WO2018056282A1 - Sliding component, sliding structure, and method for sliding sliding structure - Google Patents

Sliding component, sliding structure, and method for sliding sliding structure Download PDF

Info

Publication number
WO2018056282A1
WO2018056282A1 PCT/JP2017/033812 JP2017033812W WO2018056282A1 WO 2018056282 A1 WO2018056282 A1 WO 2018056282A1 JP 2017033812 W JP2017033812 W JP 2017033812W WO 2018056282 A1 WO2018056282 A1 WO 2018056282A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding
component
less
sliding component
sliding surface
Prior art date
Application number
PCT/JP2017/033812
Other languages
French (fr)
Japanese (ja)
Inventor
久保田 邦親
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2018525492A priority Critical patent/JP6422044B2/en
Publication of WO2018056282A1 publication Critical patent/WO2018056282A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a sliding component used in various sliding environments such as a piston ring and a cam lobe incorporated in an internal combustion engine.
  • the present invention also relates to a sliding structure such as an internal combustion engine configured by incorporating these sliding parts, and a sliding method of the sliding structure.
  • the sliding parts that make up the sliding structure such as piston rings, cam lobes, tappets, piston pins, cylinder liners, mission gears, thrust plates and vanes, which are constituent parts of internal combustion engines, are made of JIS steel as materials.
  • SUJ2 and SKD11 which have been used have been used.
  • a press die having improved wear resistance by imparting excellent sliding characteristics (self-lubricating characteristics) to the material by improving the component composition of the material Patent Document 1.
  • the press die disclosed in Patent Document 1 has excellent wear resistance due to its self-lubricating properties.
  • the sliding form on the sliding surface is severe, such as repeated reciprocating sliding at a high speed under high surface pressure, unlike a press die or the like.
  • the sliding with the same counterpart part is repeated at high speed, or the sliding is repeated a plurality of times at high speed in a short time. Therefore, the sliding component has been required to further improve the sliding characteristics.
  • An object of the present invention is to provide a sliding component having excellent sliding characteristics. And it is providing the sliding structure provided with this sliding component, and the sliding method of a sliding structure.
  • the present invention in mass%, C: 0.1-1.6%, Si: 0.1-3.0%, Mn: 0.1-3.0%, P: 0.06% or less, S : 0.01 to 0.12%, Cu: 0.1 to 1.0%, the sliding component having the balance of Fe and impurities, and the above sliding after heating to 500 ° C in the air
  • the sliding component contains Cu having a component composition on the sliding surface of the component of 2.0 to 10.0 atomic%.
  • the component composition of the above-mentioned sliding component is mass%, and further, Ni: 1.5% or less, Cr: 13.0% or less, and Mo and W in the relational expression of (Mo + 1 / 2W) 1 type or 2 types: 1.7% or less, V: 0.7% or less, Al: 0.7% or less, and Nb: 0.3% or less may be included.
  • the hardness of the sliding surface of the sliding component is preferably 40 to 64 HRC.
  • the present invention provides a sliding component configured such that the sliding component of the present invention described above slides on the sliding surface of the mating component in an environment where lubricating oil is present on the sliding surface of the sliding component.
  • the mating part is a sliding structure made of a metal material.
  • the lubricating oil is a sliding structure containing a hydrocarbon-based lubricating oil.
  • the present invention provides a sliding method for a sliding structure in which the sliding component and the mating component are slid in an environment in which lubricating oil is interposed on the sliding surface of the sliding component with the mating component.
  • the above-mentioned counterpart component is a sliding method of a sliding structure made of a metal material.
  • the sliding method is a sliding structure in which the lubricating oil includes a hydrocarbon-based lubricating oil.
  • the sliding characteristics of the sliding component can be improved.
  • the sliding component of the present invention is, in mass%, C: 0.1 to 1.6%, Si: 0.1 to 3.0%, Mn: 0.1 to 3.0%, P: It has a component composition of 0.06% or less, S: 0.01 to 0.12%, Cu: 0.1 to 1.0%, the balance Fe and impurities.
  • the sliding component of the present invention is characterized by “a point containing both S and Cu” which greatly contributes to the expression of the self-lubricating property.
  • S and Cu are elements that are not actively added in most steel materials because they are elements that inhibit the hot workability of steel materials.
  • the effect of the component composition of the sliding component of the present invention will be described.
  • C 0.1 to 1.6% by mass (hereinafter simply referred to as “%”)
  • C is an element that dissolves in the base and imparts strength to the sliding component. Moreover, it is an element which forms carbide and enhances the wear resistance and seizure resistance of the sliding component.
  • C is set to 0.1 to 1.6%. Preferably it is 0.2% or more. More preferably, it is 0.4% or more. More preferably, it is 0.7% or more. Particularly preferably, it is 0.9% or more. Moreover, it is preferably 1.3% or less. More preferably, it is 1.1% or less.
  • Si is an element that improves the high temperature softening resistance property of the sliding component.
  • Si is 0.1 to 3.0%.
  • it is 0.2% or more. More preferably, it is 0.3% or more. More preferably, it is 0.5% or more. Particularly preferably, it is 0.9% or more.
  • it is preferably 2.0% or less. More preferably, it is 1.5% or less. More preferably, it is 1.1% or less.
  • Mn is an element that enhances hardenability. However, if too much, the machinability deteriorates. Therefore, Mn is set to 0.1 to 3.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. More preferably, it is 0.4% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.6% or less. More preferably, it is 0.5% or less.
  • P is an element that can be inevitably contained even if it is not added. And it is an element which inhibits the toughness of a sliding component. Therefore, it is 0.06% or less. Preferably it is 0.05% or less. More preferably, the content is 0.03% or less. More preferably, it is 0.02% or less.
  • ⁇ S: 0.01-0.12% S is an element that contributes to the improvement of the self-lubricating property of the sliding component of the present invention together with Cu described later.
  • This inventor investigated the phenomenon which has arisen on the sliding surface, when using the sliding component which has a component composition of patent document 1 in the environment where lubricating oil intervened in the sliding surface. As a result, during this use, when the sliding surfaces of the sliding part and the mating part come into contact with each other at such a high surface pressure that the seizure occurs, organic components in the lubricating oil adsorbed on the sliding surface of the sliding part Has been dehydrogenated, and this has been found to change to substances such as diamond and graphite.
  • graphite intercalation compound having a crystal structure in which sulfate ions or sulfuric acid molecules are periodically sandwiched improves the self-lubricating properties of the sliding parts, and makes the sliding surfaces of each other It was found that the coefficient of friction can be kept low.
  • S in the sliding part is oxidized on the sliding surface in use to generate sulfate ions.
  • the generated sulfate ions are sandwiched between the graphite layers to promote the formation of the graphite intercalation compound.
  • the generated sulfate ions combine with the hydrogen ions generated by the dehydrogenation of the lubricating oil to form sulfuric acid molecules, which are sandwiched between the graphite layers to promote the formation of the graphite intercalation compounds. .
  • This increases the interplanar spacing of the graphite in the C-axis direction, suppresses the graphite from undergoing an allotropic transformation into diamond in a nano-level state, increases the degree of freedom of sliding, and improves the lubricity.
  • S is set to 0.01 to 0.12%. Preferably it is more than 0.03%. More preferably, it is 0.04% or more. More preferably, it is 0.05% or more. Moreover, Preferably it is 0.09% or less. More preferably, it is 0.08% or less.
  • Cu 0.1 to 1.0%
  • Cu is an element that contributes to the improvement of the self-lubricating characteristics of the sliding component of the present invention. That is, Cu is an element that exhibits a catalytic action for producing the above-mentioned “graphite intercalation compound”.
  • Cu can be concentrated on the sliding surface in a sliding part after quenching and tempering, and an extremely small amount can be deposited. Then, Cu deposited on the sliding surface is fixed by making sulfuric acid or sulfate ions CuSO 4 which could not be stored in the graphite intercalation compound, so that corrosion wear due to excessive addition as seen in extreme pressure additives can be prevented. Suppress.
  • Cu is made 0.1 to 1.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. Further, it is preferably 0.8% or less. More preferably, it is 0.6% or less. More preferably, it is 0.5% or less.
  • the counterpart component is preferably made of a metal material in that it can easily cope with mechanical characteristics that can withstand various sliding environments.
  • the metal material include various steels, cast iron, aluminum, and aluminum alloys. In the case of cast iron, spheroidal graphite cast iron is exemplified. And in the case of steel, SUJ2 and SKD11 which are JIS steel types can be used, for example. Or the metal material which satisfy
  • the hardness of the sliding surface of these mating parts can preferably be selected from the range of 40 to 64 HRC. More preferably, it is 45 HRC or more. More preferably, it is 50 HRC or more. Particularly preferred is 55 HRC or more. More preferably, it is 63 HRC or less. More preferably, it is 62 HRC or less. The above hardness is measured at “room temperature”.
  • component composition of the sliding component of the present invention can contain one or more elements of the following element types in addition to the above element types.
  • Ni 1.5% or less
  • Ni is an element that imparts excellent hardenability. Further, when it is contained together with Al described later, it is an element that contributes to maintaining the hardness of the sliding component by binding to Al and precipitating a Ni—Al-based intermetallic compound in the quenching and tempering step. However, if there is too much Ni, the machinability when processing into the shape of the sliding component in the annealed state before quenching and tempering deteriorates. Therefore, Ni can contain 1.5% or less as needed. Preferably it is 1.0% or less. More preferably, it is 0.8% or less. More preferably, it is 0.6% or less. Particularly preferably, it is 0.5% or less. Moreover, when it contains Ni, Preferably it is 0.3% or more. More preferably, it is 0.4% or more.
  • Cr is an element that enhances the hardenability of the matrix. Moreover, it is an element which forms the above-mentioned C and a carbide
  • Mo and W can be contained alone or in combination. The content at this time can be defined together by the Mo equivalent defined by the formula of (Mo + 1 / 2W) since W has an atomic weight approximately twice that of Mo. And Mo and W can contain 1.7% or less of the 1 type or 2 types by the value of (Mo + 1 / 2W) as needed. Preferably it is 1.5% or less. More preferably, it is 1.3% or less.
  • it is 1.2% or less. Moreover, when it contains Mo and W, Preferably it is 0.1% or more. More preferably, it is 0.4% or more. More preferably, it is 0.8% or more. Particularly preferably, it is 1.0% or more.
  • V 0.7% or less
  • V can be contained in order to improve hardenability.
  • carbonized_material containing excess V will inhibit machinability. Therefore, V can contain 0.7% or less as needed. Preferably it is 0.5% or less. More preferably, it is 0.3% or less. More preferably, it is 0.2% or less.
  • Al is used as a deoxidizer during steelmaking. And when it contains with said Ni, it is an element which couple
  • Nb can be contained for improving hardenability like V. However, excessive Nb content inhibits machinability. Therefore, Nb can contain 0.3% or less as needed. Preferably it is 0.2% or less. More preferably, it is 0.15% or less. In addition, when Nb is contained, it is preferably 0.03% or more. More preferably, it is 0.05% or more. More preferably, it is 0.07% or more.
  • Ca, Mg, O (oxygen), and N (nitrogen) are elements that may remain in the material as impurities. In the present invention, these elements are preferably as low as possible. However, on the other hand, a small amount may be contained in order to obtain additional functions and effects such as control of the shape of inclusions, other mechanical properties, and improvement of production efficiency. In this case, the range of Ca ⁇ 0.02%, Mg ⁇ 0.02%, O ⁇ 0.03%, and N ⁇ 0.05% can be sufficiently tolerated and is a preferable upper limit of regulation of the present invention.
  • the sliding component of the present invention has a component composition of the sliding surface of the sliding component containing 2.0 to 10.0 atomic% Cu in a state after being heated to 500 ° C. in the atmosphere. It is a waste.
  • a graphite intercalation compound is formed on the sliding surface of a sliding component in use, the sliding characteristics of the sliding component can be improved.
  • Cu contained in the sliding component has a catalytic action for generating the above-mentioned graphite intercalation compound. Therefore, “positively” enriching the Cu contained in the sliding component on the sliding surface of the sliding component in use is effective in improving the sliding characteristics of the sliding component.
  • the Cu concentration on the sliding surface is sufficiently concentrated when the temperature of the sliding surface of the sliding component has risen over time after the use of the sliding component has started. It is effective that the catalytic action of Cu functions more effectively and the stable use of the sliding part is continued.
  • the sliding component having the above-described component composition has a property that Cu is concentrated by the temperature rise of the sliding surface due to its use.
  • the sliding surface before use is When evaluating the sliding characteristics of a moving part, the amount of Cu on the sliding surface (that is, the amount of concentrated Cu) is based on the value when the sliding part is heated to 500 ° C. in the atmosphere. Is reasonable. And, in the case of the present invention, the amount of Cu of the sliding surface when the sliding part before use is heated to 500 ° C. in the atmosphere is the sliding surface after heating to 500 ° C.
  • the heating of the sliding surface can be cooled after the sliding component is held for one hour or longer than when the entire sliding component reaches 500 ° C.
  • the above cooling can be performed from 500 ° C. to room temperature by, for example, air cooling.
  • a series of these processes can be performed in the atmosphere.
  • the sliding surface of the sliding component after heating to 500 ° C. in the atmosphere if the Cu content of the component composition of the sliding surface is “2.0 atomic% or more”, the sliding component in use A sufficient amount of Cu can be concentrated on the sliding surface, and the sliding characteristics of the sliding component having the above-described component composition can be further improved.
  • the amount of Cu on the sliding surface is preferably 3.0 atomic% or more. More preferably, it is 4.0 atomic% or more. However, if the amount of Cu on the sliding surface increases too much in the sliding part after heating to 500 ° C., this Cu is unevenly distributed at the grain boundary and becomes brittle like a kind of red heat brittleness. The sliding characteristics of the parts are reduced. Therefore, the amount of Cu on the sliding surface is set to “10.0 atomic% or less”. Preferably it is 8.0 atomic% or less. More preferably, it is 7.0 atomic% or less.
  • the mechanism of the concentration of the Cu on the heated sliding surface is considered as follows. First, when the sliding component is heated in the air, an oxide of an element (for example, Fe or Cr) constituting the sliding component is formed “as an oxide film” on the sliding surface. And since the solid solubility of Cu with respect to this oxide is small, it is thought that Cu in the sliding part “seeps out” on the oxide film and Cu is concentrated on the sliding surface of the sliding part. It is done. Therefore, it is considered that the Cu amount of “2.0 to 10.0 atomic%” is a value obtained when the component composition of this oxide film (including impurities) is measured. Since this concentrated Cu exists exclusively in a “single” state, it is advantageous for exerting the above-described catalytic action of Cu.
  • an oxide of an element for example, Fe or Cr
  • Such a sliding part can be achieved according to the following manufacturing conditions after adjusting to the above-described component composition.
  • the molten metal poured into the mold is cooled so as to quickly pass through the solid-liquid phase coexistence region, for example, with a cooling time of 10 minutes or less. Cooling is effective. Further, it is effective to subject the material before hot working to a homogenization treatment at a high temperature of 1130 to 1180 ° C. for a long time (for example, 10 hours or more). In the hot working described above, it is effective to perform substantial forging with a forging ratio (cross-sectional area ratio) of 7S or more (“S” is a symbol indicating actual forging). Under these conditions, “Cu segregation” concentrated inside the sliding component can be suppressed, which is effective in securing the amount of Cu on the sliding surface of the sliding component in use.
  • the sliding component of the present invention has a sliding surface hardness of “40 to 64 HRC”.
  • the wear resistance of the sliding surface can be improved by increasing the hardness of the sliding surface of the sliding component.
  • the preferred hardness of the sliding surface is 40 to 64 HRC. More preferably, it is 45 HRC or more. More preferably, it is 50 HRC or more. Particularly preferred is 55 HRC or more. More preferably, it is 63 HRC or less. More preferably, it is 62 HRC or less.
  • the above hardness is measured at “room temperature”.
  • the quenching temperature can be 850 to 1100 ° C., for example.
  • the quenching temperature can be 850 to 1100 ° C., for example.
  • it is 900 degreeC or more, More preferably, it is 950 degreeC or more, More preferably, it is 1000 degreeC or more.
  • it is preferably 1080 ° C. or lower, more preferably 1050 ° C. or lower.
  • the tempering temperature can be set to 150 to 700 ° C., for example.
  • it is 200 degreeC or more, More preferably, it is 300 degreeC or more, More preferably, it is 400 degreeC or more, Most preferably, it is 450 degreeC or more.
  • it is 650 degrees C or less, More preferably, it is 600 degrees C or less, More preferably, it is 550 degrees C or less.
  • the sliding component of the present invention it is considered that Cu has already been concentrated on the sliding surface of the sliding component (that is, before heating to 500 ° C. in the atmosphere) by the above tempering. It is done. However, the surface of the sliding part after quenching and tempering is usually subjected to finishing machining. Therefore, regarding the sliding component of the present invention, even if Cu is concentrated on the sliding surface before heating to 500 ° C. in the atmosphere, this concentrated Cu is The whole oxide film is removed. In the case of the present invention, even if such a sliding part is used by heating it in the atmosphere, Cu is concentrated again on the sliding surface. Characteristics can be improved.
  • the sliding surface can be carburized to form a sliding surface having a carburized layer.
  • quenching and tempering are performed after the carburizing treatment.
  • the “component composition of the sliding surface of the sliding part after heating to 500 ° C. in the atmosphere” according to the present invention is evaluated by the component composition of the surface of the carburized layer after quenching and tempering.
  • the “sliding surface hardness” according to the present invention is evaluated by the hardness of the surface of the carburized layer.
  • the molten metal adjusted to a predetermined component composition was cast to prepare ingots of materials A and B having the component compositions shown in Table 1.
  • the material B is cold tool steel SKD11 which is a standard steel type of JIS-G-4404.
  • Ca, Mg, O, and N were not added, and Ca ⁇ 0.02%, Mg ⁇ 0.02%, O ⁇ 0.03%, and N ⁇ 0.05%. It was.
  • both the materials A and B were set to substantially the same cooling rate, and the cooling time in the solid-liquid phase coexistence region was 10 minutes for the material A and 7 minutes for the material B.
  • the ingot of material A was homogenized at 1170 ° C. for 10 hours. And the raw material A after performing this homogenization process was heated to 1100 degreeC, and the hot processing by the forge forming ratio (cross-sectional area ratio) of 7S was performed to this heated raw material A. In addition, the ingot of the material B is heated to 1100 ° C. without performing the homogenization process, and the hot material B is subjected to hot working by submerged forging with a forging forming ratio (cross-sectional area ratio) of 7S. Went.
  • the sliding surfaces of the sliding parts A and B when the sliding surfaces are heated to 500 ° C. in the atmosphere are displayed.
  • the amount of Cu in the component composition was measured.
  • the procedure for measurement is as follows. First, the entire sliding component including the sliding surface was heated to 500 ° C. in the atmosphere. Next, the heated sliding part was held for 1 hour after the whole temperature reached 500 ° C., and then cooled to room temperature by air cooling.
  • the surface of the sliding surface of the sliding component after cooling is analyzed by XPS (X-ray photoelectron spectrometer) (radiation source: Co—K ⁇ ), and the amount of Cu in the range of 925 to 970 eV (metal) In addition to the amount of Cu, the amount of Cu forming Cu oxide was included).
  • XPS X-ray photoelectron spectrometer
  • the sliding surface was not subjected to pretreatment such as surface etching.
  • the balance was Fe or Cr oxide. The results are shown in Table 2 together with the hardness of the sliding surface at room temperature.
  • test piece 1 constitutes a sliding component.
  • the shape of the test piece 1 is a cylindrical shape having a diameter of 8 mm and a length of 20 mm, and its peripheral surface is a sliding surface.
  • the counterpart material 2 was a bearing steel SUJ2 (hardness 55HRC) which is a standard steel type of JIS-G-4805.
  • the frictional trace after the test is usually elliptical, and the sliding area was calculated by “(radius on the minor axis side) ⁇ (radius on the major axis side) ⁇ ⁇ ” on the ellipse.
  • the results are shown in Table 3.
  • Table 3 the larger the PV value, the better the sliding characteristics.
  • the sliding component A of the example of the present invention showed an increase in PV value exceeding 1.5 times compared with the sliding component B of the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

Provided is a sliding component having excellent sliding properties. Also provided are a sliding structure provided with this sliding component and a method for sliding the sliding structure. The sliding component has a constituent composition that contains, in terms of mass%, 0.1-1.6% of C, 0.1-3.0% of Si, 0.1-3.0% of Mn, 0.06% or less of P, 0.01-0.12% of S and 0.1-1.0% of Cu, with the remainder comprising Fe and impurities, and the constituent composition of a sliding surface of the sliding component after being heated in air at 500ºC contains 2.0-10.0 at.% of Cu. In addition, the sliding structure is configured in such a way that the sliding component slides against a sliding surface of a mating component in an environment whereby a lubricating oil is interposed at the sliding surface of the sliding component. In addition, provided is the method for sliding a sliding structure that is configured in this way.

Description

摺動部品、摺動構造体および摺動構造体の摺動方法Sliding parts, sliding structure and sliding method of sliding structure
 本発明は、例えば、内燃機関に組み込まれるピストンリングやカムローブ等の、各種摺動環境に用いられる摺動部品に関するものである。そして、これら摺動部品が組み込まれて構成される、内燃機関等の摺動構造体と、この摺動構造体の摺動方法に関するものである。 The present invention relates to a sliding component used in various sliding environments such as a piston ring and a cam lobe incorporated in an internal combustion engine. The present invention also relates to a sliding structure such as an internal combustion engine configured by incorporating these sliding parts, and a sliding method of the sliding structure.
 従来、内燃機関の構成部品であるピストンリング、カムローブ、タペット、ピストンピン、シリンダライナー、ミッションギア、スラストプレートやベーン等の、摺動構造体を構成する摺動部品には、その素材としてJIS鋼種であるSUJ2やSKD11が用いられてきた。また、素材の成分組成を改良したことで、素材に優れた摺動特性(自己潤滑特性)を付与し、耐摩耗性を向上したプレス金型が提案されている(特許文献1)。 Conventionally, the sliding parts that make up the sliding structure such as piston rings, cam lobes, tappets, piston pins, cylinder liners, mission gears, thrust plates and vanes, which are constituent parts of internal combustion engines, are made of JIS steel as materials. SUJ2 and SKD11 which have been used have been used. In addition, there has been proposed a press die having improved wear resistance by imparting excellent sliding characteristics (self-lubricating characteristics) to the material by improving the component composition of the material (Patent Document 1).
特開2007-002333号公報JP 2007-002333 A
 特許文献1のプレス金型は、その自己潤滑特性の発現によって、優れた耐摩耗性を有する。しかし、上記した用途の摺動部品の場合、その摺動面での摺動形態は、プレス金型等と違って、高い面圧下で、高速で往復摺動が繰り返されるといった過酷なものである。あるいは、そのような高い面圧下で、高速で同じ相手部品と摺動が繰り返されたり、高速かつ短時間で複数回の摺動が繰り返されたりするといった過酷なものである。よって、摺動部品には、更なる摺動特性の向上が求められていた。 The press die disclosed in Patent Document 1 has excellent wear resistance due to its self-lubricating properties. However, in the case of the sliding parts described above, the sliding form on the sliding surface is severe, such as repeated reciprocating sliding at a high speed under high surface pressure, unlike a press die or the like. . Or, under such a high surface pressure, the sliding with the same counterpart part is repeated at high speed, or the sliding is repeated a plurality of times at high speed in a short time. Therefore, the sliding component has been required to further improve the sliding characteristics.
 本発明の目的は、摺動特性に優れた摺動部品を提供することである。そして、この摺動部品を具備した摺動構造体と、摺動構造体の摺動方法とを提供することである。 An object of the present invention is to provide a sliding component having excellent sliding characteristics. And it is providing the sliding structure provided with this sliding component, and the sliding method of a sliding structure.
 本発明は、質量%で、C:0.1~1.6%、Si:0.1~3.0%、Mn:0.1~3.0%、P:0.06%以下、S:0.01~0.12%、Cu:0.1~1.0%、残部Feおよび不純物の成分組成を有する摺動部品であり、大気中で500℃に加熱した後の上記の摺動部品の摺動面の成分組成が、2.0~10.0原子%のCuを含む摺動部品である。
 このとき、上記の摺動部品の成分組成は、質量%で、さらに、Ni:1.5%以下、Cr:13.0%以下、(Mo+1/2W)の関係式によるMoおよびWのうちの1種または2種:1.7%以下、V:0.7%以下、Al:0.7%以下、Nb:0.3%以下のうちの1種または2種以上を含んでもよい。
 また、上記の摺動部品の摺動面の硬さは、40~64HRCであることが好ましい。
The present invention, in mass%, C: 0.1-1.6%, Si: 0.1-3.0%, Mn: 0.1-3.0%, P: 0.06% or less, S : 0.01 to 0.12%, Cu: 0.1 to 1.0%, the sliding component having the balance of Fe and impurities, and the above sliding after heating to 500 ° C in the air The sliding component contains Cu having a component composition on the sliding surface of the component of 2.0 to 10.0 atomic%.
At this time, the component composition of the above-mentioned sliding component is mass%, and further, Ni: 1.5% or less, Cr: 13.0% or less, and Mo and W in the relational expression of (Mo + 1 / 2W) 1 type or 2 types: 1.7% or less, V: 0.7% or less, Al: 0.7% or less, and Nb: 0.3% or less may be included.
In addition, the hardness of the sliding surface of the sliding component is preferably 40 to 64 HRC.
 そして、本発明は、上記した本発明の摺動部品が、この摺動部品の摺動面に潤滑油が介在する環境下で、相手部品の摺動面と摺動するように構成された摺動構造体である。好ましくは、上記の相手部品が金属材料からなる摺動構造体である。また、好ましくは、上記の潤滑油が炭化水素系潤滑油を含む摺動構造体である。 Then, the present invention provides a sliding component configured such that the sliding component of the present invention described above slides on the sliding surface of the mating component in an environment where lubricating oil is present on the sliding surface of the sliding component. It is a moving structure. Preferably, the mating part is a sliding structure made of a metal material. Preferably, the lubricating oil is a sliding structure containing a hydrocarbon-based lubricating oil.
 また、本発明は、上記した摺動部品と相手部品とを、この摺動部品の相手部品との摺動面に潤滑油を介在させた環境下で摺動させる摺動構造体の摺動方法である。好ましくは、上記の相手部品が金属材料からなる摺動構造体の摺動方法である。また、好ましくは、上記の潤滑油が炭化水素系潤滑油を含む摺動構造体の摺動方法である。 Further, the present invention provides a sliding method for a sliding structure in which the sliding component and the mating component are slid in an environment in which lubricating oil is interposed on the sliding surface of the sliding component with the mating component. It is. Preferably, the above-mentioned counterpart component is a sliding method of a sliding structure made of a metal material. Preferably, the sliding method is a sliding structure in which the lubricating oil includes a hydrocarbon-based lubricating oil.
 本発明によれば、摺動部品の摺動特性を向上させることができる。 According to the present invention, the sliding characteristics of the sliding component can be improved.
実施例で行った往復動摩擦摩耗試験を示す模式図である。It is a schematic diagram which shows the reciprocating friction wear test done in the Example.
 各種の摺動構造体を構成する多くの摺動部品は、ピストンリングやカムローブといった内燃機関の構成部品に代表されるように、その摺動面が、高い面圧下で、高速で繰り返し摺動するといった過酷な環境に曝される。そして、これらの摺動部品は、その摺動面に潤滑油が介在する環境下で、相手部品の摺動面と摺動して、使用されている。このような環境下で、本発明の摺動部品は、自己潤滑特性が効果的に発揮されて、摺動部品の耐摩耗性が向上することを突きとめた。以下、本発明の構成要件について、説明する。 Many sliding parts constituting various sliding structures are repeatedly slid at a high speed under high surface pressure, as represented by internal combustion engine components such as piston rings and cam lobes. Exposed to harsh environments. These sliding parts are used by sliding with the sliding surface of the counterpart part in an environment where lubricating oil is present on the sliding surface. Under such circumstances, the sliding component of the present invention has been found to exhibit self-lubricating properties effectively and improve the wear resistance of the sliding component. Hereinafter, the configuration requirements of the present invention will be described.
(1)本発明の摺動部品は、質量%で、C:0.1~1.6%、Si:0.1~3.0%、Mn:0.1~3.0%、P:0.06%以下、S:0.01~0.12%、Cu:0.1~1.0%、残部Feおよび不純物の成分組成を有する。
 上記の成分組成において、特に、本発明の摺動部品を特徴付けるのが、その自己潤滑特性の発現に大きく寄与する「SとCuとを共に含有する点」である。従来、SおよびCuは、鉄鋼材料の熱間加工性を阻害する元素であるとして、殆どの鉄鋼材料で積極的に添加されることのない元素であった。以下、本発明の摺動部品の成分組成について、その作用効果を説明する。
(1) The sliding component of the present invention is, in mass%, C: 0.1 to 1.6%, Si: 0.1 to 3.0%, Mn: 0.1 to 3.0%, P: It has a component composition of 0.06% or less, S: 0.01 to 0.12%, Cu: 0.1 to 1.0%, the balance Fe and impurities.
In the above component composition, particularly, the sliding component of the present invention is characterized by “a point containing both S and Cu” which greatly contributes to the expression of the self-lubricating property. Conventionally, S and Cu are elements that are not actively added in most steel materials because they are elements that inhibit the hot workability of steel materials. Hereinafter, the effect of the component composition of the sliding component of the present invention will be described.
・C:0.1~1.6質量%(以下、単に「%」と記す。)
 Cは、基地中に固溶して、摺動部品に強度を付与する元素である。また、炭化物を形成して、摺動部品の耐摩耗性や耐焼付き性を高める元素である。しかし、Cが多くなり過ぎると、基地に固溶するC量が増加して、摺動部品の形状に仕上げるときの被削性が劣化する。また、粗大な炭化物が生成されて、焼入れ時の熱処理変寸が大きくなる。よって、Cは、0.1~1.6%とする。好ましくは0.2%以上である。より好ましくは0.4%以上である。更に好ましくは0.7%以上である。特に好ましくは0.9%以上である。また、好ましくは1.3%以下である。より好ましくは1.1%以下である。
C: 0.1 to 1.6% by mass (hereinafter simply referred to as “%”)
C is an element that dissolves in the base and imparts strength to the sliding component. Moreover, it is an element which forms carbide and enhances the wear resistance and seizure resistance of the sliding component. However, when C increases excessively, the amount of C dissolved in the base increases, and the machinability when finishing into the shape of the sliding part deteriorates. Further, coarse carbides are generated, and the heat treatment size change during quenching is increased. Therefore, C is set to 0.1 to 1.6%. Preferably it is 0.2% or more. More preferably, it is 0.4% or more. More preferably, it is 0.7% or more. Particularly preferably, it is 0.9% or more. Moreover, it is preferably 1.3% or less. More preferably, it is 1.1% or less.
・Si:0.1~3.0%
 Siは、摺動部品の耐高温軟化特性を向上させる元素である。しかし、Siが多過ぎると、組織中のデルタフェライトの形成が顕著になり、摺動部品の硬さの維持を阻害する。よって、Siは、0.1~3.0%とする。好ましくは0.2%以上である。より好ましくは0.3%以上である。更に好ましくは0.5%以上である。特に好ましくは0.9%以上である。また、好ましくは2.0%以下である。より好ましくは1.5%以下である。更に好ましくは1.1%以下である。
・ Si: 0.1-3.0%
Si is an element that improves the high temperature softening resistance property of the sliding component. However, when there is too much Si, the formation of delta ferrite in the structure becomes remarkable, and the maintenance of the hardness of the sliding part is hindered. Therefore, Si is 0.1 to 3.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. More preferably, it is 0.5% or more. Particularly preferably, it is 0.9% or more. Moreover, it is preferably 2.0% or less. More preferably, it is 1.5% or less. More preferably, it is 1.1% or less.
・Mn:0.1~3.0%
 Mnは、焼入れ性を高める元素である。しかし、多過ぎると、被削性が劣化する。よって、Mnは、0.1~3.0%とする。好ましくは0.2%以上である。より好ましくは0.3%以上である。更に好ましくは0.4%以上である。また、好ましくは1.0%以下である。より好ましくは0.6%以下である。更に好ましくは0.5%以下である。
・ Mn: 0.1-3.0%
Mn is an element that enhances hardenability. However, if too much, the machinability deteriorates. Therefore, Mn is set to 0.1 to 3.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. More preferably, it is 0.4% or more. Further, it is preferably 1.0% or less. More preferably, it is 0.6% or less. More preferably, it is 0.5% or less.
・P:0.06%以下
 Pは、通常、添加しなくても、不可避的に含有し得る元素である。そして、摺動部品の靱性を阻害する元素である。よって、0.06%以下とする。好ましくは0.05%以下とする。より好ましくは0.03%以下とする。さらに好ましくは0.02%以下とする。
-P: 0.06% or less P is an element that can be inevitably contained even if it is not added. And it is an element which inhibits the toughness of a sliding component. Therefore, it is 0.06% or less. Preferably it is 0.05% or less. More preferably, the content is 0.03% or less. More preferably, it is 0.02% or less.
・S:0.01~0.12%
 Sは、後述するCuと共に、本発明の摺動部品の自己潤滑特性の向上に寄与する元素である。本発明者は、特許文献1の成分組成を有する摺動部品を、その摺動面に潤滑油が介在した環境で使用したときに、摺動面に生じている現象を調査した。その結果、この使用中において、摺動部品と相手部品との摺動面どうしが焼付きを生じる程の高い面圧で接触すると、摺動部品の摺動面に吸着した潤滑油中の有機物成分が脱水素化されて、これがダイヤモンドやグラファイト等の物質に変化することを知見した。そして、これらダイヤモンドやグラファイト等の中でも、周期的に硫酸イオンまたは硫酸分子が挟み込まれた結晶構造を有する「グラファイト層間化合物」は、摺動部品の自己潤滑特性を向上させて、お互いの摺動面間の摩擦係数を低く維持できることを見いだした。
・ S: 0.01-0.12%
S is an element that contributes to the improvement of the self-lubricating property of the sliding component of the present invention together with Cu described later. This inventor investigated the phenomenon which has arisen on the sliding surface, when using the sliding component which has a component composition of patent document 1 in the environment where lubricating oil intervened in the sliding surface. As a result, during this use, when the sliding surfaces of the sliding part and the mating part come into contact with each other at such a high surface pressure that the seizure occurs, organic components in the lubricating oil adsorbed on the sliding surface of the sliding part Has been dehydrogenated, and this has been found to change to substances such as diamond and graphite. Among these diamonds and graphite, “graphite intercalation compound” having a crystal structure in which sulfate ions or sulfuric acid molecules are periodically sandwiched improves the self-lubricating properties of the sliding parts, and makes the sliding surfaces of each other It was found that the coefficient of friction can be kept low.
 そして、摺動部品中のSは、その使用中の摺動面において酸化され、硫酸イオンを生成する。そして、この生成された硫酸イオンが、グラファイト層間に挟み込まれて、上記のグラファイト層間化合物の形成を促す。または、この生成された硫酸イオンが、上記した潤滑油の脱水素化で生成された水素イオンと結合して、硫酸分子となり、これがグラファイト層間に挟み込まれて、上記のグラファイト層間化合物の形成を促す。これにより、グラファイトのC軸方向の面間隔が大きくなって、ナノレベルの状態でグラファイトがダイヤモンドに同素変態することを抑制し、すべりの自由度を高め潤滑性が向上する。しかし、摺動部品中のSが過剰になると、グラファイト層間に挟み込めない程の、過剰の硫酸イオンが摺動面に生成される。そして、この過剰の硫酸イオンが摺動面の損傷を助長して、自己潤滑特性の発現を阻害する。よって、Sは、0.01~0.12%とする。好ましくは0.03%超である。より好ましくは0.04%以上である。さらに好ましくは0.05%以上である。また、好ましくは0.09%以下である。より好ましくは0.08%以下である。 Then, S in the sliding part is oxidized on the sliding surface in use to generate sulfate ions. The generated sulfate ions are sandwiched between the graphite layers to promote the formation of the graphite intercalation compound. Alternatively, the generated sulfate ions combine with the hydrogen ions generated by the dehydrogenation of the lubricating oil to form sulfuric acid molecules, which are sandwiched between the graphite layers to promote the formation of the graphite intercalation compounds. . This increases the interplanar spacing of the graphite in the C-axis direction, suppresses the graphite from undergoing an allotropic transformation into diamond in a nano-level state, increases the degree of freedom of sliding, and improves the lubricity. However, when S in the sliding component becomes excessive, excessive sulfate ions are generated on the sliding surface so as not to be sandwiched between the graphite layers. This excess sulfate ion promotes damage to the sliding surface and inhibits the expression of self-lubricating properties. Therefore, S is set to 0.01 to 0.12%. Preferably it is more than 0.03%. More preferably, it is 0.04% or more. More preferably, it is 0.05% or more. Moreover, Preferably it is 0.09% or less. More preferably, it is 0.08% or less.
・Cu:0.1~1.0%
 Cuは、上記のSと共に、本発明の摺動部品の自己潤滑特性の向上に寄与する元素である。つまり、Cuは、上記の「グラファイト層間化合物」を生成するための触媒作用を示す元素である。Cuは、焼入れ焼戻し後の摺動部品において、その摺動面に濃化して、極く微量を析出させることができる。そして、摺動面に析出したCuは、グラファイト層間化合物に収納しきれなかった、硫酸あるいは硫酸イオンをCuSOにして固定化するので、極圧添加剤でみられるような過剰添加による腐食摩耗を抑制する。
 しかし、Cuを過剰に含有すると、素材の赤熱脆化を招いて、熱間加工性が劣化する。よって、Cuは、0.1~1.0%とする。好ましくは0.2%以上である。より好ましくは0.3%以上である。また、好ましくは0.8%以下である。より好ましくは0.6%以下である。さらに好ましくは0.5%以下である。
Cu: 0.1 to 1.0%
Cu, together with the above S, is an element that contributes to the improvement of the self-lubricating characteristics of the sliding component of the present invention. That is, Cu is an element that exhibits a catalytic action for producing the above-mentioned “graphite intercalation compound”. Cu can be concentrated on the sliding surface in a sliding part after quenching and tempering, and an extremely small amount can be deposited. Then, Cu deposited on the sliding surface is fixed by making sulfuric acid or sulfate ions CuSO 4 which could not be stored in the graphite intercalation compound, so that corrosion wear due to excessive addition as seen in extreme pressure additives can be prevented. Suppress.
However, when Cu is contained excessively, red hot embrittlement of the material is caused and hot workability is deteriorated. Therefore, Cu is made 0.1 to 1.0%. Preferably it is 0.2% or more. More preferably, it is 0.3% or more. Further, it is preferably 0.8% or less. More preferably, it is 0.6% or less. More preferably, it is 0.5% or less.
 以上の基本的な成分組成によって、本発明の摺動部品に自己潤滑特性を付与することができる。そして、この自己潤滑特性は、特に、その使用中の摺動面に潤滑油を介在させたときに、摺動面に介在する潤滑油の「摩擦による変質挙動」を利用して発揮される。よって、本発明に係る自己潤滑特性の発現には、その使用中の相手部品との間で、潤滑油を介在させることが好ましい。そして、この潤滑油について、例えば、炭化水素系といった潤滑油を含むことが好ましい。上記の自己潤滑特性の発現には、潤滑油が介在してさえすればよく、相手部品について、幅広い素材(材質)の選択が可能である。 With the above basic component composition, self-lubricating properties can be imparted to the sliding component of the present invention. This self-lubricating property is exhibited by utilizing the “deformation behavior due to friction” of the lubricating oil intervening on the sliding surface, particularly when the lubricating oil is interposed on the sliding surface in use. Therefore, it is preferable that lubricating oil be interposed between the mating parts in use for the expression of the self-lubricating property according to the present invention. And about this lubricating oil, it is preferable to contain lubricating oil, such as a hydrocarbon type, for example. In order to exhibit the above self-lubricating characteristics, it is only necessary to intervene with lubricating oil, and a wide range of materials (materials) can be selected for the mating parts.
 相手部品の材料には、各種の金属材料や樹脂材料を用いることができる。そして、種々の摺動環境に耐え得る機械的特性に対応しやすい点で、相手部品は、金属材料からなることが好ましい。金属材料としては、例えば、各種の鋼や、鋳鉄、アルミニウム、アルミニウム合金等が挙げられる。また、鋳鉄の場合、球状黒鉛鋳鉄が挙げられる。そして、鋼の場合、例えば、JIS鋼種であるSUJ2やSKD11を用いることができる。あるいは、本発明の摺動部品の成分組成の範囲を満たす金属材料を用いることができる。これら相手部品の摺動面の硬さは、好ましくは、40~64HRCの範囲から選択することができる。より好ましくは45HRC以上である。さらに好ましくは50HRC以上である。特に好ましくは55HRC以上である。また、より好ましくは63HRC以下である。さらに好ましくは62HRC以下である。なお、上記の硬さは“常温”で測定したときのものである。 Various metal materials and resin materials can be used for the material of the counterpart part. The counterpart component is preferably made of a metal material in that it can easily cope with mechanical characteristics that can withstand various sliding environments. Examples of the metal material include various steels, cast iron, aluminum, and aluminum alloys. In the case of cast iron, spheroidal graphite cast iron is exemplified. And in the case of steel, SUJ2 and SKD11 which are JIS steel types can be used, for example. Or the metal material which satisfy | fills the range of the component composition of the sliding component of this invention can be used. The hardness of the sliding surface of these mating parts can preferably be selected from the range of 40 to 64 HRC. More preferably, it is 45 HRC or more. More preferably, it is 50 HRC or more. Particularly preferred is 55 HRC or more. More preferably, it is 63 HRC or less. More preferably, it is 62 HRC or less. The above hardness is measured at “room temperature”.
 また、本発明の摺動部品の成分組成には、上記した元素種の他に、下記する元素種のうちの1種または2種以上の元素を含むことが可能である。 Moreover, the component composition of the sliding component of the present invention can contain one or more elements of the following element types in addition to the above element types.
・Ni:1.5%以下
 Niは、優れた焼入性を付与する元素である。また、後述するAlと共に含有した場合、焼入れ焼戻し工程で、Alと結合してNi-Al系金属間化合物を析出し、摺動部品の硬さの維持に寄与する元素である。しかし、Niが多過ぎると、焼入れ焼戻し前の焼鈍状態において、摺動部品の形状に加工するときの被削性が劣化する。よって、Niは、必要に応じて、1.5%以下を含有することができる。好ましくは1.0%以下である。より好ましくは0.8%以下である。さらに好ましくは0.6%以下である。特に好ましくは0.5%以下である。また、Niを含有する場合、好ましくは0.3%以上である。より好ましくは0.4%以上である。
Ni: 1.5% or less Ni is an element that imparts excellent hardenability. Further, when it is contained together with Al described later, it is an element that contributes to maintaining the hardness of the sliding component by binding to Al and precipitating a Ni—Al-based intermetallic compound in the quenching and tempering step. However, if there is too much Ni, the machinability when processing into the shape of the sliding component in the annealed state before quenching and tempering deteriorates. Therefore, Ni can contain 1.5% or less as needed. Preferably it is 1.0% or less. More preferably, it is 0.8% or less. More preferably, it is 0.6% or less. Particularly preferably, it is 0.5% or less. Moreover, when it contains Ni, Preferably it is 0.3% or more. More preferably, it is 0.4% or more.
・Cr:13.0%以下
 Crは、基地の焼入れ性を高める元素である。また、上述のCと炭化物を形成して、摺動部品の耐摩耗性や耐焼付き性を高める元素である。しかし、炭化物の増加は、被削性を劣化させる。よって、Crは、必要に応じて、13.0%以下を含有することができる。好ましくは11.0%以下である。より好ましくは10.0%以下である。さらに好ましくは9.0%以下である。特に好ましくは8.5%以下である。また、Crを含有する場合、好ましくは0.5%以上である。より好ましくは2.5%以上である。さらに好ましくは5.0%以上である。特に好ましくは7.5%以上である。
-Cr: 13.0% or less Cr is an element that enhances the hardenability of the matrix. Moreover, it is an element which forms the above-mentioned C and a carbide | carbonized_material, and improves the abrasion resistance and seizure resistance of a sliding component. However, the increase in carbides deteriorates machinability. Therefore, Cr can contain 13.0% or less as needed. Preferably it is 11.0% or less. More preferably, it is 10.0% or less. More preferably, it is 9.0% or less. Particularly preferably, it is 8.5% or less. Moreover, when it contains Cr, Preferably it is 0.5% or more. More preferably, it is 2.5% or more. More preferably, it is 5.0% or more. Particularly preferably, it is 7.5% or more.
・(Mo+1/2W)の関係式によるMoおよびWのうちの1種または2種:1.7%以下
 MoおよびWは、焼入れ焼戻し後の組織中に微細な炭化物を形成して、摺動部品に疲労強度を付与する元素である。しかし、多過ぎると、被削性や靭性の低下を招く。
 MoおよびWは、単独または複合で含有することができる。そして、この際の含有量は、WがMoの約2倍の原子量であることから、(Mo+1/2W)の式で定義されるMo当量で一緒に規定できる。そして、MoおよびWは、必要に応じて、その1種または2種を、(Mo+1/2W)の値で1.7%以下を含有することができる。好ましくは1.5%以下である。より好ましくは1.3%以下である。さらに好ましくは1.2%以下である。また、MoおよびWを含有する場合、好ましくは0.1%以上である。より好ましくは0.4%以上である。さらに好ましくは0.8%以上である。特に好ましくは1.0%以上である。
-One or two of Mo and W according to the relational expression of (Mo + 1 / 2W): 1.7% or less Mo and W form a fine carbide in the structure after quenching and tempering, thereby sliding parts Is an element that imparts fatigue strength. However, if too much, machinability and toughness are reduced.
Mo and W can be contained alone or in combination. The content at this time can be defined together by the Mo equivalent defined by the formula of (Mo + 1 / 2W) since W has an atomic weight approximately twice that of Mo. And Mo and W can contain 1.7% or less of the 1 type or 2 types by the value of (Mo + 1 / 2W) as needed. Preferably it is 1.5% or less. More preferably, it is 1.3% or less. More preferably, it is 1.2% or less. Moreover, when it contains Mo and W, Preferably it is 0.1% or more. More preferably, it is 0.4% or more. More preferably, it is 0.8% or more. Particularly preferably, it is 1.0% or more.
・V:0.7%以下
 Vは、焼入れ性の向上のために含有することができる。但し、硬質のVC炭化物を形成するため、過剰のVの含有は被削性を阻害する。よって、Vは、必要に応じて、0.7%以下を含有することができる。好ましくは0.5%以下である。より好ましくは0.3%以下である。さらに好ましくは0.2%以下である。
-V: 0.7% or less V can be contained in order to improve hardenability. However, in order to form hard VC carbide | carbonized_material, containing excess V will inhibit machinability. Therefore, V can contain 0.7% or less as needed. Preferably it is 0.5% or less. More preferably, it is 0.3% or less. More preferably, it is 0.2% or less.
・Al:0.7%以下
 Alは、製鋼時の脱酸剤として使用される。そして、上記のNiと共に含有した場合、Niと結合してNi―Al系金属間化合物を形成し、摺動部品の硬さの維持に寄与する元素である。しかし、Alが多過ぎると、組織中のデルタフェライトの形成が顕著になり、摺動部品の硬さの維持を阻害する。よって、Alは、必要に応じて、0.7%以下を含有することができる。好ましくは0.5%以下である。より好ましくは0.45%以下である。更に好ましくは0.4%以下である。また、Alを含有する場合、好ましくは0.1%以上である。より好ましくは0.15%以上である。さらに好ましくは0.25%以上である。特に好ましくは0.3%以上である。
-Al: 0.7% or less Al is used as a deoxidizer during steelmaking. And when it contains with said Ni, it is an element which couple | bonds with Ni and forms a Ni-Al type intermetallic compound, and contributes to maintenance of the hardness of a sliding component. However, when there is too much Al, the formation of delta ferrite in the structure becomes remarkable, and the maintenance of the hardness of the sliding part is hindered. Therefore, Al can contain 0.7% or less as needed. Preferably it is 0.5% or less. More preferably, it is 0.45% or less. More preferably, it is 0.4% or less. Moreover, when it contains Al, Preferably it is 0.1% or more. More preferably, it is 0.15% or more. More preferably, it is 0.25% or more. Particularly preferably, it is 0.3% or more.
・Nb:0.3%以下
 Nbは、Vと同様、焼入れ性の向上のために含有することができる。但し、過剰のNbの含有は被削性を阻害する。よって、Nbは、必要に応じて、0.3%以下を含有することができる。好ましくは0.2%以下である。より好ましくは0.15%以下である。なお、Nbを含有する場合、好ましくは0.03%以上である。より好ましくは0.05%以上である。さらに好ましくは0.07%以上である。
-Nb: 0.3% or less Nb can be contained for improving hardenability like V. However, excessive Nb content inhibits machinability. Therefore, Nb can contain 0.3% or less as needed. Preferably it is 0.2% or less. More preferably, it is 0.15% or less. In addition, when Nb is contained, it is preferably 0.03% or more. More preferably, it is 0.05% or more. More preferably, it is 0.07% or more.
 Ca、Mg、O(酸素)、N(窒素)は、不純物として素材中に残留する可能性のある元素である。本発明において、これら元素はできるだけ低い方が好ましい。しかし一方で、介在物の形態制御や、その他の機械的特性、そして製造効率の向上といった付加的な作用効果を得るために、少量を含有してもよい。この場合、Ca≦0.02%、Mg≦0.02%、O≦0.03%、N≦0.05%の範囲であれば十分に許容でき、本発明の好ましい規制上限である。 Ca, Mg, O (oxygen), and N (nitrogen) are elements that may remain in the material as impurities. In the present invention, these elements are preferably as low as possible. However, on the other hand, a small amount may be contained in order to obtain additional functions and effects such as control of the shape of inclusions, other mechanical properties, and improvement of production efficiency. In this case, the range of Ca ≦ 0.02%, Mg ≦ 0.02%, O ≦ 0.03%, and N ≦ 0.05% can be sufficiently tolerated and is a preferable upper limit of regulation of the present invention.
(2)本発明の摺動部品は、この摺動部品の摺動面の成分組成が、大気中で500℃に加熱した後の状態において、2.0~10.0原子%のCuを含むものである。
 上述の通り、使用中の摺動部品において、その摺動面にグラファイト層間化合物を形成させると、摺動部品の摺動特性を向上させることができる。このとき、摺動部品が含んでいるCuは、上記のグラファイト層間化合物を生成させる触媒作用を有している。したがって、使用中の摺動部品の摺動面には、摺動部品が含んでいるCuを“積極的に”濃化させることが、摺動部品の摺動特性の向上に効果的である。そして、この摺動面でのCuの濃化は、摺動部品の使用を開始してから時間が経って、摺動部品の摺動面の温度が上昇しているときに、十分量が濃化していることが、Cuの触媒作用がより有効に機能して、摺動部品の安定した使用の継続に効果的である。
(2) The sliding component of the present invention has a component composition of the sliding surface of the sliding component containing 2.0 to 10.0 atomic% Cu in a state after being heated to 500 ° C. in the atmosphere. It is a waste.
As described above, when a graphite intercalation compound is formed on the sliding surface of a sliding component in use, the sliding characteristics of the sliding component can be improved. At this time, Cu contained in the sliding component has a catalytic action for generating the above-mentioned graphite intercalation compound. Therefore, “positively” enriching the Cu contained in the sliding component on the sliding surface of the sliding component in use is effective in improving the sliding characteristics of the sliding component. The Cu concentration on the sliding surface is sufficiently concentrated when the temperature of the sliding surface of the sliding component has risen over time after the use of the sliding component has started. It is effective that the catalytic action of Cu functions more effectively and the stable use of the sliding part is continued.
 以上の知見に対して、上述の成分組成を有する摺動部品は、その使用による摺動面の温度上昇によって、Cuが濃化する性質を有している。そして、内燃機関の構成部品といった摺動部品の場合、その使用中の摺動面は大気に曝されて、かつ、摺動面の温度は数百度になることを想定すれば、使用前における摺動部品の摺動特性を評価するときの摺動面のCu量(つまり、Cu濃化量)は、その摺動部品を大気中で500℃に加熱したときの値を基準とすることが、合理的である。そして、本発明の場合、上記の使用前の摺動部品を大気中で500℃に加熱したときの摺動面のCu量は、この大気中で500℃に加熱した後の摺動面を、例えば、室温にまで冷却してから、分析することができる。このとき、上記の摺動面の加熱は、摺動部品の全体が500℃に到達したときより、この摺動部品を1時間以上保持してから、冷却することができる。また、このとき、上記の冷却は、500℃から室温までを、例えば、空冷で行うことができる。そして、これら一連の工程を、大気中で行うことができる。そして、この大気中で500℃に加熱した後の摺動部品の摺動面において、摺動面の成分組成のCu量が「2.0原子%以上」であれば、使用中の摺動部品の摺動面に十分量のCuを濃化させることができて、上述の成分組成を有する摺動部品の摺動特性を更に向上させることができる。上記の摺動面のCu量について、好ましくは3.0原子%以上である。より好ましくは4.0原子%以上である。
 但し、500℃に加熱した後の摺動部品で、上記した摺動面のCu量が増えすぎると、このCuが粒界に偏在して、一種の赤熱脆性のように脆くなり、かえって摺動部品の摺動特性が低下する。よって、上記した摺動面のCu量は「10.0原子%以下」とする。好ましくは8.0原子%以下である。より好ましくは7.0原子%以下である。
In contrast to the above knowledge, the sliding component having the above-described component composition has a property that Cu is concentrated by the temperature rise of the sliding surface due to its use. In the case of a sliding component such as a component of an internal combustion engine, assuming that the sliding surface in use is exposed to the atmosphere and the temperature of the sliding surface is several hundred degrees, the sliding surface before use is When evaluating the sliding characteristics of a moving part, the amount of Cu on the sliding surface (that is, the amount of concentrated Cu) is based on the value when the sliding part is heated to 500 ° C. in the atmosphere. Is reasonable. And, in the case of the present invention, the amount of Cu of the sliding surface when the sliding part before use is heated to 500 ° C. in the atmosphere is the sliding surface after heating to 500 ° C. in the atmosphere, For example, it can be analyzed after cooling to room temperature. At this time, the heating of the sliding surface can be cooled after the sliding component is held for one hour or longer than when the entire sliding component reaches 500 ° C. At this time, the above cooling can be performed from 500 ° C. to room temperature by, for example, air cooling. And a series of these processes can be performed in the atmosphere. And, in the sliding surface of the sliding component after heating to 500 ° C. in the atmosphere, if the Cu content of the component composition of the sliding surface is “2.0 atomic% or more”, the sliding component in use A sufficient amount of Cu can be concentrated on the sliding surface, and the sliding characteristics of the sliding component having the above-described component composition can be further improved. The amount of Cu on the sliding surface is preferably 3.0 atomic% or more. More preferably, it is 4.0 atomic% or more.
However, if the amount of Cu on the sliding surface increases too much in the sliding part after heating to 500 ° C., this Cu is unevenly distributed at the grain boundary and becomes brittle like a kind of red heat brittleness. The sliding characteristics of the parts are reduced. Therefore, the amount of Cu on the sliding surface is set to “10.0 atomic% or less”. Preferably it is 8.0 atomic% or less. More preferably, it is 7.0 atomic% or less.
 本発明の摺動部品において、これを大気中で500℃に加熱したときに、その加熱後の摺動面に上記のCuが濃化するメカニズムは、次の通りと考えられる。まず、摺動部品が大気中で加熱されることで、その摺動面に、摺動部品を構成する元素(例えば、FeやCr等)の酸化物が“酸化膜として”形成される。そして、この酸化物に対するCuの固溶度は小さいことから、摺動部品中のCuが上記の酸化膜上に“染み出てきて”、摺動部品の摺動面にCuが濃化すると考えられる。よって、上記の「2.0~10.0原子%」のCu量は、この酸化膜(不純物を含む)の成分組成を測定したときに得られる値であると考えられる。この濃化したCuは、専ら「単体」の状態で存在しているから、上記したCuの触媒作用を発揮させるのに有利である。 In the sliding component of the present invention, when this is heated to 500 ° C. in the atmosphere, the mechanism of the concentration of the Cu on the heated sliding surface is considered as follows. First, when the sliding component is heated in the air, an oxide of an element (for example, Fe or Cr) constituting the sliding component is formed “as an oxide film” on the sliding surface. And since the solid solubility of Cu with respect to this oxide is small, it is thought that Cu in the sliding part “seeps out” on the oxide film and Cu is concentrated on the sliding surface of the sliding part. It is done. Therefore, it is considered that the Cu amount of “2.0 to 10.0 atomic%” is a value obtained when the component composition of this oxide film (including impurities) is measured. Since this concentrated Cu exists exclusively in a “single” state, it is advantageous for exerting the above-described catalytic action of Cu.
 このような摺動部品は、上述の成分組成に調整した上で、以下の製造条件によって、達成が可能である。例えば、出発材料となる鋳塊の作製段階において、鋳型に注がれた溶湯を、その固相-液相の共存域を速く通過するように冷却すること、例えば、10分以内の冷却時間で冷却することが有効である。また、さらに、熱間加工前の素材に、1130~1180℃の高温で長時間の(例えば、10時間以上の)均質化処理を行うことが有効である。そして、上記の熱間加工において、その鍛錬成形比(断面積比)が7S以上の実体鍛錬を行うことが有効である(「S」は、実体鍛錬を示す記号である)。これらの条件によって、摺動部品の内部に濃化する「Cu偏析」を抑えることができ、使用中の摺動部品における摺動面でのCu量の確保に効果的である。 Such a sliding part can be achieved according to the following manufacturing conditions after adjusting to the above-described component composition. For example, in the production stage of the ingot as a starting material, the molten metal poured into the mold is cooled so as to quickly pass through the solid-liquid phase coexistence region, for example, with a cooling time of 10 minutes or less. Cooling is effective. Further, it is effective to subject the material before hot working to a homogenization treatment at a high temperature of 1130 to 1180 ° C. for a long time (for example, 10 hours or more). In the hot working described above, it is effective to perform substantial forging with a forging ratio (cross-sectional area ratio) of 7S or more (“S” is a symbol indicating actual forging). Under these conditions, “Cu segregation” concentrated inside the sliding component can be suppressed, which is effective in securing the amount of Cu on the sliding surface of the sliding component in use.
(3)好ましくは、本発明の摺動部品は、その摺動面の硬さが「40~64HRC」である。
 摺動部品の摺動面の硬さを高くすることで、摺動面の耐摩耗性を向上させることができる。但し、上記の摺動面の硬さが高くなり過ぎると、摺動時に潤滑油中の有機物成分がダイヤモンド化しやすく、摺動特性が低下する。よって、本発明の摺動部品は、その摺動面の好ましい硬さを40~64HRCとする。より好ましくは45HRC以上である。さらに好ましくは50HRC以上である。特に好ましくは55HRC以上である。また、より好ましくは63HRC以下である。さらに好ましくは62HRC以下である。なお、上記の硬さは“常温”で測定したときのものである。
(3) Preferably, the sliding component of the present invention has a sliding surface hardness of “40 to 64 HRC”.
The wear resistance of the sliding surface can be improved by increasing the hardness of the sliding surface of the sliding component. However, if the hardness of the sliding surface becomes too high, the organic component in the lubricating oil is likely to become diamond during sliding, and the sliding characteristics are deteriorated. Therefore, in the sliding component of the present invention, the preferred hardness of the sliding surface is 40 to 64 HRC. More preferably, it is 45 HRC or more. More preferably, it is 50 HRC or more. Particularly preferred is 55 HRC or more. More preferably, it is 63 HRC or less. More preferably, it is 62 HRC or less. The above hardness is measured at “room temperature”.
 このような摺動面の硬さは、例えば、摺動部品に焼入れ焼戻しを行うことで、付与することかできる。この場合、焼入れ温度は、例えば、850~1100℃とすることができる。好ましくは900℃以上であり、より好ましくは950℃以上であり、さらに好ましくは1000℃以上である。また、好ましくは1080℃以下であり、より好ましくは1050℃以下である。そして、焼戻し温度は、例えば、150~700℃とすることができる。好ましくは200℃以上であり、より好ましくは300℃以上であり、さらに好ましくは400℃以上であり、特に好ましくは450℃以上である。また、好ましくは650℃以下であり、より好ましくは600℃以下であり、さらに好ましくは550℃以下である。 Such hardness of the sliding surface can be imparted, for example, by quenching and tempering the sliding component. In this case, the quenching temperature can be 850 to 1100 ° C., for example. Preferably it is 900 degreeC or more, More preferably, it is 950 degreeC or more, More preferably, it is 1000 degreeC or more. Moreover, it is preferably 1080 ° C. or lower, more preferably 1050 ° C. or lower. The tempering temperature can be set to 150 to 700 ° C., for example. Preferably it is 200 degreeC or more, More preferably, it is 300 degreeC or more, More preferably, it is 400 degreeC or more, Most preferably, it is 450 degreeC or more. Moreover, Preferably it is 650 degrees C or less, More preferably, it is 600 degrees C or less, More preferably, it is 550 degrees C or less.
 本発明の摺動部品に関しては、上記の焼戻しによって、その摺動部品の摺動面には、既に(つまり、大気中で500℃に加熱する前に)、Cuが濃化していることも考えられる。しかし、通常、焼入れ焼戻し後の摺動部品の表面には、仕上げの機械加工が施される。よって、本発明の摺動部品に関して、大気中で500℃に加熱する前から、その摺動面にCuが濃化していたとしても、この濃化したCuは、上記の機械加工によって、先述の酸化膜ごと、除去されている。本発明の場合、このような摺動部品であっても、これを大気中で加熱して使用したときに、その摺動面に“改めて”Cuが濃化するので、摺動部品の摺動特性を向上させることができる。 Regarding the sliding component of the present invention, it is considered that Cu has already been concentrated on the sliding surface of the sliding component (that is, before heating to 500 ° C. in the atmosphere) by the above tempering. It is done. However, the surface of the sliding part after quenching and tempering is usually subjected to finishing machining. Therefore, regarding the sliding component of the present invention, even if Cu is concentrated on the sliding surface before heating to 500 ° C. in the atmosphere, this concentrated Cu is The whole oxide film is removed. In the case of the present invention, even if such a sliding part is used by heating it in the atmosphere, Cu is concentrated again on the sliding surface. Characteristics can be improved.
 本発明の摺動部品の場合、その摺動面に浸炭処理を行って、浸炭層を有した摺動面とすることができる。通常、浸炭処理の後には、続けて、焼入れおよび焼戻しが行われる。そして、この場合、本発明に係る「大気中で500℃に加熱した後の摺動部品の摺動面の成分組成」は、この焼入れ焼戻し後の浸炭層の表面の成分組成で評価される。そして、本発明に係る「摺動面の硬さ」は、この浸炭層の表面の硬さで評価される。 In the case of the sliding component of the present invention, the sliding surface can be carburized to form a sliding surface having a carburized layer. Usually, after the carburizing treatment, quenching and tempering are performed. In this case, the “component composition of the sliding surface of the sliding part after heating to 500 ° C. in the atmosphere” according to the present invention is evaluated by the component composition of the surface of the carburized layer after quenching and tempering. The “sliding surface hardness” according to the present invention is evaluated by the hardness of the surface of the carburized layer.
 所定の成分組成に調整した溶湯を鋳造して、表1の成分組成を有する素材A、Bの鋳塊を準備した。素材Bは、JIS-G-4404の規格鋼種である冷間工具鋼SKD11である。なお、素材A、Bにおいて、Ca、Mg、O、Nは無添加であり、Ca≦0.02%、Mg≦0.02%、O≦0.03%、N≦0.05%であった。そして、鋳型への注湯後において、素材A、B共にほぼ同じ冷却速度とし、固相-液相の共存域の冷却時間は、素材Aで10分、素材Bで7分とした。 The molten metal adjusted to a predetermined component composition was cast to prepare ingots of materials A and B having the component compositions shown in Table 1. The material B is cold tool steel SKD11 which is a standard steel type of JIS-G-4404. In the materials A and B, Ca, Mg, O, and N were not added, and Ca ≦ 0.02%, Mg ≦ 0.02%, O ≦ 0.03%, and N ≦ 0.05%. It was. After pouring into the mold, both the materials A and B were set to substantially the same cooling rate, and the cooling time in the solid-liquid phase coexistence region was 10 minutes for the material A and 7 minutes for the material B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 素材Aの鋳塊に、1170℃で10時間の均質化処理を行った。そして、この均質化処理を行った後の素材Aを1100℃に加熱して、この加熱した素材Aに、鍛錬成形比(断面積比)が7Sの実体鍛錬による、熱間加工を行った。なお、素材Bの鋳塊については、均質化処理を行わずに、1100℃に加熱して、この加熱した素材Bに、鍛錬成形比(断面積比)が7Sの実体鍛錬による、熱間加工を行った。
 そして、熱間加工を終えた素材A、Bの両方に、840℃の焼鈍を行った後、所定の形状に機械加工してから、1030℃からの真空焼入れと、500℃の焼戻しを行い(狙い硬さは、素材A:62HRC、素材B:58HRC)、その後、仕上げを含む機械加工を行って、摺動部品A、Bを作製した。
The ingot of material A was homogenized at 1170 ° C. for 10 hours. And the raw material A after performing this homogenization process was heated to 1100 degreeC, and the hot processing by the forge forming ratio (cross-sectional area ratio) of 7S was performed to this heated raw material A. In addition, the ingot of the material B is heated to 1100 ° C. without performing the homogenization process, and the hot material B is subjected to hot working by submerged forging with a forging forming ratio (cross-sectional area ratio) of 7S. Went.
And after performing 840 degreeC annealing to both the raw material A and B which finished hot processing, after machining into a predetermined shape, vacuum quenching from 1030 degreeC and tempering at 500 degreeC are performed ( The target hardness was material A: 62HRC, material B: 58HRC), and then machining including finishing was performed to produce sliding parts A and B.
 次に、摺動部品A、Bに、後述の往復動摩擦摩耗試験を行うに際して、まず、摺動部品A、Bの摺動面を大気中で500℃に加熱したときの、その摺動面の成分組成のCu量を測定した。測定の要領は、次の通りである。まず、上記の摺動面を含む摺動部品の全体を、大気中で500℃に加熱した。次に、この加熱した状態の摺動部品を、全体の温度が500℃に到達してから1時間保持し、この後に室温まで空冷にて冷却した。そして、この冷却後の摺動部品の摺動面の表面をXPS(X線光電子分光装置)で分析して(線源:Co-Kα)、結合エネルギーが925~970eVの範囲のCu量(金属Cuの量に加えて、Cu酸化物を形成しているCuの量を含む)を定量した。なお、XPSによる測定の際、摺動面には、表面エッチング等の前処理を行わなかった。そして、摺動面の分析において、残部はFeやCrの酸化物であった。結果を、摺動面の常温での硬さと共に、表2に示す。 Next, when the sliding parts A and B are subjected to a reciprocating frictional wear test described later, first, the sliding surfaces of the sliding parts A and B when the sliding surfaces are heated to 500 ° C. in the atmosphere are displayed. The amount of Cu in the component composition was measured. The procedure for measurement is as follows. First, the entire sliding component including the sliding surface was heated to 500 ° C. in the atmosphere. Next, the heated sliding part was held for 1 hour after the whole temperature reached 500 ° C., and then cooled to room temperature by air cooling. Then, the surface of the sliding surface of the sliding component after cooling is analyzed by XPS (X-ray photoelectron spectrometer) (radiation source: Co—Kα), and the amount of Cu in the range of 925 to 970 eV (metal) In addition to the amount of Cu, the amount of Cu forming Cu oxide was included). In the measurement by XPS, the sliding surface was not subjected to pretreatment such as surface etching. In the analysis of the sliding surface, the balance was Fe or Cr oxide. The results are shown in Table 2 together with the hardness of the sliding surface at room temperature.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 そして、摺動部品A、Bの摺動面に対して、図1の模式図で示す往復動摩擦摩耗試験を行って、摺動部品A、Bの自己潤滑特性(摺動特性)を評価した。図1において、試験片1が摺動部品を構成する。試験片1の形状は、直径8mm×長さ20mmの円柱状であり、その周面が摺動面である。相手材2は、JIS-G-4805の規格鋼種である軸受鋼SUJ2(硬さ55HRC)とした。試験条件は、最大速度を0.3m/sとし、潤滑油3として、室温の炭化水素系エンジンオイル0W20を、相手材との摺動面間に0.5cc/s(=cm/s)の頻度で注油した。荷重は、摺動回数が50回に達した毎に100Nづつ増加させた。そして、摩擦係数が0.3以上に達したときを「焼付きの発生」として、そのときの摺動面積と焼付き荷重からPV値(=焼付き面圧×速度)を求めた。なお、試験後の摩擦痕は、通常、楕円形であり、上記の摺動面積は、この楕円形における「(短径側の半径)×(長径側の半径)×π」で算出した。結果を表3に示す。表3において、PV値が大きい程、摺動特性に優れる。そして、本発明例の摺動部品Aは、比較例の摺動部品Bと比較して、1.5倍を超えるPV値の増加が認められた。 A reciprocating frictional wear test shown in the schematic diagram of FIG. 1 was performed on the sliding surfaces of the sliding parts A and B to evaluate the self-lubricating characteristics (sliding characteristics) of the sliding parts A and B. In FIG. 1, a test piece 1 constitutes a sliding component. The shape of the test piece 1 is a cylindrical shape having a diameter of 8 mm and a length of 20 mm, and its peripheral surface is a sliding surface. The counterpart material 2 was a bearing steel SUJ2 (hardness 55HRC) which is a standard steel type of JIS-G-4805. The test conditions were a maximum speed of 0.3 m / s, a hydrocarbon engine oil 0W20 at room temperature as the lubricating oil 3, and 0.5 cc / s (= cm 3 / s) between the sliding surfaces with the counterpart material. Lubricated at a frequency of The load was increased by 100 N every time the number of sliding times reached 50. Then, when the friction coefficient reached 0.3 or more, the occurrence of seizure was regarded as “occurrence of seizure”, and the PV value (= seizure surface pressure × speed) was determined from the sliding area and seizure load at that time. The frictional trace after the test is usually elliptical, and the sliding area was calculated by “(radius on the minor axis side) × (radius on the major axis side) × π” on the ellipse. The results are shown in Table 3. In Table 3, the larger the PV value, the better the sliding characteristics. And the sliding component A of the example of the present invention showed an increase in PV value exceeding 1.5 times compared with the sliding component B of the comparative example.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1 試験片
 2 相手材
 3 潤滑油
1 Test piece 2 Material 3 Lubricating oil

Claims (14)

  1. 質量%で、C:0.1~1.6%、Si:0.1~3.0%、Mn:0.1~3.0%、P:0.06%以下、S:0.01~0.12%、Cu:0.1~1.0%、残部Feおよび不純物の成分組成を有する摺動部品であり、
    大気中で500℃に加熱した後の前記摺動部品の摺動面の成分組成が、2.0~10.0原子%のCuを含むことを特徴とする摺動部品。
    In mass%, C: 0.1 to 1.6%, Si: 0.1 to 3.0%, Mn: 0.1 to 3.0%, P: 0.06% or less, S: 0.01 A sliding component having a component composition of ~ 0.12%, Cu: 0.1-1.0%, the balance Fe and impurities,
    A sliding component characterized in that the component composition of the sliding surface of the sliding component after heating to 500 ° C. in the atmosphere contains 2.0 to 10.0 atomic% of Cu.
  2. 前記摺動部品の成分組成が、質量%で、さらに、Ni:1.5%以下を含むことを特徴とする請求項1に記載の摺動部品。 2. The sliding component according to claim 1, wherein a component composition of the sliding component is mass% and further includes Ni: 1.5% or less.
  3. 前記摺動部品の成分組成が、質量%で、さらに、Cr:13.0%以下を含むことを特徴とする請求項1または2に記載の摺動部品。 3. The sliding component according to claim 1, wherein the component composition of the sliding component is, by mass%, further including Cr: 13.0% or less.
  4. 前記摺動部品の成分組成が、質量%で、さらに、(Mo+1/2W)の関係式によるMoおよびWのうちの1種または2種:1.7%以下を含むことを特徴とする請求項1ないし3のいずれかに記載の摺動部品。 The component composition of the sliding component is, by mass%, further including one or two of Mo and W according to a relational expression of (Mo + 1 / 2W): 1.7% or less. The sliding component according to any one of 1 to 3.
  5. 前記摺動部品の成分組成が、質量%で、さらに、V:0.7%以下を含むことを特徴とする請求項1ないし4のいずれかに記載の摺動部品。 5. The sliding component according to claim 1, wherein the component composition of the sliding component is mass% and further includes V: 0.7% or less.
  6. 前記摺動部品の成分組成が、質量%で、さらに、Al:0.7%以下を含むことを特徴とする請求項1ないし5のいずれかに記載の摺動部品。 The sliding component according to any one of claims 1 to 5, wherein the component composition of the sliding component includes, by mass%, Al: 0.7% or less.
  7. 前記摺動部品の成分組成が、質量%で、さらに、Nb:0.3%以下を含むことを特徴とする請求項1ないし6のいずれかに記載の摺動部品。 The sliding component according to any one of claims 1 to 6, wherein a component composition of the sliding component includes mass% and further includes Nb: 0.3% or less.
  8. 前記摺動部品の摺動面の硬さが、40~64HRCであることを特徴とする請求項1ないし7のいずれかに記載の摺動部品。 The sliding component according to any one of claims 1 to 7, wherein the sliding surface of the sliding component has a hardness of 40 to 64 HRC.
  9. 請求項1ないし8のいずれかに記載の摺動部品が、該摺動部品の摺動面に潤滑油が介在する環境下で、相手部品の摺動面と摺動するように構成されたことを特徴とする摺動構造体。 9. The sliding component according to claim 1, wherein the sliding component is configured to slide with the sliding surface of the counterpart component in an environment in which lubricating oil is present on the sliding surface of the sliding component. A sliding structure characterized by the above.
  10. 前記相手部品が金属材料からなることを特徴とする請求項9に記載の摺動構造体。 The sliding structure according to claim 9, wherein the mating part is made of a metal material.
  11. 前記潤滑油が炭化水素系潤滑油を含むことを特徴とする請求項9または10に記載の摺動構造体。 The sliding structure according to claim 9 or 10, wherein the lubricating oil includes a hydrocarbon-based lubricating oil.
  12. 請求項1ないし8のいずれかに記載の摺動部品と相手部品とを、前記摺動部品の前記相手部品との摺動面に潤滑油を介在させた環境下で摺動させることを特徴とする摺動構造体の摺動方法。 9. The sliding component according to claim 1 and a mating component are slid in an environment in which lubricating oil is interposed on a sliding surface of the sliding component with the mating component. A sliding method of the sliding structure.
  13. 前記相手部品が金属材料からなることを特徴とする請求項12に記載の摺動構造体の摺動方法。 The sliding method of a sliding structure according to claim 12, wherein the counterpart component is made of a metal material.
  14. 前記潤滑油が炭化水素系潤滑油を含むことを特徴とする請求項12または13に記載の摺動構造体の摺動方法。 The sliding method for a sliding structure according to claim 12 or 13, wherein the lubricating oil contains a hydrocarbon-based lubricating oil.
PCT/JP2017/033812 2016-09-20 2017-09-20 Sliding component, sliding structure, and method for sliding sliding structure WO2018056282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018525492A JP6422044B2 (en) 2016-09-20 2017-09-20 Sliding structure and sliding method of sliding structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-183058 2016-09-20
JP2016183058 2016-09-20

Publications (1)

Publication Number Publication Date
WO2018056282A1 true WO2018056282A1 (en) 2018-03-29

Family

ID=61690985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033812 WO2018056282A1 (en) 2016-09-20 2017-09-20 Sliding component, sliding structure, and method for sliding sliding structure

Country Status (2)

Country Link
JP (1) JP6422044B2 (en)
WO (1) WO2018056282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208621A1 (en) * 2018-04-26 2019-10-31 株式会社リケン Piston ring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002333A (en) * 2005-05-26 2007-01-11 Hitachi Metals Ltd Press die with excellent self-lubricating property
JP2008513695A (en) * 2004-09-17 2008-05-01 ティッセンクルップ オートモーティヴ アクチエンゲゼルシャフト Bearing device
JP2009174017A (en) * 2008-01-25 2009-08-06 Hitachi Metals Ltd Alloy to be surface-coating-treated, and sliding member
JP2014019920A (en) * 2012-07-20 2014-02-03 Nippon Steel & Sumitomo Metal Steel material for carburized or carbonitrided component
WO2015034086A1 (en) * 2013-09-09 2015-03-12 日本ピストンリング株式会社 Highly heat conductive piston ring for internal combustion engine
WO2016152967A1 (en) * 2015-03-26 2016-09-29 日立金属株式会社 Sliding component and sliding structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701812B1 (en) * 2002-07-01 2007-04-02 히타치 긴조쿠 가부시키가이샤 Material for sliding parts having self-lubricity and wire material for piston ring
JP4737606B2 (en) * 2004-11-18 2011-08-03 日立金属株式会社 Cold die steel with excellent deformation suppression characteristics and galling resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513695A (en) * 2004-09-17 2008-05-01 ティッセンクルップ オートモーティヴ アクチエンゲゼルシャフト Bearing device
JP2007002333A (en) * 2005-05-26 2007-01-11 Hitachi Metals Ltd Press die with excellent self-lubricating property
JP2009174017A (en) * 2008-01-25 2009-08-06 Hitachi Metals Ltd Alloy to be surface-coating-treated, and sliding member
JP2014019920A (en) * 2012-07-20 2014-02-03 Nippon Steel & Sumitomo Metal Steel material for carburized or carbonitrided component
WO2015034086A1 (en) * 2013-09-09 2015-03-12 日本ピストンリング株式会社 Highly heat conductive piston ring for internal combustion engine
WO2016152967A1 (en) * 2015-03-26 2016-09-29 日立金属株式会社 Sliding component and sliding structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208621A1 (en) * 2018-04-26 2019-10-31 株式会社リケン Piston ring
JPWO2019208621A1 (en) * 2018-04-26 2021-01-14 株式会社リケン piston ring
US11512777B2 (en) 2018-04-26 2022-11-29 Kabushiki Kaisha Riken Piston ring

Also Published As

Publication number Publication date
JP6422044B2 (en) 2018-11-14
JPWO2018056282A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
WO2014196614A1 (en) Piston ring, raw material therefor, and production method for both
JP2019218633A (en) Steel for soft nitriding and article
EP2674506A1 (en) Abrasion-resistant titanium alloy member having excellent fatigue strength
WO2009113477A1 (en) Rolling component and manufacturing method thereof
WO2012029212A1 (en) Bearing steel and ingot material for bearing having high rolling fatigue life characteristics and method for manufacturing same
JP6471914B2 (en) Steel alloy and parts containing such steel alloy, method for producing steel alloy
WO2009119388A1 (en) Piston ring material for internal combustion engine
WO2011065593A1 (en) Ingot for bearing, and process for producing bearing steel
JP4273462B2 (en) Self-lubricating sliding part material and piston ring wire
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP6098769B2 (en) Soft nitriding steel and parts and methods for producing them
WO2016152967A1 (en) Sliding component and sliding structure
JP6561816B2 (en) Crankshaft and manufacturing method thereof
WO2012073458A1 (en) Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
JP6422044B2 (en) Sliding structure and sliding method of sliding structure
WO2012073488A1 (en) Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering
CN109423575B (en) Rolling sliding member, method for producing rolling sliding member, and rolling bearing comprising rolling sliding member
JP2022170056A (en) steel
JP2020117789A (en) Ring gear for automobile transmission and its production method
JP7379955B2 (en) Carbonitriding steel and carbonitriding parts
JP2019090096A (en) Cast iron material
JP6587570B2 (en) Piston ring wire for internal combustion engine and piston ring for internal combustion engine
JP2023140901A (en) High hardness steel for cold working and machine component using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018525492

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853052

Country of ref document: EP

Kind code of ref document: A1