WO2018055846A1 - Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package - Google Patents

Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package Download PDF

Info

Publication number
WO2018055846A1
WO2018055846A1 PCT/JP2017/021410 JP2017021410W WO2018055846A1 WO 2018055846 A1 WO2018055846 A1 WO 2018055846A1 JP 2017021410 W JP2017021410 W JP 2017021410W WO 2018055846 A1 WO2018055846 A1 WO 2018055846A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting element
light emitting
element mounting
aluminum nitride
substrate
Prior art date
Application number
PCT/JP2017/021410
Other languages
French (fr)
Japanese (ja)
Inventor
芳夫 馬屋原
久美子 姫井
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2018055846A1 publication Critical patent/WO2018055846A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a light emitting element mounting substrate for mounting a light emitting element such as a light emitting diode, a manufacturing method thereof, and a light emitting element mounting package using the light emitting element mounting substrate.
  • a light-emitting element mounting substrate is used to mount a light-emitting element.
  • An LED Light Emitting Diode
  • a light emitting element mounted on a light emitting element mounting substrate is a light source that is small in size and low in power consumption.
  • white LEDs are attracting attention as an alternative to incandescent bulbs and fluorescent lamps.
  • ultraviolet LED attracts attention as an ultraviolet light source in applications such as sterilization, air cleaning, cancer treatment, or resin curing.
  • Patent Document 1 discloses a light emitting element mounting substrate in which a light reflecting layer is provided on an aluminum nitride substrate.
  • filled vias are provided in an aluminum nitride substrate. The filled via connects the front surface side electrode and the back surface side electrode.
  • Patent Document 1 discloses a light emitting device in which a light emitting element is mounted on the light emitting element mounting substrate. The light emitting element is connected to the surface side electrode.
  • a resin is provided so as to cover the light emitting element, thereby sealing the light emitting element.
  • deep ultraviolet LEDs In recent years, attention has been focused on deep ultraviolet LEDs from the viewpoint of further improving performance such as sterilization, air cleaning, and resin curing.
  • deep UV LED When deep UV LED is used as a light emitting element, higher airtightness is required.
  • the light-emitting device of Patent Document 1 is based on a light-emitting element that emits visible light, and is not sufficiently airtight.
  • An object of the present invention is to provide a light emitting element mounting substrate that can exhibit high airtightness when the light emitting element is mounted and sealed, a method for manufacturing the light emitting element mounting substrate, and the light emitting element mounting. Another object is to provide a light-emitting element mounting package using a substrate.
  • the light emitting element mounting substrate of the present invention is a light emitting element mounting substrate for mounting a light emitting element, and has an aluminum nitride substrate having first and second main surfaces facing each other, and the aluminum nitride
  • a wiring electrode provided on the first main surface of the substrate; connected to the light emitting element; a terminal electrode provided on the second main surface of the aluminum nitride substrate;
  • a frame-shaped electrode provided in the aluminum nitride substrate, connected to the wiring electrode and the terminal electrode, and provided on the first main surface of the aluminum nitride substrate.
  • a through hole is provided in the aluminum nitride substrate so as to reach the second main surface from the first main surface, and the through hole electrode is provided in the through hole. Are location, the through hole, characterized in that it is sealed by the light reflecting layer.
  • the light reflecting layer is made of glass ceramics.
  • the manufacturing method of the light emitting element mounting substrate of this invention is a manufacturing method of the light emitting element mounting substrate comprised according to this invention, Comprising: The process of forming the said through hole in the said aluminum nitride substrate, The said aluminum nitride substrate And forming the through-hole electrode in the through-hole, and forming the wiring electrode and the terminal electrode on the first and second main surfaces, respectively, and the first of the aluminum nitride substrate. And forming the light reflecting layer so as to seal the through-hole on the main surface.
  • the light emitting element mounting package of the present invention is a light emitting element mounting package for mounting and sealing a light emitting element therein, and the light emitting element mounting substrate configured according to the present invention and the light emitting element mounting substrate A light emitting element mounted on the light reflecting layer of the light emitting element mounting substrate, the glass lid sealing the inside of the light emitting element mounting package, and the light reflecting layer; And a sealing material layer disposed between the glass lid and the glass lid.
  • the present invention it is possible to provide a light emitting element mounting substrate that can exhibit high airtightness when the light emitting element is mounted and sealed.
  • FIG. 1 is a schematic sectional view showing a light emitting element mounting substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic bottom view of a light emitting element mounting substrate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a modification of the light emitting element mounting substrate according to the embodiment of the present invention.
  • 4A to 4D are schematic cross-sectional views for explaining a method for manufacturing a light emitting element mounting substrate according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a light emitting element mounting package according to an embodiment of the present invention.
  • 6A to 6D are schematic cross-sectional views for explaining a method for manufacturing a light emitting element mounting package according to an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view showing a light emitting element mounting package of a comparative example.
  • FIG. 1 is a schematic sectional view showing a light emitting element mounting substrate according to an embodiment of the present invention.
  • FIG. 2 is a schematic bottom view of the light emitting element mounting substrate according to the embodiment of the present invention.
  • the light emitting element mounting substrate 1 includes an aluminum nitride substrate 2, a light reflecting layer 3, wiring electrodes 4a and 4b, through-hole electrodes 5a and 5b, and terminal electrodes 6a and 6b.
  • the light emitting element mounting substrate 1 is a substrate for mounting a light emitting element such as a deep ultraviolet LED.
  • the aluminum nitride substrate 2 has first and second main surfaces 2a and 2b.
  • the first and second main surfaces 2a and 2b face each other.
  • wiring electrodes 4a and 4b are provided on the first main surface 2a of the aluminum nitride substrate 2.
  • the wiring electrodes 4a and 4b are electrodes for connecting to the light emitting element.
  • terminal electrodes 6 a and 6 b are provided on the second main surface 2 b of the aluminum nitride substrate 2.
  • the terminal electrodes 6a and 6b are electrodes for connecting to the outside.
  • the aluminum nitride substrate 2 is provided with through holes 7a and 7b.
  • the through holes 7a and 7b are provided from the first main surface 2a to the second main surface 2b.
  • through-hole electrodes 5a and 5b are provided in the through-holes 7a and 7b.
  • the through-hole electrodes 5a and 5b connect the wiring electrodes 4a and 4b and the terminal electrodes 6a and 6b.
  • a light emitting element mounting region 2 c for mounting a light emitting element is provided on the first main surface 2 a of the aluminum nitride substrate 2.
  • a frame-shaped light reflecting layer 3 is provided so as to surround the light emitting element mounting region 2c.
  • the light reflecting layer 3 is provided so as to cover the through holes 7a and 7b. More specifically, the light reflecting layer 3 is provided so as to seal the through holes 7a and 7b.
  • the light reflection layer 3 can be comprised by glass ceramics, for example.
  • the aluminum nitride substrate 2 is used in the light emitting element mounting substrate 1 of this embodiment, the heat dissipation is excellent. Moreover, since it has the light reflection layer 3, it has a high reflectance. Further, in the light emitting element mounting substrate 1, the light reflecting layer 3 is provided so as to cover the through holes 7 a and 7 b of the aluminum nitride substrate 2, and the through holes 7 a and 7 b are sealed by the light reflecting layer 3. . Therefore, airtightness can be enhanced when the light emitting element is mounted and sealed. This will be described in detail in the section of the light emitting element mounting package described later.
  • the inner side surface 3 a of the light reflecting layer 3 is formed to extend in a substantially vertical direction with respect to the aluminum nitride substrate 2.
  • the inner side surface 3a of the light reflecting layer 3 may have a tapered shape that expands from the lower surface 3c toward the upper surface 3b.
  • a light-transmitting functional layer may be provided on the inner side surface 3 a of the light reflecting layer 3.
  • the functional layer include a protective coating layer, a wavelength filter layer, a light diffusion layer, an interference layer, and the like against scratches, dirt, chemical corrosion, and the like.
  • the aluminum nitride substrate is made of aluminum nitride.
  • the aluminum nitride substrate may contain a sintering aid for sintering aluminum nitride such as an yttrium compound or a tungsten compound.
  • the light reflection layer can be made of glass ceramics, for example.
  • a mixed powder of glass powder and ceramic powder, or crystalline glass powder can be used.
  • glass powder examples include SiO 2 —B 3 O 3 glass, SiO 2 —RO glass (R represents an alkaline earth metal), SiO 2 —Al 2 O 3 glass, SiO 2 —ZnO glass, SiO 2 —R 2 O-based glass (R represents an alkali metal), SiO 2 —TiO 2 -based glass, or the like can be used. These glass powders may be used alone or in combination.
  • alumina, zirconia, titania or the like can be used as the ceramic powder. These ceramic powders may be used alone or in combination.
  • the material of the functional layer is not particularly limited, glass such as silicate glass, metal oxide such as silica, alumina, zirconia, tantalum oxide, or niobium oxide, resin such as polymethyl methacrylate, polycarbonate, or polyacrylate Is mentioned. These materials may be used alone or in combination.
  • an aluminum nitride substrate 2A before firing is prepared.
  • through holes 7a and 7b are formed in the prepared pre-fired aluminum nitride substrate 2A.
  • the method for forming the through holes 7a and 7b is not particularly limited, and for example, the through holes 7a and 7b can be formed by machining with a drill or laser processing.
  • wiring electrodes 4a and 4b, through-hole electrodes 5a and 5b, and terminal electrodes 6a and 6b are formed.
  • each electrode is not particularly limited, but can be formed by printing, for example. It does not specifically limit as a paste used for printing, For example, pastes, such as silver, copper, gold
  • the through-hole electrodes 5a and 5b are filled with the paste for forming the through-hole electrodes 5a and 5b.
  • the paste for forming the wiring electrodes 4a and 4b is formed on the aluminum nitride substrate 2A before firing. And it can carry out by printing the paste for terminal electrode 6a, 6b formation.
  • the aluminum nitride substrate 2A and each paste before firing are fired.
  • the aluminum nitride substrate 2, the wiring electrodes 4a and 4b, the through-hole electrodes 5a and 5b, and the terminal electrodes 6a and 6b are formed.
  • the paste is fired in a nitrogen atmosphere.
  • gold, silver, or an alloy containing silver is used as the material constituting each paste, the paste is fired in the atmosphere.
  • the firing temperature is preferably 1200 ° C. or lower.
  • the firing temperature exceeds 1200 ° C., the surface of the aluminum nitride may be oxidized and the thermal conductivity may be lowered.
  • each electrode for example, gold plating can be performed.
  • the plating method include electroless plating and electrolytic plating, and can be appropriately selected depending on the thickness of the plating layer.
  • a light reflecting layer 3 is formed on the aluminum nitride substrate 2. At this time, the light reflecting layer 3 is formed so as to cover the through holes 7a and 7b. Thereby, the through holes 7a and 7b are sealed, and the light emitting element mounting substrate 1 can be obtained.
  • the light reflecting layer 3 is preferably formed of glass ceramics. In this case, the light reflectance can be further increased, and the adhesiveness with the aluminum nitride substrate 2 can be further increased.
  • the method for forming the light reflecting layer 3 is not particularly limited, and examples thereof include a screen printing method and a green sheet laminating method.
  • a high viscosity paste prepared by adding a resin binder and a solvent to the glass ceramic powder and kneading is used with a screen printing machine. This can be done by printing on the aluminum nitride substrate 2.
  • a slurry is prepared by adding a resin binder, a plasticizer and a solvent to the glass ceramic powder and kneading them. Subsequently, the prepared slurry is formed into a green sheet using a sheet forming machine such as a doctor blade. Next, the obtained green sheet is punched into the shape of the light reflecting layer 3 and laminated on the aluminum nitride substrate 2 by pressure bonding.
  • the firing can be performed in two stages, that is, a resin removal binder and a main firing in which the glass ceramic powder is sintered.
  • the deresin binder can be performed at 400 ° C. to 600 ° C. Further, the main baking can be performed at, for example, 850 ° C. to 1000 ° C.
  • the aluminum nitride substrate 2 In the manufacturing method of the light emitting element mounting substrate 1, since the aluminum nitride substrate 2 is used, heat dissipation is excellent. Moreover, since the light reflection layer 3 is provided, it has a high reflectance. Further, in the light emitting element mounting substrate 1, since the light reflecting layer 3 is formed so as to seal the through holes 7a and 7b of the aluminum nitride substrate 2, airtightness is achieved when the light emitting element is mounted and sealed. Can be increased. This will be described in detail in the section of the light emitting element mounting package described later.
  • FIG. 5 is a schematic cross-sectional view showing a light emitting element mounting package according to an embodiment of the present invention.
  • the light emitting element mounting package 21 includes a light emitting element mounting substrate 1, a glass lid 8, a sealing material layer 9, and a light emitting element 10.
  • the light emitting element mounting substrate 1 is a light emitting element mounting substrate according to an embodiment of the present invention described above.
  • the light emitting element 10 is mounted on the light emitting element mounting substrate 1.
  • the light emitting element 10 is connected to the wiring electrodes 4 a and 4 b of the light emitting element mounting substrate 1.
  • Examples of the light emitting element 10 include a deep ultraviolet LED and a white LED in which a blue LED and a yellow phosphor are combined.
  • a glass lid 8 is disposed on the upper surface 3 b of the light reflecting layer 3 in the light emitting element mounting substrate 1.
  • the glass lid 8 is a member for sealing the inside of the light emitting element mounting package 21.
  • a sealing material layer 9 is provided between the light reflecting layer 3 and the glass lid 8. The light reflecting layer 3 and the glass lid 8 are joined by the sealing material layer 9.
  • the light emitting element mounting package 21 since the aluminum nitride substrate 2 is used for the light emitting element mounting substrate 1, heat dissipation is excellent. Further, since the light reflecting layer 3 is used for the light emitting element mounting substrate 1, the reflectance is increased. Furthermore, since the light emitting element mounting package 21 is sealed with the glass lid 8 instead of the resin, it does not deteriorate due to ultraviolet rays and does not lower the airtightness like the resin. Further, since the light reflecting layer 3 is provided so as to cover the through holes 7a and 7b of the aluminum nitride substrate 2, the through holes 7a and 7b are sealed, and the airtightness is further enhanced. Furthermore, the light emitting element mounting package 21 is excellent in durability against ultraviolet rays because the constituent materials are all inorganic materials.
  • FIG. 7 is a schematic cross-sectional view showing a light emitting element mounting package of a comparative example.
  • the through holes 107a and 107b are not provided at positions overlapping the light reflecting layer 103 in plan view. More specifically, the through holes 107 a and 107 b are not sealed by the light reflecting layer 103. Therefore, even when the light emitting element mounting substrate 100 is sealed with the glass lid 108, moisture may enter through the through holes 107a and 107b. More specifically, moisture may enter from the interface between the aluminum nitride substrate 102 and the through-hole electrodes 105a and 105b in the through-holes 107a and 107b. Therefore, in the light emitting element mounting package 101 of the comparative example, the airtightness is not sufficiently improved.
  • the through holes 7a and 7b are sealed by the light reflecting layer 3. Therefore, the light reflection layer 3 can prevent moisture from entering through the through holes 7a and 7b. More specifically, the light reflection layer 3 can prevent moisture from entering from the interface between the aluminum nitride substrate 2 and the through-hole electrodes 5a and 5b. Thus, in the light emitting element mounting package 21, since the light reflection layer 3 can prevent moisture from entering, the airtightness is improved.
  • FIGS. 6A to 6D are schematic cross-sectional views for explaining a method for manufacturing a light emitting element mounting package according to an embodiment of the present invention.
  • the light emitting element mounting substrate 1 shown in FIG. 6B the light emitting element 10 is mounted on the light emitting element mounting substrate 1.
  • the connection between the light emitting element 10 and the light emitting element mounting substrate 1 can be performed by, for example, a connection by a solder hole or a connection by a wire bond.
  • a sealing material is printed on the upper surface 3 b of the light reflecting layer 3. After the sealing material is printed, it is dried and heat-treated to sinter the sealing material to form a sealing material layer 9 shown in FIG.
  • the sealing material layer 9 may be formed on the glass lid 8 side, or may be formed on both the glass lid 8 side and the light reflecting layer 3 side.
  • a glass lid 8 is disposed on a portion where the sealing material layer 9 is provided on the upper surface 3 b of the light reflecting layer 3.
  • the glass lid 8 may be arranged so that at least a part thereof overlaps the portion where the sealing material layer 9 is provided in a plan view. But it is preferable to arrange
  • a laser is irradiated from a laser light source to soften the sealing material layer 9, and the light reflecting layer 3 And the glass cover 8 is joined.
  • the inside is hermetically sealed, and the light emitting element mounting package 21 is obtained.
  • the laser for example, a laser having a wavelength of 600 nm to 1600 nm can be used.
  • Glass lid As the glass constituting the glass lid, ultraviolet transmissive glass is preferable.
  • Specific examples of the glass constituting the glass lid include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) -based glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ Includes Li, Na or Ka) glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O (R ′ is Li, Na, or Ka) glass, and the like.
  • the sealing material for forming the sealing material layer is a low melting point sealing glass such as Bi 2 O 3 glass powder, SnO—P 2 O 5 glass powder, or V 2 O 5 —TeO 2 glass powder. It is preferable that it contains. In particular, when sealing is performed by irradiating with a laser, the sealing glass has a low softening point in view of the necessity of softening the sealing material by heating for a shorter time and further enhancing the bonding strength. More preferably, powder is used. Further, the sealing material may contain a low expansion refractory filler, a laser absorber and the like.
  • Examples of the low expansion refractory filler include cordierite, willemite, alumina, zirconium phosphate compounds, zircon, zirconia, tin oxide, quartz glass, ⁇ -quartz solid solution, ⁇ -eucryptite, and spodumene.
  • Examples of the laser absorbing material include compounds such as at least one metal selected from Fe, Mn, Cu and the like or an oxide containing the metal.
  • Example 1 In Example 1, the light emitting element mounting package 21 shown in FIG. 5 was produced.
  • through holes 7a and 7b having a diameter of 0.2 mm were formed at two locations on the aluminum nitride substrate 2 having a thickness of 0.3 mm using a semiconductor laser.
  • a silver paste is filled into the through holes 7a and 7b through a metal mask, and the silver paste is printed with a wiring width of 0.2 mm, so that the first and second main surfaces 2a, 2a of the aluminum nitride substrate 2 are printed. Electrical connection was made in 2b.
  • a silver paste for forming the wiring electrodes 4a and 4b was printed on the first main surface 2a.
  • the silver paste for terminal electrode 6a, 6b formation was printed on the 2nd main surface 2b.
  • the aluminum nitride substrate 2 coated with each silver paste was baked at a temperature of 850 ° C. for 20 minutes in the air.
  • thermocompression bonding was performed at a position where the through holes 7 a and 7 b were completely sealed by the light reflecting layer 3.
  • a green sheet was formed on the aluminum nitride substrate 2 and fired using an electric furnace. In order to vaporize the resin binder contained in the silver paste and the green sheet, it was held at 500 ° C. for 2 hours, and then held at 850 ° C. for 1 hour in order to sinter silver and glass ceramics.
  • the obtained light emitting element mounting substrate 1 was subjected to nickel plating and gold plating, and a deep ultraviolet LED as the light emitting element 10 was mounted using a solder hole. Subsequently, a glass frit is applied to the upper surface 3b of the light reflecting layer 3, an ultraviolet ray transmitting glass as a glass lid 8 is attached, and laser sealing is performed to obtain a light emitting element mounting package 21 on which deep ultraviolet LEDs are mounted. It was.
  • Comparative Example 1 In Comparative Example 1, the light emitting element mounting package 101 shown in FIG. 7 was manufactured.
  • a light emitting element mounting package 101 was produced in the same manner as in Example 1 except that the through holes 107a and 107b were formed at positions where they did not overlap the light reflecting layer 103.
  • Example 1 The light emitting element mounting packages 21 and 101 obtained in Example 1 and Comparative Example 1 were held in a pressure vessel for 24 hours under the conditions of 121 ° C., 2 atm and 100% humidity, respectively. As a result, in Example 1, no change was observed, but in Comparative Example 1, condensation was observed inside the package. As a result, it was confirmed that the light-emitting element mounting package 21 of Example 1 had higher airtightness than the light-emitting element mounting package 101 of Comparative Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

Provided is a light emitting element mounting substrate capable of exhibiting high hermeticity when a light emitting element is mounted and sealed. The present invention is characterized by comprising an aluminum nitride substrate 2, wiring electrodes 4a and 4b which are provided on a first main surface 2a of the aluminum nitride substrate 2 and are for connection with a light emitting element, terminal electrodes 6a and 6b which are provided on a second main surface 2b of the aluminum nitride substrate 2, through-hole electrodes 5a and 5b which are provided inside the aluminum nitride substrate 2 and connect the wiring electrodes 4a and 4b with the terminal electrodes 6a and 6b, and a frame-shaped light reflecting layer 3 which is provided on the first main surface 2a of the aluminum nitride substrate 2, wherein through-holes 7a and 7b are provided in the aluminum nitride substrate 2 so as to extend from the first main surface 2a to the second main surface 2b, the through-hole electrodes 5a and 5b are disposed inside the through-holes 7a and 7b, and the through-holes 7a and 7b are sealed by the light reflecting layer 3.

Description

発光素子搭載用基板及びその製造方法、並びに発光素子搭載パッケージLight emitting element mounting substrate, method for manufacturing the same, and light emitting element mounting package
 本発明は、発光ダイオード等の発光素子を搭載するための発光素子搭載用基板及びその製造方法、並びに該発光素子搭載用基板を用いた発光素子搭載パッケージに関する。 The present invention relates to a light emitting element mounting substrate for mounting a light emitting element such as a light emitting diode, a manufacturing method thereof, and a light emitting element mounting package using the light emitting element mounting substrate.
 従来、発光素子を搭載するために、発光素子搭載用基板が用いられている。発光素子搭載用基板に搭載される発光素子の一例としてのLED(Light Emitting Diode)は、小型で消費電力が低い光源である。なかでも、白色LEDは、白熱球や、蛍光ランプに代わる照明として注目を集めている。また、紫外LEDは、殺菌、空気洗浄、がん治療、又は樹脂硬化等の用途において、紫外線光源として注目を集めている。 Conventionally, a light-emitting element mounting substrate is used to mount a light-emitting element. An LED (Light Emitting Diode) as an example of a light emitting element mounted on a light emitting element mounting substrate is a light source that is small in size and low in power consumption. Of these, white LEDs are attracting attention as an alternative to incandescent bulbs and fluorescent lamps. Moreover, ultraviolet LED attracts attention as an ultraviolet light source in applications such as sterilization, air cleaning, cancer treatment, or resin curing.
 下記の特許文献1には、窒化アルミニウム基板上に光反射層が設けられてなる発光素子搭載用基板が開示されている。特許文献1では、窒化アルミニウム基板内にフィルドビアが設けられている。上記フィルドビアは、表面側電極と裏面側電極とを接続している。 The following Patent Document 1 discloses a light emitting element mounting substrate in which a light reflecting layer is provided on an aluminum nitride substrate. In Patent Document 1, filled vias are provided in an aluminum nitride substrate. The filled via connects the front surface side electrode and the back surface side electrode.
 また、特許文献1には、上記発光素子搭載用基板に発光素子が搭載された発光デバイスが開示されている。上記発光素子は、上記表面側電極に接続されている。特許文献1では、上記発光素子を覆うように樹脂が設けられており、それによって発光素子が封止されている。 Patent Document 1 discloses a light emitting device in which a light emitting element is mounted on the light emitting element mounting substrate. The light emitting element is connected to the surface side electrode. In Patent Document 1, a resin is provided so as to cover the light emitting element, thereby sealing the light emitting element.
特開2015-144210号公報Japanese Patent Laid-Open No. 2015-144210
 近年、殺菌や空気清浄、または樹脂硬化などの性能をより一層向上させる観点から、深紫外線LEDへの注目が高まっている。深紫外線LEDを発光素子として用いる場合、より一層高い気密性が必要となる。 In recent years, attention has been focused on deep ultraviolet LEDs from the viewpoint of further improving performance such as sterilization, air cleaning, and resin curing. When deep UV LED is used as a light emitting element, higher airtightness is required.
 しかしながら、特許文献1の発光デバイスは、可視光線を発光する発光素子を前提としており、気密性が十分でなかった。 However, the light-emitting device of Patent Document 1 is based on a light-emitting element that emits visible light, and is not sufficiently airtight.
 本発明の目的は、発光素子を搭載して封止したときに、高い気密性を発現することを可能とする発光素子搭載用基板、該発光素子搭載用基板の製造方法、及び該発光素子搭載用基板を用いた発光素子搭載パッケージを提供することにある。 An object of the present invention is to provide a light emitting element mounting substrate that can exhibit high airtightness when the light emitting element is mounted and sealed, a method for manufacturing the light emitting element mounting substrate, and the light emitting element mounting. Another object is to provide a light-emitting element mounting package using a substrate.
 本発明の発光素子搭載用基板は、発光素子を搭載するための発光素子搭載用基板であって、互いに対向している第1及び第2の主面を有する、窒化アルミニウム基板と、前記窒化アルミニウム基板の前記第1の主面上に設けられており、前記発光素子と接続するための配線電極と、前記窒化アルミニウム基板の前記第2の主面上に設けられている、端子電極と、前記窒化アルミニウム基板内に設けられており、前記配線電極と前記端子電極とを接続している、スルーホール電極と、前記窒化アルミニウム基板の前記第1の主面上に設けられている、枠状の光反射層と、を備え、前記第1の主面から前記第2の主面に至るように、前記窒化アルミニウム基板にスルーホールが設けられており、前記スルーホール内に、前記スルーホール電極が配置されており、前記スルーホールが、前記光反射層により封止されていることを特徴とする。 The light emitting element mounting substrate of the present invention is a light emitting element mounting substrate for mounting a light emitting element, and has an aluminum nitride substrate having first and second main surfaces facing each other, and the aluminum nitride A wiring electrode provided on the first main surface of the substrate; connected to the light emitting element; a terminal electrode provided on the second main surface of the aluminum nitride substrate; A frame-shaped electrode provided in the aluminum nitride substrate, connected to the wiring electrode and the terminal electrode, and provided on the first main surface of the aluminum nitride substrate. A through hole is provided in the aluminum nitride substrate so as to reach the second main surface from the first main surface, and the through hole electrode is provided in the through hole. Are location, the through hole, characterized in that it is sealed by the light reflecting layer.
 本発明の発光素子搭載用基板は、好ましくは、前記光反射層が、ガラスセラミックスにより構成されている。 In the light emitting element mounting substrate of the present invention, preferably, the light reflecting layer is made of glass ceramics.
 本発明の発光素子搭載用基板の製造方法は、本発明に従って構成される発光素子搭載用基板の製造方法であって、前記窒化アルミニウム基板に、前記スルーホールを形成する工程と、前記窒化アルミニウム基板において、前記スルーホール内に前記スルーホール電極を形成し、前記第1及び第2の主面上に、それぞれ、前記配線電極及び前記端子電極を形成する工程と、前記窒化アルミニウム基板の前記第1の主面上において、前記スルーホールを封止するように前記光反射層を形成する工程と、を備えることを特徴とする。 The manufacturing method of the light emitting element mounting substrate of this invention is a manufacturing method of the light emitting element mounting substrate comprised according to this invention, Comprising: The process of forming the said through hole in the said aluminum nitride substrate, The said aluminum nitride substrate And forming the through-hole electrode in the through-hole, and forming the wiring electrode and the terminal electrode on the first and second main surfaces, respectively, and the first of the aluminum nitride substrate. And forming the light reflecting layer so as to seal the through-hole on the main surface.
 本発明の発光素子搭載パッケージは、発光素子を内部に搭載して封止するための発光素子搭載パッケージであって、本発明に従って構成される発光素子搭載用基板と、前記発光素子搭載用基板に搭載されている、発光素子と、前記発光素子搭載用基板における前記光反射層の上部に配置されており、前記発光素子搭載パッケージ内を封止している、ガラス蓋と、前記光反射層と、前記ガラス蓋との間に配置されている、封着材料層と、を備えることを特徴とする。 The light emitting element mounting package of the present invention is a light emitting element mounting package for mounting and sealing a light emitting element therein, and the light emitting element mounting substrate configured according to the present invention and the light emitting element mounting substrate A light emitting element mounted on the light reflecting layer of the light emitting element mounting substrate, the glass lid sealing the inside of the light emitting element mounting package, and the light reflecting layer; And a sealing material layer disposed between the glass lid and the glass lid.
 本発明によれば、発光素子を搭載して封止したときに、高い気密性を発現することを可能とする発光素子搭載用基板を提供することができる。 According to the present invention, it is possible to provide a light emitting element mounting substrate that can exhibit high airtightness when the light emitting element is mounted and sealed.
図1は、本発明の一実施形態に係る発光素子搭載用基板を示す模式的断面図である。FIG. 1 is a schematic sectional view showing a light emitting element mounting substrate according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る発光素子搭載用基板の模式的底面図である。FIG. 2 is a schematic bottom view of a light emitting element mounting substrate according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る発光素子搭載用基板の変形例を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing a modification of the light emitting element mounting substrate according to the embodiment of the present invention. 図4(a)~(d)は、本発明の一実施形態に係る発光素子搭載用基板の製造方法を説明するための模式的断面図である。4A to 4D are schematic cross-sectional views for explaining a method for manufacturing a light emitting element mounting substrate according to an embodiment of the present invention. 図5は、本発明の一実施形態に係る発光素子搭載パッケージを示す模式的断面図である。FIG. 5 is a schematic cross-sectional view showing a light emitting element mounting package according to an embodiment of the present invention. 図6(a)~(d)は、本発明の一実施形態に係る発光素子搭載パッケージの製造方法を説明するための模式的断面図である。6A to 6D are schematic cross-sectional views for explaining a method for manufacturing a light emitting element mounting package according to an embodiment of the present invention. 図7は、比較例の発光素子搭載パッケージを示す模式的断面図である。FIG. 7 is a schematic cross-sectional view showing a light emitting element mounting package of a comparative example.
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。 Hereinafter, preferred embodiments will be described. However, the following embodiments are merely examples, and the present invention is not limited to the following embodiments. Moreover, in each drawing, the member which has the substantially the same function may be referred with the same code | symbol.
 [発光素子搭載用基板]
 図1は、本発明の一実施形態に係る発光素子搭載用基板を示す模式的断面図である。また、図2は、本発明の一実施形態に係る発光素子搭載用基板の模式的底面図である。
[Light emitting element mounting substrate]
FIG. 1 is a schematic sectional view showing a light emitting element mounting substrate according to an embodiment of the present invention. FIG. 2 is a schematic bottom view of the light emitting element mounting substrate according to the embodiment of the present invention.
 図1に示すように、発光素子搭載用基板1は、窒化アルミニウム基板2、光反射層3、配線電極4a,4b、スルーホール電極5a,5b及び端子電極6a,6bを備える。なお、発光素子搭載用基板1は、深紫外線LEDなどの発光素子を搭載するための基板である。 As shown in FIG. 1, the light emitting element mounting substrate 1 includes an aluminum nitride substrate 2, a light reflecting layer 3, wiring electrodes 4a and 4b, through- hole electrodes 5a and 5b, and terminal electrodes 6a and 6b. The light emitting element mounting substrate 1 is a substrate for mounting a light emitting element such as a deep ultraviolet LED.
 窒化アルミニウム基板2は、第1及び第2の主面2a,2bを有する。第1及び第2の主面2a,2bは、互いに対向している。窒化アルミニウム基板2の第1の主面2a上には、配線電極4a,4bが設けられている。配線電極4a,4bは、発光素子と接続するための電極である。他方、窒化アルミニウム基板2の第2の主面2b上には、端子電極6a,6bが設けられている。端子電極6a,6bは、外部と接続するための電極である。 The aluminum nitride substrate 2 has first and second main surfaces 2a and 2b. The first and second main surfaces 2a and 2b face each other. On the first main surface 2a of the aluminum nitride substrate 2, wiring electrodes 4a and 4b are provided. The wiring electrodes 4a and 4b are electrodes for connecting to the light emitting element. On the other hand, terminal electrodes 6 a and 6 b are provided on the second main surface 2 b of the aluminum nitride substrate 2. The terminal electrodes 6a and 6b are electrodes for connecting to the outside.
 窒化アルミニウム基板2には、スルーホール7a,7bが設けられている。スルーホール7a,7bは、第1の主面2aから第2の主面2bに至るように設けられている。また、スルーホール7a,7b内にスルーホール電極5a,5bが設けられている。スルーホール電極5a,5bは、配線電極4a,4b及び端子電極6a,6bを接続している。 The aluminum nitride substrate 2 is provided with through holes 7a and 7b. The through holes 7a and 7b are provided from the first main surface 2a to the second main surface 2b. Further, through- hole electrodes 5a and 5b are provided in the through- holes 7a and 7b. The through- hole electrodes 5a and 5b connect the wiring electrodes 4a and 4b and the terminal electrodes 6a and 6b.
 窒化アルミニウム基板2の第1の主面2aには、発光素子を搭載するための発光素子搭載領域2cが設けられている。第1の主面2a上においては、この発光素子搭載領域2cを囲むように、枠状の光反射層3が設けられている。光反射層3は、スルーホール7a,7bを覆うように設けられている。より具体的に、光反射層3は、スルーホール7a,7bを封止するように設けられている。なお、光反射層3は、例えば、ガラスセラミックスにより構成することができる。 A light emitting element mounting region 2 c for mounting a light emitting element is provided on the first main surface 2 a of the aluminum nitride substrate 2. On the first main surface 2a, a frame-shaped light reflecting layer 3 is provided so as to surround the light emitting element mounting region 2c. The light reflecting layer 3 is provided so as to cover the through holes 7a and 7b. More specifically, the light reflecting layer 3 is provided so as to seal the through holes 7a and 7b. In addition, the light reflection layer 3 can be comprised by glass ceramics, for example.
 本実施形態の発光素子搭載用基板1では、窒化アルミニウム基板2が用いられているので、放熱性に優れている。また、光反射層3を有しているので、高い反射率を有している。さらに、発光素子搭載用基板1では、窒化アルミニウム基板2のスルーホール7a,7bを覆うように光反射層3が設けられており、光反射層3によりスルーホール7a,7bが封止されている。そのため、発光素子を搭載して封止したときに気密性を高めることができる。この点については、後述の発光素子搭載パッケージの欄で詳細に説明する。 Since the aluminum nitride substrate 2 is used in the light emitting element mounting substrate 1 of this embodiment, the heat dissipation is excellent. Moreover, since it has the light reflection layer 3, it has a high reflectance. Further, in the light emitting element mounting substrate 1, the light reflecting layer 3 is provided so as to cover the through holes 7 a and 7 b of the aluminum nitride substrate 2, and the through holes 7 a and 7 b are sealed by the light reflecting layer 3. . Therefore, airtightness can be enhanced when the light emitting element is mounted and sealed. This will be described in detail in the section of the light emitting element mounting package described later.
 なお、図1に示すように、発光素子搭載用基板1では、光反射層3の内側面3aが、窒化アルミニウム基板2に対して略垂直方向に延びるように形成されている。もっとも、本発明においては、図3に変形例で示すように、光反射層3の内側面3aが、下面3cから上面3bに向かって拡がるテーパー形状を有していてもよい。 As shown in FIG. 1, in the light emitting element mounting substrate 1, the inner side surface 3 a of the light reflecting layer 3 is formed to extend in a substantially vertical direction with respect to the aluminum nitride substrate 2. However, in the present invention, as shown in a modified example in FIG. 3, the inner side surface 3a of the light reflecting layer 3 may have a tapered shape that expands from the lower surface 3c toward the upper surface 3b.
 また、本発明においては、光反射層3の内側面3a上に、光透過性の機能層が設けられていてもよい。機能層としては、例えば、傷や汚れ又は化学的腐食等に対する保護コーティング層、波長フィルター層、光拡散層、又は干渉層等が挙げられる。 In the present invention, a light-transmitting functional layer may be provided on the inner side surface 3 a of the light reflecting layer 3. Examples of the functional layer include a protective coating layer, a wavelength filter layer, a light diffusion layer, an interference layer, and the like against scratches, dirt, chemical corrosion, and the like.
 以下、発光素子搭載用基板1などの本発明の発光素子搭載用基板を構成する各部材の詳細を説明する。 Hereinafter, details of each member constituting the light emitting element mounting substrate of the present invention such as the light emitting element mounting substrate 1 will be described.
 窒化アルミニウム基板;
 窒化アルミニウム基板は、窒化アルミニウムにより構成されている。窒化アルミニウム基板には、イットリウム化合物や、タングステン化合物などの窒化アルミニウムを焼結する際の焼結助剤が含まれていてもよい。
Aluminum nitride substrate;
The aluminum nitride substrate is made of aluminum nitride. The aluminum nitride substrate may contain a sintering aid for sintering aluminum nitride such as an yttrium compound or a tungsten compound.
 光反射層;
 光反射層は、例えば、ガラスセラミックスにより構成することができる。ガラスセラミックスの材料としては、ガラス粉末及びセラミックス粉末の混合粉末、又は結晶性ガラス粉末を用いることができる。
Light reflecting layer;
The light reflection layer can be made of glass ceramics, for example. As a material of the glass ceramic, a mixed powder of glass powder and ceramic powder, or crystalline glass powder can be used.
 ガラス粉末としては、SiO―B系ガラス、SiO-RO系ガラス(Rは、アルカリ土類金属を表す)、SiO-Al系ガラス、SiO-ZnO系ガラス、SiO-RO系ガラス(Rは、アルカリ金属を表す)、又はSiO-TiO系ガラスなどを用いることができる。これらのガラス粉末は、単独で用いてもよく、複数を併用してもよい。 Examples of the glass powder include SiO 2 —B 3 O 3 glass, SiO 2 —RO glass (R represents an alkaline earth metal), SiO 2 —Al 2 O 3 glass, SiO 2 —ZnO glass, SiO 2 —R 2 O-based glass (R represents an alkali metal), SiO 2 —TiO 2 -based glass, or the like can be used. These glass powders may be used alone or in combination.
 セラミックス粉末としては、アルミナ、ジルコニア又はチタニアなどを用いることができる。これらのセラミックス粉末は、単独で用いてもよく、複数を併用してもよい。 As the ceramic powder, alumina, zirconia, titania or the like can be used. These ceramic powders may be used alone or in combination.
 機能層;
 機能層の材料としては、特に限定されず、ケイ酸系ガラス等のガラス、シリカ、アルミナ、ジルコニア、酸化タンタル、又は酸化ニオブ等の金属酸化物、ポリメチルメタクリレート、ポリカーボネート、又はポリアクリレート等の樹脂が挙げられる。これらの材料は、単独で用いてもよく、複数を併用してもよい。
Functional layer;
The material of the functional layer is not particularly limited, glass such as silicate glass, metal oxide such as silica, alumina, zirconia, tantalum oxide, or niobium oxide, resin such as polymethyl methacrylate, polycarbonate, or polyacrylate Is mentioned. These materials may be used alone or in combination.
 [発光素子搭載用基板の製造方法]
 以下、図4(a)~(d)を参照して、発光素子搭載用基板1の製造方法について説明する。
[Method for manufacturing substrate for mounting light emitting element]
Hereinafter, a method for manufacturing the light-emitting element mounting substrate 1 will be described with reference to FIGS.
 まず、図4(a)に示すように、焼成前の窒化アルミニウム基板2Aを用意する。続いて、図4(b)に示すように、用意した焼成前の窒化アルミニウム基板2Aにスルーホール7a,7bを形成する。スルーホール7a,7bの形成方法としては、特に限定されず、例えば、ドリルによる機械加工や、レーザー加工により形成することができる。 First, as shown in FIG. 4A, an aluminum nitride substrate 2A before firing is prepared. Subsequently, as shown in FIG. 4B, through holes 7a and 7b are formed in the prepared pre-fired aluminum nitride substrate 2A. The method for forming the through holes 7a and 7b is not particularly limited, and for example, the through holes 7a and 7b can be formed by machining with a drill or laser processing.
 次に、図4(c)に示すように、配線電極4a,4b、スルーホール電極5a,5b及び端子電極6a,6bを形成する。 Next, as shown in FIG. 4C, wiring electrodes 4a and 4b, through- hole electrodes 5a and 5b, and terminal electrodes 6a and 6b are formed.
 各電極の形成方法としては、特に限定されないが、例えば、印刷により形成することができる。印刷に用いられるペーストとしては、特に限定されず、例えば、銀、銅、金、銀パラジウム合金、又は銀白金合金などのペーストを用いることができる。これらは、単独で用いてもよく複数を併用してもよい。 The formation method of each electrode is not particularly limited, but can be formed by printing, for example. It does not specifically limit as a paste used for printing, For example, pastes, such as silver, copper, gold | metal | money, a silver palladium alloy, or a silver platinum alloy, can be used. These may be used alone or in combination.
 なお、ペーストの印刷は、まず、スルーホール7a,7b内に、スルーホール電極5a,5b形成用ペーストを充填し、続いて、焼成前の窒化アルミニウム基板2Aに、配線電極4a,4b形成用ペースト及び端子電極6a,6b形成用ペーストを印刷することにより行うことができる。 In the printing of the paste, first, the through- hole electrodes 5a and 5b are filled with the paste for forming the through- hole electrodes 5a and 5b. Subsequently, the paste for forming the wiring electrodes 4a and 4b is formed on the aluminum nitride substrate 2A before firing. And it can carry out by printing the paste for terminal electrode 6a, 6b formation.
 次に、焼成前の窒化アルミニウム基板2A及び各ペーストを焼成する。それによって、窒化アルミニウム基板2、配線電極4a,4b、スルーホール電極5a,5b及び端子電極6a,6bを形成する。この際、各ペーストを構成する材料に、銅を用いる場合は、窒素雰囲気下で焼成する。他方、各ペーストを構成する材料に、金、銀、又は銀を含む合金を用いる場合は、大気中で焼成する。大気中で焼成する場合は、焼成温度を1200℃以下にすることが好ましい。焼成温度が1200℃を超えると、窒化アルミニウムの表面が酸化し、熱伝導率が低下する場合がある。なお、各ペーストの焼成は、後述の光反射層3を形成する際の焼成と同時に行ってもよい。 Next, the aluminum nitride substrate 2A and each paste before firing are fired. Thereby, the aluminum nitride substrate 2, the wiring electrodes 4a and 4b, the through- hole electrodes 5a and 5b, and the terminal electrodes 6a and 6b are formed. At this time, when copper is used as the material constituting each paste, the paste is fired in a nitrogen atmosphere. On the other hand, when gold, silver, or an alloy containing silver is used as the material constituting each paste, the paste is fired in the atmosphere. When firing in the air, the firing temperature is preferably 1200 ° C. or lower. When the firing temperature exceeds 1200 ° C., the surface of the aluminum nitride may be oxidized and the thermal conductivity may be lowered. In addition, you may perform baking of each paste simultaneously with baking at the time of forming the below-mentioned light reflection layer 3. FIG.
 また、各電極にメッキを行う場合は、例えば金メッキを施すことができる。メッキの方法としては、例えば、無電解メッキや、電解メッキが挙げられ、メッキ層の厚みにより適宜選択することができる。 Moreover, when plating each electrode, for example, gold plating can be performed. Examples of the plating method include electroless plating and electrolytic plating, and can be appropriately selected depending on the thickness of the plating layer.
 次に、図4(d)に示すように、窒化アルミニウム基板2上に、光反射層3を形成する。この際、光反射層3は、スルーホール7a,7bを覆うように形成する。それによって、スルーホール7a,7bを封止し、発光素子搭載用基板1を得ることができる。 Next, as shown in FIG. 4D, a light reflecting layer 3 is formed on the aluminum nitride substrate 2. At this time, the light reflecting layer 3 is formed so as to cover the through holes 7a and 7b. Thereby, the through holes 7a and 7b are sealed, and the light emitting element mounting substrate 1 can be obtained.
 光反射層3は、ガラスセラミックスにより形成されることが好ましい。この場合、光の反射率をより一層高めることができ、窒化アルミニウム基板2との接着性をより一層高めることができる。 The light reflecting layer 3 is preferably formed of glass ceramics. In this case, the light reflectance can be further increased, and the adhesiveness with the aluminum nitride substrate 2 can be further increased.
 光反射層3を形成する方法としては、特に限定されないが、例えば、スクリーン印刷法やグリーンシート積層法などが挙げられる。 The method for forming the light reflecting layer 3 is not particularly limited, and examples thereof include a screen printing method and a green sheet laminating method.
 ガラスセラミックスを用いてスクリーン印刷法により光反射層3を形成する場合は、ガラスセラミックス粉末に、樹脂バインダー及び溶剤を添加して混練することにより作製した高粘性のペーストを、スクリーン印刷機を用いて窒化アルミニウム基板2に印刷することにより行うことができる。 When the light reflecting layer 3 is formed by a screen printing method using glass ceramics, a high viscosity paste prepared by adding a resin binder and a solvent to the glass ceramic powder and kneading is used with a screen printing machine. This can be done by printing on the aluminum nitride substrate 2.
 また、ガラスセラミックスを用いてグリーンシート積層法により光反射層3を形成する場合は、まず、ガラスセラミックス粉末に、樹脂バインダー、可塑剤及び溶剤を添加して混練することにより、スラリーを作製する。続いて、作製したスラリーをドクターブレード等のシート成形機を用いて、グリーンシートに成形する。次に、得られたグリーンシートを光反射層3の形状に打ち抜き、圧着により窒化アルミニウム基板2に積層させる。 Further, when the light reflecting layer 3 is formed using glass ceramics by the green sheet laminating method, first, a slurry is prepared by adding a resin binder, a plasticizer and a solvent to the glass ceramic powder and kneading them. Subsequently, the prepared slurry is formed into a green sheet using a sheet forming machine such as a doctor blade. Next, the obtained green sheet is punched into the shape of the light reflecting layer 3 and laminated on the aluminum nitride substrate 2 by pressure bonding.
 スクリーン印刷法及びグリーンシート積層法のいずれの方法においても、樹脂バインダーを用いているため、焼成は、脱樹脂バインダーと、ガラスセラミックス粉末を焼結させる本焼成との2段階で行なうことができる。 In any of the screen printing method and the green sheet laminating method, since a resin binder is used, the firing can be performed in two stages, that is, a resin removal binder and a main firing in which the glass ceramic powder is sintered.
 樹脂バインダーとして、アクリル樹脂及びブチラール樹脂を用いる場合は、例えば、400℃~600℃で脱樹脂バインダーを行うことができる。また、本焼成は、例えば、850℃~1000℃で行なうことができる。 When an acrylic resin and a butyral resin are used as the resin binder, for example, the deresin binder can be performed at 400 ° C. to 600 ° C. Further, the main baking can be performed at, for example, 850 ° C. to 1000 ° C.
 なお、テーパー加工が必要な場合は、焼成前の光反射層3をドリル加工機等で斜めに削り取ることによって、テーパー形状に加工することができる。 In addition, when a taper process is required, it can process into a taper shape by scraping off the light reflection layer 3 before baking diagonally with a drilling machine etc.
 発光素子搭載用基板1の製造方法では、窒化アルミニウム基板2を用いているので、放熱性に優れている。また、光反射層3を設けているので、高い反射率を有している。さらに、発光素子搭載用基板1では、窒化アルミニウム基板2のスルーホール7a,7bを封止するように光反射層3を形成しているので、発光素子を搭載して封止したときに気密性を高めることができる。この点については、後述の発光素子搭載パッケージの欄で詳細に説明する。 In the manufacturing method of the light emitting element mounting substrate 1, since the aluminum nitride substrate 2 is used, heat dissipation is excellent. Moreover, since the light reflection layer 3 is provided, it has a high reflectance. Further, in the light emitting element mounting substrate 1, since the light reflecting layer 3 is formed so as to seal the through holes 7a and 7b of the aluminum nitride substrate 2, airtightness is achieved when the light emitting element is mounted and sealed. Can be increased. This will be described in detail in the section of the light emitting element mounting package described later.
 [発光素子搭載パッケージ]
 図5は、本発明の一実施形態に係る発光素子搭載パッケージを示す模式的断面図である。
[Light Emitting Device Package]
FIG. 5 is a schematic cross-sectional view showing a light emitting element mounting package according to an embodiment of the present invention.
 図5に示すように、発光素子搭載パッケージ21は、発光素子搭載用基板1、ガラス蓋8、封着材料層9及び発光素子10を備える。発光素子搭載用基板1は、上述した本発明の一実施形態に係る発光素子搭載用基板である。 As shown in FIG. 5, the light emitting element mounting package 21 includes a light emitting element mounting substrate 1, a glass lid 8, a sealing material layer 9, and a light emitting element 10. The light emitting element mounting substrate 1 is a light emitting element mounting substrate according to an embodiment of the present invention described above.
 発光素子10は、発光素子搭載用基板1に搭載されている。発光素子10は、発光素子搭載用基板1の配線電極4a,4bに接続されている。発光素子10としては、深紫外線LEDや、青色LEDと黄色蛍光体を組み合わせた白色LEDが挙げられる。 The light emitting element 10 is mounted on the light emitting element mounting substrate 1. The light emitting element 10 is connected to the wiring electrodes 4 a and 4 b of the light emitting element mounting substrate 1. Examples of the light emitting element 10 include a deep ultraviolet LED and a white LED in which a blue LED and a yellow phosphor are combined.
 また、発光素子搭載用基板1における光反射層3の上面3b上に、ガラス蓋8が配置されている。ガラス蓋8は、発光素子搭載パッケージ21内を封止するための部材である。なお、光反射層3とガラス蓋8との間には、封着材料層9が設けられている。封着材料層9によって、光反射層3と、ガラス蓋8とが、接合されている。 Further, a glass lid 8 is disposed on the upper surface 3 b of the light reflecting layer 3 in the light emitting element mounting substrate 1. The glass lid 8 is a member for sealing the inside of the light emitting element mounting package 21. A sealing material layer 9 is provided between the light reflecting layer 3 and the glass lid 8. The light reflecting layer 3 and the glass lid 8 are joined by the sealing material layer 9.
 発光素子搭載パッケージ21では、発光素子搭載用基板1に窒化アルミニウム基板2を用いているので放熱性に優れている。また、発光素子搭載用基板1に光反射層3を用いているので反射率が高められている。さらに、発光素子搭載パッケージ21では、樹脂ではなくガラス蓋8により封止しているので、樹脂のように紫外線により劣化して気密性が低下することがない。また、窒化アルミニウム基板2のスルーホール7a,7bを覆うように光反射層3が設けられているので、スルーホール7a,7bが封止され、気密性がより一層高められている。さらに、発光素子搭載パッケージ21では、構成材料が全て無機材料であるため、紫外線に対する耐久性に優れている。 In the light emitting element mounting package 21, since the aluminum nitride substrate 2 is used for the light emitting element mounting substrate 1, heat dissipation is excellent. Further, since the light reflecting layer 3 is used for the light emitting element mounting substrate 1, the reflectance is increased. Furthermore, since the light emitting element mounting package 21 is sealed with the glass lid 8 instead of the resin, it does not deteriorate due to ultraviolet rays and does not lower the airtightness like the resin. Further, since the light reflecting layer 3 is provided so as to cover the through holes 7a and 7b of the aluminum nitride substrate 2, the through holes 7a and 7b are sealed, and the airtightness is further enhanced. Furthermore, the light emitting element mounting package 21 is excellent in durability against ultraviolet rays because the constituent materials are all inorganic materials.
 なお、光反射層3によりスルーホール7a,7bを封止することで、気密性が高められる理由については以下のようにして説明することができる。 The reason why the airtightness is improved by sealing the through holes 7a and 7b with the light reflecting layer 3 can be explained as follows.
 図7は、比較例の発光素子搭載パッケージを示す模式的断面図である。 FIG. 7 is a schematic cross-sectional view showing a light emitting element mounting package of a comparative example.
 図7に示すように、比較例の発光素子搭載パッケージ101においては、平面視において、スルーホール107a,107bが、光反射層103と重なる位置に設けられていない。より具体的には、スルーホール107a,107bが、光反射層103によって封止されていない。そのため、発光素子搭載用基板100をガラス蓋108によって封止した場合においても、スルーホール107a,107bを介して水分が浸入することがある。より具体的には、スルーホール107a,107b内において、窒化アルミニウム基板102とスルーホール電極105a,105bとの界面から水分が浸入することがある。従って、比較例の発光素子搭載パッケージ101では、十分に気密性が高められていない。 As shown in FIG. 7, in the light emitting element mounting package 101 of the comparative example, the through holes 107a and 107b are not provided at positions overlapping the light reflecting layer 103 in plan view. More specifically, the through holes 107 a and 107 b are not sealed by the light reflecting layer 103. Therefore, even when the light emitting element mounting substrate 100 is sealed with the glass lid 108, moisture may enter through the through holes 107a and 107b. More specifically, moisture may enter from the interface between the aluminum nitride substrate 102 and the through- hole electrodes 105a and 105b in the through- holes 107a and 107b. Therefore, in the light emitting element mounting package 101 of the comparative example, the airtightness is not sufficiently improved.
 これに対して、本実施形態の発光素子搭載パッケージ21では、スルーホール7a,7bが、光反射層3によって封止されている。そのため、スルーホール7a,7bを介した水分の浸入を、光反射層3によって防止することができる。より具体的に、窒化アルミニウム基板2とスルーホール電極5a,5bとの界面からの水分の浸入を光反射層3によって防止することができる。このように、発光素子搭載パッケージ21では、光反射層3により水分の浸入を防止することができるので、気密性が高められている。 On the other hand, in the light emitting element mounting package 21 of the present embodiment, the through holes 7a and 7b are sealed by the light reflecting layer 3. Therefore, the light reflection layer 3 can prevent moisture from entering through the through holes 7a and 7b. More specifically, the light reflection layer 3 can prevent moisture from entering from the interface between the aluminum nitride substrate 2 and the through- hole electrodes 5a and 5b. Thus, in the light emitting element mounting package 21, since the light reflection layer 3 can prevent moisture from entering, the airtightness is improved.
 以下、発光素子搭載パッケージ21の製造方法の一例について説明する。 Hereinafter, an example of a manufacturing method of the light emitting element mounting package 21 will be described.
 (製造方法)
 図6(a)~(d)は、本発明の一実施形態に係る発光素子搭載パッケージの製造方法を説明するための模式的断面図である。
(Production method)
6A to 6D are schematic cross-sectional views for explaining a method for manufacturing a light emitting element mounting package according to an embodiment of the present invention.
 発光素子搭載パッケージ21の製造方法では、まず、上述の方法で、図6(a)に示す発光素子搭載用基板1を用意する。続いて、図6(b)に示すように、発光素子搭載用基板1上に、発光素子10を搭載する。発光素子10と発光素子搭載用基板1との接続は、例えば、半田ホールによる接続や、ワイヤーボンドによる接続によって行うことができる。 In the manufacturing method of the light emitting element mounting package 21, first, the light emitting element mounting substrate 1 shown in FIG. Subsequently, as illustrated in FIG. 6B, the light emitting element 10 is mounted on the light emitting element mounting substrate 1. The connection between the light emitting element 10 and the light emitting element mounting substrate 1 can be performed by, for example, a connection by a solder hole or a connection by a wire bond.
 次に、光反射層3の上面3b上に、封着材料を印刷する。封着材料の印刷後、乾燥、熱処理して封着材料を焼結させ、図6(c)に示す封着材料層9を形成する。なお、封着材料層9は、ガラス蓋8側に形成してもよく、あるいはガラス蓋8側及び光反射層3側の双方に形成してもよい。 Next, a sealing material is printed on the upper surface 3 b of the light reflecting layer 3. After the sealing material is printed, it is dried and heat-treated to sinter the sealing material to form a sealing material layer 9 shown in FIG. The sealing material layer 9 may be formed on the glass lid 8 side, or may be formed on both the glass lid 8 side and the light reflecting layer 3 side.
 次に、図6(d)に示すように、光反射層3の上面3b上において封着材料層9が設けられている部分に、ガラス蓋8を配置する。なお、ガラス蓋8は、平面視において、封着材料層9が設けられている部分と少なくとも一部が重なるように配置すればよい。もっとも、ガラス蓋8は、平面視において、封着材料層9が設けられている部分と完全に重なるように配置することが好ましい。 Next, as shown in FIG. 6 (d), a glass lid 8 is disposed on a portion where the sealing material layer 9 is provided on the upper surface 3 b of the light reflecting layer 3. Note that the glass lid 8 may be arranged so that at least a part thereof overlaps the portion where the sealing material layer 9 is provided in a plan view. But it is preferable to arrange | position the glass cover 8 so that it may overlap with the part in which the sealing material layer 9 is provided in planar view.
 次に、光反射層3の上面3b上において封着材料層9を介してガラス蓋8を配置した状態で、レーザー光源からレーザーを照射し、封着材料層9を軟化させ、光反射層3及びガラス蓋8を接合させる。それによって、内部を気密封止して、発光素子搭載パッケージ21を得る。この方法によれば、封着材料層9のみを局所的に加熱することが可能であることから、深紫外線LEDなどの耐熱性の低い発光素子10を劣化させることなくパッケージ内を気密封止することができる。上記レーザーとしては、例えば、波長が、600nm~1600nmのレーザーを用いることができる。 Next, in a state where the glass lid 8 is disposed on the upper surface 3b of the light reflecting layer 3 via the sealing material layer 9, a laser is irradiated from a laser light source to soften the sealing material layer 9, and the light reflecting layer 3 And the glass cover 8 is joined. Thereby, the inside is hermetically sealed, and the light emitting element mounting package 21 is obtained. According to this method, since only the sealing material layer 9 can be locally heated, the inside of the package is hermetically sealed without deteriorating the light-emitting element 10 having low heat resistance such as deep ultraviolet LED. be able to. As the laser, for example, a laser having a wavelength of 600 nm to 1600 nm can be used.
 以下、発光素子搭載パッケージ21などの本発明の発光素子搭載パッケージを構成する各部材の詳細を説明する。 Hereinafter, details of each member constituting the light emitting element mounting package of the present invention such as the light emitting element mounting package 21 will be described.
 ガラス蓋;
 ガラス蓋を構成するガラスとしては、紫外線透過ガラスが好ましい。ガラス蓋を構成するガラスの具体例としては、SiO-B-RO(RはMg、Ca、SrまたはBa)系ガラス、SiO-B-R’O(R’はLi、NaまたはKa)系ガラス、SiO-B-RO-R’O(R’はLi、NaまたはKa)系ガラスなどが挙げられる。
Glass lid;
As the glass constituting the glass lid, ultraviolet transmissive glass is preferable. Specific examples of the glass constituting the glass lid include SiO 2 —B 2 O 3 —RO (R is Mg, Ca, Sr or Ba) -based glass, SiO 2 —B 2 O 3 —R ′ 2 O (R ′ Includes Li, Na or Ka) glass, SiO 2 —B 2 O 3 —RO—R ′ 2 O (R ′ is Li, Na, or Ka) glass, and the like.
 封着材料層;
 封着材料層を形成するための封着材料は、Bi系ガラス粉末、SnO-P系ガラス粉末、V-TeO系ガラス粉末等の低融点の封着ガラスを含んでいることが好ましい。特に、レーザーを照射して封着する場合、封着材料をより一層短時間の加熱で軟化させる必要性とより一層接合強度を高める観点から、封着ガラスには、軟化点の低いビスマス系ガラス粉末を用いることがより好ましい。また、封着材料には、低膨張耐火性フィラーや、レーザー吸収材などが含まれていてもよい。低膨張耐火性フィラーとしては、例えば、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム系化合物、ジルコン、ジルコニア、酸化スズ、石英ガラス、β-石英固溶体、β-ユークリプタイト、スポジュメンが挙げられる。また、レーザー吸収材としては、例えば、Fe、Mn、Cuなどから選ばれる少なくとも1種の金属または該金属を含む酸化物等の化合物が挙げられる。
Sealing material layer;
The sealing material for forming the sealing material layer is a low melting point sealing glass such as Bi 2 O 3 glass powder, SnO—P 2 O 5 glass powder, or V 2 O 5 —TeO 2 glass powder. It is preferable that it contains. In particular, when sealing is performed by irradiating with a laser, the sealing glass has a low softening point in view of the necessity of softening the sealing material by heating for a shorter time and further enhancing the bonding strength. More preferably, powder is used. Further, the sealing material may contain a low expansion refractory filler, a laser absorber and the like. Examples of the low expansion refractory filler include cordierite, willemite, alumina, zirconium phosphate compounds, zircon, zirconia, tin oxide, quartz glass, β-quartz solid solution, β-eucryptite, and spodumene. Examples of the laser absorbing material include compounds such as at least one metal selected from Fe, Mn, Cu and the like or an oxide containing the metal.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。 Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.
 (実施例1)
 実施例1では、図5に示す発光素子搭載パッケージ21を作製した。
(Example 1)
In Example 1, the light emitting element mounting package 21 shown in FIG. 5 was produced.
 より具体的には、まず、厚み0.3mmの窒化アルミニウム基板2の2カ所に、半導体レーザーを用いて直径0.2mmのスルーホール7a,7bを形成した。次に、メタルマスクを介して銀ペーストをスルーホール7a,7b内に充填し、0.2mmの配線幅で銀ペーストを印刷して、窒化アルミニウム基板2の第1及び第2の主面2a,2bで電気接続を行った。次に、第1の主面2aに、配線電極4a,4b形成用の銀ペーストを印刷した。また、第2の主面2bには、端子電極6a,6b形成用の銀ペーストを印刷した。次に、各銀ペーストが塗布された窒化アルミニウム基板2を、大気中にて850℃の温度で、20分焼成した。 More specifically, first, through holes 7a and 7b having a diameter of 0.2 mm were formed at two locations on the aluminum nitride substrate 2 having a thickness of 0.3 mm using a semiconductor laser. Next, a silver paste is filled into the through holes 7a and 7b through a metal mask, and the silver paste is printed with a wiring width of 0.2 mm, so that the first and second main surfaces 2a, 2a of the aluminum nitride substrate 2 are printed. Electrical connection was made in 2b. Next, a silver paste for forming the wiring electrodes 4a and 4b was printed on the first main surface 2a. Moreover, the silver paste for terminal electrode 6a, 6b formation was printed on the 2nd main surface 2b. Next, the aluminum nitride substrate 2 coated with each silver paste was baked at a temperature of 850 ° C. for 20 minutes in the air.
 次に、光反射層3となる厚み200μmのグリーンシートを所望のパターンに打ち抜き、6層積層した状態で1200μmの厚みで、窒化アルミニウム基板2に80℃の温度で熱圧着した。この際、スルーホール7a,7bが、光反射層3により完全に封止される位置で熱圧着した。 Next, a 200 μm-thick green sheet to be the light reflecting layer 3 was punched into a desired pattern, and six layers were laminated and thermocompression bonded to the aluminum nitride substrate 2 at a temperature of 80 ° C. with a thickness of 1200 μm. At this time, thermocompression bonding was performed at a position where the through holes 7 a and 7 b were completely sealed by the light reflecting layer 3.
 次に、窒化アルミニウム基板2上にグリーンシートを形成した状態で、電気炉を用いて焼成させた。銀ペースト及びグリーンシートに含まれる樹脂バインダーを気化させるため、500℃で2時間保持した後、銀とガラスセラミックスを焼結させるため、850℃で1時間保持した。 Next, a green sheet was formed on the aluminum nitride substrate 2 and fired using an electric furnace. In order to vaporize the resin binder contained in the silver paste and the green sheet, it was held at 500 ° C. for 2 hours, and then held at 850 ° C. for 1 hour in order to sinter silver and glass ceramics.
 次に、得られた発光素子搭載用基板1にニッケルメッキ及び金メッキを施し、発光素子10としての深紫外線LEDを、半田ホールを用いて実装した。続いて、光反射層3の上面3bにガラスフリットを塗布し、ガラス蓋8としての紫外線透過ガラスを装着してレーザーシールを行うことにより、深紫外線LEDが実装された発光素子搭載パッケージ21を得た。 Next, the obtained light emitting element mounting substrate 1 was subjected to nickel plating and gold plating, and a deep ultraviolet LED as the light emitting element 10 was mounted using a solder hole. Subsequently, a glass frit is applied to the upper surface 3b of the light reflecting layer 3, an ultraviolet ray transmitting glass as a glass lid 8 is attached, and laser sealing is performed to obtain a light emitting element mounting package 21 on which deep ultraviolet LEDs are mounted. It was.
 (比較例1)
 比較例1では、図7に示す発光素子搭載パッケージ101を作製した。
(Comparative Example 1)
In Comparative Example 1, the light emitting element mounting package 101 shown in FIG. 7 was manufactured.
 具体的には、図7に示すように、スルーホール107a,107bを光反射層103と重ならない位置で形成したこと以外は、実施例1と同様にして発光素子搭載パッケージ101を作製した。 Specifically, as shown in FIG. 7, a light emitting element mounting package 101 was produced in the same manner as in Example 1 except that the through holes 107a and 107b were formed at positions where they did not overlap the light reflecting layer 103.
 (評価)
 実施例1及び比較例1で得られた発光素子搭載パッケージ21,101について、それぞれ、121℃、2気圧及び湿度100%の条件で、圧力容器内にて24時間保持した。その結果、実施例1では、変化が観察されなかったが、比較例1ではパッケージ内部に結露が観察された。これによって、実施例1の発光素子搭載パッケージ21は、比較例1の発光素子搭載パッケージ101と比較して、気密性が高められていることを確認することができた。
(Evaluation)
The light emitting element mounting packages 21 and 101 obtained in Example 1 and Comparative Example 1 were held in a pressure vessel for 24 hours under the conditions of 121 ° C., 2 atm and 100% humidity, respectively. As a result, in Example 1, no change was observed, but in Comparative Example 1, condensation was observed inside the package. As a result, it was confirmed that the light-emitting element mounting package 21 of Example 1 had higher airtightness than the light-emitting element mounting package 101 of Comparative Example 1.
 1…発光素子搭載用基板
 2…窒化アルミニウム基板
 2A…焼成前の窒化アルミニウム基板
 2a,2b…第1,第2の主面
 2c…発光素子搭載領域
 3…光反射層
 3a…内側面
 3b,3c…上面,下面
 4a,4b…配線電極
 5a,5b…スルーホール電極
 6a,6b…端子電極
 7a,7b…スルーホール
 8…ガラス蓋
 9…封着材料層
 10…発光素子
 21…発光素子搭載パッケージ
DESCRIPTION OF SYMBOLS 1 ... Light emitting element mounting board | substrate 2 ... Aluminum nitride board | substrate 2A ... Aluminum nitride board | substrates 2a, 2b before baking ... 1st, 2nd main surface 2c ... Light emitting element mounting area 3 ... Light reflection layer 3a ... Inner side surface 3b, 3c ... Upper surface, lower surface 4a, 4b ... Wiring electrode 5a, 5b ... Through hole electrode 6a, 6b ... Terminal electrode 7a, 7b ... Through hole 8 ... Glass cover 9 ... Sealing material layer 10 ... Light emitting element 21 ... Light emitting element mounting package

Claims (4)

  1.  発光素子を搭載するための発光素子搭載用基板であって、
     互いに対向している第1及び第2の主面を有する、窒化アルミニウム基板と、
     前記窒化アルミニウム基板の前記第1の主面上に設けられており、前記発光素子と接続するための配線電極と、
     前記窒化アルミニウム基板の前記第2の主面上に設けられている、端子電極と、
     前記窒化アルミニウム基板内に設けられており、前記配線電極と前記端子電極とを接続している、スルーホール電極と、
     前記窒化アルミニウム基板の前記第1の主面上に設けられている、枠状の光反射層と、を備え、
     前記第1の主面から前記第2の主面に至るように、前記窒化アルミニウム基板にスルーホールが設けられており、
     前記スルーホール内に、前記スルーホール電極が配置されており、
     前記スルーホールが、前記光反射層により封止されている、発光素子搭載用基板。
    A light emitting element mounting substrate for mounting a light emitting element,
    An aluminum nitride substrate having first and second major surfaces facing each other;
    A wiring electrode provided on the first main surface of the aluminum nitride substrate and connected to the light emitting element;
    A terminal electrode provided on the second main surface of the aluminum nitride substrate;
    A through-hole electrode provided in the aluminum nitride substrate and connecting the wiring electrode and the terminal electrode;
    A frame-shaped light reflecting layer provided on the first main surface of the aluminum nitride substrate,
    A through hole is provided in the aluminum nitride substrate so as to reach the second main surface from the first main surface,
    The through-hole electrode is disposed in the through-hole,
    A substrate for mounting a light emitting element, wherein the through hole is sealed by the light reflecting layer.
  2.  前記光反射層が、ガラスセラミックスにより構成されている、請求項1に記載の発光素子搭載用基板。 The light-emitting element mounting substrate according to claim 1, wherein the light reflecting layer is made of glass ceramics.
  3.  請求項1又は2に記載の発光素子搭載用基板の製造方法であって、
     前記窒化アルミニウム基板に、前記スルーホールを形成する工程と、
     前記窒化アルミニウム基板において、前記スルーホール内に前記スルーホール電極を形成し、前記第1及び第2の主面上に、それぞれ、前記配線電極及び前記端子電極を形成する工程と、
     前記窒化アルミニウム基板の前記第1の主面上において、前記スルーホールを封止するように前記光反射層を形成する工程と、
    を備える、発光素子搭載用基板の製造方法。
    It is a manufacturing method of the light emitting element mounting substrate according to claim 1 or 2,
    Forming the through hole in the aluminum nitride substrate;
    Forming the through-hole electrode in the through-hole in the aluminum nitride substrate, and forming the wiring electrode and the terminal electrode on the first and second main surfaces, respectively;
    Forming the light reflecting layer on the first main surface of the aluminum nitride substrate so as to seal the through hole;
    A method for manufacturing a substrate for mounting a light emitting element.
  4.  発光素子を内部に搭載して封止するための発光素子搭載パッケージであって、
     請求項1又は2に記載の発光素子搭載用基板と、
     前記発光素子搭載用基板に搭載されている、発光素子と、
     前記発光素子搭載用基板における前記光反射層の上部に配置されており、前記発光素子搭載パッケージ内を封止している、ガラス蓋と、
     前記光反射層と、前記ガラス蓋との間に配置されている、封着材料層と、
    を備える、発光素子搭載パッケージ。
    A light emitting element mounting package for mounting and sealing a light emitting element inside,
    The light emitting element mounting substrate according to claim 1 or 2,
    A light emitting element mounted on the light emitting element mounting substrate;
    A glass lid that is disposed on the light reflecting layer of the light emitting element mounting substrate and seals the inside of the light emitting element mounting package;
    A sealing material layer disposed between the light reflecting layer and the glass lid;
    A light emitting element mounting package.
PCT/JP2017/021410 2016-09-23 2017-06-09 Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package WO2018055846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-185747 2016-09-23
JP2016185747A JP2018049991A (en) 2016-09-23 2016-09-23 Light-emitting element-mounting board, method for manufacturing the same, and light-emitting element-containing package

Publications (1)

Publication Number Publication Date
WO2018055846A1 true WO2018055846A1 (en) 2018-03-29

Family

ID=61690907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021410 WO2018055846A1 (en) 2016-09-23 2017-06-09 Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package

Country Status (3)

Country Link
JP (1) JP2018049991A (en)
TW (1) TW201824593A (en)
WO (1) WO2018055846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022223370A1 (en) * 2021-04-20 2022-10-27 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020057736A (en) * 2018-10-04 2020-04-09 日本電気硝子株式会社 Airtight package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100688A (en) * 2004-09-30 2006-04-13 Tokuyama Corp Method of manufacturing package for housing light-emitting element
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element
WO2013002113A1 (en) * 2011-06-29 2013-01-03 京セラ株式会社 Glass ceramic sintered body, reflective member using same, substrate for mounting light emitting element using same, and light emitting device
JP2016119477A (en) * 2014-12-23 2016-06-30 エルジー イノテック カンパニー リミテッド Light emitting device and lighting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100688A (en) * 2004-09-30 2006-04-13 Tokuyama Corp Method of manufacturing package for housing light-emitting element
JP2007284333A (en) * 2006-03-20 2007-11-01 Sumitomo Metal Electronics Devices Inc High reflection white ceramics, reflector, substrate for mounting semiconductor light emitting element and package for housing semiconductor light emitting element
WO2013002113A1 (en) * 2011-06-29 2013-01-03 京セラ株式会社 Glass ceramic sintered body, reflective member using same, substrate for mounting light emitting element using same, and light emitting device
JP2016119477A (en) * 2014-12-23 2016-06-30 エルジー イノテック カンパニー リミテッド Light emitting device and lighting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022223370A1 (en) * 2021-04-20 2022-10-27 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component

Also Published As

Publication number Publication date
TW201824593A (en) 2018-07-01
JP2018049991A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6009020B2 (en) Optoelectronic semiconductor component and manufacturing method thereof
JP5490876B2 (en) LIGHT REFLECTIVE SUBSTRATE, LIGHT EMITTING ELEMENT MOUNTING BOARD, LIGHT EMITTING DEVICE, AND LIGHT EMITTING ELEMENT MOUNTING BOARD
EP2571068B1 (en) Mounting board, method for manufacturing same, light emitting module, and illuminating apparatus
CN102292802B (en) Semiconductor device and method of manufacturing same
JPWO2010021367A1 (en) Light emitting device and light emitting element mounting substrate used therefor
JP5989268B2 (en) Phosphor ceramics, sealed optical semiconductor element, circuit board, optical semiconductor device, and light emitting device
KR20120108914A (en) Light-emitting device
WO2018055846A1 (en) Light emitting element mounting substrate, method for manufacturing same, and light emitting element mounting package
JP2017085038A (en) Method of manufacturing wavelength conversion element
WO2012014853A1 (en) Substrate for light-emitting element, light-emitting device, and method for producing substrate for light-emitting element
JP6602622B2 (en) Optical device apparatus and protective cover for covering optical device
JP2007149810A (en) Wiring board for light-emitting element, and light-emitting device
JP6627495B2 (en) Substrate for deep ultraviolet light emitting element, connecting substrate for deep ultraviolet light emitting element, and deep ultraviolet light emitting device
US20140138724A1 (en) Substrate for mounting optical semiconductor element, method for manufacturing the substrate, and optical semiconductor device
TW201909210A (en) Laminated ceramic substrate and laminated ceramic package
JP2004207258A (en) Package for light emitting element and light emitting device
JP5381800B2 (en) Light-emitting element mounting substrate and light-emitting device using the substrate
JP2008131011A (en) Package for storing light-emitting element, and manufacturing method thereof
JP4331585B2 (en) Light emitting element storage package and manufacturing method thereof
JP5546390B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP5773630B2 (en) Light-emitting element mounting substrate and manufacturing method thereof
JP4667982B2 (en) Light emitting element module, sterilizing lamp device, ultraviolet curable resin curing lamp device, lighting device, display device, and traffic signal device
JP4160916B2 (en) Manufacturing method of light emitting element storage package
JP2006066630A (en) Wiring board, electric device, and light emitting device
CN203071126U (en) Inorganic substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852627

Country of ref document: EP

Kind code of ref document: A1