WO2018054083A1 - 一种功率标定方法、装置和计算机可读存储介质 - Google Patents

一种功率标定方法、装置和计算机可读存储介质 Download PDF

Info

Publication number
WO2018054083A1
WO2018054083A1 PCT/CN2017/085568 CN2017085568W WO2018054083A1 WO 2018054083 A1 WO2018054083 A1 WO 2018054083A1 CN 2017085568 W CN2017085568 W CN 2017085568W WO 2018054083 A1 WO2018054083 A1 WO 2018054083A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
carrier
processed
combined signal
signal
Prior art date
Application number
PCT/CN2017/085568
Other languages
English (en)
French (fr)
Inventor
黄祯
Original Assignee
深圳市中兴微电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市中兴微电子技术有限公司 filed Critical 深圳市中兴微电子技术有限公司
Priority to EP17852157.1A priority Critical patent/EP3518482B1/en
Publication of WO2018054083A1 publication Critical patent/WO2018054083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/101Monitoring; Testing of transmitters for measurement of specific parameters of the transmitter or components thereof
    • H04B17/102Power radiated at antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a power calibration method, apparatus, and computer readable storage medium.
  • the power calibration is to adjust the power value of the transmit link in the wireless communication system, so that the transmit power value of the base station system reaches a preset background reference value.
  • power calibration is achieved by single-mode multi-carrier power detection and adjustment, mostly for a single network standard, using software initiation, hardware calculation reporting, and then using total power for calibration, the initialization operation and the accuracy of the adjustment in the method. Poor control, resulting in a large calibration error, low calibration accuracy; and for the implementation and application of multi-mode systems, only single-mode multi-carrier power detection and adjustment for each network system to achieve power Calibration, such that the calibration efficiency is low for power scaling in multimode systems.
  • embodiments of the present invention are directed to a power calibration method, apparatus, and computer readable storage medium.
  • an embodiment of the present invention provides a power calibration method, where the method includes: configuring each carrier in each network standard, performing mixing and combining on the carriers to obtain a combined signal; The signal is processed to obtain the processed combined signal, and the processed combined signal is divided into carriers to obtain each processed carrier; the processed power of each carrier is detected; and the processed carriers are processed.
  • the power gain of each carrier is adjusted according to the power of each processed carrier, and the power of each carrier after the processing is re-detected, after the processing
  • the power calibration of each carrier ends.
  • the adjusting the power gain of each carrier according to the power of each processed carrier includes: between the power of each processed carrier and a preset value of each carrier The difference is determined as the power difference of each carrier; the corresponding first adjustment value is determined according to the power difference of each carrier, and the power gain of each carrier is adjusted according to the determined first adjustment value.
  • the method further includes: detecting a power of the combined signal; correspondingly, in the pair After the combined signal is processed to obtain the processed combined signal, after the processed combined signal is divided into carriers to obtain the processed carriers, the method further includes: detecting the processed The power of the combined signal; when the adjusted power gain of each carrier satisfies a preset condition, the power gain of each carrier is adjusted again according to the power of the combined signal and the power of the processed combined signal .
  • the adjusting the power gain of each carrier according to the power of the combining signal and the power of the combined combining signal includes: combining power and combining of the combined signal
  • the difference between the preset values of the signals is determined as the power difference value of the combined signal;
  • the difference between the power of the processed combined signal and the preset value of the processed combined signal is determined as processing a power difference value of the combined signal;
  • the method further includes: detecting the power of each of the processed carriers according to the power calibration enabled signal
  • the measurement signal is synchronously processed to obtain a synchronization signal; correspondingly, according to the synchronization signal, the power of each of the processed carriers is triggered; and according to the synchronization signal, the power of the processed combined signal is triggered.
  • the detection signal for detecting the power of each processed carrier is synchronously processed according to the power calibration enable signal to obtain a synchronization signal, including: an enable signal at the power calibration
  • the detection signals for detecting the power of each of the processed carriers are sequentially subjected to cross-clock domain processing, frequency division processing, and delay processing to obtain the synchronization signal.
  • an embodiment of the present invention provides a power calibration apparatus, where the apparatus includes: a combining module configured to configure each carrier in each network standard, and perform mixing and combining on the carriers to obtain a combined signal.
  • the processing module is configured to process the combined signal to obtain a processed combined signal, and perform the divided carrier on the processed combined signal to obtain each processed carrier;
  • the first detecting module is configured to detect The power of each carrier after the processing;
  • the first adjusting module is configured to adjust, according to the power of each processed carrier, when the power of each processed carrier does not fall within a preset value range a power gain of each carrier, and triggering the first detecting module to re-detect the power of each of the processed carriers, where the power of each processed carrier falls within the preset value range, the carriers
  • the power calibration ends.
  • the first adjustment module is configured to determine a difference between a power of each of the processed carriers and a preset value of each carrier as a power difference value of each carrier;
  • the power difference of each carrier determines a corresponding first adjustment value, and the power gain of each carrier is adjusted according to the determined first adjustment value.
  • the device further includes: a second detecting module configured to: after configuring each carrier in each network system, performing mixing and combining on the carriers to obtain a combined signal, and detecting the combined signal
  • the third detection module is configured to: after processing the combined signal to obtain the processed combined signal, after performing the divided carrier on the processed combined signal to obtain the processed carriers, detecting The power of the processed combined signal
  • the second adjusting module is configured to: according to the power of the combined signal and the processed combined signal, when the adjusted power gain of each carrier satisfies a preset condition The power is adjusted again to adjust the power gain of each carrier.
  • the second adjustment module is configured to determine a difference between a power of the combined signal and a preset value of the combined signal as a power difference of the combined signal;
  • the difference between the power of the combined signal and the preset value of the processed combined signal is determined as the power difference of the processed combined signal; and the power difference according to the combined signal and the processed
  • the power difference of the combined signal determines a corresponding second adjustment value, and the power gain of each carrier is adjusted again according to the determined second adjustment value.
  • the device further includes: a synchronization module, configured to detect the power of each of the processed carriers according to an enable signal of the power calibration after detecting the power of each of the processed carriers
  • the detection signal is synchronously processed to obtain a synchronization signal
  • the triggering module is configured to trigger the first detection module to detect the power of each processed carrier according to the synchronization signal
  • the detection module detects the power of the processed combined signal.
  • the synchronization module is configured to sequentially perform cross-clock domain processing, frequency division processing, and delay on the detection signals for detecting the power of each of the processed carriers when the power calibration enable signal is valid. Time processing, the synchronization signal is obtained.
  • an embodiment of the present invention provides a power calibration apparatus, including: a processor and a memory configured to store a computer program capable of running on a processor,
  • processor is configured to perform the steps of the above method when the computer program is run.
  • an embodiment of the present invention provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by a processor to implement the steps of the foregoing method.
  • the power calibration device configures each carrier under each network standard, and performs mixed mixing processing for each carrier to obtain a combined signal, and then combines
  • the processed signal is processed by the road signal, and the processed carrier signals are subjected to carrier-separated processing, and the processed carriers are detected to obtain the processed power of each carrier.
  • the power gain of each carrier is adjusted according to the power of each carrier after processing, and the process returns to each carrier after the detection process, and the power of each carrier after processing is obtained.
  • the power calibration of each carrier ends, so that the power gain of each carrier is adjusted by the power of each carrier after processing, and the power is adjusted to adjust the power. Formed a closed-loop feedback power adjustment path that improves both single-mode and multi-mode systems Calibration efficiency and accuracy of power scaling.
  • FIG. 1 is a schematic flow chart of a power calibration method according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an alternative method of power calibration according to an embodiment of the present invention.
  • FIG. 3 is an optional flow chart of a power calibration method according to an embodiment of the present invention.
  • FIG. 5 is an optional timing diagram of a synchronization signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a power calibration apparatus according to an embodiment of the present invention.
  • the embodiment of the invention provides a power calibration method, which is applicable to at least one network standard, that is, the method can be used in a single mode multi-carrier system, and can also be used in a multi-mode multi-carrier system, wherein the network standard
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • TD-SCDMA Time Division Synchronization Code Multiple Division
  • CDMA Code Division Multiple Access
  • LTE can include Time Division Duplex (TDD), Frequency Division Multiple FDD (Frequency Division Duplex).
  • FIG. 1 is a schematic flowchart of a power calibration method according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • FIG. 2 is an optional schematic flowchart of a power calibration method according to an embodiment of the present invention, and FIG. 2 is taken as an example for description;
  • the power calibration device receives the calibration enable signal, and performs calibration start when the calibration enable signal is valid. Specifically, the power calibration device mainly detects the single mode or multiple. Whether the indicators of the amplifier (PA) in the module system meet the requirements, whether each module in the radio remote unit (RRU) is ready, the PA standing wave, and the like.
  • the power calibration device performs calibration initialization. Specifically, since the setting of each radio frequency parameter in the power calibration device is uncertain, an initialization operation is required, and initialization information of the calibration is generated, where the calibration is initialized. In the process, the initial value of the power gain of each carrier in each network system is set to 0, so as to prevent the PA from appearing high power after being forced to open during the processing.
  • the power calibration device After the calibration is performed, the power calibration device obtains the initialization information of the calibration, and the power calibration device configures the carriers in each network system according to the initialization information of the calibration.
  • the power calibration device needs to be described.
  • a multi-carrier in a network standard may be configured according to the initialization information of the calibration, or multiple carriers in multiple network systems may be configured according to the initialization information of the calibration.
  • FIG. 3 is an optional flow chart of a power calibration method according to an embodiment of the present invention; the following is described in conjunction with FIG. 2 and FIG. 3;
  • the power scaling device configures N carriers, the first carrier is represented by I(1), Q(1), and the Nth carrier is represented by I(N), Q(N), and power.
  • the scaling device transmits the N carriers in parallel, performs digital down conversion processing (DUC, Digital Down Converter) and mixing and combining processing on the N carriers, where the power scaling device can perform the carrier for each network standard.
  • DUC digital down conversion processing
  • the mixing and combining process can be used to obtain the combined signal in each network system, and all the carriers can be mixed and combined to obtain a combined signal, which is not limited in the embodiment of the present invention.
  • S102 processing the combined signal to obtain a combined combined signal, and performing a divided carrier on the combined combined signal to obtain each processed carrier;
  • the combined signal is sequentially subjected to digital-to-analog conversion (D/A) processing, PA processing, and analog-to-digital conversion (A/D) processing, and processed.
  • D/A digital-to-analog conversion
  • PA PA processing
  • A/D analog-to-digital conversion
  • the combined signal is divided into carriers.
  • the first processed carrier is represented by I(1)', Q(1)'
  • the Nth processed carrier is represented by I(N)', Q(N)'.
  • the power gain of each carrier in the embodiment of the present invention refers to the power increase on the link of the combined signal after the configured carrier is processed by the mixing and combining process.
  • this link can also be called a transmit link.
  • the power scaling device detects the power of each processed carrier (corresponding to the digital divided carrier power in FIG. 3). Detecting), and reporting the power of each detected carrier to the background of a central processing unit (CPU) in the power calibration device.
  • CPU central processing unit
  • the preset value range is that the power calibration device is pre-configured according to the calibration requirement, and only when the power of each carrier falls within the preset value range, indicating that the transmission power on the transmission link has reached the calibration If required, then the calibration of each carrier ends. Otherwise, it is necessary to return to the power of each carrier after the detection process, and adjust the power gain of each carrier according to the power of each carrier after processing until the processed each The power of the carrier falls within a preset value range, so that the transmission power of the transmission power on the transmission link meets the calibration requirement.
  • the method has good compatibility, high compatibility, and is compatible with multi-mode under various network standards. Or the power calibration requirement of the mixed mode, the user can flexibly configure according to the calibration requirements according to different application scenarios.
  • the power scaling device coarsely adjusts the power gain of each carrier.
  • adjusting the power gain of each carrier may include: determining a difference between the power of each carrier after processing and a preset value of each carrier as a power difference of each carrier; The power difference of the carrier determines a corresponding first adjustment value, and the power gain of each carrier is adjusted according to the determined first adjustment value.
  • the power of each carrier after processing and the preset value of each carrier are calculated.
  • the difference is obtained, the power difference of each carrier is obtained, and then the first difference corresponding to the power difference of each carrier is determined.
  • the first difference can be 0.1 dB, and then the power gain of each carrier is increased or decreased. 0.1dB; then detecting the power of each carrier after processing, adjusting the power gain of each carrier according to the detected power of each carrier, so that the power gain of each carrier is coarsely adjusted until the adjusted carriers are The power gain meets the preset conditions.
  • the power calibration device coarsely adjusts the power gain of each carrier according to the processed power of each carrier. In order to improve the accuracy of the power calibration, it is necessary to finely adjust the power gain of each carrier to improve the accuracy of power calibration.
  • the method may further include: detecting a power of the combined signal;
  • the processed combined signal is divided into carriers to obtain the processed carriers, and the method further includes: detecting the combined combined signal The power of the signal;
  • the power gain of each carrier is adjusted according to the power of the combined signal and the power of the combined combined signal.
  • the power gain of each carrier is adjusted when the adjusted power gain of each carrier satisfies a preset condition, that is, the fine adjustment is satisfied in the coarse adjustment.
  • the preset condition may be a coarse adjustment value interval, and only when the power difference of each carrier after the coarse adjustment falls within the coarse adjustment value interval, indicating that the coarse adjustment meets the preset condition, Fine adjustment can be performed, and after one fine adjustment, the fine adjustment is ended only when the power difference of the detected combined signal and the power difference of the processed combined signal satisfy a certain fine adjustment value interval.
  • the power gain of each carrier is adjusted according to the power of the combined signal and the power of the combined combined signal.
  • the method may include: determining a difference between a power of the combined signal and a preset value of the combined signal as a power difference of the combined signal; and comparing the power of the processed combined signal with the processed combined signal The difference between the preset values is determined as the power difference value of the processed combined signal; according to the power difference value of the combined signal and the power difference of the combined combined signal, the corresponding second adjusted value is determined, according to The determined second adjustment value adjusts the power gain of each carrier.
  • the second adjustment value is smaller than the first adjustment value.
  • the power calibration device performs mixing and combining on the configured carriers to obtain a combined signal, and then combines the combined signals.
  • the processed combined signal is processed, and the processed combined signal is divided into carriers to obtain the processed carriers, and then the power of each carrier is detected, and the power of each carrier and the preset value of each carrier are calculated.
  • the difference between the power difference of the combined signal and the processed combined signal is greater than 0.01 mW, and the power gain of each carrier is increased or decreased by 0.01 dB, and the power gain for each carrier is continued. Fine tune until detected The difference between the power difference of the combined signal and the processed combined signal is less than or equal to 0.01 mW, and the calibration is ended.
  • the carrier signal is corrected by coarse adjustment, and then the combined signal is finely corrected by fine adjustment. Therefore, the actual detection and adjustment of power calibration is more flexible and accurate.
  • High uses subcarrier (Resived Signal Strength Indicator (RSSI)) - multiplexed (feedback combined RSSI) and digital multiplexed (TSSI, Transmitter Signal Strength Indicator) ) - Analog multiplex (feedback RSSI) 2 sets of detection adjustment, can achieve a variety of 2 sets of detection adjustment, through two methods of adjustment and correction, the carrier power value and the link output power value are both calibrated.
  • RSSI Received Signal Strength Indicator
  • TSSI Transmitter Signal Strength Indicator
  • the coarse adjustment and the fine adjustment are respectively performed.
  • the power of each carrier after the processing needs to be detected.
  • the power of the combined combined signal needs to be detected in the fine adjustment, then In order to promptly and accurately trigger the detection of the power of each processed carrier and the power of the combined combined signal, it is necessary to determine a synchronization signal of the power of each carrier after the trigger detection process and the power of the combined combined signal.
  • the method may include: synchronizing the detection signals of the powers of the detected carriers according to the power calibration enable signal to obtain a synchronization signal; The signal triggers the power of each carrier after the detection process; and triggers the power of the combined signal after the detection process according to the synchronization signal.
  • the detection signal is processed according to the power calibration
  • the detection signal of the power of each carrier is synchronously processed to obtain a synchronization signal, which may include: when the power calibration enable signal is valid, sequentially performing cross-clock domain processing and frequency division on the detected signals of the detected carrier powers. Processing and delay processing to obtain a synchronization signal.
  • the power scaling device receives an enable signal for power calibration, wherein the enable signal is used for a power calibration device. After receiving the enable signal, the calibration is started when the enable signal is valid, the power calibration device performs calibration detection, calibration initialization, etc., and the detection signal for detecting the power of the combined signal is represented by Fr, and the power is determined.
  • the standard device performs cross-clock processing on the detection signal Fr to unify the clock domain on the transmission link and the clock domain on the feedback link, so as to avoid abnormality of the hardware circuit in the power calibration device, in order to ensure compatibility, among them, feedback
  • the link refers to the data of the transmitting link passing through the PA, and then the A/D-converted channel data processing link. After the link processing, the feedback link can be combined and the sub-carrier power detection can be completed. ;
  • the frequency division processing is mainly for the frequency division processing of various network standards, ensuring that the synchronization signal sent to the next stage for power detection can adapt to the processing of different standards, the delay processing after the frequency division processing is completed, and the delay processing needs to be according to different networks.
  • Different delay adjustments are made for the standard and mixed mode conditions.
  • the adjustment value comes from the delay of the downlink data to the feedback. Since the power of the combined signal is detected, the combined signal is D/A processed, PA processed, A/ D processing and subcarrier processing, therefore, delay processing is required at this time to detect the exact processed power of each carrier and the power of the combined combined signal; thus, the synchronization signal Fr' is obtained to trigger detection.
  • FIG. 5 is an optional timing diagram of a synchronization signal according to an embodiment of the present invention.
  • an enable signal for power scaling is configured in the background of the CPU.
  • the enable signal is high, and is detecting
  • the power of the combined signal is triggered at the synchronization frame header of the signal Fr.
  • the power of the combined signal is represented by TSSI.
  • the TSSI is updated to the register, and then the detection signal Fr is processed across clocks. The frequency division processing and the delay processing obtain the synchronization signal Fr'.
  • the detection signal is not only used to generate the synchronization signal Fr', but also used to trigger the mixing and combining process for each carrier to obtain a combined signal, so that the power calibration device The power gain of each carrier can be continuously detected and adjusted.
  • the power scaling device in order to ensure that the power detection of the downlink and the feedback is in the same frame during continuous multiple power detection, in FIG. 5, the power scaling device generates not only the synchronization signal Fr according to the power calibration enable signal and the detection signal Fr. ' At the same time, a start signal is sent to the feedback forward. When the start signal sent to the feedback is high, the power of each carrier after the delay processing t is detected and the combined signal is processed. The power of the signal, the detected power of each carrier and the power of the processed combined signal are represented by RSSI, and represented by feedback RSSI in FIG.
  • the accuracy of the power calibration can be improved, and in the generation of the synchronization signal, the link and the system delay and the like are not considered in the general scheme, so the digital subcarrier power is not used when the synchronization processing is not performed.
  • the detection, digital combined power detection and analog combined power detection have large deviations in the detection values of the three units.
  • the software After reporting the background, the software adjusts the new calibration parameters configured after the calibration calculation with the adjustment values required by the actual link. The deviation is large; and the synchronization signal is added in the scheme, so that the error between the three detection values is small, especially in the digital and analog combined power detection unit, the handshake mechanism is added, so that the detection errors of the two are smaller. It is critical to the overall calibration accuracy.
  • the power calibration method provided by the embodiment of the present invention is applicable to at least one network standard.
  • the power calibration device configures each carrier in each network standard, and performs mixing and combining processing on each carrier to obtain a combined signal, and then The combined signal is processed to obtain the processed combined signal, and the processed carrier signal is subjected to carrier-separated carrier processing, and then the processed carriers are detected to obtain the processed power of each carrier.
  • the power gain of each carrier is adjusted according to the power of each carrier after processing, and the carrier is returned to the detected processing to obtain the power of each carrier after processing.
  • step after the power of each carrier after processing falls within a preset value range, the power calibration of each carrier ends, so that the power gain of each carrier is adjusted by the power of each carrier after processing, and the power gain is adjusted by adjusting the power gain.
  • Power which forms a closed-loop feedback power adjustment path, which improves single-mode and multi-mode The calibration efficiency and accuracy of the power calibration.
  • FIG. 6 is a schematic structural diagram of a power calibration apparatus according to an embodiment of the present invention. As shown in FIG. 6, the apparatus is applicable to at least one network standard.
  • the device includes: a combining module 61, a processing module 62, a first detecting module 63 and a first adjusting module 64;
  • the combining module 61 is configured to arrange each carrier in each network standard, and perform mixing and combining for each carrier to obtain a combined signal; and the processing module 62 is configured to process the combined signal to obtain a processed combined signal.
  • the processed combined signal is divided into carriers to obtain processed carriers; the first detecting module 63 is configured to detect the power of each processed carrier; and the first adjusting module 64 is configured to be processed by each carrier.
  • the power gain of each carrier is adjusted according to the power of each carrier after the processing, and the first detection module 63 is triggered to detect the power of each processed carrier, and the processed carriers are processed.
  • the power scaling of each carrier ends.
  • the power gain of each carrier needs to be adjusted.
  • the power scaling device coarsely adjusts the power gain of each carrier.
  • the first adjustment module 64 is specifically configured. Determining, as a power difference value of each carrier, a difference between a power of each carrier after processing and a preset value of each carrier; determining a corresponding first adjustment value according to a power difference value of each carrier, The power gain of each carrier is adjusted according to the determined first adjustment value.
  • the power calibration device coarsely adjusts the power gain of each carrier according to the power of each carrier after processing. In order to improve the accuracy of power calibration, it is necessary to finely adjust the power gain of each carrier to improve the accuracy of power calibration.
  • the device further includes: a second detecting module configured to: after configuring each carrier in each network standard, and performing mixing and combining on each carrier to obtain a combined signal, detecting power of the combined signal;
  • the third detecting module is configured to: after processing the combined signal to obtain the processed combined signal, after performing the divided carrier on the processed combined signal, and obtaining the combined combined signal before obtaining the processed carriers
  • the second adjustment module is configured to adjust the power gain of each carrier according to the power of the combined signal and the power of the combined combined signal when the adjusted power gain of each carrier satisfies a preset condition.
  • the second adjustment module is specifically configured to combine the power of the combined signal with The difference between the preset values of the combined signals is determined as the power difference of the combined signal; the difference between the power of the processed combined signal and the preset value of the processed combined signal is determined as the processing The power difference of the combined signal; the corresponding second adjustment value is determined according to the power difference of the combined signal and the processed power difference of the combined signal, and the carriers are adjusted again according to the determined second adjustment value. Power gain.
  • the apparatus further includes: a synchronization module configured to detect the power of each processed carrier according to the power calibration enabled signal after detecting the processed power of each carrier.
  • the detection signal is synchronously processed to obtain a synchronization signal;
  • the triggering module is configured to trigger the power of each carrier after the detection process according to the synchronization signal; and trigger the power of the combined signal after the detection process according to the synchronization signal.
  • the power of each carrier after the detection process and the power of the processed combined signal are triggered.
  • the synchronization module is specifically configured as an enable signal for power calibration. When it is valid, the detection signals of the powers of the detected carriers are sequentially subjected to cross-clock domain processing, frequency division processing, and delay processing to obtain a synchronization signal.
  • the combining module 61, the processing module 62, the first detecting module 63, the first adjusting module 64, the second detecting module, the third detecting module, the second adjusting module, the synchronization module, and the triggering module may all be located in the device.
  • CPU microprocessor
  • MPU Microprocessor Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the power calibration apparatus includes a processor and a memory configured to store a computer program capable of running on the processor,
  • the processor is configured to perform the steps of the method of the embodiment of the present invention when the computer program is executed.
  • This embodiment describes a computer readable storage medium, which may be a read only memory (ROM) (for example, a read only memory, a FLASH memory, a transfer device, etc.), and a magnetic Storage medium (eg, magnetic tape, magnetic disk drive, etc.), optical storage medium (eg, CD-ROM, DVD-ROM, paper card, paper tape, etc.) and other well-known types of program memory; computer readable medium storing computer Executing instructions that, when executed, cause at least one processor to perform operations including:
  • Each carrier in each network standard is configured, and each carrier is mixed and combined to obtain a combined signal; the combined signal is processed to obtain a combined combined signal, and the processed combined signal is divided into carriers, and the processed signal is processed.
  • the step of power of each carrier, when the power of each carrier after processing falls within a preset value range, the power calibration of each carrier ends.
  • the power calibration apparatus provided by the embodiment of the present invention is applicable to at least one network standard, and the power calibration apparatus configures each carrier in each network standard, and performs mixing and combining processing on each carrier to obtain a combined signal, and then combines
  • the processed signal is processed by the road signal, and the processed carrier signals are subjected to carrier-separated processing, and the processed carriers are detected to obtain the processed power of each carrier.
  • the power gain of each carrier is adjusted according to the power of each carrier after processing, and the process returns to each carrier after the detection process, and the power of each carrier after processing is obtained.
  • the power calibration of each carrier ends, so that the power gain of each carrier is adjusted by the power of each carrier after processing, and the power is adjusted to adjust the power.
  • a closed-loop feedback power adjustment path is formed, which improves the calibration efficiency and accuracy of power calibration in single-mode and multi-mode systems.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The steps of the foregoing method embodiments; and the foregoing storage medium includes: a removable storage device, a ROM, a magnetic disk, or an optical disk, etc.
  • the medium in which the program code is stored includes: a removable storage device, a ROM, a magnetic disk, or an optical disk, etc.
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.
  • the computer readable storage medium provided by the embodiment of the present invention has a computer program stored thereon, and when the computer program is executed by the processor, the steps of the method of the embodiment of the present invention are implemented.
  • each carrier in each network standard is configured, and each carrier is subjected to mixing and combining processing to obtain a combined signal, and then the combined signal is processed to obtain a processed combined signal, and after processing
  • the combined signal is subjected to subcarrier processing to obtain each carrier, and then the processed carriers are detected to obtain the processed power of each carrier.
  • the power calibration of each carrier ends, so that the power gain of each carrier is adjusted by the power of each carrier after processing, and the power is adjusted by adjusting the power gain to form a closed-loop feedback power adjustment path, thereby improving the single Calibration efficiency and accuracy of power scaling in mode and multimode systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种功率定标方法,所述方法包括:配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号;对所述合路信号进行处理得到处理后的合路信号,对所述处理后的合路信号进行分载波,得到处理后的各载波;检测所述处理后的各载波的功率;在所述处理后的各载波的功率未落入预设数值范围时,根据所述处理后的各载波的功率,调整所述各载波的功率增益,返回重新检测所述处理后的各载波的功率,在所述处理后的各载波的功率落入所述预设数值范围时,所述各载波的功率定标结束。本发明实施例还同时公开了一种功率定标装置和计算机可读存储介质。

Description

一种功率标定方法、装置和计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为201610843417.3、申请日为2016年09月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种功率定标方法、装置和计算机可读存储介质。
背景技术
功率定标是无线通讯***中调整发射链路的功率值,使基站***的发射功率值达到预设的后台参照值,随着整个无线收发***的发展,对功率定标的精度要求越来越高,同时,需要兼容的***制式越来越多,即对整个***中定标的兼容性提出了更高的要求。
目前,通过基于单模多载波功率检测与调整去实现功率定标,大都针对单一网络制式,采用软件发起,硬件计算上报,然后用总功率进行定标,该方法中对初始化操作以及调整的精度控制的不好,造成总的定标误差较大,定标精度低下;而且对于多模***中的实现与应用,也只能针对每种网络制式进行单模多载波功率检测与调整去实现功率定标,这样,对于多模***中的功率定标来说,定标效率低下。
发明内容
有鉴于此,本发明实施例期望提供一种功率定标方法、装置和计算机可读存储介质。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供了一种功率定标方法,所述方法包括:配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号;对所述合路信号进行处理得到处理后的合路信号,对所述处理后的合路信号进行分载波,得到处理后的各载波;检测所述处理后的各载波的功率;在所述处理后的各载波的功率未落入预设数值范围时,根据所述处理后的各载波的功率,调整所述各载波的功率增益,并返回重新检测所述处理后的各载波的功率,在所述处理后的各载波的功率落入所述预设数值范围时,所述各载波的功率定标结束。
在上述方案中,所述根据所述处理后的各载波的功率,调整所述各载波的功率增益,包括:将所述处理后的每个载波的功率与每个载波的预设值之间的差值确定为每个载波的功率差值;根据所述每个载波的功率差值,确定对应的第一调整值,根据确定的第一调整值调整所述各载波的功率增益。
在上述方案中,在配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号之后,所述方法还包括:检测所述合路信号的功率;相应地,在对所述合路信号进行处理得到处理后的合路信号之后,在对所述处理后的合路信号进行分载波,得到处理后的各载波之前,所述方法还包括:检测所述处理后的合路信号的功率;在调整后的各载波的功率增益满足预设条件时,根据所述合路信号的功率和所述处理后的合路信号的功率,再次调整所述各载波的功率增益。
在上述方案中,所述根据所述合路信号的功率和所述处理后的合路信号的功率,再次调整所述各载波的功率增益,包括:将所述合路信号的功率与合路信号的预设值之间的差值确定为合路信号的功率差值;将所述处理后的合路信号的功率与处理后的合路信号的预设值之间的差值确定为处理后的合路信号的功率差值;根据所述合路信号的功率差值和所述处理后的合路信号的功率差值,确定对应的第二调整值,根据确定的第二调整值再次调整所述各载波的功率增益。
在上述方案中,在检测所述处理后的各载波的功率之后,所述方法还包括:根据功率定标的使能信号,对检测所述处理后的各载波的功率的检 测信号进行同步处理,得到同步信号;相应地,根据所述同步信号,触发检测所述处理后的各载波的功率;根据所述同步信号,触发检测所述处理后的合路信号的功率。
在上述方案中,所述根据功率定标的使能信号,对检测所述处理后的各载波的功率的检测信号进行同步处理,得到同步信号,包括:在所述功率定标的使能信号有效时,对检测所述处理后的各载波的功率的检测信号依次进行跨时钟域处理、分频处理和延时处理,得到所述同步信号。
第二方面,本发明实施例提供了一种功率定标装置,所述装置包括:合路模块,配置为配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号;处理模块,配置为对所述合路信号进行处理得到处理后的合路信号,对所述处理后的合路信号进行分载波,得到处理后的各载波;第一检测模块,配置为检测所述处理后的各载波的功率;第一调整模块,配置为在所述处理后的各载波的功率未落入预设数值范围时,根据所述处理后的各载波的功率,调整所述各载波的功率增益,并触发所述第一检测模块重新检测所述处理后的各载波的功率,在所述处理后的各载波的功率落入所述预设数值范围时,所述各载波的功率定标结束。
在上述方案中,所述第一调整模块配置为将所述处理后的每个载波的功率与每个载波的预设值之间的差值确定为每个载波的功率差值;根据所述每个载波的功率差值,确定对应的第一调整值,根据确定的第一调整值调整所述各载波的功率增益。
在上述方案中,所述装置还包括:第二检测模块,配置为在配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号之后,检测所述合路信号的功率;第三检测模块,配置为在对所述合路信号进行处理得到处理后的合路信号之后,在对所述处理后的合路信号进行分载波,得到处理后的各载波之前,检测所述处理后的合路信号的功率;第二调整模块,配置为在调整后的各载波的功率增益满足预设条件时,根据所述合路信号的功率和所述处理后的合路信号的功率,再次调整所述各载波的功率增益。
在上述方案中,所述第二调整模块配置为将所述合路信号的功率与合路信号的预设值之间的差值确定为合路信号的功率差值;将所述处理后的 合路信号的功率与处理后的合路信号的预设值之间的差值确定为处理后的合路信号的功率差值;以及根据所述合路信号的功率差值和所述处理后的合路信号的功率差值,确定对应的第二调整值,根据确定的第二调整值再次调整所述各载波的功率增益。
在上述方案中,所述装置还包括:同步模块,配置为在检测所述处理后的各载波的功率之后,根据功率定标的使能信号,对检测所述处理后的各载波的功率的检测信号进行同步处理,得到同步信号;触发模块,配置为根据所述同步信号,触发所述第一检测模块检测所述处理后的各载波的功率;根据所述同步信号,触发所述第三检测模块检测所述处理后的合路信号的功率。
在上述方案中,所述同步模块配置为在所述功率定标的使能信号有效时,对检测所述处理后的各载波的功率的检测信号依次进行跨时钟域处理、分频处理和延时处理,得到所述同步信号。
第三方面,本发明实施例提供了一种功率定标装置,包括:包括处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器配置为运行所述计算机程序时,执行上述方法的步骤。
第四方面,本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述方法的步骤。
本发明实施例所提供的功率定标方法、装置和计算机可读存储介质,功率定标装置配置各网络制式下各载波,并对各载波进行混频合路处理得到合路信号,然后对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波得到处理后的各载波,再对处理后的各载波进行检测得到处理后的各载波的功率,在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,返回至检测处理后的各载波,得到处理后的各载波的功率的步骤,在处理后的各载波的功率落入预设数值范围,则各载波的功率定标结束,这样,通过处理后的各载波的功率来调整各载波的功率增益,通过调整功率增益来调整功率,形成了一种闭环反馈的功率调整路径,从而提高了单模及多模***中 功率定标的定标效率和精度。
附图说明
图1为本发明实施例中功率定标方法的流程示意图;
图2为本发明实施例中功率定标方法的一种可选的流程示意图;
图3为本发明实施例中功率定标方法的一种可选的流程框图;
图4为本发明实施例中同步信号的一种可选的流程框图;
图5为本发明实施例中同步信号的一种可选的时序图;
图6为本发明实施例中功率定标装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例提供一种功率定标方法,该方法适用于至少一种网络制式,即该方法可以用于单模多载波***中,也可以用于多模多载波***中,其中,网络制式可以包括以下一项或多项:全球移动通信***(GSM,Global System for Mobile Communication),通用移动通信***(UMTS,Universal Mobile Telecommunications System),长期演进(LTE,Long Term Evolution),时分同步码分多址(TD-SCDMA,Time Division-Synchronous Code Division Multiple Access),码分多址(CDMA,Code Division Multiple Access);其中,LTE中可以包括时分双工(TDD,Time Division Duplex)、频分双工(FDD,Frequency Division Duplex)。
图1为本发明实施例中功率定标方法的流程示意图,如图1所示,该方法包括:
S101:配置各网络制式下各载波,对各载波进行混频合路得到合路信号;
图2为本发明实施例中功率定标方法的一种可选的流程示意图,下面以图2为例进行说明;
如图2所示,第一步,功率定标装置接收定标使能信号,在定标的使能信号有效时进行定标启动,具体来说,功率定标装置主要检测该单模或多模***中的放大器(PA)的各项指标是否满足要求、射频拉远单元(RRU,Radio Remote Unit)中的各模块是否准备就绪、PA驻波等。第二步,功率定标装置进行定标初始化,具体来说,由于功率定标装置中各射频参数设置不确定,需要进行初始化操作,并产生定标的初始化信息,这里,在定标初始化的过程中,设置各网络制式下各载波的功率增益的初始值为0,以防止各载波在处理的过程中,PA在强行打开后出现大功率。
功率定标装置在进行定标初始化之后,得到定标的初始化信息,功率定标装置是根据定标的初始化信息来配置出各网络制式下各载波中,这里需要说明的是,功率定标装置可以根据定标的初始化信息配置出一种网络制式下的多载波,也可以根据定标的初始化信息配置出多个网络制式下的多载波。
图3为本发明实施例中功率定标方法的一种可选的流程框图;下面结合图2和图3来进行说明;
如图3所示,功率定标装置配置出N个载波,第一个载波用I(1),Q(1)表示,第N个载波用I(N),Q(N)来表示,功率定标装置并行传输上述N个载波,对上述N个载波进行数字下变频处理(DUC,Digital Down Converter)和混频合路处理,这里,功率定标装置可以针对每种网络制式下的载波进行混频合路处理得到每种网络制式下的合路信号,也可以将所有载波进行混频合路处理得到一个合路信号,这里,本发明实施例不做具体限定。
S102:对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波,得到处理后的各载波;
仍然以图3为例,功率定标装置在得到合路信号之后,对合路信号依次进行数模转换(D/A)处理、PA处理和模数转换(A/D)处理,得到处理后的合路信号进行分载波。在图3中,第一个处理后的载波用I(1)',Q(1)'表示,第N个处理后的载波用I(N)',Q(N)'来表示。
这里,需要说明的是,本发明实施例中各载波的功率增益指的是,配置出的各载波经过混频合路处理得到处理后的合路信号的链路上的功率增 益,该链路也可以称之为发射链路。
S103:检测处理后的各载波的功率;
举例来说,图3中,功率定标装置在得到第一个处理后的载波至第N个处理后的载波之后,检测处理后的各载波的功率(相当于图3中为数字分载波功率检测),并将检测到的各载波的功率上报给功率定标装置中的中央处理器(CPU,Central Processing Unit)后台。
S104:在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,返回至检测处理后的各载波的功率的步骤,在处理后的各载波的功率落入预设数值范围时,各载波的功率定标结束。
其中,上述预设数值范围是功率定标装置根据定标的要求预先配置好的,只有当各载波的功率落入该预设数值范围时,说明发射链路上的发射功率达到了定标的要求,那么,各载波的定标结束,否则,需要重新返回至检测处理后的各载波的功率的步骤,再次根据处理后的各载波的功率来调整各载波的功率增益,直到处理后的各载波的功率落入预设数值范围,这样使得发射链路上的发射功率的发射功率达到了定标的要求,该方法可配性好,兼容性高,能够兼容各种网络制式下的多模或混模的功率定标需求,用户可以根据不同的应用场景根据定标需求进行灵活的配置。
为了更加达到功率定标的要求,需要调整各载波的功率增益,首先,功率定标装置对各载波的功率增益进行粗调,在一种可选的实施例中,在S104中根据处理后的各载波的功率,调整各载波的功率增益,可以包括:将处理后的每个载波的功率与每个载波的预设值之间的差值确定为每个载波的功率差值;根据每个载波的功率差值,确定对应的第一调整值,根据确定的第一调整值调整各载波的功率增益。
具体来说,在图3中,当功率定标装置中的CPU后台接收到上报的处理后的各载波的功率之后,首先,计算处理后的每个载波的功率与每个载波的预设值的差值,得到每个载波的功率差值,然后确定出每个载波的功率差值对应的第一差值,例如,在每个载波的功率差值均大于0.1mW时,确定的第一差值可以为0.1dB,然后将各载波的功率增益增大或者减小 0.1dB;然后再检测处理后的各载波的功率,根据检测到的各载波的功率来调整各载波的功率增益,这样,对各载波的功率增益进行粗调,直至经过调整后的各载波的功率增益满足预设条件。
功率定标装置根据处理后的各载波的功率对各载波的功率增益进行粗调,为了提高功率定标的精度,需要对各载波的功率增益进行微调以提高功率定标的精度,在一种可选的实施例中,在S101之后,该方法还可以包括:检测合路信号的功率;
在S102中在对合路信号进行处理得到处理后的合路信号之后,在对处理后的合路信号进行分载波,得到处理后的各载波之前,该方法还包括:检测处理后的合路信号的功率;
在调整后的各载波的功率增益满足预设条件时,根据合路信号的功率和处理后的合路信号的功率,调整各载波的功率增益。
上述根据合路信号的功率和处理后的合路信号的功率,调整各载波的功率增益是在调整后的各载波的功率增益满足预设条件时,也就是说,微调是在粗调满足预设条件的基础上进行的,上述预设条件可以为一个粗调数值区间,只有当粗调后的每个载波的功率差值落入该粗调数值区间时,说明粗调满足预设条件,能够进行微调,进行一次微调之后,只有当检测到的合路信号的功率差值和处理后的合路信号的功率差值满足一定的微调数值区间,才结束微调。
在具体实施过程中,为了通过微调来进一步提高功率定标的精度,在一种可选的实施例中,根据合路信号的功率和处理后的合路信号的功率,调整各载波的功率增益,可以包括:将合路信号的功率与合路信号的预设值之间的差值确定为合路信号的功率差值;将处理后的合路信号的功率与处理后的合路信号的预设值之间的差值确定为处理后的合路信号的功率差值;根据合路信号的功率差值和处理后的合路信号的功率差值,确定对应的第二调整值,根据确定的第二调整值调整各载波的功率增益。
其中,上述第二调整值小于上述第一调整值。
同样,再以图2和图3为例进行说明,功率定标装置在定标初始化完成之后,对配置出的各载波进行混频合路得到合路信号,然后对合路信号 进行处理得到处理后的合路信号,再对处理后的合路信号进行分载波得到处理后的各载波,然后检测各载波的功率,计算每个载波的功率与每个载波的预设值的差值,当每个载波的功率差值均大于0.1mW时,将各载波的功率增益增大或者减小0.1dB,继续对各载波的功率增益进行粗调,直至检测到的每个载波的功率差值均小于或等于0.1mW,然后根据检测到的合路信号(相当于图3中的数字合路功率检测)和处理后的合路信号(相当于图3中的模拟合路功率检测),对各载波的功率增益进行微调,如图2所示,计算合路信号与合路信号预设值的差值,且计算处理后的合路信号与处理后的合路信号预设值的差值,只有当合路信号的功率差值与处理后的合路信号的功率差值均大于0.01mW,将各载波的功率增益增大或者减小0.01dB,继续对各载波的功率增益进行微调,直至检测到的合路信号的功率差值和处理后的合路信号的功率差值均小于等于0.01mW,结束定标。
这里,采用了粗调和微调,通过粗调先对载波信号进行校正,然后通过微调对合路信号再进行细微的校正,因此对于功率定标的实际检测与调整,灵活性更高,精度也更高;采用了分载波(反馈载波接收信号的强度指示(RSSI,Received Signal Strength Indicator))-合波(反馈合波RSSI)与数字合波(发射信号的强度指示(TSSI,Transmitter Signal Strength Indicator))-模拟合波(反馈RSSI)2组检测调整,能够实现多种2组检测调整,通过2种调整校正的方法,实现了载波功率值与链路输出功率值都校准的目的。
在调整各载波的功率增益中分别进行粗调和微调,粗调中需要检测处理后的各载波的功率,微调中除了检测合路信号的功率,还需要检测处理后的合路信号的功率,那么,为了适时准确地触发检测出处理后的各载波的功率和处理后的合路信号的功率,需要确定出触发检测处理后的各载波的功率和处理后的合路信号的功率的同步信号,在一种可选的实施例中,在S103之后,该方法可以包括:根据功率定标的使能信号,对检测处理后的各载波的功率的检测信号进行同步处理,得到同步信号;根据同步信号,触发检测处理后的各载波的功率;根据同步信号,触发检测处理后的合路信号的功率。
为了得到准确的同步信号来触发检测处理后的各载波的功率和处理后的合路信号的功率,在一种可选的实施例中,根据功率定标的使能信号,对检测处理后的各载波的功率的检测信号进行同步处理,得到同步信号,可以包括:在功率定标的使能信号有效时,对检测处理后的各载波的功率的检测信号依次进行跨时钟域处理、分频处理和延时处理,得到同步信号。
图4为本发明实施例中同步信号的一种可选的流程框图,如图4所示,功率定标装置接收功率定标的使能信号,其中,该使能信号用于功率定标装置在接收到的该使能信号之后,在使能信号有效时定标启动,功率定标装置进行定标检测、定标初始化等等,检测合路信号的功率的检测信号用Fr表示,功率定标装置对检测信号Fr先进行跨时钟处理,以统一发射链路上的时钟域与反馈链路上的时钟域,避免功率定标装置中的硬件电路产生异常,为了保证兼容性,其中,反馈链路指的是发射链路的数据经过PA,再经过反馈A/D转换后的通道数据处理链路,经过链路的各级处理,可以完成反馈链路的合路以及分载波的功率检测;
分频处理主要是针对各种网络制式的分频处理,保证送入下一级做功率检测的同步信号能适应不同制式的处理,分频处理完成后延时处理,延时处理需要根据不同网络制式和混模条件做不同的延时调整,该调整值来自于下行数据到反馈的延时,由于在检测合路信号的功率之后,对合路信号进行D/A处理、PA处理、A/D处理以及分载波处理,所以,此时需要进行延时处理以检测到准确的处理后的各载波的功率和处理后的合路信号的功率;这样,便得到了同步信号Fr'来触发检测处理后的各载波的功率和处理后的合路信号的功率。
图5为本发明实施例中同步信号的一种可选的时序图,如图5所示,CPU后台配置出功率定标的使能信号,当该使能信号为高电平时,且在检测信号Fr的随路同步帧头处触发检测合路信号的功率得到合路信号的功率用TSSI表示,如图5中的TSSI计算,更新上报TSSI至寄存器,然后对检测信号Fr进行跨时钟处理、分频处理和延时处理得到同步信号Fr'。
这里需要说明的是,在图2中,检测信号不仅用于生成同步信号Fr',还用于触发对各载波进行混频合路处理得到合路信号,使得功率定标装置 可以不断的检测与调整各载波的功率增益。
另外为了保证在连续的多次功率检测时,下行和反馈的功率检测在同一帧内,在图5中,功率定标装置根据功率定标的使能信号和检测信号Fr不仅生成了同步信号Fr',同时还生成了前向传给反馈的启动信号,在该前向传给反馈的启动信号为高电平时,经过延时处理t之后检测处理后的各载波的功率和处理后的合路信号的功率,将检测得到的处理后的各载波的功率和处理后的合路信号的功率用RSSI表示,图5中用反馈RSSI表示,在得到RSSI之后,触发前向更新上报TSSI完成标志至寄存器;约几个周期(cycle)之后更新上报RSSI完成标志至寄存器,在检测信号Fr的下一个随路同步帧头处计算反馈RSSI的完成标志上报给CPU,CPU检测到该标志后读取TSSI和RSSI,并在延时处理t之后清除寄存器中的TSSI和RSSI。
经过上述粗调和微调,可以提高功率定标的标精度,并且在产生同步信号中,一般的方案中没有考虑链路和***延时等信息,因此在不做同步处理的时候,数字分载波功率检测,数字合路功率检测以及模拟合路功率检测3个单元的检测值存在较大偏差,上报后台后,软件经过定标计算后配置的新的校准参数与实际链路需要的调整值之间偏差大;而该方案中通过加入同步信号,使得这3个检测值之间误差很小,特别是在数字与模拟合波功率检测单元中,加入握手机制,使得两者的检测误差更小,对整个定标精度有关键意义。
本发明实施例所提供的功率定标方法,该方法适用于至少一种网络制式,功率定标装置配置各网络制式下各载波,并对各载波进行混频合路处理得到合路信号,然后对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波得到处理后的各载波,再对处理后的各载波进行检测得到处理后的各载波的功率,在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,返回至检测处理后的各载波,得到处理后的各载波的功率的步骤,在处理后的各载波的功率落入预设数值范围,则各载波的功率定标结束,这样,通过处理后的各载波的功率来调整各载波的功率增益,通过调整功率增益来调整功率,形成了一种闭环反馈的功率调整路径,从而提高了单模及多模系 统中功率定标的定标效率和精度。
基于同一发明构思,本发明实施例还提供一种功率定标装置,图6为本发明实施例中功率定标装置的结构示意图,如图6所示,该装置适用于至少一种网络制式,该装置包括:合路模块61、处理模块62、第一检测模块63和第一调整模块64;
其中,合路模块61,配置为配置各网络制式下各载波,对各载波进行混频合路得到合路信号;处理模块62,配置为对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波,得到处理后的各载波;第一检测模块63,配置为检测处理后的各载波的功率;第一调整模块64,配置为在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,并触发所述第一检测模块63检测处理后的各载波的功率,在处理后的各载波的功率落入预设数值范围时,各载波的功率定标结束。
为了更加达到定标的要求,需要调整各载波的功率增益,首先,功率定标装置对各载波的功率增益进行粗调,在一种可选的实施例中,上述第一调整模块64具体配置为将处理后的每个载波的功率与每个载波的预设值之间的差值确定为每个载波的功率差值;根据每个载波的功率差值,确定对应的第一调整值,根据确定的第一调整值调整各载波的功率增益。
功率定标装置根据处理后的各载波的功率对各载波的功率增益进行粗调,为了得到提高功率定标的精度,需要对各载波的功率增益进行微调以提高功率定标的精度,在一种可选的实施例中,上述装置还包括:第二检测模块,配置为在配置各网络制式下各载波,对各载波进行混频合路得到合路信号之后,检测合路信号的功率;第三检测模块,配置为在对合路信号进行处理得到处理后的合路信号之后,在对处理后的合路信号进行分载波,得到处理后的各载波之前,检测处理后的合路信号的功率;第二调整模块,配置为在调整后的各载波的功率增益满足预设条件时,根据合路信号的功率和处理后的合路信号的功率,调整各载波的功率增益。
在具体实施过程中,为了通过微调来进一步提高功率定标的精度,在一种可选的实施例中,上述第二调整模块具体配置为将合路信号的功率与 合路信号的预设值之间的差值确定为合路信号的功率差值;将处理后的合路信号的功率与处理后的合路信号的预设值之间的差值确定为处理后的合路信号的功率差值;根据合路信号的功率差值和处理后的合路信号的功率差值,确定对应的第二调整值,根据确定的第二调整值再次调整各载波的功率增益。
在调整各载波的功率增益中分别进行粗调和微调,粗调中需要检测处理后的各载波的功率,微调中除了检测合路信号的功率,还需要检测处理后的合路信号的功率,那么,为了适时准确地触发检测出处理后的各载波的功率和处理后的合路信号的功率,需要确定出触发检测处理后的各载波的功率和处理后的合路信号的功率的同步信号,在一种可选的实施例中,上述装置还包括:同步模块,配置为在检测处理后的各载波的功率之后,根据功率定标的使能信号,对检测处理后的各载波的功率的检测信号进行同步处理,得到同步信号;触发模块,配置为根据同步信号,触发检测处理后的各载波的功率;根据同步信号,触发检测处理后的合路信号的功率。
为了得到准确的同步信号来触发检测处理后的各载波的功率和处理后的合路信号的功率,在一种可选的实施例中,上述同步模块具体配置为在功率定标的使能信号有效时,对检测处理后的各载波的功率的检测信号依次进行跨时钟域处理、分频处理和延时处理,得到同步信号。
在实际应用中,合路模块61、处理模块62、第一检测模块63、第一调整模块64、第二检测模块、第三检测模块、第二调整模块、同步模块和触发模块均可由位于装置的CPU、微处理器(MPU,Microprocessor Unit)、专用集成电路(ASIC,Application Specific Integrated Circuit)或现场可编程门阵列(FPGA,Field-Programmable Gate Array)等实现。
基于此,本发明实施例提供的功率定标装置,包括处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
其中,所述处理器配置为运行所述计算机程序时,执行本发明实施例方法的步骤。
本实施例记载一种计算机可读存储介质,可以为只读存储器(Read Only Memory,ROM)(例如,只读存储器、FLASH存储器、转移装置等)、磁 存储介质(例如,磁带、磁盘驱动器等)、光学存储介质(例如,CD-ROM、DVD-ROM、纸卡、纸带等)以及其他熟知类型的程序存储器;计算机可读介质中存储有计算机可执行指令,当执行指令时,引起至少一个处理器执行包括以下的操作:
配置各网络制式下各载波,对各载波进行混频合路得到合路信号;对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波,得到处理后的各载波;检测处理后的各载波的功率;在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,返回至检测处理后的各载波的功率的步骤,在处理后的各载波的功率落入预设数值范围时,各载波的功率定标结束。
本发明实施例所提供的功率定标装置,适用于至少一种网络制式,功率定标装置配置各网络制式下各载波,并对各载波进行混频合路处理得到合路信号,然后对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波得到处理后的各载波,再对处理后的各载波进行检测得到处理后的各载波的功率,在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,返回至检测处理后的各载波,得到处理后的各载波的功率的步骤,在处理后的各载波的功率落入预设数值范围,则各载波的功率定标结束,这样,通过处理后的各载波的功率来调整各载波的功率增益,通过调整功率增益来调整功率,形成了一种闭环反馈的功率调整路径,从而提高了单模及多模***中功率定标的定标效率和精度。
这里需要指出的是:以上装置实施例项的描述,与上述方法描述是类似的,具有同方法实施例相同的有益效果,因此不做赘述。对于本发明装置实施例中未披露的技术细节,本领域的技术人员请参照本发明方法实施例的描述而理解,为节约篇幅,这里不再赘述。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意 适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存 储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
也就是说,本发明实施例提供的计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例方法的步骤。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例所提供的方案,配置各网络制式下各载波,并对各载波进行混频合路处理得到合路信号,然后对合路信号进行处理得到处理后的合路信号,对处理后的合路信号进行分载波得到处理后的各载波,再对处理后的各载波进行检测得到处理后的各载波的功率,在处理后的各载波的功率未落入预设数值范围时,根据处理后的各载波的功率,调整各载波的功率增益,返回至检测处理后的各载波,得到处理后的各载波的功率的步骤,在处理后的各载波的功率落入预设数值范围,则各载波的功率定标结束,这样,通过处理后的各载波的功率来调整各载波的功率增益,通过调整功率增益来调整功率,形成了一种闭环反馈的功率调整路径,从而提高了单模及多模***中功率定标的定标效率和精度。

Claims (14)

  1. 一种功率定标方法,所述方法包括:
    配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号;
    对所述合路信号进行处理得到处理后的合路信号,对所述处理后的合路信号进行分载波,得到处理后的各载波;
    检测所述处理后的各载波的功率;
    在所述处理后的各载波的功率未落入预设数值范围时,根据所述处理后的各载波的功率,调整所述各载波的功率增益,并返回重新检测所述处理后的各载波的功率,在所述处理后的各载波的功率落入所述预设数值范围时,所述各载波的功率定标结束。
  2. 根据权利要求1所述的方法,其中,所述根据所述处理后的各载波的功率,调整所述各载波的功率增益,包括:
    将所述处理后的每个载波的功率与每个载波的预设值之间的差值确定为每个载波的功率差值;
    根据所述每个载波的功率差值,确定对应的第一调整值,根据确定的第一调整值调整所述各载波的功率增益。
  3. 根据权利要求1所述的方法,其中,
    在配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号之后,所述方法还包括:检测所述合路信号的功率;
    相应地,在对所述合路信号进行处理得到处理后的合路信号之后,在对所述处理后的合路信号进行分载波,得到处理后的各载波之前,所述方法还包括:检测所述处理后的合路信号的功率;
    在调整后的各载波的功率增益满足预设条件时,根据所述合路信号的功率和所述处理后的合路信号的功率,再次调整所述各载波的功率增益。
  4. 根据权利要求3所述的方法,其中,所述根据所述合路信号的功率和所述处理后的合路信号的功率,再次调整所述各载波的功率增益,包括:
    将所述合路信号的功率与合路信号的预设值之间的差值确定为合路信 号的功率差值;
    将所述处理后的合路信号的功率与处理后的合路信号的预设值之间的差值确定为处理后的合路信号的功率差值;
    根据所述合路信号的功率差值和所述处理后的合路信号的功率差值,确定对应的第二调整值,根据确定的第二调整值再次调整所述各载波的功率增益。
  5. 根据权利要求3所述的方法,其中,在检测所述处理后的各载波的功率之后,所述方法还包括:
    根据功率定标的使能信号,对检测所述处理后的各载波的功率的检测信号进行同步处理,得到同步信号;
    相应地,根据所述同步信号,触发检测所述处理后的各载波的功率;
    根据所述同步信号,触发检测所述处理后的合路信号的功率。
  6. 根据权利要求5所述的方法,其中,所述根据功率定标的使能信号,对检测所述处理后的各载波的功率的检测信号进行同步处理,得到同步信号,包括:
    在所述功率定标的使能信号有效时,对检测所述处理后的各载波的功率的检测信号依次进行跨时钟域处理、分频处理和延时处理,得到所述同步信号。
  7. 一种功率定标装置,所述装置包括:
    合路模块,配置为配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号;
    处理模块,配置为对所述合路信号进行处理得到处理后的合路信号,对所述处理后的合路信号进行分载波,得到处理后的各载波;
    第一检测模块,配置为检测所述处理后的各载波的功率;
    第一调整模块,配置为在所述处理后的各载波的功率未落入预设数值范围时,根据所述处理后的各载波的功率,调整所述各载波的功率增益,并触发所述第一检测模块重新检测所述处理后的各载波的功率,在所述处理后的各载波的功率落入所述预设数值范围时,所述各载波的功率定标结 束。
  8. 根据权利要求7所述的装置,其中,所述第一调整模块配置为将所述处理后的每个载波的功率与每个载波的预设值之间的差值确定为每个载波的功率差值;根据所述每个载波的功率差值,确定对应的第一调整值,根据确定的第一调整值调整所述各载波的功率增益。
  9. 根据权利要求7所述的装置,其中,所述装置还包括:
    第二检测模块,配置为在配置各网络制式下各载波,对所述各载波进行混频合路得到合路信号之后,检测所述合路信号的功率;
    第三检测模块,配置为在对所述合路信号进行处理得到处理后的合路信号之后,在对所述处理后的合路信号进行分载波,得到处理后的各载波之前,检测所述处理后的合路信号的功率;
    第二调整模块,配置为在调整后的各载波的功率增益满足预设条件时,根据所述合路信号的功率和所述处理后的合路信号的功率,再次调整所述各载波的功率增益。
  10. 根据权利要求9所述的装置,其中,所述第二调整模块配置为将所述合路信号的功率与合路信号的预设值之间的差值确定为合路信号的功率差值;将所述处理后的合路信号的功率与处理后的合路信号的预设值之间的差值确定为处理后的合路信号的功率差值;以及根据所述合路信号的功率差值和所述处理后的合路信号的功率差值,确定对应的第二调整值,根据确定的第二调整值再次调整所述各载波的功率增益。
  11. 根据权利要求9所述的装置,其中,所述装置还包括:
    同步模块,配置为在检测所述处理后的各载波的功率之后,根据功率定标的使能信号,对检测所述处理后的各载波的功率的检测信号进行同步处理,得到同步信号;
    触发模块,配置为根据所述同步信号,触发所述第一检测模块检测所述处理后的各载波的功率;根据所述同步信号,触发所述第三检测模块检测所述处理后的合路信号的功率。
  12. 根据权利要求11所述的装置,其中,所述同步模块配置为在所述 功率定标的使能信号有效时,对检测所述处理后的各载波的功率的检测信号依次进行跨时钟域处理、分频处理和延时处理,得到所述同步信号。
  13. 一种功率定标装置,所述装置包括:包括处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器配置为运行所述计算机程序时,执行权利要求1至6任一项所述方法的步骤。
  14. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至6任一项所述方法的步骤。
PCT/CN2017/085568 2016-09-22 2017-05-23 一种功率标定方法、装置和计算机可读存储介质 WO2018054083A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17852157.1A EP3518482B1 (en) 2016-09-22 2017-05-23 Power calibration method, apparatus and computer readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610843417.3 2016-09-22
CN201610843417.3A CN107863973A (zh) 2016-09-22 2016-09-22 一种功率定标方法和装置

Publications (1)

Publication Number Publication Date
WO2018054083A1 true WO2018054083A1 (zh) 2018-03-29

Family

ID=61689742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085568 WO2018054083A1 (zh) 2016-09-22 2017-05-23 一种功率标定方法、装置和计算机可读存储介质

Country Status (3)

Country Link
EP (1) EP3518482B1 (zh)
CN (1) CN107863973A (zh)
WO (1) WO2018054083A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109194419B (zh) * 2018-09-11 2020-08-28 京信通信***(中国)有限公司 一种开站方法、装置、电子设备及存储介质
CN111277347B (zh) * 2018-12-04 2023-01-10 深圳市中兴微电子技术有限公司 一种功率统计方法、装置及计算机可读存储介质
CN111818627B (zh) * 2020-07-24 2022-07-08 成都爱瑞无线科技有限公司 一种动态调整的下行发端定标方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798122A (zh) * 2004-12-24 2006-07-05 中兴通讯股份有限公司 一种多载波***实现自动定标的方法和装置
CN101170331A (zh) * 2007-11-13 2008-04-30 中兴通讯股份有限公司 多载波无线通讯***载波发射功率的定标方法和装置
CN103262618A (zh) * 2010-12-10 2013-08-21 华为技术有限公司 同步传输***中用于干扰控制的***和方法
US8744009B2 (en) * 2009-09-25 2014-06-03 General Dynamics C4 Systems, Inc. Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092279B1 (en) * 1998-06-29 2003-08-27 Nokia Corporation Power control in a multi-carrier radio transmitter
CN101711053B (zh) * 2009-12-21 2012-11-28 中兴通讯股份有限公司 多载波闭环功率控制装置及方法
CN102355721B (zh) * 2011-06-29 2017-03-29 中兴通讯股份有限公司 一种多模***的混合自动增益控制的方法和装置
CN105611620B (zh) * 2014-11-20 2020-03-17 中兴通讯股份有限公司 一种功放电压调节方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1798122A (zh) * 2004-12-24 2006-07-05 中兴通讯股份有限公司 一种多载波***实现自动定标的方法和装置
CN101170331A (zh) * 2007-11-13 2008-04-30 中兴通讯股份有限公司 多载波无线通讯***载波发射功率的定标方法和装置
US8744009B2 (en) * 2009-09-25 2014-06-03 General Dynamics C4 Systems, Inc. Reducing transmitter-to-receiver non-linear distortion at a transmitter prior to estimating and cancelling known non-linear distortion at a receiver
CN103262618A (zh) * 2010-12-10 2013-08-21 华为技术有限公司 同步传输***中用于干扰控制的***和方法

Also Published As

Publication number Publication date
EP3518482A4 (en) 2019-10-30
CN107863973A (zh) 2018-03-30
EP3518482A1 (en) 2019-07-31
EP3518482B1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
US11844035B2 (en) Method and device for signal detection
JP7348068B2 (ja) パワー制御の方法、端末デバイス及びネットワークデバイス
CN111165032B (zh) 新无线电中的定时提前范围适配
WO2010103990A1 (ja) 移動通信方法、無線基地局及び移動局
WO2018054083A1 (zh) 一种功率标定方法、装置和计算机可读存储介质
JP6384697B2 (ja) 同期方法、同期装置、および基地局
US20230134036A1 (en) User Equipment Capabilities for Time Sensitive Networking
US10764848B2 (en) Inter-base-station synchronization method and device
US9306680B2 (en) Method and device for calibrating frequency synthesizer in communication terminal
US11963227B2 (en) Enhanced timing advanced filtering
US11864146B2 (en) Solutions to timing reference for detection and report of UL RSat asynch nodes or nodes without a time frame structure
US20190089471A1 (en) System and method for mmwave massive array self-testing
CN110830202B (zh) 通信方法、装置和通信***
EP4311324A1 (en) Timing error group indication method and apparatus, and user equipment and network side device
US20210385713A1 (en) Modem arrangement
WO2020134013A1 (zh) 功率调节方法及装置、阵列天线、存储介质
EP3639576A1 (en) Uplink power control based on multiple reference signals
CN114205015B (zh) 测量方法、发送方法及相关设备
CN110024304A (zh) 相位校正方法及装置
CN108632842B (zh) 失步确定方法及装置
CN106332263A (zh) 终端模式切换方法及终端
EP4349084A1 (en) Time synchronization techniques
JP2018129772A (ja) 基地局、信号同期システムおよび信号同期方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852157

Country of ref document: EP

Effective date: 20190423