WO2018056139A1 - 正極活物質及びその製造方法、並びに非水電解質二次電池 - Google Patents

正極活物質及びその製造方法、並びに非水電解質二次電池 Download PDF

Info

Publication number
WO2018056139A1
WO2018056139A1 PCT/JP2017/033040 JP2017033040W WO2018056139A1 WO 2018056139 A1 WO2018056139 A1 WO 2018056139A1 JP 2017033040 W JP2017033040 W JP 2017033040W WO 2018056139 A1 WO2018056139 A1 WO 2018056139A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
cycle
discharge
Prior art date
Application number
PCT/JP2017/033040
Other languages
English (en)
French (fr)
Inventor
大誠 井上
大輔 西川
学武 山本
勝哉 井之上
Original Assignee
Basf戸田バッテリーマテリアルズ合同会社
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017173269A external-priority patent/JP6329311B2/ja
Priority claimed from JP2017173299A external-priority patent/JP6408097B2/ja
Application filed by Basf戸田バッテリーマテリアルズ合同会社, 株式会社Gsユアサ filed Critical Basf戸田バッテリーマテリアルズ合同会社
Priority to CN202210372239.6A priority Critical patent/CN114735761B/zh
Priority to KR1020197011276A priority patent/KR102447292B1/ko
Priority to CN201780057739.8A priority patent/CN109716564B/zh
Priority to EP17852916.0A priority patent/EP3518330A4/en
Priority to KR1020227016109A priority patent/KR102468733B1/ko
Publication of WO2018056139A1 publication Critical patent/WO2018056139A1/ja
Priority to US16/361,006 priority patent/US11121365B2/en
Priority to US17/464,463 priority patent/US20210399292A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1257Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/56Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO3]2-, e.g. Li2[NixMn1-xO3], Li2[MyNixMn1-x-yO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/20Two-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a nonaqueous electrolyte secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery.
  • LiMn 2 O 4 of spinel structure LiMnO 2 having a zigzag layer structure, LiCoO 2 of layered rock-salt structure, LiNiO 2 and the like are generally known.
  • a lithium ion secondary battery using LiNiO 2 has attracted attention as a battery having a high charge / discharge capacity.
  • this material is inferior in thermal stability and cycle characteristics during charging, further improvement in characteristics is required.
  • the positive electrode active material is currently most demanded, but no material satisfying the necessary and sufficient requirements has been obtained yet.
  • the present invention includes a positive electrode active material for a non-aqueous electrolyte secondary battery that has a low voltage drop when charging and discharging are repeated and has a high energy density, a method for producing the same, and a positive electrode containing the positive electrode active material.
  • An object is to provide a nonaqueous electrolyte secondary battery.
  • the present invention also provides a positive electrode active material for a non-aqueous electrolyte secondary battery having excellent cycle characteristics and rate characteristics and high energy density, and a non-aqueous electrolyte secondary battery including a positive electrode containing the positive electrode active material.
  • the purpose is to do.
  • the positive electrode active material according to the present invention is composed of a layered lithium composite oxide containing Li, Ni, Mn, and optionally Co,
  • the voltage V at the fifth cycle discharge was On the basis of the battery capacity Q, the horizontal axis represents the voltage V, and the vertical axis represents the dQ / dV value obtained by differentiating the battery capacity Q from the voltage V.
  • the positive electrode active material I according to the present invention I-1 has the following composition formula (I): (1- ⁇ ) (LiNi x Co y Mn z O 2 ) ⁇ ⁇ Li 2 MnO 3 (I)
  • the average valence of Ni is preferably +1.90 to +2.25 (Invention I-2).
  • the energy density of the discharge in the first cycle under the condition (I-1) is preferably 880 Wh / kg to 1100 Wh / kg ( Invention I-3).
  • a carbonate precursor compound containing Ni, Mn, and optionally Co is synthesized under conditions of pH 6.8 to 13.2, Li, A lithium compound and the carbonate precursor compound are mixed so that Li / (Ni + Co + Mn), which is a molar ratio of Ni, Mn, and Co, is 1.25 to 1.39, and an oxidizing atmosphere is mixed. And producing a layered lithium composite oxide by firing at 840 ° C. to 1000 ° C. (Invention I-4).
  • a nickel compound, a cobalt compound, and a manganese compound are mixed to prepare a mixed solution, It is preferable to synthesize a carbonate precursor compound using the mixed solution (Invention I-5).
  • the production method according to the present invention I-4 or the present invention I-5 includes primary particles of a layered lithium composite oxide so that the aluminum compound is 0.1 wt% to 0.7 wt% with respect to the positive electrode active material. It is preferable to coat and / or dissolve the aluminum compound on the surface of the secondary particles (Invention I-6).
  • the non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte secondary battery including a positive electrode containing the positive electrode active material I of the present invention I-1, the present invention I-2, or the present invention I-3 (hereinafter referred to as “non-aqueous electrolyte secondary battery”).
  • non-aqueous electrolyte secondary battery including a positive electrode containing the positive electrode active material I of the present invention I-1, the present invention I-2, or the present invention I-3 (hereinafter referred to as “non-aqueous electrolyte secondary battery”).
  • non-aqueous electrolyte secondary battery I Also referred to as non-aqueous electrolyte secondary battery I) (Invention I-7).
  • a positive electrode active material (hereinafter also referred to as a positive electrode active material II) having a specific surface area (BET specific surface area) by the BET method of 3.5 to 8.5 m 2 / g (Invention II-1) ).
  • the positive electrode active material according to the present invention II-1 is a non-aqueous electrolyte secondary battery using the positive electrode as a positive electrode and a lithium foil as a negative electrode when charged and discharged under the following conditions (II-1).
  • Cycle characteristics (%) (discharge capacity at 29th cycle / discharge capacity at 4th cycle) ⁇ 100
  • the cycle characteristics required as is 93% or more
  • Rate characteristic (%) (discharge capacity at the seventh cycle / discharge capacity at the fourth cycle) ⁇ 100 It is preferable that the rate characteristic obtained as follows is 80% or more (Invention II-2).
  • the energy density of the discharge at the first cycle under the condition (II-1) is preferably 880 Wh / kg to 1100 Wh / kg (Invention II-3). ).
  • the positive electrode active material according to the present invention II-1, the present invention II-2, or the present invention II-3 has the following composition formula (II): Li 1 + ⁇ (Ni a Co b Mn c ) 1- ⁇ O 2 (II)
  • is 0.11 ⁇ ⁇ ⁇ 0.18
  • a is 0.20 ⁇ a ⁇ 0.40
  • b is 0 ⁇ b ⁇ 0.08.
  • a + b + c 1 is preferable (Invention II-4).
  • the non-aqueous electrolyte secondary battery according to the present invention is a non-aqueous electrolyte comprising a positive electrode containing the positive electrode active material II of the present invention II-1, the present invention II-2, the present invention II-3, or the present invention II-4.
  • This is an electrolyte secondary battery (hereinafter also referred to as non-aqueous electrolyte secondary battery II) (Invention II-5).
  • the positive electrode active material I that has a small voltage drop when charging and discharging are repeated, a high energy density, and a high energy density retention rate.
  • the positive electrode active material II having excellent cycle characteristics and rate characteristics and high energy density.
  • FIG. 1 is a graph obtained in Example I-1, in which the horizontal axis represents voltage V and the vertical axis represents dQ / dV.
  • FIG. 2 shows the results obtained when the samples obtained in Example I-1 and Comparative Example I-3 were charged and discharged under the condition (I-2). The horizontal axis represents the number of cycles, and the vertical axis represents the average discharge voltage. It is a graph.
  • FIG. 3 is a powder X-ray diffraction pattern of the positive electrode active material obtained in Example II-1.
  • the positive electrode active material I according to the present invention is a Li-rich layered lithium composite oxide containing Li, Ni, Mn, and optionally Co.
  • the layered lithium composite oxide in the present invention includes, for example, the following composition formula (I): (1- ⁇ ) (LiNi x Co y Mn z O 2 ) ⁇ ⁇ Li 2 MnO 3 (I) Can be expressed as
  • is preferably 0.21 ⁇ ⁇ ⁇ 0.40, and more preferably 0.25 ⁇ ⁇ ⁇ 0.38.
  • x is preferably 0.45 ⁇ x ⁇ 0.51, and preferably 0.46 ⁇ x ⁇ 0.50.
  • y is preferably 0 ⁇ y ⁇ 0.12, and preferably 0 ⁇ y ⁇ 0.09.
  • the average valence of Ni is preferably +1.90 to +2.25, more preferably +1.98 to +2.16.
  • the voltage at the fifth cycle discharge On the basis of V and battery capacity Q, the horizontal axis represents voltage V, and the vertical axis represents dQ / dV value obtained by differentiating battery capacity Q with voltage V.
  • FIG. 1 is a graph obtained in Example I-1, which will be described later, with the horizontal axis representing voltage V and the vertical axis representing dQ / dV. As shown in FIG. 1, it can be confirmed that Peak 1, Peak 2, and Peak 3 exist in this graph.
  • of the peak top dQ / dV value of peak 3 is too small, r becomes small and the energy density becomes low. Conversely, if
  • the range of r is 0 ⁇ r ⁇ 0.25
  • the preferable range of r is 0.05 ⁇ r ⁇ 0.23
  • the more preferable range of r is 0.07 ⁇ r ⁇ 0.21. .
  • the inventors consider that
  • the Co content in the positive electrode active material I of the present invention is, for example, an NCM-type layered rock salt system such as Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2.
  • the high Co content can increase the energy density, and depending on the composition, the energy density maintenance rate can also be increased, but what is important in the present invention is not limited. It has been found that by lowering the Co content, the voltage drop can be suppressed and the energy density can be increased.
  • the energy density of the discharge in the first cycle under the condition (I-1) is preferably 880 Wh / kg to 1100 Wh / kg.
  • the energy density is smaller than the lower limit, compared to Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 which is a ternary material already put into practical use, There is no advantage.
  • the energy density maintenance rate may be deteriorated.
  • a more preferable energy density range is 900 Wh / kg to 1050 Wh / kg.
  • the energy density maintenance rate is preferably 93% or more, and more preferably 94% or more.
  • FIG. 2 shows the results obtained when the samples obtained in Example I-1 and Comparative Example I-3 described later were charged / discharged under the condition (I-2).
  • the horizontal axis represents the number of cycles, and the vertical axis represents the average discharge. It is a graph of a voltage.
  • Comparative Example I-3 the discharge voltage greatly decreases as charging / discharging is repeated, whereas in Example I-1, the discharge voltage decreases even when charging / discharging is repeated. Is small.
  • the positive electrode active material I according to the present invention can be obtained by mixing and firing a powder of a carbonate precursor compound containing a transition metal synthesized in advance and a lithium compound.
  • the particle powder of the carbonate precursor compound containing a transition metal is composed of a nickel compound, a manganese compound, and optionally cobalt having a predetermined concentration.
  • a mixed solution containing the compound and an aqueous alkaline solution are supplied to the reaction vessel, and the pH is controlled to be within an appropriate range, and the overflowed suspension is concentrated in the concentration vessel connected to the overflow pipe. It can be obtained by carrying out the reaction until the particle concentration of the precursor compound in the reaction tank and the concentration tank becomes 0.1 to 15 mol / L. Moreover, you may obtain the particle powder of a precursor compound from the overflowed suspension, without providing a concentration tank. Thereafter, the carbonate precursor compound can be obtained by washing with water and drying.
  • a mixed solution for synthesizing the particle powder of the carbonate precursor compound containing Ni, Mn, and optionally Co is Ni, Mn
  • the suitable range of the pH is 6.8 to 13.2, preferably 6.9 to 12.5, more preferably 7.0 to 12.0.
  • the pH at the time of reacting the mixed solution containing the nickel compound of the predetermined concentration, the manganese compound, and optionally the cobalt compound is less than 6.8, the Ni precipitate formation reaction is particularly difficult to occur, and the aim is Since the carbonate precursor compound having the street composition cannot be obtained, the energy density and the energy density maintenance rate are lowered. If the pH exceeds 13.2, the primary particle size of the carbonate precursor compound becomes large, and the energy density and the energy density retention rate decrease. Moreover, since a spherical precursor compound cannot be obtained, the filling rate of the positive electrode active material I at the time of producing an electrode is lowered, which is not preferable.
  • Li / (Ni + Co + Mn), which is a molar ratio of Li to Ni, Mn, and optional Co, is 1.25 to 1.39, preferably 1.25 to 1.38.
  • a layered lithium composite oxide can be obtained by mixing with a carbonate precursor compound and firing at 840 ° C. to 1000 ° C. in an oxidizing atmosphere.
  • the firing temperature is lower than 840 ° C., desired crystals cannot be obtained. On the other hand, if the firing temperature exceeds 1000 ° C., the crystal growth proceeds too much and the energy density becomes small.
  • the firing temperature is 850 ° C. to 970 ° C.
  • the mixing treatment of the lithium compound and the carbonate precursor compound particle powder containing the transition metal may be either dry or wet as long as it can be uniformly mixed.
  • the precursor used in the present invention is made of carbonate, it is preferable to ventilate sufficiently during firing so that the carbonate is not decomposed and remains.
  • the nickel compound used in the present invention is not particularly limited, and examples thereof include nickel sulfate, nickel oxide, nickel hydroxide, nickel nitrate, nickel carbonate, nickel chloride, nickel iodide, and metallic nickel. Is preferred.
  • the cobalt compound used in the present invention is not particularly limited, and examples thereof include cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt nitrate, cobalt carbonate, cobalt chloride, cobalt iodide, and metal cobalt. Is preferred.
  • the manganese compound used in the present invention is not particularly limited, and examples thereof include manganese sulfate, manganese oxide, manganese hydroxide, manganese nitrate, manganese carbonate, manganese chloride, manganese iodide, and metal manganese. Is preferred.
  • the lithium compound used in the present invention is not particularly limited, and various lithium salts can be used.
  • lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide examples include lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being preferred.
  • the surface of the primary particles and / or secondary particles of the layered lithium composite oxide is coated with an aluminum compound and / or Can be dissolved.
  • the layered lithium composite oxide is peptized in pure water, the aluminum compound is added dropwise with stirring, washed with filtered water and dried at about 80 ° C. to 120 ° C.
  • a method of firing at about 300 ° C. to 500 ° C. for about 5 hours under air flow can be employed.
  • the aluminum compound can be dissolved by appropriately adjusting the conditions such as the drying temperature and the firing temperature when the aluminum compound is coated.
  • the aluminum compound used in the present invention is not particularly limited, and examples thereof include aluminum sulfate, aluminum oxide, aluminum hydroxide, aluminum nitrate, aluminum carbonate, aluminum chloride, aluminum iodide, sodium aluminate, and metal aluminum.
  • Aluminum sulfate is preferred.
  • the aluminum compound is preferably 0.1 wt% to 0.7 wt% with respect to the positive electrode active material I, more preferably 0.2 wt%.
  • the effect of further improving the energy density maintenance rate and the effect of improving the coulomb efficiency are more fully exhibited.
  • Nonaqueous electrolyte secondary battery I ⁇ Nonaqueous electrolyte secondary battery I> Next, the nonaqueous electrolyte secondary battery I provided with the positive electrode containing the positive electrode active material I according to the present invention will be described.
  • a conductive agent and a binder are added and mixed according to a conventional method.
  • the conductive agent for example, acetylene black, carbon black, graphite and the like are preferable
  • the binder for example, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the non-aqueous electrolyte secondary battery I according to the present invention manufactured using a positive electrode containing the positive electrode active material I is composed of an electrolyte solution containing the positive electrode, the negative electrode, and the electrolyte.
  • Examples of the negative electrode active material include one or more nonmetals or metal elements selected from the group consisting of Si, Al, Sn, Pb, Zn, Bi, and Cd, alloys containing the same or chalcogen compounds containing the lithium, and lithium.
  • a metal, graphite, a low crystalline carbon material, etc. can be used.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane is used as a solvent for the electrolytic solution.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane is used as a solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the solvent and used.
  • the energy density of the first cycle discharge in the above condition (I-1) is preferably 880 Wh / kg to 1100 Wh / kg, more preferably 900 Wh / kg to 1050 Wh / kg.
  • the energy density maintenance rate obtained based on the condition (I-2) is preferably 93% or more, More preferably, it is 94% or more.
  • ⁇ Action> In the present invention, by adjusting the value of the peak intensity ratio r within a specific range of 0 ⁇ r ⁇ 0.25, the voltage drop when charging / discharging is repeated is small, the energy density is high, and the energy density maintenance rate is high. In addition, a positive electrode active material I having a specific composition can be obtained. In addition, in the present invention, it is possible to obtain the positive electrode active material I exhibiting high battery characteristics even though the cost is high and the amount of Co, which is a rare metal, is reduced.
  • the positive electrode active material II according to the present invention is a Li-rich layered lithium composite oxide containing Li, Ni, Mn, and optionally Co.
  • composition formula (II) when ⁇ is smaller than the lower limit value and a is larger than the upper limit value, the cycle characteristics and the rate characteristics are increased, but the energy density is decreased. On the other hand, if ⁇ is larger than the upper limit value and a is smaller than the lower limit value, the energy density can be increased, but the cycle characteristics and the rate characteristics are lowered.
  • b is larger than the upper limit, growth of crystallites is promoted at the time of firing in the synthesis of the lithium compound and the carbonate precursor compound, and the crystallites become too large although they are high crystals. Will be lower.
  • is smaller than the lower limit value, an impurity phase having a spinel structure (spinel heterophase) is generated, and the battery capacity is reduced.
  • the generation of the spinel heterogeneous phase can be confirmed by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • Relative height intensity ratio (IIa) / (IIb) with respect to the height intensity (IIb) of the maximum diffraction peak at 1 ° is 0.015 to 0.035 and 0.017 to 0.034. Is preferred.
  • the relative height intensity ratio is smaller than the lower limit value, the cycle characteristics and rate characteristics are improved, but the energy density is lowered, which is not practical.
  • the relative height intensity ratio is larger than the upper limit value, the energy density is increased, but the cycle characteristics and the rate characteristics are decreased, which is also not practical.
  • the crystallite size calculated from the (104) diffraction line using the Scherrer equation of the powder X-ray diffraction pattern using Cu—K ⁇ ray is 25 to 40 nm. It is preferable that the thickness is ⁇ 39 nm.
  • the (104) diffraction line when indexed with the space group R-3m was used as the crystallite size. Since the (003) diffraction line contains only information in the c-axis direction and the (110) diffraction line contains only information in the ab-axis direction, it is not preferable as a peak for obtaining the crystallite size. Other diffraction lines are not preferable as peaks for obtaining crystallite size because of low peak intensity.
  • the crystallite size is smaller than the lower limit, the volume occupied by the crystallite surface with respect to the inside of the crystallite becomes large. Therefore, when the crystallite size is used as the positive electrode active material of a nonaqueous electrolyte secondary battery, the contribution of the surface with the largest structural change Is increased, and the reactivity with the electrolytic solution is also increased.
  • the crystallite size is larger than the upper limit value, when used as the positive electrode active material of the non-aqueous electrolyte secondary battery, the diffusion distance in the crystallite of Li becomes large, and the rate characteristics become low. It is not preferable.
  • the X-ray diffraction conditions are as follows.
  • X-ray diffractometer SmartLab (manufactured by Rigaku Corporation) Radiation source: Cu-K ⁇ Accelerating voltage and current: 45 kV and 200 mA Sampling width: 0.01 deg Scan width: 15 deg to 70 deg Scanning speed: 0.9 seconds Divergent slit width: 0.65 deg Receiving slit width: 0.2mm Scattering slit: 0.65 deg
  • the obtained X-ray diffraction data was analyzed using “PDXL” [manufactured by Rigaku Corporation] which is software attached to the X-ray diffractometer without removing the peak derived from K ⁇ 2. After removing peaks that cannot be indexed in the space group R-3m from the obtained peaks, optimization is performed in the automatic mode, and in the space group R-3m, it corresponds to the peak represented by (104) The crystallite size to be obtained was determined.
  • the positive electrode active material II according to the present invention has a BET specific surface area of 3.5 to 8.5 m 2 / g, preferably 3.7 to 8.3 m 2 / g, and 4.0 to 8. More preferably, it is 0 m 2 / g.
  • the BET specific surface area is smaller than the lower limit, it is not preferable because when used as a positive electrode active material for a non-aqueous electrolyte secondary battery, the contact area with the electrolytic solution is reduced and the rate characteristics are lowered.
  • the BET specific surface area When the BET specific surface area is larger than the upper limit value, when used as a positive electrode active material of a non-aqueous electrolyte secondary battery, the contact area with the electrolytic solution is increased, and the amount of side reaction with the electrolytic solution is increased. Absent.
  • the BET specific surface area can be measured using, for example, a BET specific surface area measuring apparatus [MONOSORB, manufactured by Yuasa Ionics Co., Ltd.] after drying and deaeration of the sample under nitrogen gas at 120 ° C. for 45 minutes. it can.
  • the crystallinity of the active material particles is increased, and the crystallite It is considered preferable to reduce the size.
  • the crystallinity of the particles is the degree of few defects in the crystal lattice.
  • the crystallinity of the particles can be increased, and the cycle characteristics when used as a positive electrode active material of a nonaqueous electrolyte secondary battery are improved.
  • the rate characteristics are lowered. Therefore, it is necessary to synthesize in an appropriate firing temperature range.
  • the content of Co in the positive electrode active material II of the present invention is very small compared to a layered rock salt ternary material such as Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 .
  • a layered rock salt ternary material such as Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 .
  • the energy density of the discharge in the first cycle under the condition (II-1) is preferably 880 Wh / kg to 1100 Wh / kg.
  • the energy density is superior to Li (Ni 0.33 Co 0.33 Mn 0.33 ) O 2 which is already put into practical use. There is no.
  • the energy density maintenance rate may decrease.
  • a more preferable energy density range is 900 Wh / kg to 1050 Wh / kg.
  • the cycle characteristics and rate characteristics of the positive electrode active material II according to the present invention can be calculated.
  • the positive electrode active material II according to the present invention can be obtained by mixing and firing a powder of a carbonate precursor compound containing a transition metal synthesized in advance and a lithium compound.
  • the particle powder of the carbonate precursor compound containing a transition metal is composed of a nickel compound, a manganese compound, and optionally cobalt having a predetermined concentration.
  • a mixed solution containing the compound and an aqueous alkaline solution are supplied to the reaction vessel, and the pH is controlled to be within an appropriate range, and the overflowed suspension is concentrated in the concentration vessel connected to the overflow pipe. It can be obtained by carrying out the reaction until the particle concentration of the precursor compound in the reaction tank and the concentration tank becomes 0.1 to 15 mol / L. Moreover, you may obtain the particle powder of a precursor compound from the overflowed suspension, without providing a concentration tank. Thereafter, the carbonate precursor compound can be obtained by washing with water and drying.
  • a mixed solution for synthesizing the particle powder of the carbonate precursor compound containing Ni, Mn, and optionally Co is Ni, Mn
  • the preferable range of the pH is 7.0 to 13.0, more preferably 7.2 to 12.5, and particularly preferably 7.4 to 12.0.
  • the pH at the time of reacting the mixed solution containing the nickel compound of the predetermined concentration, the manganese compound, and optionally the cobalt compound is less than 7.0, it is particularly difficult to cause a precipitation reaction of Ni. Since the carbonate precursor compound having the street composition cannot be obtained, the energy density may be lowered. If the pH exceeds 13.0, the primary particle size of the carbonate precursor compound is increased, which may reduce the energy density. Moreover, since a spherical precursor compound cannot be obtained, the filling rate of the positive electrode active material II at the time of producing an electrode is lowered, which is not preferable.
  • Li / (Ni + Co + Mn), which is a molar ratio of Li to Ni, Mn, and optional Co, is 1.25 to 1.41, preferably 1.25 to 1.40.
  • a layered lithium composite oxide can be obtained by mixing with a carbonate precursor compound and firing at 840 ° C. to 1000 ° C. in an oxidizing atmosphere.
  • the firing temperature is lower than 840 ° C., desired crystals cannot be obtained. On the other hand, if the firing temperature exceeds 1000 ° C., the crystal growth proceeds too much and the energy density becomes small.
  • the firing temperature is 850 ° C. to 970 ° C.
  • the mixing treatment of the lithium compound and the carbonate precursor compound particle powder containing the transition metal may be either dry or wet as long as it can be uniformly mixed.
  • the precursor used in the present invention is made of carbonate, it is preferable to ventilate sufficiently during firing so that the carbonate is not decomposed and remains.
  • the nickel compound used in the present invention is not particularly limited, and examples thereof include nickel sulfate, nickel oxide, nickel hydroxide, nickel nitrate, nickel carbonate, nickel chloride, nickel iodide, and metallic nickel. Is preferred.
  • the cobalt compound used in the present invention is not particularly limited, and examples thereof include cobalt sulfate, cobalt oxide, cobalt hydroxide, cobalt nitrate, cobalt carbonate, cobalt chloride, cobalt iodide, and metal cobalt. Is preferred.
  • the manganese compound used in the present invention is not particularly limited, and examples thereof include manganese sulfate, manganese oxide, manganese hydroxide, manganese nitrate, manganese carbonate, manganese chloride, manganese iodide, and metal manganese. Is preferred.
  • the lithium compound used in the present invention is not particularly limited, and various lithium salts can be used.
  • lithium hydroxide monohydrate, lithium nitrate, lithium carbonate, lithium acetate, lithium bromide examples include lithium chloride, lithium citrate, lithium fluoride, lithium iodide, lithium lactate, lithium oxalate, lithium phosphate, lithium pyruvate, lithium sulfate, and lithium oxide, with lithium carbonate being preferred.
  • the surface of the primary particles and / or secondary particles of the layered lithium composite oxide is coated with an aluminum compound and / or Can be dissolved.
  • the layered lithium composite oxide is peptized in pure water, the aluminum compound is added dropwise with stirring, washed with filtered water and dried at about 80 ° C. to 120 ° C.
  • a method of firing at about 300 ° C. to 500 ° C. for about 5 hours under air flow can be employed.
  • the aluminum compound can be dissolved by appropriately adjusting the conditions such as the drying temperature and the firing temperature when the aluminum compound is coated.
  • the aluminum compound used in the present invention is not particularly limited, and examples thereof include aluminum sulfate, aluminum oxide, aluminum hydroxide, aluminum nitrate, aluminum carbonate, aluminum chloride, aluminum iodide, sodium aluminate, and metal aluminum.
  • Aluminum sulfate is preferred.
  • the aluminum compound is preferably 0.1 wt% to 0.7 wt% with respect to the positive electrode active material II, more preferably 0.2 wt%.
  • the effect of further improving the energy density maintenance rate and the effect of improving the coulomb efficiency are more fully exhibited.
  • Nonaqueous electrolyte secondary battery II a nonaqueous electrolyte secondary battery II provided with a positive electrode containing the positive electrode active material II according to the present invention will be described.
  • a conductive agent and a binder are added and mixed according to a conventional method.
  • the conductive agent for example, acetylene black, carbon black, graphite and the like are preferable
  • the binder for example, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.
  • the nonaqueous electrolyte secondary battery II according to the present invention which is manufactured using a positive electrode containing the positive electrode active material II, is composed of an electrolyte solution containing the positive electrode, the negative electrode, and an electrolyte.
  • Examples of the negative electrode active material include one or more nonmetals or metal elements selected from the group consisting of Si, Al, Sn, Pb, Zn, Bi, and Cd, alloys containing the same or chalcogen compounds containing the lithium, and lithium.
  • a metal, graphite, a low crystalline carbon material, etc. can be used.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane is used as a solvent for the electrolytic solution.
  • an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane is used as a solvent for the electrolytic solution.
  • At least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the solvent and used.
  • Cycle characteristics (%) (discharge capacity at 29th cycle / discharge capacity at 4th cycle) ⁇ 100
  • the energy density of the first cycle discharge in the condition (II-1) is preferably 880 Wh / kg to 1100 Wh / kg, more preferably 900 Wh / kg to 1050 Wh / kg.
  • a positive electrode active material II having excellent cycle characteristics and rate characteristics and high energy density can be obtained.
  • the positive electrode active material II exhibiting high battery characteristics despite the high cost and the reduced amount of Co, which is a rare metal.
  • composition of positive electrode active material I or positive electrode active material II is such that 0.2 g of each positive electrode active material sample is heated and dissolved in 25 ml of 20% hydrochloric acid solution, cooled, and transferred to a 100 ml volumetric flask. Water is added to prepare an adjustment solution, and the measurement is performed by quantifying each element using ICAP [Optima 8300, manufactured by PerkinElmer Co., Ltd.].
  • the coin cell using the positive electrode active material I or the positive electrode active material II shall be produced by the following procedure. First, 84% by weight of each positive electrode active material, 4% by weight of acetylene black as a conductive agent, 4% by weight of graphite KS-6, and 8% of polyvinylidene fluoride dissolved in N-methylpyrrolidone as a binder. After mixing with wt%, it is applied to an Al metal foil and dried at 110 ° C. to produce a sheet. The sheet is punched out to 15 mm ⁇ , and then pressure-bonded at 3 t / cm 2 is used as the positive electrode.
  • the coating amount of the positive electrode was 10 mg / cm 2 , and the density of the positive electrode after rolling was 2.5 g / cm 3 .
  • the negative electrode is metallic lithium having a thickness of 500 ⁇ m punched to 16 mm ⁇ .
  • the mixed solution and the aqueous sodium carbonate solution were continuously added dropwise to the reaction vessel at a rate of 5 mL / mim while stirring. At the same time, the aqueous sodium carbonate solution was added dropwise so that the pH was 8.00 ( ⁇ 0.01).
  • the filtrate was discharged out of the system by a concentrator, and the solid content was stirred at 500 rpm for 20 hours while staying in the reaction vessel.
  • a slurry of the coprecipitation product was collected. The collected slurry was filtered and washed with water. After washing with water, it was dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.
  • the obtained coprecipitate precursor was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound) as measured by ICP emission spectroscopic analysis.
  • a coin cell was assembled using the obtained positive electrode active material as a positive electrode and a lithium foil as a negative electrode.
  • charging / discharging is performed under the above condition (I-1)
  • the voltage V is plotted on the horizontal axis
  • the dQ / dV value is plotted on the vertical axis based on the voltage V and the battery capacity Q at the fifth cycle discharge.
  • I drew a graph. This graph is shown in FIG.
  • the energy density of the discharge in the first cycle under the condition (I-1) and the energy density retention rate obtained based on the condition (I-2) were as follows. Energy density: 944 Wh / kg Energy density maintenance rate: 96.3%
  • a coprecipitation precursor powder was obtained in the same manner as in Example I-1, except that the mixed solution was added.
  • the coprecipitation precursor obtained was (Ni 0.35 Co 0.05 Mn 0.60 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • a coprecipitation precursor powder was obtained in the same manner as in Example I-1, except that the mixed solution was added.
  • the coprecipitation precursor obtained was (Ni 0.310 Co 0.055 Mn 0.635 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-4> A coprecipitation precursor powder was obtained in the same manner as in Example I-1.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • the obtained lithium composite oxide particle powder was charged into 50 mL of pure water maintained at 30 ° C. with stirring to obtain a slurry of an intermediate fired product.
  • 6 mL of the aqueous aluminum sulfate solution adjusted to have an aluminum sulfate concentration of 1.0 mol / L was dropped into the slurry of the intermediate fired product, filtered, washed with water, and dried at 120 ° C. This was fired at 400 ° C. for 5 hours under an air flow using an electric furnace to obtain a positive electrode active material.
  • the surface treatment amount of aluminum sulfate with respect to the positive electrode active material was 0.31 wt%.
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-5> The powder of the coprecipitation precursor was the same as in Example I-1, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 8.50 ( ⁇ 0.01) in Example I-1. Got.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-6> a coprecipitation precursor powder was prepared in the same manner as in Example I-2, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 7.50 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.35 Co 0.05 Mn 0.60 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-7 a coprecipitation precursor powder was prepared in the same manner as in Example I-3, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.00 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.310 Co 0.055 Mn 0.635 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-8> a coprecipitation precursor powder was prepared in the same manner as in Example I-1, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.50 ( ⁇ 0.01). Got.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • a positive electrode active material was obtained in the same manner as in Example I-4.
  • the surface treatment amount of aluminum sulfate with respect to the positive electrode active material was 0.31 wt%.
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • a coprecipitation precursor powder was obtained in the same manner as in Example I-1, except that the mixed solution was added.
  • the coprecipitated precursor obtained was (Ni 0.35 Co 0.10 Mn 0.55 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-2 ⁇ Comparative Example I-2>
  • a coprecipitation precursor powder was obtained in the same manner as in Example I-1, except that the mixed solution was added.
  • the coprecipitation precursor obtained was (Ni 0.42 Co 0.05 Mn 0.53 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-3 ⁇ Comparative Example I-3>
  • a coprecipitation precursor powder was obtained in the same manner as in Example I-1, except that the mixed solution was added.
  • the coprecipitation precursor obtained was (Ni 0.20 Co 0.13 Mn 0.67 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • the coprecipitation precursor obtained was (Ni 0.25 Co 0.10 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • the coprecipitated precursor obtained was (Ni 0.35 Co 0.10 Mn 0.55 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Comparative Example I-6 a coprecipitation precursor powder was prepared in the same manner as in Comparative Example I-2, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.00 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.42 Co 0.05 Mn 0.53 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Comparative Example I-7 a coprecipitation precursor powder was prepared in the same manner as in Comparative Example I-3, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.50 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.20 Co 0.13 Mn 0.67 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Comparative Example I-8> a coprecipitation precursor powder was prepared in the same manner as in Comparative Example I-4, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 8.50 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.25 Co 0.10 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-9 A coprecipitation precursor powder was obtained in the same manner as in Example I-1.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-10> A coprecipitation precursor powder was obtained in the same manner as in Example I-2.
  • the coprecipitation precursor obtained was (Ni 0.35 Co 0.05 Mn 0.60 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-11> The powder of the coprecipitation precursor was the same as in Example I-3 except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 6.50 ( ⁇ 0.01) in Example I-3. Got.
  • the coprecipitation precursor obtained was (Ni 0.310 Co 0.055 Mn 0.635 ) CO 3 (carbonate precursor compound).
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Example I-12 The powder of the coprecipitation precursor was the same as in Example I-1, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 13.50 ( ⁇ 0.01). Got.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • a positive electrode active material was obtained in the same manner as in Example I-4.
  • the surface treatment amount of aluminum sulfate with respect to the positive electrode active material was 0.31 wt%.
  • Example I-1 Using the obtained positive electrode active material, a coin cell was assembled in the same manner as in Example I-1, a graph with the horizontal axis representing voltage V and the vertical axis representing dQ / dV value was drawn. Ib
  • Table I-1 shows the composition of the positive electrode active material (average valence of ⁇ , x, y, z, and Ni in the composition formula (I).
  • the pH, firing temperature, and surface treatment amount with an aluminum compound are collectively shown.
  • Table I-2 summarizes
  • the positive electrode active materials obtained in Examples I-1 to I-4 all had an energy density of 880 Wh / kg to 1100 Wh / kg, and an energy density maintenance rate of 93% or more.
  • the positive electrode active material I according to the present invention has a high energy density because the peak intensity ratio r falls within the range of the present invention, that is, 0 ⁇ r ⁇ 0.25. Regardless, it was found that the energy density maintenance rate also showed a high value.
  • the positive electrode active material I according to the present invention is an excellent positive electrode material that has a low content of rare metal and expensive Co, and is advantageous in terms of cost.
  • Comparative Example I-9 the firing temperature is low, and the obtained positive electrode active material has a large peak top dQ / dV value
  • and a peak intensity ratio r exceeding 0.25. Such a positive electrode active material has a high energy density but a very low energy density retention rate. Conversely, in Comparative Example I-10, the firing temperature is high, and the obtained positive electrode active material does not have peak 3 and has a peak intensity ratio r 0. Such a positive electrode active material has a low energy density of less than 880 Wh / kg, and does not have a high energy density maintenance rate.
  • the positive electrode active material obtained in Example I-1 has a small drop in discharge voltage even after repeated charge and discharge.
  • the discharge voltage greatly decreases as charging and discharging are repeated.
  • the important thing in the present invention is that, as described above, a high energy density and a high energy density maintenance rate can be achieved at the same time, and parameters for satisfying the condition have been found and actually synthesized.
  • the positive electrode active material I according to the present invention has a small voltage drop when charging and discharging are repeated, a large energy density, and a high energy density maintenance rate, and a positive electrode for a nonaqueous electrolyte secondary battery. It was confirmed to be effective as an active material.
  • the mixed solution and the aqueous sodium carbonate solution were continuously added dropwise to the reaction vessel at a rate of 5 mL / mim while stirring. At the same time, the aqueous sodium carbonate solution was added dropwise so that the pH was 7.80 ( ⁇ 0.01).
  • the filtrate was discharged out of the system by a concentrator, and the solid content was stirred at 500 rpm for 20 hours while staying in the reaction vessel.
  • a slurry of the coprecipitation product was collected. The collected slurry was filtered and washed with water. After washing with water, it was dried at 120 ° C. overnight to obtain a coprecipitation precursor powder.
  • the obtained coprecipitate precursor was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound) as measured by ICP emission spectroscopic analysis.
  • powder X-ray diffraction was performed on the positive electrode active material powder, and the relative height intensity ratio and crystallite size were calculated from the obtained data.
  • the powder X-ray diffraction pattern is shown in FIG.
  • the BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in accordance with each of the above methods. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of a spinel heterogeneous phase is also shown in Table II-2.
  • Example II-2 ⁇ Example II-2>
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the resulting coprecipitated precursor was (Ni 0.35 Co 0.01 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of a spinel heterogeneous phase is also shown in Table II-2.
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.06 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of a spinel heterogeneous phase is also shown in Table II-2.
  • Example II-5 A coprecipitation precursor powder was obtained in the same manner as in Example II-4.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.06 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the obtained lithium composite oxide particle powder was charged into 50 mL of pure water maintained at 30 ° C. with stirring to obtain a slurry of an intermediate fired product.
  • 6 mL of the aqueous aluminum sulfate solution adjusted to have an aluminum sulfate concentration of 1.0 mol / L was dropped into the slurry of the intermediate fired product, filtered, washed with water, and dried at 120 ° C. This was fired at 400 ° C. for 5 hours under an air flow using an electric furnace to obtain a positive electrode active material.
  • the surface treatment amount of aluminum sulfate with respect to the positive electrode active material was 0.34 wt%.
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-6> The powder of the coprecipitation precursor was the same as in Example II-1, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.50 ( ⁇ 0.01) in Example II-1. Got.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-7 the coprecipitation precursor powder was prepared in the same manner as in Example II-2, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.00 ( ⁇ 0.01). Got.
  • the resulting coprecipitated precursor was (Ni 0.35 Co 0.01 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-8> a coprecipitation precursor powder was prepared in the same manner as in Example II-3, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 8.50 ( ⁇ 0.01). Got.
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-9 a coprecipitation precursor powder was prepared in the same manner as in Example II-4, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 7.50 ( ⁇ 0.01). Got.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.06 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-10> A coprecipitation precursor powder was obtained in the same manner as in Example II-9.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.06 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the obtained lithium composite oxide particle powder was charged into 50 mL of pure water maintained at 30 ° C. with stirring to obtain a slurry of an intermediate fired product.
  • 6 mL of the aqueous aluminum sulfate solution adjusted to have an aluminum sulfate concentration of 1.0 mol / L was dropped into the slurry of the intermediate fired product, filtered, washed with water, and dried at 120 ° C. This was fired at 400 ° C. for 5 hours under an air flow using an electric furnace to obtain a positive electrode active material.
  • the surface treatment amount of aluminum sulfate with respect to the positive electrode active material was 0.34 wt%.
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the coprecipitation precursor obtained was (Ni 0.25 Co 0.10 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-2 ⁇ Comparative Example II-2>
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the coprecipitation precursor obtained was (Ni 0.23 Co 0.10 Mn 0.67 ) CO 3 (carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-3 ⁇ Comparative Example II-3>
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.20 Mn 0.50) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-4 ⁇ Comparative Example II-4>
  • a coprecipitated precursor powder was obtained in the same manner as in Example II-1, except that the mixed solution was added.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.20 Mn 0.50) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Comparative Example II-5 a coprecipitation precursor powder was prepared in the same manner as in Comparative Example II-1, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.50 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.25 Co 0.10 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Comparative Example II-6 a coprecipitation precursor powder was prepared in the same manner as in Comparative Example II-2 except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 9.00 ( ⁇ 0.01). Got.
  • the coprecipitation precursor obtained was (Ni 0.23 Co 0.10 Mn 0.67 ) CO 3 (carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Comparative Example II-7 a coprecipitation precursor powder was prepared in the same manner as in Comparative Example II-3 except that an aqueous sodium carbonate solution was added dropwise to the reaction vessel so that the pH was 8.50 ( ⁇ 0.01). Got.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.20 Mn 0.50) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Comparative Example II-8 a coprecipitation precursor powder was prepared in the same manner as in Comparative Example II-4, except that an aqueous sodium carbonate solution was added dropwise to the reaction vessel so that the pH was 7.50 ( ⁇ 0.01). Got.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.20 Mn 0.50) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-9 In the same manner as in Example II-1, a coprecipitation precursor powder was obtained.
  • the coprecipitated precursor obtained was (Ni 0.35 Mn 0.65 ) CO 3 (carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-10 A coprecipitation precursor powder was obtained in the same manner as in Example II-2.
  • the resulting coprecipitated precursor was (Ni 0.35 Co 0.01 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-3 a coprecipitation precursor powder was prepared in the same manner as in Example II-3, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 6.50 ( ⁇ 0.01). Got.
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Example II-4 a coprecipitation precursor powder was prepared in the same manner as in Example II-4, except that an aqueous sodium carbonate solution was dropped into the reaction vessel so that the pH was 13.50 ( ⁇ 0.01). Got.
  • the resulting coprecipitated precursor was (Ni 0.30 Co 0.06 Mn 0.64) CO 3 ( carbonate precursor compound).
  • the relative height-intensity ratio, crystallite size, BET specific surface area, cycle characteristics, rate characteristics, and energy density were determined in the same manner as in Example II-1. These values are shown in Table II-2 and Table II-3 below. Further, the presence or absence of spinel heterogeneous phase is also shown in Table II-2.
  • Table II-1 shows the composition of the positive electrode active material ( ⁇ , a, b, and c in the composition formula (II)), the pH during the synthesis of the carbonate precursor compound, the firing temperature, and the aluminum compound.
  • the surface treatment amount is shown collectively.
  • Table II-2 summarizes the presence / absence of spinel heterogeneity, relative height intensity ratio, crystallite size, and BET specific surface area, and Table II-3 summarizes cycle characteristics, rate characteristics, and energy density. .
  • the crystallite size calculated using the Scherrer equation from the line is in the range of 25 to 40 nm, and the BET specific surface area is in the range of 3.5 to 8.5 m 2 / g, so the energy density is high. Nevertheless, it was found that the cycle characteristics and rate characteristics also showed high values.
  • the positive electrode active material II according to the present invention is an excellent positive electrode material that has a low content of rare metal and expensive Co, and is advantageous in terms of cost.
  • the relative height intensity ratio (IIa) / (IIb) is in the range of 0.015 to 0.035, and the crystallite size is 25 to
  • a positive electrode active material having a BET specific surface area greater than 8.5 m 2 / g in the range of 40 nm has a high energy density but a low cycle characteristic and / or rate characteristic.
  • the relative height intensity ratio (IIa) / (IIb) is in the range of 0.015 to 0.035, and the BET specific surface area is in the range of 3.5 to 8.5 m 2 / g.
  • the positive electrode active material having a crystallite size larger than 40 nm has a high cycle characteristic and a high energy density, but a low rate characteristic.
  • the relative height intensity ratio (IIa) / (IIb) is in the range of 0.015 to 0.035, and the crystallite size is in the range of 25 to 40 nm.
  • the positive electrode active material having a BET specific surface area significantly larger than 8.5 m 2 / g has a low energy density.
  • the relative height intensity ratio (IIa) / (IIb) is in the range of 0.015 to 0.035, but the crystallite size is larger than 40 nm and the BET specific surface area is 8.
  • a positive electrode active material larger than 5 m 2 / g has a high rate characteristic, but a low cycle characteristic and a low energy density.
  • the relative height intensity ratio (IIa) / (IIb) is in the range of 0.015 to 0.035, and the BET specific surface area is in the range of 3.5 to 8.5 m 2 / g.
  • a positive electrode active material having a crystallite size significantly larger than 40 nm has a low energy density.
  • the crystallite size is in the range of 25 to 40 nm and the BET specific surface area is in the range of 3.5 to 8.5 m 2 / g, but the relative height intensity ratio (IIa) /
  • the positive electrode active material having (IIb) lower than 0.015 has high energy density and rate characteristics, but low cycle characteristics.
  • a positive electrode having a relative height intensity ratio (IIa) / (IIb) higher than 0.035, a crystallite size significantly larger than 40 nm, and a BET specific surface area smaller than 3.5
  • the active material has a low rate characteristic and a low energy density.
  • the crystallite size is in the range of 25 to 40 nm and the BET specific surface area is in the range of 3.5 to 8.5 m 2 / g, but the relative height intensity ratio (IIa) / A positive electrode active material having (IIb) higher than 0.035 has high energy density and cycle characteristics but low rate characteristics.
  • the relative height intensity ratio (IIa) / (IIb) is in the range of 0.015 to 0.035 and the crystallite size is in the range of 25 to 40 nm. Is greater than 8.5 m 2 / g, the energy density and rate characteristics are high, but the cycle characteristics are low.
  • the positive electrode active material II according to the present invention was excellent in cycle characteristics and rate characteristics, had a large energy density, and was effective as a positive electrode active material for a non-aqueous electrolyte secondary battery.
  • the positive electrode active material I since the positive electrode active material I according to the present invention has a small voltage drop when charging and discharging are repeated and not only has a high energy density, but also has a high energy density maintenance rate, the positive electrode active material I as a non-aqueous electrolyte secondary battery Is preferred.
  • the positive electrode active material II according to the present invention is excellent in cycle characteristics and rate characteristics and has high energy density, it is also suitable as a positive electrode active material for a non-aqueous electrolyte secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

層状リチウム複合酸化物からなる正極活物質を正極として備えた非水電解質二次電池で、所定条件で充放電を行った際に、該正極活物質は、5サイクル目の放電での電圧Vと電池容量Qを電圧Vで微分した値dQ/dVとのグラフにおいて、3.9Vを超えて4.4V以下のピークトップのdQ/dV絶対値|Ia|、3.5Vを超えて3.9V以下のピークトップのdQ/dV絶対値|Ib|及び2.0V以上3.5V以下のピークトップのdQ/dV絶対値|Ic|から求めたピーク強度比r=|Ic|/(|Ia|+|Ib|+|Ic|)が0<r≦0.25を満たすものである。

Description

正極活物質及びその製造方法、並びに非水電解質二次電池
 本発明は、非水電解質二次電池用正極活物質及びその製造方法、並びに非水電解質二次電池に関する。
 近年、AV機器やパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高くなっている。また、近年地球環境への配慮から、電気自動車、ハイブリッド自動車の開発及び実用化がなされ、大型用途として保存特性に優れたリチウムイオン二次電池への要求が高くなっている。このような状況下において、充放電容量が大きいという長所を有するリチウムイオン二次電池が注目されている。
 従来、4V級の電圧をもつ高エネルギー型のリチウムイオン二次電池に有用な正極活物質としては、スピネル型構造のLiMn、ジグザグ層状構造のLiMnO、層状岩塩型構造のLiCoO、LiNiO等が一般的に知られている。なかでもLiNiOを用いたリチウムイオン二次電池は高い充放電容量を有する電池として注目されてきた。しかし、この材料は、充電時の熱安定性及びサイクル特性に劣るため、さらなる特性改善が求められている。
 また、さらなる高容量化の要望を受けて、より高容量のLiMnOを含む正極活物質が高い放電容量を示すことが見出されている。
 これらの他にも、充放電効率だけでなく、高い負荷電流をかけた場合の放電容量にも着目した、Li、Ni、Co、及びMnを含み、リチウム過剰相を有する、特定組成の複合酸化物からなる正極活物質や、平均電圧及び比容量に加え、充放電を繰り返した時の放電容量に着目した、リチウムリッチ及びマンガンリッチリチウム金属酸化物からなる正極活物質が提案されている(特許文献1、2)。しかし、これらの正極活物質は、近年リチウムイオン二次電池に要求されているエネルギー密度を充分に満足し得るものではなく、また、サイクル特性やレート特性を充分に満足し得るものでもない。
特開2014-116162号公報 特表2013-503450号公報
Composite‘Layered-Layered-Spinel’ Cathode Structures for Lithium-Ion Batteries. M.M.Thackeray et al., J. Electrochem. Soc., 160 (2013) A31.
 充放電を繰り返した時の電圧降下が小さく、エネルギー密度の高い非水電解質二次電池及びその正極活物質、並びに、サイクル特性及びレート特性に優れ、かつエネルギー密度の高い非水電解質二次電池及びその正極活物質は、現在最も要求されているところであるが、未だ必要充分な要求を満たす材料は得られていない。
 特に、電気自動車等では、軽量で大容量の二次電池が渇望されている。
 そこで、本発明は、充放電を繰り返した時の電圧降下が小さく、かつエネルギー密度が高い非水電解質二次電池用正極活物質、その製造方法、及び該正極活物質を含有する正極を備えた非水電解質二次電池を提供することを目的とする。
 また、本発明は、サイクル特性及びレート特性に優れ、かつエネルギー密度が高い非水電解質二次電池用正極活物質、及び該正極活物質を含有する正極を備えた非水電解質二次電池を提供することを目的とする。
 (I)本発明に係る正極活物質は、Liと、Niと、Mnと、任意にCoとを含有する層状リチウム複合酸化物からなり、
 前記正極活物質を正極とし、リチウム箔を負極とした非水電解質二次電池にて、以下の条件(I-1)で充放電を行った際に、5サイクル目の放電での電圧Vと電池容量Qとに基づき、横軸に電圧Vをとり、縦軸に電池容量Qを電圧Vで微分したdQ/dV値をとったグラフにおいて、
|Ia|:3.9Vよりも大きく4.4V以下の範囲にピークトップを持つピーク1のピークトップのdQ/dV値の絶対値
|Ib|:3.5Vよりも大きく3.9V以下の範囲にピークトップを持つピーク2のピークトップのdQ/dV値の絶対値
|Ic|:2.0V以上3.5V以下の範囲にピークトップを持つピーク3のピークトップのdQ/dV値の絶対値
としたとき、
ピーク強度比r=|Ic|/(|Ia|+|Ib|+|Ic|)
が0<r≦0.25を満たすことを特徴とする正極活物質(以下、正極活物質Iともいう)である(本発明I-1)。
条件(I-1)
25℃環境下
1サイクル目:2.0V~4.6V
 充電0.07C(cccv)、放電0.07C(cc)
2サイクル目:2.0V~4.6V
 充電0.07C(cc)、放電0.07C(cc)
3サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.1C(cc)
4サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電1C(cc)
5サイクル目:2.0V~4.45V
 充電0.1C(cc)、放電1C(cc)
ただし、CはCレートで、時間率を表しており、1Cは270mA/gとする。
 また、本発明I-1に係る正極活物質Iは、以下の組成式(I):
(1-α)(LiNiCoMn)・αLiMnO  (I)
で表され、前記組成式(I)中、x+y+z=1と仮定し、かつ、Liの平均価数を+1価、Coの平均価数を+3価、Mnの平均価数を+4価、Oの平均価数を-2価と仮定したとき、αが0.21≦α≦0.40であり、xが0.45≦x≦0.51であり、yが0≦y≦0.12であり、Niの平均価数が+1.90価~+2.25価であることが好ましい(本発明I-2)。
 また、本発明I-1又は本発明I-2に係る正極活物質Iは、条件(I-1)における1サイクル目の放電のエネルギー密度が880Wh/kg~1100Wh/kgであることが好ましい(本発明I-3)。
 本発明に係る正極活物質Iの製造方法は、Niと、Mnと、任意にCoとを含有する炭酸塩前駆体化合物を、pH6.8~13.2の条件で合成して、Liと、前記Ni、前記Mn、及び前記Coとのモル比であるLi/(Ni+Co+Mn)が1.25~1.39となるように、リチウム化合物と前記炭酸塩前駆体化合物とを混合し、酸化性雰囲気で840℃~1000℃で焼成して層状リチウム複合酸化物を生成することを特徴とする製造方法である(本発明I-4)。
 また、本発明I-4に係る製造方法は、
NiとMnとの割合(モル比)が、Ni:Mn=0.25~0.45:0.55~0.75となるように、ニッケル化合物及びマンガン化合物を配合して混合溶液を調製するか、又は
NiとCoとMnとの割合(モル比)が、Ni:Co:Mn=0.25~0.45:0.02~0.10:0.50~0.70となるように、ニッケル化合物、コバルト化合物、及びマンガン化合物を配合して混合溶液を調製し、
前記混合溶液を用いて、炭酸塩前駆体化合物を合成することが好ましい(本発明I-5)。
 また、本発明I-4又は本発明I-5に係る製造方法は、正極活物質に対してアルミニウム化合物が0.1wt%~0.7wt%となるように、層状リチウム複合酸化物の一次粒子及び/又は二次粒子の表面に、前記アルミニウム化合物を被覆及び/又は固溶させることが好ましい(本発明I-6)。
 本発明に係る非水電解質二次電池は、本発明I-1、本発明I-2、又は本発明I-3の正極活物質Iを含有する正極を備えた非水電解質二次電池(以下、非水電解質二次電池Iともいう)である(本発明I-7)。
 (II)本発明に係る正極活物質は、Liと、Niと、Mnと、任意にCoとを含有する層状リチウム複合酸化物からなり、
 Cu-Kα線を使用した粉末X線回折パターンの、2θ=20.8±1°における最大回折ピークの高さ強度(IIa)と2θ=18.6±1°における最大回折ピークの高さ強度(IIb)との相対高さ強度比=(IIa)/(IIb)が、0.015~0.035で、(104)回折線からシェラーの式を用いて計算した結晶子サイズが、25~40nmであり、かつ、
 BET法による比表面積(BET比表面積)が、3.5~8.5m/gである
ことを特徴とする正極活物質(以下、正極活物質IIともいう)である(本発明II-1)。
 また、本発明II-1に係る正極活物質は、それを正極とし、リチウム箔を負極とした非水電解質二次電池にて、以下の条件(II-1)で充放電を行った際に、
  4サイクル目の放電容量と29サイクル目の放電容量とから、
サイクル特性(%)=(29サイクル目の放電容量/4サイクル目の放電容量)×100
として求められるサイクル特性が、93%以上であり、かつ、
  4サイクル目の放電容量と7サイクル目の放電容量とから、
レート特性(%)=(7サイクル目の放電容量/4サイクル目の放電容量)×100
として求められるレート特性が、80%以上である
ことが好ましい(本発明II-2)。
条件(II-1)
25℃環境下
1サイクル目:2.0V~4.6V
 充電0.07C(cccv)、放電0.07C(cc)
2サイクル目:2.0V~4.6V
 充電0.07C(cc)、放電0.07C(cc)
3サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.07C(cc)
4サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.1C(cc)
5サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.2C(cc)
6サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.5C(cc)
7サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電1C(cc)
8サイクル目:2.0V~4.45V
 充電0.1C(cc)、放電1C(cc)
9サイクル目~29サイクル目:2.0V~4.3V
 充電0.2C(cc)、放電0.5C(cc)
ただし、CはCレートで、時間率を表しており、1Cは270mA/gである。
 また、本発明II-2に係る正極活物質は、前記条件(II-1)における1サイクル目の放電のエネルギー密度が、880Wh/kg~1100Wh/kgである
ことが好ましい(本発明II-3)。
 また、本発明II-1、本発明II-2、又は本発明II-3に係る正極活物質は、以下の組成式(II):
Li1+β(NiCoMn1-β  (II)
で表され、前記組成式(II)中、βが0.11≦β≦0.18であり、aが0.20≦a≦0.40であり、bが0≦b≦0.08であり、a+b+c=1である
ことが好ましい(本発明II-4)。
 本発明に係る非水電解質二次電池は、本発明II-1、本発明II-2、本発明II-3、又は本発明II-4の正極活物質IIを含有する正極を備えた非水電解質二次電池(以下、非水電解質二次電池IIともいう)である(本発明II-5)。
 本発明によれば、充放電を繰り返した時の電圧降下が小さく、エネルギー密度が高いだけでなく、エネルギー密度維持率も高い正極活物質Iを提供できる。
 また本発明によれば、サイクル特性及びレート特性に優れ、かつエネルギー密度が高い正極活物質IIを提供できる。
図1は、実施例I-1で得られた、横軸が電圧V、縦軸がdQ/dVのグラフである。 図2は、実施例I-1及び比較例I-3で得られた試料を条件(I-2)で充放電したときに得られた、横軸がサイクル回数、縦軸が平均放電電圧のグラフである。 図3は、実施例II-1で得られた正極活物質の粉末X線回折パターンである。
≪本発明Iに係る実施態様≫
<正極活物質I>
 まず、本発明に係る正極活物質Iについて述べる。
 本発明に係る正極活物質Iは、Liと、Niと、Mnと、任意にCoとを含有するLi過剰型の層状リチウム複合酸化物である。
 本発明における層状リチウム複合酸化物は、例えば、以下の組成式(I):
(1-α)(LiNiCoMn)・αLiMnO  (I)
で表すことができる。該組成式(I)中、x+y+z=1と仮定し、かつ、Liの平均価数を+1価、Coの平均価数を+3価、Mnの平均価数を+4価、Oの平均価数を-2価と仮定したとき、α、x、y、及びNiの平均価数は、各々以下の範囲であることが好ましい。
 すなわち、αは、0.21≦α≦0.40であることが好ましく、0.25≦α≦0.38であることがより好ましい。xは、0.45≦x≦0.51であることが好ましく、0.46≦x≦0.50であることが好ましい。yは、0≦y≦0.12であることが好ましく、0≦y≦0.09であることが好ましい。Niの平均価数は、+1.90価~+2.25価であることが好ましく、+1.98価~+2.16価であることが好ましい。
 本発明において、αかつxが各々前記下限値よりも小さいと、電圧降下が小さく、しかもエネルギー密度維持率が高くなるが、エネルギー密度は低くなってしまう。逆にαが前記上限値よりも大きく、xが前記下限値よりも小さいと、エネルギー密度は高くなるが、電圧降下も大きくなってしまう。y/xが大きくなり過ぎると、充放電に伴う電圧降下が大きく、エネルギー密度維持率が低くなってしまう。
 前記正極活物質Iを正極とし、リチウム箔を負極とした非水電解質二次電池Iにて、以下の条件(I-1)で充放電を行った際に、5サイクル目の放電での電圧Vと電池容量Qとに基づき、横軸に電圧Vをとり、縦軸に電池容量Qを電圧Vで微分したdQ/dV値をとったグラフにおいて、
|Ia|:3.9Vよりも大きく4.4V以下の範囲にピークトップを持つピーク1のピークトップのdQ/dV値の絶対値(mAhg-1-1
|Ib|:3.5Vよりも大きく3.9V以下の範囲にピークトップを持つピーク2のピークトップのdQ/dV値の絶対値(mAhg-1-1
|Ic|:2.0V以上3.5V以下の範囲にピークトップを持つピーク3のピークトップのdQ/dV値の絶対値(mAhg-1-1
としたとき、
ピーク強度比r=|Ic|/(|Ia|+|Ib|+|Ic|)
が0<r≦0.25を満たす。
条件(I-1)
25℃環境下
1サイクル目:2.0V~4.6V
 充電0.07C(cccv)、放電0.07C(cc)
2サイクル目:2.0V~4.6V
 充電0.07C(cc)、放電0.07C(cc)
3サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.1C(cc)
4サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電1C(cc)
5サイクル目:2.0V~4.45V
 充電0.1C(cc)、放電1C(cc)
ただし、CはCレートで、時間率を表しており、1Cは270mA/gである。
 ここで、図面を用いて前記ピーク強度比rを説明する。図1は、後述する実施例I-1で得られた、横軸が電圧V、縦軸がdQ/dVのグラフである。図1に示されているように、このグラフにはピーク1、ピーク2、及びピーク3が存在することが確認できる。ここで、ピーク3のピークトップのdQ/dV値の絶対値|Ic|が小さ過ぎると、rが小さくなるためにエネルギー密度が低くなり、逆に|Ic|が大き過ぎると、rが大きくなるために電圧降下が大きくなること、またエネルギー密度維持率が低くなることが見出された。本発明において、rの範囲は0<r≦0.25であり、好ましいrの範囲は0.05≦r≦0.23、より好ましいrの範囲は0.07≦r≦0.21である。
 |Ic|は、組成式(I)におけるLiMnOが関わるパラメータであると発明者らは考えており、そのため、|Ic|が小さくなるとエネルギー密度が低くなると考えている。また、|Ic|は、充放電に伴い電圧降下が起きる程度と関連するパラメータであると発明者らは考えており、|Ic|が大きくなると、エネルギー密度が高くなるが、電圧降下が大きく、エネルギー密度維持率も低くなる傾向がある。そのため、|Ic|の値を適切な範囲内に設定することで、電圧降下が小さく、かつ、エネルギー密度が高く、しかもエネルギー密度維持率が高い正極活物質Iを得ることができると考えられる。
 また、発明者らが鋭意検討した結果、本発明の正極活物質IにおけるCoの含有率は、例えばLi(Ni0.33Co0.33Mn0.33)OといったNCM系の層状岩塩系材料に比べて非常に少ない。一般に、Coの含有率が高いことで、エネルギー密度を高くすることができることや、組成によってはエネルギー密度維持率を高めることもできることが知られているが、本発明で重要なことは、限りなくCoの含有率を低くすることで、電圧降下を抑え、なおかつエネルギー密度を高めることができることを見出したことである。
 本発明では、前記条件(I-1)における1サイクル目の放電のエネルギー密度は、880Wh/kg~1100Wh/kgであることが好ましい。エネルギー密度が該下限値よりも小さいときは、既に実用化されている三元系材料であるLi(Ni0.33Co0.33Mn0.33)Oと比較して、エネルギー密度的に優位性がない。逆にエネルギー密度が該上限値よりも大きいときは、エネルギー密度維持率が悪化するおそれがある。より好ましいエネルギー密度の範囲は、900Wh/kg~1050Wh/kgである。
 また、本発明において、エネルギー密度維持率は、以下の条件(I-2)で充放電を行った際の26サイクル目の放電のエネルギー密度と7サイクル目の放電のエネルギー密度とから、
エネルギー密度維持率
=(26サイクル目の放電のエネルギー密度/7サイクル目の放電のエネルギー密度)×100
として求められる。該エネルギー密度維持率は、好ましくは93%以上であり、より好ましくは94%以上である。
条件(I-2)
25℃環境下
1サイクル目:2.0V~4.6V
 充電0.07C(cccv)、放電0.07C(cc)
2サイクル目:2.0V~4.6V
 充電0.07C(cc)、放電0.07C(cc)
3サイクル目:2.0V~4.6V
 充電0.1C(cc)、放電0.1C(cc)
4サイクル目:2.0V~4.6V
 充電0.1C(cc)、放電0.2C(cc)
5サイクル目:2.0V~4.6V
 充電0.1C(cc)、放電0.5C(cc)
6サイクル目:2.0V~4.6V
 充電0.1C(cc)、放電1C(cc)
7サイクル目~26サイクル目:2.0V~4.6V
 充電0.2C(cc)、放電0.5C(cc)
ただし、CはCレートで、時間率を表しており、1Cは270mA/gである。
 さらに、前記条件(I-2)で充放電を行い、各サイクル回数での放電電圧を測定することにより、本発明に係る正極活物質Iは、充放電を繰り返した時の電圧降下が小さいことを確認することができる。図2は、後述する実施例I-1及び比較例I-3で得られた試料を条件(I-2)で充放電したときに得られた、横軸がサイクル回数、縦軸が平均放電電圧のグラフである。図2に示されるように、比較例I-3では、充放電を繰り返すにつれて放電電圧が大きく降下しているのに対して、実施例I-1では、充放電を繰り返しても放電電圧の降下が小さい。
<正極活物質Iの製造方法>
 次に、本発明に係る正極活物質Iの製造方法について述べる。
 本発明に係る正極活物質Iは、あらかじめ合成した遷移金属を含む炭酸塩前駆体化合物の粒子粉末とリチウム化合物とを混合して焼成することにより、得ることができる。
 前記遷移金属を含む炭酸塩前駆体化合物(Niと、Mnと、任意にCoとを含有する炭酸塩前駆体化合物)の粒子粉末は、所定の濃度のニッケル化合物と、マンガン化合物と、任意にコバルト化合物とを含有する混合溶液と、アルカリ水溶液とを反応槽へ供給し、pHが適切な範囲となるように制御して、オーバーフローした懸濁液を、オーバーフロー管に連結された濃縮槽で濃縮速度を調整しながら反応槽へ種循環し、反応槽と濃縮槽中の前駆体化合物の粒子濃度が0.1~15mol/Lになるまで反応を行って得ることができる。また、濃縮槽を設けずに、オーバーフローした懸濁液から前駆体化合物の粒子粉末を得てもよい。その後、水洗し、乾燥することで炭酸塩前駆体化合物を得ることができる。
 前記Niと、Mnと、任意にCoとを含有する炭酸塩前駆体化合物の粒子粉末を合成する際の混合溶液は、目的とする層状リチウム複合酸化物の組成を考慮して、Niと、Mnと、任意にCoとが所望の割合となるように、所定の濃度のニッケル化合物と、マンガン化合物と、任意にコバルト化合物とを配合して調製することが好ましい。
 NiとMnとを含有する炭酸塩前駆体化合物の粒子粉末を合成する場合には、NiとMnとの割合(モル比)が、Ni:Mn=0.25~0.45:0.55~0.75、さらにはNi:Mn=0.30~0.40:0.60~0.70となるように、ニッケル化合物及びマンガン化合物を配合して混合溶液を調製することが好ましい。
 NiとCoとMnとを含有する炭酸塩前駆体化合物の粒子粉末を合成する場合には、NiとCoとMnとの割合(モル比)が、Ni:Co:Mn=0.25~0.45:0.02~0.10:0.50~0.70、さらにはNi:Co:Mn=0.30~0.40:0.03~0.08:0.55~0.65となるように、ニッケル化合物、コバルト化合物、及びマンガン化合物を配合して混合溶液を調製することが好ましい。
 前記pHの適切な範囲は6.8~13.2であり、好ましくは6.9~12.5、より好ましくは7.0~12.0である。前記所定の濃度のニッケル化合物と、マンガン化合物と、任意にコバルト化合物とを含有する混合溶液を反応させる際のpHが6.8未満であると、特にNiの沈殿生成反応が起こりにくくなり、狙い通りの組成の炭酸塩前駆体化合物が得られないため、エネルギー密度とエネルギー密度維持率とが低下する。pHが13.2を超えると、炭酸塩前駆体化合物の一次粒子径が大きくなってしまい、エネルギー密度とエネルギー密度維持率とが低下する。また、球状の前駆体化合物が得られないため、電極を作製する際の正極活物質Iの充填率が低下するので好ましくない。
 その後、Liと、Ni、Mn、及び任意のCoとのモル比であるLi/(Ni+Co+Mn)が1.25~1.39、好ましくは1.25~1.38となるように、リチウム化合物と炭酸塩前駆体化合物とを混合し、酸化性雰囲気で840℃~1000℃で焼成することで、層状リチウム複合酸化物を得ることができる。
 焼成温度が840℃よりも低いと、所望の結晶が得られない。また焼成温度が1000℃を超えると、結晶成長が進み過ぎて、エネルギー密度が小さくなってしまう。好ましくは、焼成温度は850℃~970℃である。
 リチウム化合物と遷移金属を含む炭酸塩前駆体化合物の粒子粉末との混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。
 また、本発明に用いる前駆体は炭酸塩でできているため、焼成時に通風を十分に行い、炭酸塩を分解させて残留しないようにすることが好ましい。
 本発明に用いるニッケル化合物としては、特に限定がないが、例えば、硫酸ニッケル、酸化ニッケル、水酸化ニッケル、硝酸ニッケル、炭酸ニッケル、塩化ニッケル、ヨウ化ニッケル、及び金属ニッケル等が挙げられ、硫酸ニッケルが好ましい。
 本発明に用いるコバルト化合物としては、特に限定がないが、例えば、硫酸コバルト、酸化コバルト、水酸化コバルト、硝酸コバルト、炭酸コバルト、塩化コバルト、ヨウ化コバルト、及び金属コバルト等が挙げられ、硫酸コバルトが好ましい。
 本発明に用いるマンガン化合物としては、特に限定がないが、例えば、硫酸マンガン、酸化マンガン、水酸化マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、ヨウ化マンガン、及び金属マンガン等が挙げられ、硫酸マンガンが好ましい。
 本発明に用いるリチウム化合物としては、特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウム等が挙げられ、炭酸リチウムが好ましい。
 また、正極活物質Iのエネルギー密度維持率をさらに向上させるため、及びクーロン効率を向上させるために、層状リチウム複合酸化物の一次粒子及び/又は二次粒子の表面にアルミニウム化合物を被覆及び/又は固溶させることができる。
 アルミニウム化合物を被覆させるには、層状リチウム複合酸化物を純水に解膠して攪拌しながらアルミニウム化合物を滴下後、濾過水洗して80℃~120℃程度で乾燥し、これを電気炉にて300℃~500℃程度で5時間前後、空気流通下で焼成する方法を採用することができる。
 また、前記アルミニウム化合物を被覆させる際の乾燥温度、焼成温度等の条件を適宜調整することにより、アルミニウム化合物を固溶させることができる。
 本発明に用いるアルミニウム化合物としては、特に限定がないが、例えば、硫酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、硝酸アルミニウム、炭酸アルミニウム、塩化アルミニウム、ヨウ化アルミニウム、アルミン酸ナトリウム、及び金属アルミニウム等が挙げられ、硫酸アルミニウムが好ましい。
 層状リチウム複合酸化物の表面にアルミニウム化合物を被覆させる際には、正極活物質Iに対してアルミニウム化合物が、好ましくは0.1wt%~0.7wt%となるように、より好ましくは0.2wt%~0.6wt%となるようにすると、前記エネルギー密度維持率のさらなる向上効果及びクーロン効率の向上効果がより充分に発揮される。
<非水電解質二次電池I>
 次に、本発明に係る正極活物質Iを含有する正極を備えた非水電解質二次電池Iについて述べる。
 正極活物質Iを含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
 正極活物質Iを含有する正極を用いて製造される、本発明に係る非水電解質二次電池Iは、前記正極、負極、及び電解質を含む電解液から構成される。
 負極活物質としては、例えば、Si、Al、Sn、Pb、Zn、Bi、及びCdからなる群より選ばれる1以上の非金属又は金属元素、それを含む合金もしくはそれを含むカルコゲン化合物、並びにリチウム金属、グラファイト、低結晶性炭素材料等を用いることができる。
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルとの組み合わせ以外に、例えば、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種を含む有機溶媒を用いることができる。
 さらに、電解質としては、六フッ化リン酸リチウム以外に、例えば、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種を前記溶媒に溶解して用いることができる。
 本発明に係る正極活物質Iを含有する正極を備えた非水電解質二次電池Iでは、前記条件(I-1)における1サイクル目の放電のエネルギー密度が、好ましくは880Wh/kg~1100Wh/kgであり、より好ましくは900Wh/kg~1050Wh/kgである。
 本発明に係る正極活物質Iを含有する正極を備えた非水電解質二次電池Iでは、前記条件(I-2)に基づいて求められるエネルギー密度維持率が、好ましくは93%以上であり、より好ましくは94%以上である。
<作用>
 本発明では、ピーク強度比rの値を0<r≦0.25という特定範囲内に調整することで、充放電を繰り返した時の電圧降下が小さく、エネルギー密度が高く、しかもエネルギー密度維持率も高い、特定組成の正極活物質Iを得ることができる。また、本発明では、コストが高くレアメタルであるCoの量が低減されているにも関わらず、高い電池特性を示す正極活物質Iを得ることができる。
≪本発明IIに係る実施態様≫
<正極活物質II>
 まず、本発明に係る正極活物質IIについて述べる。
 本発明に係る正極活物質IIは、Liと、Niと、Mnと、任意にCoとを含有するLi過剰型の層状リチウム複合酸化物である。
 本発明に係る正極活物質IIは、例えば、以下の組成式(II):
Li1+β(NiCoMn1-β  (II)
で表すことができる。該組成式(II)中、βが0.11≦β≦0.18、さらには0.12≦β≦0.17であり、aが0.20≦a≦0.40、さらには0.22≦a≦0.38であり、bが0≦b≦0.08、さらには0≦b≦0.07であり、a+b+c=1であることが好ましい。
 組成式(II)において、βが下限値よりも小さく、aが上限値よりも大きいと、サイクル特性及びレート特性が高くなるが、エネルギー密度は低くなってしまう。逆にβが上限値よりも大きく、aが下限値よりも小さいと、エネルギー密度を高くすることは可能であるが、サイクル特性及びレート特性が低くなってしまう。bが上限値よりも大きいときは、リチウム化合物と炭酸塩前駆体化合物との合成の際の焼成時に、結晶子の成長が促進されて、高結晶ではあるが結晶子が大きくなり過ぎ、レート特性が低くなってしまう。また、βが下限値よりも小さいと、スピネル構造の不純物相(スピネル異相)が生成し、電池容量が低下してしまう。スピネル異相の生成は、X線回折(XRD)により確認することができる。非特許文献1にあるように、スピネル異相が生成すると、(104)回折線の見かけの半値幅が広がり、結晶子サイズが本来よりも小さく計算されてしまうことがある。よって、(104)回折線の半値幅に影響を与えるほどのスピネル異相の生成は、本発明の範囲外である。
 本発明に係る正極活物質IIは、Cu-Kα線を使用した粉末X線回折パターンの、2θ=20.8±1°における最大回折ピークの高さ強度(IIa)と2θ=18.6±1°における最大回折ピークの高さ強度(IIb)との相対高さ強度比=(IIa)/(IIb)が、0.015~0.035であり、0.017~0.034であることが好ましい。相対高さ強度比が下限値よりも小さくなると、サイクル特性及びレート特性は高くなるが、エネルギー密度が低くなってしまい、実用的ではなくなる。相対高さ強度比が上限値よりも大きくなると、エネルギー密度は高くなるが、サイクル特性及びレート特性が低くなり、やはり実用的ではなくなる。
 本発明に係る正極活物質IIは、Cu-Kα線を使用した粉末X線回折パターンの、(104)回折線からシェラーの式を用いて計算した結晶子サイズが、25~40nmであり、26~39nmであることが好ましい。本発明では、結晶子サイズとして、空間群R-3mで指数付けした際の(104)回折線を用いた。(003)回折線は、c軸方向の情報しか含まず、(110)回折線は、ab軸方向の情報しか含まないので、結晶子サイズを求めるためのピークとして好ましくない。また他の回折線は、ピーク強度が低いため、結晶子サイズを求めるためのピークとして好ましくない。結晶子サイズが下限値よりも小さいと、結晶子内部に対する結晶子表面が占める体積が大きくなるため、非水電解質二次電池の正極活物質として用いた際に、最も構造変化が大きい表面の寄与が大きくなり、電解液との反応性も高まるため、好ましくない。結晶子サイズが上限値よりも大きいと、非水電解質二次電池の正極活物質として用いた際に、Liの結晶子内の拡散距離が大きくなってしまい、レート特性が低くなってしまうため、好ましくない。
 なお、本発明において、X線回折条件は以下のとおりである。
X線回折装置:SmartLab((株)リガク製)
線源:Cu-Kα
加速電圧及び電流:45kV及び200mA
サンプリング幅:0.01deg
走査幅:15deg~70deg
スキャンスピード:0.9秒
発散スリット幅:0.65deg
受光スリット幅:0.2mm
散乱スリット:0.65deg
 得られたX線回折データについて、Kα2に由来するピークを除去せず、前記X線回折装置の付属ソフトである「PDXL」[(株)リガク製]を用いて解析を行った。得られたピークのうち、空間群R-3mで指数付けが不可能なピークを除去した後、自動モードで最適化を行い、空間群R-3mにおいて、(104)で表されるピークに対応する結晶子サイズを求めた。
 本発明に係る正極活物質IIは、BET比表面積が、3.5~8.5m/gであり、3.7~8.3m/gであることが好ましく、4.0~8.0m/gであることがより好ましい。BET比表面積が下限値よりも小さいと、非水電解質二次電池の正極活物質として用いた際に、電解液との接触面積が小さくなり、レート特性が低下してしまうため、好ましくない。BET比表面積が上限値よりも大きいと、非水電解質二次電池の正極活物質として用いた際に、電解液との接触面積が大きくなり、電解液との副反応量が多くなるため、好ましくない。ここで、BET比表面積は、例えば、試料を窒素ガス下で120℃、45分間乾燥脱気した後、BET比表面積測定装置[MONOSORB、ユアサアイオニクス(株)製]を用いて測定することができる。
 本発明において、非水電解質二次電池の正極活物質として用いた際に、サイクル特性及びレート特性に優れた活物質を得るためには、活物質粒子の結晶性を高め、尚かつ、結晶子サイズを小さくすることが好ましいと考えられる。
 ここで、粒子の結晶性とは、結晶格子における欠陥の少なさの度合いである。できるだけ高い温度でリチウム複合酸化物の合成における焼成を行うことにより、粒子の結晶性を高くすることができ、非水電解質二次電池の正極活物質として用いた際のサイクル特性が向上すると発明者らは考えている。しかしながら、粒子の結晶性を高くするために余りにも高温で焼成を行うと、結晶子サイズが大きくなってしまい、サイクル特性は向上したとしても、レート特性が低下してしまうという欠点がある。よって、適切な焼成温度範囲で合成する必要がある。
 本発明の正極活物質IIにおけるCoの含有率は、例えばLi(Ni0.33Co0.33Mn0.33)Oといった層状岩塩系の三元材料に比べて非常に少ない。発明者らが鋭意検討した結果、Coの含有率を増大させることで、エネルギー密度を高くすることができることを突き止めたが、本発明で重要なことは、結晶成長融剤の効果を持つCoの含有率を限りなく低くすることで、高温で焼成した際の結晶子の過度な成長を抑えることができるだけでなく、サイクル特性及びレート特性に優れ、尚かつエネルギー密度が高い正極活物質IIが得られることを見出したことである。
 本発明に係る正極活物質IIを正極とし、リチウム箔を負極とした非水電解質二次電池IIにて、以下の条件(II-1)で充放電を行った際に、
  4サイクル目の放電容量と29サイクル目の放電容量とから、
サイクル特性(%)=(29サイクル目の放電容量/4サイクル目の放電容量)×100
として求められるサイクル特性は、93%以上、さらには94%以上であることが好ましく、かつ、
  4サイクル目の放電容量と7サイクル目の放電容量とから、
レート特性(%)=(7サイクル目の放電容量/4サイクル目の放電容量)×100
として求められるレート特性は、80%以上、さらには81%以上であることが好ましい。
条件(II-1)
25℃環境下
1サイクル目:2.0V~4.6V
 充電0.07C(cccv)、放電0.07C(cc)
2サイクル目:2.0V~4.6V
 充電0.07C(cc)、放電0.07C(cc)
3サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.07C(cc)
4サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.1C(cc)
5サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.2C(cc)
6サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電0.5C(cc)
7サイクル目:2.0V~4.3V
 充電0.1C(cc)、放電1C(cc)
8サイクル目:2.0V~4.45V
 充電0.1C(cc)、放電1C(cc)
9サイクル目~29サイクル目:2.0V~4.3V
 充電0.2C(cc)、放電0.5C(cc)
ただし、CはCレートで、時間率を表しており、1Cは270mA/gである。
 本発明では、前記条件(II-1)における1サイクル目の放電のエネルギー密度は、880Wh/kg~1100Wh/kgであることが好ましい。エネルギー密度が下限値よりも小さいときは、既に実用化されている三元系材料のLi(Ni0.33Co0.33Mn0.33)Oと比較して、エネルギー密度的に優位性がない。エネルギー密度が上限値よりも大きいときは、エネルギー密度維持率が低下する恐れがある。より好ましいエネルギー密度の範囲は、900Wh/kg~1050Wh/kgである。
 このように、前記条件(II-1)で充放電を行い、各サイクル回数での放電容量を測定することにより、本発明に係る正極活物質IIのサイクル特性及びレート特性を算出することができる。
<正極活物質IIの製造方法>
 次に、本発明に係る正極活物質IIの製造方法について述べる。
 本発明に係る正極活物質IIは、あらかじめ合成した遷移金属を含む炭酸塩前駆体化合物の粒子粉末とリチウム化合物とを混合して焼成することにより、得ることができる。
 前記遷移金属を含む炭酸塩前駆体化合物(Niと、Mnと、任意にCoとを含有する炭酸塩前駆体化合物)の粒子粉末は、所定の濃度のニッケル化合物と、マンガン化合物と、任意にコバルト化合物とを含有する混合溶液と、アルカリ水溶液とを反応槽へ供給し、pHが適切な範囲となるように制御して、オーバーフローした懸濁液を、オーバーフロー管に連結された濃縮槽で濃縮速度を調整しながら反応槽へ種循環し、反応槽と濃縮槽中の前駆体化合物の粒子濃度が0.1~15mol/Lになるまで反応を行って得ることができる。また、濃縮槽を設けずに、オーバーフローした懸濁液から前駆体化合物の粒子粉末を得てもよい。その後、水洗し、乾燥することで炭酸塩前駆体化合物を得ることができる。
 前記Niと、Mnと、任意にCoとを含有する炭酸塩前駆体化合物の粒子粉末を合成する際の混合溶液は、目的とする層状リチウム複合酸化物の組成を考慮して、Niと、Mnと、任意にCoとが所望の割合となるように、所定の濃度のニッケル化合物と、マンガン化合物と、任意にコバルト化合物とを配合して調製することが好ましい。
 NiとMnとを含有する炭酸塩前駆体化合物の粒子粉末を合成する場合には、NiとMnとの割合(モル比)が、Ni:Mn=0.20~0.40:0.60~0.80、さらにはNi:Mn=0.22~0.38:0.62~0.78となるように、ニッケル化合物及びマンガン化合物を配合して混合溶液を調製することが好ましい。
 NiとCoとMnとを含有する炭酸塩前駆体化合物の粒子粉末を合成する場合には、NiとCoとMnとの割合(モル比)が、Ni:Co:Mn=0.20~0.40:0.005~0.08:0.50~0.70、さらにはNi:Co:Mn=0.22~0.38:0.01~0.07:0.55~0.65となるように、ニッケル化合物、コバルト化合物、及びマンガン化合物を配合して混合溶液を調製することが好ましい。
 前記pHの好ましい範囲は7.0~13.0であり、より好ましくは7.2~12.5、特に好ましくは7.4~12.0である。前記所定の濃度のニッケル化合物と、マンガン化合物と、任意にコバルト化合物とを含有する混合溶液を反応させる際のpHが7.0未満であると、特にNiの沈殿生成反応が起こりにくくなり、狙い通りの組成の炭酸塩前駆体化合物が得られないため、エネルギー密度が低下する恐れがある。pHが13.0を超えると、炭酸塩前駆体化合物の一次粒子径が大きくなってしまい、エネルギー密度が低下する恐れがある。また、球状の前駆体化合物が得られないため、電極を作製する際の正極活物質IIの充填率が低下するので好ましくない。
 その後、Liと、Ni、Mn、及び任意のCoとのモル比であるLi/(Ni+Co+Mn)が1.25~1.41、好ましくは1.25~1.40となるように、リチウム化合物と炭酸塩前駆体化合物とを混合し、酸化性雰囲気で840℃~1000℃で焼成することで、層状リチウム複合酸化物を得ることができる。
 焼成温度が840℃よりも低いと、所望の結晶が得られない。また焼成温度が1000℃を超えると、結晶成長が進み過ぎて、エネルギー密度が小さくなってしまう。好ましくは、焼成温度は850℃~970℃である。
 リチウム化合物と遷移金属を含む炭酸塩前駆体化合物の粒子粉末との混合処理は、均一に混合することができれば乾式、湿式のどちらでもよい。
 また、本発明に用いる前駆体は炭酸塩でできているため、焼成時に通風を十分に行い、炭酸塩を分解させて残留しないようにすることが好ましい。
 本発明に用いるニッケル化合物としては、特に限定がないが、例えば、硫酸ニッケル、酸化ニッケル、水酸化ニッケル、硝酸ニッケル、炭酸ニッケル、塩化ニッケル、ヨウ化ニッケル、及び金属ニッケル等が挙げられ、硫酸ニッケルが好ましい。
 本発明に用いるコバルト化合物としては、特に限定がないが、例えば、硫酸コバルト、酸化コバルト、水酸化コバルト、硝酸コバルト、炭酸コバルト、塩化コバルト、ヨウ化コバルト、及び金属コバルト等が挙げられ、硫酸コバルトが好ましい。
 本発明に用いるマンガン化合物としては、特に限定がないが、例えば、硫酸マンガン、酸化マンガン、水酸化マンガン、硝酸マンガン、炭酸マンガン、塩化マンガン、ヨウ化マンガン、及び金属マンガン等が挙げられ、硫酸マンガンが好ましい。
 本発明に用いるリチウム化合物としては、特に限定されることなく各種のリチウム塩を用いることができるが、例えば、水酸化リチウム・一水和物、硝酸リチウム、炭酸リチウム、酢酸リチウム、臭化リチウム、塩化リチウム、クエン酸リチウム、フッ化リチウム、ヨウ化リチウム、乳酸リチウム、シュウ酸リチウム、リン酸リチウム、ピルビン酸リチウム、硫酸リチウム、酸化リチウム等が挙げられ、炭酸リチウムが好ましい。
 また、正極活物質IIのエネルギー密度維持率をさらに向上させるため、及びクーロン効率を向上させるために、層状リチウム複合酸化物の一次粒子及び/又は二次粒子の表面にアルミニウム化合物を被覆及び/又は固溶させることができる。
 アルミニウム化合物を被覆させるには、層状リチウム複合酸化物を純水に解膠して攪拌しながらアルミニウム化合物を滴下後、濾過水洗して80℃~120℃程度で乾燥し、これを電気炉にて300℃~500℃程度で5時間前後、空気流通下で焼成する方法を採用することができる。
 また、前記アルミニウム化合物を被覆させる際の乾燥温度、焼成温度等の条件を適宜調整することにより、アルミニウム化合物を固溶させることができる。
 本発明に用いるアルミニウム化合物としては、特に限定がないが、例えば、硫酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、硝酸アルミニウム、炭酸アルミニウム、塩化アルミニウム、ヨウ化アルミニウム、アルミン酸ナトリウム、及び金属アルミニウム等が挙げられ、硫酸アルミニウムが好ましい。
 層状リチウム複合酸化物の表面にアルミニウム化合物を被覆させる際には、正極活物質IIに対してアルミニウム化合物が、好ましくは0.1wt%~0.7wt%となるように、より好ましくは0.2wt%~0.6wt%となるようにすると、前記エネルギー密度維持率のさらなる向上効果及びクーロン効率の向上効果がより充分に発揮される。
<非水電解質二次電池II>
 次に、本発明に係る正極活物質IIを含有する正極を備えた非水電解質二次電池IIについて述べる。
 正極活物質IIを含有する正極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としては、例えば、アセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。
 正極活物質IIを含有する正極を用いて製造される、本発明に係る非水電解質二次電池IIは、前記正極、負極、及び電解質を含む電解液から構成される。
 負極活物質としては、例えば、Si、Al、Sn、Pb、Zn、Bi、及びCdからなる群より選ばれる1以上の非金属又は金属元素、それを含む合金もしくはそれを含むカルコゲン化合物、並びにリチウム金属、グラファイト、低結晶性炭素材料等を用いることができる。
 また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルとの組み合わせ以外に、例えば、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種を含む有機溶媒を用いることができる。
 さらに、電解質としては、六フッ化リン酸リチウム以外に、例えば、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種を前記溶媒に溶解して用いることができる。
 本発明に係る正極活物質IIを含有する正極を備えた非水電解質二次電池IIでは、前記条件(II-1)で充放電を行った際に、
  4サイクル目の放電容量と29サイクル目の放電容量とから、
サイクル特性(%)=(29サイクル目の放電容量/4サイクル目の放電容量)×100
として求められるサイクル特性が、好ましくは93%以上で、より好ましくは94%以上であり、かつ、
  4サイクル目の放電容量と7サイクル目の放電容量とから、
レート特性(%)=(7サイクル目の放電容量/4サイクル目の放電容量)×100
として求められるレート特性が、好ましくは80%以上で、より好ましくは81%以上である。
 本発明に係る正極活物質IIを含有する正極を備えた非水電解質二次電池IIでは、前記条件(II-1)における1サイクル目の放電のエネルギー密度が、好ましくは880Wh/kg~1100Wh/kgであり、より好ましくは900Wh/kg~1050Wh/kgである。
<作用>
 本発明では、Cu-Kα線を使用した粉末X線回折パターンの、2θ=20.8±1°における最大回折ピークの高さ強度(IIa)と2θ=18.6±1°における最大回折ピークの高さ強度(IIb)との相対高さ強度比=(IIa)/(IIb)を0.015~0.035、(104)回折線からシェラーの式を用いて計算した結晶子サイズを25~40nm、かつ、BET比表面積を3.5~8.5m/gという特定範囲内に調整することで、サイクル特性及びレート特性に優れ、エネルギー密度が高い正極活物質IIを得ることができる。また、本発明では、コストが高くレアメタルであるCoの量が低減されているにも関わらず、高い電池特性を示す正極活物質IIを得ることができる。
(正極活物質I又は正極活物質IIの組成)
 本明細書において、正極活物質I又は正極活物質IIの組成は、各正極活物質0.2gの試料を25mlの20%塩酸溶液中で加熱溶解させ、冷却後100mlメスフラスコに移して、純水を入れ調整液を作製し、測定にはICAP[Optima8300、(株)パーキンエルマー製]を用いて各元素を定量して決定する。
(正極活物質I又は正極活物質IIを用いたコインセルの作製)
 本明細書において、正極活物質I又は正極活物質IIを用いたコインセルは、次の手順で作製するものとする。まず、各正極活物質を84重量%と、導電剤としてのアセチレンブラックを4重量%及びグラファイトKS-6を4重量%と、結着剤としてのN-メチルピロリドンに溶解したポリフッ化ビニリデンを8重量%とを混合した後、Al金属箔に塗布し、110℃にて乾燥してシートを作製する。このシートを15mmΦに打ち抜いた後、3t/cmで圧着したものを正極とする。本発明においては、正極の塗布量は10mg/cm、正極の圧延後の密度は2.5g/cmであった。負極は、16mmΦに打ち抜いた厚さ500μmの金属リチウムとする。電解液は、1mol/LのLiPFを溶解したECとDMCとを、EC:DMC=1:2(体積比)で混合した溶液とする。これら正極、負極、及び電解液を用いて、2032型コインセルを作製する。
(粉末X線回折を用いた正極活物質IIの評価)
 正極活物質IIの粉末について、粉末X線回折装置[SmartLab、(株)リガク製]を用いて、前記条件で粉末X線回折を行った。得られた粉末X線回折パターンから、2θ=20.8±1°における最大回折ピークの高さ強度(IIa)と2θ=18.6±1°における最大回折ピークの高さ強度(IIb)との相対高さ強度比=(IIa)/(IIb)を求めた。また、得られたデータを、前記粉末X線回折装置の付属ソフトである「PDXL」を用いて前記条件で解析し、(104)回折線からシェラーの式を用いて結晶子サイズを算出した。
 以下に、本発明の代表的な実施例と比較例とを挙げて、本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。
≪本発明Iに係る実施例、及び比較例≫
<実施例I-1>
 0.1mol/Lの硫酸ニッケル水溶液、0.1mol/Lの硫酸マンガン水溶液を準備した。前記硫酸ニッケル水溶液及び前記硫酸マンガン水溶液をニッケルとマンガンとのモル比がNi:Mn=0.35:0.65となるように混合して、混合溶液を得た。1mol/Lの炭酸ナトリウム水溶液を準備した。密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。前記混合溶液と前記炭酸ナトリウム水溶液とを、撹拌しながら、前記反応槽に、5mL/mimの速度で連続的に滴下した。同時に、pH=8.00(±0.01)となるように、前記炭酸ナトリウム水溶液を滴下した。反応中は濃縮装置により濾液のみを系外に排出し、固形分は反応槽に滞留させながら、500rpmで20時間攪拌した。反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗した。水洗後、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
 得られた共沈前駆体は、ICP発光分光分析で測定したところ(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、正極活物質を得た。
 前記方法に従い、得られた正極活物質を正極とし、リチウム箔を負極としたコインセルを組んだ。このコインセルを用いて前記条件(I-1)で充放電を行い、5サイクル目の放電での電圧Vと電池容量Qとに基づき、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いた。このグラフを図1に示す。
 図1のグラフより、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。これらの値を以下に示す。
|Ia|=171mAhg-1-1
|Ib|=257mAhg-1-1
|Ic|=64mAhg-1-1
r=0.13
 また、前記条件(I-1)における1サイクル目の放電のエネルギー密度及び前記条件(I-2)に基づいて求められるエネルギー密度維持率は、各々以下のとおりであった。
エネルギー密度:944Wh/kg
エネルギー密度維持率:96.3%
 また、前記条件(I-2)に基づいて充放電を行った際の、各サイクル回数での放電電圧を測定し、サイクル回数と平均放電電圧との関係をグラフに表した。このグラフを図2に示す。
<実施例I-2>
 実施例I-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.35:0.05:0.60となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Co0.05Mn0.60)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.25となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で850℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<実施例I-3>
 実施例I-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.310:0.055:0.635となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.310Co0.055Mn0.635)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.375となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<実施例I-4>
 実施例I-1と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、リチウム複合酸化物粒子粉末を得た。
 その後、得られたリチウム複合酸化物粒子粉末100gを、30℃に保持した50mLの純水に攪拌しながら投入し、中間焼成物のスラリーとした。次に、硫酸アルミニウム濃度が1.0mol/Lとなるように調整した該硫酸アルミニウム水溶液6mLを、該中間焼成物のスラリーに滴下し、濾過、水洗後、120℃で乾燥した。これを、電気炉を用いて、空気流通下で400℃にて5時間焼成し、正極活物質を得た。正極活物質に対する硫酸アルミニウムの表面処理量は、0.31wt%であった。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<実施例I-5>
 実施例I-1において、pH=8.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<実施例I-6>
 実施例I-2において、pH=7.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例I-2と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Co0.05Mn0.60)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.25となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で850℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<実施例I-7>
 実施例I-3において、pH=9.00(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例I-3と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.310Co0.055Mn0.635)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.375となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<実施例I-8>
 実施例I-1において、pH=9.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、リチウム複合酸化物粒子粉末を得た。
 その後、得られたリチウム複合酸化物粒子粉末と硫酸アルミニウム水溶液とを用い、実施例I-4と同様にして正極活物質を得た。正極活物質に対する硫酸アルミニウムの表面処理量は、0.31wt%であった。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-1>
 実施例I-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.35:0.10:0.55となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Co0.10Mn0.55)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.20となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-2>
 実施例I-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.42:0.05:0.53となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.42Co0.05Mn0.53)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.20となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で910℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-3>
 実施例I-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.20:0.13:0.67となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.20Co0.13Mn0.67)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
 また、前記条件(I-2)に基づいて充放電を行った際の、各サイクル回数での放電電圧を測定し、サイクル回数と平均放電電圧との関係をグラフに表した。このグラフを図2に示す。
<比較例I-4>
 実施例I-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.25:0.10:0.65となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.25Co0.10Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.35となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で830℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-5>
 比較例I-1において、pH=7.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例I-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Co0.10Mn0.55)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.20となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-6>
 比較例I-2において、pH=9.00(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例I-2と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.42Co0.05Mn0.53)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.20となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で910℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-7>
 比較例I-3において、pH=9.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例I-3と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.20Co0.13Mn0.67)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-8>
 比較例I-4において、pH=8.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例I-4と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.25Co0.10Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.35となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で830℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-9>
 実施例I-1と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で830℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-10>
 実施例I-2と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Co0.05Mn0.60)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.25となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で1100℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-11>
 実施例I-3において、pH=6.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例I-3と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.310Co0.055Mn0.635)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.375となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
<比較例I-12>
 実施例I-1において、pH=13.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例I-1と同様にして共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、リチウム複合酸化物粒子粉末を得た。
 その後、得られたリチウム複合酸化物粒子粉末と硫酸アルミニウム水溶液とを用い、実施例I-4と同様にして正極活物質を得た。正極活物質に対する硫酸アルミニウムの表面処理量は、0.31wt%であった。
 得られた正極活物質を用い、実施例I-1と同様にしてコインセルを組み、横軸に電圧Vをとり、縦軸にdQ/dV値をとったグラフを描いて、|Ia|、|Ib|及び|Ic|を求め、ピーク強度比rを算出した。また、実施例I-1と同様にして、エネルギー密度及びエネルギー密度維持率を求めた。これらの値を後の表I-2に示す。
 以下の表I-1に、正極活物質の組成(前記組成式(I)中のα、x、y、z、及びNiの平均価数。x+y+z=1、Liの平均価数=+1価、Coの平均価数=+3価、Mnの平均価数=+4価、Oの平均価数=-2価と仮定)、Li/(Ni+Co+Mn)(Coは任意)、炭酸塩前駆体化合物の合成時のpH、焼成温度、並びにアルミニウム化合物による表面処理量を纏めて示す。また表I-2に、|Ia|、|Ib|、|Ic|、r、エネルギー密度、及びエネルギー密度維持率を纏めて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例I-1~I-4で得られた正極活物質は、いずれもエネルギー密度が880Wh/kg~1100Wh/kgであり、エネルギー密度維持率が93%以上であった。また、実施例I-1~I-4のpH条件を変更した実施例I-5~I-8で得られた正極活物質も、いずれもエネルギー密度が880Wh/kg~1100Wh/kgであり、エネルギー密度維持率が93%以上であった。このことにより、本発明に係る正極活物質Iは、ピーク強度比rの値が本発明の範囲に入ることによって、すなわち、0<r≦0.25を満たすことによって、エネルギー密度が高いにも関わらず、エネルギー密度維持率も高い値を示すことが分かった。しかも、本発明に係る正極活物質Iは、レアメタルで高価なCoの含有率が低く、コストの面からも有利な優れた正極材料である。
 一方、比較例I-1、I-2、I-5、及びI-6ではLi/(Ni+Co+Mn)の値が小さく、得られた正極活物質はいずれも、ピーク3を有さず、ピーク強度比r=0である。このような正極活物質は、エネルギー密度が880Wh/kg未満と低く、エネルギー密度維持率も高くない。比較例I-3及びI-7ではLi/(Ni+Co+Mn)の値が大きく、比較例I-4及びI-8では焼成温度が低く、得られた正極活物質はいずれも、ピーク3のピークトップのdQ/dV値|Ic|が大きく、ピーク強度比rが0.25を超える。このような正極活物質は、エネルギー密度は高いものの、エネルギー密度維持率が非常に低い。
 比較例I-9では焼成温度が低く、得られた正極活物質は、ピーク3のピークトップのdQ/dV値|Ic|が大きく、ピーク強度比rが0.25を超える。このような正極活物質は、エネルギー密度は高いものの、エネルギー密度維持率が非常に低い。逆に比較例I-10では焼成温度が高く、得られた正極活物質は、ピーク3を有さず、ピーク強度比r=0である。このような正極活物質は、エネルギー密度が880Wh/kg未満と低く、エネルギー密度維持率も高くない。
 比較例I-11では炭酸塩前駆体化合物の合成時のpHが低く、得られた正極活物質は、ピーク3を有さず、ピーク強度比r=0である。このような正極活物質は、エネルギー密度が880Wh/kg未満と低い。比較例I-12では炭酸塩前駆体化合物の合成時のpHが高く、得られた正極活物質は、ピーク3を有さず、ピーク強度比r=0である。このような正極活物質も、エネルギー密度が880Wh/kg未満と低い。
 このように、高電池容量の材料を得ようとしたり、ピーク強度比rが小さくなるように電圧降下が小さい材料を得ようとしても、高エネルギー密度と高エネルギー密度維持率との両立が可能な材料を得ることはできない。
 また、図2に示されるように、実施例I-1で得られた正極活物質は、充放電を繰り返しても放電電圧の降下が小さい。一方、比較例I-3で得られた正極活物質は、充放電を繰り返すにつれて放電電圧が大きく降下している。
 本発明で重要なことは、前記のように高エネルギー密度と高エネルギー密度維持率とを両立でき、その条件を満たすためのパラメータを発見し、実際に合成するに至ったことにある。
 以上の結果から、本発明に係る正極活物質Iは、充放電を繰り返した時の電圧降下が小さく、エネルギー密度が大きく、かつ、エネルギー密度維持率も高く、非水電解質二次電池用の正極活物質として有効であることが確認された。
≪本発明IIに係る実施例、及び比較例≫
<実施例II-1>
 0.1mol/Lの硫酸ニッケル水溶液、0.1mol/Lの硫酸マンガン水溶液を準備した。前記硫酸ニッケル水溶液及び前記硫酸マンガン水溶液をニッケルとマンガンとのモル比がNi:Mn=0.35:0.65となるように混合して、混合溶液を得た。1mol/Lの炭酸ナトリウム水溶液を準備した。密閉型反応槽に水を8L入れ、窒素ガスを流通させながら40℃に保持した。前記混合溶液と前記炭酸ナトリウム水溶液とを、撹拌しながら、前記反応槽に、5mL/mimの速度で連続的に滴下した。同時に、pH=7.80(±0.01)となるように、前記炭酸ナトリウム水溶液を滴下した。反応中は濃縮装置により濾液のみを系外に排出し、固形分は反応槽に滞留させながら、500rpmで20時間攪拌した。反応後、共沈生成物のスラリーを採取した。採取したスラリーを濾過、水洗した。水洗後、120℃で一晩乾燥させ、共沈前駆体の粉末を得た。
 得られた共沈前駆体は、ICP発光分光分析で測定したところ(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、正極活物質を得た。
 次に、前記方法にしたがって、正極活物質の粉末について粉末X線回折を行い、得られたデータから、相対高さ強度比及び結晶子サイズを算出した。粉末X線回折パターンを図3に示す。また、各々前記方法にしたがって、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-2>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.35:0.01:0.64となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Co0.01Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-3>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.33:0.03:0.64となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.33Co0.03Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-4>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.30:0.06:0.64となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.06Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-5>
 実施例II-4と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.30Co0.06Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、リチウム複合酸化物粒子粉末を得た。
 その後、得られたリチウム複合酸化物粒子粉末100gを、30℃に保持した50mLの純水に攪拌しながら投入し、中間焼成物のスラリーとした。次に、硫酸アルミニウム濃度が1.0mol/Lとなるように調整した該硫酸アルミニウム水溶液6mLを、該中間焼成物のスラリーに滴下し、濾過、水洗後、120℃で乾燥した。これを、電気炉を用いて、空気流通下で400℃にて5時間焼成し、正極活物質を得た。正極活物質に対する硫酸アルミニウムの表面処理量は、0.34wt%であった。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-6>
 実施例II-1において、pH=9.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で900℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-7>
 実施例II-2において、pH=9.00(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例II-2と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.35Co0.01Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-8>
 実施例II-3において、pH=8.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例II-3と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.33Co0.03Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-9>
 実施例II-4において、pH=7.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例II-4と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.06Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<実施例II-10>
 実施例II-9と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.30Co0.06Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、リチウム複合酸化物粒子粉末を得た。
 その後、得られたリチウム複合酸化物粒子粉末100gを、30℃に保持した50mLの純水に攪拌しながら投入し、中間焼成物のスラリーとした。次に、硫酸アルミニウム濃度が1.0mol/Lとなるように調整した該硫酸アルミニウム水溶液6mLを、該中間焼成物のスラリーに滴下し、濾過、水洗後、120℃で乾燥した。これを、電気炉を用いて、空気流通下で400℃にて5時間焼成し、正極活物質を得た。正極活物質に対する硫酸アルミニウムの表面処理量は、0.34wt%であった。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-1>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.25:0.10:0.65となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.25Co0.10Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.35となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-2>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.23:0.10:0.67となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.23Co0.10Mn0.67)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.35となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で910℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-3>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.30:0.20:0.50となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.20Mn0.50)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.25となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-4>
 実施例II-1において、ニッケルとコバルトとマンガンとのモル比がNi:Co:Mn=0.30:0.20:0.50となるように、硫酸ニッケル水溶液、硫酸コバルト水溶液及び硫酸マンガン水溶液の混合溶液を加えたほかは、実施例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.20Mn0.50)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.20となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で910℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-5>
 比較例II-1において、pH=9.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例II-1と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.25Co0.10Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.35となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-6>
 比較例II-2において、pH=9.00(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例II-2と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.23Co0.10Mn0.67)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.35となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で910℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-7>
 比較例II-3において、pH=8.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例II-3と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.20Mn0.50)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.25となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-8>
 比較例II-4において、pH=7.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、比較例II-4と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.20Mn0.50)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.20となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で910℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-9>
 実施例II-1と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Mn0.65)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で830℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-10>
 実施例II-2と同様にして、共沈前駆体の粉末を得た。得られた共沈前駆体は、(Ni0.35Co0.01Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で1100℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-11>
 実施例II-3において、pH=6.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例II-3と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.33Co0.03Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.30となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で880℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
<比較例II-12>
 実施例II-4において、pH=13.50(±0.01)となるように、炭酸ナトリウム水溶液を反応槽に滴下したほかは、実施例II-4と同様にして共沈前駆体の粉末を得た。
 得られた共沈前駆体は、(Ni0.30Co0.06Mn0.64)CO(炭酸塩前駆体化合物)であった。リチウムと該共沈前駆体との割合(モル比)がLi/(Ni+Co+Mn)=1.40となるように、炭酸リチウム粉末を秤量し、充分に共沈前駆体と混合した。これを、電気炉を用いて、酸化性雰囲気で930℃にて5時間焼成し、正極活物質を得た。
 得られた正極活物質の粉末について、実施例II-1と同様にして、相対高さ強度比、結晶子サイズ、BET比表面積、サイクル特性、レート特性、及びエネルギー密度を求めた。これらの値を後の表II-2及び表II-3に示す。さらに、スピネル異相の有無についても、表II-2に示す。
 以下の表II-1に、正極活物質の組成(前記組成式(II)中のβ、a、b、及びc)、炭酸塩前駆体化合物の合成時のpH、焼成温度、並びにアルミニウム化合物による表面処理量を纏めて示す。また表II-2に、スピネル異相の有無、相対高さ強度比、結晶子サイズ、及びBET比表面積を纏めて示し、表II-3に、サイクル特性、レート特性、及びエネルギー密度を纏めて示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例II-1~II-10で得られた正極活物質は、いずれもエネルギー密度が880Wh/kg~1100Wh/kgであり、サイクル特性が93%以上で、かつレート特性が80%以上であった。このことにより、本発明に係る正極活物質IIは、Cu-Kα線を使用した粉末X線回折パターンの、2θ=20.8±1°における最大回折ピークの高さ強度(IIa)と2θ=18.6±1°における最大回折ピークの高さ強度(IIb)との相対高さ強度比=(IIa)/(IIb)が、0.015~0.035の範囲であり、(104)回折線からシェラーの式を用いて計算した結晶子サイズが、25~40nmの範囲であり、かつ、BET比表面積が、3.5~8.5m/gの範囲であるので、エネルギー密度が高いにも関わらず、サイクル特性及びレート特性も高い値を示すことが分かった。しかも、本発明に係る正極活物質IIは、レアメタルで高価なCoの含有率が低く、コストの面からも有利な優れた正極材料であるといえる。
 一方、比較例II-1、II-5、II-6のように、相対高さ強度比(IIa)/(IIb)が0.015~0.035の範囲であり、結晶子サイズが25~40nmの範囲であるが、BET比表面積が8.5m/gよりも大きい正極活物質は、エネルギー密度は高いが、サイクル特性及び/又はレート特性が低い値である。
 比較例II-2のように、相対高さ強度比(IIa)/(IIb)が0.015~0.035の範囲であり、BET比表面積が3.5~8.5m/gの範囲であるが、結晶子サイズが40nmよりも大きい正極活物質は、サイクル特性が高い値であり、エネルギー密度も高いが、レート特性が低い値である。
 比較例II-3、II-7のように、相対高さ強度比(IIa)/(IIb)が0.015~0.035の範囲であり、結晶子サイズが25~40nmの範囲であるが、BET比表面積が8.5m/gよりも著しく大きい正極活物質は、エネルギー密度が低い。
 比較例II-4のように、相対高さ強度比(IIa)/(IIb)が0.015~0.035の範囲であるが、結晶子サイズが40nmよりも大きく、BET比表面積が8.5m/gよりも大きい正極活物質は、レート特性は高い値であるが、サイクル特性が低い値であり、エネルギー密度も低い。
 比較例II-8のように、相対高さ強度比(IIa)/(IIb)が0.015~0.035の範囲であり、BET比表面積が3.5~8.5m/gの範囲であるが、結晶子サイズが40nmよりも著しく大きい正極活物質は、エネルギー密度が低い。
 比較例II-9のように、結晶子サイズが25~40nmの範囲であり、BET比表面積が3.5~8.5m/gの範囲であるが、相対高さ強度比(IIa)/(IIb)が0.015よりも低い正極活物質は、エネルギー密度及びレート特性は高い値であるが、サイクル特性が低い。
 比較例II-10のように、相対高さ強度比(IIa)/(IIb)が0.035よりも高く、結晶子サイズが40nmよりも著しく大きく、BET比表面積が3.5よりも小さい正極活物質は、レート特性が低い値であり、エネルギー密度も低い。
 比較例II-11のように、結晶子サイズが25~40nmの範囲であり、BET比表面積が3.5~8.5m/gの範囲であるが、相対高さ強度比(IIa)/(IIb)が0.035よりも高い正極活物質は、エネルギー密度及びサイクル特性は高い値であるが、レート特性が低い。
 比較例II-12のように、相対高さ強度比(IIa)/(IIb)が0.015~0.035の範囲であり、結晶子サイズが25~40nmの範囲であるが、BET比表面積が8.5m/gよりも大きい正極活物質は、エネルギー密度及びレート特性は高い値であるが、サイクル特性が低い。
 通常、優れたサイクル特性を得ようとして、結晶性を上げるために焼成温度を上昇させると、結晶子サイズが大きくなり、レート特性が低下する。また、優れたレート特性を得ようとして、結晶子サイズを小さくするために焼成温度を低下させると、十分な結晶性が得られず、サイクル特性が低下する。そのため、これまでの知見では、サイクル特性とレート特性との両立が可能な活物質が得られていない。
 本発明で重要なことは、前記のように優れたサイクル特性と優れたレート特性との両立が可能な各種粉体特性(パラメータ)を発見し、実際に合成するに至ったことにある。
 以上の結果から、本発明に係る正極活物質IIは、サイクル特性及びレート特性に優れ、かつエネルギー密度が大きく、非水電解質二次電池用の正極活物質として有効であることが確認された。
 上述した各実施態様は、本開示における技術を例示するためのものである。よって、請求の範囲又はその均等な範囲において、種々の変更、置換、付加、省略等を行うことができる。
 本発明に係る正極活物質Iは、充放電を繰り返した時の電圧降下が小さく、エネルギー密度が高いだけでなく、エネルギー密度維持率も高いので、非水電解質二次電池用の正極活物質として好適である。
 本発明に係る正極活物質IIは、サイクル特性及びレート特性に優れ、かつエネルギー密度も高いので、やはり非水電解質二次電池用の正極活物質として好適である。

Claims (12)

  1.  Liと、Niと、Mnと、任意にCoとを含有する層状リチウム複合酸化物からなる正極活物質であって、
     前記正極活物質を正極とし、リチウム箔を負極とした非水電解質二次電池にて、以下の条件(I-1)で充放電を行った際に、5サイクル目の放電での電圧Vと電池容量Qとに基づき、横軸に電圧Vをとり、縦軸に電池容量Qを電圧Vで微分したdQ/dV値をとったグラフにおいて、
    |Ia|:3.9Vよりも大きく4.4V以下の範囲にピークトップを持つピーク1のピークトップのdQ/dV値の絶対値
    |Ib|:3.5Vよりも大きく3.9V以下の範囲にピークトップを持つピーク2のピークトップのdQ/dV値の絶対値
    |Ic|:2.0V以上3.5V以下の範囲にピークトップを持つピーク3のピークトップのdQ/dV値の絶対値
    としたとき、
    ピーク強度比r=|Ic|/(|Ia|+|Ib|+|Ic|)
    が0<r≦0.25を満たすことを特徴とする、正極活物質:
    条件(I-1)
    25℃環境下
    1サイクル目:2.0V~4.6V
     充電0.07C(cccv)、放電0.07C(cc)
    2サイクル目:2.0V~4.6V
     充電0.07C(cc)、放電0.07C(cc)
    3サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電0.1C(cc)
    4サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電1C(cc)
    5サイクル目:2.0V~4.45V
     充電0.1C(cc)、放電1C(cc)
    ただし、CはCレートで、時間率を表しており、1Cは270mA/gとする。
  2.  以下の組成式(I):
    (1-α)(LiNiCoMn)・αLiMnO  (I)
    で表され、前記組成式(I)中、x+y+z=1と仮定し、かつ、Liの平均価数を+1価、Coの平均価数を+3価、Mnの平均価数を+4価、Oの平均価数を-2価と仮定したとき、αが0.21≦α≦0.40であり、xが0.45≦x≦0.51であり、yが0≦y≦0.12であり、Niの平均価数が+1.90価~+2.25価である、請求項1に記載の正極活物質。
  3.  条件(I-1)における1サイクル目の放電のエネルギー密度が880Wh/kg~1100Wh/kgである、請求項1又は2に記載の正極活物質。
  4.  請求項1~3のいずれか1つに記載の正極活物質の製造方法であって、
     Niと、Mnと、任意にCoとを含有する炭酸塩前駆体化合物を、pH6.8~13.2の条件で合成して、Liと、前記Ni、前記Mn、及び前記Coとのモル比であるLi/(Ni+Co+Mn)が1.25~1.39となるように、リチウム化合物と前記炭酸塩前駆体化合物とを混合し、酸化性雰囲気で840℃~1000℃で焼成して層状リチウム複合酸化物を生成することを特徴とする、正極活物質の製造方法。
  5.  NiとMnとの割合(モル比)が、Ni:Mn=0.25~0.45:0.55~0.75となるように、ニッケル化合物及びマンガン化合物を配合して混合溶液を調製するか、又は
    NiとCoとMnとの割合(モル比)が、Ni:Co:Mn=0.25~0.45:0.02~0.10:0.50~0.70となるように、ニッケル化合物、コバルト化合物、及びマンガン化合物を配合して混合溶液を調製し、
    前記混合溶液を用いて、炭酸塩前駆体化合物を合成する、請求項4に記載の正極活物質の製造方法。
  6.  正極活物質に対してアルミニウム化合物が0.1wt%~0.7wt%となるように、層状リチウム複合酸化物の一次粒子及び/又は二次粒子の表面に、前記アルミニウム化合物を被覆及び/又は固溶させる、請求項4又は5に記載の正極活物質の製造方法。
  7.  請求項1~3のいずれか1つに記載の正極活物質を含有する正極を備えた、非水電解質二次電池。
  8.  Liと、Niと、Mnと、任意にCoとを含有する層状リチウム複合酸化物からなり、
     Cu-Kα線を使用した粉末X線回折パターンの、2θ=20.8±1°における最大回折ピークの高さ強度(IIa)と2θ=18.6±1°における最大回折ピークの高さ強度(IIb)との相対高さ強度比=(IIa)/(IIb)が、0.015~0.035で、(104)回折線からシェラーの式を用いて計算した結晶子サイズが、25~40nmであり、かつ、
     BET法による比表面積(BET比表面積)が、3.5~8.5m/gである
    ことを特徴とする、正極活物質。
  9.  前記正極活物質を正極とし、リチウム箔を負極とした非水電解質二次電池にて、以下の条件(II-1)で充放電を行った際に、
      4サイクル目の放電容量と29サイクル目の放電容量とから、
    サイクル特性(%)=(29サイクル目の放電容量/4サイクル目の放電容量)×100
    として求められるサイクル特性が、93%以上であり、かつ、
      4サイクル目の放電容量と7サイクル目の放電容量とから、
    レート特性(%)=(7サイクル目の放電容量/4サイクル目の放電容量)×100
    として求められるレート特性が、80%以上である、
    請求項8に記載の正極活物質:
    条件(II-1)
    25℃環境下
    1サイクル目:2.0V~4.6V
     充電0.07C(cccv)、放電0.07C(cc)
    2サイクル目:2.0V~4.6V
     充電0.07C(cc)、放電0.07C(cc)
    3サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電0.07C(cc)
    4サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電0.1C(cc)
    5サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電0.2C(cc)
    6サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電0.5C(cc)
    7サイクル目:2.0V~4.3V
     充電0.1C(cc)、放電1C(cc)
    8サイクル目:2.0V~4.45V
     充電0.1C(cc)、放電1C(cc)
    9サイクル目~29サイクル目:2.0V~4.3V
     充電0.2C(cc)、放電0.5C(cc)
    ただし、CはCレートで、時間率を表しており、1Cは270mA/gである。
  10.  条件(II-1)における1サイクル目の放電のエネルギー密度が、880Wh/kg~1100Wh/kgである、請求項9に記載の正極活物質。
  11.  以下の組成式(II):
    Li1+β(NiCoMn1-β  (II)
    で表され、前記組成式(II)中、βが0.11≦β≦0.18であり、aが0.20≦a≦0.40であり、bが0≦b≦0.08であり、a+b+c=1である、請求項8~10のいずれか1つに記載の正極活物質。
  12.  請求項8~11のいずれか1つに記載の正極活物質を含有する正極を備えた、非水電解質二次電池。
PCT/JP2017/033040 2016-09-21 2017-09-13 正極活物質及びその製造方法、並びに非水電解質二次電池 WO2018056139A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202210372239.6A CN114735761B (zh) 2016-09-21 2017-09-13 正极活性物质以及非水电解质二次电池
KR1020197011276A KR102447292B1 (ko) 2016-09-21 2017-09-13 양극 활물질 및 그 제조 방법, 및 비수전해질 이차 전지
CN201780057739.8A CN109716564B (zh) 2016-09-21 2017-09-13 正极活性物质及其制造方法、以及非水电解质二次电池
EP17852916.0A EP3518330A4 (en) 2016-09-21 2017-09-13 ACTIVE CATHODE MATERIAL AND ITS MANUFACTURING PROCESS, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
KR1020227016109A KR102468733B1 (ko) 2016-09-21 2017-09-13 양극 활물질 및 그 제조 방법, 및 비수전해질 이차 전지
US16/361,006 US11121365B2 (en) 2016-09-21 2019-03-21 Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same
US17/464,463 US20210399292A1 (en) 2016-09-21 2021-09-01 Positive Electrode Active Material And Method For Producing Same, And Non-Aqueous Electrolyte Secondary Battery Using Same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016184479 2016-09-21
JP2016-184479 2016-09-21
JP2016242982 2016-12-15
JP2016-242982 2016-12-15
JP2017173269A JP6329311B2 (ja) 2016-09-21 2017-09-08 正極活物質及びその製造方法、並びに非水電解質二次電池
JP2017-173269 2017-09-08
JP2017-173299 2017-09-08
JP2017173299A JP6408097B2 (ja) 2016-12-15 2017-09-08 正極活物質及び非水電解質二次電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/361,006 Continuation US11121365B2 (en) 2016-09-21 2019-03-21 Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same

Publications (1)

Publication Number Publication Date
WO2018056139A1 true WO2018056139A1 (ja) 2018-03-29

Family

ID=61690321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033040 WO2018056139A1 (ja) 2016-09-21 2017-09-13 正極活物質及びその製造方法、並びに非水電解質二次電池

Country Status (4)

Country Link
US (1) US20210399292A1 (ja)
KR (1) KR102468733B1 (ja)
CN (1) CN114735761B (ja)
WO (1) WO2018056139A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808140A (zh) * 2018-04-26 2018-11-13 江西优特汽车技术有限公司 一种动力电池充电管理方法
WO2020032545A1 (ko) * 2018-08-09 2020-02-13 주식회사 엘지화학 셀 내 전극의 전해액 함침 정도 정밀 분석법
WO2023157525A1 (ja) * 2022-02-15 2023-08-24 Basf戸田バッテリーマテリアルズ合同会社 正極活物質粒子の処理方法、並びに正極活物質及びそれを用いた非水電解質二次電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056561A (ja) * 2007-09-07 2008-03-13 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物、並びにこれを用いたリチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2009206100A (ja) * 2008-02-28 2009-09-10 Samsung Sdi Co Ltd 正極活物質及びこれを採用した正極とリチウム電池
JP2012043637A (ja) * 2010-08-19 2012-03-01 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2013073833A (ja) * 2011-09-28 2013-04-22 Cosmo Oil Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2013073832A (ja) * 2011-09-28 2013-04-22 Cosmo Oil Co Ltd リチウムイオン二次電池用正極活物質
JP2014007034A (ja) * 2012-06-22 2014-01-16 Gs Yuasa Corp 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP2014170739A (ja) * 2013-02-28 2014-09-18 Samsung Sdi Co Ltd 複合正極活物質及びその製造方法、該複合正極活物質を採用した正極とリチウム電池
JP2015153551A (ja) * 2014-02-13 2015-08-24 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
US20160164142A1 (en) * 2013-07-19 2016-06-09 Basf Se Use of reactive lithium alkoxyborates as electrolyte additives in electrolytes for lithium ion batteries
JP2016167446A (ja) * 2015-03-02 2016-09-15 株式会社Gsユアサ リチウム二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI429132B (zh) 2009-08-27 2014-03-01 Envia Systems Inc 具有高比容量及優異循環之層層富含鋰的複合金屬氧化物
JP2014116162A (ja) 2012-12-07 2014-06-26 Asahi Glass Co Ltd 正極活物質
JP6303279B2 (ja) * 2013-04-01 2018-04-04 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
WO2014192759A1 (ja) * 2013-05-28 2014-12-04 旭硝子株式会社 正極活物質
JP6315404B2 (ja) * 2013-06-06 2018-04-25 株式会社Gsユアサ 非水電解質二次電池用正極活物質、その正極活物質の製造方法、非水電解質二次電池用電極、及び非水電解質二次電池
JP6600136B2 (ja) * 2015-01-23 2019-10-30 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056561A (ja) * 2007-09-07 2008-03-13 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物、並びにこれを用いたリチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP2009206100A (ja) * 2008-02-28 2009-09-10 Samsung Sdi Co Ltd 正極活物質及びこれを採用した正極とリチウム電池
JP2012043637A (ja) * 2010-08-19 2012-03-01 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2013073833A (ja) * 2011-09-28 2013-04-22 Cosmo Oil Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2013073832A (ja) * 2011-09-28 2013-04-22 Cosmo Oil Co Ltd リチウムイオン二次電池用正極活物質
JP2014007034A (ja) * 2012-06-22 2014-01-16 Gs Yuasa Corp 非水電解質二次電池用活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP2014170739A (ja) * 2013-02-28 2014-09-18 Samsung Sdi Co Ltd 複合正極活物質及びその製造方法、該複合正極活物質を採用した正極とリチウム電池
US20160164142A1 (en) * 2013-07-19 2016-06-09 Basf Se Use of reactive lithium alkoxyborates as electrolyte additives in electrolytes for lithium ion batteries
JP2015153551A (ja) * 2014-02-13 2015-08-24 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2016167446A (ja) * 2015-03-02 2016-09-15 株式会社Gsユアサ リチウム二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808140A (zh) * 2018-04-26 2018-11-13 江西优特汽车技术有限公司 一种动力电池充电管理方法
WO2020032545A1 (ko) * 2018-08-09 2020-02-13 주식회사 엘지화학 셀 내 전극의 전해액 함침 정도 정밀 분석법
CN111418107A (zh) * 2018-08-09 2020-07-14 株式会社Lg化学 精确分析电池单体中电极的电解液浸渍程度的方法
US11456493B2 (en) 2018-08-09 2022-09-27 Lg Energy Solution, Ltd. Method for precisely analyzing degree of impregnation of electrolyte of electrode in cell
CN111418107B (zh) * 2018-08-09 2023-08-25 株式会社Lg新能源 精确分析电池单体中电极的电解液浸渍程度的方法
WO2023157525A1 (ja) * 2022-02-15 2023-08-24 Basf戸田バッテリーマテリアルズ合同会社 正極活物質粒子の処理方法、並びに正極活物質及びそれを用いた非水電解質二次電池

Also Published As

Publication number Publication date
US20210399292A1 (en) 2021-12-23
CN114735761B (zh) 2024-05-14
KR102468733B1 (ko) 2022-11-18
KR20220070045A (ko) 2022-05-27
CN114735761A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
JP6408097B2 (ja) 正極活物質及び非水電解質二次電池
JP6040392B2 (ja) 複合酸化物、複合遷移金属化合物、複合酸化物の製造方法、非水電解質二次電池用の正極活物質、並びに非水電解質二次電池
JP4781004B2 (ja) 非水電解液二次電池
WO2012132155A1 (ja) マンガンニッケル複合酸化物粒子粉末およびその製造方法、非水電解質二次電池用正極活物質粒子粉末およびその製造方法、ならびに非水電解質二次電池
WO2011040383A1 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP6329311B2 (ja) 正極活物質及びその製造方法、並びに非水電解質二次電池
WO2017104688A1 (ja) リチウム二次電池用正極活物質、正極活物質の前駆体の製造方法、正極活物質の製造方法、リチウム二次電池用正極及びリチウム二次電池
JP2013506945A (ja) リチウム二次電池のための正極電極活性材料、同材料およびリチウム二次電池を作製するための方法
JP6303279B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
US11121365B2 (en) Positive electrode active material and method for producing same, and non-aqueous electrolyte secondary battery using same
US20210399292A1 (en) Positive Electrode Active Material And Method For Producing Same, And Non-Aqueous Electrolyte Secondary Battery Using Same
JP2013020736A (ja) 非水電解質二次電池用正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2013065472A (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP5720900B2 (ja) 非水電解質二次電池用活物質粉末及び非水電解質二次電池
JP6343951B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP2013073833A (ja) リチウムイオン二次電池用正極活物質の製造方法
JP2013087040A (ja) リチウム複合酸化物とその製造方法、及びリチウムイオン二次電池
JP2013073832A (ja) リチウムイオン二次電池用正極活物質
JP6968844B2 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
EP3178126A1 (en) Cathode compositions for lithium-ion batteries
JP2004006277A (ja) リチウム二次電池用正極材料およびそれを用いた二次電池ならびにリチウム二次電池用正極材料の製造方法
JP6109399B1 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
WO2019177017A1 (ja) 非水電解質二次電池用の正極活物質粒子及びその製造方法、並びに非水電解質二次電池
JP2018073751A (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP6155957B2 (ja) 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197011276

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017852916

Country of ref document: EP

Effective date: 20190423