 800 may include examples of both non-overlapping zones (e.g., the first zone 805-a and the second zone 805-b) and overlapping zones (e.g., the first zone 805-a and the third zone 805-c) . In some examples, the first zone 805-a and the second zone 805-b may each include one or more macro cells, micro cells, or pico cells, and the third zone 805-c may include one or more femto cells.
By way of example, the UE 850 is shown to be located in the first zone 805-a. If the UE 850 is operating with a radio resource configuration associated with transmitting pilot signals using a common set of resources, such as an RRC common  state, the UE 850 may transmit a pilot signal using a common set of resources. Cells (e.g., ANs, DUs, etc. ) within the first zone 805-amay monitor the common set of resources for a pilot signal from the UE 850. If the UE 850 is operating with a radio resource configuration associated with transmitting pilot signals using a dedicated set of resource, such as an RRC dedicated state, the UE 850 may transmit a pilot signal using a dedicated set of resources. Cells of a monitoring set of cells established for the UE 850 within the first zone 805-a (e.g., a first cell 810-a, a second cell 810-b, and a third cell 810-c) may monitor the dedicated set of resources for the pilot signal of the UE 850.
According to aspects of the present disclosure, the UE 850 performs one or more operations without relying on a zone signal. For example, the UE may perform an inter-zone handover using synchronization signals associated with a cell/TRP as opposed to a zone synchronization signal.
EXAMPLE RELIABLE CHANNEL STATE INFORMATION (CSI) REPORTING
MIMO is seen as a key technology enabler for satisfying the NR coverage and capacity requirements, but not without tradeoffs. For example, the advantages of using MIMO come at the price of accurate channel state information (CSI) at the transmission/reception point (TRP) .
In TDD systems, the CSI may be available at the TRP by exploiting the UL-DL channel reciprocity. In FDD systems, the CSI has to be obtained at the TRP via UE feedback based on DL channel estimation aided by DL reference signals (RS) .
CSI may be implicit or explicit and the contents reported may vary accordingly. For implicit CSI feedback, some hypotheses are made regarding the transmission and/or reception processing. Typical contents for implicit CSI reports include CQI, PMI and RI. For example, a UE may assume that it will be scheduled in single-user (SU) MIMO transmission and that the receiver processing is based on MMSE. The UE may then evaluate the spectral efficiency achievable for each PMI/RI hypothesis in a predefined codebook. The best PMI/RI and associated CQI (e.g., with the highest spectral efficiency) may then be reported.
Explicit CSI feedback may be generated without assuming any hypothetical transmission scheme or any receiver processing. Typical contents for explicit CSI  reports may include channel state (e.g., channel matrix or its dominant Eigen-components) , and/or channel statistical information (e.g., channel covariance matrix or its dominant Eigen-components) .
There are pros and cons to both implicit and explicit feedback. For implicit feedback, a large number of PMI/RI hypotheses need to be evaluated for large (even massive) MIMO, which may increase UE complexity for evaluating each hypothesis. Further, implicit feedback typically requires tight coupling to transmission schemes. For example, the reported parameters (e.g., CQI, PMI, RI) are bound to the assumed transmission scheme and it cannot be directly applied to other transmission schemes. Further, there is often a mismatch between MU and SU (e.g., feedback for one is not readily applicable to the other) .
Challenges for explicit feedback include an increased feedback payload size (e.g., ~100s bits using element-wise quantization) . This increased payload size makes explicit feedback more vulnerable to UL transmission failure. While it is desirable to improve reliability of explicit CSI reporting, with no knowledge of receiver processing it is difficult to perform link adaptation at the BS side.
Aspects of the present disclosure, however, provide techniques that may help reliability of CSI reporting. As will be described in greater detail, reliability may be increased using repetition, with various options for when and how to use repetition.
FIG. 9 illustrates example operations 900 which may be performed by a UE, in accordance with aspects of the present disclosure. The UE may include one or more modules of UE 120 illustrated in FIG. 4.
At 902, the UE receives a request, from a base station, for a channel state information (CSI) report. At 904, the UE determining to transmit the CSI report with repetition based on one or more factors. At 906, the UE transmitting the CSI report to the BS in accordance with the determination.
FIG. 10 illustrates example operations 1000 which may be performed by a BS, in accordance with aspects of the present disclosure. The operations 1000 may be considered complementary (BS-side) operations to the UE-side operations 900 shown in FIG. 10. The BS may include one or more modules of BS 110 illustrated in FIG. 4.
At 1002, the BS transmits a request, to a user equipment (UE) , for a channel state information (CSI) report. At 1004, the BS determines if the CSI report is to be transmitted by the UE with repetition based on one or more factors. At 1106, the BS processes the CSI report in accordance with the determination.
Transmission of CSI reporting may be with or without repetition (with repetition providing time diversity) . Repetition may or may not be supported for the transmission of CSI reporting, depending on several transmission repetition options. Examples of such transmission repetition options that may be supported include HARQ based transmission. In this case, a BS may transmit an ACK/NACK to indicate if the CSI report has been successfully decoded. The UE retransmits CSI report (using different redundancy version) automatically when receiving a NACK (or, in some cases, if an ACK is not received) .
In some cases, a BS may transmit a UL grant to request retransmission of previously reported CSI (using different redundancy version) . In some cases, a CSI report may be sent as a TTI-bundling based transmission. In this case, the UE may transmit a CSI report in a number of consecutive UL TTIs/subframes. In some cases, bundling may be terminated early (e.g., if the BS successfully decodes before the end of the bundle) .
In some cases, repetition may be requested by a NACK (HARQ-based transmission) . In this case, a BS may indicate a request for an CSI report from the UE at certain time instance (s) in a UL grant. The request may include a maximum number of retransmission attempts. The UE may generate a bit sequence (code block) including the CSI based on the request. The CSI report may include, at least, a CRC attachment, channel coding, and rate matching. The UE transmits the encoded CSI to the BS at the indicated time instance (s) . The BS attempts to decode the received CSI report and transmits an ACK/NACK to indicate if the CSI report is successfully decoded or not (e.g., at a specified time instance with respect to the requested report instance) . The UE, in turn, may receive the ACK/NACK indication at the specific time instance. If a NACK is received and the maximum number of retransmission is not reached yet, the UE may generate another bit sequence (e.g., different redundancy version) for the reported CSI and retransmit the encoded CSI to the BS again.
As illustrated in FIGs. 11A and 11B, in some cases CSI report repetition may be requested via an UL grant. In this case, the BS indicates a request for CSI report from the UE at certain time instance (s) in UL grant. The request may include an indication of how to do rate matching (e.g., a redundancy version) . The request may also include a new CSI indicator to indicate if the UE shall report an updated CSI or another redundancy version of the previously reported CSI. The UE generates a bit sequence (code block) including the CSI based on the request. As illustrated in the example 1100C of FIG. 11C, the code block may be encoded to include at least a CRC attachment, channel coding, and rate matching. The UE may then transmit the encoded CSI to the BS at the indicated time instance (s) and the BS attempts to decode the received CSI report.
As illustrated in the example 1100A of FIG. 11A, the UE may retransmit a CSI report if it receives a NACK, and the BS may combine different versions (e.g., RV1 and RV0) in an attempt to successfully decode the CSI-report. As illustrated in the example 1100B of FIG. 11B, rather than send a NACK, the BS may prompt a retransmission by sending another request for a CSI-report and may indicate the UE is to send a new redundancy version.
FIG. 12 illustrates an example 1200 of sending a CSI report as a TTI-Bundling based transmission. In this example, the BS indicates a request for explicit CSI report from the UE at certain time instance (s) in UL grant. The request may include an indication of how to do rate matching for a number of consecutive reporting instances, e.g., redundancy versions for each reporting instance. The request may include an new CSI indicator to indicate if the UE shall report an updated CSI or another redundancy version of the previously reported CSI. The UE generates a bit sequence (code block) including the explicit CSI based on the request for each reporting instance. The UE transmits the encoded explicit CSI to the BS at the indicated time instances. In the illustrated example of 3 TTI bundling, the CSI reports (which may or may not be identical-with or without different redundancy versions) are sent at times t1, t2, and t3. The reports are combined by the BS.
In some cases, the BS may request the UE to stop bundled transmission if the reported explicit CSI is successfully decoded before the bundled transmission is not completed (early termination) . FIG. 13A illustrates a case where a CSI-report is sent  across three TTIs with no early termination. In FIG. 13B, on the other hand, the BS sends an early termination signal after the second CSI-report. As illustrated in FIG. 13B, the third TTI (e.g., a subframe that would otherwise have been used for the third transmission of the CSI report) may be (opportunistically) used for a DL transmission. As illustrated in FIG. 13C, a BS may send another CSI request which effectively serves as an implicit early termination of the previous CSI-report.
Other actions may also be taken to help increase reliability of CSI-report transmission. For example, in scenarios of power limitation, whether a CSI report is under repetition or not may be a factor for prioritizing transmissions on different channels. For example, re-transmission of CSI on a first CC may have a higher priority than new transmission on a second CC. In some cases, for CSI reporting that occurs in multiple stages (e.g., beamforming, where a sector is selected, followed by more refined selection) , different types of repetitions may be utilized for different stages (e.g., whether to use repetition or not can be configured at a per RS resource basis) .
As illustrated in FIG. 14A, in some cases for periodic CSI (P-CSI) , repetition may be performed in a periodic but bursty manner. In the illustrated example, a CSI-report is sent periodically every 10-subframes, but with a transmission of 2 subframes per transmissions. Such repetition may be done differently for different CSI types. For example, repetition may only be used for CSI reports having a relatively large payload (e.g., explicit CSI) or repetition may only be used for higher priority CSI types (e.g., CSI reports including rank indication “RI” ) . As illustrated in FIG. 14B, in some cases, when a re-transmission of CSI collides with a new transmission of CSI, the re-transmission may have higher priority.
In some cases, MIMO transmission may be used for CSI reporting using PUSCH (e.g., to achieve spatial diversity) . In some cases, when a CSI report is multiplexed with UL-SCH using PUSCH, the CSI report codeword may be mapped to one or multiple UL spatial layers.
As illustrated in FIG. 15, according to a first option (labeled Option 1) , the CSI report may be multiplexed with data only on the UL-SCH transport block with highest MCS on the initial grant. In case the transport blocks have the same MCS value in the corresponding initial UL grant, the CSI report is multiplexed with data only on  the first transport block. According to a second option (labeled Option 2) , the CSI report may be mapped to all UL spatial layers and the layer to antenna port mapping is same as that for data. According to a third option (labeled Option-3) , the CSI report may be mapped to all UL spatial layers and the layer to antenna port mapping can be different from that for data. In some cases, the CSI report and UL data may use different MIMO transmission schemes. In some cases, the transmission schemes for CSI reports may be indicated in the CSI request.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is specified, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
As used herein, the term “determining” encompasses a wide variety of actions. For example, “determining” may include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure) , ascertaining and the like. Also, “determining” may include receiving (e.g., receiving information) , accessing (e.g., accessing data in a memory) and the like. Also, “determining” may include resolving, selecting, choosing, establishing and the like.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more. ” Unless  specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. §112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for. ”
The various operations of methods described above may be performed by any suitable means capable of performing the corresponding functions. The means may include various hardware and/or software component (s) and/or module (s) , including, but not limited to a circuit, an application specific integrated circuit (ASIC) , or processor. Generally, where there are operations illustrated in figures, those operations may have corresponding counterpart means-plus-function components with similar numbering.
The various illustrative logical blocks, modules and circuits described in connection with the present disclosure may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device (PLD) , discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
If implemented in hardware, an example hardware configuration may comprise a processing system in a wireless node. The processing system may be implemented with a bus architecture. The bus may include any number of interconnecting buses and bridges depending on the specific application of the processing system and the overall design constraints. The bus may link together various  circuits including a processor, machine-readable media, and a bus interface. The bus interface may be used to connect a network adapter, among other things, to the processing system via the bus. The network adapter may be used to implement the signal processing functions of the PHY layer. In the case of a user terminal 120 (see FIG. 1) , a user interface (e.g., keypad, display, mouse, joystick, etc. ) may also be connected to the bus. The bus may also link various other circuits such as timing sources, peripherals, voltage regulators, power management circuits, and the like, which are well known in the art, and therefore, will not be described any further. The processor may be implemented with one or more general-purpose and/or special-purpose processors. Examples include microprocessors, microcontrollers, DSP processors, and other circuitry that can execute software. Those skilled in the art will recognize how best to implement the described functionality for the processing system depending on the particular application and the overall design constraints imposed on the overall system.
If implemented in software, the functions may be stored or transmitted over as one or more instructions or code on a computer-readable medium. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Computer-readable media include both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. The processor may be responsible for managing the bus and general processing, including the execution of software modules stored on the machine-readable storage media. A computer-readable storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. By way of example, the machine-readable media may include a transmission line, a carrier wave modulated by data, and/or a computer readable storage medium with instructions stored thereon separate from the wireless node, all of which may be accessed by the processor through the bus interface. Alternatively, or in addition, the machine-readable media, or any portion thereof, may be integrated into the processor, such as the case may be with cache and/or general register files. Examples of machine-readable storage media may include, by way of example, RAM (Random Access Memory) , flash memory, ROM (Read Only Memory) , PROM (Programmable Read- Only Memory) , EPROM (Erasable Programmable Read-Only Memory) , EEPROM (Electrically Erasable Programmable Read-Only Memory) , registers, magnetic disks, optical disks, hard drives, or any other suitable storage medium, or any combination thereof. The machine-readable media may be embodied in a computer-program product.
A software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media. The computer-readable media may comprise a number of software modules. The software modules include instructions that, when executed by an apparatus such as a processor, cause the processing system to perform various functions. The software modules may include a transmission module and a receiving module. Each software module may reside in a single storage device or be distributed across multiple storage devices. By way of example, a software module may be loaded into RAM from a hard drive when a triggering event occurs. During execution of the software module, the processor may load some of the instructions into cache to increase access speed. One or more cache lines may then be loaded into a general register file for execution by the processor. When referring to the functionality of a software module below, it will be understood that such functionality is implemented by the processor when executing instructions from that software module.
Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared (IR) , radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and 
Figure PCTCN2016101250-appb-000001
 disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Thus, in some aspects computer-readable media may comprise non-transitory computer-readable media (e.g., tangible media) . In addition, for other aspects computer-readable media may comprise transitory computer-readable media (e.g., a signal) . Combinations of the above should also be included within the scope of computer-readable media.
Thus, certain aspects may comprise a computer program product for performing the operations presented herein. For example, such a computer program product may comprise a computer-readable medium having instructions stored (and/or encoded) thereon, the instructions being executable by one or more processors to perform the operations described herein. For example, instructions for perform the operations described herein and illustrated in FIGs. 10-12.
Further, it should be appreciated that modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable. For example, such a device can be coupled to a server to facilitate the transfer of means for performing the methods described herein. Alternatively, various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc. ) , such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
It is to be understood that the claims are not limited to the precise configuration and components illustrated above. Various modifications, changes and variations may be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims.

Claims (52)

  1. A method for wireless communications by a user equipment (UE) , comprising:
    receiving a request, from a base station, for a channel state information (CSI) report;
    determining to transmit the CSI report with repetition based on one or more factors; and
    transmitting the CSI report to the BS in accordance with the determination.
  2. The method of claim 1, wherein the CSI report includes implicit parameters including at least one of a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , or a rank indication (RI) .
  3. The method of claim 2, wherein the at least one of the implicit parameters are bound to an assumed transmission scheme.
  4. The method of claim 1, wherein the one or more factors relate to at least one of a payload size of the CSI report or a feedback type of the CSI report.
  5. The method of claim 4, wherein the determining comprises determining to transmit the CSI report with repetition if the CSI report is for explicit CSI feedback.
  6. The method of claim 1,
    wherein the CSI report includes the CSI feedback and at least one of: an error check value, channel coding information, or rate matching information.
  7. The method of claim 1, wherein:
    the request indicates certain time instances for transmitting the CSI report.
  8. The method of claim 1, wherein:
    the request is for CSI feedback; and
    the CSI report is transmitted as a hybrid automatic repeat request (HARQ) transmission.
  9. The method of claim 8, further comprising:
    receiving an indication, from the BS, acknowledging whether or not the CSI report was successfully decoded.
  10. The method of claim 8, wherein:
    the method further comprises retransmitting the CSI report if the indication indicates the BS did not successfully receive the CSI report and a maximum number of retransmissions has not been reached.
  11. The method of claim 10, wherein the retransmitted CSI report is sent with a different redundancy version indicating a different bit sequence than that included in a previous transmission of the CSI report.
  12. The method of claim 1, wherein:
    the request is for explicit CSI feedback; and
    the request is conveyed in an uplink (UL) grant.
  13. The method of claim 12, wherein the request indicates whether the UE is to transmit an updated CSI report or the same version of a previously transmitted CSI report or another redundancy version of a previously transmitted CSI report.
  14. The method of claim 12, wherein the CSI report is repeatedly transmitted over a number of transmission time intervals (TTIs) .
  15. The method of claim 12, wherein the number of TTIs for repeated transmission is at least one of:
    indicated in the request or predefined in a specification.
  16. The method of claim 14, wherein the request includes an indication of how to perform rate matching for the repeatedly transmitted CSI reports.
  17. The method of claim 14, further comprising:
    receiving an early termination indication from the BS, indicating the BS successfully decoded the CSI report; and
    terminating the repeated transmissions in response to the early termination indication.
  18. The method of claim 16, wherein the early termination indication also triggers the UE to send an updated CSI report.
  19. The method of claim 16, further comprising receiving downlink data from the BS in a subframe in which the UE was scheduled to retransmit a CSI report prior to receiving the early termination indication.
  20. The method of claim 1, further comprising prioritizing a CSI report transmission based on whether or not the CSI report transmission is a re-transmissions.
  21. The method of claim 19, wherein the prioritizing comprises:
    giving a higher priority to a re-transmission of a CSI report on a first component carrier (CC) than a priority given to an initial transmission of a CSI report on a second CC.
  22. The method of claim 1, wherein different repetitions are given to CSI reports transmitted at different stages of a multi-stage CSI reporting procedure.
  23. The method of claim 1, wherein CSI reports are transmitted periodically, with repeated transmissions each period.
  24. The method of claim 1, wherein:
    the UE multiplexes CSI reports with uplink shared channel (UL-SCH) transmissions.
  25. The method of claim 23, wherein:
    the CSI report is multiplexed with data only on a transport block of the UL-SCH with a highest modulation and coding scheme (MCS) on an initial grant.
  26. The method of claim 23, wherein:
    the CSI report is mapped to all UL spatial layers; and
    a same layer to antenna port mapping is used for the CSI report and for data.
  27. The method of claim 23, wherein:
    the CSI report is mapped to all UL spatial layers; and
    different layer to antenna port mappings are used for the CSI report and for data.
  28. A method for wireless communications by a base station (BS) , comprising:
    transmitting a request, to a user equipment (UE) , for a channel state information (CSI) report;
    determining if the CSI report is to be transmitted by the UE with repetition based on one or more factors; and
    processing the CSI report in accordance with the determination.
  29. The method of claim 27, wherein the CSI report includes implicit parameters including at least one of a channel quality indicator (CQI) , a precoding matrix indicator (PMI) , or a rank indication (RI) .
  30. The method of claim 28, wherein the at least one of the implicit parameters are bound to an assumed transmission scheme.
  31. The method of claim 27, wherein the one or more factors relate to at least one of a payload size of the CSI report or a feedback type of the CSI report.
  32. The method of claim 30, wherein the determining comprises determining the CSI report is to be transmitted with repetition if the CSI report is for explicit CSI feedback.
  33. The method of claim 27, wherein the CSI report includes the CSI feedback and at least one of: an error check value, channel coding information, or rate matching information.
  34. The method of claim 27, wherein:
    the request indicates certain time instances for transmitting the CSI report.
  35. The method of claim 27, wherein:
    the CSI report is transmitted as a hybrid automatic repeat request (HARQ) transmission.
  36. The method of claim 34, further comprising:
    transmitting an indication, to the UE, acknowledging whether or not the CSI report was successfully decoded.
  37. The method of claim 34, further comprising:
    receiving a retransmission of the CSI report if the indication indicates the BS did not successfully receive the CSI report.
  38. The method of claim 36, wherein the retransmitted CSI report is sent with a different redundancy version indicating a different bit sequence than that included in a previous transmission of the CSI report.
  39. The method of claim 27, wherein:
    the request is conveyed in an uplink (UL) grant.
  40. The method of claim 38, wherein the request indicates whether the UE is to transmit an updated CSI report or the same version of a previously transmitted CSI report or another redundancy version of a previously transmitted CSI report.
  41. The method of claim 38, wherein the CSI report is received over a number of transmission time intervals (TTIs) .
  42. The method of claim 40, wherein the number of TTIs for repeated transmission is at least one of:
    indicated in the request or predefined in a specification.
  43. The method of claim 41, wherein the request includes an indication of how to perform rate matching for the repeatedly transmitted CSI reports.
  44. The method of claim 41, further comprising:
    transmitting an early termination indication, indicating the BS successfully decoded the CSI report prior to a last of the TTI.
  45. The method of claim 43, wherein the early termination indication also triggers the UE to send an updated CSI report.
  46. The method of claim 41, further comprising transmitting downlink data to the UE in a subframe in which the UE was scheduled to retransmit a CSI report prior to receiving the early termination indication.
  47. The method of claim 27, wherein different repetitions are given to CSI reports transmitted at different stages of a multi-stage CSI reporting procedure.
  48. The method of claim 27, wherein CSI reports are transmitted periodically, with repeated transmissions each period.
  49. The method of claim 27, wherein:
    the UE multiplexes CSI reports with uplink shared channel (UL-SCH) transmissions.
  50. The method of claim 48, wherein:
    the CSI report is multiplexed with data only on a transport block of the UL-SCH with a highest modulation and coding scheme (MCS) on an initial grant.
  51. The method of claim 48, wherein:
    the CSI report is mapped to all UL spatial layers; and
    a same layer to antenna port mapping is used for the CSI report and for data.
  52. The method of claim 48, wherein:
    the CSI report is mapped to all UL spatial layers; and
    different layer to antenna port mappings are used for the CSI report and for data.
PCT/CN2016/101250 2016-09-30 2016-09-30 Reliable channel state information (csi) reporting WO2018058599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/101250 WO2018058599A1 (en) 2016-09-30 2016-09-30 Reliable channel state information (csi) reporting
PCT/CN2017/102898 WO2018059318A1 (en) 2016-09-30 2017-09-22 Reliable channel state information (csi) reporting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/101250 WO2018058599A1 (en) 2016-09-30 2016-09-30 Reliable channel state information (csi) reporting

Publications (1)

Publication Number Publication Date
WO2018058599A1 true WO2018058599A1 (en) 2018-04-05

Family

ID=61763128

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/101250 WO2018058599A1 (en) 2016-09-30 2016-09-30 Reliable channel state information (csi) reporting
PCT/CN2017/102898 WO2018059318A1 (en) 2016-09-30 2017-09-22 Reliable channel state information (csi) reporting

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102898 WO2018059318A1 (en) 2016-09-30 2017-09-22 Reliable channel state information (csi) reporting

Country Status (1)

Country Link
WO (2) WO2018058599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492212B1 (en) 2018-06-22 2019-11-26 At&T Intellectual Property I, L.P. Scheduling ultra-reliable low latency communications in wireless communication systems
US10715275B2 (en) 2018-05-11 2020-07-14 At&T Intellectual Property I, L.P. Configuring channel quality indicator for communication service categories in wireless communication systems

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3711405A4 (en) * 2017-11-17 2020-11-11 ZTE Corporation Control transmission method and apparatus
US11870718B2 (en) 2019-09-17 2024-01-09 Qualcomm Incorporated Sidelink CSI report transmission methods and conditions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335498A (en) * 2012-05-11 2015-02-04 黑莓有限公司 Method and system for uplink harq and csi multiplexing for carrier aggregation
WO2016122252A1 (en) * 2015-01-29 2016-08-04 Samsung Electronics Co., Ltd. System and method for link adaptation for low cost user equipments
US20160269160A1 (en) * 2015-03-13 2016-09-15 Samsung Electronics Co., Ltd. Method and apparatus for measuring channel state information in communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201322681A (en) * 2011-09-26 2013-06-01 Innovative Sonic Corp Method and apparatus for processing Channel State Information in a wireless communication system
EP2749102B1 (en) * 2011-10-27 2019-10-02 Nokia Solutions and Networks Oy Providing enhanced csi coverage by reporting the same measure in multiple subframes
WO2016122380A1 (en) * 2015-01-30 2016-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Radio node, wireless device and methods therein, for configuring a plurality of channel quality information values

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335498A (en) * 2012-05-11 2015-02-04 黑莓有限公司 Method and system for uplink harq and csi multiplexing for carrier aggregation
WO2016122252A1 (en) * 2015-01-29 2016-08-04 Samsung Electronics Co., Ltd. System and method for link adaptation for low cost user equipments
US20160269160A1 (en) * 2015-03-13 2016-09-15 Samsung Electronics Co., Ltd. Method and apparatus for measuring channel state information in communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715275B2 (en) 2018-05-11 2020-07-14 At&T Intellectual Property I, L.P. Configuring channel quality indicator for communication service categories in wireless communication systems
US11218245B2 (en) 2018-05-11 2022-01-04 At&T Intellectual Property I, L.P. Configuring channel quality indicator for communication service categories in wireless communication systems
US10492212B1 (en) 2018-06-22 2019-11-26 At&T Intellectual Property I, L.P. Scheduling ultra-reliable low latency communications in wireless communication systems
US11191089B2 (en) 2018-06-22 2021-11-30 At&T Intellectual Property I, L.P. Scheduling ultra-reliable low latency communications in wireless communication systems

Also Published As

Publication number Publication date
WO2018059318A1 (en) 2018-04-05

Similar Documents

Publication Publication Date Title
EP3682569B1 (en) Resource (re) mapping rule for uplink control information (uci) piggyback on physical uplink shared channel (pusch)
EP3782321B1 (en) Demodulation reference signal (dmrs) time-domain bundling and multiple codeword transmission and processing
US10411864B2 (en) Resource allocation for physical uplink control channel (PUCCH)
EP3829247B1 (en) Physical uplink control channel (pucch) resource allocation
CN111034092B (en) Determining a maximum transport block size
US11258568B2 (en) Single packet encoded channel state information (CSI) design for new radio (NR) multiple input-multiple output (MIMO)
WO2019192007A1 (en) Collision handling for csi reporting on pusch
US11743925B2 (en) Resource allocation for uplink control information (UCI) and data multiplexing on a physical uplink shared channel (PUSCH)
WO2018059318A1 (en) Reliable channel state information (csi) reporting
CN110754053B (en) Downlink Control Information (DCI) format for subsequent transmission based on Code Block Group (CBG)
WO2019144270A1 (en) Channel state information (csi) report resource determination
WO2019105392A1 (en) Example uplink control information (uci) layer mapping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917349

Country of ref document: EP

Kind code of ref document: A1