WO2018058302A1 - 信号削波方法和装置 - Google Patents

信号削波方法和装置 Download PDF

Info

Publication number
WO2018058302A1
WO2018058302A1 PCT/CN2016/100327 CN2016100327W WO2018058302A1 WO 2018058302 A1 WO2018058302 A1 WO 2018058302A1 CN 2016100327 W CN2016100327 W CN 2016100327W WO 2018058302 A1 WO2018058302 A1 WO 2018058302A1
Authority
WO
WIPO (PCT)
Prior art keywords
clipping
noises
signals
signal
noise
Prior art date
Application number
PCT/CN2016/100327
Other languages
English (en)
French (fr)
Inventor
张烈
张彬彬
王健
葛燕
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/100327 priority Critical patent/WO2018058302A1/zh
Publication of WO2018058302A1 publication Critical patent/WO2018058302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of communications, and in particular to a signal clipping method and apparatus.
  • Crest Factor Reduction also known as clipping
  • MIMO Multiple Input Multiple Output
  • 5G fifth generation
  • Future MIMO wireless transmitters use multi-beam shaping to increase system capacity and increase system complexity and power consumption.
  • a clipping method under this architecture is needed.
  • the embodiment of the invention provides a signal clipping method and device, which can improve the transmission efficiency of the multi-antenna transmitter.
  • a signal clipping method including: determining n first clipping noises according to a first clipping threshold and n first signals, the n first signals and the n first One-to-one correspondence of clipping noise, n is an integer greater than 1 and less than or equal to t, t is a preset value; performing spatial filtering processing on the n first clipping noises to obtain n second clipping noises, The spatial filtering process is configured to suppress noise in the airspace direction of the n first clipping noises in the n first clipping noises; and perform the n first signals according to the n second clipping noises For the cancellation process, n second signals are obtained.
  • the first signal is a signal obtained by precoding processing.
  • the peak-to-average ratio of the signal after the cancellation processing is greatly reduced, so that the output efficiency of the power amplifier is effectively improved, and further Can improve the transmission efficiency of multi-antenna transmitters.
  • the spatial filtering process effectively suppresses the noise in the spatial direction of the signal in the clipping noise, the signal received by the receiving end can be greatly reduced by the clipping noise.
  • the pair of the n The first clipping noise is subjected to spatial filtering processing to obtain n second clipping noises, including: calculating a projection matrix of the noise subspaces of the n first signals, using the projection matrix as a spatial domain filter coefficient; The spatial domain filter coefficients perform spatial filtering processing on the n first clipping noises to obtain the n second clipping noises.
  • the direction of the airspace in which the n first signals are located is the direction of the transmit beam of the n first signals.
  • Performing spatial filtering processing on the n first clipping noises can be understood as that the n first clipping noises are projected onto the noise subspace of the n first signals, so that clipping noise to the signal can be avoided. Signals in space cause interference.
  • the projection matrix of the noise subspace of the n first signals is obtained by satisfying the following formula:
  • T is the noise subspace projection transformation vector
  • is the noise subspace mapping matrix
  • H is the conjugate transpose
  • T can be composed of various orthogonal bases.
  • the n first clipping noises are subjected to spatial filtering processing according to the spatial domain filter coefficients,
  • the n second clipping noises satisfy the following formula:
  • S 1 is n second clipping noise vectors
  • N is a vector of the n first clipping noises
  • F is a projection matrix of the noise subspace.
  • the method further includes: determining, according to the second clipping threshold and the n second signals n third clipping noises, the n second signals and the n third clipping noises are in one-to-one correspondence; canceling the n second signals according to the n third clipping noises deal with.
  • performing cancellation processing on the n second signals according to the n third clipping noises including: performing time domain filtering on the n third clipping noises, and obtaining n fourth clipping noises; respectively
  • the n second signals are subjected to cancellation processing according to the n fourth clipping noises.
  • the out-of-band noise can be filtered out, so that the signal spectrum obtained after the cancellation processing satisfies the protocol requirements.
  • a signal clipping device configured to perform the first Aspect or the signal clipping method of any of the above possible implementations of the first aspect.
  • the signal clipping device includes: a first determining unit, configured to determine n first clipping noises according to the first clipping threshold and the n first signals, the n first signals and the n One first clipping noise corresponds to one, n is an integer greater than 1 and less than or equal to t, t is a preset value; a spatial filtering unit is configured to determine the n first clippings for the first determining unit Performing a spatial filtering process on the noise to obtain n second clipping noises, wherein the spatial filtering process is for suppressing noise of the n first clipping noises in a spatial direction of the n first signals; And a canceling unit, configured to perform cancellation processing on the n first signals according to the spatial filtering but the obtained n second clipping noises to obtain n second signals.
  • a first determining unit configured to determine n first clipping noises according to the first clipping threshold and the n first signals, the n first signals and the n
  • One first clipping noise corresponds to one,
  • the spatial domain filtering unit is specifically configured to: calculate a projection matrix of the noise subspaces of the n first signals, and use the projection matrix as a spatial filter coefficient; performing spatial filtering processing on the n first clipping noises according to the spatial domain filter coefficients to obtain the n second clipping noises.
  • the n first clipping noises are spatially filtered according to the spatial domain filter coefficients,
  • the n second clipping noises satisfy the following formula:
  • S 1 is n second clipping noise vectors
  • N is a vector of the n first clipping noises
  • F is a projection matrix of the noise subspace.
  • the third possible implementation manner of the second aspect further includes: a second determining unit, configured to use the second clipping threshold and the The n second signals determine n third clipping noises, the N second signals and the n third clipping noises are in one-to-one correspondence; the second cancellation unit is configured to determine according to the second The n third clipping noises determined by the unit perform cancellation processing on the N second signals.
  • a signal clipping apparatus comprising a processor for performing the signal clipping method of any of the above-described possible implementations of the first aspect or the first aspect.
  • the method further includes: a memory and a bus system, wherein the processor and the memory are connected by the bus system, the memory is used to store an instruction, the processor is configured to execute the memory stored instruction, and execute The instructions stored in the memory cause the signal clipping device to perform the signal clipping method of any of the above-described possible implementations of the first aspect or the first aspect.
  • a computer readable storage medium Storing one or more programs, the one or more programs including instructions that, when executed by the signal clipping device, cause the signal clipping device to perform any of the above-described aspects of the first aspect or the first aspect The signal clipping method described in the implementation manner.
  • FIG. 1 is a schematic diagram of a MIMO system
  • FIG. 2 is a schematic flow chart of a signal clipping method according to an embodiment of the present invention.
  • FIG. 3 is another schematic flowchart of a signal clipping method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a signal clipping method according to another embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a signal clipping method according to another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a signal clipping method according to another embodiment of the present invention.
  • Figure 7 is a schematic block diagram of a signal clipping device in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a signal clipping device according to another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a signal clipping device in accordance with another embodiment of the present invention.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the transmitting end includes X antennas
  • the receiving end includes Y antennas.
  • the X-channel signal at the transmitting end is transmitted through X antennas, and is received by the Y receiving antennas at the receiving end after the spatial channel. Since there is interference between the channels, the signal can be pre-coded at the transmitting end, for example, the signal is forced to zero. Encoding (ie, zero-forcing beamforming) processing, which avoids the effects of interference between channels on the signal.
  • the pre-coded signal can be clipped to reduce the peak-to-average power ratio of the signal ( Peak to Average Power Ratio (PAPR), which increases the power and output power of the power amplifier.
  • PAPR Peak to Average Power Ratio
  • clipping the signal introduces clipping noise into the signal, and the clipping noise can interfere with the signal received at the receiving end. Therefore, the embodiment of the present invention proposes a signal clipping method. By performing spatial filtering processing on the clipping noise, the noise in the direction of the spatial direction of the signal can be suppressed, thereby reducing the influence of the clipping noise on the signal received by the receiving end.
  • the signal clipping method 100 can be performed by a signal clipping device.
  • the signal clipping device can be a multi-antenna transmitter.
  • the signal clipping method 200 includes the following.
  • n first clipping noises Determine, according to the first clipping threshold and the n first signals, n first clipping noises, where the n first signals and the n first clipping noises are in one-to-one correspondence, and n is an integer greater than 1 and less than or equal to t , t is the default value.
  • comparing the first signal with the first clipping threshold extracting a portion of the first signal that is higher than the first clipping threshold as the first clipping noise.
  • the first signal may be a signal obtained by precoding processing.
  • the zero-forcing algorithm is used to suppress interference caused by the channel matrix, and a pseudo-inverse matrix of the channel matrix is usually used as the linear filter.
  • the value of t may be set according to the system requirements, which is not limited by the embodiment of the present invention.
  • t can also be the number of antenna ports.
  • the antenna port can be a logical port of the transmission channel or a physical antenna port for transmission.
  • the definition of the antenna port can also refer to the related definition in the protocol (for example, 3GPP TS 36.211, or its related and evolving standards, such as the future 5G standard), which is not limited by the embodiment of the present invention.
  • the direction of the airspace in which the n first signals are located is the direction of the transmit beam of the n first signals.
  • Each first clipping noise causes interference with each of the n first signals.
  • noise of n first clipping noises in the spatial direction of the n first signals can be suppressed, that is, n first clipping noises can be avoided.
  • Any of the first signals in a signal causes interference, i.e., the effect of clipping noise on the signal can be suppressed.
  • the peak-to-average ratio of the signal can be reduced, thereby improving the transmission efficiency of the transmitter.
  • noise extraction processing is performed on n signals respectively to obtain n clipping noises; spatial filtering processing is performed on the n clipping noises; and then each clipping noise obtained by spatial filtering processing is respectively The corresponding delayed signals are subjected to cancellation processing to complete the clipping processing.
  • the clipping process is hereinafter referred to as spatial clipping processing.
  • the peak-to-average ratio of the signal after the cancellation processing is greatly reduced, thereby making the output efficiency of the power amplifier Get an effective boost.
  • the spatial filtering process effectively suppresses the noise in the spatial direction of the signal in the clipping noise, the signal received by the receiving end can be greatly reduced by the clipping noise.
  • spatially filtering the n first clipping noises in 220, and obtaining n second clipping noises includes:
  • the n first clipping noises are subjected to spatial filtering processing according to the spatial domain filter coefficients to obtain n second clipping noises.
  • a projection matrix (ie, a spatial domain filter coefficient) of the noise subspace of the n first signals may be determined according to the channel information, where the channel information is information of a channel for transmitting the n first signals.
  • the channel information may be channel information under a multi-beam shaping architecture, and the antenna multi-beam shaping includes all-digital shaping, full analog shaping, and digital plus analog hybrid shaping.
  • the channel information can be determined by channel estimation.
  • the signal space may include signal subspaces and noise subspaces that are orthogonal to each other. It should be noted that the noise subspace is not determined by noise, but by the signal. The projection of the signal in the signal subspace is greatest, and the projection of the signal in the noise subspace is zero.
  • the projection matrix of the noise subspace of the n first signals can be obtained by the following formula:
  • T is the noise subspace projection transformation vector
  • is the noise subspace mapping matrix
  • H is the conjugate transpose
  • T can be composed of various orthogonal bases.
  • the ⁇ can be determined according to the channel information.
  • the spatial filtering processing of the N first clipping noises according to the spatial domain filter coefficients can be understood as: projecting n first clipping noises onto the noise subspace of the n first signals.
  • the obtained n second clipping noises can satisfy the following formula:
  • S 1 is a vector of n second clipping noises
  • N is a vector of n first clipping noises
  • F is a projection matrix of the noise subspace.
  • Projecting the clipping noise onto the noise subspace can suppress the interference of the clipping noise on the signal, that is, eliminate the interference of the clipping noise beam on the user beam.
  • step 230 the process of performing the cancellation processing on the n first signals according to the n second clipping noises may refer to the related content of the signal cancellation in the prior art, which is not limited in the embodiment of the present invention.
  • the first signal can be subtracted from its corresponding second clipping noise to obtain a second signal.
  • performing n cancellation processing on the n first signals according to the n second clipping noises to obtain n second signals may include: obtaining n second signals according to the following formula:
  • S' is a vector of n second signals
  • S 0 is a vector of n first signals
  • S 1 is a vector of n second clipping noises.
  • the interference of the clipping noise on the signal received by the signal end is subjected to zero-forcing processing, that is, the clipping noise projection To the noise subspace of the signal, it is possible to avoid clipping noise to the signal sub Signals in space cause interference.
  • the method 200 may further include performing out-of-band suppression processing on the n second clipping noises respectively to suppress out-of-band noise of the n clipping noises.
  • the out-of-band rejection processing is to perform zero-setting processing on the out-of-band noise of the n second clipping noises.
  • the signal clipping method may perform clipping processing on the baseband signal, and may also perform clipping processing on the intermediate frequency processed intermediate frequency signal.
  • the first signal in method 200 can be a baseband signal or an intermediate frequency signal.
  • the method 200 may further include:
  • the n second signals are subjected to cancellation processing according to the n third clipping noises, respectively.
  • the n second signals are respectively cancelled according to the n third clipping noises, including:
  • the n second signals are subjected to cancellation processing according to n fourth clipping noises, respectively.
  • the out-of-band noise can be filtered out, so that the signal spectrum obtained after the cancellation processing satisfies the protocol requirements.
  • the n signals obtained by the spatial clipping process are separately subjected to noise extraction processing to obtain n clipping noises; respectively, the n clipping noises are subjected to time domain filtering processing; and then the time domain filtering is performed.
  • Each of the clipping noises is subjected to cancellation processing on the respective delayed signals, and the clipping processing is completed.
  • the clipping process is hereinafter referred to as time domain clipping processing.
  • the time-domain clipping process may be performed on the signal after the air-wave clipping process to obtain a lower PAPR.
  • a signal clipping method according to an embodiment of the present invention will be described below by taking an OFDM signal as an example with reference to FIGS. 5 and 6.
  • the input signal is an OFDM signal
  • the input signal may be a baseband OFDM signal generated by precoding, Inverse Fast Fourier Transform (IFFT) and Cyclic Prefix (CP).
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • the intermediate frequency OFDM signal processed by the intermediate frequency is also not limited in this embodiment of the present invention.
  • the intermediate frequency processing can Including shaping filtering and upsampling processing, shaping and filtering the signal can reduce the out-of-band noise of the signal, and up-sampling the signal can improve the processing rate of the signal.
  • the channel estimation processing module extracts a downlink channel model under a multi-beam shaping architecture, and obtains a precoding parameter, calculates a projection matrix of the noise subspace of the signal according to the precoding parameter, and transmits the projection matrix as a spatial domain filter coefficient.
  • the antenna multi-beam shaping supports full digital shaping, full analog shaping, and digital plus analog hybrid shaping.
  • time domain clipping processing on the signal after the airshed clipping process, and complete all clipping processing.
  • the time domain clipping process can be referred to FIG. 4, and details are not described herein again.
  • the clipping noise may also be downsampled;
  • the clipping noise obtained by the spatial domain filtering is upsampled before the noise cancellation.
  • FIG. 7 is a schematic block diagram of a signal clipping device 700 in accordance with an embodiment of the present invention.
  • the signal clipping device 700 includes a first determining unit 710, a spatial filtering unit 720, and a first cancellation unit 730.
  • the first determining unit 710 is configured to determine n first clipping noises according to the first clipping threshold and the n first signals, where the n first signals and the n first clipping noises are in one-to-one correspondence, and n is greater than 1 and an integer less than or equal to t, t is a preset value.
  • the spatial filtering unit 720 is configured to perform spatial filtering processing on the n first clipping noises determined by the first determining unit to obtain n second clipping noises, and the spatial filtering processing is used to suppress n first clipping noises in n The noise in the direction of the airspace where the first signal is located.
  • the first cancellation unit 730 is configured to perform cancellation processing on the n first signals according to the n second clipping noises obtained by the spatial filtering unit to obtain n second signals.
  • the peak-to-average ratio of the signal after the cancellation processing is greatly reduced, thereby making the output efficiency of the power amplifier Get an effective boost.
  • the spatial filtering process effectively suppresses the noise in the spatial direction of the signal in the clipping noise, the signal received by the receiving end can be greatly reduced by the clipping noise.
  • the spatial domain filtering unit 720 is specifically configured to:
  • n first clipping noises are spatially filtered according to the spatial domain filter coefficients to obtain n second clipping noises.
  • S 1 is a vector of n second clipping noises
  • N is a vector of n first clipping noises
  • F is a projection matrix of the noise subspace.
  • T is a noise subspace projection transformation vector
  • is a noise subspace mapping diagonal matrix
  • () H represents a conjugate transpose
  • T can be composed of various orthogonal bases.
  • the signal clipping device 700 may further include:
  • the second determining unit 740 is configured to determine, according to the second clipping threshold and the n second signals obtained by the first cancellation unit 730, n third clipping noises, n second signals, and n third clipping noises One-to-one correspondence;
  • the second cancellation unit 750 is configured to perform cancellation processing on the n second signals according to the n third clipping noises determined by the second determining unit 740.
  • the signal clipping device 700 may be a multi-antenna transmitter, and the signal clipping device 700 may further include a transmitting unit for transmitting signals.
  • the first determining unit 710, the spatial domain filtering unit 720, the first cancellation unit 730, the second determining unit 740, and the second cancellation unit 750 may be implemented by a processor.
  • a signal clipping device 900 according to another embodiment of the present invention may include a processor 910.
  • the signal clipping device 900 may further include a memory 920 and a bus system 930, and the processor 910 and the memory 920 are connected by a bus system 930.
  • the memory 920 is used to store instructions or code or the like executed by the processor 910.
  • the bus system 930 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the signal clipping device 900 can also include a transmitter 940 for transmitting signals.
  • the signal clipping device 700 shown in FIG. 7 or FIG. 8 or the signal clipping device 900 shown in FIG. 9 can implement the various processes performed by the signal clipping device in the foregoing method embodiments. To avoid repetition, no further description is provided herein. .
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • Enhanced SDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection of dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or software. The form of the functional unit is implemented.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave. Then, coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例提供了一种信号削波方法和装置。该信号削波方法包括:根据第一削波门限和n个第一信号确定n个第一削波噪声,n个第一信号和n个第一削波噪声一一对应;对n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,空域滤波处理用于抑制n个第一削波噪声在n个第一信号所在空域方向上的噪声;根据n个第二削波噪声对n个第一信号进行对消处理,得到n个第二信号。通过对削波信号进行空域滤波处理,然后根据空域滤波处理得到的削波噪声对信号进行对消处理,能够使得发射机的功放输出效率得到有效提升。同时,由于空域滤波处理有效抑制了削波噪声中信号所在空域方向上的噪声,能够大大降低接收端接收到的信号受削波噪声的影响。

Description

信号削波方法和装置 技术领域
本发明涉及通信领域,尤其涉及信号削波方法和装置。
背景技术
传统发射机中波峰因子削减(Crest Factor Reduction,简称CFR,也可以称为削波)作为功率放大器线性化的一种方法被广泛使用。随着多输入多输出(Multiple Input Multiple Output,简称MIMO)技术的发展,多天线多通道的发射机成为了第五代(5-Generation,简称5G)无线通信技术演进的方向。未来MIMO无线发射机采用多波束赋形的方法来提升***的容量,增加了***的复杂度和功耗。为了提升多天线发射机的发射效率,需要提出一种该架构下的削波方法。
发明内容
本发明实施例提出了一种信号削波方法和装置,能够提升多天线发射机的发射效率。
第一方面,提供了一种信号削波方法,包括:根据第一削波门限和n个第一信号确定n个第一削波噪声,所述n个第一信号和所述n个第一削波噪声一一对应,n为大于1且小于等于t的整数,t为预设值;对所述n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,所述空域滤波处理用于抑制所述n个第一削波噪声中在所述n个第一信号所在空域方向上的噪声;根据所述n个第二削波噪声对所述n个第一信号进行对消处理,得到n个第二信号。
可选地,第一信号为经过预编码处理得到的信号。
通过根据对削波噪声进行空域滤波处理,然后根据空域滤波处理得到的削波噪声对发射信号进行对消处理,对消处理后信号的峰均比大大降低,使得功放输出效率得到有效提升,进而能够提升多天线发射机的发射效率。
同时,由于空域滤波处理有效抑制了削波噪声中信号所在空域方向上的噪声,能够大大降低接收端接收到的信号受削波噪声的影响。
结合第一方面,在第一方面的第一种可能的实现方式中,所述对所述n 个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,包括:计算所述n个第一信号的噪声子空间的投影矩阵,将所述投影矩阵作为空域滤波器系数;根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声。
n个第一信号所在空域方向即为n个第一信号的发射波束方向。
对所述n个第一削波噪声进行空域滤波处理可以理解为,将所述n个第一削波噪声投影到n个第一信号的噪声子空间上,这样可以避免削波噪声对信号子空间上的信号造成干扰。
可选地,所述n个第一信号的噪声子空间的投影矩阵的得到可以满足以下公式:
F=TΛTH
其中,F为噪声子空间的投影矩阵,T为噪声子空间投影变换向量,Λ为噪声子空间映射矩阵,()H表示共轭转置,T可由各种正交基构成。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声满足以下公式:
S1=FN,
其中,S1为n个第二削波噪声向量,N为所述n个第一削波噪声的向量,F为噪声子空间的投影矩阵。
结合第一方面或第一方面的上述任一种可能的实现方式,在第一方面的第三种可能的实现方式中,还包括:根据第二削波门限和所述n个第二信号确定n个第三削波噪声,所述n个第二信号和所述n个第三削波噪声一一对应;根据所述n个第三削波噪声对所述n个第二信号进行对消处理。
通过对空域削波处理后的信号再次进行时域削波处理,能够获得更低的PAPR,从而提升发射机的射频功率放大器的效率。
可选地,根据n个第三削波噪声对n个第二信号进行对消处理,包括:对n个第三削波噪声进行时域滤波处理,得到的n个第四削波噪声;分别根据n个第四削波噪声对n个第二信号进行对消处理。
通过对削波噪声进行时域滤波处理,能够滤除带外噪声,使得对消处理后得到的信号频谱满足协议要求。
第二方面,提供了一种信号削波装置,所述信号削波装置用于执行第一 方面或第一方面的上述任一种可能的实现方式所述的信号削波方法。
具体地,所述信号削波装置包括:第一确定单元,用于根据第一削波门限和n个第一信号确定n个第一削波噪声,所述n个第一信号和所述n个第一削波噪声一一对应,n为大于1且小于等于t的整数,t为预设值;空域滤波单元,用于对所述第一确定单元确定的所述n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,所述空域滤波处理用于抑制所述n个第一削波噪声在所述n个第一信号所在空域方向上的噪声;第一对消单元,用于根据所述空域滤波但与得到的所述n个第二削波噪声对所述n个第一信号进行对消处理,得到n个第二信号。
结合第二方面,在第二方面的第一种可能的实现方式中,所述空域滤波单元具体用于:计算所述n个第一信号的噪声子空间的投影矩阵,将所述投影矩阵作为空域滤波器系数;根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声。
结合第二方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声满足以下公式:
S1=FN,
其中,S1为n个第二削波噪声向量,N为所述n个第一削波噪声的向量,F为所述噪声子空间的投影矩阵。
结合第二方面或第二方面的上述任一种可能的实现方式,在第二方面的第三种可能的实现方式中,还包括:第二确定单元,用于根据第二削波门限和所述n个第二信号确定n个第三削波噪声,所述N个第二信号和所述n个第三削波噪声一一对应;第二对消单元,用于根据所述第二确定单元确定的所述n个第三削波噪声对所述N个第二信号进行对消处理。
第三方面,提供了一种信号削波装置,包括处理器,所述处理器用于执行第一方面或第一方面的上述任一种可能的实现方式所述的信号削波方法。
可选地,还包括:存储器和总线***,所述处理器和所述存储器通过所述总线***相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,并执行所述存储器中存储的指令使得所述信号削波装置执行第一方面或第一方面的上述任一种可能的实现方式所述的信号削波方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质 存储一个或多个程序,所述一个或多个程序包括指令,所述指令当被信号削波装置执行时,使所述信号削波装置执行第一方面或第一方面的上述任一种可能的实现方式所述的信号削波方法。
附图说明
图1是MIMO***的示意图;
图2是根据本发明实施例的信号削波方法的示意性流程图;
图3是根据本发明实施例的信号削波方法的另一示意性流程图;
图4是根据本发明另一实施例的信号削波方法的示意性流程图;
图5是根据本发明另一实施例的信号削波方法的示意性流程图;
图6是根据本发明另一实施例的信号削波方法的示意性流程图;
图7是根据本发明实施例的信号削波装置的示意性框图;
图8是根据本发明另一实施例的信号削波装置的示意性框图;
图9是根据本发明另一实施例的信号削波装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例的技术方案,可以应用于各种通信***,例如:码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***等。
图1是MIMO***的示意图。如图1所示,发射端包括X个天线,接收端包括Y个天线。发射端的X路信号经X个天线发射出去,经空间信道后由接收端的Y个接收天线接收,由于信道之间存在干扰,可以在发射端对信号进行预编码处理,例如对信号进行迫零预编码(即迫零波束成形)处理,这样能够避免信道之间的干扰对信号的影响。
另外,由于发射端利用功率放大器发射信号,而具有高峰均比的信号会降低功率放大器的效率并增加功率消耗,因此可以对预编码后的信号进行削波处理,降低信号的峰值平均功率比(Peak to Average Power Ratio,简称PAPR),提高功率放大器的功率和输出功率。但是,对信号进行削波处理会在信号中引入削波噪声,而削波噪声会对接收端接收到的信号造成干扰。因此,本发明实施例提出了一种信号削波方法,通过对削波噪声进行空域滤波处理,能够抑制信号所在空域方向上的噪声,进而降低削波噪声对接收端接收到的信号的影响。
图2所示为根据本发明实施例的信号削波方法200的示意性流程图。信号削波方法100可以由信号削波装置执行。可选地,信号削波装置可以为多天线发射机。
如图2所示,信号削波方法200包括如下内容。
210、根据第一削波门限和n个第一信号确定n个第一削波噪声,n个第一信号和n个第一削波噪声一一对应,n为大于1且小于等于t的整数,t为预设值。
例如,将第一信号和第一削波门限进行比较,提取出第一信号中高于第一削波门限的部分作为第一削波噪声。
第一信号可以为经过预编码处理得到的信号。例如,第一信号S0=PS,其中S为预编码处理之前的信号向量,P为迫零波束成形矩阵,P是基于迫零算法根据信道估计确定的,P为上行信道矩阵H的伪逆P=pinv(H),函数pinv()表示求矩阵的伪逆矩阵。
这里,迫零算法用于抑制信道矩阵引起的干扰,通常使用信道矩阵的伪逆矩阵作为线性滤波器。
在一些实施例中,可以根据***需求设置t的值,本发明实施例对此不做限定。
在一些实施例中,t还可以为天线端口数。
天线端口可以为传输通道的逻辑端口,也可以为用于发射的物理天线端口。天线端口的定义还可以参考协议(例如3GPP TS 36.211,或其相关以及演进标准,如未来的5G标准)中的相关定义,本发明实施例对此不做限定。
220、对n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,该空域滤波处理用于抑制n个第一削波噪声中在n个第一信号所在空域方向 上的噪声。
n个第一信号所在空域方向即为n个第一信号的发射波束方向。每个第一削波噪声会对n个第一信号中的每个第一信号造成干扰。
对n个第一削波噪声进行空域滤波处理后,能够抑制n个第一削波噪声在n个第一信号所在空域方向上的噪声,即能够避免n个第一削波噪声对n个第一信号中的任一第一信号造成干扰,即能够抑制削波噪声对信号的影响。
230、分别根据n个第二削波噪声对n个第一信号进行对消处理,得到n个第二信号。
经过对消处理之后,能够降低信号的峰均比,从而提升发射机的发射效率。
如图3所示,分别对n个信号进行噪声提取处理,得到n个削波噪声;并对该n个削波噪声进行空域滤波处理;然后将空域滤波处理后得到的各个削波噪声分别与各自对应的经延时后的信号进行对消处理,完成削波处理。为便于描述,下文将该削波处理称为空域削波处理。
本发明实施例中,通过对削波噪声进行空域滤波处理,然后根据空域滤波处理得到的削波噪声对信号进行对消处理,对消处理后信号的峰均比大大降低,从而使得功放输出效率得到有效提升。同时,由于空域滤波处理有效抑制了削波噪声中信号所在空域方向上的噪声,能够大大降低接收端接收到的信号受削波噪声的影响。
可选地,220中对n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声包括:
计算n个第一信号的噪声子空间的投影矩阵,将该投影矩阵作为空域滤波器系数;
根据该空域滤波器系数对n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声。
具体地,可以根据信道信息确定n个第一信号的噪声子空间的投影矩阵(即空域滤波器系数),该信道信息为用于传输n个第一信号的信道的信息。
其中信道信息可以是多波束赋形架构下的信道信息,天线多波束赋形包括全数字赋形、全模拟赋形以及数字加模拟混合赋形。可以通过信道估计确定该信道信息。
信号空间可以包括相互正交的信号子空间和噪声子空间。应注意,噪声子空间不是由噪声决定的,而是由信号决定的。信号在信号子空间的投影最大,信号在噪声子空间的投影为零。
确定n个第一信号的噪声子空间的投影矩阵的过程可以参考现有技术的相关内容,本发明实施例对此不做限定。
例如,n个第一信号的噪声子空间的投影矩阵的得到可以满足以下公式:
F=TΛTH
其中,F为噪声子空间的投影矩阵,T为噪声子空间投影变换向量,Λ为噪声子空间映射矩阵,()H表示共轭转置,T可由各种正交基构成。
根据信道信息可以确定Λ,具体过程可以参考现有技术的相关过程,本发明实施例在此省略了相应描述。
根据空域滤波器系数对N个第一削波噪声进行空域滤波处理可以理解为:将n个第一削波噪声投影到n个第一信号的噪声子空间上。
可选地,n个第二削波噪声的得到可以满足以下公式:
S1=FN,
其中,S1为n个第二削波噪声的向量,N为n个第一削波噪声的向量,F为噪声子空间的投影矩阵。
将削波噪声投影到噪声子空间上能够抑制削波噪声对信号的干扰,即消除削波噪声波束对用户波束的干扰。
在步骤230中,根据n个第二削波噪声对n个第一信号进行对消处理的过程,可以参考现有技术中的信号对消的相关内容,本发明实施例对此不做限定。
例如,可以将第一信号与其对应的第二削波噪声相减,得到第二信号。
相应地,根据n个第二削波噪声对n个第一信号进行对消处理,得到n个第二信号,可以包括:根据以下公式得到n个第二信号:
S′=S0-S1
其中,S'为n个第二信号的向量,S0为n个第一信号的向量,S1为n个第二削波噪声的向量。
本发明实施例中,为了抑制削波噪声对信号端接收的信号的干扰,通过采用迫零算法的思想,将削波噪声对信号端接收的信号的干扰进行迫零处理,即将削波噪声投影到信号的噪声子空间上,能够避免削波噪声对信号子 空间上的信号造成干扰。
可选地,在220之后,方法200还可以包括:分别对n个第二削波噪声进行带外抑制处理,以分别抑制n个削波噪声的带外噪声。
具体地,带外抑制处理是将n个第二削波噪声的带外噪声进行置零处理。
应理解,根据本发明实施例的信号削波方法可以对基带信号进行削波处理,也可以对中频处理后的中频信号进行削波处理。换句话说,方法200中的第一信号可以为基带信号,也可以为中频信号。
可选地,方法200还可以包括:
根据第二削波门限和n个第二信号确定n个第三削波噪声,n个第二信号和分别n个第三削波噪声一一对应;
分别根据n个第三削波噪声对n个第二信号进行对消处理。
可选地,分别根据n个第三削波噪声对n个第二信号进行对消处理,包括:
对n个第三削波噪声进行时域滤波处理,得到的n个第四削波噪声;
分别根据n个第四削波噪声对n个第二信号进行对消处理。
通过对削波噪声进行时域滤波处理,能够滤除带外噪声,使得对消处理后得到的信号频谱满足协议要求。
如图4所示,对空域削波处理得到的n个信号分别进行噪声提取处理,得到n个削波噪声;分别对该n个削波噪声进行时域滤波处理;然后将时域滤波得到的各个削波噪声分别于各自对应的经延时的信号进行对消处理,完成削波处理。为便于描述,下文将该削波处理称为时域削波处理。
通过对空域削波处理后的信号再次进行时域削波处理,能够获得更低的PAPR,从而提升发射机的射频功率放大器的效率。
应理解,本发明实施例中还可以对空域削波处理后的信号进行多次时域削波处理,以获得更低的PAPR。
下面结合图5和图6,以OFDM信号为例描述根据本发明实施例的信号削波方法。
假设输入信号为OFDM信号,应注意,该输入信号可以为经预编码、快速傅里叶逆变换(Inverse Fast Fourier Transform,简称IFFT)和加循环前缀(Cyclic Prefix,简称CP)生成的基带OFDM信号,还可以为经中频处理后的中频OFDM信号,本发明实施例对此不作限定。其中,中频处理可以 包括成型滤波和上采样处理,对信号进行成型滤波处理能够降低信号的带外噪声,对信号进行上采样处理能够提高信号的处理速率。
首先,信道估计处理模块在多波束赋形架构下提取下行信道模型,并获取预编码参数,根据该预编码参数计算信号的噪声子空间的投影矩阵,将该投影矩阵作为空域滤波器系数传给中频处理。这里天线多波束赋形支持全数字赋形、全模拟赋形以及数字加模拟混合赋形。
501、分别对n个输入信号进行削波噪声提取处理,获取n个削波噪声;
502、分别对n个削波噪声进行去CP和快速傅里叶变换(Fast Fourier Transform,简称FFT)变换处理,得到频域的N个削波噪声;
503、对频域的n个削波噪声做空域滤波处理;
504、分别将空域滤波处理后得到的n个削波噪声进行IFFT变换和加CP处理;
505、分别将经IFFT变换和加CP处理后得到的n个信号与各自对应的经延时的信号进行噪声对消处理,完成空域削波处理;
506、将空域削波处理后的信号进行时域削波处理,完成全部的削波处理。其中,时域削波处理可以参考图4所示,在此不再赘述。
可选地,如果输入信号为经中频处理后得到的中频OFDM信号,则如图6所示,在对输入信号进行噪声提取处理得到削波噪声之后,还可以对削波噪声进行降采样处理;相应地,在噪声对消之前,对经空域滤波得到的削波噪声进行上采样处理。
上文描述了根据本发明实施例的信号削波方法,下面将结合图7至图9描述根据本发明实施例的信号削波装置。
图7是根据本发明实施例的信号削波装置700的示意性框图。如图7所示,信号削波装置700包括第一确定单元710、空域滤波单元720和第一对消单元730。
第一确定单元710用于根据第一削波门限和n个第一信号确定n个第一削波噪声,n个第一信号和所述n个第一削波噪声一一对应,n为大于1且小于等于t的整数,t为预设值。
空域滤波单元720用于对第一确定单元确定的n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,空域滤波处理用于抑制n个第一削波噪声在n个第一信号所在空域方向上的噪声。
第一对消单元730用于根据空域滤波单元得到的n个第二削波噪声对n个第一信号进行对消处理,得到n个第二信号。
本发明实施例中,通过对削波噪声进行空域滤波处理,然后根据空域滤波处理得到的削波噪声对信号进行对消处理,对消处理后信号的峰均比大大降低,从而使得功放输出效率得到有效提升。
同时,由于空域滤波处理有效抑制了削波噪声中信号所在空域方向上的噪声,能够大大降低接收端接收到的信号受削波噪声的影响。
可选地,空域滤波单元720具体用于:
计算n个第一信号的噪声子空间的投影矩阵,将该投影矩阵作为空域滤波器系数;
根据空域滤波器系数对n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声。
可选地,根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声满足以下公式:
S1=FN,
其中,S1为n个第二削波噪声的向量,N为n个第一削波噪声的向量,F为噪声子空间的投影矩阵。
具体地,F=TΛTH,T为噪声子空间投影变换向量,Λ为噪声子空间映射对角阵,()H表示共轭转置,T可由各种正交基构成。
可选地,如图8所示,信号削波装置700还可以包括:
第二确定单元740,用于根据第二削波门限和第一对消单元730得到的n个第二信号确定n个第三削波噪声,n个第二信号和n个第三削波噪声一一对应;
第二对消单元750,用于根据第二确定单元740确定的n个第三削波噪声对n个第二信号进行对消处理。
通过对空域削波处理后的信号再次进行时域削波处理,能够获得更低的PAPR,从而提升发射机的射频功率放大器的效率。
可选地,信号削波装置700可以为多天线发射机,则信号削波装置700还可以包括发送单元,用于发送信号。
应注意,本发明实施例中,第一确定单元710、空域滤波单元720、第一对消单元730、第二确定单元740和第二对消单元750可以由处理器实现。 如图9所示,本发明另一实施例的信号削波装置900可以包括处理器910。
可选地,信号削波装置900还可以包括存储器920和总线***930,处理器910和存储器920通过总线***930相连。存储器920用于存储处理器910执行的指令或代码等。总线***930除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。
可选地,信号削波装置900还可以包括发送器940,用于发送信号。
图7或图8所示的信号削波装置700或图9所示的信号削波装置900能够实现前述方法实施例中由信号削波装置所执行的各个过程,为避免重复,这里不再赘述。
应注意,本发明上述方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic  RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件 功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(英文Digital Subscriber Line,简称DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种信号削波方法,其特征在于,包括:
    根据第一削波门限和n个第一信号确定n个第一削波噪声,所述n个第一信号和所述n个第一削波噪声一一对应,n为大于1且小于等于t的整数,t为预设值;
    对所述n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,所述空域滤波处理用于抑制所述n个第一削波噪声在所述n个第一信号所在空域方向上的噪声;
    根据所述n个第二削波噪声对所述n个第一信号进行对消处理,得到n个第二信号。
  2. 根据权利要求1所述的信号削波方法,其特征在于,所述对所述n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,包括:
    计算所述n个第一信号的噪声子空间的投影矩阵,并将所述投影矩阵作为空域滤波器系数;
    根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声。
  3. 根据权利要求2所述的信号削波方法,其特征在于,所述根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声,满足以下公式:
    S1=FN,
    其中,S1为所述n个第二削波噪声的向量,N为所述n个第一削波噪声的向量,F为所述噪声子空间的投影矩阵。
  4. 根据权利要求1至3中任一项所述的信号削波方法,其特征在于,还包括:
    根据第二削波门限和所述n个第二信号确定n个第三削波噪声,所述n个第二信号和所述n个第三削波噪声一一对应;
    根据所述n个第三削波噪声对所述n个第二信号进行对消处理。
  5. 一种信号削波装置,其特征在于,包括:
    第一确定单元,用于根据第一削波门限和n个第一信号确定n个第一削 波噪声,所述n个第一信号和所述n个第一削波噪声一一对应,n为大于1且小于等于t的整数,t为预设值;
    空域滤波单元,用于对所述第一确定单元确定的所述n个第一削波噪声进行空域滤波处理,得到n个第二削波噪声,所述空域滤波处理用于抑制所述n个第一削波噪声在所述n个第一信号所在空域方向上的噪声;
    第一对消单元,用于根据所述空域滤波单元得到的所述n个第二削波噪声对所述n个第一信号进行对消处理,得到n个第二信号。
  6. 根据权利要求5所述的信号削波装置,其特征在于,所述空域滤波单元具体用于:
    计算所述n个第一信号的噪声子空间的投影矩阵,将所述投影矩阵作为空域滤波器系数;
    根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声。
  7. 根据权利要求6所述的信号削波装置,其特征在于,根据所述空域滤波器系数对所述n个第一削波噪声进行空域滤波处理,得到所述n个第二削波噪声满足以下公式:
    S1=FN,
    其中,S1为所述n个第二削波噪声的向量,N为所述n个第一削波噪声的向量,F为所述噪声子空间的投影矩阵。
  8. 根据权利要求5至7中任一项所述的信号削波装置,其特征在于,还包括:
    第二确定单元,用于根据第二削波门限和所述第一对消单元得到的所述n个第二信号确定n个第三削波噪声,所述n个第二信号和所述n个第三削波噪声一一对应;
    第二对消单元,用于根据所述第二确定单元确定的所述n个第三削波噪声对所述n个第二信号进行对消处理。
PCT/CN2016/100327 2016-09-27 2016-09-27 信号削波方法和装置 WO2018058302A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100327 WO2018058302A1 (zh) 2016-09-27 2016-09-27 信号削波方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/100327 WO2018058302A1 (zh) 2016-09-27 2016-09-27 信号削波方法和装置

Publications (1)

Publication Number Publication Date
WO2018058302A1 true WO2018058302A1 (zh) 2018-04-05

Family

ID=61762327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100327 WO2018058302A1 (zh) 2016-09-27 2016-09-27 信号削波方法和装置

Country Status (1)

Country Link
WO (1) WO2018058302A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070029307A (ko) * 2005-09-09 2007-03-14 엘지노텔 주식회사 다중 fa를 사용하는 통신시스템의 적응형 cfr
CN101321146A (zh) * 2007-12-28 2008-12-10 华为技术有限公司 多载波正交频分复用***中峰均比抑制的方法和装置
EP2043316A1 (en) * 2007-09-28 2009-04-01 Lucent Technologies Inc. A method for peak limiting of transmit power for radio transmission, a transmitter, a base station, a mobile station and a communication network therefor
CN101867541A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种信号波峰削除的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070029307A (ko) * 2005-09-09 2007-03-14 엘지노텔 주식회사 다중 fa를 사용하는 통신시스템의 적응형 cfr
EP2043316A1 (en) * 2007-09-28 2009-04-01 Lucent Technologies Inc. A method for peak limiting of transmit power for radio transmission, a transmitter, a base station, a mobile station and a communication network therefor
CN101321146A (zh) * 2007-12-28 2008-12-10 华为技术有限公司 多载波正交频分复用***中峰均比抑制的方法和装置
CN101867541A (zh) * 2009-04-20 2010-10-20 大唐移动通信设备有限公司 一种信号波峰削除的方法及设备

Similar Documents

Publication Publication Date Title
CN111901263B (zh) 无线信号补偿方法、数值确定方法及装置、设备、介质
KR20160131400A (ko) 풀 듀플렉스 방식을 지원하는 통신 시스템에서 자기 간섭 신호 제거 장치 및 방법
KR102094726B1 (ko) Ofdm 신호의 papr 저감 방법 및 장치, 송신 장치
Sharifian et al. Linear precoding for PAPR reduction of GFDMA
WO2018228426A1 (zh) 用于信道估计的方法和设备
EP3598708B1 (en) Signal quality control method and base station
Valluri et al. Joint channel mitigation and side information estimation for GFDM systems in indoor environments
Ivanov et al. Unused beam reservation for PAPR reduction in massive MIMO system
WO2020211578A1 (zh) 参考信号发送方法和装置
CN112997459B (zh) Mimo-ofdm的papr降低
CN114745789A (zh) 信号传输的方法及其装置
Jungmann et al. Room impulse response reshaping by joint optimization of multiple p-norm based criteria
WO2018058302A1 (zh) 信号削波方法和装置
WO2018024064A1 (zh) 信号传输的方法和装置
US11929773B2 (en) Method and control device for mitigating interference
Wu Iterative compressive sensing for the cancellation of clipping noise in underwater acoustic OFDM system
Arun Prem Santh et al. Improved PAPR reduction using gamma correction in SC-FDMA systems under multipath fading channels
Babaroglu et al. Cellular digital post-distortion: Signal processing methods and rf measurements
WO2018049674A1 (zh) 信号处理方法和信号处理装置
Liu et al. Enhanced non-orthogonal waveform (eNOW) for 5G evolution and 6G
KR101837609B1 (ko) Gfdm 시스템 기반의 필터 파형 설계 방법
Seifert et al. Soft-PIC frequency-domain equalization in iterative MIMO receivers for the LTE-A uplink
WO2021000711A1 (zh) 符号处理的方法与装置
CN107800446B (zh) 通信中的信号处理方法和设备
Al-Kamali et al. Regularized MIMO equalization for SC-FDMA systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917062

Country of ref document: EP

Kind code of ref document: A1