WO2018054591A1 - Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte - Google Patents

Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte Download PDF

Info

Publication number
WO2018054591A1
WO2018054591A1 PCT/EP2017/069600 EP2017069600W WO2018054591A1 WO 2018054591 A1 WO2018054591 A1 WO 2018054591A1 EP 2017069600 W EP2017069600 W EP 2017069600W WO 2018054591 A1 WO2018054591 A1 WO 2018054591A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
capacitor
group
supercapacitor
och
Prior art date
Application number
PCT/EP2017/069600
Other languages
German (de)
French (fr)
Inventor
Pallavi Verma
Andreas GONSER
Mathias Widmaier
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2018054591A1 publication Critical patent/WO2018054591A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/02Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • Aqueous electrolyte for a condenser use of the electrolyte and condenser containing the electrolyte
  • the present invention relates to an aqueous electrolyte for a
  • Capacitor Furthermore, it relates to a use of the electrolyte. Finally, the present invention relates to a capacitor containing the electrolyte.
  • Electrochemical energy storage already plays an important role in today's society and will in future be driven by the increasing use of alternative energy sources and the increasing electrification of energy
  • Supercapacitors are understood as meaning double-layer capacitors in which the electrolyte is the ion-conductive connection between two electrodes.
  • the electrodes are made of carbon or its derivatives with a very high static double-layer capacity. The proportion of Faraday pseudocapacity in the total capacity is low.
  • Pseudocondensers store electrical energy using reversible energy
  • Hybrid supercapacitors such as
  • Lithium ion capacitors may use as electrode material mixtures of several chemical substances with both Faraday and capacitive active materials. The electrodes thus obtained are hybridized
  • Electrodes designated. One of the most important components of all capacitors is the electrolyte, which affects the life, power density, capacitance, and ESR (equivalent series resistance) of a capacitor. Electrolytes can be liquid, solid or gel. In this case, liquid electrolytes are the most common.
  • the liquid electrolytes are subdivided into aqueous, organic and ionic liquids.
  • Aqueous electrolytes have the advantage that they are associated with low costs and are non-toxic.
  • As the acidic electrolyte for example, aqueous sulfuric acid can be used.
  • Sodium hydroxide solution, potassium hydroxide solution and aqueous solutions of lithium hydroxide are as alkaline
  • Electrolytes suitable These acidic and alkaline electrolytes have a voltage window of typically about 1 volt. A higher one
  • Voltage window of approx. 2 V can be achieved with neutral electrolytes.
  • aqueous solutions of lithium sulfate, sodium sulfate, potassium sulfate, sodium nitrite or potassium chloride can be used.
  • the electrolyte for a capacitor contains at least one conductive salt of the formula XA.
  • X is a cation selected from the group consisting of
  • H + Li + , Na + and K + .
  • the cation is H + , it is an acidic electrolyte. If, however, the cation is one of the alkali metal cations Li + , Na + or K + , then the electrolyte is a neutral one
  • Electrolyte is an organic anion or N (SO 2 F) 2 " .
  • each anion is at least one
  • Hydrocarbon radical including partially or fully halogenated radicals understood.
  • the electrolyte contains water as the solvent but may optionally contain other water-miscible solvents. However, to obtain the benefits of the nontoxicity of a fully aqueous electrolyte, it is preferred that it contains water as the sole solvent.
  • the electrolyte which is an acidic electrolyte
  • it is an alternative to previously known aqueous acidic electrolytes which have a relatively low acidity. He has a low corrosion rate compared to metallic Components of the capacitor, such as an aluminum conductor.
  • Organic anions for the electrolyte which have a particularly advantageous combination of conductivity and molecular weight, are selected from the group consisting of CO 2 CF 3 ' , SO 3 CH 3 ' , SO 3 CF 3 ' , SO 3 C 4 F 9 ' ,
  • the electrolyte preferably contains at least one transition metal complex, in particular a transition metal complex of at least one transition metal selected from the group consisting of cobalt, chromium, iron, copper and titanium.
  • the electrolyte can act as a redox electrolyte, which contributes to the capacitance of the capacitor.
  • the transition metal complex preferably contains at least one ligand which is selected from the group consisting of ammonia (NH3), cyanide (CN), perchlorate (CI0), thiocyanate (SCN), and ethylenediaminetetraacetate (EDTA 4).
  • the transition metal complex has the formula ML X , wherein M is the transition metal and L is one of the group
  • CI0 4 "x may in particular a value of 1 or 3..
  • x may in particular have a value of 1.
  • Such complexes stabilize the Transition metal ions of the complexes in aqueous solution and allow easy charge transfer.
  • the concentration of the transition metal complex in the electrolyte is preferably in the range of 0.01 mol / L to 0.5 mol / L. In this way, the capacity contribution of the electrolyte can be adjusted as needed.
  • the electrolyte is particularly suitable for use in a supercapacitor, in a pseudocondenser or in a hybrid supercapacitor.
  • a capacitor according to the invention can be obtained.
  • the anode and the cathode of the capacitor each contain at least one porous carbon.
  • the electrolyte may optionally be acidic or neutral.
  • the cation of the electrolyte in this embodiment is H + , that is, the electrolyte is an acidic electrolyte. This allows protonation of the anode material.
  • Pseudocapacitor each contain at least one substance selected from the group consisting of MnCh, RuCh, Fe30 4 , Co30 4 , NiC0 2 0, Co (OH) 2 , Ni (OH) 2 , NiO, polyaniline (PANI), polypyrrole ( PPy), poly (3,4-ethylenedioxythiophene) (PEDOT), poly (p-phenylene) and polyacetylene. These substances represent a well protonatable electrode material.
  • the electrodes may additionally have a porous
  • the capacitor is a hybrid supercapacitor.
  • the cation of the electrolyte is selected from the group consisting of Li + , Na + and K + , ie the electrolyte is a neutral electrolyte. He has a big window of tension.
  • the anode and / or the cathode of the hybrid supercapacitor contains at least one porous carbon and its cathode contains, for example, LiMn20 4 .
  • LiMn20 4 can function as an ion-storing material and thus has Faraday activity
  • the porous carbon of the anode acts as a capacitive material.
  • the porous carbon is selected from the group consisting of carbon nanotubes, carbon nanofibers, graphene, functionalized graphene, activated carbon, and mixtures thereof.
  • these carbon modifications enable a fast supply of energy to the electrode, so that it improves its electrical conductivity. Due to the high porosity of these carbon modifications, they can also function as high-current shock absorbers by surface ion absorption when at least one electrode of the capacitor contains both Faraday and capacitive materials.
  • Suitable collectors or current collectors for the capacitor may in particular consist of a metal foil or a metal foam, wherein the metal is selected from the group consisting of nickel, titanium,
  • Fig. 1a shows schematically an uncharged supercapacitor according to an embodiment of the invention.
  • Fig. 1b schematically shows a charged supercapacitor according to an embodiment of the invention.
  • Fig. 2a shows schematically an uncharged pseudocondenser according to
  • FIG. 2b schematically shows a charged pseudocondenser according to FIG.
  • FIG. 3a shows schematically an uncharged hybrid supercapacitor according to an embodiment of the invention.
  • Fig. 3b shows schematically a charged hybrid supercapacitor according to an embodiment of the invention.
  • a supercapacitor 11 has an anode 21 made of activated carbon. This is applied to a first collector 3, which consists of a nickel foil. A cathode 41 of the supercapacitor 11 is also made of activated carbon and is applied to a second collector 5, which also consists of a nickel foil. The anode 21 and the cathode 41 are separated from a cellulose separator, not shown. Between the anode 21 and the cathode 41, an electrolyte 61 is arranged. This is a solution of 1 mol / l HN (SO 2 CF 3) 2 in water. When charging the supercapacitor, protons of the conducting salt accumulate on the surface of the anode 21 and form an electrical double layer there. A second electrical double layer is formed by attaching the anions of the conductive salt to the surface of the cathode 41.
  • a capacitor is designed as a pseudo-capacitor 12. This one is different from that
  • Supercapacitor 11 in that its anode 22 is made of ruthenium oxide. Its cathode 42 is also made of ruthenium oxide.
  • the electrolyte 62 of the pseudocapacitor 12 has the same composition as the electrolyte 61 of the supercapacitor 11. When the pseudo-capacitor 12 is charged, the anode material according to formula 1 is protonated:
  • a capacitor is designed as a hybrid supercapacitor 13. This differs from the supercapacitor 11 and the
  • Pseudo condenser 12 is that its anode 23 is made of activated carbon and 43 is its cathode from LiMn20. 4
  • Hybrid supercapacitor 13 is a solution of 1 mol / l LiN (SO 2 CF 3) 2 in
  • Lithium ions of the electrolyte 63 resulting either from the dissociation of the
  • Conducting salt LiN originate 2 or have gone out of the cathode 43 in solution, form on the surface of the anode 23 is an electrical
  • the anode materials and cathode materials of the supercapacitor 11, pseudo-capacitor 12, and hybrid supercapacitor 13 are included
  • PTFE Polytetrafluoroethylene
  • the electrolyte 61, 62, 63 each additionally contains 0.1 M hexaminocobalt (III).
  • redox reactions proceed according to the following formula in the electrolyte:
  • This redox reaction contributes to the increase of the energy in the supercapacitor 11, in the pseudo-capacitor 12 and in the hybrid supercapacitor 13.

Abstract

The invention relates to an aqueous electrolyte (61) for a capacitor. This electrolyte contains at least one conductive salt of the formula XA. X here is a cation selected from the group consisting of H+, Li+, Na+ and K+. A is an organic anion or N(SO2F)2 -. The invention further relates to a capacitor containing the electrolyte (61). The electrolyte (61) can especially be used in a supercapacitor (11), in a pseudocapacitor or in a hybrid supercapacitor.

Description

Beschreibung  description
Titel title
Wässriger Elektrolyt für einen Kondensator, Verwendung des Elektrolyten und Kondensator, der den Elektrolyten enthält  Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte
Die vorliegende Erfindung betrifft einen wässrigen Elektrolyten für einen The present invention relates to an aqueous electrolyte for a
Kondensator. Weiterhin betrifft sie eine Verwendung des Elektrolyten. Schließlich betrifft die vorliegende Erfindung einen Kondensator, welcher den Elektrolyten enthält. Capacitor. Furthermore, it relates to a use of the electrolyte. Finally, the present invention relates to a capacitor containing the electrolyte.
Stand der Technik State of the art
Elektrochemische Energiespeicher spielen in der heutigen Gesellschaft bereits eine wichtige Rolle und werden in Zukunft durch die steigende Verwendung alternativer Energiequellen und durch zunehmende Elektrifizierung der Electrochemical energy storage already plays an important role in today's society and will in future be driven by the increasing use of alternative energy sources and the increasing electrification of energy
Automobilindustrie noch weiter an Bedeutung gewinnen. Neben Batterien werden vor allem Kondensatoren als elektrische Energiespeicher eingesetzt. Neben klassischen Kondensatordesigns werden heute unter anderem  Automotive industry continues to gain importance. In addition to batteries, especially capacitors are used as electrical energy storage. In addition to classic condenser designs are among other things today
Superkondensatoren, Pseudokondensatoren und Hybridsuperkondensatoren eingesetzt. Unter Superkondensatoren werden Doppelschichtkondensatoren verstanden, in denen der Elektrolyt die ionenleitfähige Verbindung zwischen zwei Elektroden ist. Die Elektroden bestehen aus Kohlenstoff oder dessen Derivaten mit einer sehr hohen statischen Doppelschichtkapazität. Der Anteil der faradayschen Pseudokapazität in der Gesamtkapazität ist nur gering. Supercapacitors, pseudocondensers and hybrid supercapacitors used. Supercapacitors are understood as meaning double-layer capacitors in which the electrolyte is the ion-conductive connection between two electrodes. The electrodes are made of carbon or its derivatives with a very high static double-layer capacity. The proportion of Faraday pseudocapacity in the total capacity is low.
Pseudokondensatoren speichern elektrische Energie mithilfe von reversiblenPseudocondensers store electrical energy using reversible energy
Redoxreaktionen an dafür geeignete Elektroden. Hybridsuperkondensatoren (Hybrid Super Capacitors - HSC), wie beispielsweise Redox reactions to suitable electrodes. Hybrid supercapacitors (HSC), such as
Lithiumionenkondensatoren, können als Elektrodenmaterial-Gemische mehrerer chemischer Substanzen mit sowohl faradayschen als auch kapazitiv aktiven Materialien verwenden. Die so erhaltenen Elektroden werden als hybridisierte Lithium ion capacitors may use as electrode material mixtures of several chemical substances with both Faraday and capacitive active materials. The electrodes thus obtained are hybridized
Elektroden bezeichnet. Eine der wichtigsten Komponenten aller Kondensatoren ist der Elektrolyt, welcher Auswirkungen auf die Lebensdauer, Leistungsdichte, Kapazität und ESR (Equivalent Series Resistance) eines Kondensators hat. Elektrolyte können flüssig, fest oder gelartig sein. Dabei sind flüssige Elektrolyte am verbreitetsten.Electrodes designated. One of the most important components of all capacitors is the electrolyte, which affects the life, power density, capacitance, and ESR (equivalent series resistance) of a capacitor. Electrolytes can be liquid, solid or gel. In this case, liquid electrolytes are the most common.
Die flüssigen Elektrolyte unterteilen sich wiederum in wässrige, organische und ionische Flüssigkeiten. Wässrige Elektrolyte haben dabei den Vorteil, dass sie mit niedrigen Kosten verbunden sind und ungiftig sind. Als saurer Elektrolyt kann beispielsweise wässrige Schwefelsäure verwendet werden. Natronlauge, Kalilauge und wässrige Lösungen von Lithiumhydroxid sind als alkalischeThe liquid electrolytes are subdivided into aqueous, organic and ionic liquids. Aqueous electrolytes have the advantage that they are associated with low costs and are non-toxic. As the acidic electrolyte, for example, aqueous sulfuric acid can be used. Sodium hydroxide solution, potassium hydroxide solution and aqueous solutions of lithium hydroxide are as alkaline
Elektrolyte geeignet. Diese sauren und alkalischen Elektrolyte weisen ein Spannungsfenster von typischerweise ca. 1 V auf. Ein höheres Electrolytes suitable. These acidic and alkaline electrolytes have a voltage window of typically about 1 volt. A higher one
Spannungsfenster von ca. 2 V kann mit neutralen Elektrolyten erreicht werden. Als solche können beispielsweise wässrige Lösungen von Lithiumsulfat, Natriumsulfat, Kaliumsulfat, Natriumnitrit oder Kaliumchlorid verwendet werden. Voltage window of approx. 2 V can be achieved with neutral electrolytes. As such, for example, aqueous solutions of lithium sulfate, sodium sulfate, potassium sulfate, sodium nitrite or potassium chloride can be used.
Offenbarung der Erfindung Disclosure of the invention
Der Elektrolyt für einen Kondensator enthält mindestens ein Leitsalz der Formel XA. Hierbei ist X ein Kation, das ausgewählt ist aus der Gruppe bestehend ausThe electrolyte for a capacitor contains at least one conductive salt of the formula XA. Where X is a cation selected from the group consisting of
H+, Li+, Na+ und K+. Wenn das Kation H+ ist, handelt es sich um einen sauren Elektrolyten. Falls das Kation hingegen eines der Alkalimetallkationen Li+, Na+ oder K+ ist, so handelt es sich bei dem Elektrolyten um einen neutralen H + , Li + , Na + and K + . When the cation is H + , it is an acidic electrolyte. If, however, the cation is one of the alkali metal cations Li + , Na + or K + , then the electrolyte is a neutral one
Elektrolyten. A ist ein organisches Anion oder N(S02F)2". Hierbei wird unter einem organischen Anion jedes Anion mit mindestens einem Electrolyte. A is an organic anion or N (SO 2 F) 2 " . Here, under an organic anion, each anion is at least one
Kohlenwasserstoffrest einschließlich teilweise oder vollständig halogenierter Reste verstanden. Der Elektrolyt enthält als Lösungsmittel Wasser, kann jedoch optional weitere mit Wasser mischbare Lösungsmittel enthalten. Um die Vorteile der Ungiftigkeit eines vollständig wässrigen Elektrolyten zu erreichen, ist es allerdings bevorzugt, dass er Wasser als einziges Lösungsmittel enthält.  Hydrocarbon radical including partially or fully halogenated radicals understood. The electrolyte contains water as the solvent but may optionally contain other water-miscible solvents. However, to obtain the benefits of the nontoxicity of a fully aqueous electrolyte, it is preferred that it contains water as the sole solvent.
In einer Ausführungsform des Elektrolyten, in welcher es sich um einen sauren Elektrolyten handelt, stellt dieser eine Alternative zu bisher bekannten wässrigen sauren Elektrolyten dar, der eine verhältnismäßig geringe Acidität aufweist. Damit verfügt er über eine geringe Korrosionsrate gegenüber metallischen Komponenten des Kondensators, wie beispielsweise einem Stromleiter aus Aluminium. In one embodiment of the electrolyte, which is an acidic electrolyte, it is an alternative to previously known aqueous acidic electrolytes which have a relatively low acidity. He has a low corrosion rate compared to metallic Components of the capacitor, such as an aluminum conductor.
In einer anderen Ausführungsform des Elektrolyten, in welcher er ein neutraler Elektrolyt ist, ermöglicht dieser ein großes Spannungsfenster der In another embodiment of the electrolyte in which it is a neutral electrolyte, this allows a large voltage window of the
elektrochemischen Zellen des Kondensators, was zu einer hohen Leistungs- und Energiedichte führt. electrochemical cells of the capacitor, resulting in a high power and energy density.
Organische Anionen für den Elektrolyten, die eine besonders vorteilhafte Kombination aus Leitfähigkeit und Molekulargewicht aufweisen, sind ausgewählt aus der Gruppe bestehend aus CO2CF3", SO3CH3", SO3CF3", SO3C4F9", Organic anions for the electrolyte, which have a particularly advantageous combination of conductivity and molecular weight, are selected from the group consisting of CO 2 CF 3 ' , SO 3 CH 3 ' , SO 3 CF 3 ' , SO 3 C 4 F 9 ' ,
S03(C6H5)", S03(C6F5)-, SOaCeFi , N(COCF3)2 ", N(S02CF3)2 ", N(S02C2F5)2-, N(S02C4F9)(S02CF3)", N(S02CF3)(C6F4S02F)-, N(S02CF3)(S02C8Fi7)", SO 3 (C 6 H 5 ) " , SO 3 (C 6 F 5 ) -, SOaCeFi, N (COCF 3 ) 2 " , N (SO 2 CF 3 ) 2 " , N (S0 2 C 2 F 5 ) 2 - , N (S0 2 C 4 F 9 ) (S0 2 CF 3 ) " , N (S0 2 CF 3 ) (C 6 F 4 S0 2 F) -, N (S0 2 CF 3 ) (S0 2 C 8 Fi7) " ,
N(S02OCH2CF3)2 ", N(S02OCH2CF2CF3)2 ", N(S02OCH2CF2CF2H)2 ", N (SO 2 OCH 2 CF 3 ) 2 " , N (SO 2 OCH 2 CF 2 CF 3 ) 2 " , N (SO 2 OCH 2 CF 2 CF 2 H) 2 " ,
N(S02OCH(CF3)2)2 ", C(S02CF3)3 ", C(S02OCH2CF3)3 ", B(C6H3-3,5-(CF3)2)4 " undN (S0 2 OCH (CF 3 ) 2 ) 2 " , C (S0 2 CF 3 ) 3 " , C (S0 2 OCH 2 CF 3 ) 3 " , B (C 6 H 3 -3,5- (CF 3 ) 2 ) 4 " and
P02(C2F5)2\ P0 2 (C 2 F 5 ) 2 \
Neben dem Leitsalz enthält der Elektrolyt vorzugsweise mindestens einen Übergangsmetallkomplex, insbesondere einen Übergangsmetallkomplex mindestens eines Übergangsmetalls, das ausgewählt ist aus der Gruppe, bestehend aus Cobalt, Chrom, Eisen, Kupfer und Titan. Durch Redoxreaktionen der Übergangsmetalle in den Komplexen kann der Elektrolyt als Redoxelektrolyt fungierten, der zur Kapazität des Kondensators beiträgt. Der Übergangsmetallkomplex enthält bevorzugt mindestens einen Liganden, der ausgewählt ist aus der Gruppe, bestehend aus Ammoniak (NH3), Cyanid (CN ), Perchlorat (CI0 ), Thiocyanat (SCN ) und Ethylendiamintetraacetat (EDTA4 ). Besonders bevorzugt weist der Übergangsmetallkomplex die Formel MLX aufweist, wobei M das Übergangsmetall und L einen aus der Gruppe In addition to the conductive salt, the electrolyte preferably contains at least one transition metal complex, in particular a transition metal complex of at least one transition metal selected from the group consisting of cobalt, chromium, iron, copper and titanium. By redox reactions of the transition metals in the complexes, the electrolyte can act as a redox electrolyte, which contributes to the capacitance of the capacitor. The transition metal complex preferably contains at least one ligand which is selected from the group consisting of ammonia (NH3), cyanide (CN), perchlorate (CI0), thiocyanate (SCN), and ethylenediaminetetraacetate (EDTA 4). Particularly preferably, the transition metal complex has the formula ML X , wherein M is the transition metal and L is one of the group
ausgewählten Liganden bezeichnet und x einen Wert von 2, 4 oder 6 hat. Für L =denotes selected ligands and x has a value of 2, 4 or 6. For L =
CI04 " kann x insbesondere auch einen Wert von 1 oder 3 haben. Für L = EDTA4" kann x insbesondere auch einen Wert von 1 haben. Neben den x aus der Gruppe ausgewählten Liganden können Wassermoleküle als weitere Liganden vorhanden sein, so dass der Komplex die Formel MLx(H20)y aufweisen kann, wobei beispielsweise x + y = 6 ist. Derartige Komplexe stabilisieren die Übergangsmetallionen der Komplexe in wässriger Lösung und ermöglichen einen einfachen Ladungstransfer. CI0 4 "x may in particular a value of 1 or 3.. For L = EDTA 4" x may in particular have a value of 1. In addition to the x ligands selected from the group, water molecules can be present as further ligands, so that the complex can have the formula ML x (H 2 O) y , where, for example, x + y = 6. Such complexes stabilize the Transition metal ions of the complexes in aqueous solution and allow easy charge transfer.
Die Konzentration des Übergangsmetallkomplexes in dem Elektrolyten liegt vorzugsweise im Bereich von 0,01 mol/l bis 0,5 mol/l. Auf diese Weise kann der Kapazitätsbeitrag des Elektrolyten bedarfsgerecht eingestellt werden. The concentration of the transition metal complex in the electrolyte is preferably in the range of 0.01 mol / L to 0.5 mol / L. In this way, the capacity contribution of the electrolyte can be adjusted as needed.
Der Elektrolyt ist insbesondere für die Verwendung in einem Superkondensator, in einem Pseudokondensator oder in einem Hybridsuperkondensator geeignet. Durch Einbringen des Elektrolyten in einen herkömmlichen Kondensator kann ein erfindungsgemäßer Kondensator erhalten werden. The electrolyte is particularly suitable for use in a supercapacitor, in a pseudocondenser or in a hybrid supercapacitor. By introducing the electrolyte into a conventional capacitor, a capacitor according to the invention can be obtained.
Dieser Kondensator ist in einer Ausführungsform der Erfindung ein This capacitor is in one embodiment of the invention
Superkondensator. Dabei ist es für den Aufbau einer Helmholtzdoppelschicht bevorzugt, dass die Anode und die Kathode des Kondensators jeweils mindestens einen porösen Kohlenstoff enthalten. Der Elektrolyt kann wahlweise sauer oder neutral sein. Supercapacitor. It is preferred for the construction of a Helmholtz double layer that the anode and the cathode of the capacitor each contain at least one porous carbon. The electrolyte may optionally be acidic or neutral.
In einer weiteren Ausführungsform des Kondensators ist dieser als In a further embodiment of the capacitor this is as
Pseudokondensator ausgeführt. Das Kation des Elektrolyten ist in dieser Ausführungsform H+, das heißt es handelt sich bei dem Elektrolyten um einen sauren Elektrolyten. Dies ermöglicht eine Protonierung des Anodenmaterials. Hierzu ist es bevorzugt, dass die Anode und die Kathode des Pseudo-capacitor executed. The cation of the electrolyte in this embodiment is H + , that is, the electrolyte is an acidic electrolyte. This allows protonation of the anode material. For this purpose, it is preferred that the anode and the cathode of the
Pseudokondensators jeweils mindestens eine Substanz enthalten, die ausgewählt ist aus der Gruppe bestehend aus MnCh, RuCh, Fe304, Co304, NiC020 , Co(OH)2, Ni(OH)2, NiO, Polyanilin (PANI), Polypyrrol (PPy), Poly(3,4- ethylendioxythiophen) (PEDOT), Poly(p-phenylen) und Polyacetylen. Diese Substanzen stellen ein gut protonierbares Elektrodenmaterial dar. Pseudocapacitor each contain at least one substance selected from the group consisting of MnCh, RuCh, Fe30 4 , Co30 4 , NiC0 2 0, Co (OH) 2 , Ni (OH) 2 , NiO, polyaniline (PANI), polypyrrole ( PPy), poly (3,4-ethylenedioxythiophene) (PEDOT), poly (p-phenylene) and polyacetylene. These substances represent a well protonatable electrode material.
Gegebenenfalls können die Elektroden zusätzlich noch einen porösen Optionally, the electrodes may additionally have a porous
Kohlenstoff enthalten. Contain carbon.
In noch einer anderen Ausführungsform der Erfindung ist der Kondensator ein Hybridsuperkondensator. Dabei ist das Kation des Elektrolyten ausgewählt aus der Gruppe, bestehend aus Li+, Na+ und K+, d. h. der Elektrolyt ist ein neutraler Elektrolyt. Damit weist er ein großes Spannungsfenster auf. Bevorzugt enthält die Anode und/oder die Kathode des Hybridsuperkondensators mindestens einen porösen Kohlenstoff und seine Kathode enthält beispielsweise LiMn204. In yet another embodiment of the invention, the capacitor is a hybrid supercapacitor. The cation of the electrolyte is selected from the group consisting of Li + , Na + and K + , ie the electrolyte is a neutral electrolyte. He has a big window of tension. Preferably, the anode and / or the cathode of the hybrid supercapacitor contains at least one porous carbon and its cathode contains, for example, LiMn20 4 .
Während LiMn204 als ionenspeicherndes Material fungieren kann, und somit faradaysche Aktivität aufweist, fungiert der poröse Kohlenstoff der Anode als kapazitives Material. While LiMn20 4 can function as an ion-storing material and thus has Faraday activity, the porous carbon of the anode acts as a capacitive material.
Der poröse Kohlenstoff ist insbesondere ausgewählt aus der Gruppe, bestehend aus Kohlenstoffnanoröhren, Kohlenstoffnanofasern, Graphen, funktional isiertem Graphen, Aktivkohle, und Gemischen daraus. Diese Kohlenstoffmodifikationen ermöglichen als Elektrodenbestandteil eine schnelle Energiebereitstellung der Elektrode, so dass sie deren elektrische Leitfähigkeit verbessert. Aufgrund der hohen Porosität dieser Kohlenstoffmodifikationen können sie durch oberflächige lonenabsorption außerdem als Schockabsorber für hohe Ströme fungieren, wenn mindestens eine Elektrode des Kondensators sowohl faradaysche als auch kapazitive Materialien enthält. In particular, the porous carbon is selected from the group consisting of carbon nanotubes, carbon nanofibers, graphene, functionalized graphene, activated carbon, and mixtures thereof. As a constituent of the electrodes, these carbon modifications enable a fast supply of energy to the electrode, so that it improves its electrical conductivity. Due to the high porosity of these carbon modifications, they can also function as high-current shock absorbers by surface ion absorption when at least one electrode of the capacitor contains both Faraday and capacitive materials.
Geeignete Kollektoren bzw. Stromableiter für den Kondensator können insbesondere aus einer Metallfolie oder einem Metallschaum bestehen, wobei das Metall ausgewählt ist aus der Gruppe, bestehend aus Nickel, Titan, Suitable collectors or current collectors for the capacitor may in particular consist of a metal foil or a metal foam, wherein the metal is selected from the group consisting of nickel, titanium,
Aluminium, Kupfer, Edelstahl und Legierungen daraus. Aluminum, copper, stainless steel and alloys thereof.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Embodiments of the invention are illustrated in the drawings and explained in more detail in the following description.
Fig. la zeigt schematisch einen ungeladenen Superkondensator gemäß einem Ausführungsbeispiel der Erfindung. Fig. 1a shows schematically an uncharged supercapacitor according to an embodiment of the invention.
Fig. lb zeigt schematisch einen geladenen Superkondensator gemäß einem Ausführungsbeispiel der Erfindung. Fig. 1b schematically shows a charged supercapacitor according to an embodiment of the invention.
Fig. 2a zeigt schematisch einen ungeladenen Pseudokondensator gemäß Fig. 2a shows schematically an uncharged pseudocondenser according to
einem Ausführungsbeispiel der Erfindung. Fig. 2b zeigt schematisch einen geladenen Pseudokondensator gemäß einem an embodiment of the invention. FIG. 2b schematically shows a charged pseudocondenser according to FIG
Ausführungsbeispiel der Erfindung. Fig. 3a zeigt schematisch einen ungeladenen Hybridsuperkondensator gemäß einem Ausführungsbeispiel der Erfindung. Embodiment of the invention. Fig. 3a shows schematically an uncharged hybrid supercapacitor according to an embodiment of the invention.
Fig. 3b zeigt schematisch einen geladenen Hybridsuperkondensator gemäß einem Ausführungsbeispiel der Erfindung. Fig. 3b shows schematically a charged hybrid supercapacitor according to an embodiment of the invention.
Ausführungsbeispiele der Erfindung Embodiments of the invention
In einem ersten Ausführungsbeispiel der Erfindung weist ein Superkondensator 11 eine Anode 21 auf, die aus Aktivkohle besteht. Diese ist auf einem ersten Kollektor 3 aufgebracht, der aus einer Nickelfolie besteht. Eine Kathode 41 des Superkondensators 11 besteht ebenfalls aus Aktivkohle und ist auf einem zweiten Kollektor 5 aufgebracht, welcher ebenfalls aus einer Nickelfolie besteht. Die Anode 21 und die Kathode 41 sind von einem nicht dargestellten Separator aus Zellulose getrennt. Zwischen der Anode 21 und der Kathode 41 ist ein Elektrolyt 61 angeordnet. Hierbei handelt es sich um eine Lösung von 1 mol/l HN(S02CF3)2 in Wasser. Beim Laden des Superkondensators sammeln sich Protonen des Leitsalzes an der Oberfläche der Anode 21 und bilden dort eine elektrische Doppelschicht. Eine zweite elektrische Doppelschicht wird dadurch ausgebildet, dass sich die Anionen des Leitsalzes an der Oberfläche der Kathode 41 anlagern. In a first embodiment of the invention, a supercapacitor 11 has an anode 21 made of activated carbon. This is applied to a first collector 3, which consists of a nickel foil. A cathode 41 of the supercapacitor 11 is also made of activated carbon and is applied to a second collector 5, which also consists of a nickel foil. The anode 21 and the cathode 41 are separated from a cellulose separator, not shown. Between the anode 21 and the cathode 41, an electrolyte 61 is arranged. This is a solution of 1 mol / l HN (SO 2 CF 3) 2 in water. When charging the supercapacitor, protons of the conducting salt accumulate on the surface of the anode 21 and form an electrical double layer there. A second electrical double layer is formed by attaching the anions of the conductive salt to the surface of the cathode 41.
In einem zweiten Ausführungsbeispiel der Erfindung ist ein Kondensator als Pseudokondensator 12 ausgeführt. Dieser unterscheidet sich von dem In a second embodiment of the invention, a capacitor is designed as a pseudo-capacitor 12. This one is different from that
Superkondensator 11 darin, dass seine Anode 22 aus Rutheniumoxid besteht. Seine Kathode 42 besteht ebenfalls aus Rutheniumoxid. Der Elektrolyt 62 des Pseudokondensators 12 hat dieselbe Zusammensetzung wie der Elektrolyt 61 des Superkondensators 11. Beim Laden des Pseudokondensators 12 erfolgt eine Protonierung des Anodenmaterials gemäß Formel 1: Supercapacitor 11 in that its anode 22 is made of ruthenium oxide. Its cathode 42 is also made of ruthenium oxide. The electrolyte 62 of the pseudocapacitor 12 has the same composition as the electrolyte 61 of the supercapacitor 11. When the pseudo-capacitor 12 is charged, the anode material according to formula 1 is protonated:
Ru02 +xe" + x H+ -> Ru02-x(OH)x (Formel 1) Ru0 2 + xe "+ x H + -> Ru0 2 -x (OH) x (Formula 1)
An der Kathode 42 bildet sich eine elektrische Doppelschicht in derselben Weise wie im Superkondensator 11 aus. ln einem dritten Ausführungsbeispiel der Erfindung, das in den Fig. 3a und 3b dargestellt ist, ist ein Kondensator als Hybridsuperkondensator 13 ausgeführt. Dieser unterscheidet sich vom Superkondensator 11 und vom At the cathode 42, an electric double layer is formed in the same manner as in the supercapacitor 11. In a third embodiment of the invention, which is shown in Figs. 3a and 3b, a capacitor is designed as a hybrid supercapacitor 13. This differs from the supercapacitor 11 and the
Pseudokondensator 12 darin, dass seine Anode 23 aus Aktivkohle besteht und seine Kathode 43 aus LiMn204 besteht. Der Elektrolyt 63 des Pseudo condenser 12 is that its anode 23 is made of activated carbon and 43 is its cathode from LiMn20. 4 The electrolyte 63 of the
Hybridsuperkondensators 13 ist eine Lösung von 1 mol/l LiN(S02CF3)2 in Hybrid supercapacitor 13 is a solution of 1 mol / l LiN (SO 2 CF 3) 2 in
Wasser. Beim Laden des Hybridsuperkondensators 13 lösen sich gemäß Formel 2 Lithiumionen aus der Kathode 43 im Elektrolyten 63: Water. When charging the hybrid supercapacitor 13, according to formula 2, lithium ions are released from the cathode 43 in the electrolyte 63:
LiMn20 ->■ Lii-xMn20 + x Li+ + x e" (Formel 2) LiMn 2 O -> Lii-x Mn 2 O + x Li + + xe " (Formula 2)
Lithiumionen des Elektrolyten 63, die entweder aus der Dissoziation des Lithium ions of the electrolyte 63, resulting either from the dissociation of the
Leitsalzes LiN(S02CF3)2 stammen oder die aus der Kathode 43 in Lösung gegangen sind, bilden an der Oberfläche der Anode 23 eine elektrische Conducting salt LiN (S02CF3) originate 2 or have gone out of the cathode 43 in solution, form on the surface of the anode 23 is an electrical
Doppelschicht. Bilayer.
Die Anodenmaterialien und Kathodenmaterialen des Superkondensators 11, des Pseudokondensators 12 und des Hybridsuperkondensators 13 enthalten The anode materials and cathode materials of the supercapacitor 11, pseudo-capacitor 12, and hybrid supercapacitor 13 are included
Polytetrafluorethylen (PTFE) als Bindemittel, um das jeweilige Elektrodenmaterial zu einer festen Masse zu verbinden, die auf den Kollektoren 3, 5 haftet. Polytetrafluoroethylene (PTFE) as a binder to connect the respective electrode material to a solid mass, which adheres to the collectors 3, 5.
In einer Variante dieser drei Ausführungsbeispiele enthält der Elektrolyt 61, 62, 63 jeweils zusätzlich 0,1 M Hexaminocobalt(lll). Bei Lade- und Entladevorgängen des Hybridsuperkondensators 1 laufen im Elektrolyten Redoxreaktionen gemäß der folgenden Formel ab: In a variant of these three embodiments, the electrolyte 61, 62, 63 each additionally contains 0.1 M hexaminocobalt (III). During charging and discharging processes of the hybrid supercapacitor 1, redox reactions proceed according to the following formula in the electrolyte:
[Co(NH3)6]3+ - [Co(NH3)6]4+ + e" - [Co(NH3)6]6+ + 3 e [Co (NH 3 ) 6 ] 3+ - [Co (NH 3 ) 6 ] 4+ + e " - [Co (NH 3 ) 6 ] 6 + + 3 e
Diese Redoxreaktion trägt zur Erhöhung der Energie im Superkondensator 11, im Pseudokondensator 12 und im Hybridsuperkondensator 13 bei. This redox reaction contributes to the increase of the energy in the supercapacitor 11, in the pseudo-capacitor 12 and in the hybrid supercapacitor 13.

Claims

Ansprüche claims
1. Wässriger Elektrolyt (61, 62, 63) für einen Kondensator, enthaltend mindestens ein Leitsalz der Formel XA, wobei X ein Kation ist, das ausgewählt ist aus der Gruppe, bestehend aus H+, Li+, Na+ und K+, und wobei A ein organisches Anion oder N(S02F)2 " ist. Aqueous electrolyte (61, 62, 63) for a capacitor containing at least one conductive salt of the formula XA, wherein X is a cation selected from the group consisting of H + , Li + , Na + and K + , and wherein A is an organic anion or N (S0 2 F) 2 " .
2. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 1, dadurch 2. Aqueous electrolyte (61, 62, 63) according to claim 1, characterized
gekennzeichnet, dass das organische Anion ausgewählt ist aus der Gruppe, bestehend aus C02CF3 ", S03CH3 ", S03CF3 ", S03C F9 ", S03(C6H5)", S03(C6F5)-, SOaCeFi/, N(COCF3)2\ N(S02CF3)2-, in that the organic anion is selected from the group consisting of CO 2 CF 3 " , SO 3 CH 3 " , SO 3 CF 3 " , SO 3 CF 9 " , SO 3 (C 6 H 5 ) " , SO 3 (C 6 F 5 ) -, SOaCeFi /, N (COCF 3 ) 2 \ N (S0 2 CF 3 ) 2 -,
N(S02C2F5)2 ", N(S02C4F9)(S02CF3)-, N(S02CF3)(C6F4S02F)-, N (S0 2 C 2 F 5 ) 2 " , N (S0 2 C 4 F 9 ) (S0 2 CF 3 ) -, N (S0 2 CF 3 ) (C 6 F 4 S0 2 F) -,
N(S02CF3)(S02C8Fi7)", N(S02OCH2CF3)2-, N(S02OCH2CF2CF3)2\ N(S02OCH2CF2CF2H)2 ", N(S02OCH(CF3)2)2 ", C(S02CF3)3 ", N (SO 2 CF 3 ) (SO 2 C 8 Fi 7 ) " , N (SO 2 OCH 2 CF 3 ) 2 -, N (SO 2 OCH 2 CF 2 CF 3 ) 2 \ N (SO 2 OCH 2 CF 2 CF 2 H) 2 " , N (SO 2 OCH (CF 3 ) 2 ) 2 " , C (SO 2 CF 3 ) 3 " ,
C(S02OCH2CF3)3-, B(C6H3-3,5-(CF3)2)4- und P02(C2F5)2 ". C (S0 2 OCH 2 CF 3 ) 3 -, B (C 6 H 3 -3,5 - (CF 3 ) 2 ) 4 - and P0 2 (C 2 F 5 ) 2 " .
3. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 1 oder 2, dadurch 3. Aqueous electrolyte (61, 62, 63) according to claim 1 or 2, characterized
gekennzeichnet, dass er mindestens einen Übergangsmetallkomplex enthält.  characterized in that it contains at least one transition metal complex.
4. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 3, dadurch 4. Aqueous electrolyte (61, 62, 63) according to claim 3, characterized
gekennzeichnet, dass der Übergangsmetallkomplex mindestens ein Übergangsmetall enthält, das ausgewählt ist aus der Gruppe, bestehend aus Cobalt, Chrom, Eisen, Kupfer und Titan.  characterized in that the transition metal complex contains at least one transition metal selected from the group consisting of cobalt, chromium, iron, copper and titanium.
5. Wässriger Elektrolyt (61, 62, 63) nach Anspruch 3 oder 4, dadurch 5. Aqueous electrolyte (61, 62, 63) according to claim 3 or 4, characterized
gekennzeichnet, dass der Übergangsmetallkomplex mindestens einen Liganden enthält, der ausgewählt ist aus der Gruppe, bestehend aus Ammoniak, Cyanid, Perchlorat, Thiocyanat und  in that the transition metal complex contains at least one ligand selected from the group consisting of ammonia, cyanide, perchlorate, thiocyanate and
Ethylendiamintetraacetat. Verwendung eines Elektrolyten (61, 62, 63) nach einem der Ansprüche 1 bis 5 in einem Superkondensator (11), in einem Pseudokondensator (12) oder in einem Hybridsuperkondensator (13). Ethylenediaminetetraacetate. Use of an electrolyte (61, 62, 63) according to one of claims 1 to 5 in a supercapacitor (11), in a pseudo-capacitor (12) or in a hybrid supercapacitor (13).
Kondensator, dadurch gekennzeichnet, dass er einen Elektrolyten (61, 62, 63) nach einem der Ansprüche 1 bis 5 enthält. Capacitor, characterized in that it contains an electrolyte (61, 62, 63) according to one of claims 1 to 5.
Kondensator nach Anspruch 7, dadurch gekennzeichnet, dass er ein Superkondensator (11) ist. A capacitor according to claim 7, characterized in that it is a supercapacitor (11).
Kondensator nach Anspruch 8, dadurch gekennzeichnet, dass seine Anode (21) und seine Kathode (41) jeweils mindestens einen porösen Kohlenstoff enthalten. A capacitor according to claim 8, characterized in that its anode (21) and its cathode (41) each contain at least one porous carbon.
Kondensator nach Anspruch 7, dadurch gekennzeichnet, dass er ein Pseudokondensator (12) ist, wobei das Kation des Elektrolyten (62) H+ ist. A capacitor according to claim 7, characterized in that it is a pseudo-capacitor (12), wherein the cation of the electrolyte (62) is H + .
Kondensator nach Anspruch 10, dadurch gekennzeichnet, dass seine Anode (22) und seine Kathode (42) jeweils mindestens eine Substanz enthalten, die ausgewählt ist aus der Gruppe, bestehend aus Mn02, Ru02, Fe304, Co30 , NiC020 , Co(OH)2, Ni(OH)2, NiO, Polyanilin, Polypyrrol, Poly(3,4-ethylendioxythiophen), Poly(p-phenylen) und Polyacetylen. A capacitor according to claim 10, characterized in that its anode (22) and its cathode (42) each contain at least one substance selected from the group consisting of MnO 2 , RuO 2 , Fe 3 O 4 , Co 3 O, NiCo 2 O, Co (OH) 2 , Ni (OH) 2 , NiO, polyaniline, polypyrrole, poly (3,4-ethylenedioxythiophene), poly (p-phenylene) and polyacetylene.
Kondensator nach Anspruch 7, dadurch gekennzeichnet, dass er ein Hybridsuperkondensator (13) ist, wobei das Kation des Elektrolyten (63) ausgewählt ist aus der Gruppe, bestehend aus Li+, Na+ und K+. A capacitor according to claim 7, characterized in that it is a hybrid supercapacitor (13), wherein the cation of the electrolyte (63) is selected from the group consisting of Li + , Na + and K + .
Kondensator nach Anspruch 12, dadurch gekennzeichnet, dass seine Anode (23) und/oder seine Kathode (43) mindestens einen porösen Kohlenstoff enthält. A capacitor according to claim 12, characterized in that its anode (23) and / or its cathode (43) contains at least one porous carbon.
Kondensator nach Anspruch 9 oder 13, dadurch gekennzeichnet, dass der poröse Kohlenstoff ausgewählt ist aus der Gruppe, bestehend aus Kohlenstoffnanoröhren, Kohlenstoffnanofasern, Graphen, funktionalisiertem Graphen, Aktivkohle, und Gemischen daraus. A capacitor according to claim 9 or 13, characterized in that the porous carbon is selected from the group consisting of Carbon nanotubes, carbon nanofibers, graphene, functionalized graphene, activated carbon, and mixtures thereof.
PCT/EP2017/069600 2016-09-23 2017-08-03 Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte WO2018054591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016218353.2A DE102016218353A1 (en) 2016-09-23 2016-09-23 Aqueous electrolyte for a condenser, use of the electrolyte and condenser containing the electrolyte
DE102016218353.2 2016-09-23

Publications (1)

Publication Number Publication Date
WO2018054591A1 true WO2018054591A1 (en) 2018-03-29

Family

ID=59699649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/069600 WO2018054591A1 (en) 2016-09-23 2017-08-03 Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte

Country Status (2)

Country Link
DE (1) DE102016218353A1 (en)
WO (1) WO2018054591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244540A (en) * 2020-01-17 2020-06-05 中国科学院兰州化学物理研究所 Aqueous high-voltage window anti-freezing electrolyte and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828808B (en) * 2019-11-19 2022-04-26 肇庆市华师大光电产业研究院 Preparation method and application of lithium-sulfur battery positive electrode material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211389A1 (en) * 2002-05-09 2003-11-13 Schlaikjer Carl R. Guanidine derivatives as cations for ambient temperature molten salts in electrochemical power sources
EP1840124A1 (en) * 2005-01-12 2007-10-03 Otsuka Chemical Co., Ltd. Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device
US20120140378A1 (en) * 2010-12-03 2012-06-07 Imra America, Inc. rechargeable electrochemical energy storage device
US20140211370A1 (en) * 2013-01-25 2014-07-31 Ionova Technologies, Inc. Electrochemical Cell, Related Material, Process for Production, and Use Thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527602A1 (en) 1982-06-01 1983-12-02 Anvar BIS PERHALOGENOACYL- OR SULFONYL- IMIDURES OF ALKALI METALS, THEIR SOLID SOLUTIONS WITH PLASTIC MATERIALS AND THEIR APPLICATION TO THE CONSTITUTION OF CONDUCTIVE ELEMENTS FOR ELECTROCHEMICAL GENERATORS
KR101138524B1 (en) 2010-08-26 2012-04-25 삼성전기주식회사 Energy storing device
US20140212770A1 (en) 2011-08-12 2014-07-31 Ulbe industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030211389A1 (en) * 2002-05-09 2003-11-13 Schlaikjer Carl R. Guanidine derivatives as cations for ambient temperature molten salts in electrochemical power sources
EP1840124A1 (en) * 2005-01-12 2007-10-03 Otsuka Chemical Co., Ltd. Quaternary ammonium salt, electrolyte, electrolyte solution and electrochemical device
US20120140378A1 (en) * 2010-12-03 2012-06-07 Imra America, Inc. rechargeable electrochemical energy storage device
US20140211370A1 (en) * 2013-01-25 2014-07-31 Ionova Technologies, Inc. Electrochemical Cell, Related Material, Process for Production, and Use Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244540A (en) * 2020-01-17 2020-06-05 中国科学院兰州化学物理研究所 Aqueous high-voltage window anti-freezing electrolyte and application thereof
CN111244540B (en) * 2020-01-17 2021-11-09 中国科学院兰州化学物理研究所 Aqueous high-voltage window anti-freezing electrolyte and application thereof

Also Published As

Publication number Publication date
DE102016218353A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
EP1984973B1 (en) Redox accumulator comprising a separation electrode
DE60032417T2 (en) Secondary battery and condenser with indole polymer compound
DE112016000412T5 (en) An aqueous electrolyte solution for an energy storage device and energy storage device that includes the aqueous electrolyte solution
DE112012004734T5 (en) Electrode for an electrical storage device, electrical storage device and method of manufacturing an electrode for an electrical storage device
DE10051132A1 (en) Electrochemical capacitor comprises a separator arranged between an anode and a cathode with a non-aqueous electrolyte liquid impregnated in the electrodes
AT503315A1 (en) REDOX FLOW BATTERY, AS WELL AS ELECTROLYTE SOLUTION FOR A REDOX FLOW BATTERY
DE112011100008T5 (en) Electric storage device
DE112015000186T5 (en) Flexible supercapacitor and method of making such
DE102016212476A1 (en) Soluble catalyst for a lithium-air battery
DE1596223C3 (en) Gas-tight, alkaline cadmium-nickel or cadmium-silver accumulator, in which an electrically conductive porous layer is arranged between the separator and the negative electrode
EP1774549A1 (en) Electrolyte solution for double-layered capacitors and double-layered capacitor containing said electrolyte solution
DE102016202979A1 (en) Hybrid supercapacitor
DE112018003768T5 (en) RECHARGEABLE BATTERY WITH HYDROGEN CATCHER
DE102015224094A1 (en) Hybrid supercapacitor
WO2018054591A1 (en) Aqueous electrolyte for a capacitor, use of the electrolyte and capacitor containing the electrolyte
DE112018003716B4 (en) Redox flow battery
DE60314532T2 (en) ELECTROCHEMICAL CONDENSER AND METHOD FOR THE USE THEREOF
DE102016202977A1 (en) Aqueous electrolyte, use of the electrolyte and hybrid supercapacitor containing the electrolyte
DE102016122283A1 (en) Redox flow cell for storing electrical energy in a tubular design
DE102012015176A1 (en) Use of metal-free organonitrogen compound as redox-active substance used in redox electrolyte for energy storage accumulator, fuel cell and redox flow battery, contains two five- or six- diatomic annealed rings
DE3006564C2 (en) Gas-tight electrical lead accumulator
DE102015224040A1 (en) Hybridized electrode for a hybrid supercapacitor
DE102015220317A1 (en) CATHODE FOR LITHIUM AIR BATTERY
DE102015222654A1 (en) Cathode for an all-solid-state lithium-sulfur battery
EP3766124A1 (en) Electrolyte for a zinc battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17757467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17757467

Country of ref document: EP

Kind code of ref document: A1