WO2018055678A1 - Analysis server, analysis program, and analysis method - Google Patents

Analysis server, analysis program, and analysis method Download PDF

Info

Publication number
WO2018055678A1
WO2018055678A1 PCT/JP2016/077734 JP2016077734W WO2018055678A1 WO 2018055678 A1 WO2018055678 A1 WO 2018055678A1 JP 2016077734 W JP2016077734 W JP 2016077734W WO 2018055678 A1 WO2018055678 A1 WO 2018055678A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
antenna
analysis
beam direction
base station
Prior art date
Application number
PCT/JP2016/077734
Other languages
French (fr)
Japanese (ja)
Inventor
宙 南部
誠也 工藤
倫太郎 片山
恵一 菅谷
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/077734 priority Critical patent/WO2018055678A1/en
Publication of WO2018055678A1 publication Critical patent/WO2018055678A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the subject matter disclosed in the present specification relates to a quality analysis technique for a communication network.
  • a base station performs radio communication with user terminals in a cell to be provided.
  • the density of user terminals is not uniform within the cell provided by the base station. For example, if people are gathering at an event venue in a cell, an area where traffic is concentrated occurs. In such a traffic concentration area, communication of user terminals is congested and the communication speed is reduced.
  • Patent Document 1 discloses a technique for eliminating congestion in a wireless communication network and obtaining high communication quality.
  • Patent Document 1 is a wireless communication system including a plurality of mobile units and a fixed base station. Each of the fixed base stations defines a cell and has a transmission / reception antenna. Disclosed is a system that includes sectors that can communicate with the antenna and the antenna is tiltable so that the included sectors can be changed.
  • Patent Document 1 discloses a step of a priori determining an optimum antenna inclination angle for a sector, a step of dynamically estimating a cell load at a certain time point, a determined optimum antenna inclination angle, and Disclosed is a method for dynamically controlling an antenna tilt angle, comprising: determining an instantaneous tilt angle of the antenna at a certain time as a function of an estimated load; and controlling the tilt angle of the antenna as a function of the determined instantaneous tilt angle. To do.
  • an analysis server for analyzing communication quality of a wireless communication system comprising: a processor that executes a program; and a storage device that is accessed by the processor, wherein the wireless communication system includes a plurality of base station devices that accommodate terminals.
  • the analysis server includes a detection unit that detects a low quality cell with low communication quality, an area specification unit that specifies a traffic concentration area in which traffic is concentrated in the detected low quality cell, and the base A determining unit configured to determine a control amount of the beam direction of the antenna of the station device, wherein the determining unit is configured to cause the beam of the radio wave transmitted from the base station device to face the traffic concentration area. Determine the amount of control.
  • the control of the antenna beam direction improves the reception power of the user terminal in the traffic concentration area, improves the radio quality (CQI), and enables high-speed communication.
  • CQI radio quality
  • the traffic capacity of the cell is expanded and congestion due to traffic concentration can be alleviated.
  • radio resource utilization efficiency is improved.
  • FIG. 1 It is a figure which shows the structural example of the radio
  • E-UTRA Evolved Universal Radio Access
  • E-UTRAN ReveredUrverReverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUreverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrRever
  • the antenna beam direction (for example, the tilt angle) is adjusted so that the main beam is directed to the traffic concentration area based on the statistical information, and analysis for providing information for utilizing the communication capacity of the cell is provided.
  • An example of the server 113 is shown.
  • FIG. 1 is a diagram illustrating a configuration example of the wireless communication network system 101 and the analysis system 111 according to the first embodiment.
  • the wireless communication network system 101 includes a user terminal (User Equipment) 102, a wireless base station (eNodeB) 103, a backhaul network 104, a core network 105, and a base station management server 106.
  • User Equipment User Equipment
  • eNodeB wireless base station
  • backhaul network 104 backhaul network
  • core network 105 core network 105
  • base station management server 106 base station management server
  • User terminal 102 is connected to radio base station 103 by radio in a cell provided by radio base station 103, and further connected to core network 105 via backhaul network 104.
  • Each radio base station 103 provides one or a plurality of cells.
  • the radio base station 103 is connected to the base station management server 106 via the backhaul network 104.
  • the base station management server 106 manages each radio base station 103 (that is, a cell) and holds cell setting information and a session log.
  • the radio base station 103 has an antenna for wireless communication with the user terminal 102, and the antenna can vary the beam of the radiated radio wave in the vertical direction.
  • the antenna of the radio base station 103 has a mechanism for changing the beam direction by physically changing the tilt angle of the antenna.
  • the antenna direction may be constituted by an array antenna, and the beam direction of the radiated radio wave may be changed by changing the phase of the signal fed to each antenna.
  • the tilt angle is defined as a downward angle from the horizontal direction.
  • the tilt angle in the horizontal direction is zero.
  • the beam direction of the antenna becomes nearly horizontal.
  • the beam direction of the antenna is close to horizontal from below, the radio waves fly far and the cell coverage is expanded.
  • the tilt angle is increased, the beam direction of the antenna is directed downward, the distance that radio waves fly is shortened, and the cell coverage is reduced.
  • the setting information of the radio base station 103 and the cell is created for each cell, and the setting information of the radio base station and the cell such as the node identifier, the cell identifier, the installation position of the radio base station, and the antenna characteristics Information.
  • the session log is a log for each session.
  • the analysis system 111 includes a base station information aggregation server 112, an analysis server 113, and an analysis result storage server 115.
  • the base station information aggregation server 112 aggregates statistical information and call logs acquired from the base station management server 106.
  • the analysis server 113 detects a low quality cell, specifies a factor of low communication quality, and determines a communication quality improvement method.
  • the analysis result accumulation server 115 converts the analysis result into a display screen or a file format and outputs it.
  • a client 114 is connected to the analysis server 113 and the analysis result storage server 115.
  • the base station information aggregation server 112 is configured by a general computer, and includes a processor that executes a program, a memory that stores programs and data, an auxiliary storage device (HDD, SSD, and the like) that stores data, and a network interface.
  • the function of the base station information aggregation server 112 is realized by the processor executing the program stored in the memory.
  • FIG. 2 is a diagram illustrating an example of the configuration of the analysis server 113 according to the first embodiment.
  • the analysis server 113 is configured by a general computer and includes a processor (CPU) 1131, a memory 1132, an auxiliary storage device 1133, and a network interface 1134.
  • the CPU 1131 is a processor that executes a program stored in the memory 1132.
  • the memory 1132 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element.
  • the ROM stores an immutable program (for example, BIOS).
  • BIOS basic input/output
  • the RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program stored in the auxiliary storage device 1133 and data used when the program is executed.
  • the memory 1132 stores a low-quality cell detection processing program 131, a traffic concentration area specifying program 132, and a tilt adjustment value determining program 133.
  • the low quality cell detection processing program 131 executes low quality cell detection processing (see FIG. 8).
  • the traffic concentration area specifying program 132 executes a traffic concentration area specifying process for specifying an area where traffic is concentrated in the cell (see FIG. 12).
  • the tilt adjustment value determination program 133 executes tilt adjustment value determination processing for determining the beam direction of the antenna (see FIGS. 10 and 13).
  • the memory 1132 includes a cell setting information table 301 (see FIG. 3), a session log table 401 (see FIG. 4), a distance distribution table 501 (see FIG. 5), an analysis result information table 601 (see FIG. 6), and a low quality.
  • a cell information table 1401 (see FIG. 14), a statistical information table 1501 (see FIG. 15), and surrounding terrain data 1601 (see FIG. 16) are stored.
  • the auxiliary storage device 1133 is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD).
  • the auxiliary storage device 1133 stores a program executed by the CPU 1131 and data used when the program is executed. That is, the program is read from the auxiliary storage device 1133, loaded into the memory 1132, and executed by the CPU 1131.
  • the network interface 1134 is an interface device that controls communication with other devices (for example, the base station information aggregation server 112, the client 114, the analysis result storage server 115, etc.) via the network.
  • devices for example, the base station information aggregation server 112, the client 114, the analysis result storage server 115, etc.
  • the analysis server 113 may have a user interface 1135 (for example, a keyboard, a mouse, a touch panel, a display, a printer, etc.) for the user to input an instruction and present the execution result of the program to the user.
  • a user interface 1135 for example, a keyboard, a mouse, a touch panel, a display, a printer, etc.
  • the program executed by the CPU 1131 is provided to the analysis server 113 via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in a nonvolatile storage device that is a non-temporary storage medium. For this reason, the analysis server 113 may have an interface for reading data from a removable medium.
  • the analysis server 113 is a computer system that is physically configured on one computer or a plurality of logical or physical computers, and the above-described program operates in separate threads on the same computer. Alternatively, it may operate on a virtual machine built on a plurality of physical computer resources. Further, the analysis server 113 and other devices may be accommodated in one physical or logical computer.
  • the analysis result storage server 115 is configured by a general computer, and includes a processor that executes a program, a memory that stores programs and data, an auxiliary storage device (such as an HDD and an SSD) that stores data, and a network interface.
  • the function of the analysis result accumulation server 115 is realized by the processor executing the program stored in the memory.
  • the analysis result storage server 115 may have, for example, a web server or FTP server function in order to output the analysis result to the client 114.
  • the client 114 is configured by a general computer, and includes a processor that executes a program, a memory that stores programs and data, an auxiliary storage device (such as an HDD and an SSD) that stores data, and a network interface.
  • the function of the client 114 is realized by the processor executing the program stored in the memory.
  • a web browser may be executed.
  • Each computer of the embodiment is configured to store data in the memory of one computer, but stores the data in the auxiliary storage device, and reads the data from the auxiliary storage device each time the program is processed. It may be stored in the auxiliary storage device every time.
  • the program and data may be distributed and stored in a plurality of computers.
  • the data may be implemented as a relational database table, stored in a database server different from the analysis server 113, and a program executed by the analysis server 113 may refer to and update the data stored in the database server.
  • the data may be stored in a distributed KVS (Key-Value Store) server different from the analysis server 113, and a program executed by the analysis server 113 may refer to and update the data stored in the KVS server.
  • KVS Key-Value Store
  • the analysis server 113 detects the low quality cell based on the base station statistical information, identifies the traffic concentration area based on the session log, and based on the relationship between the beam arrival point of the low quality cell and the traffic concentration area. Determine the tilt adjustment value of the antenna.
  • FIG. 3 is a diagram illustrating an example of the cell setting information table 301.
  • the cell setting information table 301 is acquired by the analysis server 113 from the base station information aggregation server 112. Note that if the information recorded in the cell setting information table 301 is not frequently changed, it may be stored in the analysis server 113 in advance.
  • the cell setting information table 301 is acquired in advance by the analysis server 113 via the base station information aggregation server 112.
  • the base station information aggregation server 112 may acquire the cell setting information table 301 at the analysis timing.
  • the cell setting information table 301 is created for each cell, and includes a node identifier, a cell identifier, a frequency identifier, cell position information (latitude, longitude, altitude), antenna height, antenna tilt angle, and antenna tilt angle minimum value. Includes maximum, antenna vertical and horizontal half-value angles, and antenna azimuth.
  • the cell identifier is, for example, ECGI (E-UTRAN Cell Global Identifier).
  • the frequency identifier is, for example, a frequency channel number EARFCN or a band number (such as BAND1 for the 2100 MHz band).
  • the cell position information is, for example, the installation location of the antenna of the base station that provides the cell.
  • the vertical half-value angle and horizontal half-value angle of the antenna are, for example, half-value half widths.
  • FIG. 4 is a diagram illustrating an example of the session log table 401.
  • the session log table 401 is acquired at a timing when the analysis server 113 performs analysis via the base station information aggregation server 112, and information on a session is recorded for each connection or call of each user terminal.
  • the session log table 401 includes information on a node identifier, a frequency identifier, a cell identifier of a connection destination cell, a connection date and time, and a distance between the connection destination cell and the user terminal 102.
  • the connection date and time is the date and time when the session ends.
  • the distance information can be calculated from a round trip delay in the radio section between the connection destination cell and the user terminal 102.
  • the session log table 401 may include a wireless section round trip delay time instead of the distance information. Further, the session log table 401 may include terminal position information (for example, latitude and longitude) instead of distance information.
  • the active session may be recorded in the session log table 401 with the connection date and time as the session start date and time.
  • FIG. 5 is a diagram illustrating an example of the distance distribution table 501.
  • the distance distribution table 501 is generated from the session log table 401 for each distance category for each cell.
  • the distance distribution table 501 includes information on a node identifier, a frequency identifier, a cell identifier, a distance section width, the number of session logs, and log date / time.
  • the distance division width is obtained by dividing the distance from the cell position (antenna installation position) by a predetermined distance.
  • the log date is a period in which logs recorded in the session log table 401 are totaled.
  • the number of session logs is the number of sessions in which the distance information of the session log table 401 is included in the distance section width and the connection date / time of the session log table 401 is included in the log date / time period.
  • the traffic concentration area is determined based on the number of sessions between the user terminal 102 and the radio base station 103. However, traffic using an index other than the number of sessions (for example, the number of active users or traffic volume). The concentration area may be determined.
  • FIG. 6 is a diagram illustrating an example of the analysis result information table 601.
  • the analysis result information table 601 records a result of the tilt adjustment value determination process performed by the analysis server 113.
  • the analysis result information table 601 is created for each cell, and includes a node identifier, cell position information (latitude, longitude, altitude), cell identifier, frequency identifier, antenna height, current antenna tilt angle, and antenna tilt angle step. Includes width and minimum and maximum values, antenna vertical and horizontal half-angles, antenna azimuth, recommended tilt angle, and traffic concentration area.
  • the analysis result information table 601 in FIG. 6 represents the traffic concentration area in the form of a distance section from the cell position, but may be represented in the form of latitude and longitude.
  • the analysis result information table 601 is stored in the storage device of the analysis server 113, but is also stored in the storage device of the analysis result accumulation server 115.
  • the analysis server 113 acquires the base station statistical information collected by the base station information aggregation server 112 and stores it in the statistical information table 1501 (701).
  • the analysis server 113 repeatedly collects information of the sequence 701 from the base station information aggregation server 112 (for example, at predetermined time intervals (every day or every 7 days)).
  • the analysis server 113 detects low-quality cells repeatedly (for example, at predetermined time intervals (every hour)) (702).
  • FIG. 8 is a flowchart of the low quality cell detection process.
  • the low quality cell detection processing is executed by the low quality cell detection processing program 131 of the analysis server 113.
  • the analysis server 113 executes low-quality cell detection processing for each cell and for each communication quality index using the hourly statistical information table 1501 for seven days.
  • FIG. 15 is a diagram showing an example of the statistical information table 1501.
  • the statistical information table 1501 is created for each cell, and includes a node identifier, a frequency identifier, a cell identifier, start date and time and end date and time of a target period of statistical information, a radio resource usage rate, and the number of active users.
  • the low quality cell detection processing program 131 initializes the low quality days count n and the low quality time count m to 0 (801, 802). Next, the low quality cell detection processing program 131 determines whether or not the communication quality index determined for every hour is low and the parameter corresponding to the communication quality index determined to be low is greater than or equal to the threshold (803).
  • the radio resource usage rate and the number of active users can be used as the communication quality index. For example, if the wireless resource usage rate per hour is larger than the threshold, it is determined that the communication quality per hour is low. If the number of active users per hour is equal to or greater than the threshold, it is determined that the communication quality per hour is low.
  • the number of active users may be set as a population parameter.
  • the low quality time count m is increased by 1 (804). This is performed for the statistical information aggregated every hour for 24 hours.
  • the low quality cell detection processing program 131 increments the low quality days count n by 1 (806), The date is recorded in the low quality cell information table 1401 (807). These are executed for the statistical information aggregated every hour for 7 days.
  • the low quality cell detection processing program 131 records the low quality days N in seven days in the low quality cell information table 1401 (808). If the low quality days N is equal to or greater than the predetermined threshold (Yes in 809), it is determined that the communication quality index of the cell is low quality (810). On the other hand, when the low quality days count n is smaller than the predetermined threshold (No in 809), it is determined that the communication quality index of the cell is not low quality (811).
  • FIG. 14 is a diagram showing an example of the low quality cell information table 1401.
  • the low quality cell information table 1401 is created by the analysis server 113 for each cell by the low quality cell detection process (FIG. 8).
  • the low quality cell information table 1401 includes a node identifier, a frequency identifier, a cell identifier, a target period (start date and time, end date and time) of the low quality cell information, a low quality flag, a low quality day, and a low quality date.
  • the analysis server 113 sets the low quality flag.
  • a low-quality cell is detected using the condition that the parameter corresponding to the communication quality index is greater than or equal to the threshold value in step 803, it is determined whether a time zone (such as midnight) with a small number of connected users is a low-quality day. Can be suppressed.
  • a time zone such as midnight
  • low quality cells are detected using information for a certain period (for example, 7 days)
  • access from a large number of users may occur on days when events tend to have a unique tendency (for example, on the date of events such as sports matches). The effect of concentrating on one cell) can be suppressed.
  • the information used for the low-quality cell detection process is not limited to seven days, and other periods may be used.
  • the analysis server 113 acquires the session log of the low quality cell detected by the low quality cell detection processing program 131 from the base station information aggregation server 112 and stores it in the session log table 401 (712).
  • the traffic concentration area specifying program 132 of the analysis server 113 counts the number of session logs for each distance category from the session log table 401, creates a distance distribution table 501 (703), and uses the created distance distribution table 501 as distance distribution information. Is transmitted to the analysis result storage server 115 (704). Then, the traffic concentration area specifying program 132 refers to the distance distribution table 501 and determines the traffic concentration area (705).
  • FIG. 9 is a diagram illustrating distance distribution data creation processing and traffic concentration area identification processing.
  • the analysis server 113 creates a histogram of the number of session logs shown in FIG. 9 from the distance distribution table 501 in the distance distribution data creation process. Then, the distance segment with the largest number of sessions is determined as the traffic concentration area. In the example shown in FIG. 9, since the number of session logs in the distance section 200m to 300m is the largest, the analysis server 113 determines the distance section 200m to 300m as a traffic concentration area.
  • the tilt adjustment value determination program 133 of the analysis server 113 determines the tilt adjustment value (706).
  • FIG. 10 is a flowchart of the tilt adjustment value determination process.
  • the tilt adjustment value determination program 133 causes the main beam having a congested frequency to be directed to the traffic concentration area from the distance from the cell position to the traffic concentration area determined and the antenna height included in the cell setting information table 301.
  • a recommended recommended tilt value is calculated (1001). That is, if the traffic concentration area is closer to the antenna than the main beam arrival distance, the tilt angle is increased so that the main beam faces the traffic concentration area, and the beam is directed downward. On the other hand, if the traffic concentration area is farther from the antenna than the main beam reachable distance, the tilt angle is decreased so that the main beam faces the traffic concentration area, and the antenna is directed upward.
  • the tilt adjustment value determination program 133 determines whether the calculated recommended tilt value is within the tilt variable range, that is, within the range of the maximum tilt angle value and the minimum value of the cell setting information table 301 (1002). . If the recommended tilt value is outside the tilt variable range, the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1007), and the process returns to step 1002, and the changed recommended tilt value is variable in tilt. Determine if it is within range.
  • the recommended tilt value is within the tilt variable range, it is determined whether the recommended tilt value is equal to the current tilt value (1003). If the recommended tilt value is equal to the current tilt value, it is not necessary to change the tilt angle of the antenna, so it is determined to maintain the tilt angle of the antenna at present (1006).
  • the effect of changing the tilt angle is evaluated. Specifically, the influence on traffic due to the change of the tilt angle is calculated using the distribution by distance and the upper beam reach distance, and it is determined whether there is an adverse effect (1004).
  • the upper beam is a beam emitted in the direction of the angle obtained by subtracting the vertical half-value angle from the antenna tilt angle, and the upper beam arrival distance is a distance from the cell position to a point where the upper beam reaches the ground surface.
  • the degree of influence on users can be evaluated based on the ratio of the number of users who are affected by changing the tilt angle.
  • the user influence level is, for example, a value obtained by dividing the number of session logs belonging to the distance category that is longer than the upper beam reach distance of the cell by the change to the recommended value of the antenna tilt angle by the total number of session logs of the cell. , From the distance distribution table 501 of the cell. And if the ratio of the calculated number of sessions is larger than a predetermined threshold value, since many user terminals cannot be accommodated in the said cell, it determines with there being a bad influence by a change.
  • the upper beam reachable distance can be calculated using the antenna tilt angle, antenna height, and vertical half-value angle.
  • the amount of change in the upper beam reach is used as the user influence level to determine whether this is greater than a predetermined threshold.
  • This threshold is determined by the amount of change in the upper beam arrival distance in which the change in the amount of interference with the adjacent cell exceeds the allowable value.
  • the threshold value may be determined in consideration of surrounding terrain data 1601 configured from latitude, longitude, and altitude data. That is, if there is a location with a high altitude in the middle of the radio wave propagation path, the reach of the radio wave is shortened at the back of the location.
  • FIG. 16 shows an example of the surrounding terrain data 1601.
  • the surrounding terrain data 1601 in FIG. 16 includes the altitude of each point composed of latitude and longitude.
  • the threshold for the amount of change in angle may take into account the elevation difference between the radio wave arrival point and the antenna height and the surrounding terrain.
  • the amount of change in the upper beam reach distance is larger than a predetermined threshold, the amount of interference with the adjacent cell increases, and the change in the communication environment of the adjacent cell is large, which adversely affects the user terminal 102 accommodated in the adjacent cell. Is determined to occur. On the other hand, if the amount of change in the upper beam reach is within a predetermined threshold, it is determined that there is no adverse effect on the user terminal 102 accommodated in the adjacent cell.
  • the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1007), and the process returns to step 1002, and the changed recommended tilt value is tilted. Determine if it is within the variable range.
  • the recommended tilt value is determined as the adjustment value of the antenna tilt angle (1005).
  • the adjustment value of the tilt angle is determined so that the main beam of the congested frequency faces the traffic concentration area. For this reason, congestion due to traffic concentration of cells operated in a single band can be eliminated. Further, even in a cell operated in a plurality of bands, congestion due to traffic concentration can be eliminated without affecting traffic in other bands.
  • the analysis server 113 transmits the determined tilt adjustment value to the analysis result accumulation server 115 as analysis result information (707).
  • the analysis result accumulation server 115 accumulates the received analysis result information in the analysis result information table 601 (708).
  • the client 114 requests analysis result information from the analysis result storage server 115 in accordance with an instruction input from the network administrator (709).
  • the instruction input by the network administrator includes an identifier of a cell for which the analysis result is to be displayed, and may further include a frequency identifier and a date / time for which the analysis result is to be displayed.
  • the analysis result storage server 115 selects the analysis result information from the analysis result information table 601 according to the request from the client 114, and transmits it to the client 114 (710).
  • the client 114 displays the analysis result information received from the analysis result storage server 115 on the screen (711).
  • the network administrator looks at the adjustment value displayed on the client 114, changes the antenna setting, and transmits an instruction to change the beam direction of the antenna to the base station management server 106.
  • analysis server 113 may directly transmit the determined adjustment value to the client 114.
  • the adjustment value determined by the analysis server 113 may be transmitted to the base station management server 106, and the base station management server 106 may change the beam direction of the antenna without an operation by the administrator.
  • FIG. 11 is a flowchart of another example of the traffic concentration area specifying process.
  • the traffic concentration area specifying program 132 determines the top three distance categories with the largest number of logs (number of sessions) from the created histogram (1101). Then, for each distance section selected in step 1101, the number of logs of the three distance sections, that is, the distance section and the distance sections before and after the distance section are totaled (1102). Thereafter, the distance category having the largest total value calculated in step 1102 is selected as the traffic concentration area (1103).
  • step 1101 the top three distance sections with the largest number of logs may not be selected, and the total number of logs of the three distance sections may be compared for all distance sections.
  • the traffic concentration area determination method shown in FIG. 11 can accurately determine the traffic concentration area when the number of logs is small.
  • FIG. 12 is a flowchart of another example of the tilt adjustment value determination process.
  • the tilt adjustment value determination process shown in FIG. 12 is performed for a cell having a frequency other than the frequency at which traffic is concentrated (traffic is relatively free) when operated at a plurality of frequencies (frequency channels or frequency bands). Determine the tilt angle that directs the main beam to the traffic concentration area of the low quality cell.
  • the tilt adjustment value determination process shown in FIG. 12 is performed for a cell having the same position and radio wave radiation direction and having a different frequency (hereinafter referred to as a different frequency cell).
  • the tilt adjustment value determination program 133 determines whether the different frequency cell covers the traffic concentration area depending on whether the main beam of the different frequency cell (for example, a non-congested high frequency band) is directed to the traffic concentration area. Determine (1201). If the different frequency cell covers the traffic concentration area, it is not necessary to change the tilt angle of the antenna, so it is determined to maintain the tilt angle of the antenna at present (1207).
  • the tilt adjustment value determination program 133 determines the distance from the cell position to the determined traffic concentration area and the antenna height included in the cell information setting table 301.
  • the tilt value at which the main beam faces the traffic concentration area is calculated as a recommended tilt value (1202).
  • the tilt adjustment value determination program 133 determines whether the calculated recommended tilt value is within the tilt variable range, that is, within the range between the maximum tilt angle value and the minimum value of the cell setting information table 301 (1203). . If the recommended tilt value is outside the tilt variable range, the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1208), and the process returns to step 1203, and the changed recommended tilt value is variable in tilt. Determine if it is within range.
  • the recommended tilt value is within the tilt variable range, it is determined whether the recommended tilt value is equal to the current tilt value (1204). If the recommended tilt value is equal to the current tilt value, it is not necessary to change the tilt angle of the antenna, so it is determined to maintain the tilt angle of the antenna at present (1207).
  • the effect of changing the tilt angle is evaluated. Specifically, the influence on the traffic in the current coverage due to the change of the tilt angle is calculated using the distance distribution and the distance corresponding to the vertical half-value angle, and it is determined whether there is an adverse effect (1205). Evaluate the effect of changing the tilt angle.
  • the degree of influence on the user may be determined by the same method as in step 1004 of the tilt adjustment value determination process described above with reference to FIG.
  • the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1208), and the process returns to step 1203. Determine if it is within the variable range.
  • the recommended tilt value is determined as the adjustment value of the antenna tilt angle (1206).
  • the adjustment value of the tilt angle is determined so that the main beam having a frequency other than the congested frequency is directed to the traffic concentration area.
  • a plurality of bands are operated, cells in a low frequency band with a long radio wave reach are usually congested and cells in a high frequency band are vacant. For this reason, in a cell operated in a plurality of bands, it is possible to offload the traffic of the low frequency band cell to the cell of the high frequency band, and to eliminate congestion due to traffic concentration.
  • the tilt adjustment value determination process shown in FIG. 12 can be applied when the beam direction of the antenna can be changed for each band (for example, a different antenna is used for each band).
  • FIG. 13 is a diagram showing an example of an analysis result display screen for displaying analysis result information.
  • the analysis result display screen includes a cell display area 1301, a traffic display area 1302, and an analysis result display area 1303.
  • the cell display area 1301 displays the coverage of the cell for which the analysis result is requested on the map for each band.
  • the reach range of the main beam is displayed with a solid line
  • the reach range of the upper beam is displayed with a broken line.
  • the traffic concentration area is displayed in a different manner (with a color or pattern) on the mesh-like map.
  • the traffic display area 1302 displays the histogram of the number of sessions for each distance category shown in FIG. 9, the main beam arrival distance (solid line), and the upper beam arrival distance (broken line). In addition, the distance division determined as the traffic concentration area is displayed in a different manner (with a color or a pattern).
  • the analysis result display area 1303 displays the prediction of the cell coverage when the antenna tilt angle is changed according to the derived adjustment value.
  • the cell coverage before and after the tilt angle change is displayed on the map, and the main beam arrival distance (solid line) and the upper beam arrival distance (dashed line) before and after the tilt angle change are a histogram of the number of sessions for each distance category. Displayed above.
  • the main beam of band B faces the traffic concentration area, but in band A, the traffic concentration area is outside the beam range (outside the upper beam). I understand that there is.
  • the main beam of the band B is directed to the traffic concentration area, but the main beam of the band A is directed by changing the tilt angle, and the band B of the user terminal 102 in the traffic concentration area is changed to the band. It can be seen that off-road to A can be expected.
  • the analysis server 113 includes a detection unit (low quality cell detection processing program 131) that detects a low quality cell with low communication quality, and traffic is detected in the detected low quality cell.
  • An area specifying unit (traffic concentration area specifying program 132) for specifying a concentrated traffic concentration area and a determining unit (tilt adjustment value determining program 133) for determining a control amount of the beam direction of the antenna of the radio base station 103
  • the determining unit determines a control amount of the beam direction of the antenna so that a radio beam transmitted from the radio base station 103 is directed to the traffic concentration area.
  • the reception power of the user terminal 102 in the traffic concentration area is improved, the radio quality (CQI) is improved, and a modulation scheme and a coding rate (MCS) with a high transmission rate can be used.
  • CQI radio quality
  • MCS modulation scheme and a coding rate
  • High-speed communication is possible.
  • the traffic capacity of the cell is expanded, and congestion due to traffic concentration can be alleviated.
  • user satisfaction can be improved.
  • the radio resource utilization efficiency is improved, the cost effectiveness of the base station is improved and the satisfaction of the communication carrier can be improved.
  • the determining unit determines the control amount of the beam direction of the antenna so that the beam of the low quality cell is directed to the traffic concentration area, the congestion due to the traffic concentration can be solved without affecting the traffic of other frequencies. In addition, congestion due to traffic concentration can be eliminated even in places where high-frequency radio waves are difficult to reach.
  • the decision unit decides the control amount of the antenna beam direction so that the beam of the cell with a frequency different from that of the low quality cell is directed to the traffic concentration area. Can eliminate congestion. In particular, by offloading the user terminal 102 to a high frequency band, high-speed communication is possible and congestion due to traffic concentration can be eliminated. Further, if the beam direction of the congested frequency is controlled, congestion due to traffic concentration can be eliminated even when the influence on the user is large.
  • the area identification unit creates a distribution of the number of sessions set between the user terminal 102 and the radio base station 103 according to the distance from the antenna, and for each distance segment, the number of sessions in the distance segment Since the total value with the number of sessions in the distance category is calculated and the distance category having the largest total value is specified as the traffic concentration area, the traffic concentration area can be accurately determined even when the number of logs is small.
  • the determination unit reduces the control amount in the beam direction if the ratio of the user terminals 102 that cannot be accommodated in the cell is larger than a predetermined threshold. Therefore, it is possible to suppress disconnection of communication due to the edge user being evicted from the cell.
  • the determination unit decreases the control amount in the beam direction if the change in the amount of interference from the cell to the adjacent cell is larger than a predetermined threshold. Therefore, the influence on the user accommodated in the adjacent cell can be suppressed. Further, congestion due to the inflow of the user terminal 102 that is not currently accommodated into the cell can be suppressed.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.
  • wireless communication network system 101 wireless communication network system 102 user terminal 103 wireless base station 104 backhaul network 105 core network 106 base station management server 111 analysis system 112 base station information aggregation server 113 analysis server 114 database 115 output server

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention provides an analysis server that analyzes the communication quality of a wireless communication system. The analysis server is provided with a processor that executes a program, and a storage device accessed by the processor. The wireless communication system has a plurality of base station devices that accommodate terminals. The analysis server has a detection unit that detects a low-quality cell having a low communication quality, an area identification unit that identifies, in the detected low-quality cell, a traffic-concentrated area at which traffic is concentrated, and a determination unit that determines the control quantities of the beam directions of the antennas of the base station devices. The determination unit determines the control quantities of the beam directions of the antennas such that the radio wave beams transmitted from the base station devices are directed toward the traffic-concentrated area.

Description

分析サーバ、分析プログラム、及び分析方法Analysis server, analysis program, and analysis method
 本明細書で開示される主題は、通信ネットワークの品質分析技術に関する。 The subject matter disclosed in the present specification relates to a quality analysis technique for a communication network.
 セル方式の無線通信システムでは、基地局が、提供するセル内のユーザ端末と無線通信をする。基地局が提供するセル内でユーザ端末の密度は均一ではない。例えば、セル内のイベント会場に人が集まっていれば、トラフィックが集中するエリアが生じる。このようなトラフィック集中エリアでは、ユーザ端末の通信が輻輳し、通信速度が低下する。 In a cell-type radio communication system, a base station performs radio communication with user terminals in a cell to be provided. The density of user terminals is not uniform within the cell provided by the base station. For example, if people are gathering at an event venue in a cell, an area where traffic is concentrated occurs. In such a traffic concentration area, communication of user terminals is congested and the communication speed is reduced.
 また、移動通信事業者は、顧客満足度を向上するために、トラフィック集中エリアの輻輳を解消し、無線通信品質を向上することが求められている。 In addition, in order to improve customer satisfaction, mobile communication operators are required to eliminate congestion in traffic concentration areas and improve wireless communication quality.
 従来、無線通信システムを最適化するために、走行試験により品質情報を収集して、このようなトラフィック集中エリアを見出している。そして、収集した情報から通信品質が低い要因を特定し、改善策を決定するための高度な知見を有する専任の作業者が必要である。このため、無線通信システムの最適化は、高いコストと長期間を要するものであった。 Conventionally, in order to optimize a wireless communication system, quality information is collected by running tests to find such a traffic concentration area. Then, a dedicated worker who has a high level of knowledge for identifying a factor of low communication quality from the collected information and determining improvement measures is required. For this reason, the optimization of the wireless communication system requires high cost and a long period of time.
 無線通信ネットワークの輻輳を解消し、高い通信品質を得るための技術として特許文献1がある。特許文献1は、複数の移動体および固定基地局を含む無線通信システムであって、固定基地局の各々はセルを画定するとともに送受信アンテナを有し、送受信アンテナのビームは移動体が固定基地局との間で通信できるセクタを包含し、アンテナは包含されたセクタを変更し得るように傾斜可能であるシステムを開示する。また、特許文献1は、セクタに対し最適なアンテナの傾斜角を先験的に決定するステップと、或る時点におけるセルの負荷を動的に推定するステップと、決定された最適アンテナ傾斜角および推定負荷の関数として、或る時点におけるアンテナの瞬時傾斜角を決定するステップと、決定された瞬時傾斜角の関数としてアンテナの傾斜角を制御するステップとを含むアンテナ傾斜角動的制御方法を開示する。 Patent Document 1 discloses a technique for eliminating congestion in a wireless communication network and obtaining high communication quality. Patent Document 1 is a wireless communication system including a plurality of mobile units and a fixed base station. Each of the fixed base stations defines a cell and has a transmission / reception antenna. Disclosed is a system that includes sectors that can communicate with the antenna and the antenna is tiltable so that the included sectors can be changed. Further, Patent Document 1 discloses a step of a priori determining an optimum antenna inclination angle for a sector, a step of dynamically estimating a cell load at a certain time point, a determined optimum antenna inclination angle, and Disclosed is a method for dynamically controlling an antenna tilt angle, comprising: determining an instantaneous tilt angle of the antenna at a certain time as a function of an estimated load; and controlling the tilt angle of the antenna as a function of the determined instantaneous tilt angle. To do.
特開2001-308782号公報JP 2001-308782 A
 特許文献1に記載された技術では、アンテナ傾斜角を制御して輻輳セルのカバー範囲を小さくして、セルに収容されるユーザ端末数が減少するため、当該セルの輻輳は解消する。しかし、当該セルから追い出されたユーザ端末は周辺セルに収容されることから、周辺セルで輻輳が生じる可能性がある。また、周辺セルに収容されないユーザ端末の通信は切断する。周辺セルに収容されたユーザ端末であっても、受信品質が劣化し、通信速度が低下する可能性がある。このように、特許文献1に記載された技術では、無線通信システム全体として通信品質が向上しないことがあった。 In the technique described in Patent Document 1, since the coverage of a congested cell is reduced by controlling the antenna tilt angle, and the number of user terminals accommodated in the cell is reduced, the congestion of the cell is eliminated. However, since the user terminal evicted from the cell is accommodated in the neighboring cell, congestion may occur in the neighboring cell. Further, communication of user terminals that are not accommodated in the neighboring cells is disconnected. Even in a user terminal accommodated in a neighboring cell, reception quality may deteriorate and communication speed may decrease. As described above, in the technique described in Patent Document 1, communication quality as a whole wireless communication system may not be improved.
 このため、トラフィック集中エリアの通信品質を向上する技術が求められている。 For this reason, there is a need for technology that improves communication quality in traffic-intensive areas.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、無線通信システムの通信品質を分析する分析サーバであって、プログラムを実行するプロセッサと、前記プロセッサがアクセスする記憶装置とを備え、前記無線通信システムは、端末を収容する複数の基地局装置を有し、前記分析サーバは、通信品質が低い低品質セルを検出する検出部と、前記検出された低品質セルにおいてトラフィックが集中しているトラフィック集中エリアを特定するエリア特定部と、前記基地局装置のアンテナのビーム方向の制御量を決定する決定部とを有し、前記決定部は、前記基地局装置から送信される電波のビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定する。 A typical example of the invention disclosed in the present application is as follows. That is, an analysis server for analyzing communication quality of a wireless communication system, comprising: a processor that executes a program; and a storage device that is accessed by the processor, wherein the wireless communication system includes a plurality of base station devices that accommodate terminals. And the analysis server includes a detection unit that detects a low quality cell with low communication quality, an area specification unit that specifies a traffic concentration area in which traffic is concentrated in the detected low quality cell, and the base A determining unit configured to determine a control amount of the beam direction of the antenna of the station device, wherein the determining unit is configured to cause the beam of the radio wave transmitted from the base station device to face the traffic concentration area. Determine the amount of control.
 アンテナのビーム方向の制御により、トラフィック集中エリアのユーザ端末の受信電力が向上し、無線品質(CQI)が改善し、高速通信が可能となる。この結果、セルのトラフィック容量が拡大し、トラフィックの集中による輻輳を緩和できる。さらに、無線リソース利用効率が向上する。 The control of the antenna beam direction improves the reception power of the user terminal in the traffic concentration area, improves the radio quality (CQI), and enables high-speed communication. As a result, the traffic capacity of the cell is expanded and congestion due to traffic concentration can be alleviated. Furthermore, radio resource utilization efficiency is improved.
 本発明の一態様によれば、トラフィック集中エリアのユーザ端末の通信品質を向上できる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to one aspect of the present invention, communication quality of user terminals in a traffic concentration area can be improved. Problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
本発明の実施例の無線通信ネットワークシステム及び分析システムの構成例を示す図である。It is a figure which shows the structural example of the radio | wireless communication network system and analysis system of the Example of this invention. 実施例の分析サーバの構成の一例を示す図である。It is a figure which shows an example of a structure of the analysis server of an Example. 実施例のセル設定情報テーブルの一例を示す図である。It is a figure which shows an example of the cell setting information table of an Example. 実施例のセッションログテーブルの一例を示す図である。It is a figure which shows an example of the session log table of an Example. 実施例の距離分布テーブルの一例を示す図である。It is a figure which shows an example of the distance distribution table of an Example. 実施例の分析結果情報テーブルの一例を示す図である。It is a figure which shows an example of the analysis result information table of an Example. 実施例の分析サーバがトラフィック集中エリアを特定し、アンテナのチルト調整値を決定する処理のシーケンス図である。It is a sequence diagram of the process which the analysis server of an Example pinpoints a traffic concentration area, and determines the tilt adjustment value of an antenna. 実施例の低品質セル検出処理のフローチャートである。It is a flowchart of the low quality cell detection process of an Example. 実施例のセッションログ数のヒストグラムである。It is a histogram of the number of session logs of an Example. 実施例のチルト調整値決定処理のフローチャートである。It is a flowchart of the tilt adjustment value determination process of an Example. 実施例のトラフィック集中エリア特定処理の変形例のフローチャートである。It is a flowchart of the modification of the traffic concentration area specific process of an Example. 実施例のチルト調整値決定処理の変形例のフローチャートである。It is a flowchart of the modification of the tilt adjustment value determination process of an Example. 実施例の分析結果表示画面の一例を示す図である。It is a figure which shows an example of the analysis result display screen of an Example. 実施例の低品質セル情報テーブルの一例を示す図である。It is a figure which shows an example of the low quality cell information table of an Example. 実施例の統計情報テーブルの一例を示す図である。It is a figure which shows an example of the statistical information table of an Example. 実施例の周辺地形データの一例を示す図である。It is a figure which shows an example of the surrounding terrain data of an Example.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 なお、以下の実施例においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、または、詳細、補足説明などの関係にある。 In the following examples, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments, but they are not irrelevant to each other unless otherwise specified. The other part or all of the modified examples are related to details, supplementary explanations, and the like.
 また、以下の実施例において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよいものとする。 In addition, in the following examples, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), unless otherwise specified, or in principle limited to a specific number in principle. It is not limited to the specific number, and may be a specific number or more.
 さらに、以下の実施例において、その構成要素(要素ステップなどを含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合などを除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, it is needless to say that the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and apparently indispensable in principle. Yes.
 本発明の実施例では、無線通信規格の例として3GPP(3rd Generation Partnership Project)で標準化されているE-UTRA(Evolved Universal Terrestrial Radio Access)、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)を用いる。なお、本発明は、他の通信規格を採用する無線通信システムにも適用可能である。 In the embodiment of the present invention, E-UTRA (Evolved Universal Radio Access) and E-UTRAN (ReveredUrverReverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUrverUreverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverUrReverU) The present invention can also be applied to a wireless communication system that employs other communication standards.
 また、実施例1では、統計情報に基づいてトラフィック集中エリアにメインビームが向くようにアンテナのビーム方向(例えば、チルト角)を調整し、セルの通信容量を活用するための情報を提供する分析サーバ113の例を示す。 In the first embodiment, the antenna beam direction (for example, the tilt angle) is adjusted so that the main beam is directed to the traffic concentration area based on the statistical information, and analysis for providing information for utilizing the communication capacity of the cell is provided. An example of the server 113 is shown.
 図1は、実施例1の無線通信ネットワークシステム101及び分析システム111の構成例を示す図である。 FIG. 1 is a diagram illustrating a configuration example of the wireless communication network system 101 and the analysis system 111 according to the first embodiment.
 図1に示すように、無線通信ネットワークシステム101は、ユーザ端末(User Equipment)102、無線基地局(eNodeB)103、バックホールネットワーク104、コアネットワーク105及び基地局管理サーバ106で構成される。 As shown in FIG. 1, the wireless communication network system 101 includes a user terminal (User Equipment) 102, a wireless base station (eNodeB) 103, a backhaul network 104, a core network 105, and a base station management server 106.
 ユーザ端末102は、無線基地局103が提供するセル内において、無線基地局103と無線によって接続され、さらにバックホールネットワーク104を介してコアネットワーク105と接続される。各無線基地局103は、1又は複数のセルを提供する。また、無線基地局103は、バックホールネットワーク104を介して基地局管理サーバ106に接続される。基地局管理サーバ106は、各無線基地局103(すなわち、セル)を管理し、セル設定情報及びセッションログを保持する。 User terminal 102 is connected to radio base station 103 by radio in a cell provided by radio base station 103, and further connected to core network 105 via backhaul network 104. Each radio base station 103 provides one or a plurality of cells. The radio base station 103 is connected to the base station management server 106 via the backhaul network 104. The base station management server 106 manages each radio base station 103 (that is, a cell) and holds cell setting information and a session log.
 無線基地局103はユーザ端末102と無線通信するためのアンテナを有し、該アンテナは、放射する電波のビームを垂直方向に可変できる。このため、無線基地局103のアンテナは、物理的にアンテナのチルト角を変化してビーム方向を変える機構を有する。また、アンテナをアレーアンテナで構成し、各アンテナに給電する信号の位相を変えることによって、放射する電波のビーム方向を変えられてもよい。なお、本実施例では、チルト角を水平方向から下向きの角度で定義する。水平方向のチルト角は0である。このため、チルト角が正の値から0に近づくにつれ、アンテナのビーム方向は水平に近くなる。アンテナのビーム方向が下向きから水平に近くなる場合、電波が遠くまで飛び、セルのカバー範囲が拡大する。一方、チルト角が大きくなれば、アンテナのビーム方向は下を向き、電波が飛ぶ距離が短くなり、セルのカバー範囲が縮小する。 The radio base station 103 has an antenna for wireless communication with the user terminal 102, and the antenna can vary the beam of the radiated radio wave in the vertical direction. For this reason, the antenna of the radio base station 103 has a mechanism for changing the beam direction by physically changing the tilt angle of the antenna. Further, the antenna direction may be constituted by an array antenna, and the beam direction of the radiated radio wave may be changed by changing the phase of the signal fed to each antenna. In this embodiment, the tilt angle is defined as a downward angle from the horizontal direction. The tilt angle in the horizontal direction is zero. For this reason, as the tilt angle approaches 0 from a positive value, the beam direction of the antenna becomes nearly horizontal. When the beam direction of the antenna is close to horizontal from below, the radio waves fly far and the cell coverage is expanded. On the other hand, when the tilt angle is increased, the beam direction of the antenna is directed downward, the distance that radio waves fly is shortened, and the cell coverage is reduced.
 無線基地局103及びセルの設定情報は、図3に示すように、セル毎に作成され、ノード識別子、セル識別子、無線基地局の設置位置、アンテナの特性など、無線基地局及びセルの設定の情報である。セッションログは、図4に示すように、セッション毎のログであり、ユーザ端末102がセルに接続して、ハンドオーバ、無線リンク断、アイドル状態への遷移などでそのセルへの接続を終了した際に、無線基地局103により作成され、基地局管理サーバ106へ送信される。 As shown in FIG. 3, the setting information of the radio base station 103 and the cell is created for each cell, and the setting information of the radio base station and the cell such as the node identifier, the cell identifier, the installation position of the radio base station, and the antenna characteristics Information. As shown in FIG. 4, the session log is a log for each session. When the user terminal 102 is connected to a cell, the connection to the cell is terminated due to handover, radio link disconnection, transition to an idle state, or the like. Are created by the radio base station 103 and transmitted to the base station management server 106.
 分析システム111は、基地局情報集約サーバ112、分析サーバ113及び分析結果蓄積サーバ115で構成される。基地局情報集約サーバ112は、基地局管理サーバ106から取得した統計情報及びコールログを集約する。分析サーバ113は、低品質セルの検出、通信品質が低い要因の特定、及び通信品質改善方法の決定を行う。分析結果蓄積サーバ115は、分析結果を表示画面やファイル形式に変換して出力する。分析サーバ113及び分析結果蓄積サーバ115には、クライアント114が接続されている。 The analysis system 111 includes a base station information aggregation server 112, an analysis server 113, and an analysis result storage server 115. The base station information aggregation server 112 aggregates statistical information and call logs acquired from the base station management server 106. The analysis server 113 detects a low quality cell, specifies a factor of low communication quality, and determines a communication quality improvement method. The analysis result accumulation server 115 converts the analysis result into a display screen or a file format and outputs it. A client 114 is connected to the analysis server 113 and the analysis result storage server 115.
 基地局情報集約サーバ112は、一般的なコンピュータで構成され、プログラムを実行するプロセッサ、プログラムやデータを格納するメモリ、データを格納する補助記憶装置(HDD、SSDなど)及びネットワークインタフェースを有する。プロセッサが、メモリに格納されたプログラムを実行することによって、基地局情報集約サーバ112の機能が実現される。 The base station information aggregation server 112 is configured by a general computer, and includes a processor that executes a program, a memory that stores programs and data, an auxiliary storage device (HDD, SSD, and the like) that stores data, and a network interface. The function of the base station information aggregation server 112 is realized by the processor executing the program stored in the memory.
 図2は、実施例1の分析サーバ113の構成の一例を示す図である。 FIG. 2 is a diagram illustrating an example of the configuration of the analysis server 113 according to the first embodiment.
 分析サーバ113は、一般的なコンピュータによって構成され、プロセッサ(CPU)1131、メモリ1132、補助記憶装置1133及びネットワークインタフェース1134を有する。 The analysis server 113 is configured by a general computer and includes a processor (CPU) 1131, a memory 1132, an auxiliary storage device 1133, and a network interface 1134.
 CPU1131は、メモリ1132に格納されたプログラムを実行するプロセッサである。メモリ1132は、不揮発性の記憶素子であるROM及び揮発性の記憶素子であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶素子であり、補助記憶装置1133に格納されたプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 The CPU 1131 is a processor that executes a program stored in the memory 1132. The memory 1132 includes a ROM that is a nonvolatile storage element and a RAM that is a volatile storage element. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage element such as a DRAM (Dynamic Random Access Memory), and temporarily stores a program stored in the auxiliary storage device 1133 and data used when the program is executed.
 具体的には、メモリ1132は、低品質セル検出処理プログラム131、トラフィック集中エリア特定プログラム132、及びチルト調整値決定プログラム133を格納する。低品質セル検出処理プログラム131は、低品質セル検出処理を実行する(図8参照)。トラフィック集中エリア特定プログラム132は、セル内でトラフィックが集中しているエリアを特定するトラフィック集中エリア特定処理を実行する(図12参照)。チルト調整値決定プログラム133は、アンテナのビーム方向を決定するチルト調整値決定処理を実行する(図10、図13参照)。 Specifically, the memory 1132 stores a low-quality cell detection processing program 131, a traffic concentration area specifying program 132, and a tilt adjustment value determining program 133. The low quality cell detection processing program 131 executes low quality cell detection processing (see FIG. 8). The traffic concentration area specifying program 132 executes a traffic concentration area specifying process for specifying an area where traffic is concentrated in the cell (see FIG. 12). The tilt adjustment value determination program 133 executes tilt adjustment value determination processing for determining the beam direction of the antenna (see FIGS. 10 and 13).
 また、メモリ1132は、セル設定情報テーブル301(図3参照)、セッションログテーブル401(図4参照)、距離分布テーブル501(図5参照)、分析結果情報テーブル601(図6参照)、低品質セル情報テーブル1401(図14参照)、統計情報テーブル1501(図15参照)、及び周辺地形データ1601(図16参照)を格納する。 The memory 1132 includes a cell setting information table 301 (see FIG. 3), a session log table 401 (see FIG. 4), a distance distribution table 501 (see FIG. 5), an analysis result information table 601 (see FIG. 6), and a low quality. A cell information table 1401 (see FIG. 14), a statistical information table 1501 (see FIG. 15), and surrounding terrain data 1601 (see FIG. 16) are stored.
 補助記憶装置1133は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置である。また、補助記憶装置1133は、CPU1131が実行するプログラム及びプログラムの実行時に使用されるデータを格納する。すなわち、プログラムは、補助記憶装置1133から読み出されて、メモリ1132にロードされて、CPU1131によって実行される。 The auxiliary storage device 1133 is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD). The auxiliary storage device 1133 stores a program executed by the CPU 1131 and data used when the program is executed. That is, the program is read from the auxiliary storage device 1133, loaded into the memory 1132, and executed by the CPU 1131.
 ネットワークインタフェース1134は、ネットワークを経由して他の装置(例えば、基地局情報集約サーバ112、クライアント114、分析結果蓄積サーバ115など)との通信を制御するインタフェースデバイスである。 The network interface 1134 is an interface device that controls communication with other devices (for example, the base station information aggregation server 112, the client 114, the analysis result storage server 115, etc.) via the network.
 分析サーバ113は、ユーザが指示を入力し、プログラムの実行結果をユーザに提示するためのユーザインタフェース1135(例えば、キーボード、マウス、タッチパネル、ディスプレイ、プリンタなど)を有してもよい。 The analysis server 113 may have a user interface 1135 (for example, a keyboard, a mouse, a touch panel, a display, a printer, etc.) for the user to input an instruction and present the execution result of the program to the user.
 CPU1131が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して分析サーバ113に提供され、非一時的記憶媒体である不揮発性記憶装置に格納される。このため、分析サーバ113は、リムーバブルメディアからデータを読み込むインタフェースを有するとよい。 The program executed by the CPU 1131 is provided to the analysis server 113 via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in a nonvolatile storage device that is a non-temporary storage medium. For this reason, the analysis server 113 may have an interface for reading data from a removable medium.
 分析サーバ113は、物理的に一つの計算機上で、又は、論理的又は物理的な複数の計算機上で構成される計算機システムであり、前述したプログラムが、同一の計算機上で別個のスレッドで動作してもよく、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。また、分析サーバ113と他の装置が一つの物理的又は論理的計算機に収容されてもよい。 The analysis server 113 is a computer system that is physically configured on one computer or a plurality of logical or physical computers, and the above-described program operates in separate threads on the same computer. Alternatively, it may operate on a virtual machine built on a plurality of physical computer resources. Further, the analysis server 113 and other devices may be accommodated in one physical or logical computer.
 なお、プログラムによって実現される機能部の全部又は一部の機能をハードウェア(例えば、Field-Programmable Gate Array)によって実現してもよい。 Note that all or a part of the functions realized by the program may be realized by hardware (for example, Field-Programmable Gate Array).
 分析結果蓄積サーバ115は、一般的なコンピュータで構成され、プログラムを実行するプロセッサ、プログラムやデータを格納するメモリ、データを格納する補助記憶装置(HDD、SSDなど)及びネットワークインタフェースを有する。プロセッサが、メモリに格納されたプログラムを実行することによって、分析結果蓄積サーバ115の機能が実現される。分析結果蓄積サーバ115は、クライアント114に分析結果を出力するために、例えば、ウェブサーバやFTPサーバの機能を有するとよい。 The analysis result storage server 115 is configured by a general computer, and includes a processor that executes a program, a memory that stores programs and data, an auxiliary storage device (such as an HDD and an SSD) that stores data, and a network interface. The function of the analysis result accumulation server 115 is realized by the processor executing the program stored in the memory. The analysis result storage server 115 may have, for example, a web server or FTP server function in order to output the analysis result to the client 114.
 クライアント114は、一般的なコンピュータで構成され、プログラムを実行するプロセッサ、プログラムやデータを格納するメモリ、データを格納する補助記憶装置(HDD、SSDなど)及びネットワークインタフェースを有する。プロセッサが、メモリに格納されたプログラムを実行することによって、クライアント114の機能が実現される。クライアント114では、例えば、ウェブブラウザが実行されるとよい。 The client 114 is configured by a general computer, and includes a processor that executes a program, a memory that stores programs and data, an auxiliary storage device (such as an HDD and an SSD) that stores data, and a network interface. The function of the client 114 is realized by the processor executing the program stored in the memory. In the client 114, for example, a web browser may be executed.
 実施例の各コンピュータは、データを一つのコンピュータのメモリに格納するように構成されているが、データを補助記憶装置に格納し、プログラムの処理の都度、データを補助記憶装置から読み出し、各処理の完了ごとに補助記憶装置に格納してもよい。 Each computer of the embodiment is configured to store data in the memory of one computer, but stores the data in the auxiliary storage device, and reads the data from the auxiliary storage device each time the program is processed. It may be stored in the auxiliary storage device every time.
 また、プログラム及びデータを複数のコンピュータに分散して格納してもよい。例えば、データをリレーショナルデータベースのテーブルとして実装し、分析サーバ113と異なるデータベースサーバに格納し、分析サーバ113が実行するプログラムがデータベースサーバに格納されたデータを参照及び更新してもよい。 Also, the program and data may be distributed and stored in a plurality of computers. For example, the data may be implemented as a relational database table, stored in a database server different from the analysis server 113, and a program executed by the analysis server 113 may refer to and update the data stored in the database server.
 また、データを分析サーバ113とは異なる分散型のKVS(Key-Value Store)サーバに格納し、分析サーバ113が実行するプログラムがKVSサーバに格納されたデータを参照及び更新してもよい。 Further, the data may be stored in a distributed KVS (Key-Value Store) server different from the analysis server 113, and a program executed by the analysis server 113 may refer to and update the data stored in the KVS server.
 以上に説明したデータの格納方法の違いは、本発明の本質には影響を与えない。 The difference in the data storage method described above does not affect the essence of the present invention.
 実施例1の分析サーバ113の特徴の概略を簡単に説明すれば、以下の通りである。すなわち、分析サーバ113は、基地局統計情報に基づいて低品質セルを検出し、セッションログに基づいてトラフィック集中エリアを特定し、低品質セルのビーム到達地点とトラフィック集中エリアとの関係に基づいてアンテナのチルト調整値を決定する。 The outline of the characteristics of the analysis server 113 of the first embodiment will be briefly described as follows. That is, the analysis server 113 detects the low quality cell based on the base station statistical information, identifies the traffic concentration area based on the session log, and based on the relationship between the beam arrival point of the low quality cell and the traffic concentration area. Determine the tilt adjustment value of the antenna.
 図3は、セル設定情報テーブル301の一例を示す図である。 FIG. 3 is a diagram illustrating an example of the cell setting information table 301.
 セル設定情報テーブル301は、基地局情報集約サーバ112から分析サーバ113が取得する。なお、セル設定情報テーブル301に記録される情報が頻繁に変更されない場合、予め分析サーバ113に格納されてもよい。 The cell setting information table 301 is acquired by the analysis server 113 from the base station information aggregation server 112. Note that if the information recorded in the cell setting information table 301 is not frequently changed, it may be stored in the analysis server 113 in advance.
 セル設定情報テーブル301は、予め基地局情報集約サーバ112を介して分析サーバ113が取得する。基地局情報集約サーバ112は、分析するタイミングでセル設定情報テーブル301を取得してもよい。セル設定情報テーブル301は、セル毎に作成され、ノード識別子、セル識別子、周波数識別子、セルの位置情報(緯度、経度、標高)、アンテナ高、アンテナのチルト角、アンテナのチルト角の最小値と最大値、アンテナの垂直半値角と水平半値角、及びアンテナのアジマス(方位角)を含む。セル識別子は、例えばECGI(E-UTRAN Cell Global Identifier)である。周波数識別子は、例えば、周波数チャネル番号EARFCNやバンド番号(2100MHz帯であればBAND1など)である。セルの位置情報は、例えばセルを提供する基地局のアンテナの設置場所である。アンテナの垂直半値角と水平半値角は、例えば半値半幅である。 The cell setting information table 301 is acquired in advance by the analysis server 113 via the base station information aggregation server 112. The base station information aggregation server 112 may acquire the cell setting information table 301 at the analysis timing. The cell setting information table 301 is created for each cell, and includes a node identifier, a cell identifier, a frequency identifier, cell position information (latitude, longitude, altitude), antenna height, antenna tilt angle, and antenna tilt angle minimum value. Includes maximum, antenna vertical and horizontal half-value angles, and antenna azimuth. The cell identifier is, for example, ECGI (E-UTRAN Cell Global Identifier). The frequency identifier is, for example, a frequency channel number EARFCN or a band number (such as BAND1 for the 2100 MHz band). The cell position information is, for example, the installation location of the antenna of the base station that provides the cell. The vertical half-value angle and horizontal half-value angle of the antenna are, for example, half-value half widths.
 図4は、セッションログテーブル401の一例を示す図である。 FIG. 4 is a diagram illustrating an example of the session log table 401.
 セッションログテーブル401は、基地局情報集約サーバ112を介して分析サーバ113が分析をするタイミングで取得し、各ユーザ端末のコネクション毎又は呼毎にセッションに関する情報が記録される。 The session log table 401 is acquired at a timing when the analysis server 113 performs analysis via the base station information aggregation server 112, and information on a session is recorded for each connection or call of each user terminal.
 セッションログテーブル401は、ノード識別子、周波数識別子、接続先セルのセル識別子、接続日時、及び接続先セルとユーザ端末102の間の距離の情報を含む。接続日時は、当該セッションが終了した日時である。距離情報は、接続先セルとユーザ端末102との間の無線区間往復遅延から計算できる。セッションログテーブル401は、距離情報の代わりに無線区間往復遅延時間を含んでもよい。また、セッションログテーブル401は、距離情報の代わりに端末の位置情報(例えば緯度及び経度)を含んでもよい。なお、接続日時をセッションの開始日時として、アクティブなセッションをセッションログテーブル401に記録してもよい。 The session log table 401 includes information on a node identifier, a frequency identifier, a cell identifier of a connection destination cell, a connection date and time, and a distance between the connection destination cell and the user terminal 102. The connection date and time is the date and time when the session ends. The distance information can be calculated from a round trip delay in the radio section between the connection destination cell and the user terminal 102. The session log table 401 may include a wireless section round trip delay time instead of the distance information. Further, the session log table 401 may include terminal position information (for example, latitude and longitude) instead of distance information. The active session may be recorded in the session log table 401 with the connection date and time as the session start date and time.
 図5は、距離分布テーブル501の一例を示す図である。 FIG. 5 is a diagram illustrating an example of the distance distribution table 501.
 距離分布テーブル501は、セッションログテーブル401から、各セルについて、距離区分ごとに生成される。距離分布テーブル501は、ノード識別子、周波数識別子、セル識別子、距離区分幅、セッションログ数、及びログ日時の情報を含む。距離区分幅は、当該セル位置(アンテナ設置位置)からの距離を所定の距離で区切ったものである。ログ日時は、セッションログテーブル401に記録されたログが集計される期間である。セッションログ数は、セッションログテーブル401の距離情報が距離区分幅に含まれ、セッションログテーブル401の接続日時がログ日時の期間に含まれるセッションの数である。 The distance distribution table 501 is generated from the session log table 401 for each distance category for each cell. The distance distribution table 501 includes information on a node identifier, a frequency identifier, a cell identifier, a distance section width, the number of session logs, and log date / time. The distance division width is obtained by dividing the distance from the cell position (antenna installation position) by a predetermined distance. The log date is a period in which logs recorded in the session log table 401 are totaled. The number of session logs is the number of sessions in which the distance information of the session log table 401 is included in the distance section width and the connection date / time of the session log table 401 is included in the log date / time period.
 なお、本実施例では、ユーザ端末102と無線基地局103との間のセッション数でトラフィック集中エリアを判定するが、セッション数以外の指標(例えば、アクティブユーザ数や、トラフィック量)を用いてトラフィック集中エリアを判定してもよい。 In this embodiment, the traffic concentration area is determined based on the number of sessions between the user terminal 102 and the radio base station 103. However, traffic using an index other than the number of sessions (for example, the number of active users or traffic volume). The concentration area may be determined.
 図6は、分析結果情報テーブル601の一例を示す図である。 FIG. 6 is a diagram illustrating an example of the analysis result information table 601.
 分析結果情報テーブル601は、分析サーバ113がチルト調整値決定処理を実行した結果が記録される。分析結果情報テーブル601は、セル毎に作成され、ノード識別子、セルの位置情報(緯度、経度、標高)、セル識別子、周波数識別子、アンテナ高、アンテナの現在のチルト角、アンテナのチルト角のステップ幅と最小値と最大値、アンテナの垂直半値角と水平半値角、アンテナのアジマス(方位角)、推奨チルト角、及びトラフィック集中エリアを含む。図6の分析結果情報テーブル601は、トラフィック集中エリアを、セル位置からの距離区分の形態で表わしているが、緯度及び経度の形態で表わしてもよい。 The analysis result information table 601 records a result of the tilt adjustment value determination process performed by the analysis server 113. The analysis result information table 601 is created for each cell, and includes a node identifier, cell position information (latitude, longitude, altitude), cell identifier, frequency identifier, antenna height, current antenna tilt angle, and antenna tilt angle step. Includes width and minimum and maximum values, antenna vertical and horizontal half-angles, antenna azimuth, recommended tilt angle, and traffic concentration area. The analysis result information table 601 in FIG. 6 represents the traffic concentration area in the form of a distance section from the cell position, but may be represented in the form of latitude and longitude.
 分析結果情報テーブル601は、図2に示すように、分析サーバ113の記憶装置に格納されるが、分析結果蓄積サーバ115の記憶装置にも格納される。 As shown in FIG. 2, the analysis result information table 601 is stored in the storage device of the analysis server 113, but is also stored in the storage device of the analysis result accumulation server 115.
 次に、図7を参照して、分析サーバ113が低品質セルを検出し、トラフィック集中エリアを特定し、アンテナのチルト調整値を決定する手順を説明する。 Next, a procedure in which the analysis server 113 detects a low quality cell, identifies a traffic concentration area, and determines an antenna tilt adjustment value will be described with reference to FIG.
 まず、分析サーバ113は、基地局情報集約サーバ112が収集した基地局統計情報を取得し、統計情報テーブル1501に格納する(701)。分析サーバ113は、基地局情報集約サーバ112から、シーケンス701の情報収集を繰り返し(例えば、所定の時間間隔(毎日又は7日毎)に)行う。 First, the analysis server 113 acquires the base station statistical information collected by the base station information aggregation server 112 and stores it in the statistical information table 1501 (701). The analysis server 113 repeatedly collects information of the sequence 701 from the base station information aggregation server 112 (for example, at predetermined time intervals (every day or every 7 days)).
 次に、分析サーバ113は、繰り返し(例えば、所定の時間間隔(1時間毎)に)低品質セルを検出する(702)。 Next, the analysis server 113 detects low-quality cells repeatedly (for example, at predetermined time intervals (every hour)) (702).
 図8は、低品質セル検出処理のフローチャートである。低品質セル検出処理は、分析サーバ113の低品質セル検出処理プログラム131が実行する。図8の例では、分析サーバ113は、1時間毎の統計情報テーブル1501を7日分用いて、セル毎かつ通信品質指標毎に、低品質セルの検出処理を実行する。 FIG. 8 is a flowchart of the low quality cell detection process. The low quality cell detection processing is executed by the low quality cell detection processing program 131 of the analysis server 113. In the example of FIG. 8, the analysis server 113 executes low-quality cell detection processing for each cell and for each communication quality index using the hourly statistical information table 1501 for seven days.
 図15は、統計情報テーブル1501の一例を示す図である。 FIG. 15 is a diagram showing an example of the statistical information table 1501.
 統計情報テーブル1501は、セル毎に作成され、ノード識別子、周波数識別子、セル識別子、統計情報の対象期間の開始日時及び終了日時、無線リソース使用率、アクティブユーザ数を含む。 The statistical information table 1501 is created for each cell, and includes a node identifier, a frequency identifier, a cell identifier, start date and time and end date and time of a target period of statistical information, a radio resource usage rate, and the number of active users.
 図8に戻り説明を続ける。まず、低品質セル検出処理プログラム131は、低品質日数カウントn及び低品質時間カウントmを0に初期化する(801、802)。次に、低品質セル検出処理プログラム131は、1時間毎の通信品質が低く、かつ、低いと判定された通信品質指標に対応する母数が閾値以上であるかを判定する(803)。本実施例の低品質セル検出処理では、通信品質指標として、無線リソース使用率やアクティブユーザ数を使用できる。例えば、1時間毎の無線リソース使用率が閾値より大きければ、当該1時間毎の通信品質が低いと判定する。また、1時間毎のアクティブユーザ数が閾値以上であれば、当該1時間毎の通信品質が低いと判定する。通信品質指標として無線リソース使用率を使用する場合、例えばアクティブユーザ数を母数とすればよい。1時間毎の通信品質が低く、かつ、当該通信品質指標に対応する母数が閾値以上である場合(803でYes)、低品質時間カウントmを1増加する(804)。これを、24時間分の、1時間毎の集約された統計情報について実行する。 Referring back to FIG. First, the low quality cell detection processing program 131 initializes the low quality days count n and the low quality time count m to 0 (801, 802). Next, the low quality cell detection processing program 131 determines whether or not the communication quality index determined for every hour is low and the parameter corresponding to the communication quality index determined to be low is greater than or equal to the threshold (803). In the low quality cell detection process of the present embodiment, the radio resource usage rate and the number of active users can be used as the communication quality index. For example, if the wireless resource usage rate per hour is larger than the threshold, it is determined that the communication quality per hour is low. If the number of active users per hour is equal to or greater than the threshold, it is determined that the communication quality per hour is low. When the radio resource usage rate is used as a communication quality index, for example, the number of active users may be set as a population parameter. When the communication quality per hour is low and the parameter corresponding to the communication quality index is greater than or equal to the threshold (Yes in 803), the low quality time count m is increased by 1 (804). This is performed for the statistical information aggregated every hour for 24 hours.
 その結果、低品質セル検出処理プログラム131は、低品質時間カウントmが所定の閾値以上である場合(805でYes)、低品質日数カウントnを1増加させ(806)、当該24時間を低品質日として低品質セル情報テーブル1401に記録する(807)。これらを、7日分の、1時間毎の集約された統計情報について実行する。 As a result, if the low quality time count m is equal to or greater than the predetermined threshold (Yes in 805), the low quality cell detection processing program 131 increments the low quality days count n by 1 (806), The date is recorded in the low quality cell information table 1401 (807). These are executed for the statistical information aggregated every hour for 7 days.
 低品質セル検出処理プログラム131は、7日間における低品質日数Nを低品質セル情報テーブル1401に記録する(808)。低品質日数Nが所定の閾値以上である場合(809でYes)、当該セルの当該通信品質指標が低品質であると判定する(810)。一方、低品質日数カウントnが所定の閾値より小さい場合(809でNo)、当該セルの当該通信品質指標が低品質ではないと判定する(811)。 The low quality cell detection processing program 131 records the low quality days N in seven days in the low quality cell information table 1401 (808). If the low quality days N is equal to or greater than the predetermined threshold (Yes in 809), it is determined that the communication quality index of the cell is low quality (810). On the other hand, when the low quality days count n is smaller than the predetermined threshold (No in 809), it is determined that the communication quality index of the cell is not low quality (811).
 図14は、低品質セル情報テーブル1401の一例を示す図である。 FIG. 14 is a diagram showing an example of the low quality cell information table 1401.
 低品質セル情報テーブル1401は、分析サーバ113が、セル毎に、低品質セル検出処理(図8)によって作成する。 The low quality cell information table 1401 is created by the analysis server 113 for each cell by the low quality cell detection process (FIG. 8).
 低品質セル情報テーブル1401は、ノード識別子、周波数識別子、セル識別子、低品質セル情報の対象期間(開始日時、終了日時)、低品質フラグ、低品質日数、及び低品質日を含む。低品質フラグは、分析サーバ113が設定する。 The low quality cell information table 1401 includes a node identifier, a frequency identifier, a cell identifier, a target period (start date and time, end date and time) of the low quality cell information, a low quality flag, a low quality day, and a low quality date. The analysis server 113 sets the low quality flag.
 図8に戻り説明を続ける。ステップ803の、当該通信品質指標に対応する母数が閾値以上であるという条件を用いて低品質セルを検出するので、接続ユーザ数が少ない時間帯(深夜などの)が低品質日かの決定に与える影響を抑制できる。また、ある程度の期間(例えば7日分)の情報を用いて低品質セルを検出するので、特異な傾向を示す日(例えば、スポーツの試合などのイベント開催日に、多数のユーザからのアクセスが1つのセルに集中する場合)の影響を抑制できる。低品質セルの検出処理に使用する情報は、7日分に限らず、他の期間を用いてもよい。 Referring back to FIG. Since a low-quality cell is detected using the condition that the parameter corresponding to the communication quality index is greater than or equal to the threshold value in step 803, it is determined whether a time zone (such as midnight) with a small number of connected users is a low-quality day. Can be suppressed. In addition, since low quality cells are detected using information for a certain period (for example, 7 days), access from a large number of users may occur on days when events tend to have a unique tendency (for example, on the date of events such as sports matches). The effect of concentrating on one cell) can be suppressed. The information used for the low-quality cell detection process is not limited to seven days, and other periods may be used.
 図7に戻り説明を続ける。分析サーバ113は、基地局情報集約サーバ112より、低品質セル検出処理プログラム131で検出された低品質セルのセッションログを取得しセッションログテーブル401に格納する(712)。 Referring back to FIG. The analysis server 113 acquires the session log of the low quality cell detected by the low quality cell detection processing program 131 from the base station information aggregation server 112 and stores it in the session log table 401 (712).
 分析サーバ113のトラフィック集中エリア特定プログラム132は、セッションログテーブル401から距離区分ごとのセッションログ数を計数し、距離分布テーブル501を作成し(703)、作成した距離分布テーブル501を、距離分布情報として分析結果蓄積サーバ115に送信する(704)。そして、トラフィック集中エリア特定プログラム132は、距離分布テーブル501を参照して、トラフィック集中エリアを決定する(705)。 The traffic concentration area specifying program 132 of the analysis server 113 counts the number of session logs for each distance category from the session log table 401, creates a distance distribution table 501 (703), and uses the created distance distribution table 501 as distance distribution information. Is transmitted to the analysis result storage server 115 (704). Then, the traffic concentration area specifying program 132 refers to the distance distribution table 501 and determines the traffic concentration area (705).
 図9は、距離分布データ作成処理及びトラフィック集中エリア特定処理を説明する図である。分析サーバ113は、距離分布データ作成処理において、図9に示すセッションログ数のヒストグラムを、距離分布テーブル501から作成する。そして、セッション数が最も大きい距離区分を、トラフィック集中エリアに決定する。図9に示す例では、距離区分200m~300mのセッションログ数が最も大きいため、分析サーバ113は距離区分200m~300mをトラフィック集中エリアに決定する。 FIG. 9 is a diagram illustrating distance distribution data creation processing and traffic concentration area identification processing. The analysis server 113 creates a histogram of the number of session logs shown in FIG. 9 from the distance distribution table 501 in the distance distribution data creation process. Then, the distance segment with the largest number of sessions is determined as the traffic concentration area. In the example shown in FIG. 9, since the number of session logs in the distance section 200m to 300m is the largest, the analysis server 113 determines the distance section 200m to 300m as a traffic concentration area.
 次に、分析サーバ113のチルト調整値決定プログラム133は、チルト調整値を決定する(706)。 Next, the tilt adjustment value determination program 133 of the analysis server 113 determines the tilt adjustment value (706).
 図10は、チルト調整値決定処理のフローチャートである。 FIG. 10 is a flowchart of the tilt adjustment value determination process.
 まず、チルト調整値決定プログラム133は、セル位置から決定されたトラフィック集中エリアまでの距離及びセル設定情報テーブル301に含まれるアンテナ高から、輻輳している周波数のメインビームがトラフィック集中エリアに向くような推奨チルト値を算出する(1001)。すなわち、トラフィック集中エリアがメインビーム到達距離よりアンテナに近い場所であれば、メインビームがトラフィック集中エリアを向くようにチルト角を増加して、ビームを下に向ける。一方、トラフィック集中エリアがメインビーム到達距離よりアンテナから遠い場所であれば、メインビームがトラフィック集中エリアを向くようにチルト角を減少して、アンテナを上に向ける。 First, the tilt adjustment value determination program 133 causes the main beam having a congested frequency to be directed to the traffic concentration area from the distance from the cell position to the traffic concentration area determined and the antenna height included in the cell setting information table 301. A recommended recommended tilt value is calculated (1001). That is, if the traffic concentration area is closer to the antenna than the main beam arrival distance, the tilt angle is increased so that the main beam faces the traffic concentration area, and the beam is directed downward. On the other hand, if the traffic concentration area is farther from the antenna than the main beam reachable distance, the tilt angle is decreased so that the main beam faces the traffic concentration area, and the antenna is directed upward.
 そして、チルト調整値決定プログラム133は、算出された推奨チルト値がチルト可変範囲内であるか、すなわち、セル設定情報テーブル301のチルト角最大値と最小値の範囲内かを判定する(1002)。推奨チルト値がチルト可変範囲外であれば、所定のチルトステップ分だけ現在の値に近づけるように、推奨チルト値を変更し(1007)、ステップ1002に戻り、変更された推奨チルト値がチルト可変範囲内であるかを判定する。 Then, the tilt adjustment value determination program 133 determines whether the calculated recommended tilt value is within the tilt variable range, that is, within the range of the maximum tilt angle value and the minimum value of the cell setting information table 301 (1002). . If the recommended tilt value is outside the tilt variable range, the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1007), and the process returns to step 1002, and the changed recommended tilt value is variable in tilt. Determine if it is within range.
 一方、推奨チルト値がチルト可変範囲内であれば、推奨チルト値が現在のチルト値と等しいかを判定する(1003)。推奨チルト値が現在のチルト値と等しければ、アンテナのチルト角の変更は必要ないので、アンテナのチルト角を現状で維持することを決定する(1006)。 On the other hand, if the recommended tilt value is within the tilt variable range, it is determined whether the recommended tilt value is equal to the current tilt value (1003). If the recommended tilt value is equal to the current tilt value, it is not necessary to change the tilt angle of the antenna, so it is determined to maintain the tilt angle of the antenna at present (1006).
 一方、推奨チルト値が現在のチルト値と異なれば、チルト角の変更による影響を評価する。具体的には、距離別分布及びアッパービーム到達距離を用いて、チルト角の変更によるトラフィックへの影響を算出し、悪影響があるかを判定する(1004)。アッパービームとは、アンテナチルト角より垂直半値角を減じた角度の方向へ放射されるビームであり、アッパービーム到達距離とはセル位置からアッパービームが地表に到達する地点までの距離である。ユーザへの影響度は、チルト角の変更によって、影響が生じるユーザ数の割合で評価できる。 On the other hand, if the recommended tilt value is different from the current tilt value, the effect of changing the tilt angle is evaluated. Specifically, the influence on traffic due to the change of the tilt angle is calculated using the distribution by distance and the upper beam reach distance, and it is determined whether there is an adverse effect (1004). The upper beam is a beam emitted in the direction of the angle obtained by subtracting the vertical half-value angle from the antenna tilt angle, and the upper beam arrival distance is a distance from the cell position to a point where the upper beam reaches the ground surface. The degree of influence on users can be evaluated based on the ratio of the number of users who are affected by changing the tilt angle.
 例えば、チルト角が増加する場合、セルのカバー範囲が縮小するので、セルのエッジのユーザ端末102が影響を受ける。ユーザ影響度は、例えば、アンテナチルト角の推奨値への変更によって、当該セルのアッパービーム到達距離以遠となる距離区分に属するセッションログ数を、当該セルの全セッションログ数で除した値であり、当該セルの距離分布テーブル501から計算できる。そして、計算されたセッション数の割合が所定の閾値より大きければ、多くのユーザ端末が当該セルに収容できなくなるので、変更による悪影響があると判定する。アッパービーム到達距離は、アンテナチルト角、アンテナ高、垂直半値角を用いて計算できる。 For example, when the tilt angle increases, the cell coverage is reduced, and the user terminal 102 at the cell edge is affected. The user influence level is, for example, a value obtained by dividing the number of session logs belonging to the distance category that is longer than the upper beam reach distance of the cell by the change to the recommended value of the antenna tilt angle by the total number of session logs of the cell. , From the distance distribution table 501 of the cell. And if the ratio of the calculated number of sessions is larger than a predetermined threshold value, since many user terminals cannot be accommodated in the said cell, it determines with there being a bad influence by a change. The upper beam reachable distance can be calculated using the antenna tilt angle, antenna height, and vertical half-value angle.
 また、チルト角が減少する場合、セルのカバー範囲が拡大するので、隣接セルへの干渉が増加する。このため、アッパービーム到達距離の変化量をユーザ影響度として、これが所定の閾値より大きいかを判定する。この閾値は、隣接セルへの干渉量の変化が許容値を超えるアッパービーム到達距離の変化量で決定される。例えば、都市と郊外とでは、無線基地局103の設置密度が異なることから、都市部では小さな閾値を用い、郊外部では大きな閾値を用いるとよい。なお、緯度、経度、および標高データから構成される周辺地形データ1601を考慮して閾値を決定してもよい。すなわち、電波伝搬経路の途中に標高の高い箇所があれば、当該箇所の後背部では電波の到達距離が短くなる。 Also, when the tilt angle is decreased, the cell coverage is expanded, so that interference with adjacent cells increases. For this reason, the amount of change in the upper beam reach is used as the user influence level to determine whether this is greater than a predetermined threshold. This threshold is determined by the amount of change in the upper beam arrival distance in which the change in the amount of interference with the adjacent cell exceeds the allowable value. For example, since the installation density of the radio base stations 103 is different between a city and a suburb, it is preferable to use a small threshold value in an urban area and a large threshold value in a suburban area. Note that the threshold value may be determined in consideration of surrounding terrain data 1601 configured from latitude, longitude, and altitude data. That is, if there is a location with a high altitude in the middle of the radio wave propagation path, the reach of the radio wave is shortened at the back of the location.
 図16に周辺地形データ1601の一例を示す。図16の周辺地形データ1601は、緯度と経度からなる各地点の、標高を含む。角度の変化量の閾値は、電波到達地点とアンテナ高との標高差や周辺地形を考慮してもよい。 FIG. 16 shows an example of the surrounding terrain data 1601. The surrounding terrain data 1601 in FIG. 16 includes the altitude of each point composed of latitude and longitude. The threshold for the amount of change in angle may take into account the elevation difference between the radio wave arrival point and the antenna height and the surrounding terrain.
 そして、アッパービーム到達距離の変化量が所定の閾値より大きければ、隣接セルへの干渉量が大きくなり、隣接セルの通信環境の変化が大きいので、隣接セルに収容されているユーザ端末102に悪影響が生じると判定する。一方、アッパービーム到達距離の変化量が所定の閾値以内であれば、隣接セルに収容されているユーザ端末102に悪影響が生じないと判定する。 If the amount of change in the upper beam reach distance is larger than a predetermined threshold, the amount of interference with the adjacent cell increases, and the change in the communication environment of the adjacent cell is large, which adversely affects the user terminal 102 accommodated in the adjacent cell. Is determined to occur. On the other hand, if the amount of change in the upper beam reach is within a predetermined threshold, it is determined that there is no adverse effect on the user terminal 102 accommodated in the adjacent cell.
 チルト角の変更によるトラフィックへの悪影響があれば、所定のチルトステップ分だけ現在の値に近づけるように、推奨チルト値を変更し(1007)、ステップ1002に戻り、変更された推奨チルト値がチルト可変範囲内であるかを判定する。 If there is an adverse effect on traffic due to the change of the tilt angle, the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1007), and the process returns to step 1002, and the changed recommended tilt value is tilted. Determine if it is within the variable range.
 一方、チルト角の変更によるトラフィックへの悪影響がなければ、推奨チルト値をアンテナのチルト角の調整値に決定する(1005)。 On the other hand, if there is no adverse effect on traffic due to the change of the tilt angle, the recommended tilt value is determined as the adjustment value of the antenna tilt angle (1005).
 図10に示すチルト調整値決定処理では、輻輳している周波数のメインビームがトラフィック集中エリアに向くようにチルト角の調整値を決定する。このため、単一バンドで運用されるセルのトラフィック集中による輻輳を解消できる。また、複数バンドで運用されるセルにおいても、他のバンドのトラフィックへ影響せずにトラフィック集中による輻輳を解消できる。 In the tilt adjustment value determination process shown in FIG. 10, the adjustment value of the tilt angle is determined so that the main beam of the congested frequency faces the traffic concentration area. For this reason, congestion due to traffic concentration of cells operated in a single band can be eliminated. Further, even in a cell operated in a plurality of bands, congestion due to traffic concentration can be eliminated without affecting traffic in other bands.
 図7に戻り説明を続ける。分析サーバ113は、決定したチルト調整値を、分析結果情報として分析結果蓄積サーバ115に送信する(707)。分析結果蓄積サーバ115は、受信した分析結果情報を分析結果情報テーブル601に蓄積する(708)。分析結果蓄積サーバ115から送信されるチルト角の調整値は、ノード識別子、周波数識別子、セル識別子、及び設定変更情報(パラメータ名、変更後の値)を含む。例えば、設定変更情報が、パラメータ名=チルト角、変更後の値=+5度である場合、アンテナのチルト角を5度下向きに変更すべきことを意味する。 Referring back to FIG. The analysis server 113 transmits the determined tilt adjustment value to the analysis result accumulation server 115 as analysis result information (707). The analysis result accumulation server 115 accumulates the received analysis result information in the analysis result information table 601 (708). The tilt angle adjustment value transmitted from the analysis result storage server 115 includes a node identifier, a frequency identifier, a cell identifier, and setting change information (parameter name, value after change). For example, if the setting change information is parameter name = tilt angle and value after change = + 5 degrees, this means that the tilt angle of the antenna should be changed downward by 5 degrees.
 クライアント114は、ネットワーク管理者からの指示入力に従って、分析結果情報を分析結果蓄積サーバ115に要求する(709)。ネットワーク管理者が入力する指示は、分析結果を表示したいセルの識別子を含み、さらに、分析結果を表示したい周波数識別子や日時を含んでもよい。 The client 114 requests analysis result information from the analysis result storage server 115 in accordance with an instruction input from the network administrator (709). The instruction input by the network administrator includes an identifier of a cell for which the analysis result is to be displayed, and may further include a frequency identifier and a date / time for which the analysis result is to be displayed.
 分析結果蓄積サーバ115は、クライアント114からの要求に従って、分析結果情報テーブル601から分析結果情報を選択し、クライアント114に送信する(710)。 The analysis result storage server 115 selects the analysis result information from the analysis result information table 601 according to the request from the client 114, and transmits it to the client 114 (710).
 クライアント114は、分析結果蓄積サーバ115から受信した分析結果情報を画面に表示する(711)。ネットワーク管理者は、クライアント114に表示された調整値を見てアンテナの設定を変更して、アンテナのビーム方向を変更する指示を基地局管理サーバ106に送信する。 The client 114 displays the analysis result information received from the analysis result storage server 115 on the screen (711). The network administrator looks at the adjustment value displayed on the client 114, changes the antenna setting, and transmits an instruction to change the beam direction of the antenna to the base station management server 106.
 なお、分析サーバ113は、決定された調整値をクライアント114に直接送信してもよい。 Note that the analysis server 113 may directly transmit the determined adjustment value to the client 114.
 また、分析サーバ113が決定された調整値を基地局管理サーバ106に送信し、基地局管理サーバ106が、管理者による操作を介さずに、アンテナのビーム方向を変更してもよい。 Further, the adjustment value determined by the analysis server 113 may be transmitted to the base station management server 106, and the base station management server 106 may change the beam direction of the antenna without an operation by the administrator.
 <変形例1>
 本発明の実施例の変形例としてトラフィック集中エリアを決定する別の方法を説明する。図11は、トラフィック集中エリア特定処理の別の例のフローチャートである。
<Modification 1>
Another method for determining the traffic concentration area will be described as a modification of the embodiment of the present invention. FIG. 11 is a flowchart of another example of the traffic concentration area specifying process.
 まず、トラフィック集中エリア特定プログラム132は、作成されたヒストグラムから、ログ数(セッション数)が多い上位三つの距離区分を決定する(1101)。そして、ステップ1101で選択した各距離区分について、当該距離区分及びその前後の距離区分の三つの距離区分のログ数を合計する(1102)。その後、ステップ1102で計算された合計値が最も大きい距離区分を、トラフィック集中エリアに選択する(1103)。 First, the traffic concentration area specifying program 132 determines the top three distance categories with the largest number of logs (number of sessions) from the created histogram (1101). Then, for each distance section selected in step 1101, the number of logs of the three distance sections, that is, the distance section and the distance sections before and after the distance section are totaled (1102). Thereafter, the distance category having the largest total value calculated in step 1102 is selected as the traffic concentration area (1103).
 なお、ステップ1101において、ログ数が多い上位三つの距離区分を選択せず、全ての距離区分について、三つの距離区分のログ数の合計を比較してもよい。 In step 1101, the top three distance sections with the largest number of logs may not be selected, and the total number of logs of the three distance sections may be compared for all distance sections.
 図11に示すトラフィック集中エリア決定方法は、ログ数が少ない場合に、トラフィック集中エリアを正確に決定できる。 The traffic concentration area determination method shown in FIG. 11 can accurately determine the traffic concentration area when the number of logs is small.
 <変形例2>
 本発明の実施例の変形例としてチルト調整値を決定する別の方法を説明する。図12は、チルト調整値決定処理の別の例のフローチャートである。図12に示すチルト調整値決定処理は、複数周波数(周波数チャネル、または周波数バンド)で運用される場合において、トラフィックが集中している周波数以外の(トラフィックが比較的空いている)周波数のセルのメインビームを、低品質セルのトラフィック集中エリアに向けるチルト角を決定する。図12に示すチルト調整値決定処理は、低品質セルと位置及び電波の放射方向が同じで周波数の異なるセル(以下、異周波数セルと呼ぶ)に対して実施する。
<Modification 2>
Another method for determining the tilt adjustment value will be described as a modification of the embodiment of the present invention. FIG. 12 is a flowchart of another example of the tilt adjustment value determination process. The tilt adjustment value determination process shown in FIG. 12 is performed for a cell having a frequency other than the frequency at which traffic is concentrated (traffic is relatively free) when operated at a plurality of frequencies (frequency channels or frequency bands). Determine the tilt angle that directs the main beam to the traffic concentration area of the low quality cell. The tilt adjustment value determination process shown in FIG. 12 is performed for a cell having the same position and radio wave radiation direction and having a different frequency (hereinafter referred to as a different frequency cell).
 まず、チルト調整値決定プログラム133は、異周波数セル(例えば、輻輳していない高周波数帯)のメインビームがトラフィック集中エリアに向いているかによって、異周波数セルがトラフィック集中エリアをカバーしているかを判定する(1201)。当該異周波数セルがトラフィック集中エリアをカバーしていれば、アンテナのチルト角の変更は必要ないので、アンテナのチルト角を現状で維持することを決定する(1207)。 First, the tilt adjustment value determination program 133 determines whether the different frequency cell covers the traffic concentration area depending on whether the main beam of the different frequency cell (for example, a non-congested high frequency band) is directed to the traffic concentration area. Determine (1201). If the different frequency cell covers the traffic concentration area, it is not necessary to change the tilt angle of the antenna, so it is determined to maintain the tilt angle of the antenna at present (1207).
 一方、当該異周波数セルがトラフィック集中エリアをカバーしていなければ、チルト調整値決定プログラム133は、セル位置から決定されたトラフィック集中エリアまでの距離及びセル情報設定テーブル301に含まれるアンテナ高から、メインビームがトラフィック集中エリアに向くチルト値を推奨チルト値として算出する(1202)。 On the other hand, if the different frequency cell does not cover the traffic concentration area, the tilt adjustment value determination program 133 determines the distance from the cell position to the determined traffic concentration area and the antenna height included in the cell information setting table 301. The tilt value at which the main beam faces the traffic concentration area is calculated as a recommended tilt value (1202).
 そして、チルト調整値決定プログラム133は、算出された推奨チルト値がチルト可変範囲内であるか、すなわち、セル設定情報テーブル301のチルト角最大値と最小値の範囲内かを判定する(1203)。推奨チルト値がチルト可変範囲外であれば、所定のチルトステップ分だけ現在の値に近づけるように、推奨チルト値を変更し(1208)、ステップ1203に戻り、変更された推奨チルト値がチルト可変範囲内であるかを判定する。 Then, the tilt adjustment value determination program 133 determines whether the calculated recommended tilt value is within the tilt variable range, that is, within the range between the maximum tilt angle value and the minimum value of the cell setting information table 301 (1203). . If the recommended tilt value is outside the tilt variable range, the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1208), and the process returns to step 1203, and the changed recommended tilt value is variable in tilt. Determine if it is within range.
 一方、推奨チルト値がチルト可変範囲内であれば、推奨チルト値が現在のチルト値と等しいかを判定する(1204)。推奨チルト値が現在のチルト値と等しければ、アンテナのチルト角の変更は必要ないので、アンテナのチルト角を現状で維持することを決定する(1207)。 On the other hand, if the recommended tilt value is within the tilt variable range, it is determined whether the recommended tilt value is equal to the current tilt value (1204). If the recommended tilt value is equal to the current tilt value, it is not necessary to change the tilt angle of the antenna, so it is determined to maintain the tilt angle of the antenna at present (1207).
 一方、推奨チルト値が現在のチルト値と異なれば、チルト角の変更による影響を評価する。具体的には、距離別分布及び垂直半値角に対応する距離を用いて、チルト角の変更による現カバレッジ内のトラフィックへの影響を算出し、悪影響があるかを判定する(1205)。チルト角の変更による影響を評価する。ユーザへの影響度は、図10で前述したチルト調整値決定処理のステップ1004と同じ方法で判定すればよい。 On the other hand, if the recommended tilt value is different from the current tilt value, the effect of changing the tilt angle is evaluated. Specifically, the influence on the traffic in the current coverage due to the change of the tilt angle is calculated using the distance distribution and the distance corresponding to the vertical half-value angle, and it is determined whether there is an adverse effect (1205). Evaluate the effect of changing the tilt angle. The degree of influence on the user may be determined by the same method as in step 1004 of the tilt adjustment value determination process described above with reference to FIG.
 チルト角の変更によるトラフィックへの悪影響があれば、所定のチルトステップ分だけ現在の値に近づけるように、推奨チルト値を変更し(1208)、ステップ1203に戻り、変更された推奨チルト値がチルト可変範囲内であるかを判定する。 If there is an adverse effect on traffic due to the change of the tilt angle, the recommended tilt value is changed so as to approach the current value by a predetermined tilt step (1208), and the process returns to step 1203. Determine if it is within the variable range.
 一方、チルト角の変更によるトラフィックへの悪影響がなければ、推奨チルト値をアンテナのチルト角の調整値に決定する(1206)。 On the other hand, if there is no adverse influence on traffic due to the change of the tilt angle, the recommended tilt value is determined as the adjustment value of the antenna tilt angle (1206).
 図12に示すチルト調整値決定処理では、輻輳している周波数以外の周波数のメインビームがトラフィック集中エリアに向くようにチルト角の調整値を決定する。複数バンドが運用される場合、通常、電波の到達距離が長い低周波数バンドのセルが輻輳し、高周波数バンドのセルが空いている。このため、複数バンドで運用されるセルにおいて、低周波数バンドのセルのトラフィックを高周波数バンドのセルにオフロードし、トラフィック集中による輻輳を解消できる。なお、図12に示すチルト調整値決定処理は、バンド毎にアンテナのビーム方向を変更できる(例えば、バンド毎に異なるアンテナを使用している)場合に適用できる。 In the tilt adjustment value determination process shown in FIG. 12, the adjustment value of the tilt angle is determined so that the main beam having a frequency other than the congested frequency is directed to the traffic concentration area. When a plurality of bands are operated, cells in a low frequency band with a long radio wave reach are usually congested and cells in a high frequency band are vacant. For this reason, in a cell operated in a plurality of bands, it is possible to offload the traffic of the low frequency band cell to the cell of the high frequency band, and to eliminate congestion due to traffic concentration. The tilt adjustment value determination process shown in FIG. 12 can be applied when the beam direction of the antenna can be changed for each band (for example, a different antenna is used for each band).
 図13は、分析結果情報を表示する分析結果表示画面の一例を示す図である。 FIG. 13 is a diagram showing an example of an analysis result display screen for displaying analysis result information.
 分析結果表示画面は、セル表示領域1301、トラフィック表示領域1302及び分析結果表示領域1303を含む。 The analysis result display screen includes a cell display area 1301, a traffic display area 1302, and an analysis result display area 1303.
 セル表示領域1301は、分析結果が要求されたセルのカバー範囲をバンド毎に地図上に表示する。図示した例では、メインビームの到達範囲が実線で表示され、アッパービームの到達範囲が破線で表示される。さらに、トラフィック集中エリアがメッシュ状の地図に別な態様で(色や模様を付けて)表示される。 The cell display area 1301 displays the coverage of the cell for which the analysis result is requested on the map for each band. In the illustrated example, the reach range of the main beam is displayed with a solid line, and the reach range of the upper beam is displayed with a broken line. Furthermore, the traffic concentration area is displayed in a different manner (with a color or pattern) on the mesh-like map.
 トラフィック表示領域1302は、図9に示した距離区分毎のセッション数のヒストグラムと、メインビーム到達距離(実線)及びアッパービーム到達距離(破線)とを表示する。なお、トラフィック集中エリアに決定された距離区分が別な態様で(色や模様を付けて)表示される。 The traffic display area 1302 displays the histogram of the number of sessions for each distance category shown in FIG. 9, the main beam arrival distance (solid line), and the upper beam arrival distance (broken line). In addition, the distance division determined as the traffic concentration area is displayed in a different manner (with a color or a pattern).
 分析結果表示領域1303は、導出された調整値によってアンテナのチルト角を変更した場合のセルのカバー範囲の予想を表示する。図示した例では、チルト角変更前後のセルのカバー範囲が地図上に表示され、チルト角変更前後のメインビーム到達距離(実線)及びアッパービーム到達距離(破線)が距離区分毎のセッション数のヒストグラム上に表示される。 The analysis result display area 1303 displays the prediction of the cell coverage when the antenna tilt angle is changed according to the derived adjustment value. In the illustrated example, the cell coverage before and after the tilt angle change is displayed on the map, and the main beam arrival distance (solid line) and the upper beam arrival distance (dashed line) before and after the tilt angle change are a histogram of the number of sessions for each distance category. Displayed above.
 例えば、図13に示すセル表示領域1301及びトラフィック表示領域1302では、バンドBのメインビームはトラフィック集中エリアに向いているが、バンドAではトラフィック集中エリアはビームの範囲外(アッパービームより外側)であることが分かる。分析結果表示領域1303では、トラフィック集中エリアにバンドBのメインビームが向いていたが、チルト角の変更によってバンドAのメインビームが向くようになり、トラフィック集中エリアのユーザ端末102のバンドBからバンドAへのオフロードが期待できることが分かる。 For example, in the cell display area 1301 and the traffic display area 1302 shown in FIG. 13, the main beam of band B faces the traffic concentration area, but in band A, the traffic concentration area is outside the beam range (outside the upper beam). I understand that there is. In the analysis result display area 1303, the main beam of the band B is directed to the traffic concentration area, but the main beam of the band A is directed by changing the tilt angle, and the band B of the user terminal 102 in the traffic concentration area is changed to the band. It can be seen that off-road to A can be expected.
 以上に説明したように、本発明の実施例の分析サーバ113は、通信品質が低い低品質セルを検出する検出部(低品質セル検出処理プログラム131)と、検出された低品質セルにおいてトラフィックが集中しているトラフィック集中エリアを特定するエリア特定部(トラフィック集中エリア特定プログラム132)と、無線基地局103のアンテナのビーム方向の制御量を決定する決定部(チルト調整値決定プログラム133)とを有し、決定部は、トラフィック集中エリアに無線基地局103から送信される電波のビームが向くようにアンテナのビーム方向の制御量を決定する。このため、トラフィック集中エリアのユーザ端末102の受信電力が向上し、無線品質(CQI)が改善し、伝送レートが高い変調方式や符号化率(MCS)が使えることから、転送効率が向上し、高速通信が可能となり、その結果、セルのトラフィック容量が拡大し、トラフィックの集中による輻輳を緩和できる。これにより、ユーザ満足度を向上できる。さらに、無線リソース利用効率が向上するため、基地局の費用対効果が向上し通信事業者の満足度を向上できる。 As described above, the analysis server 113 according to the embodiment of the present invention includes a detection unit (low quality cell detection processing program 131) that detects a low quality cell with low communication quality, and traffic is detected in the detected low quality cell. An area specifying unit (traffic concentration area specifying program 132) for specifying a concentrated traffic concentration area and a determining unit (tilt adjustment value determining program 133) for determining a control amount of the beam direction of the antenna of the radio base station 103 The determining unit determines a control amount of the beam direction of the antenna so that a radio beam transmitted from the radio base station 103 is directed to the traffic concentration area. For this reason, the reception power of the user terminal 102 in the traffic concentration area is improved, the radio quality (CQI) is improved, and a modulation scheme and a coding rate (MCS) with a high transmission rate can be used. High-speed communication is possible. As a result, the traffic capacity of the cell is expanded, and congestion due to traffic concentration can be alleviated. Thereby, user satisfaction can be improved. Furthermore, since the radio resource utilization efficiency is improved, the cost effectiveness of the base station is improved and the satisfaction of the communication carrier can be improved.
 また、決定部は、低品質セルのビームがトラフィック集中エリアに向くようにアンテナのビーム方向の制御量を決定するので、他の周波数のトラフィックへ影響せずにトラフィック集中による輻輳を解消できる。また、高周波の電波が届きにくい箇所でもトラフィック集中による輻輳を解消できる。 In addition, since the determining unit determines the control amount of the beam direction of the antenna so that the beam of the low quality cell is directed to the traffic concentration area, the congestion due to the traffic concentration can be solved without affecting the traffic of other frequencies. In addition, congestion due to traffic concentration can be eliminated even in places where high-frequency radio waves are difficult to reach.
 また、決定部は、低品質セルと異なる周波数のセルのビームがトラフィック集中エリアに向くようにアンテナのビーム方向の制御量を決定するので、空いている周波数の無線リソースを活用して、トラフィック集中による輻輳を解消できる。特に、ユーザ端末102を高周波帯にオフロードすることによって、高速通信が可能となり、トラフィック集中による輻輳を解消できる。また、輻輳している周波数のビーム方向を制御するとユーザへの影響が大きい場合でも、トラフィック集中による輻輳を解消できる。 In addition, the decision unit decides the control amount of the antenna beam direction so that the beam of the cell with a frequency different from that of the low quality cell is directed to the traffic concentration area. Can eliminate congestion. In particular, by offloading the user terminal 102 to a high frequency band, high-speed communication is possible and congestion due to traffic concentration can be eliminated. Further, if the beam direction of the congested frequency is controlled, congestion due to traffic concentration can be eliminated even when the influence on the user is large.
 また、エリア特定部は、ユーザ端末102と無線基地局103との間で設定されているセッション数のアンテナからの距離による分布を作成し、各距離区分毎に、当該距離区分のセッション数と前後の距離区分のセッション数との合計値を計算し、合計値が最も大きい距離区分をトラフィック集中エリアとして特定するので、ログ数が少ない場合でも、トラフィック集中エリアを正確に決定できる。 In addition, the area identification unit creates a distribution of the number of sessions set between the user terminal 102 and the radio base station 103 according to the distance from the antenna, and for each distance segment, the number of sessions in the distance segment Since the total value with the number of sessions in the distance category is calculated and the distance category having the largest total value is specified as the traffic concentration area, the traffic concentration area can be accurately determined even when the number of logs is small.
 また、決定部は、アンテナのビーム方向の変更によって、セルのカバー範囲が縮小する場合、当該セルに収容できなくなるユーザ端末102の割合が所定の閾値より大きければ、ビーム方向の制御量を小さくするので、エッジユーザが当該セルから追い出されることによる通信の切断を抑制できる。 In addition, when the coverage of the cell is reduced by changing the beam direction of the antenna, the determination unit reduces the control amount in the beam direction if the ratio of the user terminals 102 that cannot be accommodated in the cell is larger than a predetermined threshold. Therefore, it is possible to suppress disconnection of communication due to the edge user being evicted from the cell.
 また、決定部は、アンテナのビーム方向の変更によって、セルのカバー範囲が拡大する場合、当該セルから隣接セルへの干渉量の変化が所定の閾値より大きければ、ビーム方向の制御量を小さくするので、隣接セルに収容されているユーザへの影響を抑制できる。また、現在収容されていないユーザ端末102の当該セルへの流入による輻輳を抑制できる。 In addition, when the coverage of the cell is expanded by changing the beam direction of the antenna, the determination unit decreases the control amount in the beam direction if the change in the amount of interference from the cell to the adjacent cell is larger than a predetermined threshold. Therefore, the influence on the user accommodated in the adjacent cell can be suppressed. Further, congestion due to the inflow of the user terminal 102 that is not currently accommodated into the cell can be suppressed.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.
101 無線通信ネットワークシステム
102 ユーザ端末
103 無線基地局
104 バックホールネットワーク
105 コアネットワーク
106 基地局管理サーバ
111 分析システム
112 基地局情報集約サーバ
113 分析サーバ
114 データベース
115 出力サーバ
101 wireless communication network system 102 user terminal 103 wireless base station 104 backhaul network 105 core network 106 base station management server 111 analysis system 112 base station information aggregation server 113 analysis server 114 database 115 output server

Claims (15)

  1.  無線通信システムの通信品質を分析する分析サーバであって、
     プログラムを実行するプロセッサと、前記プロセッサがアクセスする記憶装置とを備え、
     前記無線通信システムは、端末を収容する複数の基地局装置を有し、
     前記分析サーバは、
     通信品質が低い低品質セルを検出する検出部と、
     前記検出された低品質セルにおいてトラフィックが集中しているトラフィック集中エリアを特定するエリア特定部と、
     前記基地局装置のアンテナのビーム方向の制御量を決定する決定部とを有し、
     前記決定部は、前記基地局装置から送信される電波のビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析サーバ。
    An analysis server for analyzing communication quality of a wireless communication system,
    A processor that executes a program; and a storage device that is accessed by the processor;
    The wireless communication system has a plurality of base station devices that accommodate terminals,
    The analysis server
    A detection unit for detecting a low-quality cell having low communication quality;
    An area identifying unit that identifies a traffic concentration area in which traffic is concentrated in the detected low quality cell;
    A determining unit that determines a control amount of a beam direction of the antenna of the base station device;
    The determination server determines a control amount of a beam direction of the antenna so that a beam of radio waves transmitted from the base station device is directed to the traffic concentration area.
  2.  請求項1に記載の分析サーバであって、
     前記決定部は、低品質セルのビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析サーバ。
    The analysis server according to claim 1,
    The determination server determines a control amount of the beam direction of the antenna so that a beam of a low quality cell is directed to the traffic concentration area.
  3.  請求項1に記載の分析サーバであって、
     前記決定部は、低品質セルと異なる周波数のセルのビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析サーバ。
    The analysis server according to claim 1,
    The determination server determines a control amount of a beam direction of the antenna so that a beam of a cell having a frequency different from that of the low quality cell is directed to the traffic concentration area.
  4.  請求項1に記載の分析サーバであって、
     前記エリア特定部は、
     前記端末と前記基地局装置との間で設定されているセッション数の前記アンテナからの距離による分布を作成し、
     前記作成された分布の距離区分毎に、当該距離区分のセッション数と前後の距離区分のセッション数との合計値を計算し、
     前記計算された合計値が最も大きい距離区分をトラフィック集中エリアとして特定することを特徴とする分析サーバ。
    The analysis server according to claim 1,
    The area specifying unit
    Create a distribution by the distance from the antenna of the number of sessions set between the terminal and the base station device,
    For each distance section of the created distribution, calculate the total value of the number of sessions in the distance section and the number of sessions in the distance section before and after the distance section,
    The analysis server characterized in that the distance division having the largest calculated total value is specified as a traffic concentration area.
  5.  請求項1に記載の分析サーバであって、
     前記決定部は、前記アンテナのビーム方向の変更によって、セルのカバー範囲が縮小する場合、当該セルに収容できなくなる端末の割合が所定の閾値より大きければ、ビーム方向の制御量を小さくすることを特徴とする分析サーバ。
    The analysis server according to claim 1,
    When the coverage of a cell is reduced due to a change in the beam direction of the antenna, the determination unit reduces the control amount in the beam direction if the percentage of terminals that cannot be accommodated in the cell is greater than a predetermined threshold. Feature analysis server.
  6.  請求項1に記載の分析サーバであって、
     前記決定部は、前記アンテナのビーム方向の変更によって、セルのカバー範囲が拡大する場合、当該セルから隣接セルへの干渉量の変化が所定の閾値より大きければ、ビーム方向の制御量を小さくすることを特徴とする分析サーバ。
    The analysis server according to claim 1,
    The determination unit reduces the control amount in the beam direction when a change in the interference amount from the cell to the adjacent cell is larger than a predetermined threshold when the cell coverage is expanded by changing the beam direction of the antenna. An analysis server characterized by that.
  7.  無線通信システムの通信品質を分析する分析サーバで実行される分析プログラムであって、
     前記無線通信システムは、端末を収容する複数の基地局装置を有し、
     前記分析サーバは、プログラムを実行するプロセッサと、前記プロセッサがアクセスする記憶装置とを有し、
     前記プログラムは、
     通信品質が低い低品質セルを検出する検出手順と、
     前記検出された低品質セルにおいてトラフィックが集中しているトラフィック集中エリアを特定するエリア特定手順と、
     前記基地局装置のアンテナのビーム方向の制御量を決定する決定手順とを前記プロセッサに実行させるものであって、
     前記決定手順では、前記プロセッサは、前記基地局装置から送信される電波のビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析プログラム。
    An analysis program executed by an analysis server for analyzing communication quality of a wireless communication system,
    The wireless communication system has a plurality of base station devices that accommodate terminals,
    The analysis server includes a processor that executes a program, and a storage device that the processor accesses.
    The program is
    A detection procedure for detecting low quality cells with low communication quality;
    An area identification procedure for identifying a traffic concentration area in which traffic is concentrated in the detected low quality cell;
    A determination procedure for determining a control amount of the beam direction of the antenna of the base station apparatus, and
    In the determination procedure, the processor determines a control amount of the beam direction of the antenna so that a beam of radio waves transmitted from the base station device is directed to the traffic concentration area.
  8.  請求項7に記載の分析プログラムであって、
     前記決定手順では、前記プロセッサは、低品質セルのビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析プログラム。
    The analysis program according to claim 7,
    In the determination procedure, the processor determines a control amount of a beam direction of the antenna so that a beam of a low quality cell is directed to the traffic concentration area.
  9.  請求項7に記載の分析プログラムであって、
     前記決定手順では、前記プロセッサは、低品質セルと異なる周波数のセルのビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析プログラム。
    The analysis program according to claim 7,
    In the determination procedure, the processor determines the control amount of the beam direction of the antenna so that a beam of a cell having a frequency different from that of the low quality cell is directed to the traffic concentration area.
  10.  請求項7に記載の分析プログラムであって、
     前記エリア特定手順では、前記プロセッサは、
     前記端末と前記基地局装置との間で設定されているセッション数の前記アンテナからの距離による分布を作成し、
     前記作成された分布の距離区分毎に、当該距離区分のセッション数と前後の距離区分のセッション数との合計値を計算し、
     前記計算された合計値が最も大きい距離区分をトラフィック集中エリアとして特定することを特徴とする分析プログラム。
    The analysis program according to claim 7,
    In the area identification procedure, the processor
    Create a distribution by the distance from the antenna of the number of sessions set between the terminal and the base station device,
    For each distance section of the created distribution, calculate the total value of the number of sessions in the distance section and the number of sessions in the distance section before and after the distance section,
    An analysis program characterized by specifying a distance category having the largest calculated total value as a traffic concentration area.
  11.  請求項7に記載の分析プログラムであって、
     前記決定手順では、前記プロセッサは、前記アンテナのビーム方向の変更によって、セルのカバー範囲が縮小する場合、当該セルに収容できなくなる端末の割合が所定の閾値より大きければ、ビーム方向の制御量を小さくすることを特徴とする分析プログラム。
    The analysis program according to claim 7,
    In the determination procedure, when the coverage of a cell is reduced due to a change in the beam direction of the antenna, the processor determines a control amount in the beam direction if the percentage of terminals that cannot be accommodated in the cell is greater than a predetermined threshold. An analysis program characterized by miniaturization.
  12.  請求項7に記載の分析プログラムであって、
     前記決定手順では、前記プロセッサは、前記アンテナのビーム方向の変更によって、セルのカバー範囲が拡大する場合、当該セルから隣接セルへの干渉量の変化が所定の閾値より大きければ、ビーム方向の制御量を小さくすることを特徴とする分析プログラム。
    The analysis program according to claim 7,
    In the determination procedure, the processor controls the beam direction if the change in the amount of interference from the cell to the adjacent cell is larger than a predetermined threshold when the cell coverage is expanded by changing the beam direction of the antenna. An analysis program characterized by reducing the amount.
  13.  無線通信システムの通信品質を分析する分析サーバで実行される分析方法であって、
     前記無線通信システムは、端末を収容する複数の基地局装置を有し、
     前記分析サーバは、プログラムを実行するプロセッサと、前記プロセッサがアクセスする記憶装置とを有し、
     前記方法は、
     前記プロセッサが、通信品質が低い低品質セルを検出する検出手順と、
     前記プロセッサが、前記検出された低品質セルにおいてトラフィックが集中しているトラフィック集中エリアを特定するエリア特定手順と、
     前記プロセッサが、前記基地局装置のアンテナのビーム方向の制御量を決定する決定手順とを含み、
     前記決定手順では、前記プロセッサは、前記基地局装置から送信される電波のビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析方法。
    An analysis method executed by an analysis server for analyzing communication quality of a wireless communication system,
    The wireless communication system has a plurality of base station devices that accommodate terminals,
    The analysis server includes a processor that executes a program, and a storage device that the processor accesses.
    The method
    A detection procedure in which the processor detects a low quality cell with low communication quality;
    An area identification procedure for the processor to identify a traffic concentration area where traffic is concentrated in the detected low quality cell;
    A determination procedure for determining a control amount of a beam direction of the antenna of the base station apparatus;
    In the determination procedure, the processor determines a control amount of the beam direction of the antenna so that a beam of radio waves transmitted from the base station device is directed to the traffic concentration area.
  14.  請求項13に記載の分析方法であって、
     前記決定手順では、前記プロセッサは、低品質セルのビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析方法。
    The analysis method according to claim 13, comprising:
    In the determination procedure, the processor determines a control amount of a beam direction of the antenna so that a beam of a low quality cell is directed to the traffic concentration area.
  15.  請求項13に記載の分析方法であって、
     前記決定手順では、前記プロセッサは、低品質セルと異なる周波数のセルのビームが前記トラフィック集中エリアに向くように前記アンテナのビーム方向の制御量を決定することを特徴とする分析方法。
    The analysis method according to claim 13, comprising:
    In the determination procedure, the processor determines a control amount of a beam direction of the antenna so that a beam of a cell having a frequency different from that of a low quality cell is directed to the traffic concentration area.
PCT/JP2016/077734 2016-09-20 2016-09-20 Analysis server, analysis program, and analysis method WO2018055678A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077734 WO2018055678A1 (en) 2016-09-20 2016-09-20 Analysis server, analysis program, and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/077734 WO2018055678A1 (en) 2016-09-20 2016-09-20 Analysis server, analysis program, and analysis method

Publications (1)

Publication Number Publication Date
WO2018055678A1 true WO2018055678A1 (en) 2018-03-29

Family

ID=61689390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077734 WO2018055678A1 (en) 2016-09-20 2016-09-20 Analysis server, analysis program, and analysis method

Country Status (1)

Country Link
WO (1) WO2018055678A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191752A (en) * 1997-12-25 1999-07-13 Hitachi Ltd Radio base station and radio communication area forming method
JP2007028091A (en) * 2005-07-14 2007-02-01 Ntt Docomo Inc Base station and transmitting/receiving method in cdma system
JP2012054736A (en) * 2010-09-01 2012-03-15 Hitachi Ltd Mobile communication system and load distribution method for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191752A (en) * 1997-12-25 1999-07-13 Hitachi Ltd Radio base station and radio communication area forming method
JP2007028091A (en) * 2005-07-14 2007-02-01 Ntt Docomo Inc Base station and transmitting/receiving method in cdma system
JP2012054736A (en) * 2010-09-01 2012-03-15 Hitachi Ltd Mobile communication system and load distribution method for the same

Similar Documents

Publication Publication Date Title
US10477426B1 (en) Identifying a cell site as a target for utilizing 5th generation (5G) network technologies and upgrading the cell site to implement the 5G network technologies
KR20210015728A (en) Optimum network performance improvement solutions selection systems and methods
US9241279B2 (en) Communication control apparatus, communication control system and communication control method
JP2015525027A (en) Method and system for cellular network load balancing
US10979969B2 (en) Voting to connect to a wireless network
US20170041817A1 (en) Communication management apparatus, wireless terminal, and non-transitory machine-readable storage medium
CN1498000A (en) Method, device of designing base station overlay area in mobile communication system and its program
US20220256364A1 (en) Identification and prioritization of optimum capacity solutions in a telecommunications network
US11659425B2 (en) Systems and methods for detecting interference probability within a radio frequency band
US11706719B2 (en) Dynamic operation parameter optimization and modulation of a wireless network
US11240679B2 (en) Multidimensional analysis and network response
KR102375227B1 (en) Server, method and computer program for calculating path loss
WO2018037549A1 (en) Analysis server and analysis program
CN108271184A (en) VoLTE method for processing business and device
WO2018055678A1 (en) Analysis server, analysis program, and analysis method
US11736960B2 (en) Node placement service
US11729636B1 (en) Network clustering determination
US9565621B2 (en) Information processing device, communication control method, and mobile communication system
US20230388939A1 (en) Generating a propagation model based on sampling by user equipment in idle mode
US20240259868A1 (en) System, method, and non-transitory computer-readable media for forecasting capacity breaches in a mobile network
CN112333707B (en) Public and private network collaborative optimization method, device and equipment and computer storage medium
US11395151B2 (en) Analyzing a communication network device, based on coverage analyses associated with decommissioning the communication network device, to determine next actions for 5G rollout
US11277318B2 (en) Analyzing a communication network device, based on capacity analyses associated with decommissioning the communication network device, to determine next actions
US20200351683A1 (en) System and method for qualifying service in multi-spectrum access network
US20230308149A1 (en) Dynamic beamforming in a cellular network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16916749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP