WO2018058474A1 - 一种数据发送方法和装置 - Google Patents

一种数据发送方法和装置 Download PDF

Info

Publication number
WO2018058474A1
WO2018058474A1 PCT/CN2016/100949 CN2016100949W WO2018058474A1 WO 2018058474 A1 WO2018058474 A1 WO 2018058474A1 CN 2016100949 W CN2016100949 W CN 2016100949W WO 2018058474 A1 WO2018058474 A1 WO 2018058474A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data
power
network device
transmit power
Prior art date
Application number
PCT/CN2016/100949
Other languages
English (en)
French (fr)
Inventor
王宏
权威
张戬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100949 priority Critical patent/WO2018058474A1/zh
Priority to EP16917228.5A priority patent/EP3512261B1/en
Priority to CN201680088620.2A priority patent/CN109644393B/zh
Publication of WO2018058474A1 publication Critical patent/WO2018058474A1/zh
Priority to US16/368,541 priority patent/US11184860B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/265TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the quality of service QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/383TPC being performed in particular situations power control in peer-to-peer links
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/48TPC being performed in particular situations during retransmission after error or non-acknowledgment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method and apparatus.
  • the delay can be defined as one-trip time (OTT), which refers to the time elapsed when the data is sent from the sending end to the receiving end; the other definition is round-trip time (round-trip time, RTT) refers to the time it takes for data to be sent by the sender to the sender to receive feedback.
  • OTT one-trip time
  • RTT round-trip time
  • the delay can be divided into control plane delay and user plane delay.
  • the control plane delay refers to the time elapsed between the user equipment and the base station from the idle state (IDLE) to the connected state (CONNECTED).
  • IDLE idle state
  • CONNECTED connected state
  • 5G fifth generation mobile communication technology
  • User plane delay refers to the time that the user application layer data or message goes from entering the SDU Service Data Unit of layer 2 or layer 3 of the radio protocol layer to decoding from the corresponding layer, as shown in Figure 1.
  • the user equipment (UE) sends data to the Evolved Node B (eNB).
  • the delay of the user plane is the Packet Data Convergence Protocol Service Data Unit (UE).
  • the PDCP SDU enters the PDCP layer to the base station side PDCP SDU leaves the PDCP layer, and is generally required to be no more than 0.5 ms in the fifth generation mobile communication technology 5G system.
  • the base station first allocates UEs within its signal coverage.
  • a plurality of common uplink resources when the UE has data to be sent to the base station, may directly use the uplink resource allocated by the base station to send data, and reduce the delay of the process of requesting the resource by the UE and then acquiring the corresponding resource.
  • resource conflicts occur when multiple UEs use the same uplink resource to send data. Specifically, in a possible case, as shown in the diagram a) of FIG.
  • the UE1 selects resources from the allocated uplink resources and sends uplink data, and the uplink resources are only UE1 is used, and no resource conflict occurs at this time.
  • UE1 and UE2 select the same resource from the allocated uplink resources to send uplink data, and this part of the uplink resource is used by both UEs at the same time.
  • the base station may not successfully receive the data sent by the UE1 and the UE2, so that the UE1 and the UE2 need to resend the data, and the delay of sending the uplink data to the base station by the UE1 and the UE2 is increased.
  • the present invention provides a data transmission method and apparatus, which can reduce the number of terminals for retransmitting data, thereby reducing the delay of data transmission as a whole.
  • a data transmission method including: the network device sends power configuration information to the terminal, where the power configuration information includes a one-to-one correspondence between the power information and the terminal state information, where the power configuration information is used to enable the terminal to acquire the transmission when the data is sent.
  • the network device receives the data sent by the terminal, and the transmit power of the data is determined by the terminal according to the power configuration information; wherein the terminal state information includes the service type of the data sent by the terminal, the priority of the data sent by the terminal, and the terminal to the wireless environment.
  • the power information includes at least one of a desired received power of the network device, a transmit power when the terminal communicates with the network device, and a transmit power when the terminal performs D2D communication.
  • different power information is set according to the data of different service types or different priority data or data corresponding to different wireless environments, that is, different terminals use different power information when transmitting data, and the network
  • the device or the terminal can distinguish the data sent by the different terminals in the case of the resource conflicts generated by the multiple terminals based on the data of the contention of the competition resources, ensure the success rate of the data received by the part of the UE, and reduce the number of terminals that retransmit the data. Thereby reducing the delay of data transmission as a whole.
  • the method further includes: when the terminal status information includes the service type of the data sent by the terminal or the priority of the data sent by the terminal, the method further includes: the network device receiving the data sent by the terminal within the coverage of the network device The priority of the service type or data; or the network device receives the service corresponding to the different service type sent by the core network.
  • the quality QoS information is determined, and then the service type of the data or the priority of the data is determined according to the QoS information. That is, the service type of the data acquired by the network device or the priority of the data may be sent by the terminal, or may be sent by the core network.
  • the service type of the associated data or the priority of the data may be different service types.
  • the data or different priority data determines different power information, which can guarantee the transmission efficiency of part of the data or the QoS of some services.
  • the method further includes: the network device sends a resource configuration message to the terminal, where the resource configuration message includes a reference signal receiving power RSRP range and a time-frequency resource configuration parameter of the terminal, or the resource configuration message includes a reference signal receiving quality of the terminal.
  • the RSRQ range and the time-frequency resource configuration parameter, the time-frequency resource configuration parameter includes a physical resource block PRB parameter and a subframe parameter, or the time-frequency resource configuration parameter includes a PRB parameter and a system frame parameter.
  • the resource configuration message may be configured with different uplink resources for terminals in different wireless environments.
  • the time-frequency resources determined by the two terminals are different to avoid A network device generates a collision when it receives data sent by two terminals.
  • the service type of the terminal 1 has a high priority
  • the corresponding transmit power is also high
  • the service type of the terminal 2 has a low priority
  • the corresponding transmit power is also low, but the wireless environment of the terminal 2 is superior.
  • the radio environment of the terminal 1, that is, the RSRP range of the terminal 2 is larger than the RSRP range of the terminal 1, and the path loss of the terminal 1 is greater than the path loss of the terminal 2, so that the received power when the data sent by the terminal 2 reaches the network device may be transmitted with the terminal 1.
  • the received power is the same. Even if the transmit power of the terminal 1 and the terminal 2 are different, the network device cannot receive the data of the two terminals having the same receiving power when the network device arrives, but if the wireless environment is different, The time-frequency resources configured by the terminal are different, and the problem that the network device cannot receive the data sent by the terminal 1 and the terminal 2 due to resource conflict can be avoided.
  • the power when the data configured with the higher transmit power reaches the network device or the peer end is the same as the power when the data configured with the lower transmit power reaches the network device or the peer end, thereby causing the network device or the peer end. A situation in which some data cannot be successfully received.
  • the power configuration information further includes an amplitude value, where the amplitude value is used to enable the terminal to determine the transmit power when the data is retransmitted, and the transmit power when the data is retransmitted is the former The sum of the transmit power and the amplitude value when transmitting data at a time. In this way, when the retransmission, the terminal uses a larger transmission power when transmitting data, and is more likely to successfully transmit data, thereby reducing the retransmission delay.
  • a data sending method including: receiving, by a terminal, power configuration information sent by a network device, where power configuration information includes a one-to-one correspondence between power information and terminal state information; and determining, by the terminal, the data when the terminal sends data according to the power configuration information. Transmit power; wherein the terminal status information includes at least one of a service type of the data sent by the terminal, a priority of the data sent by the terminal, and measurement information of the terminal to the wireless environment; the power information includes the expected received power of the network device, the terminal and the network. At least one of a transmission power of the terminal when the device performs communication and a transmission power when the terminal performs D2D communication.
  • the network device or the peer can receive the data of the part of the terminal in the case of resource conflicts occurring in the data transmission process of the plurality of terminals based on the contention of the competition, and ensure the success rate of receiving the partial data, and reduce the terminal for retransmitting the data. The number, thus reducing the latency of data transmission as a whole.
  • the terminal determines the transmit power when the terminal sends the data according to the power configuration information.
  • the method includes: determining, by the terminal, the expected received power of the network device corresponding to the service type of the data sent by the terminal, or determining, by the terminal, the expected received power of the network device according to the expected received power of the network device corresponding to the priority of the data sent by the terminal; Determining a transmit power when the terminal transmits data according to a desired received power and a path loss value for transmitting data to the network device; or, when the terminal state information includes a service type of data transmitted by the terminal or a priority of transmitting data by the terminal, the power information includes the terminal When the terminal transmits power according to the power configuration information, the terminal determines, according to the power configuration information, the transmit power when the terminal sends the data, where the terminal transmits the power according to the service type of the data sent by the terminal, or the terminal according to the terminal. send Hair corresponding to the priority of the data terminal The shot power determines the transmit power when the terminal transmits data.
  • the measurement information when the terminal status information includes measurement information of the terminal to the wireless environment, the measurement information includes the terminal measurement network device reference signal received power RSRP or the reference signal received quality RSRQ, and the power information includes the expected received power of the network device.
  • the terminal Determining, by the terminal, the transmit power when the terminal sends the data according to the power configuration information, the terminal determining, according to the expected received power of the network device corresponding to the measurement information of the wireless environment, determining, by the terminal, the expected received power for transmitting the data to the network device; the terminal sending the data to the network according to the data
  • the expected received power and the path loss value of the device determine the transmit power when the terminal transmits the data; or, when the terminal status information includes the measurement information of the terminal to the wireless environment, the measurement information includes the reference signal received power RSRP or the reference signal received by the terminal measurement network device.
  • the power information includes the transmit power of the terminal when the terminal communicates with the network device, and the terminal determines, according to the power configuration information, the transmit power when the terminal sends data, including: the terminal that the terminal corresponds to the measurement information of the wireless environment by the terminal.
  • the transmit power is determined as the transmit power when the terminal transmits data.
  • the power information includes the transmit power when the terminal performs D2D communication
  • the terminal status information includes the service type of the data sent by the terminal or the priority of the data sent by the terminal or the measurement information of the terminal to the wireless environment
  • the measurement information of the terminal to the wireless environment includes the terminal measuring the RSRP or the RSRQ of the reference signal sent by the opposite end, wherein the terminal performs D2D communication with the opposite end, and the terminal determines, according to the power configuration information, the transmit power when the terminal sends the data, that the terminal corresponds to the service type.
  • the transmission power or the priority of the data corresponds to the transmission power when the terminal performs D2D communication or the terminal transmits the D2D communication to the terminal corresponding to the measurement information of the wireless environment, and the transmission is determined when the terminal transmits data. power.
  • the terminal can use different transmit powers when transmitting data corresponding to different service types or data corresponding to different priorities, so as to ensure that in the case of resource conflict, in the D2D communication, the terminal receiving the data can receive the data. Part of the data sent by the terminal that sends the data, reducing the number of terminals that retransmit the data.
  • the method further includes: the terminal receiving the resource sent by the network device a configuration message, where the resource configuration message includes a reference signal received power RSRP range and a time-frequency resource configuration parameter of the terminal, or the resource configuration message includes a reference signal receiving quality RSRQ range and a time-frequency resource configuration parameter of the terminal, where the time-frequency resource configuration parameter includes The physical resource block PRB parameter and the subframe parameter, or the time-frequency resource configuration parameter include a PRB parameter and a system frame parameter; the terminal determines, according to the resource configuration message, an uplink resource that the terminal sends data.
  • the resource configuration message may be configured with different uplink resources for the terminals in different wireless environments.
  • a network device If two terminals with different wireless environments, that is, two terminals with different RSRP ranges, send different data, the time-frequency resources determined by the two terminals are different, which can be avoided.
  • a network device generates a collision when it receives data sent by two terminals.
  • the method further includes: the terminal sending the service type of the data sent by the terminal or the priority of the data sent by the terminal to the network device.
  • the method further includes: if the terminal determines that the network device does not receive the data, or the terminal determines that the peer does not receive the data when performing the D2D communication, the terminal determines the transmit power when retransmitting the data, and retransmits the data.
  • the transmit power at the time is the sum of the transmit power at the time of the previous transmission of data and the preset amplitude value. In this way, when the retransmission, the terminal uses a larger transmission power when transmitting data, and is more likely to successfully transmit data, thereby reducing the retransmission delay.
  • a network device including: a sending unit, configured to send power configuration information to the terminal, where the power configuration information includes a one-to-one correspondence between the power information and the terminal state information, where the power configuration information is used to enable the terminal to acquire the sending data.
  • the receiving unit is configured to receive data sent by the terminal, where the transmit power of the data is determined by the terminal according to the power configuration information; wherein the terminal state information includes a service type of the data sent by the terminal, and a priority of the data sent by the terminal.
  • the power information includes at least one of a desired received power of the network device, a transmit power of the terminal when the terminal communicates with the network device, and a transmit power when the terminal performs D2D communication.
  • the receiving unit when the terminal status information includes the service type of the data sent by the terminal or the priority of the data sent by the terminal, the receiving unit is further configured to: receive the terminal.
  • the sending unit before the network device receives the data sent by the terminal, the sending unit is further configured to: send a resource configuration message to the terminal, where the resource configuration message includes a reference signal receiving power RSRP range and a time-frequency resource configuration parameter of the terminal, where Or the resource configuration message includes a reference signal receiving quality RSRQ range of the terminal and the time-frequency resource configuration parameter, the time-frequency resource configuration parameter includes a physical resource block PRB parameter and a subframe parameter, or the time-frequency resource configuration parameter includes a PRB parameter and a system frame parameter. .
  • the power configuration information further includes an amplitude value, where the amplitude value is used to enable the terminal to determine the transmit power when the data is retransmitted, and the transmit power when the data is retransmitted is the transmit power and the amplitude value when the data was previously transmitted.
  • a terminal including: a receiving unit, configured to receive power configuration information sent by a network device, where the power configuration information includes a one-to-one correspondence between the power information and the terminal state information; and the determining unit is configured to use the power configuration information according to the power configuration information.
  • the terminal status information includes at least one of a service type of the data sent by the terminal, a priority of the data sent by the terminal, and measurement information of the terminal to the wireless environment; the power information includes the expected received power of the network device, and the terminal communicates with the network device. At least one of the transmission power at the time and the transmission power when the terminal performs D2D communication.
  • the determining unit is configured to: according to the service type of the data sent by the terminal Determining the expected received power of the corresponding network device or the expected received power of the network device corresponding to the priority of the data transmitted by the terminal, according to the expected received power of the network device; according to the expected received power and path for transmitting the data to the network device
  • the loss value determines the transmit power when the terminal sends data; or when the terminal status information includes the service type of the data sent by the terminal or according to the priority of the data sent by the terminal, the power information includes the terminal and the network device.
  • the determining unit is configured to: determine, according to the transmit power of the terminal corresponding to the service type of the data sent by the terminal, or the transmit power of the terminal corresponding to the priority of the data sent by the terminal, to determine the transmit when the terminal sends the data. power.
  • the measurement information when the terminal status information includes measurement information of the terminal to the wireless environment, the measurement information includes the reference signal received power RSRP or the reference signal received quality RSRQ of the terminal measurement network device, where the power information includes the expected received power of the network device.
  • the determining unit determines, by the determining unit, determining, according to the expected received power of the network device corresponding to the measurement information of the wireless environment, the expected received power for transmitting the data to the network device; determining the terminal according to the expected received power and the path loss value for transmitting the data to the network device Transmit power when transmitting data; or, when the terminal status information includes measurement information of the terminal to the wireless environment, the measurement information includes the reference signal received power RSRP or the reference signal received quality RSRQ of the terminal measurement network device, where the power information includes the terminal and the network device
  • the determining unit is configured to: determine, by the terminal, the transmit power of the terminal corresponding to the measurement information of the wireless environment as the transmit power when the terminal transmits the data.
  • the power information includes the transmit power when the terminal performs D2D communication
  • the terminal status information includes the service type of the data sent by the terminal or the priority of the data sent by the terminal or the measurement information of the terminal to the wireless environment
  • the measurement information of the terminal to the wireless environment includes the terminal measuring the RSRP or the RSRQ of the reference signal sent by the opposite end
  • the determining unit is configured to: transmit the power when the terminal corresponding to the service type of the data sent by the terminal performs D2D communication or the data sent by the terminal
  • the transmission power when the terminal corresponding to the priority corresponding to the D2D communication or the terminal corresponding to the measurement information of the wireless environment performs the D2D communication is determined as the transmission power when the terminal transmits the data.
  • the receiving unit is further configured to: receive a resource configuration message sent by the network device, where the resource configuration message includes a reference signal received power RSRP range and a time-frequency resource configuration parameter of the terminal, or the resource configuration message includes a reference of the terminal.
  • the resource configuration message includes a reference signal received power RSRP range and a time-frequency resource configuration parameter of the terminal, or the resource configuration message includes a reference of the terminal.
  • a signal receiving quality RSRQ range and a time-frequency resource configuration parameter the time-frequency resource configuration parameter includes a physical resource block PRB parameter and a subframe parameter, or the time-frequency resource configuration parameter includes a PRB parameter and a system frame parameter; determining, according to the resource configuration message, the terminal transmitting data Upstream resources.
  • the sending unit further includes: sending, to the network device, a service type of the data sent by the terminal or a priority of the data sent by the terminal.
  • the determining unit is further configured to: determine that the network device does not receive the data, or determine that the peer does not receive the data when the terminal performs the D2D communication, determine the transmit power when retransmitting the data, and retransmit the data.
  • the transmit power at the time is the sum of the transmit power at the time of the previous transmission of data and the preset amplitude value.
  • the embodiment of the present invention further provides a communication system, where the communication system includes a network device and at least two terminals.
  • the communication system includes a network device and at least two terminals.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the network device, including a program designed to perform the above aspects.
  • an embodiment of the present invention provides a computer storage medium for storing computer software instructions for use in the terminal, including a program designed to perform the above aspects.
  • the present invention uses different transmit powers when transmitting data while transmitting data on the same uplink resource or communication resource, and does not cause the network device to fail to successfully receive multiple terminals in the uplink resource or the like in the prior art.
  • the data sent on the communication resource the present invention sets different power information according to the corresponding relationship for different service types or different priorities or data corresponding to different wireless environments, in the process of data transmission of multiple terminals based on competitive resources. In the case of a resource conflict, the data of some terminals can be received, the success rate of receiving partial data is guaranteed, and the number of terminals that retransmit data is reduced, thereby reducing the delay of data transmission as a whole.
  • FIG. 1 is a schematic diagram of user plane delay description according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of data transmission based on a contention resource according to an embodiment of the present invention
  • 2c is a scenario diagram of a UE transmitting data in different wireless environments according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a scenario in which a UE sends uplink data according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a scenario in which a UE sends D2D data according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an internal structure of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an internal structure of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a data sending method according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a data sending method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of signal interaction of a data sending method according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a data sending method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of signal interaction of a data sending method according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a data sending method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of signal interaction of a data sending method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the embodiments of the present invention can be applied to a 5G radio access technology (RAT), and can include the following application scenarios: Massive Machine Type Communication (eMTC), and ultra-reliable and ultra-low latency communication ( Ultra Reliable and Low Latency Communication, URLLC).
  • eMTC Massive Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communication
  • the embodiment of the present invention can be applied to the process of data transmission based on the contention of the competition in the eMTC and the URLLC, and can also be applied to other data transmission processes, which is not limited in this application.
  • the network architecture applicable to the embodiments of the present invention may include multiple UEs in the coverage of the base station and the base station, and may be communication between the base station and the UE.
  • the UE sends uplink data to the base station.
  • the UE is transmitting.
  • the uplink data if the uplink data transmission process is based on the contention resource, multiple UEs may use common uplink resources to send data to the base station; or may be communication between the UE and the UE, as shown in FIG. 4, different pairs.
  • a pair (UE) UE transmits device-to-device (D2D) direct communication data, if it is a contention-based data transmission process, the UE performing D2D communication can transmit data using a common resource.
  • D2D device-to-device
  • the terminal may be a user equipment UE, and the UE may be a mobile phone, a smart terminal, a multimedia device, a streaming media device, a wearable device, a smart meter, a smart water meter, or the like.
  • the network device may be a base station, and the base station may be a bridge between the UE in the Long Term Evolution (LTE) and the Evolved Packet Core (EPC), and the base station passes the X2 interface.
  • LTE Long Term Evolution
  • EPC Evolved Packet Core
  • the main functions are: radio resource management, Internet Protocol Address (IP) header compression and user data stream encryption, mobile management entity (MME) selection when the UE is attached, and routing user plane data to Service network Serving Gateway (S-GW), organization and transmission of paging messages, organization and transmission of broadcast messages, measurement and measurement report configuration for mobility or scheduling purposes, and the like.
  • IP Internet Protocol Address
  • MME mobile management entity
  • S-GW Service network Serving Gateway
  • FIG. 5 is a schematic diagram of an internal structure of a base station according to an embodiment of the present invention.
  • the base station may include a processing module 501, a communication module 502, and a storage module 503.
  • the processing module 501 is configured to control hardware devices and application software of each part of the base station
  • the communication module 502 is configured to receive commands sent by other devices by using a communication manner such as LTE, 5G RAT, or wifi, or send data of the base station.
  • the storage module 503 is used to perform storage of software programs of the base station, storage of data, operation of software, and the like.
  • FIG. 6 is a schematic diagram of an internal structure of a terminal according to an embodiment of the present invention.
  • the terminal may include a processing module 601, a communication module 602, and a storage module 603.
  • the processing module 601 is configured to control various parts of the terminal hardware device and application software, etc.
  • the communication module 602 is configured to receive commands sent by other devices by using a communication manner such as LTE, 5G RAT, wifi, or the like, and may also send data of the terminal.
  • the storage module 603 is used to execute storage of software programs of the terminal, storage of data, operation of software, and the like.
  • the following describes an embodiment of the present invention by using the terminal as the user equipment UE and the data transmission based on the contention of the competition.
  • the basic idea of the present invention is: the base station sends power configuration information to the covered UE; when the UE generates the uplink data, first determines the service type or priority of the data, or determines its own wireless environment, and then according to the power configuration information
  • the transmitted data is configured with a corresponding transmit power, so that when the UE determines the uplink resource or the communication resource and sends the data through the resource configuration message allocated by the base station, if multiple UEs use the same uplink resource or communication resource to send data, multiple UEs may Sending data to the base station or the opposite end according to the determined different transmit power, so that the base station or the peer end can receive the data of the UE with high received power, and the other end is the other terminal when performing D2D communication with the terminal, and guarantees a part of the UE.
  • the success rate of data reception reduces the number of UEs that
  • the base station distinguishes by configuring different transmit powers.
  • the UE may be distinguished by configuring different Modulation and Coding Schemes (MCS) or different scrambling modes to reduce the number of UEs that retransmit data, thereby reducing the overall data transmission. Delay.
  • MCS Modulation and Coding Schemes
  • An embodiment of the present invention provides a data sending method, as shown in FIG. 7, including:
  • the base station sends power configuration information to the UE, where the power configuration information includes a one-to-one correspondence between the power information and the UE state information, where the power configuration information is used to enable the UE to acquire the transmit power when the data is sent.
  • the UE status information includes at least one of a service type of data sent by the UE, a priority of data sent by the UE, and measurement information of the UE to the wireless environment.
  • the power information includes at least one of a desired received power of the base station, a transmit power of the UE when the UE communicates with the base station, and a transmit power when the UE performs D2D communication.
  • the service type of the data sent by the UE may include a voice service, a roaming service, a short message service, a mail service, a public security service, and an online service.
  • the base station configures the base station to have the expected received power corresponding to the priority of the data transmitted by the UE
  • the corresponding relationship may be that the data with the higher priority has a higher expected expected power, and the data with the lower priority has a lower expected configuration.
  • Power assume that the priority of the data is represented by a number. If the number indicating the priority of the data is larger, the priority is lower. For example, the priority of the data sent by UE1 is 1, and the priority of the data sent by UE2 is 2. The expected received power configured for UE2 is lower than the expected received power configured for UE1.
  • the corresponding relationship may be corresponding to different expected received power according to the importance degree of the service type, and the service type with high importance corresponds to a higher expected received power, and the importance is low.
  • the service type corresponds to a lower expected received power; assuming that the service type of the data is represented by a number, if the number indicating the service type of the data is larger, the importance of the service type is lower, for example, the service type of the data transmitted by the UE1. If the service type of the data sent by the UE2 is 2, the expected received power configured for the UE2 is lower than the expected connection configured for the UE1. Receive power.
  • the corresponding relationship may be the correspondence between the expected received power of the base station and the received signal (Reference Signal Receiving Power, RSRP) of the reference signal sent by the UE.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • decibel milliwatts dBm is used as the unit of RSRP or RSRQ
  • UE1 measures the RSRP or RSRQ of the reference signal transmitted by the base station to be -110 dBm
  • the expected received power configured for UE2 is lower than the expected received power configured for UE1.
  • the transmit power of the UE corresponds to the priority of the data transmitted by the UE, and the corresponding relationship may be configured to configure a higher transmit power for the data with higher priority and a lower transmit power for the data with lower priority;
  • the priority of the data is represented by a number. If the number indicating the priority of the data is larger, the priority is lower. For example, the priority of the data sent by UE1 is 4, and the priority of the data sent by UE2 is 7.
  • the transmission power when the UE2 is configured to communicate with the base station is lower than the transmission power when the UE1 is configured to communicate with the base station.
  • the transmit power of the UE is the same as the service type of the data sent by the UE, the corresponding relationship may be different according to the importance of the service type, and the service type with a high degree of importance corresponds to a higher transmit power.
  • the service type with a low degree of importance corresponds to a lower transmit power. It is assumed that the service type of the data sent by the UE is represented by a number. If the number of the service type indicating the data sent by the UE is larger, the importance of the service type is lower.
  • the service type of the data transmitted by the UE1 is 2, and the service type of the data transmitted by the UE2 is 5, and the transmission power when the UE2 is configured to communicate with the base station is lower than the transmission power when the UE1 is configured to communicate with the base station.
  • the transmit power of the UE corresponds to the measurement information of the radio environment of the UE, and the corresponding relationship may be the corresponding relationship between the transmit power of the UE and the RSRP of the UE.
  • the greater the RSRP value the higher the transmit power of the UE.
  • the corresponding relationship may be the corresponding relationship between the transmit power of the UE and the RSRQ, and the larger the RSRQ, the larger the transmit power of the UE; dBm is used as the unit of RSRP or RSRQ.
  • the transmit power configured for UE2 is lower than UE1. Configured transmit power.
  • the corresponding relationship may be that the data with higher priority is configured with higher transmit power, and the data with lower priority is configured with lower transmit power;
  • the priority of the data if the number indicating the priority of the data is larger, the lower the priority. For example, the priority of the data sent by UE1 is 4, and the priority of the data sent by UE2 is 7, which is configured for UE2.
  • the transmission power when performing D2D communication is lower than the transmission power when performing D2D communication for the UE1 configuration.
  • the corresponding relationship may be different according to the importance of the service type, and the service type with a high degree of importance corresponds to a higher transmit power.
  • a low-level service type corresponds to a lower transmit power; assuming that the service type of the data is represented by a number, if the number indicating the service type of the data is larger, the importance of the service type is lower, for example, the service of the data transmitted by the UE1. If the type of the data is 2, the service type of the data sent by the UE2 is 5, and the transmit power when the D2D communication is configured for the UE2 is lower than the transmit power when the D2D communication is configured for the UE1.
  • the corresponding relationship may be the corresponding relationship between the transmit power of the UE when performing D2D communication and the RSRP of the UE measured by the UE.
  • the corresponding relationship between the measurement information of the wireless environment may be the correspondence between the transmit power of the UE and the RSRQ of the peer UE when the D2D communication is performed, and the larger the RSRQ, the larger the transmit power when the UE performs the D2D communication; assuming a decibel milliwatt dBm
  • UE1 measures the RSRP or RSRQ of the reference signal transmitted by the base station to be -100 dBm the transmit power when performing D2D communication configured for UE2 It is lower than the transmission power when performing D2D communication configured for UE1.
  • the UE determines, according to the power configuration information, a transmit power when the UE sends data.
  • the terminal state information of the UE that needs to send data may be determined first, and then according to the corresponding relationship, the power information is transmitted.
  • the UE first determines the service type of the data to be transmitted, and then according to the base station corresponding to the service type of the data to be transmitted.
  • the expected received power determines the transmit power when the UE transmits data
  • the UE If the power configuration information includes a correspondence between the expected received power of the base station and the priority of the data transmitted by the UE, the UE first determines the priority of the data to be transmitted, and then receives the expected reception according to the base station corresponding to the priority of the data to be transmitted. The power determines the transmit power when the UE transmits data;
  • the UE may determine the base station according to the measurement information of the wireless environment by the UE after determining the measurement information of the wireless environment by the UE.
  • Receive power determines a transmit power when the UE transmits data;
  • the UE If the power configuration information includes a correspondence between the transmit power of the UE and the service type of the UE when communicating with the base station, the UE first determines the service type of the data to be transmitted, and then transmits the UE according to the service type of the data to be sent. The power determines the transmit power when the UE transmits data;
  • the UE If the power configuration information includes a correspondence between the transmit power of the UE and the priority of the data sent by the UE when communicating with the base station, the UE first determines the priority of the data to be sent, and then according to the priority of the data to be sent. The transmit power of the UE determines the transmit power when the UE transmits data;
  • the UE may determine the measurement information of the wireless environment by the UE, according to the measurement information of the wireless environment with the UE.
  • the transmit power of the UE when communicating with the base station determines the transmit power when the UE transmits data;
  • the UE determines the service type of the data to be sent or After the priority of the data, the correspondence between the service type of the data to be transmitted and the transmission power when the UE performs D2D communication or the correspondence between the priority of the data and the transmission power when the UE performs D2D communication determines the transmission when the UE transmits data. power.
  • the UE If the power configuration information includes the correspondence between the transmit power of the UE and the measurement information of the wireless environment, the UE first determines the measurement information for the wireless environment, and then according to the base station corresponding to the measurement information of the wireless environment of the UE.
  • the transmission power of the UE when performing communication determines the transmission power when the UE transmits data.
  • the UE sends data to the base station.
  • the UE may determine different transmit powers according to corresponding data for data corresponding to different service types; or The UE may determine different transmit powers according to the corresponding relationship for data corresponding to different priorities; or the UE may determine different transmit powers according to corresponding data for different wireless environments, so as to ensure higher priority data or service types. If the data transmission is successful, or the data of the UE with good radio environment is successfully transmitted, the number of UEs that retransmit the data can be reduced, thereby reducing the delay of data transmission as a whole.
  • the uplink data is sent to the UE, and the power configuration information includes the expected reception of the base station.
  • the power has a correspondence relationship with the priority of data transmitted by the UE will be described.
  • An embodiment of the present invention provides a data sending method, as shown in FIG. 8, including:
  • the base station receives and collects the priority of the data sent by the UE in the coverage of the base station; or the base station receives the quality of service (QoS) information corresponding to the different services sent by the core network, and then determines the priority of the data according to the QoS information. level.
  • QoS quality of service
  • the UE may send the priority to the base station by sending the priority of all the data to the base station at a time, or may send the priority of the required transmission data to the base station before transmitting the data.
  • the Qos information may include a delay of transmitting data between the UE and the base station, or a packet loss rate of data transmitted between the UE and the base station.
  • the base station determines the priority of the data according to the QoS information of the core network, such as the delay and the packet loss rate. The higher the delay requirement, the higher the priority of the data, that is, the longer the delay, the data. The lower the priority, the shorter the delay and the higher the priority of the data.
  • the base station sends power configuration information to the UE, where the power configuration information includes a correspondence between a desired received power of the base station and a priority of the data sent by the UE, where the power configuration information is used to enable the UE to acquire the transmit power when the data is sent.
  • the base station can periodically send the power configuration information in a broadcast manner, so that the UE that has recently entered the coverage of the base station can receive the power configuration information in time, and the UE in the coverage of the base station can receive the latest power configuration information in time.
  • the base station can add a new correspondence to the power configuration information in time.
  • the expected received power of the base station may be determined by the base station according to its own receiving capability and decoding capability. For example, after determining the maximum received power and the minimum received power of the base station, the base station divides the power range between the maximum received power and the minimum received power into different power levels according to the same or different intervals, and different power levels correspond to different service types or The priority of different data.
  • the receiving and decoding capabilities of the base station are related to the hardware settings and software settings of the base station.
  • the base station may configure a power configuration list in the form of Table 1.
  • the priority "0" indicates the highest priority. The larger the number, the lower the priority, and the smaller the expected received power of the corresponding base station.
  • the number indicating the priority of the different data may also indicate different service types. For example, 0 may indicate voice service, 3 indicates roaming service, and 5 indicates short message service.
  • the power configuration list is as shown in Table 1, the priority of the data to be sent by the UE is 5, then the expected reception power of the base station is -120 dBm, and the base station's expected reception power is -120 dBm plus the path loss value.
  • the transmission power when the UE transmits data is obtained.
  • the power configuration information includes a correspondence between a desired received power of the base station and a service type of the UE.
  • Different service types have different degrees of importance, that is, different expected service powers can be configured for different service types.
  • the expected reception power of a service type with a high degree of importance is high, and the expected reception power of a service type with a low degree of importance is low; for example, If the service type of the data is represented by a different number, the service type of the data to be sent by the UE is 5, and the expected received power of the base station corresponding to the service type 5 in the power information configured by the base station is -120 dBm, and the UE receives according to the expectation of the base station.
  • the power-120dBm plus the path loss value can be used to calculate the transmit power when the UE transmits data.
  • the power configuration information includes a correspondence between a transmit power of the UE and a service type of data sent by the UE.
  • the service type of the data sent by the UE is high, the UE's transmit power is high, and when the service type of the data sent by the UE is low, the configured UE has low transmit power; for example, if the data is different, The number indicates the service type of the data.
  • the service type of the data to be sent by the UE is 5, and the transmit power corresponding to the service type 5 in the power information configured by the base station is -120 dBm, and the UE determines that -120 dBm is the transmission when the UE transmits data. power.
  • the power configuration information includes a correspondence between a transmit power of the UE and a priority of the data transmitted by the UE.
  • the priority of the UE transmitting data is high, the configured UE has a high transmission power, and when the priority of the UE transmitting data is low, the configured UE has a low transmission power; for example, if different numbers are used to indicate the priority of the data, the UE needs to send
  • the priority of the data is 5, and the transmit power corresponding to the priority 5 in the power information configured by the base station is -120 dBm, and the UE determines that -120 dBm is the transmit power when the UE transmits data.
  • the base station sends resource configuration information to the UE, where the resource is used for the UE to perform uplink data transmission based on the contention.
  • the resource configuration information includes a common uplink resource allocated by the base station, and the uplink resource may include time domain information and frequency domain information, and multiple uplink resources may be used, and multiple UEs covered by the base station may select uplink resources by using common uplink resources. Perform uplink data transmission.
  • the resource configuration information may include a time-frequency resource configuration parameter.
  • the power configuration information includes a correspondence between the transmit power of the UE and the priority of the data transmitted by the UE, if the priority of the data sent by the terminal 1 is high, the transmit power is high, and the data sent by the terminal 2 is If the priority is low, the transmission power is low.
  • the generated path loss is different, which may cause the receiving power of the terminal 1 and the terminal 2 to reach the base station to be the same.
  • the base station cannot successfully receive any part of the data sent by the terminal 1 and the terminal 2. Therefore, different time-frequency resources can be configured for UEs in different wireless environments. In this case, data with different transmit powers cannot be successfully received by the base station in case of resource conflicts.
  • the resource configuration information sent by the base station may include the reference signal of the UE measurement base station.
  • the time-frequency resource configuration parameter includes a physical resource block (PRB) parameter and a subframe (sframe) parameter.
  • time-frequency resource configuration parameters include PRB parameters and system frame parameters.
  • the base station may configure different uplink resources for different RSRPs, so that the UE sends uplink data according to the RSRP of the received reference signal.
  • Table 2 Detailed configuration can be as shown in Table 2:
  • the specific resource configuration can be as shown in Table 3, where the vertical direction represents the frequency, represented by the physical resource block PRB, and the horizontal representation time, represented by the subframe sf.
  • the resource configuration parameter may be a resource identifier starting from the PRB, a resource identifier ending in the PRB, and a subframe parameter.
  • the subframe parameter may be 10 bits, and 1 indicates that the subframe resource is valid, then the resource 1 and the resource 2 are Time-frequency resource corresponding to resource 3
  • the configuration parameters are shown in Table 4:
  • the subframe may be represented by a subframe start/subframe end, and the PRB is represented by using a bitmap.
  • the UE determines the priority of the data to be sent, and determines, according to the correspondence between the expected received power of the base station and the priority of the data sent by the UE, the expected received power for transmitting the data to the base station, and then according to The expected received power and path loss value of the data transmitted to the base station determine the transmit power when the UE transmits the data.
  • the UE determines the service type or priority of the data, and then determines the expected received power of the base station according to the power configuration information sent by the base station. For example, when the power configuration information sent by the base station is in Table 1, the UE determines that the priority of the required transmission data is 5, and according to Table 1, the expected reception power of the base station is -120 dBm, and the UE further refers to the reference broadcast by the base station.
  • the transmit power of the signal and the received power of the reference signal measured by the UE acquire the path loss value, and add the expected received power of the base station to the path loss value, that is, the transmit power when the UE transmits the data.
  • the UE sends uplink data on the determined uplink resource according to the determined transmit power when the data is sent.
  • the UE may determine an appropriate uplink resource for transmitting uplink data among multiple uplink resources allocated by the base station.
  • the UE determines whether an ACK sent by the base station is received, and if yes, determines that the base station successfully receives the data; if not, step 807 is performed.
  • the base station monitors whether there is uplink data on the uplink resource allocated in step 805. If the uplink data sent by the UE is received and can be successfully decoded, the base station feeds back acknowledgement information (Acknowledgement, ACK) to the UE, that is, the base station considers that the base station successfully receives the data. If UE If the feedback information of the base station is not received, the UE considers that the base station has not successfully received the data.
  • Acknowledgement acknowledgement
  • UE1 and UE2 receive the power configuration information sent by the base station and the configuration information of the common uplink resource, according to the power configuration information.
  • the priority of the data of the UE1 and the UE2 and the expected received power of the base station determine the transmit power corresponding to the UE1 and the UE2 respectively. If the priority of the data of the UE1 is higher than the priority of the data of the UE2, the expected received power of the base station corresponding to the UE1 is higher than that of the UE2.
  • the expected received power of the corresponding base station is performed by the base station and the configuration information of the common uplink resource, according to the power configuration information.
  • the base station can successfully receive the data sent by the UE1 on the same uplink resource, then the base station feeds back the ACK to the UE1, and the UE2 does not receive the ACK.
  • the UE2 determines to retransmit the data to the base station, and the UE2 continues to perform step 807. In this manner, when multiple UEs send uplink data to the base station based on the contention resources, the UE may ensure that the UE is successfully sent. The number of UEs that retransmit data is reduced, thereby reducing the delay of data transmission as a whole.
  • the UE determines a transmit power when the data is retransmitted, and the transmit power when the data is retransmitted is a sum of a transmit power when the data was previously transmitted and a preset amplitude value.
  • the transmit power is the sum of the transmit power of the previous data transmission and the preset amplitude value. In this way, the transmit power when retransmitting data is increased, and the success rate of the retransmitted data is increased. Reduce the number of times to retransmit data.
  • Table 1 in step 802 may also include a preset amplitude value.
  • the base station may configure a power configuration list in the form of Table 5.
  • the preset amplitude values may be the same. As shown in Table 5, the preset amplitude values are all 10 dBm, or different preset amplitude values may be set according to the priority of the data. For example, the priority of the data sent by the UE is 3, the expected received power of the base station when the data is initially transmitted is -110 dBm, and the expected received power of the base station when the data is retransmitted is -100 dBm, and then the transmit power of the retransmitted data is determined according to the path loss value. can.
  • the UE retransmits data by using an uplink resource allocated by the base station.
  • different base stations are required to receive power for different service types or data corresponding to different priorities, so as to obtain the transmission power when the terminal transmits data according to the determined expected received power, and ensure the importance of the service type or the data.
  • the uplink data with high priority has a higher expected power of the base station, the importance of the service type is low, or the uplink data with low priority of the data has a lower expected power of the base station, so that the competition resources are used in multiple UEs.
  • the base station receives high-power data and reduces the number of UEs that retransmit data, thereby reducing the delay of data transmission as a whole.
  • the power configuration information includes the correspondence between the expected received power of the base station and the wireless environment measurement information of the base station to the base station.
  • An embodiment of the present invention provides a data sending method, as shown in FIG. 10, including:
  • the base station receives and collects measurement information of the UE to the wireless environment sent by the UE in the coverage of the base station, where the measurement information includes a reference signal received power RSRP or a reference signal received quality RSRQ.
  • the wireless environment in which the UE is located may be characterized by the received power RSRP of the reference signal or the received quality RSRQ of the reference signal.
  • the base station sends power configuration information to the UE, where the power configuration information includes a correspondence between the expected received power of the base station and the measurement information of the UE to the wireless environment, where the power configuration information is used to enable the UE to acquire the transmit power when the data is sent.
  • the base station can configure the power configuration information in the form of a list, as shown in Table 6:
  • the UE is based on the UE.
  • the data of the competitive resource is transmitted, the data of the UE with the higher transmit power is successfully transmitted, that is, the smaller the interference of the UE with the higher expected receiving power in different wireless environments when the data is transmitted based on the contention of the competition, the different wireless can be guaranteed.
  • the data of the UE that is expected to receive a higher power in the environment is successfully transmitted.
  • the power configuration information includes the corresponding relationship between the transmit power of the UE and the radio environment measurement information of the UE to the base station, and the better the radio environment of the base station is measured by the UE, that is, the larger the RSRP or the RSRQ of the UE is measured by the UE.
  • the base station sends configuration information of the uplink resource to the UE, where the uplink resource is used for the UE to perform uplink data transmission based on the contention.
  • the UE measures an RSRP or an RSRQ of the base station, and determines, according to a correspondence between the RSRP or the RSRQ and the expected received power of the base station, the expected received power for transmitting the data to the base station, and further, the UE receives the expected received power and the path loss value according to the data sent to the base station. Indeed The transmit power when the UE transmits data.
  • the UE measures the RSRP or the RSRQ of the base station, and then determines the expected received power of the base station according to the power configuration information sent by the base station. For example, when the power configuration information sent by the base station is as shown in Table 6, the RSRP of the base station measured by the UE is -90 dBm, and according to Table 6, the expected received power of the base station is -100 dBm.
  • the UE obtains the path loss value according to the transmit power of the reference signal broadcasted by the base station and the received power of the reference signal measured by the UE, and adds the expected received power of the base station to the path loss value, that is, the transmit power when the UE transmits the data.
  • the UE sends uplink data by using an uplink resource allocated by the base station.
  • the UE may determine an appropriate uplink resource for transmitting uplink data among multiple uplink resources allocated by the base station.
  • the UE confirms whether the ACK sent by the base station is received, and if yes, determines that the base station successfully receives the data; if not, performs step 1007.
  • the base station monitors whether there is uplink data on the uplink resource allocated in step 1005. If the uplink data sent by the UE is received and can be successfully decoded, the base station returns the acknowledgement information to the UE, that is, the base station successfully receives the data. If the UE does not receive the feedback information of the base station, the UE considers that the base station has not successfully received the data.
  • UE1 and UE2 receive the power configuration information sent by the base station and the configuration information of the common uplink resource, according to the power configuration information.
  • the radio environment of UE1 and UE2 and the expected received power of the base station determine the transmit power corresponding to UE1 and UE2 respectively. If the RSRP or RSRQ of UE1 is higher than the RSRP or RSRQ of UE2, the expected receive power of the base station corresponding to UE1 is higher than that of UE2.
  • the expected received power of the base station when UE1 and UE2 send uplink data to the base station based on the contention resource, the base station receives the power when the UE1 transmits data, and the power when the base station receives the data transmitted by the UE2, if the UE1 and the UE2 have a resource conflict, the base station If the data sent by the UE1 can be successfully received in the same uplink resource, the base station feeds back the ACK to the UE1, and when the UE2 does not receive the ACK, the UE2 determines that the base station does not receive the data sent by the UE2, and the UE2 determines the base. The station retransmits the data, and UE2 proceeds to step 1007.
  • the UE determines a transmit power when the data is retransmitted, and the transmit power when the data is retransmitted is a sum of a transmit power when the data was previously transmitted and a preset amplitude value.
  • Table 3 in step 1002 can also configure a power configuration list in the form of Table 7.
  • the preset amplitude values may be the same. As shown in Table 7, the preset amplitude values are all 10 dBm, or different preset amplitude values may be set according to different values of RSRP.
  • the UE measures the RSRP of the reference information sent by the base station to be -100 dB, the expected received power of the base station when the data is initially transmitted is -110 dBm, and the expected received power of the base station when the data is retransmitted is -100 dBm, and then the data is retransmitted according to the path loss value.
  • the transmission power can be.
  • the UE retransmits data by using an uplink resource allocated by the base station.
  • different base station expected receiving power or terminal transmitting power is set for data corresponding to different wireless environments, and the larger the RSRP value or the larger the RSRQ, the larger the expected receiving power of the base station, so that the multiple UEs are based on the competitive resources.
  • resource conflicts in which data transmission occurs a part of the data with high received power is successfully transmitted, and the number of UEs that retransmit data is reduced, thereby reducing the delay of data transmission as a whole.
  • the following describes the case where the data is transmitted between the UEs, and the base station configures the transmit power of the UE according to the priority of different service types or different data.
  • An embodiment of the present invention provides a data sending method, as shown in FIG. 12, including:
  • the base station receives and collects a data service type or a data priority sent by the UE in the coverage of the base station; or the base station receives the different service corresponding to the core network.
  • QoS which in turn determines the priority of the service type or data based on the QoS information.
  • the UE specifically sends the priority of the service type or data to the base station and how the base station determines the service type of the data or the priority of the data according to the QoS information sent by the core network, reference may be made to the foregoing step 801.
  • the UE sends its own transmit power to the base station.
  • the UE's transmit power value may be determined by the UE according to its own receiving capability and decoding capability.
  • the base station sends power configuration information to the UE, where the power configuration information includes a correspondence between a transmit power of the UE and a service type of the data sent by the UE or a priority of the data, where the power configuration information is used to enable the UE to acquire the transmit power when the data is sent.
  • the base station corresponds to the priority of the service type or data of the data transmitted by the UE.
  • the base station transmits the UE's own transmit power and the UE.
  • the type of service that sends the data or the priority of the data corresponds to it. For example, after determining the maximum received power and the minimum received power of the UE, the base station divides the power range between the maximum received power and the minimum received power into different power levels according to the same or different intervals, and different power levels correspond to different service types or The priority of different data.
  • the base station can configure a power configuration list in the form of Table 8, and the priority "0" indicates the highest priority.
  • the priority of the data to be sent by the UE is 3, and the transmission power used by the UE to transmit data is -110 dBm.
  • the base station configures the transmit power of the UE according to the radio environment measurement information of different peers, which may be that the radio environment measurement information of the peer end is better, that is, the RSRP or RSRQ of the reference signal sent by the peer end measured by the UE.
  • the radio environment measurement information of the peer end is better, that is, the RSRP or RSRQ of the reference signal sent by the peer end measured by the UE.
  • the base station sends configuration information of a communication resource on a D2D communication link (Sidelink, SL) to a UE in its coverage, where the resource is used for sending the UE based on the contention of the D2D communication data.
  • a D2D communication link Sidelink, SL
  • the configuration information of the communication resource may be time domain information and frequency domain information, and the configuration information of the communication resource may be multiple.
  • the multiple UEs covered by the base station may determine the resource for transmitting data through the configuration information of the communication resources to perform D2D communication.
  • the resource configuration information sent by the base station may include the reference signal received by the UE.
  • Range and time-frequency resource configuration parameters or include reference signal reception quality RSRQ range and time-frequency resource configuration parameters
  • time-frequency resource configuration parameters include physical resource block PRB parameters and subframe parameters, or time-frequency resource configuration parameters including PRB parameters and system frames parameter. Specifically, reference may be made to step 803.
  • the power configuration information includes the correspondence between the transmit power of the UE and the priority of the data sent by the UE, the priority of the data sent by the terminal 1 is high, the transmit power is high, and the priority of the data sent by the terminal 2 is low.
  • the transmission power is low, but because the wireless environment of the terminal 1 and the terminal 2 are different, the generated path loss is also different, which may cause the receiving power of the terminal 1 and the terminal 2 to reach the opposite end, and in the case of a resource conflict,
  • the peer cannot successfully receive any part of the data. Therefore, different time-frequency resources can be configured for UEs in different wireless environments. In this case, data with different transmit powers cannot be successfully received by the peer in the case of resource conflicts.
  • the UE determines the service type of the data to be sent or the priority of the data, and determines the transmit power of the data to be sent to the peer UE according to the correspondence between the transmit power of the UE and the service type of the data sent by the UE or the priority of the data. .
  • the UE determines the service type or priority of the data, and then determines the transmit power of the UE according to the power configuration information sent by the base station. For example, when the power configuration information sent by the base station is as shown in Table 8, the UE determines that the priority of the required transmission data is 3, and according to Table 8, the UE's transmission power is -110 dBm. That is, the transmission power used by the UE when transmitting data of priority 3 is -110 dBm.
  • the UE performs D2D communication by using communication resources allocated by the base station.
  • the UE selects an appropriate resource and sends data to the peer UE through the configuration information of the communication resource allocated by the base station.
  • the UE confirms whether the ACK fed back by the peer UE is received. If yes, the peer UE is considered to successfully receive data; if not, step 1208 is performed.
  • the peer UE here refers to another UE that performs D2D communication with the UE.
  • the peer UE monitors whether there is D2D data on the resources allocated by the base station. If the D2D data sent by the UE that sends the data is successfully decoded, the UE sends the data to the UE. Feedback ACK information, ACK indicates successful reception. If the UE that sends the data does not receive the ACK information of the peer UE, the UE that sends the data considers that the peer UE has not successfully received the data.
  • UE2 and UE3 transmit D2D data to UE1 based on the contention resource, and UE1 monitors whether there is D2D data on the resource allocated by the base station, and if UE1 receives the D2D data sent by UE2 and can successfully decode it. Then, UE1 feeds back ACK information to the UE2, and UE2 considers that UE1 successfully receives the data. If UE3 does not receive the ACK information of UE1, UE3 considers that UE1 has not successfully received the data.
  • the UE determines a transmit power when the data is retransmitted, and the transmit power when the data is retransmitted is a sum of a transmit power when the data was previously transmitted and a preset amplitude value.
  • the table 8 in step 1203 may also include a preset amplitude value.
  • the base station may configure a power configuration list in the form of Table 9.
  • step 807 For details on how to set the preset amplitude value, refer to step 807 above.
  • the UE retransmits data by using resources allocated by the base station.
  • the peer end can successfully receive data with higher transmit power, thereby reducing the number of UEs that retransmit data, thereby reducing the delay of data transmission as a whole.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of a base station and a terminal.
  • the base station and the terminal include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the algorithm steps described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may divide the functional modules of the base station and the terminal according to the foregoing method.
  • each functional module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated module is It can be implemented in the form of hardware or in the form of a software function module. It should be noted that the division of the module in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 14 is a schematic diagram showing a possible structure of the base station 14 involved in the foregoing embodiment, including a transmitting unit 1401 and a receiving unit 1402.
  • the transmitting unit 1401 is configured to support the base station to perform the process 701 in FIG. 7 or the processes 802, 803 in FIG. 8 or the processes 1002, 1003 in FIG. 10 or the processes 1203, 1204 in FIG.
  • the receiving unit 1402 is configured to support the base station to perform the process 801 in FIG. 8 or the process 1001 in FIG. 10 or the process 1201 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 15 shows a possible structural diagram of the base station involved in the above embodiment.
  • the base station 15 includes a processing module 1501 and a communication module 1502.
  • the processing module 1501 is configured to perform control management on the action of the base station.
  • the processing module 1501 is configured to support the base station to perform the process 701 in FIG. 7 or the process 801 in FIG. 8 or the process 1001 in FIG. 10 or the process 1201 in FIG.
  • the communication module 1502 is configured to support communication between the base station and other network entities, for example, sending power setting information to the UE, receiving priority of service data or service data sent by the terminal, and the like.
  • the base station may further include a storage module 1503 for storing program codes and data of the base station, for example, related files for storing power configuration information in the embodiment of the present invention.
  • the processing module 1501 may be a processor or a controller, for example, may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example comprising one or more A combination of microprocessors, a combination of DSP and microprocessor, and so on.
  • the communication module 1502 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1503 can be a memory.
  • the base station involved in the embodiment of the present invention may be the base station shown in FIG.
  • the base station 16 includes a processor 1601, a transceiver 1602, a memory 1603, and a bus 1604.
  • the transceiver 1602, the processor 1601, and the memory 1603 are mutually connected by a bus 1604.
  • the bus 1604 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus. Wait.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 16, but it does not mean that there is only one bus or one type of bus.
  • FIG. 17 is a schematic diagram showing a possible structure of the terminal 17 involved in the foregoing embodiment.
  • the terminal includes: a receiving unit 1701, a determining unit 1702, and a sending unit 1703.
  • the determining unit 1701 is configured to support the terminal to perform the process 702 in FIG. All the related content of the steps involved in the foregoing method embodiments may be referred to the functional descriptions of the corresponding functional modules, and details are not described herein again.
  • FIG. 18 shows a possible structural diagram of the terminal involved in the above embodiment.
  • the terminal 18 includes a processing module 1801 and a communication module 1802.
  • the processing module 1801 is configured to perform control management on the actions of the terminal.
  • the processing module 1801 is configured to support the terminal to perform the process 702 in FIG. 7, or the processes 804, 806, and 807 in FIG. 8, or the processes 1004, 1006 in FIG. And 1007, or processes 1205, 1207, and 1208 in FIG.
  • the communication module 1802 is configured to support communication between the terminal and other network entities, for example, the service type or data priority of the self data and the power configuration information sent by the receiving base station to the base station.
  • the terminal may further include a storage module 1803 for storing program codes and data of the terminal, for example, for storing the hair.
  • the processing module 1801 may be a processor or a controller, such as a central processing unit CPU, a general purpose processor, a digital signal processor DSP, an application specific integrated circuit ASIC, a field programmable gate array FPGA or other programmable logic device, and a transistor. Logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the communication module 1802 can be a transceiver, a transceiver circuit, a communication interface, or the like.
  • the storage module 1803 can be a memory.
  • the terminal involved in the embodiment of the present invention may be the terminal shown in FIG.
  • the terminal 19 includes a processor 1901, a transceiver 1902, a memory 1903, and a bus 1904.
  • the transceiver 1902, the processor 1901, and the memory 1903 are connected to each other through a bus 1904.
  • the bus 1904 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 19, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware, or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also It is part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种数据发送方法和装置,涉及通信领域,能够减少重传数据的UE数量,从而从整体上减少数据发送的时延。其方法为:基站向终端发送功率配置信息,功率配置信息包括功率信息和终端状态信息的一一对应关系,功率配置信息用于使终端获取发送数据时的发射功率;基站接收终端发送的数据,数据的发射功率是终端根据功率配置信息确定的;其中,终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;功率信息包括基站的期望接收功率、终端与基站进行通信时终端的发射功率、终端进行D2D通信时的发射功率中的至少一种。本发明实施例用于基于竞争资源的数据发送方法。

Description

一种数据发送方法和装置 技术领域
本发明涉及通信领域,尤其涉及一种数据发送方法和装置。
背景技术
在通信***中,时延可以定义为单程时间(one-trip time,OTT),指数据由发送端发送到接收端接收所经历的时间;另一种定义方式为往返时间(round-trip time,RTT),指数据由发送端发送到发送端接收到反馈信息所经历的时间。此外,时延又可以分控制面时延和用户面时延。控制面时延指用户设备与基站之间由空闲态(IDLE)转换到连接态(CONNECTED)所经历的时间,在第五代移动通信技术(5-Generation,5G)***中一般要求不大于10ms;用户面时延指用户应用层的数据或消息从进入无线协议层的层2或层3的业务数据单元(SDU Service Data Unit),到从相应的层解码出来所经历的时间,如图1所示,以用户设备(User Equipment,UE)向基站(Evolved Node B,eNB)发送数据为例,用户面的时延为UE侧分组数据汇聚协议业务数据单元(Packet Data Convergence Protocol Service Data Unit,PDCP SDU)进入PDCP层到基站侧PDCP SDU离开PDCP层,在第五代移动通信技术5G***中一般要求不大于0.5ms。
现有技术中,对于用户面时延来说,为了满足超低时延,提出了一种基于竞争资源的上行数据发送方法,如图2所示,首先基站为其信号覆盖范围内的UE分配多个公共的上行资源,当UE有数据产生需要发送给基站时,可以直接使用上述基站分配的上行资源发送数据,减少UE请求资源然后再获取到相应资源的过程的时延。然而,当多个UE使用同一个上行资源发送数据时便会产生资源冲突。具体来说,在一种可能的情况中,如图2的图a)所示,UE1从分配的上行资源中选择资源并发送上行数据,这部分上行资源只有 UE1使用,此时没有发生资源冲突。在另一种可能的情况中,如图2的图b)所示,UE1和UE2从分配的上行资源中选择相同的资源发送上行数据,这部分上行资源同时被两个UE使用,此时会发生资源冲突,基站可能不能成功接收UE1和UE2发送的数据,使得UE1和UE2需要重新发送数据,导致UE1和UE2向基站发送上行数据的时延增加。
发明内容
本发明提供一种数据发送方法和装置,能够减少重传数据的终端数量,从而从整体上减少数据发送的时延。
一方面,提供一种数据发送方法,包括:网络设备向终端发送功率配置信息,功率配置信息包括功率信息和终端状态信息的一一对应关系,功率配置信息用于使终端获取发送数据时的发射功率;网络设备接收终端发送的数据,数据的发射功率是终端根据功率配置信息确定的;其中,终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;功率信息包括网络设备的期望接收功率、终端与网络设备进行通信时的发射功率、终端进行D2D通信时的发射功率中的至少一种。这样一来,根据对应关系为不同的业务类型的数据或不同的优先级的数据或不同的无线环境对应的数据设置了不同的功率信息,即不同终端在发送数据时采用不同的功率信息,网络设备或终端就可以在多个终端基于竞争资源的数据发送所发生的资源冲突的情况下区别接收不同终端发送的数据,保证部分UE发送的数据的接收成功率,减少重传数据的终端数量,从而从整体上减少数据发送的时延。
在一种可能的设计中,还包括:当终端状态信息包括终端发送的数据的业务类型或终端发送的数据的优先级时,方法还包括:网络设备接收网络设备覆盖范围内的终端发送的数据的业务类型或数据的优先级;或网络设备接收核心网发送的不同的业务类型对应的服 务质量QoS信息,进而根据QoS信息确定数据的业务类型或数据的优先级。也即,网络设备获取的数据的业务类型或数据的优先级可以是终端发送的,也可以是核心网发送的,此外,通过关联数据的业务类型或数据的优先级,可以为不同的业务类型的数据或不同的优先级的数据确定不同的功率信息,可以保证部分数据的传输效率或部分业务的QoS。
在一种可能的设计中,还包括:网络设备向终端发送资源配置消息,资源配置消息包括终端的参考信号接收功率RSRP范围和时频资源配置参数,或资源配置消息包括终端的参考信号接收质量RSRQ范围和所述时频资源配置参数,时频资源配置参数包括物理资源块PRB参数和子帧参数,或时频资源配置参数包括PRB参数和***帧参数。资源配置消息可以为不同无线环境下的终端配置不同的上行资源,假设两个无线环境不同的终端,即RSRP范围不同时两个终端发送数据时,两个终端确定的时频资源不同,以避免网络设备接收两个终端发送的数据时产生冲突。具体来说,如图2c,若终端1的业务类型优先级高,对应的发射功率也高,终端2的业务类型优先级低,对应的发射功率也低,但是由于终端2的无线环境优于终端1的无线环境,即终端2的RSRP范围大于终端1的RSRP范围,终端1的路损大于终端2的路损,会使得终端2发送的数据到达网络设备时的接收功率可能与终端1发送的数据到达网络设备时的接收功率相同,即使终端1和终端2的发射功率不同,网络设备也无法接收到达网络设备时接收功率相同的两个终端的数据,但是如果给无线环境不同的两个终端配置的时频资源不同,可以避免由于资源冲突网络设备不能接收终端1和终端2发送的数据的问题。这样一来,避免了配置了较高发射功率的数据到达网络设备或对端时的功率与配置了较低发射功率的数据到达网络设备或对端时的功率一致,从而导致网络设备或对端不能成功接收一部分数据的情况。
在一种可能的设计中,功率配置信息还包括幅度值,幅度值用于使终端确定重传数据时的发射功率,重传数据时的发射功率为前 一次发送数据时的发射功率与幅度值之和。这样一来,重传时终端发送数据时使用的发射功率更大,更有可能成功发射数据,从而降低重传时延。
另一方面,提供一种数据发送方法,包括:终端接收网络设备发送的功率配置信息,功率配置信息包括功率信息和终端状态信息的一一对应关系;终端根据功率配置信息确定终端发送数据时的发射功率;其中,终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;功率信息包括网络设备的期望接收功率、终端与网络设备进行通信时终端的发射功率、终端进行D2D通信时的发射功率中的至少一种。这样一来,根据对应关系为不同的业务类型对应的数据或不同的优先级对应的数据或不同的无线环境对应的数据设置了不同的功率信息,即不同的终端发送数据时采用不同的功率信息,就可以使网络设备或对端在多个终端基于竞争资源的数据发送过程中所发生的资源冲突的情况下能够接收部分终端的数据,保证部分数据的接收成功率,减少重传数据的终端数量,从而从整体上减少数据发送的时延。
在一种可能的设计中,当终端状态信息包括终端发送的数据的业务类型或数据的优先级,功率信息包括网络设备的期望接收功率时,终端根据功率配置信息确定终端发送数据时的发射功率包括:终端根据终端发送的数据的业务类型对应的网络设备的期望接收功率或终端根据终端发送的数据的优先级对应的网络设备的期望接收功率确定将数据发送至网络设备的期望接收功率;终端根据将数据发送至网络设备的期望接收功率和路损值确定终端发送数据时的发射功率;或,当终端状态信息包括终端发送的数据的业务类型或终端发送数据的优先级,功率信息包括终端与网络设备进行通信时终端的发射功率时,终端根据功率配置信息确定终端发送数据时的发射功率包括:终端根据终端发送的数据的业务类型对应的终端的发射功率或所述终端根据所述终端发送数据的优先级对应的终端的发 射功率确定终端发送数据时的发射功率。
在一种可能的设计中,当终端状态信息包括终端对无线环境的测量信息,测量信息包括终端测量网络设备参考信号接收功率RSRP或参考信号接收质量RSRQ,功率信息包括网络设备的期望接收功率时,终端根据功率配置信息确定终端发送数据时的发射功率包括:终端根据无线环境的测量信息对应的网络设备的期望接收功率确定将数据发送至网络设备的期望接收功率;终端根据将数据发送至网络设备的期望接收功率和路损值确定终端发送数据时的发射功率;或,当终端状态信息包括终端对无线环境的测量信息,测量信息包括终端测量网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,功率信息包括终端与网络设备进行通信时终端的发射功率时,终端根据功率配置信息确定终端发送数据时的发射功率包括:终端将终端对无线环境的测量信息对应的终端的发射功率确定为终端发送数据时的发射功率。
在一种可能的设计中,当功率信息包括终端进行D2D通信时的发射功率,终端状态信息包括终端发送的数据的业务类型或终端发送的数据的优先级或终端对无线环境的测量信息时,终端对无线环境的测量信息包括终端测量对端发送的参考信号的RSRP或RSRQ,其中终端与对端进行D2D通信,终端根据功率配置信息确定终端发送数据时的发射功率包括:终端将业务类型对应的终端进行D2D通信时的发射功率或数据的优先级对应的终端进行D2D通信时的发射功率或终端对无线环境的测量信息对应的终端进行D2D通信时的发射功率确定为终端发送数据时的发射功率。这样一来,可以使终端在发送不同业务类型对应的数据或不同优先级对应的数据时可以采用不同的发射功率,保证了在发生资源冲突时,在D2D通信中,接收数据的终端可以接收到一部分发送数据的终端发送的数据,减少重传数据的终端数量。
在一种可能的设计中,还包括:终端接收网络设备发送的资源 配置消息,资源配置消息包括终端的参考信号接收功率RSRP范围和时频资源配置参数,或资源配置消息包括所述终端的参考信号接收质量RSRQ范围和时频资源配置参数,时频资源配置参数包括物理资源块PRB参数和子帧参数,或时频资源配置参数包括PRB参数和***帧参数;终端根据资源配置消息确定终端发送数据的上行资源。资源配置消息可以为不同无线环境下的终端配置不同的上行资源,假设两个无线环境不同的终端,即RSRP范围不同的两个终端发送数据时,两个终端确定的时频资源不同,可以避免网络设备接收两个终端发送的数据时产生冲突。
在一种可能的设计中,还包括:终端向网络设备发送终端发送的数据的业务类型或终端发送的数据的优先级。
在一种可能的设计中,还包括:若终端确定网络设备未接收到数据,或终端确定进行D2D通信时的对端未接收到数据,则终端确定重传数据时的发射功率,重传数据时的发射功率为前一次发送数据时的发射功率与预设的幅度值之和。这样一来,重传时终端发送数据时使用的发射功率更大,更有可能成功发射数据,从而降低重传时延。
又一方面,提供一种网络设备,包括:发送单元,用于向终端发送功率配置信息,功率配置信息包括功率信息和终端状态信息的一一对应关系,功率配置信息用于使终端获取发送数据时的发射功率;接收单元,用于接收终端发送的数据,数据的发射功率是终端根据功率配置信息确定的;其中,终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;功率信息包括网络设备的期望接收功率、终端与网络设备进行通信时终端的发射功率、终端进行D2D通信时的发射功率中的至少一种。
在一种可能的设计中,当终端状态信息包括终端发送的数据的业务类型或终端发送的数据的优先级时,接收单元还用于:接收终 端发送的数据的业务类型或数据的优先级;或接收核心网发送的服务质量QoS信息,进而根据QoS信息确定数据的业务类型或数据的优先级。
在一种可能的设计中,在网络设备接收终端发送的数据之前,发送单元还用于:向终端发送资源配置消息,资源配置消息包括终端的参考信号接收功率RSRP范围和时频资源配置参数,或资源配置消息包括终端的参考信号接收质量RSRQ范围和所述时频资源配置参数,时频资源配置参数包括物理资源块PRB参数和子帧参数,或时频资源配置参数包括PRB参数和***帧参数。
在一种可能的设计中,功率配置信息还包括幅度值,幅度值用于使终端确定重传数据时的发射功率,重传数据时的发射功率为前一次发送数据时的发射功率与幅度值之和。
又一方面,提供一种终端,包括:接收单元,用于接收网络设备发送的功率配置信息,功率配置信息包括功率信息和终端状态信息的一一对应关系;确定单元,用于根据功率配置信息确定终端发送数据时的发射功率。其中,终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;功率信息包括网络设备的期望接收功率、终端与网络设备进行通信时的发射功率、终端进行D2D通信时的发射功率中的至少一种。
在一种可能的设计中,当终端状态信息包括终端发送的数据的业务类型或数据的优先级,功率信息包括网络设备的期望接收功率时,确定单元用于:根据终端发送的数据的业务类型对应的网络设备的期望接收功率或根据终端发送的数据的优先级对应的网络设备的期望接收功率确定将数据发送至网络设备的期望接收功率;根据将数据发送至网络设备的期望接收功率和路损值确定终端发送数据时的发射功率;或,当终端状态信息包括终端发送的数据的业务类型或根据终端发送的数据的优先级,功率信息包括终端与网络设备 进行通信时终端的发射功率时,确定单元用于:根据终端发送的数据的业务类型对应的终端的发射功率或根据终端发送的数据的优先级对应的终端的发射功率确定终端发送数据时的发射功率。
在一种可能的设计中,当终端状态信息包括终端对无线环境的测量信息,测量信息包括终端测量网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,功率信息包括网络设备的期望接收功率时,确定单元用于:根据无线环境的测量信息对应的网络设备的期望接收功率确定将数据发送至网络设备的期望接收功率;根据将数据发送至网络设备的期望接收功率和路损值确定终端发送数据时的发射功率;或,当终端状态信息包括终端对无线环境的测量信息,测量信息包括终端测量网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,功率信息包括终端与网络设备进行通信时终端的发射功率时,确定单元用于:将终端对无线环境的测量信息对应的终端的发射功率确定为终端发送数据时的发射功率。
在一种可能的设计中,当功率信息包括终端进行D2D通信时的发射功率,终端状态信息包括终端发送的数据的业务类型或终端发送的数据的优先级或终端对无线环境的测量信息时,终端对无线环境的测量信息包括终端测量对端发送的参考信号的RSRP或RSRQ,确定单元用于:将终端发送的数据的业务类型对应的终端进行D2D通信时的发射功率或终端发送的数据的优先级对应的终端进行D2D通信时的发射功率或终端对无线环境的测量信息对应的终端进行D2D通信时的发射功率确定为终端发送数据时的发射功率。
在一种可能的设计中,接收单元还用于:接收网络设备发送的资源配置消息,资源配置消息包括终端的参考信号接收功率RSRP范围和时频资源配置参数,或资源配置消息包括终端的参考信号接收质量RSRQ范围和时频资源配置参数,时频资源配置参数包括物理资源块PRB参数和子帧参数,或时频资源配置参数包括PRB参数和***帧参数;根据资源配置消息确定终端发送数据的上行资源。
在一种可能的设计中,还包括发送单元,用于:向网络设备发送终端发送的数据的业务类型或终端发送的数据的优先级。
在一种可能的设计中,确定单元还用于:确定网络设备未接收到数据,或确定终端进行D2D通信时的对端未接收到数据,则确定重传数据时的发射功率,重传数据时的发射功率为前一次发送数据时的发射功率与预设的幅度值之和。
再一方面,本发明实施例还提供一种通信***,通信***包括网络设备和至少两个终端,网络设备和终端的具体实现方式可以参见上述说明。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本发明实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
这样一来,本发明中的多个终端根据需发送数据的不同的业务类型或不同的优先级使用不同的发射功率同时在相同上行资源或通信资源上发送数据时,或多个终端根据所处的无线环境在发送数据时使用不同的发射功率同时在相同上行资源或通信资源上发送数据时,不会像现有技术中发生冲突时使网络设备可能不能成功接收到多个终端在上行资源或通信资源上发送的数据,本发明根据对应关系为不同的业务类型或不同的优先级或不同的无线环境对应的数据设置了不同的功率信息,在多个终端基于竞争资源的数据发送过程中所发生的资源冲突的情况下能够接收部分终端的数据,保证部分数据的接收成功率,减少重传数据的终端数量,从而从整体上减少数据发送的时延。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种用户面时延描述示意图;
图2为本发明实施例提供的一种基于竞争资源的数据发送示意图;
图2c为本发明实施例提供的一种UE在不同的无线环境下发送数据的场景图;
图3为本发明实施例提供的一种UE发送上行数据的场景图;
图4为本发明实施例提供的一种UE发送D2D数据的场景图;
图5为本发明实施例提供的一种基站内部结构示意图;
图6为本发明实施例提供的一种终端内部结构示意图;
图7为本发明实施例提供的一种数据发送方法流程示意图;
图8为本发明实施例提供的一种数据发送方法流程示意图;
图9为本发明实施例提供的一种数据发送方法的信号交互示意图;
图10为本发明实施例提供的一种数据发送方法流程示意图;
图11为本发明实施例提供的一种数据发送方法的信号交互示意图;
图12为本发明实施例提供的一种数据发送方法流程示意图;
图13为本发明实施例提供的一种数据发送方法的信号交互示意图;
图14为本发明实施例提供的一种基站的结构示意图;
图15为本发明实施例提供的一种基站的结构示意图;
图16为本发明实施例提供的一种基站的结构示意图;
图17为本发明实施例提供的一种终端的结构示意图;
图18为本发明实施例提供的一种终端的结构示意图;
图19为本发明实施例提供的一种终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例可应用于5G的无线接入技术(Radio Access Technology,RAT),可以包括以下应用场景:大量机器类型通信(Massive Machine Type Communication,eMTC),和超可靠和超低时延通信(Ultra Reliable and Low Latency Communication,URLLC)。本发明实施例可应用于eMTC和URLLC中基于竞争资源的数据发送的过程,也可应用于其他数据发送过程中,本申请不做限定。
本发明实施例可应用的网络架构可以包括基站和基站覆盖范围下的多个UE,可以是基站与UE之间的通信,比如说UE向基站发送上行数据,如图3所示,UE在发送上行数据时,若为基于竞争资源的上行数据发送过程,多个UE可以使用公共的上行资源向基站发送数据;也可以是UE与UE之间的通信,如图4所示,不同的成对的(pair)UE发送设备到设备(Device-to-Device,D2D)直接通信数据时,若为基于竞争资源的数据发送过程,进行D2D通信的UE可以使用公共的资源发送数据。
在本发明实施例中,终端可以是用户设备UE,UE可以是手机、智能终端、多媒体设备、流媒体设备、可穿戴设备、智能电表、智能水表等。在本发明实施例中,网络设备可以是基站,基站可以是长期演进(Long Term Evolution,LTE)中UE和演进的核心网(Evolved Packet Core,EPC)之间的桥梁,基站之间通过X2接口进行连接,主要功能有:无线资源管理、互联网协议地址(Internet Protocol Address,IP)头压缩及用户数据流加密、UE附着时的移动管理实体(Mobile Managenment Entity,MME)选择、路由用户面数据至服务网 关(Serving Gateway,S-GW)、寻呼消息的组织和发送、广播消息的组织和发送、以移动性或调度为目的测量及测量报告配置等。
图5为本发明实施例中基站的一种内部结构示意图,在本发明中,基站可以包括处理模块501、通讯模块502、存储模块503。其中,处理模块501用于控制基站的各部分硬件装置和应用程序软件等;通讯模块502用于可使用LTE、5G RAT、wifi等通讯方式接受其它设备发送的指令,也可以将基站的数据发送给其它设备;存储模块503用于执行基站的软件程序的存储、数据的存储和软件的运行等。
图6为本发明实施例中终端的一种内部结构示意图,在本发明中,终端可以包括处理模块601、通讯模块602、存储模块603。其中,处理模块601用于控制终端的各部分硬件装置和应用程序软件等;通讯模块602用于可使用LTE、5G RAT、wifi等通讯方式接受其它设备发送的指令,也可以将终端的数据发送给其它设备;存储模块603用于执行终端的软件程序的存储、数据的存储和软件的运行等。
下面以终端为用户设备UE,且基于竞争资源的数据发送为例对本发明实施例进行说明。本发明的基本思想是:基站向所覆盖的UE发送功率配置信息;当UE生成上行数据时,首先判断该数据的业务类型或优先级,或判断自身的无线环境,然后根据功率配置信息为需要发送的数据配置相应的发射功率,这样在UE通过基站分配的资源配置消息确定上行资源或通信资源并发送数据时,若多个UE使用相同的上行资源或通信资源发送数据时,多个UE可根据确定的不同的发射功率向基站或对端发送数据,使得保证基站或对端可以接收到部分接收功率高的UE的数据,对端为与终端进行D2D通信时的另一个终端,保证一部分UE数据的接收成功率,从而减少了重传数据的UE的数量,从整体上降低了数据发送的时延。
在本发明实施例中,基站除了通过配置不同的发射功率来区别 UE以外,还可以通过配置不同的调制与编码策略(Modulation and Coding Scheme,MCS)或配置不同的加扰方式来区别UE,以减少重传数据的UE的数量,从整体上降低了数据发送的时延。
本发明实施例提供一种数据发送方法,如图7所示,包括:
701、基站向UE发送功率配置信息,功率配置信息包括功率信息和UE状态信息的一一对应关系,功率配置信息用于使UE获取发送数据时的发射功率。
其中,UE状态信息包括UE发送的数据的业务类型、UE发送的数据的优先级、UE对无线环境的测量信息的至少一种;
功率信息包括基站的期望接收功率、UE与基站进行通信时UE的发射功率、UE进行D2D通信时的发射功率中的至少一种。
UE发送的数据的业务类型可以包括语音业务、漫游业务、短信业务、邮件业务、公共安全类业务和上网业务等。
示例性的,若基站配置基站的期望接收功率与UE发送数据的优先级对应,其对应关系可以是优先级高的数据配置较高的期望接收功率,优先级低的数据配置较低的期望接收功率;假设用数字表示数据的优先级,若表示数据的优先级的数字越大,则优先级越低,比如说,UE1发送的数据的优先级为1,UE2发送的数据的优先级为2,则为UE2配置的期望接收功率低于为UE1配置的期望接收功率。
若基站配置基站的期望接收功率与UE的业务类型对应,其对应关系可以是按照业务类型的重要程度对应不同的期望接收功率,重要程度高的业务类型对应较高的期望接收功率,重要程度低的业务类型对应较低的期望接收功率;假设用数字表示数据的业务类型,若表示数据的业务类型的数字越大,则业务类型的重要程度越低,比如说,UE1发送的数据的业务类型为1,UE2发送的数据的业务类型为2,则为UE2配置的期望接收功率低于为UE1配置的期望接 收功率。
若基站配置基站的期望接收功率与UE对无线环境的测量信息对应,其对应关系可以是基站的期望接收功率与UE测量基站发送的参考信号的接收功率(Reference Signal Receiving Power,RSRP)的对应关系,RSRP值越大,基站的期望接收功率越大;或者,若基站配置基站的期望接收功率与UE对无线环境的测量信息对应,其对应关系可以是基站的期望接收功率与参考信号接收质量(Reference Signal Receiving Quality,RSRQ)的对应关系,RSRQ越大,基站的期望接收功率越大;假设用分贝毫瓦dBm作为RSRP或RSRQ的单位,若UE1测量基站发送的参考信号的RSRP或RSRQ为-100dBm,UE1测量基站发送的参考信号的RSRP或RSRQ为-110dBm,则为UE2配置的期望接收功率低于为UE1配置的期望接收功率。
若UE与基站进行通信时UE的发射功率与UE发送数据的优先级对应,其对应关系可以为优先级高的数据配置较高的发射功率,优先级低的数据配置较低的发射功率;假设用数字表示数据的优先级,若表示数据的优先级的数字越大,则优先级越低,比如说,UE1发送的数据的优先级为4,UE2发送的数据的优先级为7,则为UE2配置的与基站进行通信时的发射功率低于为UE1配置的与基站进行通信时的发射功率。
若UE的与基站进行通信时的发射功率与UE发送的数据的业务类型对应,其对应关系可以是按照业务类型的重要程度对应不同的发射功率,重要程度高的业务类型对应较高的发射功率,重要程度低的业务类型对应较低的发射功率;假设用数字表示UE发送的数据的业务类型,若表示UE发送的数据的业务类型的数字越大,则业务类型的重要程度越低,比如说,UE1发送的数据的业务类型为2,UE2发送的数据的业务类型为5,则为UE2配置的与基站进行通信时的发射功率低于为UE1配置的与基站进行通信时的发射功率。
若UE与基站进行通信时UE的发射功率与UE对无线环境的测量信息对应,其对应关系可以是UE的发射功率与UE测量基站的RSRP的对应关系,RSRP值越大,UE的发射功率越大;或者,若UE的发射功率与UE对无线环境的测量信息对应,其对应关系可以是UE的发射功率与RSRQ的对应关系,RSRQ越大,UE的发射功率越大;假设用分贝毫瓦dBm作为RSRP或RSRQ的单位,若UE1测量基站发送的参考信号的RSRP或RSRQ为-100dBm,UE1测量基站发送的参考信号的RSRP或RSRQ为-110dBm,则为UE2配置的发射功率低于为UE1配置的发射功率。
若UE进行D2D通信时的发射功率与D2D数据的优先级对应,其对应关系可以是优先级高的数据配置较高的发射功率,优先级低的数据配置较低的发射功率;假设用数字表示数据的优先级,若表示数据的优先级的数字越大,则优先级越低,比如说,UE1发送的数据的优先级为4,UE2发送的数据的优先级为7,则为UE2配置的进行D2D通信时的发射功率低于为UE1配置进行D2D通信时的发射功率。
若UE进行D2D通信时的发射功率与UE发送的数据的业务类型对应,其对应关系可以是按照业务类型的重要程度对应不同的发射功率,重要程度高的业务类型对应较高的发射功率,重要程度低的业务类型对应较低的发射功率;假设用数字表示数据的业务类型,若表示数据的业务类型的数字越大,则业务类型的重要程度越低,比如说,UE1发送的数据的业务类型为2,UE2发送的数据的业务类型为5,则为UE2配置的进行D2D通信时的发射功率低于为UE1配置的进行D2D通信时的发射功率。
若UE进行D2D通信时的发射功率与UE对无线环境的测量信息对应,其对应关系可以是UE进行D2D通信时的发射功率与UE测量对端UE的RSRP的对应关系,RSRP值越大,UE进行D2D通信时的发射功率越大;或者,UE进行D2D通信时的发射功率与UE 对无线环境的测量信息的对应关系可以是UE进行D2D通信时的发射功率与对端UE的RSRQ的对应关系,RSRQ越大,UE进行D2D通信时的发射功率越大;假设用分贝毫瓦dBm作为RSRP或RSRQ的单位,若UE1测量基站发送的参考信号的RSRP或RSRQ为-90dBm,UE1测量基站发送的参考信号的RSRP或RSRQ为-100dBm,则为UE2配置的进行D2D通信时的发射功率低于为UE1配置的进行D2D通信时的发射功率。
702、UE根据功率配置信息确定UE发送数据时的发射功率。
如果功率配置信息包括任一功率信息和任一终端状态信息的对应关系,可以先判断需要发送数据的UE的终端状态信息,再根据对应关系确定以何种功率信息发送数据。
具体地,如果功率配置信息包括基站的期望接收功率与UE发送的数据的业务类型的对应关系,那么UE先判断需要发送的数据的业务类型,然后根据与需要发送的数据的业务类型对应的基站的期望接收功率确定UE发送数据时的发射功率;
如果功率配置信息包括基站的期望接收功率与UE发送的数据的优先级的对应关系,那么UE先判断需要发送的数据的优先级,然后根据与需要发送的数据的优先级对应的基站的期望接收功率确定UE发送数据时的发射功率;
如果功率配置信息包括基站的期望接收功率与UE对无线环境的测量信息的对应关系,那么UE可以在确定UE对无线环境的测量信息后,根据与UE对无线环境的测量信息对应的基站的期望接收功率确定UE发送数据时的发射功率;
如果功率配置信息包括与基站进行通信时UE的发射功率与UE的业务类型的对应关系,那么UE先判断需要发送的数据的业务类型,然后根据与需要发送的数据的业务类型对应的UE的发射功率确定UE发送数据时的发射功率;
如果功率配置信息包括与基站进行通信时UE的发射功率与UE发送的数据的优先级的对应关系,那么UE先判断需要发送的数据的优先级,然后根据与需要发送的数据的优先级对应的UE的发射功率确定UE发送数据时的发射功率;
如果功率配置信息包括与基站进行通信时UE的发射功率与UE对无线环境的测量信息的对应关系,那么UE可以在确定UE对无线环境的测量信息后,根据与UE对无线环境的测量信息对应的与基站进行通信时UE的发射功率确定UE发送数据时的发射功率;
如果功率配置信息包括UE进行D2D通信时的发射功率与业务类型的对应关系或包括UE进行D2D通信时的发射功率与数据的优先级的对应关系,那么在UE判断需要发送的数据的业务类型或数据的优先级后,根据需要发送的数据的业务类型与UE进行D2D通信时的发射功率的对应关系或数据的优先级与UE进行D2D通信时的发射功率的对应关系确定UE发送数据时的发射功率。
如果功率配置信息包括UE进行D2D通信时的发射功率与对无线环境的测量信息的对应关系,那么在UE先确定对无线环境的测量信息,再根据与UE对无线环境的测量信息对应的与基站进行通信时UE的发射功率确定确定UE发送数据时的发射功率。
703、UE向基站发送数据。
这样一来,多个UE在基站分配的同一个上行资源或通信资源上发送数据时,即在发生资源冲突时,UE可以根据对应关系为不同的业务类型对应的数据确定不同的发射功率;或UE可以根据对应关系为不同优先级对应的数据确定不同的发射功率;或UE可以根据对应关系为不同的无线环境对应的数据确定不同的发射功率,就可以保证优先级较高的数据或业务类型较重要的数据发送成功,或保证所处的无线环境较好的UE的数据发送成功,可以减少重传数据的UE数量,从而从整体上减少数据发送的时延。
下面对UE发送上行数据,功率配置信息包括基站的期望接收 功率与UE发送的数据的优先级的对应关系的情况进行说明。
本发明实施例提供一种数据发送方法,如图8所示,包括:
801、基站接收并统计基站覆盖范围内的UE发送的数据的优先级;或基站接收核心网发送的不同的业务对应的服务质量(Quality of Service,QoS)信息,进而根据QoS信息确定数据的优先级。
UE向基站发送优先级可以是一次将自身所有的数据的优先级都发送给基站,也可以是在发送数据前将所需发送数据的优先级发送给基站。
Qos信息可以包括UE与基站之间发送数据的时延,或UE与基站之间发送数据的丢包率等。基站根据核心网发送的QoS信息的时延、丢包率等指标来确定数据的优先级,可以是时延要求越高,数据的优先级越高,也就是说,时延越长,数据的优先级越低,时延越短,数据的优先级越高。
802、基站向UE发送功率配置信息,功率配置信息包括基站的期望接收功率与UE发送数据的优先级的对应关系,功率配置信息用于使UE获取发送数据时的发射功率。
基站可以周期性的以广播形式发送功率配置信息,可以使得最近进入到基站覆盖范围内的UE及时接收到该功率配置信息,也可以使得基站覆盖范围内的UE及时接收到最新的功率配置信息,还可以使得UE产生新的业务类型或数据的优先级时,基站可以及时为功率配置信息加入新的对应关系。
基站的期望接收功率可以是基站根据自身的接收能力和解码能力确定的。例如基站在确定自身的最大接收功率和最小接收功率后,根据相同或不同的间隔将最大接收功率与最小接收功率之间的功率范围划分为不同功率等级,不同的功率等级对应不同的业务类型或不同的数据的优先级。基站的接收能力和解码能力与基站的硬件设置和软件设置有关。
具体地,基站可以配置如表1形式的功率配置列表,优先级“0”表示最高优先级,数字越大,优先级越低,对应的基站的期望接收功率越小。
表1
序号 数据的优先级 基站的期望接收功率
1 3 -110dBm
2 0 -100dBm
3 5 -120dBm
…… …… ……
其中,表示不同的数据的优先级的数字也可以表示不同的业务类型,例如,可以是0表示语音业务,3表示漫游业务,5表示短信业务。
举例来说,若功率配置列表如表1,UE需发送的数据的优先级是5,则获取基站期望的接收功率为-120dBm,根据基站的期望接收功率-120dBm再加上路损值即可计算得到UE发送数据时的发射功率。
一种可替换的方式可以为:功率配置信息包括基站的期望接收功率与UE的业务类型的对应关系。不同业务类型的重要程度不同,即可以为不同的业务类型配置不同的期望接收功率,重要程度高的业务类型的期望接收功率高,重要程度低的业务类型的期望接收功率低;举例来说,若用不同的数字表示数据的业务类型,UE需发送的数据的业务类型是5,基站配置的功率信息中与业务类型5对应的基站的期望接收功率为-120dBm,则UE根据基站的期望接收功率-120dBm再加上路损值即可计算得到UE发送数据时的发射功率。
另一种可替换的方式可以为:功率配置信息包括UE的发射功率与UE发送的数据的业务类型的对应关系。UE发送的数据的业务类型重要程度高时配置的UE的发射功率高,UE发送的数据的业务类型重要程度低时配置的UE的发射功率低;举例来说,若用不同 的数字表示数据的业务类型,UE需发送的数据的业务类型是5,基站配置的功率信息中与业务类型5对应的发射功率为-120dBm,则UE确定-120dBm即为UE发送数据时的发射功率。
再一种可替换的方式为功率配置信息包括UE的发射功率与UE发送数据的优先级的对应关系。UE发送数据的优先级高时配置的UE的发射功率高,UE发送数据的优先级低时配置的UE的发射功率低;举例来说,若用不同的数字表示数据的优先级,UE需发送的数据的优先级是5,基站配置的功率信息中与优先级5对应的发射功率为-120dBm,则UE确定-120dBm即为UE发送数据时的发射功率。
803、基站向UE发送资源配置信息,该资源用于UE基于竞争的上行数据发送。
资源配置信息包括基站分配的公共的上行资源,该上行资源可以包括时域信息和频域信息,上行资源可以有多个,基站所覆盖的多个UE可以通过在公共的上行资源中选取上行资源进行上行数据发送。
当功率配置信息包括基站的期望接收功率与UE的业务类型或待发送数据的优先级的对应关系时,资源配置信息可以包括时频资源配置参数。
在一种可能的情况中,若功率配置信息包括UE的发射功率与UE发送数据的优先级的对应关系,假设终端1发送的数据的优先级高,则发射功率高,终端2发送的数据的优先级低,则发射功率低,但是由于终端1与终端2的无线环境不同,产生的路损也不同,可能会使得终端1和终端2到达基站时的接收功率相同,此时在资源冲突的情况下,基站不能成功接收终端1和终端2发送的任一部分数据。因此,可以为不同无线环境下的UE配置不同的时频资源,此时避免了这种发射功率不同的数据在资源冲突的情况下都无法被基站成功接收的情况。
示例性的,当功率配置信息包括UE发射功率与UE的业务类型的对应关系或UE发射功率与发送数据的优先级的对应关系时,基站所发送的资源配置信息可以包括UE测量基站的参考信号接收功率RSRP范围和时频资源配置参数或参考信号接收质量RSRQ范围和时频资源配置参数,时频资源配置参数包括物理资源块(Physical Resource Block,PRB)参数和子帧(Subframe,sf)参数,或时频资源配置参数包括PRB参数和***帧参数。
举例来说,基站可以为不同的RSRP配置不同上行资源,以供UE根据接收到的参考信号的RSRP选择对应的资源发送上行数据。详细配置可以如表2:
表2
序号 资源配置 UE的RSRP
1 资源1 -120dBm±5dBm
2 资源2 -110dBm±5dBm
3 资源3 -100dBm±5dBm
…… …… ……
具体的资源配置可以如表3所示,其中纵向表示频率,用物理资源块PRB表示,横向表示时间,用子帧sf表示。
表3
Figure PCTCN2016100949-appb-000001
资源配置参数可以是PRB开始的资源标识、PRB结束的资源标识和子帧参数,例如子帧参数可以是10个比特位(bitmap),1表示该子帧资源有效,则上述资源1、资源2和资源3对应的时频资源 配置参数如表4所示:
表4
资源 PRB开始 PRB结束 子帧参数
1 3 5 1001001000
2 1 4 0100010000
3 2 6 0010100010
可选的,也可以是子帧采用子帧开始/子帧结束的方式来表示,PRB使用bitmap的方式来表示。
804、当UE生成上行数据时,UE确定待发送的数据的优先级,再根据基站的期望接收功率与UE发送数据的优先级的对应关系确定将数据发送至基站的期望接收功率,进而根据将数据发送至基站的期望接收功率和路损值确定UE发送数据时的发射功率。
当UE的上行数据生成时,UE对该数据的业务类型或优先级进行判断,然后根据基站下发的功率配置信息确定基站的期望接收功率。举例来说,当基站下发的功率配置信息如表1时,UE判断所需发送数据的优先级为5,根据表1得出基站的期望接收功率为-120dBm,UE再根据基站广播的参考信号的发射功率与UE测量的参考信号的接收功率获取路损值,将基站的期望接收功率与路损值相加,即得到UE发送数据时的发射功率。
805、UE根据确定的发送数据时的发射功率在确定的上行资源上发送上行数据。
UE可以在基站分配的多个上行资源中确定适当的上行资源用于发送上行数据。
806、UE确定是否接收到基站发送的ACK,若是,则确定基站成功接收数据;若否,则执行步骤807。
基站在步骤805分配的上行资源上监听是否有上行数据,如果接收到UE发送的上行数据并能成功解码出来,则向该UE反馈确认信息(Acknowledgement,ACK),即认为基站成功接收数据。若UE 没有接收到基站的反馈信息,则UE认为基站没有成功接收到数据。
应用上述802-806步骤的说明,如图9所示,当UE1和UE2在基站的覆盖范围内,UE1和UE2接收基站发送的功率配置信息和公共的上行资源的配置信息,可根据功率配置信息中UE1和UE2数据的优先级与基站的期望接收功率确定UE1和UE2分别对应的发射功率,假设UE1数据的优先级高于UE2数据的优先级,则UE1对应的基站的期望接收功率高于UE2对应的基站的期望接收功率,当UE1和UE2基于竞争资源向基站发送上行数据时,基站在相同的上行资源上能够成功接收UE1发送的数据,那么基站向UE1反馈ACK,UE2在未接收到ACK时,确定基站未接收到UE2发送的数据,则UE2确定向基站重发数据,UE2继续执行步骤807,这样一来,多个UE基于竞争资源向基站发送上行数据时,可保证部分UE发送成功,减少了重传数据的UE的数量,从而从整体上降低了数据发送的时延。
807、UE确定重传数据时的发射功率,重传数据时的发射功率为前一次发送数据时的发射功率与预设的幅度值之和。
重传数据时的发射功率为前一次发送数据时的发射功率与预设的幅度值之和,这样一来,提高重传数据时的发射功率,也就增加了重传数据的成功率,可以降低重传数据的次数。
步骤802中的表1还可以包括预设的幅度值,具体地,基站可以配置如表5形式的功率配置列表。
表5
序号 数据的优先级 基站的期望接收功率 预设的幅度值
1 3 -110dBm 10dBm
2 0 -100dBm 10dBm
3 5 -120dBm 10dBm
…… …… …… ……
预设的幅度值可以是相同的,如表5所示,预设的幅度值都为10dBm,也可以是按照数据的优先级的不同设置不同的预设的幅度值。例如UE发送的数据的优先级为3,初传数据时基站的期望接收功率为-110dBm,重传数据时基站的期望接收功率为-100dBm,再根据路损值确定重传数据的发射功率即可。
808、UE使用基站分配的上行资源重传数据。
这样一来,为不同的业务类型或不同优先级对应的数据设置了不同的基站期望接收功率,以便根据确定的期望接收功率获取终端发送数据时的发射功率,保证业务类型的重要程度高或数据的优先级高的上行数据具有较高的基站期望接收功率,业务类型的重要程度低或数据的优先级低的上行数据具有较低的基站期望接收功率,这样在多个UE基于竞争资源的数据发送所发生的资源冲突的情况下可以保证期望接收功率高的数据发送成功,基站接收到高功率的数据,减少重传数据的UE数量,从而从整体上减少数据发送的时延。
下面对UE发送上行数据,功率配置信息包括基站的期望接收功率与UE对基站的无线环境测量信息的对应关系的情况进行说明。
本发明实施例提供一种数据发送方法,如图10所示,包括:
1001、基站接收并统计基站覆盖范围内的UE发送的UE对无线环境的测量信息,测量信息包括参考信号接收功率RSRP或参考信号接收质量RSRQ。
也就是说,本实施例中,UE所处无线环境可以用参考信号的接收功率RSRP或参考信号的接收质量RSRQ来表征。
1002、基站向UE发送功率配置信息,功率配置信息包括基站的期望接收功率与UE对无线环境的测量信息的对应关系,功率配置信息用于使UE获取发送数据时的发射功率。
基站可以以列表的形式配置该功率配置信息,如表6所示:
表6
序号 UE测量基站的RSRP或RSRQ 基站的期望接收功率
1 -90dBm -100dBm
2 -100dBm -110dBm
3 -110dBm -120dBm
…… …… ……
其中,UE测量基站的RSRP或RSRQ越大,基站的期望接收功率越大,这是因为如果UE测量基站的RSRP或RSRQ越大,那么UE所处的无线环境的信号质量越好,UE的上行数据越容易发送成功,因此基站的期望接收功率越大时,也就更加保证UE的上行数据更容易发送成功。反之,UE测量基站的RSRP或RSRQ越小,那么UE所处的无线环境的信号质量越差,UE的上行数据越难以发送成功,因此基站的期望接收功率越小,也就使得该UE在基于竞争资源的数据发送时保证发射功率较高的UE的数据发送成功,即在基于竞争资源的数据发送时对不同的无线环境中期望接收功率较高的UE的干扰越小,可以保证不同的无线环境中期望接收功率较高的UE的数据发送成功。
一种可替换的方式是功率配置信息包括UE的发射功率与UE对基站的无线环境测量信息的对应关系,可以是UE测量基站的无线环境越好,即UE测量基站的RSRP或RSRQ越大,UE的发射功率越大,尽可能的保证部分发送发射功率高的数据发送成功。
1003、基站向UE发送上行资源的配置信息,该上行资源用于UE基于竞争的上行数据发送。
上行资源的配置信息可以参考步骤803。
1004、UE测量基站的RSRP或RSRQ,根据RSRP或RSRQ与基站的期望接收功率的对应关系确定将数据发送至基站的期望接收功率,进而UE根据将数据发送至基站的期望接收功率和路损值确 定UE发送数据时的发射功率。
当UE的上行数据生成时,UE测量基站的RSRP或RSRQ,然后根据基站下发的功率配置信息确定基站的期望接收功率。举例来说,当基站下发的功率配置信息如表6时,UE测量得到的基站的RSRP为-90dBm,根据表6得出基站的期望接收功率为-100dBm。UE再根据基站广播的参考信号的发射功率和UE测量的参考信号的接收功率获取路损值,将基站的期望接收功率与路损值相加,即得到UE发送数据时的发射功率。
1005、UE使用基站分配的上行资源发送上行数据。
UE可以在基站分配的多个上行资源中确定适当的上行资源用于发送上行数据。
1006、UE确认是否接收到基站发送的ACK,若是,则确定基站成功接收数据;若否,则执行步骤1007。
基站在步骤1005分配的上行资源上监听是否有上行数据,如果接收到UE发送的上行数据并能成功解码出来,则向该UE反馈确认信息即认为基站成功接收数据。若UE没有接收到基站的反馈信息,则UE认为基站没有成功接收到数据。
应用上述1002-1006步骤的说明,如图11所示,当UE1和UE2在基站的覆盖范围内,UE1和UE2接收基站发送的功率配置信息和公共的上行资源的配置信息,可根据功率配置信息中UE1和UE2的无线环境与基站的期望接收功率确定UE1和UE2分别对应的发射功率,假设UE1的RSRP或RSRQ高于UE2的RSRP或RSRQ,那么UE1对应的基站的期望接收功率高于UE2对应的基站的期望接收功率,当UE1和UE2基于竞争资源向基站发送上行数据时,由于基站接收UE1发送数据时的功率高于基站接收UE2发送数据时的功率,如果UE1和UE2发生资源冲突,基站在相同的上行资源中能够成功接收UE1发送的数据,那么基站向UE1反馈ACK,UE2在未接收到ACK时,确定基站未接收到UE2发送的数据,则UE2确定向基 站重发数据,UE2继续执行步骤1007。
1007、UE确定重传数据时的发射功率,重传数据时的发射功率为前一次发送数据时的发射功率与预设的幅度值之和。
具体地,步骤1002中的表3也可以配置如表7形式的功率配置列表。
表7
序号 UE测量基站的RSRP 基站的期望接收功率 预设的幅度值
1 -90dBm -100dBm 10dBm
2 -100dBm -110dBm 10dBm
3 -110dBm -120dBm 10dBm
…… …… …… ……
预设的幅度值可以是相同的,如表7所示,预设的幅度值都为10dBm,也可以是按照RSRP的不同值设置不同的预设的幅度值。例如UE测量基站发送的参考信息的RSRP为-100dB,初传数据时基站的期望接收功率为-110dBm,重传数据时基站的期望接收功率为-100dBm,再根据路损值确定重传数据时的发射功率即可。
1008、UE使用基站分配的上行资源重传数据。
这样一来,为不同的无线环境对应的数据设置了不同的基站期望接收功率或终端发射功率,RSRP值越大或RSRQ越大,基站的期望接收功率越大,这样在多个UE基于竞争资源的数据发送所发生的资源冲突的情况下保证一部分接收功率较高的数据发送成功,减少重传数据的UE数量,从而从整体上减少数据发送的时延。
下面对UE之间发送数据,且基站根据不同业务类型或不同数据的优先级来配置UE的发射功率的情况进行说明。
本发明实施例提供一种数据发送方法,如图12所示,包括:
1201、基站接收并统计基站覆盖范围内的UE发送的数据业务类型或数据优先级;或基站接收核心网发送的不同的业务对应的 QoS,进而根据QoS信息确定业务类型或数据的优先级。
UE具体何时向基站发送业务类型或数据的优先级以及基站如何根据核心网发送的QoS信息来确定数据的业务类型或数据的优先级可以参考上述步骤801。
1202、UE向基站发送自身发射功率。
UE的发射功率值可以是UE根据自身的接收能力和解码能力确定的。
1203、基站向UE发送功率配置信息,功率配置信息包括UE的发射功率与UE发送数据的业务类型或数据的优先级的对应关系,功率配置信息用于使UE获取发送数据时的发射功率。
在图8所示的实施例中,基站是将自身的期望接收功率与UE发送数据的业务类型或数据的优先级来对应的,在本实施例中,基站是将UE自身的发射功率与UE发送数据的业务类型或数据的优先级来对应的。例如基站在确定UE的最大接收功率和最小接收功率后,根据相同或不同的间隔将最大接收功率与最小接收功率之间的功率范围划分为不同功率等级,不同的功率等级对应不同的业务类型或不同的数据的优先级。
具体地,基站可以配置如表8形式的功率配置列表,优先级“0”表示最高优先级。
表8
序号 数据的优先级 UE发射功率
1 3 -110dBm
2 0 -100dBm
3 5 -120dBm
…… …… ……
举例来说,若功率配置列表如表8所示,UE需发送的数据的优先级是3,则UE发送数据时所用的发射功率为-110dBm。
一种可替换的方式为基站根据不同的对端的无线环境测量信息来配置UE的发射功率,可以是对端的无线环境测量信息更好,即UE测量到的对端发送的参考信号的RSRP或RSRQ越高,UE的发射功率越高,以便在资源冲突的情况下,对端尽可能地接收到发射功率高的数据。
1204、基站向其覆盖范围内的UE发送D2D通信链路(Sidelink,SL)上的通信资源的配置信息,该资源用于UE基于竞争的D2D通信数据的发送。
通信资源的配置信息可以是时域信息和频域信息,通信资源的配置信息可以有多个,基站所覆盖的多个UE可以通过这些通信资源的配置信息确定发送数据的资源以进行D2D通信。
在一种可能的情况中,当功率配置信息包括UE的发射功率与UE发送数据的业务类型或数据的优先级时,可能出现不同发射功率的发送端发送的数据到达接收端时的接收功率相同,导致不同的发送端在资源冲突的情况下,接收端无法成功接收发送端发送的数据,于是,与步骤803类似的,基站所发送的资源配置信息可以包括UE测得的参考信号接收功率RSRP范围和时频资源配置参数,或包括参考信号接收质量RSRQ范围和时频资源配置参数,时频资源配置参数包括物理资源块PRB参数和子帧参数,或时频资源配置参数包括PRB参数和***帧参数。具体地,可以参考步骤803。
举例来说,若功率配置信息包括UE的发射功率与UE发送的数据的优先级的对应关系,终端1发送的数据的优先级高,则发射功率高,终端2发送的数据的优先级低,则发射功率低,但是由于终端1与终端2的无线环境不同,产生的路损也不同,可能会使得终端1和终端2到达对端时的接收功率相同,此时在资源冲突的情况下,对端不能成功接收任何一部分数据。因此,可以为不同无线环境下的UE配置不同的时频资源,此时避免了这种发射功率不同的数据在资源冲突的情况下都无法被对端成功接收的情况。
1205、UE确定待发送的数据的业务类型或数据的优先级,再根据UE的发射功率与UE发送的数据的业务类型或数据的优先级的对应关系确定将数据发送至对端UE的发送功率。
当UE的上行数据生成时,UE对该数据的业务类型或优先级进行判断,然后根据基站下发的功率配置信息确定UE的发射功率。举例来说,当基站下发的功率配置信息如表8时,UE判断所需发送数据的优先级为3,根据表8得出UE的发射功率为-110dBm。即表示UE在发送优先级为3的数据时所用的发射功率为-110dBm。
1206、UE使用基站分配的通信资源进行D2D通信。
UE通过基站分配的通信资源的配置信息选取适当的资源与向对端UE发送数据。
1207、UE确认是否接收到对端UE反馈的ACK,若是,则认为对端UE成功接收数据;若否,则执行步骤1208。
这里的对端UE是指与UE进行D2D通信的另一个UE。多个UE给同一个UE发送数据时,对端UE在基站分配的资源上监听是否有D2D数据,如果接收到发送数据的UE发送的D2D数据并能成功解码出来,则向该发送数据的UE反馈ACK信息,ACK表示接收成功。若发送数据的UE没有接收到对端UE的ACK信息,则发送数据的UE认为对端UE没有成功接收到数据。
举例来说,如图13所示,假设UE2和UE3基于竞争资源向UE1发送D2D数据,UE1在基站分配的资源上监听是否有D2D数据,如果UE1接收到UE2发送的D2D数据并能成功解码出来,则UE1向该UE2反馈ACK信息,UE2认为UE1成功接收到数据。若UE3没有接收到UE1的ACK信息,则UE3认为UE1没有成功接收到数据。
1208、UE确定重传数据时的发射功率,重传数据时的发射功率为前一次发送数据时的发射功率与预设的幅度值之和。
步骤1203中的表8还可以包括预设的幅度值,具体地,基站可以配置如表9形式的功率配置列表。
表9
序号 数据的优先级 UE发射功率 预设的幅度值
1 3 -110dBm 10dBm
2 0 -100dBm 10dBm
3 5 -120dBm 10dBm
…… …… …… ……
预设的幅度值具体如何设置可以参考上述步骤807。
1209、UE使用基站分配的资源重传数据。
本发明实施例中,UE进行D2D通信时根据数据的业务类型或数据的优先级为需发送的数据设置不同的发射功率,或根据不同的无线环境为需发送的数据设置不同的发射功率,这样在发生资源冲突的情况下,对端可以成功接收到发射功率较高的数据,进而减少重传数据的UE数量,从而从整体上减少数据发送的时延。
上述主要从基站和终端的角度对本发明实施例提供的方案进行了介绍。可以理解的是,基站和终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站和终端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既 可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图14示出了上述实施例中所涉及的基站14的一种可能的结构示意图,包括:发送单元1401和接收单元1402。发送单元1401用于支持基站执行图7中的过程701或图8中的过程802、803或图10中的过程1002、1003或图12中的过程1203、1204。接收单元1402用于支持基站执行图8中的过程801或图10中的过程1001或图12中的过程1201。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图15示出了上述实施例中所涉及的基站的一种可能的结构示意图。基站15包括:处理模块1501和通信模块1502。处理模块1501用于对基站的动作进行控制管理,例如处理模块1501用于支持基站执行图7中的过程701或图8中的过程801或图10中的过程1001或图12中的过程1201,通信模块1502用于支持基站与其他网络实体的通信,例如向UE发送功率设置信息和接收终端发送的业务数据或业务数据的优先级等。基站还可以包括存储模块1503,用于存储基站的程序代码和数据,例如用于存储本发明实施例中功率配置信息的相关文件等。
其中,处理模块1501可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多 个微处理器组合,DSP和微处理器的组合等等。通信模块1502可以是收发器、收发电路或通信接口等。存储模块1503可以是存储器。
当处理模块1501为处理器,通信模块1502为收发器,存储模块1503为存储器时,本发明实施例所涉及的基站可以为图16所示的基站。
参阅图16所示,该基站16包括:处理器1601、收发器1602、存储器1603以及总线1604。其中,收发器1602、处理器1601以及存储器1603通过总线1604相互连接;总线1604可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图17示出了上述实施例中所涉及的终端17的一种可能的结构示意图,终端包括:接收单元1701,确定单元1702,发送单元1703。确定单元1701用于支持终端执行图7中的过程702。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图18示出了上述实施例中所涉及的终端的一种可能的结构示意图。终端18包括:处理模块1801和通信模块1802。处理模块1801用于对终端的动作进行控制管理,例如处理模块1801用于支持终端执行图7中的过程702,或图8中的过程804、806和807,或图10中的过程1004、1006和1007,或图12中的过程1205、1207和1208。通信模块1802用于支持终端与其他网络实体的通信,例如向基站发送自身数据的业务类型或数据的优先级和接收基站发送的功率配置信息等。终端还可以包括存储模块1803,用于存储终端的程序代码和数据,例如用于存储本发 明实施例中功率配置信息文件等。
其中,处理模块1801可以是处理器或控制器,例如可以是中央处理器CPU,通用处理器,数字信号处理器DSP,专用集成电路ASIC,现场可编程门阵列FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1802可以是收发器、收发电路或通信接口等。存储模块1803可以是存储器。
当处理模块1801为处理器,通信模块1802为收发器,存储模块1803为存储器时,本发明实施例所涉及的终端可以为图19所示的终端。
参阅图19所示,该终端19包括:处理器1901、收发器1902、存储器1903以及总线1904。其中,收发器1902、处理器1901以及存储器1903通过总线1904相互连接;总线1904可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图19中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本发明公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可 以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (22)

  1. 一种数据发送方法,其特征在于,包括:
    网络设备向终端发送功率配置信息,所述功率配置信息包括功率信息和终端状态信息的一一对应关系,所述功率配置信息用于使终端获取发送数据时的发射功率;
    所述网络设备接收所述终端发送的数据,所述数据的发射功率是所述终端根据所述功率配置信息确定的;
    其中,所述终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;
    所述功率信息包括所述网络设备的期望接收功率、所述终端与所述网络设备进行通信时的发射功率、所述终端进行D2D通信时的发射功率中的至少一种。
  2. 根据权利要求1所述的方法,其特征在于,当所述终端状态信息包括终端发送的数据的业务类型或终端发送的数据的优先级时,所述方法还包括:
    所述网络设备接收所述终端发送的数据的业务类型或数据的优先级;或
    所述网络设备接收核心网发送的服务质量QoS信息,进而根据所述QoS信息确定所述数据的业务类型或所述数据的优先级。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端发送资源配置消息,所述资源配置消息包括所述终端的参考信号接收功率RSRP范围和时频资源配置参数;或所述资源配置消息包括参考信号接收质量RSRQ范围和所述时频资源配置参数,所述时频资源配置参数包括物理资源块PRB参数和子帧参数,或所述时频资源配置参数包括PRB参数和***帧参数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述功率配置信息还包括幅度值,所述幅度值用于使所述终端确定重传所述数据时的发射功率,所述重传所述数据时的发射功率为前一次发送所 述数据时的发射功率与所述幅度值之和。
  5. 一种数据发送方法,其特征在于,包括:
    终端接收网络设备发送的功率配置信息,所述功率配置信息包括功率信息和终端状态信息的一一对应关系;
    所述终端根据所述功率配置信息确定所述终端发送数据时的发射功率;
    其中,所述终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;
    所述功率信息包括所述网络设备的期望接收功率、所述终端与所述网络设备进行通信时的发射功率、所述终端进行D2D通信时的发射功率中的至少一种。
  6. 根据权利要求5所述的方法,其特征在于,当所述终端状态信息包括终端发送的数据的业务类型或数据的优先级,所述功率信息包括所述网络设备的期望接收功率时,所述终端根据所述功率配置信息确定所述终端发送数据时的发射功率包括:
    所述终端根据所述终端发送的数据的业务类型对应的网络设备的期望接收功率或所述终端根据所述终端发送的数据的优先级对应的网络设备的期望接收功率确定将所述数据发送至所述网络设备的期望接收功率;所述终端根据将所述数据发送至所述网络设备的期望接收功率和路损值确定所述终端发送所述数据时的发射功率;
    或,当所述终端状态信息包括终端发送的数据的业务类型或终端发送数据的优先级,所述功率信息包括终端与所述网络设备进行通信时所述终端的发射功率时,所述终端根据所述功率配置信息确定所述终端发送数据时的发射功率包括:
    所述终端根据所述终端发送的数据的业务类型对应的所述终端的发射功率或所述终端根据所述终端发送数据的优先级对应的所述终端的发射功率确定所述终端发送所述数据时的发射功率。
  7. 根据权利要求5所述的方法,其特征在于,当所述终端状态信息包括所述终端对无线环境的测量信息,所述测量信息包括所述终 端测量所述网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,所述功率信息包括所述网络设备的期望接收功率时,所述终端根据所述功率配置信息确定所述终端发送数据时的发射功率包括:
    所述终端根据所述无线环境的测量信息对应的网络设备的期望接收功率确定将所述数据发送至所述网络设备的期望接收功率;所述终端根据将所述数据发送至所述网络设备的期望接收功率和路损值确定所述终端发送所述数据时的发射功率;
    或,当所述终端状态信息包括所述终端对无线环境的测量信息,所述测量信息包括所述终端测量所述网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,所述功率信息包括所述终端与所述网络设备进行通信时所述终端的发射功率时,所述终端根据所述功率配置信息确定所述终端发送数据时的发射功率包括:
    所述终端将所述终端对无线环境的测量信息对应的所述终端的发射功率确定为所述终端发送所述数据时的发射功率。
  8. 根据权利要求5所述的方法,其特征在于,当所述功率信息包括所述终端进行D2D通信时的发射功率,所述终端状态信息包括所述终端发送的数据的业务类型或所述终端发送的数据的优先级或所述终端对无线环境的测量信息时,所述终端对无线环境的测量信息包括所述终端测量对端发送的参考信号的RSRP或RSRQ,其中所述终端与所述对端进行D2D通信,所述终端根据所述功率配置信息确定所述终端发送数据时的发射功率包括:
    所述终端将所述终端发送的数据的业务类型对应的所述终端进行D2D通信时的发射功率或所述终端发送的数据的优先级对应的所述终端进行D2D通信时的发射功率或所述终端对无线环境的测量信息对应的所述终端进行D2D通信时的发射功率确定为所述终端发送所述数据时的发射功率。
  9. 根据权利要求5-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端接收所述网络设备发送的资源配置消息,所述资源配置 消息包括所述终端的参考信号接收功率RSRP范围和时频资源配置参数;或所述资源配置消息包括所述终端的参考信号接收质量RSRQ范围和所述时频资源配置参数,所述时频资源配置参数包括物理资源块PRB参数和子帧参数,或所述时频资源配置参数包括PRB参数和***帧参数;
    所述终端根据所述资源配置消息确定所述终端发送所述数据的上行资源。
  10. 根据权利要求5-8任一项所述的方法,其特征在于,所述方法还包括:
    所述终端向所述网络设备发送所述终端发送的数据的业务类型或所述终端发送的数据的优先级。
  11. 根据权利要求5-8任一项所述的方法,其特征在于,所述方法还包括:
    若所述终端确定所述网络设备未接收到所述数据,或所述终端确定进行D2D通信时的所述对端未接收到所述数据,则所述终端确定重传所述数据时的发射功率,所述重传所述数据时的发射功率为前一次发送所述数据时的发射功率与预设的幅度值之和。
  12. 一种网络设备,其特征在于,包括:
    发送单元,用于向所述终端发送功率配置信息,所述功率配置信息包括功率信息和终端状态信息的一一对应关系,所述功率配置信息用于使终端获取发送数据时的发射功率;
    接收单元,用于接收所述终端发送的数据,所述数据的发射功率是所述终端根据所述功率配置信息确定的;
    其中,所述终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;
    所述功率信息包括所述网络设备的期望接收功率、所述终端与所述网络设备进行通信时的发射功率、所述终端进行D2D通信时的发射功率中的至少一种。
  13. 根据权利要求12所述的网络设备,其特征在于,当所述终 端状态信息包括终端发送的数据的业务类型或终端发送的数据的优先级时,接收单元还用于:
    接收所述终端发送的数据的业务类型或数据的优先级;或
    接收核心网发送的服务质量QoS信息,进而根据所述QoS信息确定所述数据的业务类型或所述数据的优先级。
  14. 根据权利要求12或13所述的网络设备,其特征在于,在所述网络设备接收所述终端发送的数据之前,所述发送单元还用于:
    向所述终端发送资源配置消息,所述资源配置消息包括所述终端的参考信号接收功率RSRP范围和时频资源配置参数;或所述资源配置消息包括所述终端的参考信号接收质量RSRQ范围和所述时频资源配置参数,所述时频资源配置参数包括物理资源块PRB参数和子帧参数,或所述时频资源配置参数包括PRB参数和***帧参数。
  15. 根据权利要求12或13所述的网络设备,其特征在于,所述功率配置信息还包括幅度值,所述幅度值用于使所述终端确定重传所述数据时的发射功率,所述重传所述数据时的发射功率为前一次发送所述数据时的发射功率与所述幅度值之和。
  16. 一种终端,其特征在于,包括:
    接收单元,用于接收网络设备发送的功率配置信息,所述功率配置信息包括功率信息和终端状态信息的一一对应关系;
    确定单元,用于根据所述功率配置信息确定所述终端发送数据时的发射功率;
    其中,所述终端状态信息包括终端发送的数据的业务类型、终端发送的数据的优先级、终端对无线环境的测量信息的至少一种;
    所述功率信息包括所述网络设备的期望接收功率、所述终端与所述网络设备进行通信时的发射功率、所述终端进行D2D通信时的发射功率中的至少一种。
  17. 根据权利要求16所述的终端,其特征在于,当所述终端状态信息包括终端发送的数据的业务类型或数据的优先级,所述功率信息包括所述网络设备的期望接收功率时,所述确定单元用于:
    根据所述终端发送的数据的业务类型对应的网络设备的期望接收功率或根据所述终端发送的数据的优先级对应的网络设备的期望接收功率确定将所述数据发送至所述网络设备的期望接收功率;根据将所述数据发送至所述网络设备的期望接收功率和路损值确定所述终端发送所述数据时的发射功率;
    或,当所述终端状态信息包括终端发送的数据的业务类型或终端发送数据的优先级,所述功率信息包括终端与所述网络设备进行通信时所述终端的发射功率时,所述确定单元用于:
    根据所述终端发送的数据的业务类型对应的所述终端的发射功率或根据所述终端发送数据的优先级对应的所述终端的发射功率确定所述终端发送所述数据时的发射功率。
  18. 根据权利要求16所述的终端,其特征在于,当所述终端状态信息包括所述终端对无线环境的测量信息,所述测量信息包括所述终端测量所述网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,所述功率信息包括所述网络设备的期望接收功率时,所述确定单元用于:
    根据所述无线环境的测量信息对应的网络设备的期望接收功率确定将所述数据发送至所述网络设备的期望接收功率;根据将所述数据发送至所述网络设备的期望接收功率和路损值确定所述终端发送所述数据时的发射功率;
    或,当所述终端状态信息包括所述终端对无线环境的测量信息,所述测量信息包括所述终端测量所述网络设备的参考信号接收功率RSRP或参考信号接收质量RSRQ,所述功率信息包括所述终端与所述网络设备进行通信时所述终端的发射功率时,所述确定单元用于:
    将所述终端对无线环境的测量信息对应的所述终端的发射功率确定为所述终端发送所述数据时的发射功率。
  19. 根据权利要求16所述的终端,其特征在于,当所述功率信息包括所述终端进行D2D通信时的发射功率,所述终端状态信息包括所述终端发送的数据的业务类型或所述终端发送的数据的优先级 或所述终端对无线环境的测量信息时,所述终端对无线环境的测量信息包括所述终端测量对端发送的参考信号的RSRP或RSRQ,其中所述终端与所述对端进行D2D通信,所述确定单元用于:
    将所述终端发送的数据的业务类型对应的所述终端进行D2D通信时的发射功率或所述终端发送的数据的优先级对应的所述终端进行D2D通信时的发射功率或所述终端对无线环境的测量信息对应的所述终端进行D2D通信时的发射功率确定为所述终端发送所述数据时的发射功率。
  20. 根据权利要求16-19任一项所述的终端,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的资源配置消息,所述资源配置消息包括所述终端的参考信号接收功率RSRP范围和时频资源配置参数;或所述资源配置消息包括所述终端的参考信号接收质量RSRQ范围和所述时频资源配置参数,所述时频资源配置参数包括物理资源块PRB参数和子帧参数,或所述时频资源配置参数包括PRB参数和***帧参数;
    根据所述资源配置消息确定所述终端发送所述数据的上行资源。
  21. 根据权利要求17-20任一项所述的终端,其特征在于,还包括发送单元,用于:
    向所述网络设备发送所述终端发送的数据的业务类型或所述终端发送的数据的优先级。
  22. 根据权利要求17-20任一项所述的终端,其特征在于,所述确定单元还用于:
    若确定所述网络设备未接收到所述数据,或确定所述终端进行D2D通信时的所述对端未接收到所述数据,则确定重传所述数据时的发射功率,所述重传所述数据时的发射功率为前一次发送所述数据时的发射功率与预设的幅度值之和。
PCT/CN2016/100949 2016-09-29 2016-09-29 一种数据发送方法和装置 WO2018058474A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2016/100949 WO2018058474A1 (zh) 2016-09-29 2016-09-29 一种数据发送方法和装置
EP16917228.5A EP3512261B1 (en) 2016-09-29 2016-09-29 Data sending method and apparatus
CN201680088620.2A CN109644393B (zh) 2016-09-29 2016-09-29 一种数据发送方法和装置
US16/368,541 US11184860B2 (en) 2016-09-29 2019-03-28 Data sending method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100949 WO2018058474A1 (zh) 2016-09-29 2016-09-29 一种数据发送方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/368,541 Continuation US11184860B2 (en) 2016-09-29 2019-03-28 Data sending method and apparatus

Publications (1)

Publication Number Publication Date
WO2018058474A1 true WO2018058474A1 (zh) 2018-04-05

Family

ID=61763601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100949 WO2018058474A1 (zh) 2016-09-29 2016-09-29 一种数据发送方法和装置

Country Status (4)

Country Link
US (1) US11184860B2 (zh)
EP (1) EP3512261B1 (zh)
CN (1) CN109644393B (zh)
WO (1) WO2018058474A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114698081B (zh) * 2020-12-28 2023-10-17 北京小米移动软件有限公司 控制数据发射的方法及装置、电子设备、存储介质
CN116939791A (zh) * 2022-03-29 2023-10-24 北京小米移动软件有限公司 功率控制方法、装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394208A (zh) * 2008-10-10 2009-03-25 北京创毅视讯科技有限公司 Mimo***的指示功率分配方法、***、基站及用户终端
CN102740421A (zh) * 2011-04-15 2012-10-17 中兴通讯股份有限公司 一种功率控制方法和***
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及***
WO2015013854A1 (zh) * 2013-07-29 2015-02-05 华为技术有限公司 资源调度方法、数据传输方法及装置
CN105050189A (zh) * 2015-08-10 2015-11-11 上海华为技术有限公司 一种无线资源调度的方法及相关设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI97929C (fi) * 1994-02-25 1997-03-10 Nokia Telecommunications Oy Menetelmä eri prioriteetin omaavien puheluiden lähettämiseksi solukkoradioverkossa
KR101048256B1 (ko) * 2004-03-31 2011-07-08 엘지전자 주식회사 이동통신 시스템의 중요도에 따른 데이터 전송방법
WO2008156402A1 (en) * 2007-06-19 2008-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Methods and systems for scheduling resources in a telecommunication system
KR101362060B1 (ko) * 2007-09-20 2014-02-12 재단법인서울대학교산학협력재단 인지 무선 단말 장치 및 인지 무선 통신 방법
US9055612B2 (en) * 2008-02-11 2015-06-09 Qualcomm Incorporated Quality of service continuity
CN101926198B (zh) * 2008-02-25 2013-05-01 三菱电机株式会社 车载通信装置
JP5747285B2 (ja) * 2009-02-09 2015-07-15 オプティス セルラー テクノロジー, エルエルシーOptis Cellular Technology,LLC 無線通信システムにおける方法及び装置
CN101674613B (zh) * 2009-09-25 2012-07-04 中兴通讯股份有限公司 一种接入等级控制方法及***
CN103797865A (zh) * 2011-06-17 2014-05-14 瑞典爱立信有限公司 无线设备、网络节点以及其中的方法
CN104303439B (zh) * 2012-05-30 2017-10-13 英特尔公司 用于管理异构载波类型的技术
US9445411B2 (en) * 2013-10-01 2016-09-13 Alcatel Lucent Controlling uplink transmissions from interfering stations
KR102236020B1 (ko) * 2013-10-08 2021-04-05 삼성전자 주식회사 무선 통신 시스템의 전송 신호 전력 제어 및 발견 신호 자원 다중화 방법 및 장치
US20150181618A1 (en) * 2013-12-23 2015-06-25 Qualcomm Incorporated Early abort of scheduling information (si) retransmission
US9907032B2 (en) 2014-05-05 2018-02-27 Huawei Device (Dongguan) Co., Ltd. Power control parameter configuration by base station

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394208A (zh) * 2008-10-10 2009-03-25 北京创毅视讯科技有限公司 Mimo***的指示功率分配方法、***、基站及用户终端
CN102740421A (zh) * 2011-04-15 2012-10-17 中兴通讯股份有限公司 一种功率控制方法和***
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及***
WO2015013854A1 (zh) * 2013-07-29 2015-02-05 华为技术有限公司 资源调度方法、数据传输方法及装置
CN105050189A (zh) * 2015-08-10 2015-11-11 上海华为技术有限公司 一种无线资源调度的方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512261A4 *

Also Published As

Publication number Publication date
US20190223109A1 (en) 2019-07-18
EP3512261A1 (en) 2019-07-17
EP3512261A4 (en) 2019-08-14
EP3512261B1 (en) 2021-06-02
CN109644393B (zh) 2020-10-27
CN109644393A (zh) 2019-04-16
US11184860B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
US10194471B2 (en) Data transmission method, user equipment, and base station
US20150063251A1 (en) Methods and apparatus for extending a reverse direction grant on a wireless network
WO2020087531A1 (zh) 边链路信息的发送和接收方法以及装置
WO2011160522A1 (zh) 一种无线资源调度方法、接入网网元及终端
TW201735697A (zh) 數據傳輸的方法、終端及基站
JP7379507B2 (ja) 情報送信方法及び装置、並びに情報受信方法及び装置
US20160234713A1 (en) Information Transmission Method, Apparatus, and System
WO2020216341A1 (zh) 随机接入方法和通信装置
WO2017128454A1 (zh) 通信方法、网络侧设备及终端
JP7342936B2 (ja) 通信方法、装置及び通信システム
KR20210028683A (ko) Harq 송신을 용이하게 하기 위한 방법 및 디바이스
JP2022516899A (ja) 無線通信方法及び装置
JP2022550411A (ja) 繰返しを伴う設定済みul
CN112997433B (zh) 用于harq传输的方法以及通信设备
EP2773158A1 (en) Method of handling resource exchange and related communication device
WO2022188079A1 (zh) 无线通信方法和第一设备
US11184860B2 (en) Data sending method and apparatus
US20230388850A1 (en) Communication method and apparatus
WO2020124534A1 (zh) 数据传输的方法和设备
WO2018058391A1 (zh) 建立承载的方法、无线接入网设备和客户终端设备
WO2020156394A1 (zh) 一种反馈方法及装置
JP6792176B2 (ja) 通信装置、中継装置、及び通信システム
WO2022077382A1 (zh) 一种信道传输方法、配置方法及设备
EP4104357A1 (en) Handling overlapping of multiple physical uplink shared channels (puschs)
CN116686329A (zh) 信号的发送和接收方法、装置和通信***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016917228

Country of ref document: EP

Effective date: 20190408