WO2018056506A1 - Voltage source converter comprising hybrid active filter - Google Patents

Voltage source converter comprising hybrid active filter Download PDF

Info

Publication number
WO2018056506A1
WO2018056506A1 PCT/KR2016/013086 KR2016013086W WO2018056506A1 WO 2018056506 A1 WO2018056506 A1 WO 2018056506A1 KR 2016013086 W KR2016013086 W KR 2016013086W WO 2018056506 A1 WO2018056506 A1 WO 2018056506A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
valve
series transformer
active filter
power
Prior art date
Application number
PCT/KR2016/013086
Other languages
French (fr)
Korean (ko)
Inventor
김찬기
이성두
최순호
강지원
민재현
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2018056506A1 publication Critical patent/WO2018056506A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a voltage converter comprising a hybrid active filter.
  • HVDC systems are divided into current type HVDC systems using thyristor valves and voltage type HVDC systems using Insulated Gate Bipolar mode Transistor (IGBT) devices.
  • IGBT Insulated Gate Bipolar mode Transistor
  • Voltage-type HVDC system using IGBT (Insulated Gate Bipolar mode Transistor) power semiconductor device can control the active power and reactive power at the same time, and the size of the harmonic filter can be relatively small compared to the current type HVDC system. .
  • Voltage-type HVDC systems have the disadvantage of large switching losses due to the use of IGBT devices, but recently, voltage-type HVDC employing modular multi-level converters (MMCs) where switching losses are close to current-type HVDC systems. The system is being studied.
  • MMCs modular multi-level converters
  • MMCs can easily implement high voltages and produce sinusoidal output waveforms without increasing switching frequency.
  • the preliminary module can be mounted on each phase to prepare for a failure, the reliability is excellent.
  • AC power corresponding to twice the power frequency is inevitably present in each phase to generate a circulating current in the MMC.
  • the circulating current is a component to be removed because it increases the electrical capacity of the MMC and increases the capacitor voltage ripple.
  • a voltage converter capable of suppressing a circulating current and effectively removing harmonic components by a hybrid active filter is provided.
  • a voltage converter is a voltage converter that converts AC power into DC power or DC power into AC power, at least one valve connected to the first DC line and the second DC line; And a hybrid active filter connected to the valve, wherein the hybrid active filter comprises: a series transformer coupled in series with the valve; A manual filter unit connected to both ends of the series transformer; A voltage inverter for applying a compensation voltage for suppressing circulating current to the series transformer; And a controller controlling the voltage inverter.
  • the voltage converter according to an embodiment of the present invention can suppress circulating current and effectively remove harmonic components by a hybrid active filter.
  • FIG. 1 is a block diagram illustrating an example of an HVDC system including a voltage converter.
  • FIG. 2 is a block diagram illustrating an example of an MMC.
  • FIG. 3 is a block diagram illustrating an example of an MMC including a hybrid active filter.
  • FIG. 4 is a block diagram illustrating an example of a hybrid active filter.
  • FIG. 5 to 7 are waveform diagrams of simulations performed by the voltage converter according to an exemplary embodiment of the present invention.
  • FIG. 5 is a waveform diagram of current measured in submodule 1 of FIG. 3
  • FIG. 7 is a waveform diagram of measured voltages
  • FIG. 7 is a waveform diagram of currents measured by an upper arm and a lower arm of a voltage converter.
  • FIG. 1 is a block diagram illustrating an example of an HVDC system.
  • an HVDC system includes a first transformer T1, a first converter VSC1, a second converter VSC2, and a second transformer T2.
  • the first transformer T1 is connected to an AC system to transform the first AC power, and the first converter VSC1 converts the transformed AC power to DC power.
  • the converted DC power is transmitted to the second converter VSC2, the second converter VSC2 converts the DC power to the second AC power, and the second transformer T2 is converted in the second converter VSC2. Transform the AC power.
  • the first converter VSC1 serves as a rectifier in the HVDC system
  • the second converter VSC2 serves as an inverter in the HVDC system.
  • the first converter VSC1 and the second converter VSC2 may be voltage-source converters that boost or step down voltage.
  • the first converter VSC1 and the second converter VSC2 may be Modular Multi-Level Convertors (MMCs), which will be described with reference to FIG. 2.
  • MMCs Modular Multi-Level Convertors
  • the output voltage waveform of the voltage converter may include harmonic distortion, and the harmonic distortion may cause distortion in the AC power and interfere with normal system operation.
  • FIG. 2 is a block diagram illustrating an example of an MMC of an HVDC system.
  • the MMC includes a first valve V1 corresponding to one phase. Since the second and third valves V2 and V3 corresponding to the other two phases may be formed in the same form as the first valve V1, redundant description thereof will be omitted.
  • the first valve V1 includes an upper arm Arm-a1 and a lower arm Arm-a2 connected between the first DC line DC cable1 and the second DC line DC cable2.
  • the upper arm Arm1 and the lower arm Arm2 each include a plurality of N submodules SM1 to SMn connected in series.
  • the sub-modules SM1 to SMn may each include a plurality of Insulated Gate Bipolar mode Transistors (IGBTs) and capacitors.
  • IGBTs Insulated Gate Bipolar mode Transistors
  • FIG. 2 illustrates a half bridge type submodule including two IGBTs S1 and S2 and a capacitor CS.
  • the present disclosure is not limited thereto, and various embodiments, such as a full bridge submodule and a clamp double submodule, are included in the present disclosure.
  • the half bridge submodule includes two IGBTs S1 and S2, diodes D1 and D2 connected in reverse directions to each IGBT, and a capacitor CS connected across two IGBTs S1 and S2.
  • the valve may include a bypass switch SB for bypassing the path so that the valve may operate except for the sub module including the burned out IGBT.
  • it may include a parallel thyristor (SCR) that serves as a passage of the fault current when a fault such as a short circuit occurs.
  • SCR parallel thyristor
  • the submodule when one IGBT of the two IGBTs is ON, the other IGBT is OFF. According to the ON / OFF operation and the current direction, a capacitor voltage or zero voltage is formed at the output terminal of the submodule.
  • a voltage difference may exist in each arm due to a difference in the DC voltages of the DC lines 1 and DC cable 2 and the capacitor voltage of the sub module, and the current having an AC component at the voltage difference is twice the fundamental wave frequency. It is a circulating current that circulates inside the MMC with frequency (i.e., second harmonic component).
  • an MMC including a hybrid active filter will be described as an example of a voltage converter employing a hybrid active filter to suppress such a circulating current with reference to FIG. 3.
  • FIG. 3 is a block diagram illustrating an example of an MMC including a hybrid active filter.
  • the MMC is at least one valve connected between a first DC line 1 and a second DC line 2, and includes a first valve V1 and the first valve V1. ) Is connected to the hybrid active filter. . Since the second and third valves V2 and V3 may be formed in the same form as the first valve V1, redundant description thereof will be omitted.
  • the hybrid active filter includes a series transformer 110, a passive filter unit 210, a voltage inverter 300, and a controller 400.
  • the hybrid active filter may further include an active filter unit 510.
  • the series transformer 110 may be coupled in series with the first valve V1 to inject a compensation voltage into the first valve V1.
  • the series transformer serves to match the rating of the first valve V1 and the voltage inverter 300 and to separate the voltage inverter 300 from the power source.
  • the turn ratio of the series transformer 110 may be set through an optimization process through simulation.
  • the number of turns of the voltage inverter 300 may be set to be several times larger than the number of turns of the valve side. .
  • the series transformer 110 connection type may be three-phase transformer or three single-phase transformer. Three single-phase transformers coupled to each valve can prevent distortion of the compensation voltage due to the phase coupling of the transformers.
  • the passive filter unit 210 is connected to both ends of the series transformer 110. Specifically, between the upper arm Arm-a1 of the first valve V1 and the series transformer 110, and between the lower arm Arm-a2 of the first valve V1 and the series transformer 110. Reactors La1 and La2 connected to the capacitor and a capacitor Ca1 connected in parallel with the reactors may be included.
  • the voltage inverter 300 applies compensation voltages Vah, Vbh, and Vch for suppressing circulating current to the series transformer.
  • the voltage inverter 300 is switched and controlled by a control signal from the controller 400. As shown in FIG. 3, eight operations are performed according to the switching states of the switches T1 to T8 that output compensation voltages Vah, Vbh, and Vch corresponding to three phases and complementarily operate corresponding to each phase. May have a mode.
  • the controller 400 outputs a control signal to the switches T1 to T8 of the inverter.
  • the controller can receive the voltage and current at the valve side (ie, primary side of the series transformer).
  • the controller 400 will be described in more detail with reference to FIG. 4.
  • the active filter unit 510 is connected between the series transformer 110 voltage inverter 300.
  • the active filter unit 510 removes the switching ripple component of the compensation voltage output from the voltage inverter 300.
  • the active filter unit 510 may be an LC low pass filter including an inductor and a capacitor.
  • FIG. 4 is a block diagram illustrating an example of a hybrid active filter.
  • the hybrid active filter is coupled to three valves each having an upper arm and a lower arm.
  • the controller 400 may include a compensator 410 and a comparator 420.
  • the compensator 410 receives the voltages Va, Vb, and Vc and the currents Ia, Ib, and Ic at the primary sides of the series transformers 110, 120, and 130 to receive compensation reference voltages Vca, Vcb, and Vcc. You can print
  • the compensator 410 calculates the fundamental wave balance voltage of the voltages Va, Vb, and Vc of the primary side, and then calculates the active and reactive power by calculating with the currents Ia, Ib, and Ic of the primary side. Can be obtained. Subsequently, a voltage component for compensation is calculated based on the active power and reactive power, and the compensation voltage is added by adding the voltage components for compensation to the difference between the voltages Va, Vb, and Vc of the primary side and the fundamental wave balance voltage. (Vca, Vcb, Vcc) can be output.
  • the comparator 420 may compare the compensation reference voltages Vca, Vcb, and Vcc with a triangular wave, and output the comparison result as a control signal for controlling the voltage inverter 300.
  • the control signal is a switch (T2, T4, T6) of the lower stage of the voltage inverter 300 corresponding to when the switch (T1, T3, T5) of the upper stage of the voltage inverter 300 is turned on Can be turned off.
  • the compensation voltage output from the voltage inverter 300 may be applied to the corresponding series transformer 110, 120, 130 through the ripple filter unit 510, 520, 530 corresponding to each valve.
  • FIG. 5 to 7 are waveform diagrams of simulations performed by the voltage converter according to an exemplary embodiment of the present invention.
  • FIG. 5 is a waveform diagram of current measured in submodule 1 of FIG. 3, and FIG. It is a waveform diagram of the measured voltage, and
  • FIG. 7 is a waveform diagram of the current measured by the upper arm of the voltage converter.
  • the current measured by the submodule 1 shows a waveform from which the second harmonic is removed after a time ta at which the hybrid active filter starts operation.
  • the voltage measured by the sub-module 1 shows a waveform from which the second harmonic is removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A voltage source converter according to an embodiment of the present invention is a voltage source converter for converting alternating current power into direct current power or direct current power into alternating current power, and comprises: at least one valve connected to a first direct current line and a second direct current line; and a hybrid active filter connected to the valve, wherein the hybrid active filter comprises: a series transformer coupled in series with the valve; a passive filter unit connected to both ends of the series transformer; a voltage source inverter for applying a compensation voltage for suppressing a circulating current to the series transformer; and a controller for controlling the voltage source inverter.

Description

하이브리드 능동 필터를 포함하는 전압형 컨버터Voltage converters with hybrid active filter
본 발명은 하이브리드 능동 필터를 포함하는 전압형 컨버터에 관한 것이다.The present invention relates to a voltage converter comprising a hybrid active filter.
HVDC 시스템은 사이리스터 밸브를 이용하는 전류형 HVDC 시스템과 IGBT(Insulated Gate Bipolar mode Transistor) 소자를 이용하는 전압형 HVDC 시스템으로 구분된다.HVDC systems are divided into current type HVDC systems using thyristor valves and voltage type HVDC systems using Insulated Gate Bipolar mode Transistor (IGBT) devices.
전류형 HVDC 시스템은 사이리스터 밸브를 정류하기 위해 발전기나 동기조상기와 같은 회전기기가 인버터 측 계통에 필요하며, 무효전력 보상을 위한 커패시터 뱅크가 인버터 측이나 정류기(rectifier) 측에 존재해야 한다. 특히, 전류형 HVDC 시스템은 고조파 왜곡을 발생시키기 때문에 이를 제거하기 위한 고조파 필터가 필수적으로 필요하다.Current-type HVDC systems require a rotary device such as a generator or synchronous compensator on the inverter side to rectify the thyristor valve, and a capacitor bank for compensating reactive power must be present on the inverter side or rectifier side. In particular, since current-type HVDC systems generate harmonic distortion, a harmonic filter is necessary to remove them.
IGBT(Insulated Gate Bipolar mode Transistor) 전력용 반도체 소자를 이용한 전압형 HVDC 시스템은 유효전력과 무효전력을 동시에 제어 가능하고, 전류형 HVDC 시스템에 비해 고조파 필터의 크기가 상대적으로 작아 질 수 있다는 장점을 갖는다.Voltage-type HVDC system using IGBT (Insulated Gate Bipolar mode Transistor) power semiconductor device can control the active power and reactive power at the same time, and the size of the harmonic filter can be relatively small compared to the current type HVDC system. .
전압형 HVDC 시스템은 IGBT 소자를 이용하므로 스위칭 손실이 크다는 단점을 가지나, 최근에는 스위칭 손실이 전류형 HVDC 시스템에 근접하는 모듈형 멀티 레벨 컨버터(Modular Multi-Level Convertor: MMC) 를 채용하는 전압형 HVDC 시스템이 연구되고 있다.Voltage-type HVDC systems have the disadvantage of large switching losses due to the use of IGBT devices, but recently, voltage-type HVDC employing modular multi-level converters (MMCs) where switching losses are close to current-type HVDC systems. The system is being studied.
MMC는 고전압 구현이 용이하며, 스위칭 주파수 증가 없이 정현적인 출력파형을 만들 수 있다. 또한, 예비 모듈을 각 상에 장착하여 고장 발생에 대비할 수 있으므로 신뢰성이 우수하다. 그러나, 각 상마다 독립된 직류 전원을 갖는 회로적 특징으로 전원 주파수의 두 배에 해당하는 교류전력이 필연적으로 각 상에 존재하여 MMC 내에 순환전류가 발생한다.MMCs can easily implement high voltages and produce sinusoidal output waveforms without increasing switching frequency. In addition, since the preliminary module can be mounted on each phase to prepare for a failure, the reliability is excellent. However, due to the circuit characteristic of each phase having an independent DC power supply, AC power corresponding to twice the power frequency is inevitably present in each phase to generate a circulating current in the MMC.
순환전류는 MMC의 전류 용량 및 커패시터 전압 리플을 증가시켜 전기적 스트레스를 가중시키므로 제거되어야 할 성분이다.The circulating current is a component to be removed because it increases the electrical capacity of the MMC and increases the capacitor voltage ripple.
본 발명의 일 실시 예에 따르면, 하이브리드 능동 필터에 의해 순환전류를 억제하고 고조파 성분을 효과적으로 제거할 수 있는 전압형 컨버터가 제공된다.According to an embodiment of the present invention, a voltage converter capable of suppressing a circulating current and effectively removing harmonic components by a hybrid active filter is provided.
본 발명의 일 실시 예에 따른 전압형 컨버터는 교류전력을 직류전력으로 또는 직류전력을 교류전력으로 변환하는 전압형 컨버터로서, 제1 직류선로 및 제2 직류선로와 연결되는 적어도 하나의 밸브; 및 상기 밸브와 연결된 하이브리드 능동 필터를 포함하고, 상기 하이브리드 능동 필터는, 상기 밸브와 직렬로 결합된 직렬변압기; 상기 직렬변압기의 양단에 연결된 수동필터부; 순환전류 억제를 위한 보상전압을 상기 직렬변압기에 인가하는 전압형 인버터; 및 상기 전압형 인버터를 제어하는 제어기 포함한다.A voltage converter according to an embodiment of the present invention is a voltage converter that converts AC power into DC power or DC power into AC power, at least one valve connected to the first DC line and the second DC line; And a hybrid active filter connected to the valve, wherein the hybrid active filter comprises: a series transformer coupled in series with the valve; A manual filter unit connected to both ends of the series transformer; A voltage inverter for applying a compensation voltage for suppressing circulating current to the series transformer; And a controller controlling the voltage inverter.
본 발명의 일 실시 예에 따른 전압형 컨버터는 하이브리드 능동 필터에 의해 순환전류를 억제하고 고조파 성분을 효과적으로 제거할 수 있다.The voltage converter according to an embodiment of the present invention can suppress circulating current and effectively remove harmonic components by a hybrid active filter.
도 1은 전압형 컨버터를 포함하는 HVDC 시스템의 일 예를 나타내는 블록도이다.1 is a block diagram illustrating an example of an HVDC system including a voltage converter.
도 2는 MMC의 일 예를 나타내는 블록도이다.2 is a block diagram illustrating an example of an MMC.
도 3은 하이브리드 능동 필터를 포함하는 MMC의 일 예를 나타내는 블록도이다.3 is a block diagram illustrating an example of an MMC including a hybrid active filter.
도 4는 하이브리드 능동 필터의 일 예를 나타내는 블록도이다.4 is a block diagram illustrating an example of a hybrid active filter.
도 5 내지 도 7은 본 발명의 일 예에 따른 전압형 컨버터로 시뮬레이션을 수행한 파형도로서, 도 5는 도 3의 서브모듈 1에서 측정한 전류의 파형도이고, 도 6은 서브모듈 1에서 측정한 전압의 파형도이며, 도 7은 전압형 컨버터의 상부암과 하부암에서 측정한 전류의 파형도이다.5 to 7 are waveform diagrams of simulations performed by the voltage converter according to an exemplary embodiment of the present invention. FIG. 5 is a waveform diagram of current measured in submodule 1 of FIG. 3, and FIG. 7 is a waveform diagram of measured voltages, and FIG. 7 is a waveform diagram of currents measured by an upper arm and a lower arm of a voltage converter.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다.However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment.
또한, 어떤 구성 요소를 '포함'한다는 것은, 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있다는 것을 의미한다.In addition, "including" a certain component means that it may further include other components, without excluding other components, unless specifically stated otherwise.
도 1은 HVDC 시스템의 일 예를 나타내는 블록도이다.1 is a block diagram illustrating an example of an HVDC system.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 HVDC 시스템은 제1 변압기(T1), 제1 컨버터(VSC1), 제2 컨버터(VSC2), 제2 변압기(T2)를 포함한다.Referring to FIG. 1, an HVDC system according to an embodiment of the present invention includes a first transformer T1, a first converter VSC1, a second converter VSC2, and a second transformer T2.
제1 변압기(T1)는 교류 계통과 연계되어 제1 교류전력을 변압하고, 제1 컨버터(VSC1)는 변압된 교류전력을 직류전력으로 변환한다. 변환된 직류전력은 제2 컨버터(VSC2)로 송전되고, 제2 컨버터(VSC2)는 상기 직류전력을 제2 교류전력으로 변환하고, 제2 변압기(T2)는 상기 제2 컨버터(VSC2)에서 변환된 교류전력을 변압한다.The first transformer T1 is connected to an AC system to transform the first AC power, and the first converter VSC1 converts the transformed AC power to DC power. The converted DC power is transmitted to the second converter VSC2, the second converter VSC2 converts the DC power to the second AC power, and the second transformer T2 is converted in the second converter VSC2. Transform the AC power.
제1 컨버터(VSC1)는 HVDC 시스템에서 정류기의 역할을 하고, 제2 컨버터(VSC2)는 HVDC 시스템에서 인버터의 역할을 한다. 제1 컨버터(VSC1) 및 제2 컨버터(VSC2)는 전압을 승압 또는 강압하는 전압형 컨버터(Voltage-Source Converter)일 수 있다. 일 예로, 제1 컨버터(VSC1) 및 제2 컨버터(VSC2)는 MMC(Modular Multi-Level Convertor)일 수 있고, 이에 대하여 도 2를 참조하여 설명하기로 한다.The first converter VSC1 serves as a rectifier in the HVDC system, and the second converter VSC2 serves as an inverter in the HVDC system. The first converter VSC1 and the second converter VSC2 may be voltage-source converters that boost or step down voltage. For example, the first converter VSC1 and the second converter VSC2 may be Modular Multi-Level Convertors (MMCs), which will be described with reference to FIG. 2.
이러한 전압형 컨버터의 출력 전압 파형에는 고조파 왜곡이 포함될 수 있고, 이러한 고조파 왜곡은 교류전력에 왜곡을 만들고 정상적인 시스템 운전이 방해될 수 있다.The output voltage waveform of the voltage converter may include harmonic distortion, and the harmonic distortion may cause distortion in the AC power and interfere with normal system operation.
도 2는 HVDC 시스템의 MMC의 일 예를 나타내는 블록도이다.2 is a block diagram illustrating an example of an MMC of an HVDC system.
MMC는 하나의 상(Phase)에 대응하는 제1 밸브(V1)를 포함한다. 다른 두 개의 상에 대응하는 제2 및 제3 밸브(V2, V3)는 제1 밸브(V1)와 동일한 형태로 이루어질 수 있으므로 중복되는 설명은 생략하기로 한다.The MMC includes a first valve V1 corresponding to one phase. Since the second and third valves V2 and V3 corresponding to the other two phases may be formed in the same form as the first valve V1, redundant description thereof will be omitted.
제1 밸브(V1)는 제1 직류선로(DC cable1) 및 제2 직류선로(DC cable2) 사이에 연결된 상부 암(Arm-a1) 및 하부 암(Arm-a2)을 포함한다. 상기 상부 암(Arm1) 및 하부 암(Arm2)은 각각 직렬 연결된 N개의 복수의 서브 모듈들(SM1 내지 SMn)을 포함한다. 또한, 상기 서브 모듈들(SM1 내지 SMn)은 각각 복수의 IGBT(Insulated Gate Bipolar mode Transistor)와 커패시터를 포함할 수 있다.The first valve V1 includes an upper arm Arm-a1 and a lower arm Arm-a2 connected between the first DC line DC cable1 and the second DC line DC cable2. The upper arm Arm1 and the lower arm Arm2 each include a plurality of N submodules SM1 to SMn connected in series. In addition, the sub-modules SM1 to SMn may each include a plurality of Insulated Gate Bipolar mode Transistors (IGBTs) and capacitors.
일 예로, 도 2에는 두 개의 IGBT(S1, S2) 및 커패시터(CS)를 포함하는 하프 브리지형 서브 모듈을 도시하였다. 그러나, 이에 한정되는 것은 아니고 풀 브리지형 서브 모듈, 클램프 더블형 서브 모듈 등 다양한 실시 예가 본 발명에 포함된다.For example, FIG. 2 illustrates a half bridge type submodule including two IGBTs S1 and S2 and a capacitor CS. However, the present disclosure is not limited thereto, and various embodiments, such as a full bridge submodule and a clamp double submodule, are included in the present disclosure.
상기 하프 브리지 서브 모듈은 두 개의 IGBT(S1, S2), 각 IGBT와 역방향으로 연결된 다이오드(D1, D2), 및 두 개의 IGBT(S1, S2) 양단에 연결된 커패시터(CS)로 구성된다. 또한, 하나의 서브 모듈에 포함된 IGBT가 소손되는 경우 밸브가 소손된 IGBT를 포함하는 서브 모듈을 제외하고 동작할 수 있도록 경로를 바이패스하는 바이패스 스위치(SB)를 포함할 수 있다. 또한, 단락 등의 고장이 발생시 고장전류의 통로 역할을 하는 병렬 싸이리스터(SCR)를 포함할 수 있다.The half bridge submodule includes two IGBTs S1 and S2, diodes D1 and D2 connected in reverse directions to each IGBT, and a capacitor CS connected across two IGBTs S1 and S2. In addition, when the IGBT included in one sub module is burned out, the valve may include a bypass switch SB for bypassing the path so that the valve may operate except for the sub module including the burned out IGBT. In addition, it may include a parallel thyristor (SCR) that serves as a passage of the fault current when a fault such as a short circuit occurs.
서브 모듈의 동작을 살피면, 상기 두 개의 IGBT 중 하나의 IGBT가 ON 동작시 다른 하나의 IGBT가 OFF 동작한다. 이러한 ON/OFF 동작과 전류방향에 따라 커패시터의 전압 또는 영 전압이 서브 모듈의 출력 터미널에 형성된다. Looking at the operation of the submodule, when one IGBT of the two IGBTs is ON, the other IGBT is OFF. According to the ON / OFF operation and the current direction, a capacitor voltage or zero voltage is formed at the output terminal of the submodule.
이때, 직류선로(DC cable1, DC cable2)와 상기 서브 모듈의 커패시터 전압의 차이에 의하여 각각의 암에 전압 차이가 존재할 수 있고, 상기 전압 차이에서 교류 성분을 가지는 전류는 기본파 주파수의 두 배의 주파수(즉, 2차 고조파 성분)를 가지고 MMC 내부를 순환하는 순환전류이다.In this case, a voltage difference may exist in each arm due to a difference in the DC voltages of the DC lines 1 and DC cable 2 and the capacitor voltage of the sub module, and the current having an AC component at the voltage difference is twice the fundamental wave frequency. It is a circulating current that circulates inside the MMC with frequency (i.e., second harmonic component).
이하, 도 3을 참조하여 이러한 순환전류를 억제하기 위해 하이브리드 능동 필터를 채용한 전압형 컨버터의 일 예로서, 하이브리드 능동 필터를 포함하는 MMC를 설명하기로 한다.Hereinafter, an MMC including a hybrid active filter will be described as an example of a voltage converter employing a hybrid active filter to suppress such a circulating current with reference to FIG. 3.
도 3은 하이브리드 능동 필터를 포함하는 MMC의 일 예를 나타내는 블록도이다.3 is a block diagram illustrating an example of an MMC including a hybrid active filter.
도 3을 참조하면, MMC는 제1 직류선로(DC cable1) 및 제2 직류선로(DC cable2) 사이에 연결된 적어도 하나의 밸브로서, 제1 밸브(V1)를 포함하고, 상기 제1 밸브(V1)는 하이브리드 능동 필터와 연결된다. . 제2 및 제3 밸브(V2, V3)는 제1 밸브(V1)와 동일한 형태로 이루어질 수 있으므로 중복되는 설명은 생략하기로 한다.Referring to FIG. 3, the MMC is at least one valve connected between a first DC line 1 and a second DC line 2, and includes a first valve V1 and the first valve V1. ) Is connected to the hybrid active filter. . Since the second and third valves V2 and V3 may be formed in the same form as the first valve V1, redundant description thereof will be omitted.
상기 하이브리드 능동 필터는 직렬변압기(110), 수동필터부(210), 전압형 인버터(300), 제어기(400)를 포함한다. 또한, 상기 하이브리드 능동 필터는 능동필터부(510)를 더 포함할 수 있다.The hybrid active filter includes a series transformer 110, a passive filter unit 210, a voltage inverter 300, and a controller 400. In addition, the hybrid active filter may further include an active filter unit 510.
상기 직렬변압기(110)는 상기 제1 밸브(V1)와 직렬로 결합되어 보상 전압을 제1 밸브(V1)에 주입할 수 있다. 직렬변압기는 제1 밸브(V1)와 전압형 인버터(300)의 정격을 정합하고, 전압형 인버터(300)를 전원으로부터 분리하는 역할을 갖는다. The series transformer 110 may be coupled in series with the first valve V1 to inject a compensation voltage into the first valve V1. The series transformer serves to match the rating of the first valve V1 and the voltage inverter 300 and to separate the voltage inverter 300 from the power source.
직렬변압기(110)의 권수비는 시뮬레이션을 통한 최적화 과정을 통해 설정될 수 있다. 일반적으로 전압형 인버터(300)로부터 출력되는 보상전압(Vah, Vbh, Vch)은 밸브의 전압보다 작으므로, 전압형 인버터(300)측 권선수를 밸브측 권선수를 수 배 이상 크게 설정할 수 있다.The turn ratio of the series transformer 110 may be set through an optimization process through simulation. In general, since the compensation voltages Vah, Vbh, and Vch output from the voltage inverter 300 are smaller than the voltage of the valve, the number of turns of the voltage inverter 300 may be set to be several times larger than the number of turns of the valve side. .
MMC가 3개의 밸브를 포함하는 경우 직렬변압기(110) 결선형태는 3상 변압기 또는 단상 변압기 3개가 될 수 있다. 각각의 밸브에 결합된 단상 변압기 3개는 변압기의 상간 결합에 의한 보상전압의 왜곡을 방지할 수 있다.When the MMC includes three valves, the series transformer 110 connection type may be three-phase transformer or three single-phase transformer. Three single-phase transformers coupled to each valve can prevent distortion of the compensation voltage due to the phase coupling of the transformers.
수동필터부(210)는 상기 직렬변압기(110)의 양단에 연결된다. 구체적으로, 제1 밸브(V1)의 상부 암(Arm-a1)과 상기 직렬변압기(110)의 사이, 및 1 밸브(V1)의 하부 암(Arm-a2)과 상기 직렬변압기(110)의 사이에 연결된 리액터들(La1, La2) 및 상기 리액터들과 병렬 연결된 커패시터(Ca1)를 포함할 수 있다.The passive filter unit 210 is connected to both ends of the series transformer 110. Specifically, between the upper arm Arm-a1 of the first valve V1 and the series transformer 110, and between the lower arm Arm-a2 of the first valve V1 and the series transformer 110. Reactors La1 and La2 connected to the capacitor and a capacitor Ca1 connected in parallel with the reactors may be included.
전압형 인버터(300)는 순환전류 억제를 위한 보상전압(Vah, Vbh, Vch)을 상기 직렬변압기에 인가한다. 상기 전압형 인버터(300)는 제어기(400)로부터의 제어신호에 의해 스위칭 제어된다. 도 3에 도시된 바와 같이 세 개의 상에 대응하는 보상전압(Vah, Vbh, Vch)을 출력하고, 각 상에 대응하여 상보적으로 동작하는 스위치(T1 내지 T8)의 스위칭 상태에 따라 8개의 동작모드를 가질 수 있다.The voltage inverter 300 applies compensation voltages Vah, Vbh, and Vch for suppressing circulating current to the series transformer. The voltage inverter 300 is switched and controlled by a control signal from the controller 400. As shown in FIG. 3, eight operations are performed according to the switching states of the switches T1 to T8 that output compensation voltages Vah, Vbh, and Vch corresponding to three phases and complementarily operate corresponding to each phase. May have a mode.
제어기(400)는 인버터의 스위치(T1 내지 T8)에 제어신호를 출력한다. 이를 위해 제어기는 밸브측(즉, 직렬변압기의 1차측)의 전압 및 전류를 입력받을 수 있다. 제어기(400)에 대하여 도 4를 참조하여 보다 자세히 설명하기로 한다.The controller 400 outputs a control signal to the switches T1 to T8 of the inverter. For this purpose, the controller can receive the voltage and current at the valve side (ie, primary side of the series transformer). The controller 400 will be described in more detail with reference to FIG. 4.
능동필터부(510)는 직렬변압기(110) 전압형 인버터(300) 사이에 연결된다. 상기 능동필터부(510)는 전압형 인버터(300)가 출력하는 보상전압의 스위칭 리플성분을 제거하는 역할을 한다. 구체적으로, 능동필터부(510)는 인덕터와 커패시터를 포함하는 LC 저역통과필터가 될 수 있다.The active filter unit 510 is connected between the series transformer 110 voltage inverter 300. The active filter unit 510 removes the switching ripple component of the compensation voltage output from the voltage inverter 300. Specifically, the active filter unit 510 may be an LC low pass filter including an inductor and a capacitor.
이에 따라, 직렬변압기(110)의 누설 인덕턴스에 고조파 성분의 전압이 유기되는 것을 방지할 수 있다.Accordingly, it is possible to prevent the voltage of harmonic components from being induced in the leakage inductance of the series transformer 110.
도 4는 하이브리드 능동 필터의 일 예를 나타내는 블록도이다.4 is a block diagram illustrating an example of a hybrid active filter.
도 4를 참조하면, 하이브리드 능동 필터는 각각 상위 암과 하위 암을 가지는 세 개의 밸브에 결합되어 있다.Referring to Figure 4, the hybrid active filter is coupled to three valves each having an upper arm and a lower arm.
제어기(400)는 보상기(410) 및 비교기(420)를 포함할 수 있다.The controller 400 may include a compensator 410 and a comparator 420.
상기 보상기(410)는 직렬변압기(110, 120, 130)의 1차측의 전압(Va, Vb, Vc) 및 전류(Ia, Ib, Ic)를 입력 받아 보상기준전압(Vca, Vcb, Vcc)를 출력할 수 있다. The compensator 410 receives the voltages Va, Vb, and Vc and the currents Ia, Ib, and Ic at the primary sides of the series transformers 110, 120, and 130 to receive compensation reference voltages Vca, Vcb, and Vcc. You can print
일 예로, 보상기(410)는 상기 1차측의 전압(Va, Vb, Vc)의 기본파 균형 전압을 계산한 후 상기 1차측의 전류(Ia, Ib, Ic)와 연산하여 유효전력 및 무효전력을 획득할 수 있다. 이후, 상기 유효전력 및 무효전력에 기초하여 보상을 위한 전압 성분을 계산하고, 1차측의 전압(Va, Vb, Vc)과 기본파 균형 전압의 차이에 상기 보상을 위한 전압 성분을 합하여 보상기준전압(Vca, Vcb, Vcc)을 출력할 수 있다.For example, the compensator 410 calculates the fundamental wave balance voltage of the voltages Va, Vb, and Vc of the primary side, and then calculates the active and reactive power by calculating with the currents Ia, Ib, and Ic of the primary side. Can be obtained. Subsequently, a voltage component for compensation is calculated based on the active power and reactive power, and the compensation voltage is added by adding the voltage components for compensation to the difference between the voltages Va, Vb, and Vc of the primary side and the fundamental wave balance voltage. (Vca, Vcb, Vcc) can be output.
상기 비교기(420) 보상기준전압(Vca, Vcb, Vcc)을 삼각파와 비교하고, 비교결과를 전압형 인버터(300)를 제어하는 제어신호로서 출력할 수 있다.The comparator 420 may compare the compensation reference voltages Vca, Vcb, and Vcc with a triangular wave, and output the comparison result as a control signal for controlling the voltage inverter 300.
상기 제어신호는 상기 전압형 인버터(300)의 윗 단의 스위치(T1, T3, T5)가 온 동작하면 경우 이에 대응하는 전압형 인버터(300)의 아랫 단의 스위치(T2, T4, T6)가 오프 동작하도록 할 수 있다.The control signal is a switch (T2, T4, T6) of the lower stage of the voltage inverter 300 corresponding to when the switch (T1, T3, T5) of the upper stage of the voltage inverter 300 is turned on Can be turned off.
또한, 상기 전압형 인버터(300)에서 출력되는 보상전압은 각각의 밸브에 대응하는 리플필터부(510, 520, 530)을 통해 대응하는 직렬변압기(110, 120, 130)에 인가될 수 있다.In addition, the compensation voltage output from the voltage inverter 300 may be applied to the corresponding series transformer 110, 120, 130 through the ripple filter unit 510, 520, 530 corresponding to each valve.
도 5 내지 도 7은 본 발명의 일 예에 따른 전압형 컨버터로 시뮬레이션을 수행한 파형도로서, 도 5는 도 3의 서브모듈 1에서 측정한 전류의 파형도이고, 도 6은 서브모듈 1에서 측정한 전압의 파형도이며, 도 7은 전압형 컨버터의 상부암에서 측정한 전류의 파형도이다.5 to 7 are waveform diagrams of simulations performed by the voltage converter according to an exemplary embodiment of the present invention. FIG. 5 is a waveform diagram of current measured in submodule 1 of FIG. 3, and FIG. It is a waveform diagram of the measured voltage, and FIG. 7 is a waveform diagram of the current measured by the upper arm of the voltage converter.
도 5를 참조하면, 하이브리드 능동 필터가 동작을 시작하는 시점(ta) 이후에 서브모듈 1(SM1, 도 3)에서 측정한 전류가 2차 고조파가 제거된 파형을 보이는 것을 확인할 수 있다.Referring to FIG. 5, it can be seen that the current measured by the submodule 1 (SM1, FIG. 3) shows a waveform from which the second harmonic is removed after a time ta at which the hybrid active filter starts operation.
도 6을 참조하면, 하이브리드 능동 필터가 동작을 시작하는 시점(tb) 이후에 서브모듈 1(SM1, 도 3)에서 측정한 전압이 2차 고조파가 제거된 파형을 보이는 것을 확인할 수 있다.Referring to FIG. 6, it can be seen that the voltage measured by the sub-module 1 (SM1, FIG. 3) after the time tb at which the hybrid active filter starts its operation shows a waveform from which the second harmonic is removed.
도 7을 참조하면, 하이브리드 능동 필터가 동작을 시작하는 시점(tc) 이후에 전압형 컨버터의 3개의 밸브 각각의 상부암에 흐르는 전류가 2차 고조파가 제거된 파형을 보이는 것을 확인할 수 있다.Referring to FIG. 7, it can be seen that the current flowing through the upper arm of each of the three valves of the voltage converter after the hybrid active filter starts operation tc shows a waveform from which the second harmonic is removed.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고 후술하는 특허청구범위에 의해 한정되며, 본 발명의 구성은 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 그 구성을 다양하게 변경 및 개조할 수 있다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 쉽게 알 수 있다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, but is defined by the claims below, and the configuration of the present invention may be modified in various ways without departing from the technical spirit of the present invention. It will be apparent to those skilled in the art that the present invention may be changed and modified.

Claims (7)

  1. 교류전력을 직류전력으로 또는 직류전력을 교류전력으로 변환하는 전압형 컨버터로서,A voltage converter that converts AC power into DC power or DC power into AC power,
    제1 직류선로 및 제2 직류선로와 연결되는 적어도 하나의 밸브; 및At least one valve connected to the first DC line and the second DC line; And
    상기 밸브와 연결된 하이브리드 능동 필터를 포함하고,A hybrid active filter connected with the valve,
    상기 하이브리드 능동 필터는, The hybrid active filter,
    상기 밸브와 직렬로 결합된 직렬변압기;A series transformer coupled in series with the valve;
    상기 직렬변압기의 양단에 연결된 수동필터부;A manual filter unit connected to both ends of the series transformer;
    순환전류 억제를 위한 보상전압을 상기 직렬변압기에 인가하는 전압형 인버터; 및A voltage inverter for applying a compensation voltage for suppressing circulating current to the series transformer; And
    상기 전압형 인버터를 제어하는 제어기A controller for controlling the voltage inverter
    를 포함하는 전압형 컨버터.Voltage converter including a.
  2. 제1항에 있어서,The method of claim 1,
    상기 전압형 컨버터는 서로 직렬 연결된 복수의 서브 모듈을 포함하는 모듈형 멀티 레벨 컨버터(Modular Multi-Level Convertor; MMC)인 HVDC 시스템.The voltage converter is a Modular Multi-Level Converter (MMC) including a plurality of sub-modules connected in series with each other.
  3. 제2항에 있어서,The method of claim 2,
    상기 복수의 서브 모듈은 각각 복수의 IGBT(Insulated Gate Bipolar mode Transistor)와 커패시터를 포함하는 HVDC 시스템.The plurality of sub-modules each comprises a plurality of Insulated Gate Bipolar mode Transistor (IGBT) and a capacitor.
  4. 제1항에 있어서, 상기 하이브리드 능동 필터는, The method of claim 1, wherein the hybrid active filter,
    상기 직렬 변압기와 상기 전압형 인버터 사이에 연결되는 리플필터부를 더 포함하는 전압형 컨버터.And a ripple filter unit connected between the series transformer and the voltage inverter.
  5. 제4항에 있어서, 상기 리플필터부는The method of claim 4, wherein the ripple filter unit
    상기 보상전압의 스위칭 리플성분을 제거하는 LC 저역통과필터인 전압형 컨버터.And a LC low pass filter for removing the switching ripple component of the compensation voltage.
  6. 제1항에 있어서,The method of claim 1,
    상기 밸브는 상부 암(arm) 및 하부 암을 포함하고,The valve comprises an upper arm and a lower arm,
    상기 직렬변압기는 상기 상부 암 및 상기 하부 암 사이에서 결합된 전압형 컨버터.And the series transformer is coupled between the upper arm and the lower arm.
  7. 제1항에 있어서, 상기 제어기는,The method of claim 1, wherein the controller,
    상기 직렬변압기의 1차측 전압 및 전류를 입력받아 보상기준전압을 출력하는 보상기; 및A compensator for receiving a primary voltage and a current of the series transformer and outputting a compensation reference voltage; And
    상기 보상기준전압을 삼각파와 비교하고 비교결과를 상기 전압형 인버터를 제어하는 제어신호로서 출력하는 비교기A comparator for comparing the compensation reference voltage with a triangular wave and outputting a comparison result as a control signal for controlling the voltage inverter
    를 포함하는 전압형 컨버터.Voltage converter including a.
PCT/KR2016/013086 2016-09-23 2016-11-14 Voltage source converter comprising hybrid active filter WO2018056506A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160122361A KR101862615B1 (en) 2016-09-23 2016-09-23 Voltage source converter including hybrid active filter
KR10-2016-0122361 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018056506A1 true WO2018056506A1 (en) 2018-03-29

Family

ID=61689571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013086 WO2018056506A1 (en) 2016-09-23 2016-11-14 Voltage source converter comprising hybrid active filter

Country Status (2)

Country Link
KR (1) KR101862615B1 (en)
WO (1) WO2018056506A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586328A (en) * 2018-11-20 2019-04-05 国网重庆市电力公司电力科学研究院 Trend can two-way flow economical single-ended cascade Hybrid HVDC system
CN110212798A (en) * 2019-06-24 2019-09-06 上海电力学院 A kind of circulation inhibition method of Modular multilevel converter
CN110212799A (en) * 2019-06-24 2019-09-06 上海电力学院 Passive backstepping control method for suppression module multi-level converter circulation
CN110750126A (en) * 2019-12-11 2020-02-04 合肥本源量子计算科技有限责任公司 Multi-channel voltage source suitable for low-temperature environment
CN114050584A (en) * 2021-10-28 2022-02-15 国家电网有限公司 Flexible direct current conversion system with passive filtering and parameter setting method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509788B (en) * 2020-04-26 2022-08-09 太原理工大学 Improved alternating current-direct current hybrid micro-grid with variable topology and control method thereof
CN111541265B (en) * 2020-06-11 2022-04-12 南方电网科学研究院有限责任公司 Converter station debugging method adopting single-station bipolar back-to-back operation mode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038641A (en) * 2012-09-21 2014-03-31 한국전력공사 Hybrid active filter
KR20160012381A (en) * 2014-07-24 2016-02-03 전남대학교산학협력단 Hybrid HVDC converter having modular multilevel converter
US20160049880A1 (en) * 2013-08-29 2016-02-18 Korea Electric Power Corporation High-voltage direct current converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010057532A1 (en) 2008-11-21 2010-05-27 Abb Technology Ag Power converter with multi-level voltage output and harmonics filter
KR101410731B1 (en) 2013-02-13 2014-06-24 한국전기연구원 Method for suppressing circulating currents from modular multi-level converter based high voltage direct-current system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038641A (en) * 2012-09-21 2014-03-31 한국전력공사 Hybrid active filter
US20160049880A1 (en) * 2013-08-29 2016-02-18 Korea Electric Power Corporation High-voltage direct current converter
KR20160012381A (en) * 2014-07-24 2016-02-03 전남대학교산학협력단 Hybrid HVDC converter having modular multilevel converter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONG JUNG-WON ET AL.: "Switching level operation analysis of MMC based back to back converter for HVDC application", THE TRANSACTIONS OF THE KOREAN INSTITUTE OF ELECTRONICAL ENGINEERS, vol. 62, no. 9, September 2013 (2013-09-01), pages 1240 - 1248, XP055603706, ISSN: 1975-8359, DOI: 10.5370/KIEE.2013.62.9.1240 *
KIM DONG HEE ET AL.: "Performance Improvement using auxiliary converter on HVDC system", THE TRANSACTION OF THE KOREAN INSTITUTE OF ELECTRONICAL ENGINEERS, vol. 58, no. 2, February 2009 (2009-02-01), pages 217 - 224 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109586328A (en) * 2018-11-20 2019-04-05 国网重庆市电力公司电力科学研究院 Trend can two-way flow economical single-ended cascade Hybrid HVDC system
CN110212798A (en) * 2019-06-24 2019-09-06 上海电力学院 A kind of circulation inhibition method of Modular multilevel converter
CN110212799A (en) * 2019-06-24 2019-09-06 上海电力学院 Passive backstepping control method for suppression module multi-level converter circulation
CN110212798B (en) * 2019-06-24 2020-12-22 上海电力学院 Circulating current restraining method of modular multilevel converter
CN110750126A (en) * 2019-12-11 2020-02-04 合肥本源量子计算科技有限责任公司 Multi-channel voltage source suitable for low-temperature environment
CN110750126B (en) * 2019-12-11 2023-02-03 合肥本源量子计算科技有限责任公司 Multi-channel voltage source suitable for low-temperature environment
CN114050584A (en) * 2021-10-28 2022-02-15 国家电网有限公司 Flexible direct current conversion system with passive filtering and parameter setting method
CN114050584B (en) * 2021-10-28 2024-03-08 国家电网有限公司 Flexible direct current conversion system with passive filtering and parameter setting method

Also Published As

Publication number Publication date
KR101862615B1 (en) 2018-05-31
KR20180032978A (en) 2018-04-02

Similar Documents

Publication Publication Date Title
WO2018056506A1 (en) Voltage source converter comprising hybrid active filter
WO2015030359A1 (en) High-voltage direct current converter
Friedrich Modern HVDC PLUS application of VSC in modular multilevel converter topology
KR101507560B1 (en) Configurable hybrid converter circuit
EP0852425B1 (en) Power converter and power converting method
US9847737B2 (en) Modular multilevel converter leg with flat-top PWM modulation, converter and hybrid converter topologies
WO2012163841A1 (en) A voltage source converter for a hvdc transmission system
EP2755317A1 (en) Voltage source converter comprising a chain-link converter
US20160141962A1 (en) Converter
CN111900884A (en) Power electronic transformation equipment of direct current distribution network and control method thereof
CN103427653A (en) High-voltage DC-DC conversion device
WO2021010570A1 (en) Dc-dc converter of power conversion system
CN105897004B (en) A kind of electric power electric transformer topological structure of more level DC bus self-balancings
CN107947599A (en) Electronic power convertor
CN106026685A (en) Topological structure of three-phase power electronic transformer employing low-fluctuation DC bus capacitors
CN112952791B (en) DC power flow controller
Eremia et al. VSC–HVDC Transmission
CN104883084B (en) A kind of neutral point clamp type cascaded H-bridges mixed multi-level current transformer
US11677335B2 (en) Method for operating a power converter
WO2019059510A1 (en) Inverter system
CN215498755U (en) Clamp type five-level voltage source converter
WO2021040355A2 (en) Intelligent transformer topology in which small power converter is added to conventional distribution transformer
JPH11252992A (en) Power converter
WO2023146282A1 (en) Power solid-state transformer module and transformer using same
WO2017116083A1 (en) Npc conversion device and npc conversion method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916879

Country of ref document: EP

Kind code of ref document: A1