WO2018052123A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2018052123A1
WO2018052123A1 PCT/JP2017/033490 JP2017033490W WO2018052123A1 WO 2018052123 A1 WO2018052123 A1 WO 2018052123A1 JP 2017033490 W JP2017033490 W JP 2017033490W WO 2018052123 A1 WO2018052123 A1 WO 2018052123A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
medical device
rotating structure
cutting
cut
Prior art date
Application number
PCT/JP2017/033490
Other languages
French (fr)
Japanese (ja)
Inventor
広介 西尾
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2018052123A1 publication Critical patent/WO2018052123A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions

Definitions

  • This disclosure relates to medical devices.
  • Atherectomy for cutting a stenosis (object) composed of thrombus, plaque, calcified lesion, and the like as a treatment method in the body lumen (intravascular) for arteriosclerosis.
  • Atelectomy is a very important treatment for increasing arterial patency after treatment.
  • a method of cutting and removing a stenosis object by applying a rotating body located on the distal side of the catheter to the stenosis object is employed (see Patent Document 1).
  • a catheter be bent in the vicinity of a rotating body provided with a cutting portion to enable treatment in an intended direction.
  • a bending wire provided on the distal side of the catheter is bent by placing a pulling wire inside the catheter and pulling the pulling wire from the proximal side of the catheter. There is a way to make it.
  • An object of the present disclosure made in view of the above point is to provide a medical device having a configuration that enables a catheter having a bending function to be reduced in diameter.
  • the medical device of the present disclosure is a medical device for cutting an object in a living body lumen, A rotating structure having a cutting portion; A first shaft coupled to the rotating structure and driving rotation of the rotating structure; A tubular second shaft surrounding the first shaft; A bearing portion disposed between the rotating structure and the second shaft; With The second shaft can be bent in a predetermined direction; At least one of the first shaft and the second shaft has an expansion / contraction portion configured to expand and contract in the axial direction by rotation, The second shaft is configured to bend by a force received from the rotating structure via the bearing portion as the expansion and contraction portion expands and contracts.
  • the first shaft is provided with the stretchable portion.
  • the expansion / contraction part contracts in the axial direction by the rotation of the first shaft when cutting an object in a living body lumen.
  • the second shaft is rotatable and the telescopic portion is provided on the second shaft.
  • first shaft and the second shaft are relatively rotatable and the positional relationship in the axial direction is relatively movable.
  • the contact position of the second shaft with respect to the inner wall of the biological lumen is provided in the position on the opposite side.
  • the contact position of the second shaft with respect to the inner wall of the biological lumen it is preferable that a cut is formed in the second shaft so that the second shaft bends in a direction opposite to the first shaft.
  • a protruding portion that protrudes in the axial direction is provided on one end surface in the axial direction of the bearing portion, and the second shaft extends and contracts the expanding and contracting portion. Accordingly, it is preferable to perform bending by receiving a force from the rotating structure that comes into contact with the protruding portion.
  • the expansion / contraction part is a single layer coil shape spirally wound in one direction or a multilayer coil shape in which the winding direction is unified.
  • the medical device further includes a tubular outer sheath that surrounds the second shaft.
  • the medical device according to the present disclosure provides a medical device having a configuration that enables a catheter having a bending function to be reduced in diameter.
  • FIG. 1 is a diagram illustrating a medical device according to an embodiment of the present disclosure.
  • FIG. It is sectional drawing to which the distal side of the medical device shown in FIG. 1 was expanded.
  • FIG. 3 is a diagram illustrating a state where the medical device illustrated in FIG. 2 is bent. It is an expanded view which shows the pattern of the cut in the curved part of a 2nd shaft.
  • (A), (b) is a figure which shows the modification of the bearing part shown in FIG. It is the top view to which the part containing the rotation structure of FIG. 2 was expanded.
  • (A), (b) is a figure which shows a mode that the directionality of a medical device is prescribed
  • distal side the side of the medical device to be inserted into the blood vessel
  • proximal side the proximal side for operation
  • FIG. 1 is a diagram illustrating a medical device 10 according to an embodiment of the present disclosure.
  • FIG. 2 is an enlarged cross-sectional view of the distal side of the medical device 10 shown in FIG.
  • the medical device 10 is used for a treatment for cutting an object in a living body lumen, for example, a treatment for cutting a stenosis S (see FIGS. 7 and 8) composed of plaque, calcified lesion, thrombus, etc. in a blood vessel. .
  • a treatment for cutting a stenosis S (see FIGS. 7 and 8) composed of plaque, calcified lesion, thrombus, etc. in a blood vessel.
  • a treatment for cutting a stenosis S composed of plaque, calcified lesion, thrombus, etc. in a blood vessel.
  • the medical device 10 is configured to be rotatable along a rotation axis X and is capable of cutting the constriction S, and a first shaft 60 that drives rotation of the rotating structure 110.
  • a second drive device 92 for operating the second shaft 70 for operating the second shaft 70.
  • the first shaft 60 is connected to the central axis of the rotating structure 110, and when the first shaft 60 rotates, the rotating structure 110 rotates by being driven by the first shaft 60.
  • the rotation of the first shaft 60 is controlled by the first drive device 91 shown in FIG.
  • the rotation about the rotation axis X of the rotating structure 110 driven by the first shaft 60 is also referred to as “spinning”.
  • the rotation of the second shaft 70 is controlled independently of the first shaft 60 by the second drive device 92 shown in FIG.
  • the rotation of the rotating structure 110 about the rotation axis Y different from the rotation axis X by the rotation of the second shaft 70 as shown in FIGS. 7 and 8 is also referred to as “revolution”.
  • the second shaft 70 has a cut (slit) 75 that defines a direction in which bending is easy when the second shaft 70 is bent, or restricts the bending direction.
  • a bearing portion 140 is provided between the rotating structure 110 and the second shaft 70. By providing the bearing portion 140, the rotating structure 110 can smoothly rotate with respect to the second shaft 70.
  • the bearing part 140 is fixed to the second shaft 70.
  • the bearing 140 is positioned and held with respect to the second shaft 70. Details of the structure of the rotating structure 110 will be described later.
  • the first shaft 60 is formed in a tubular shape. As for the 1st shaft 60, the distal side is fixed to the rotation structure 110, and the proximal side is connected to the 1st drive device 91, as shown in FIG.
  • the first shaft 60 has an expansion / contraction part 61 configured to expand and contract in the axial direction by rotation.
  • the expansion / contraction part 61 is, for example, a single-layer coil wound spirally in one direction or a multilayer coil-shaped tube with a unified winding direction, contracted in the axial direction by rotation in the tightening direction, and loosened direction It is comprised so that it may extend in an axial direction by rotation.
  • the stretchable part 61 may be formed over the entire first shaft 60 or only a part thereof.
  • the stretchable part 61 may be provided on the second shaft 70 instead of the first shaft 60. Further, both the first shaft 60 and the second shaft 70 may be provided.
  • the first shaft 60 is flexible and has a characteristic capable of transmitting the rotational power acting from the proximal side to the distal side.
  • the portion of the first shaft 60 excluding the expansion / contraction portion 61 is, for example, a multilayer coiled tube body such as a three-layer coil that alternates between right and left and the winding direction, polyolefin such as polyethylene and polypropylene, polyamide, polyethylene terephthalate, and the like. It is composed of a fluorine-based polymer such as polyester or PTFE, PEEK (polyetheretherketone), polyimide, or a combination thereof in which a reinforcing member such as a wire is embedded.
  • the first shaft 60 is flexible, when the second shaft 70 is bent, the first shaft 60 bends following the bending shape of the second shaft 70.
  • the inner diameter of the first shaft 60 can be selected as appropriate, but is 0.4 to 1.9 mm, for example, and can be 1.2 mm as an example.
  • the outer diameter of the first shaft 60 can be selected as appropriate, but is 0.5 to 2.0 mm, for example, and can be 1.0 mm as an example.
  • a guide wire lumen into which a guide wire can be inserted may be provided inside the first shaft 60.
  • the guide wire is used to guide the rotating structure 110 when the rotating structure 110 is advanced in the blood vessel.
  • the second shaft 70 is formed in a tubular shape.
  • the 2nd shaft 70 surrounds the 1st shaft 60, and the proximal side is connected to the 2nd drive device 92 as shown in FIG.
  • the second shaft 70 is not necessarily driven by the second driving device 92, and the second shaft 70 may be operated by a user's hand.
  • the second shaft 70 can be bent.
  • being able to bend means that it can be bent and can maintain a bent state.
  • the second shaft 70 has a cut 75 that characterizes the bending shape.
  • the direction in which the second shaft 70 is easily bent is determined according to the shape of the pattern of the cuts 75.
  • the cut 75 can be, for example, a spiral continuous line shape, a shape in which a plurality of holes are arranged in the axial direction, or a combination thereof.
  • the outer peripheral side surface of the second shaft 70 does not have a cutting portion, and has a smooth configuration with small unevenness, and is configured as a non-cutting portion. Thereby, even if the outer peripheral side surface of the 2nd shaft 70 contacts a normal blood vessel, the risk of damaging a blood vessel can be reduced.
  • the second shaft 70 has a characteristic capable of transmitting the rotational power acting from the proximal side to the distal side.
  • the second shaft 70 is made of, for example, a metal or alloy such as titanium, stainless steel, or NiTi.
  • the inner diameter of the second shaft 70 can be selected as appropriate, but is 1.0 to 2.5 mm, for example, and can be 1.5 mm as an example.
  • the outer diameter of the second shaft 70 can be selected as appropriate.
  • the outer diameter is 1.1 to 2.6 mm, and can be 1.8 mm as an example.
  • the second shaft 70 has a step near the distal end of the outer sheath 80, but may have a structure without this step.
  • the distal end of the outer sheath 80 accommodates the distal end of the second shaft 70. This can prevent the distal end of the second shaft 70 from being exposed from the outer sheath 80. Thereby, it becomes easy to control the bending state of the portion exposed from the outer sheath 80 of the second shaft 70 to an arbitrary state.
  • the outer sheath 80 can be reduced in diameter. The outer sheath 80 closes the cut 75 of the second shaft 70 from the outside of the second shaft 70, so that a reduction in suction force can be prevented.
  • the outer sheath 80 is a tubular body that covers the outside of the second shaft 70.
  • the outer sheath 80 does not interlock with the rotation of the second shaft 70, and the outer sheath 80 does not rotate even when the second shaft 70 is rotating.
  • the outer sheath 80 may be configured to rotate together with the second shaft 7.
  • the inner diameter of the outer sheath 80 is smaller than the maximum diameter of the first taper portion 116. Therefore, the outer sheath 80 can transmit more the force that the rotating structure 110 presses the inner wall of the blood vessel, and can be cut effectively.
  • the constituent material of the outer sheath 80 is not particularly limited.
  • polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine-based polymers such as PTFE, PEEK (polyether ether ketone), and polyimide are preferable.
  • PTFE polyethylene terephthalate
  • PEEK polyether ether ketone
  • polyimide polyimide
  • the inner diameter of the outer sheath 80 can be selected as appropriate, but is 1.2 to 2.9 mm, for example, and can be 1.9 mm as an example.
  • the outer diameter of the outer sheath 80 can be selected as appropriate, but is 1.3 to 3.0 mm, for example, and can be set to 2.0 mm as an example.
  • the first driving device 91 can rotate the first shaft 60 by applying a rotational force to the first shaft 60.
  • the first driving device 91 can drive the first shaft 60 so as to move the first shaft 60 in a direction (axial direction) parallel to the rotation axis of the first shaft 60.
  • the second driving device 92 can apply a rotational force to the second shaft 70 to rotate the second shaft 70.
  • the rotation direction of the second shaft 70 can be selected, and can be the same direction as the rotation direction of the first shaft 60 or can be the opposite direction.
  • the rotation direction of the second shaft 70 is opposite to the rotation direction of the first shaft 60, the movement of the rotary structure 110 to escape from the constriction S when the rotary structure 110 cuts the constriction S is reduced. Can do.
  • the second drive device 92 can drive the second shaft 70 so as to move the second shaft 70 in a direction parallel to the rotation axis of the second shaft 70.
  • FIG. 3 is a diagram showing a state where the medical device 10 shown in FIG. 2 is bent.
  • the second shaft 70 has a pattern cut 75 that bends upward.
  • the expansion / contraction part 61 contracts in the axial direction, and the second shaft from the rotating structure 110 via the bearing part 140.
  • a force in the proximal direction is applied to 70.
  • the second shaft 70 since the second shaft 70 has the cut line 75 that bends upward, the second shaft 70 bends upward at the curved portion 83.
  • the degree of bending of the second shaft 70 can be adjusted by adjusting the rotational speed of the first shaft 60. If the rotational speed of the first shaft 60 is increased, the second shaft 70 bends greatly, and if the rotational speed of the first shaft 60 is decreased, the second shaft 70 bends small. Further, the degree of bending of the second shaft 70 can be kept constant by keeping the rotation speed of the first shaft 60 constant. Further, the bending shape of the second shaft 70 can be defined as a desired shape by the shape of the pattern of the cuts 75.
  • the second shaft 70 it is possible to adjust the degree of bending of the second shaft 70 by moving the second shaft 70 in the axial direction by the second driving device 92. That is, by pushing the second shaft 70 in the axial direction (moving it distally), the second shaft 70 bends more and pulls the second shaft 70 in the axial direction (moving it proximally). As a result, the bending amount is reduced.
  • the first shaft 60 and the second shaft 70 can be rotated relatively, and the position in the axial direction can be moved relatively by hand operation, so that the first shaft 60 and the second shaft 70 move in the axial direction in addition to the bending force due to rotation.
  • the bending force can be increased and the bending force can be easily maintained.
  • the expansion / contraction part 61 configured to expand and contract in the axial direction by rotation is provided only in the first shaft 60, but may be provided in the second shaft 70 in addition to the first shaft 60, An expansion / contraction part may be provided only on the second shaft 70.
  • the length of the stretchable part, the winding direction of the coil, the layer structure, etc. are not particularly limited.
  • the degree of bending of the second shaft 70 can be adjusted by rotating the second shaft 70 by the second driving device 92. That is, by rotating the second shaft 70 in the tightening direction of the telescopic portion, the same action as pulling the second shaft 70 in the axial direction occurs, and the bending amount is reduced. Further, by rotating the second shaft 70 in the loosening direction of the expansion / contraction part, the same action as pushing the second shaft 70 in the axial direction occurs, and the bending amount increases.
  • the rotation direction of the first shaft 60 when cutting an object such as the constriction S in the body lumen is the tightening direction of the expansion / contraction part 61. According to this, since the strength of the expansion / contraction part 61 tightened by the rotation of the first shaft 60 is increased and is difficult to be deformed, the constricted object in a state where torque is applied so as to press the rotating structure 110 against the constricted object S. S can be cut.
  • the second shaft 70 is provided with an expansion / contraction portion, when cutting an object such as the constriction S in the living body lumen, it is preferable that the second shaft 70 is rotated in the tightening direction of the expansion / contraction portion. . With such a configuration, the tightened expansion / contraction part is difficult to be deformed, so that the constriction S can be cut in a state where torque is applied so as to press the rotating structure 110 against the constriction S. .
  • the second shaft 70 may be bent by a plurality of bending portions.
  • the second shaft 70 can be bent with a plurality of curved portions by making the cut 75 bend with a plurality of curved portions.
  • the second shaft 70 can be bent into various shapes depending on the shape of the pattern of the cuts 75.
  • the pattern of the cuts 75 may be configured so that the second shaft 70 can be easily bent in a spiral shape.
  • FIG. 4 shows an example of a pattern of the cut 75 in a developed view.
  • a curved portion that curves in an S shape can be formed. it can.
  • the vertical direction in FIG. 4 indicates the circumferential direction of the second shaft 70, and the horizontal direction indicates the axial direction.
  • a portion 76 having a larger gap than the other positions in the circumferential direction in the cut 75 constitutes an inner surface that becomes the compression side when the second shaft 70 is curved.
  • the bearing portion 141 has a structure that is not rotationally symmetric with respect to the rotation axis of the rotating structure 110.
  • a protruding portion 141 a that protrudes in the axial direction is provided on the distal end surface of the end surface of the bearing portion 141.
  • the protrusion 141a is provided only in a part in the circumferential direction (a part on the upper side in FIG. 5A).
  • the structure 110 is bent by contacting only a part of the bearing portion 141 in the circumferential direction. Specifically, when the first shaft 60 is rotated and the expansion / contraction part 61 rotates in the loosening direction, the expansion / contraction part 61 expands in the radial direction and the expansion / contraction part 61 contracts in the axial direction, so that only the protrusion 141a contacts the rotary structure 110 first. A force from the rotating structure 110 to the proximal side is applied. As a result, a force in the proximal direction is applied only to the upper side of the second shaft 70 that is easily bent downward, via the upper side of the bearing portion 141 provided with the protruding portion 141a. The shaft 70 can be smoothly bent downward. Further, by adopting such a configuration, it is possible to reduce the contact area between the rotating structure 110 and the bearing portion 141 during bending, and thus it is possible to reduce the generation of frictional heat.
  • the bearing portion 142 has such a structure, the second shaft 70 contracts in the radial direction when the first shaft 60 is rotated and the telescopic portion 61 rotates in the tightening direction, and the telescopic portion 61 is in the axial direction. Therefore, only the protrusion 142a comes into contact with the rotating structure 110 first, and a force from the rotating structure 110 to the distal side is applied. As a result, a force in the distal direction is applied to the lower side of the second shaft 70, which is originally easy to bend downward, via the lower side of the bearing portion 142, so that the second shaft 70 can be smoothly moved to the lower side. Can be bent.
  • tip side means a distal side in the rotating structure 110
  • base end side means a proximal side in the rotating structure 110
  • the rotating structure 110 includes a first annular portion 112 and a second annular portion 111 located on the tip side of the first annular portion 112. Further, the rotating structure 110 includes a constricted portion 126 between the first annular portion 112 and the second annular portion 111. The rotating structure 110 is located between the third annular portion 115 located on the proximal end side of the first annular portion 112 and between the first annular portion 112 and the third annular portion 115, and the first annular portion 112. And a small-diameter annular portion 128 having an outer diameter smaller than the outer diameter of the third annular portion 115. A bearing portion 140 is provided between the small-diameter annular portion 128 and the second shaft 70.
  • the first annular portion 112 may be the proximal end of the first tapered portion 116.
  • the second annular portion 111 may be the tip of the second tapered portion 114.
  • the constricted portion 126 has a first tapered portion 116 that decreases in diameter toward the distal end side at the distal end side of the first annular portion 112, and a diameter that decreases toward the proximal end side at the proximal end side of the second annular portion 111. 2nd taper part 114 is provided.
  • the constricted portion 126 includes a bottom portion 127 that connects the first tapered portion 116 and the second tapered portion 114.
  • the diameter of the bottom portion 127 is smaller than the diameter of the first annular portion 112 and the diameter of the second annular portion 111.
  • the diameter of the first annular portion 112 is substantially equal to the diameter of the third annular portion 115.
  • the diameter of the first annular portion 112 is larger than the diameter of the second annular portion 111.
  • the “diameter” means a diameter centered on the rotation axis X of the rotating structure 110.
  • the shape of the constricted portion 126 may be configured by the first tapered portion 116 and the second tapered portion 114 having the same maximum diameter.
  • the shape of the constricted portion 126 may be configured by the first tapered portion 116 and the second tapered portion 114 whose maximum diameter is larger than the first tapered portion 116.
  • the shape of the constricted portion 126 may be configured by the first tapered portion 116 having a maximum diameter larger than the second tapered portion 114 and the second tapered portion 114.
  • the length of the constricted portion 126 in the axial direction may be configured by the first tapered portion 116 and the second tapered portion 114 having the same axial length.
  • the length of the constricted portion 126 in the axial direction may be configured by the first tapered portion 116 and the second tapered portion 114 whose axial length is longer than that of the second tapered portion 114.
  • the length of the constricted portion 126 in the axial direction may be configured by the first tapered portion 116 and the second tapered portion 114 whose axial length is longer than that of the first tapered portion 116.
  • the rotating structure 110 includes a third taper portion 113 that is reduced in diameter toward the distal end side at the distal end side of the second annular portion 111.
  • the first taper portion 116 has a first cut portion 122 cut into a V shape in a cross section perpendicular to the axis in a part of the circumferential direction, and is a blade at the edge of the first cut portion 122.
  • a first cutting part 123 is provided. Only one first cut portion 122 may be provided in the circumferential direction, or two or more first cut portions 122 may be provided.
  • the first cut portion 122 may be asymmetric or symmetric.
  • the angle of the surface of the 1st notch part 122 opposite to the rotation direction of the rotary structure 110 is larger than the surface of the 1st notch part 122 of the 1st notch part 122 of a rotation direction.
  • abrasive grains, a grindstone, or the like may be electrodeposited on the first taper portion 116.
  • the 1st taper part 116 may become a 1st cutting part (4th cutting part).
  • the first taper portion 116 has the first cutting portion 123 of the first cut portion 122 and the first cutting portion (fourth cutting portion) on which the abrasive grains and the grindstone are electrodeposited, the first taper portion 116 first of the first cut portion 122.
  • the narrow portion can be efficiently cut by the cutting portion 123 and the first cutting portion (fourth cutting portion) on which the abrasive grains and the grindstone are electrodeposited.
  • the 1st taper part 116 does not need to have the 1st cut part 122, and may be only a 4th cutting part.
  • the abrasive grains include diamond abrasive grains.
  • the 2nd taper part 114 has the 2nd cut part 120 cut
  • a second cutting part 121 is provided. Only one second cut portion 120 may be provided in the circumferential direction, or two or more second cut portions 120 may be provided.
  • the second notch 120 may be asymmetric or symmetric.
  • the angle of the surface of the 2nd notch part 120 opposite to the rotation direction of the rotating structure 110 is larger than the surface of the 2nd notch part 120 of the 2nd notch part 120 in a rotation direction.
  • the narrowing is efficiently performed by the second cutting portion 121 of the second cut portion 120 and the cutting portion on which the abrasive grains or grindstone are electrodeposited. You can cut things.
  • the 2nd taper part 114 does not need to have the 2nd cut
  • the third taper portion 113 has a third cut portion 117 cut into a V shape in a cross section perpendicular to the axis in a part of the circumferential direction, and is a blade at the edge of the third cut portion 117.
  • a third cutting part 118 is provided. Only one third cut portion 117 may be provided in the circumferential direction, or two or more third cut portions 117 may be provided.
  • the third cut portion 117 may be asymmetric or symmetric.
  • the angle of the surface of the third cut portion 117 opposite to the rotation direction of the rotating structure 110 is larger than the surface of the third cut portion 117 in the rotation direction of the third cut portion 117.
  • the third taper portion 113 when abrasive grains, grindstones, and the like are electrodeposited on the third taper portion 113, the narrowing is efficiently performed by the third cutting portion 118 of the third cut portion 117 and the cutting portion on which the abrasive grains or grindstone are electrodeposited. You can cut things.
  • the 3rd taper part 113 does not need to have the 3rd cutting part 117, and may be only the cutting part by which the abrasive grain and the grindstone were electrodeposited.
  • the 1st cutting part 123 and the 3rd cutting part 118 are formed in the taper-shaped site
  • the 2nd cutting part 121 is formed in the taper-shaped site
  • the first cut portion 122, the second cut portion 120, and the third cut portion 117 are proportional to the axial lengths of the first taper portion 116, the second taper portion 114, and the third taper portion 113, respectively.
  • the second annular portion 111 may be formed of a shape and material that can smoothly contact the outer peripheral surface with the living tissue, and the outer peripheral surface may be the first non-cutting portion 124. Thereby, when cutting the constriction S, the risk of damaging the living tissue can be reduced.
  • the 3rd taper part 113 may provide the 2nd non-cutting part 119 in which the 3rd notch part 117 is not formed over the circumferential direction whole area
  • the 3rd cutting part 118 does not protrude outside the tangent L of the 1st non-cutting part 124 and the 2nd non-cutting part 119, it suppresses that the 3rd cutting part 118 contacts a biological tissue. And high safety can be ensured.
  • the constituent material of the rotating structure 110 is not particularly limited.
  • polyolefin such as stainless steel, Ta, Ti, Pt, Au, W, Ni, NiTi alloy, super steel (WC), high speed (HSS), polyethylene, and polypropylene.
  • Polyester such as polyamide and polyethylene terephthalate, fluorine-based polymer such as PTFE, PEEK (polyetheretherketone), polyimide, and the like can be suitably used.
  • the second shaft 70 can be bent using the expansion and contraction of the expansion / contraction part 61 without providing a pull wire for bending the second shaft 70 inside the second shaft 70. Yes. For this reason, it is possible to reduce the diameter of the second shaft 70. By reducing the diameter of the second shaft 70, it is possible to treat a biological lumen such as a thinner blood vessel.
  • the medical device 10 since the medical device 10 according to the present embodiment can move the first shaft 60 in the axial direction, it is possible to improve the accuracy when adjusting the degree of bending of the second shaft 70.
  • the rotating structure 110 includes a constricted portion 126, the constricted portion 126 includes a second tapered portion 114 whose diameter decreases toward the proximal end side, and the second tapered portion 114 includes the second cutting portion 121.
  • the second cutting part 121 in the second taper part 114 that decreases in diameter toward the proximal end in this way, the stenosis S in the living body lumen can be cut even when the rotating structure 110 is pulled. Can do.
  • the medical device 10 since a strong force can be applied to the stenosis S by pulling the rotating structure 110, the medical device 10 according to the present embodiment can cut the hard stenosis S in the living body lumen. .
  • the diameter of the bottom 127 of the constricted portion 126 is smaller than the diameter of the first annular portion 112 and the diameter of the second annular portion 111, the risk of damaging a living tissue such as a normal blood vessel is reduced. can do.
  • FIG. 7 shows a state where the stenosis S in the blood vessel is cut using the medical device 10 according to the present embodiment.
  • FIG. 7A shows a state in which the stenosis S is cut with a directionality defined in a part of the circumferential direction of the blood vessel (upward in FIG. 7A), and
  • FIG. 7B shows the blood vessel. It is a state that the constriction S is cut with the directionality defined in another part of the circumferential direction (downward in FIG. 7B).
  • the second shaft 70 is bent at two locations of the first bending portion 84 and the second bending portion 85.
  • the second shaft 70 is more distal than the first bending portion 84.
  • the narrowed object S is cut in a state where the torque is applied so as to press the rotating structure 110 against the narrowed object S. Can do.
  • the proximal end side from the first curved portion 84 of the second shaft 70 is in contact with the inner wall of the blood vessel, and the projecting portions 141a and 142a (FIG. ) And (b) are preferably provided.
  • interruption 75 of the 2nd shaft 70 is formed so that the 2nd shaft 70 may bend on the opposite side to the contact position with respect to the inner wall of the blood vessel of the 2nd shaft 70. FIG. Thereby, the constriction thing S can be cut in the state which applied the torque so that the rotary structure 110 might be pressed on the constriction thing S more effectively.
  • FIG. 8 shows a state where the narrowed object S is cut in a wide range by rotating the bent second shaft 70 and revolving the rotating structure 110.
  • the second shaft 70 is bent at two locations, the first bending portion 84 and the second bending portion 85, as in FIG.
  • the distal side of the second shaft 70 rotates more than the first bending portion 84.
  • the rotating structure 110 revolves and the constriction S can be cut over a wide range.
  • the second driving device 92 improves the cutting effect by the rotation of the rotating structure 110 by driving the rotation of the second shaft 70 such that the rotation speed of revolution is slower than the rotation speed of rotation. Can do.
  • the medical device 10 includes the tubular second shaft 70 surrounding the first shaft 60, and the second shaft 70 can be bent and rotated.
  • the rotation structure 110 can be revolved by rotating the 2nd shaft 70 in the state which bent the medical device 10, the directionality of the medical device 10 can be prescribed
  • the rotating structure 110 can be pressed against the constricted object S in a state where torque is applied, and the constricted object S can be cut.
  • a living body lumen into which a medical device is inserted is not limited to a blood vessel, and may be, for example, a vascular tube, a ureter, a bile duct, a fallopian tube, a hepatic tube, or the like.
  • This disclosure relates to medical devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

This medical device 10 for cutting an object in a lumen of a living organism is provided with: a rotating structure 110 provided with a cutting part 123; a first shaft 60 which is coupled to the rotating structure 110, and which drives rotation of the rotating structure 110; a tubular second shaft 70 which surrounds the first shaft 60; and a bearing 140 which is provided between the rotating structure 110 and the second shaft 70. The second shaft 70 is capable of bending in a prescribed direction. At least one from among the first shaft 60 and the second shaft 70 is provided with an expansion/contraction part 61 formed so as to expand and contract in the axial direction as a result of being rotated. The second shaft 70 is formed so as to be bent by the force received from the rotating structure 110 via a bearing 141 following the expansion or contraction of the expansion/contraction part 61.

Description

医療デバイスMedical device
 本開示は、医療デバイスに関する。 This disclosure relates to medical devices.
 動脈硬化症に対する生体管腔内(血管内)の治療法として、血栓、プラークや石灰化病変などによって構成されている狭窄物(物体)を切削するアテレクトミーがある。アテレクトミーは、治療後の動脈開存性を高める上で、非常に重要な治療法である。アテレクトミーの手法としては、現在は主に、カテーテルの遠位側に位置する回転体を狭窄物に作用させることで、狭窄物を切削、除去する手法が採用されている(特許文献1参照)。 There is atherectomy for cutting a stenosis (object) composed of thrombus, plaque, calcified lesion, and the like as a treatment method in the body lumen (intravascular) for arteriosclerosis. Atelectomy is a very important treatment for increasing arterial patency after treatment. As an atherectomy method, currently, a method of cutting and removing a stenosis object by applying a rotating body located on the distal side of the catheter to the stenosis object is employed (see Patent Document 1).
 しかしながら、回転体を狭窄物に作用させる際に生体管腔内での回転体の延在方向を全く制御しない場合、切除機能を有する部位(切削部)が血管深部に到達し、血管穿孔を引き起こしてしまう虞があった。 However, when the rotating body is applied to the stenosis, if the extending direction of the rotating body in the living body lumen is not controlled at all, the part having the excision function (cutting part) reaches the deep part of the blood vessel and causes blood vessel perforation. There was a risk of it.
米国特許第6565588号明細書US Pat. No. 6,565,588
 このような問題に対応するため、切削部が設けられた回転体の近傍においてカテーテルをベンディングさせ、所期した方向の処置を可能とすることが要望されている。ここで、カテーテルをベンディングさせる方法としては、牽引用のワイヤをカテーテル内部に配置して、カテーテルの近位側から牽引用ワイヤを牽引することにより、カテーテルの遠位側に設けた湾曲部を湾曲させる方法がある。 In order to cope with such a problem, it is desired that a catheter be bent in the vicinity of a rotating body provided with a cutting portion to enable treatment in an intended direction. Here, as a method of bending the catheter, a bending wire provided on the distal side of the catheter is bent by placing a pulling wire inside the catheter and pulling the pulling wire from the proximal side of the catheter. There is a way to make it.
 しかしながら、そのような牽引用ワイヤを用いる場合には、牽引用のワイヤをカテーテル内部に配置する必要があるため、デバイスの細径化が難しいという問題があった。 However, when such a pulling wire is used, there is a problem that it is difficult to reduce the diameter of the device because the pulling wire needs to be arranged inside the catheter.
 かかる点に鑑みてなされた本開示の目的は、ベンディング機能を有するカテーテルの細径化を可能とする構成を有する医療デバイスを提供することである。 An object of the present disclosure made in view of the above point is to provide a medical device having a configuration that enables a catheter having a bending function to be reduced in diameter.
 本開示は、上記課題を解決するためになされたものであり、本開示の医療デバイスは、生体管腔内の物体を切削するための医療デバイスであって、
 切削部を有する回転構造体と、
 前記回転構造体に連結され、前記回転構造体の回転を駆動する第1シャフトと、
 前記第1シャフトを囲う管状の第2シャフトと、
 前記回転構造体と前記第2シャフトとの間に配置される軸受部と、
を備え、
 前記第2シャフトは所定の方向にベンディング可能であり、
 前記第1シャフト及び前記第2シャフトの少なくとも一方は、回転により軸方向に伸縮するよう構成された伸縮部を有し、
 前記第2シャフトは、前記伸縮部の伸縮に伴い前記軸受部を介して前記回転構造体から受ける力によってベンディングするように構成されていることを特徴とする。
The present disclosure has been made to solve the above problems, and the medical device of the present disclosure is a medical device for cutting an object in a living body lumen,
A rotating structure having a cutting portion;
A first shaft coupled to the rotating structure and driving rotation of the rotating structure;
A tubular second shaft surrounding the first shaft;
A bearing portion disposed between the rotating structure and the second shaft;
With
The second shaft can be bent in a predetermined direction;
At least one of the first shaft and the second shaft has an expansion / contraction portion configured to expand and contract in the axial direction by rotation,
The second shaft is configured to bend by a force received from the rotating structure via the bearing portion as the expansion and contraction portion expands and contracts.
 本開示の医療デバイスにあっては、前記第1シャフトに前記伸縮部が設けられていることが好ましい。 In the medical device according to the present disclosure, it is preferable that the first shaft is provided with the stretchable portion.
 また、本開示の医療デバイスにあっては、生体管腔内の物体を切削する際の前記第1シャフトの回転により、前記伸縮部が軸方向に収縮するよう構成されていることが好ましい。 In the medical device of the present disclosure, it is preferable that the expansion / contraction part contracts in the axial direction by the rotation of the first shaft when cutting an object in a living body lumen.
 また、本開示の医療デバイスにあっては、前記第2シャフトが回転可能であり、前記第2シャフトに前記伸縮部が設けられていることが好ましい。 Moreover, in the medical device of the present disclosure, it is preferable that the second shaft is rotatable and the telescopic portion is provided on the second shaft.
 また、本開示の医療デバイスにあっては、前記第1シャフトと前記第2シャフトとは相対的に回転可能であり、且つ、軸方向の位置関係を相対的に移動可能であることが好ましい。 Further, in the medical device of the present disclosure, it is preferable that the first shaft and the second shaft are relatively rotatable and the positional relationship in the axial direction is relatively movable.
 また、本開示の医療デバイスにあっては、前記第2シャフトの湾曲部から基端側を生体管腔の内壁に接触させた際に、該第2シャフトの前記生体管腔の内壁に対する接触位置と反対側となる位置に前記突出部が設けられていることが好ましい。 In the medical device of the present disclosure, when the proximal end side of the curved portion of the second shaft is brought into contact with the inner wall of the biological lumen, the contact position of the second shaft with respect to the inner wall of the biological lumen It is preferable that the said protrusion part is provided in the position on the opposite side.
 また、本開示の医療デバイスにあっては、前記第2シャフトの湾曲部から基端側を生体管腔の内壁に接触させた際に、該第2シャフトの前記生体管腔の内壁に対する接触位置と反対側の方向に向けて前記第2シャフトがベンディングするように、前記第2シャフトに切れ目が形成されていることが好ましい。 In the medical device of the present disclosure, when the proximal end side of the curved portion of the second shaft is brought into contact with the inner wall of the biological lumen, the contact position of the second shaft with respect to the inner wall of the biological lumen It is preferable that a cut is formed in the second shaft so that the second shaft bends in a direction opposite to the first shaft.
 また、本開示の医療デバイスにあっては、前記軸受部における軸方向の何れか一方側の端面に、軸方向に突出する突出部が設けられ、前記第2シャフトは、前記伸縮部の伸縮に伴い前記突出部と当接する前記回転構造体からの力を受けてベンディングすることが好ましい。 Further, in the medical device of the present disclosure, a protruding portion that protrudes in the axial direction is provided on one end surface in the axial direction of the bearing portion, and the second shaft extends and contracts the expanding and contracting portion. Accordingly, it is preferable to perform bending by receiving a force from the rotating structure that comes into contact with the protruding portion.
 また、本開示の医療デバイスにあっては、前記伸縮部は、螺旋状に一方向に巻き回された単層コイル状又は巻方向が統一された多層コイル状であることが好ましい。 In the medical device of the present disclosure, it is preferable that the expansion / contraction part is a single layer coil shape spirally wound in one direction or a multilayer coil shape in which the winding direction is unified.
 また、本開示の医療デバイスにあっては、前記第2シャフトを囲う管状の外シースをさらに備えることが好ましい。 In the medical device of the present disclosure, it is preferable that the medical device further includes a tubular outer sheath that surrounds the second shaft.
 本開示に係る医療デバイスによれば、ベンディング機能を有するカテーテルの細径化を可能とする構成を有する医療デバイスを提供する。 The medical device according to the present disclosure provides a medical device having a configuration that enables a catheter having a bending function to be reduced in diameter.
本開示の一実施形態に係る医療デバイスを示す図である。1 is a diagram illustrating a medical device according to an embodiment of the present disclosure. FIG. 図1に示す医療デバイスの遠位側を拡大した断面図である。It is sectional drawing to which the distal side of the medical device shown in FIG. 1 was expanded. 図2に示す医療デバイスがベンディングした状態を示す図である。FIG. 3 is a diagram illustrating a state where the medical device illustrated in FIG. 2 is bent. 第2シャフトの湾曲部における切れ目のパターンを示す展開図である。It is an expanded view which shows the pattern of the cut in the curved part of a 2nd shaft. (a)、(b)は、図2に示す軸受部の変形例を示す図である。(A), (b) is a figure which shows the modification of the bearing part shown in FIG. 図2の回転構造体を含む部分を拡大した平面図である。It is the top view to which the part containing the rotation structure of FIG. 2 was expanded. (a)、(b)は、医療デバイスの方向性を規定して狭窄物を切削している様子を示す図である。(A), (b) is a figure which shows a mode that the directionality of a medical device is prescribed | regulated and the constriction thing is cut. 医療デバイスを公転させて、広い範囲で狭窄物を切削している様子を示す図である。It is a figure which shows a mode that the medical device is revolved and the stenosis thing is cut in a wide range.
 以下、図面を参照して、本開示の実施の形態を説明する。図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、各図において、共通の部材には同一の符号を付している。また、本明細書では、医療デバイスの血管に挿入する側を「遠位側」、操作する手元側を「近位側」と称することとする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The dimensional ratios in the drawings are exaggerated for convenience of explanation and may differ from the actual ratios. Moreover, in each figure, the same code | symbol is attached | subjected to the common member. In this specification, the side of the medical device to be inserted into the blood vessel is referred to as “distal side”, and the proximal side for operation is referred to as “proximal side”.
 まず、図1~図2を参照して、本開示の一実施形態に係る医療デバイス10の構成について説明する。図1は、本開示の一実施形態に係る医療デバイス10を示す図である。図2は、図1に示す医療デバイス10の遠位側を拡大した断面図である。 First, the configuration of the medical device 10 according to an embodiment of the present disclosure will be described with reference to FIGS. FIG. 1 is a diagram illustrating a medical device 10 according to an embodiment of the present disclosure. FIG. 2 is an enlarged cross-sectional view of the distal side of the medical device 10 shown in FIG.
 医療デバイス10は、生体管腔内の物体を切削する治療、例えば、血管内においてプラークや石灰化病変、血栓などにより構成される狭窄物S(図7、8参照)を切削する治療に用いられる。以後、具体的な例として、血管内の狭窄物Sを切削する場合を例として説明する。 The medical device 10 is used for a treatment for cutting an object in a living body lumen, for example, a treatment for cutting a stenosis S (see FIGS. 7 and 8) composed of plaque, calcified lesion, thrombus, etc. in a blood vessel. . Hereinafter, as a specific example, a case where the stenosis S in the blood vessel is cut will be described as an example.
 医療デバイス10は、図1に示すように、回転軸Xに沿って回転可能に構成され狭窄物Sを切削可能な回転構造体110と、回転構造体110の回転を駆動する第1シャフト60と、第1シャフト60を囲う管状の第2シャフト70と、第2シャフト70と、第1シャフト60を収容可能な管状の外シース80と、第1シャフト60を操作するための第1駆動装置91と、第2シャフト70を操作するための第2駆動装置92とを備える。 As shown in FIG. 1, the medical device 10 is configured to be rotatable along a rotation axis X and is capable of cutting the constriction S, and a first shaft 60 that drives rotation of the rotating structure 110. A tubular second shaft 70 surrounding the first shaft 60, a second shaft 70, a tubular outer sheath 80 that can accommodate the first shaft 60, and a first drive device 91 for operating the first shaft 60. And a second drive device 92 for operating the second shaft 70.
 図2に示すように、回転構造体110の中心軸に第1シャフト60が連結されており、第1シャフト60が回転すると、第1シャフト60によって駆動されて回転構造体110が回転する。第1シャフト60の回転は、図1に示す第1駆動装置91によって制御される。以後、第1シャフト60によって駆動される回転構造体110の回転軸Xを中心とする回転を「自転」とも称する。また、第2シャフト70は、図1に示す第2駆動装置92によって、第1シャフト60とは独立して回転が制御される。以後、図7、8に示すように第2シャフト70の回転によって回転構造体110が回転軸Xとは異なる回転軸Yを中心として回転することを「公転」とも称する。第2シャフト70は、第2シャフト70がベンディングする際にベンディングしやすい方向を定める、またはベンディングする方向を規制する切れ目(スリット)75を有する。回転構造体110と第2シャフト70との間には、図2に示すように、軸受部140が設けられている。軸受部140が設けられていることにより、回転構造体110は、第2シャフト70に対して円滑に回転可能である。軸受部140は、第2シャフト70に対して固定されている。軸受部140は、第2シャフト70に対して位置決め保持されている。回転構造体110の構造の詳細については後述する。 As shown in FIG. 2, the first shaft 60 is connected to the central axis of the rotating structure 110, and when the first shaft 60 rotates, the rotating structure 110 rotates by being driven by the first shaft 60. The rotation of the first shaft 60 is controlled by the first drive device 91 shown in FIG. Hereinafter, the rotation about the rotation axis X of the rotating structure 110 driven by the first shaft 60 is also referred to as “spinning”. The rotation of the second shaft 70 is controlled independently of the first shaft 60 by the second drive device 92 shown in FIG. Hereinafter, the rotation of the rotating structure 110 about the rotation axis Y different from the rotation axis X by the rotation of the second shaft 70 as shown in FIGS. 7 and 8 is also referred to as “revolution”. The second shaft 70 has a cut (slit) 75 that defines a direction in which bending is easy when the second shaft 70 is bent, or restricts the bending direction. As shown in FIG. 2, a bearing portion 140 is provided between the rotating structure 110 and the second shaft 70. By providing the bearing portion 140, the rotating structure 110 can smoothly rotate with respect to the second shaft 70. The bearing part 140 is fixed to the second shaft 70. The bearing 140 is positioned and held with respect to the second shaft 70. Details of the structure of the rotating structure 110 will be described later.
 第1シャフト60は、管状に形成されている。第1シャフト60は、遠位側が回転構造体110に固定され、近位側が、図1に示すように、第1駆動装置91に接続されている。 The first shaft 60 is formed in a tubular shape. As for the 1st shaft 60, the distal side is fixed to the rotation structure 110, and the proximal side is connected to the 1st drive device 91, as shown in FIG.
 本実施形態では、第1シャフト60が、回転により軸方向に伸縮するよう構成された伸縮部61を有している。伸縮部61は、例えば、螺旋状に一方向に巻き回された単層コイル状又は巻方向が統一された多層コイル状の管体であり、締め付け方向の回転により軸方向に収縮し、緩み方向の回転により軸方向に伸びるよう構成されている。伸縮部61は、第1シャフト60の全体にわたって形成されていてもよいし、一部のみであってもよい。伸縮部61は、第1シャフト60に代えて、第2シャフト70に設けてもよい。また、第1シャフト60および第2シャフト70の両方に設けてもよい。 In the present embodiment, the first shaft 60 has an expansion / contraction part 61 configured to expand and contract in the axial direction by rotation. The expansion / contraction part 61 is, for example, a single-layer coil wound spirally in one direction or a multilayer coil-shaped tube with a unified winding direction, contracted in the axial direction by rotation in the tightening direction, and loosened direction It is comprised so that it may extend in an axial direction by rotation. The stretchable part 61 may be formed over the entire first shaft 60 or only a part thereof. The stretchable part 61 may be provided on the second shaft 70 instead of the first shaft 60. Further, both the first shaft 60 and the second shaft 70 may be provided.
 第1シャフト60は、柔軟で、しかも近位側から作用する回転の動力を遠位側に伝達可能な特性を持つ。第1シャフト60の伸縮部61を除く部分は、例えば、右左右と巻き方向を交互にしている3層コイルなどの多層コイル状の管体、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、PTFE等のフッ素系ポリマー、PEEK(ポリエーテルエーテルケトン)、ポリイミド、又はこれらの組み合わせに線材などの補強部材が埋設されたもので構成されている。 The first shaft 60 is flexible and has a characteristic capable of transmitting the rotational power acting from the proximal side to the distal side. The portion of the first shaft 60 excluding the expansion / contraction portion 61 is, for example, a multilayer coiled tube body such as a three-layer coil that alternates between right and left and the winding direction, polyolefin such as polyethylene and polypropylene, polyamide, polyethylene terephthalate, and the like. It is composed of a fluorine-based polymer such as polyester or PTFE, PEEK (polyetheretherketone), polyimide, or a combination thereof in which a reinforcing member such as a wire is embedded.
 第1シャフト60は柔軟であるため、第2シャフト70がベンディングしている状態においては、第2シャフト70がベンディングしている形状に追随して曲がる。 Since the first shaft 60 is flexible, when the second shaft 70 is bent, the first shaft 60 bends following the bending shape of the second shaft 70.
 第1シャフト60の内径は、適宜選択可能であるが、例えば0.4~1.9mmであり、一例として1.2mmとすることができる。第1シャフト60の外径は、適宜選択可能であるが、例えば0.5~2.0mmであり、一例として1.0mmとすることができる。 The inner diameter of the first shaft 60 can be selected as appropriate, but is 0.4 to 1.9 mm, for example, and can be 1.2 mm as an example. The outer diameter of the first shaft 60 can be selected as appropriate, but is 0.5 to 2.0 mm, for example, and can be 1.0 mm as an example.
 第1シャフト60の内部には、ガイドワイヤを挿入可能なガイドワイヤルーメンを設けてもよい。ガイドワイヤは、回転構造体110を血管内で進行させる際に、回転構造体110を導くために用いられる。 A guide wire lumen into which a guide wire can be inserted may be provided inside the first shaft 60. The guide wire is used to guide the rotating structure 110 when the rotating structure 110 is advanced in the blood vessel.
 第2シャフト70は、管状に形成されている。第2シャフト70は、第1シャフト60を囲い、近位側が、図1に示すように、第2駆動装置92に接続されている。第2シャフト70は、必ずしも第2駆動装置92によって駆動される必要はなく、ユーザの手によって、第2シャフト70が操作されてもよい。 The second shaft 70 is formed in a tubular shape. The 2nd shaft 70 surrounds the 1st shaft 60, and the proximal side is connected to the 2nd drive device 92 as shown in FIG. The second shaft 70 is not necessarily driven by the second driving device 92, and the second shaft 70 may be operated by a user's hand.
 第2シャフト70はベンディング可能である。ここで、ベンディング可能であるとは、曲げることが可能であり、また、曲げた状態を維持できることを意味する。 The second shaft 70 can be bent. Here, being able to bend means that it can be bent and can maintain a bent state.
 第2シャフト70は、ベンディングの形状を特徴付ける切れ目75を有している。第2シャフト70は、切れ目75のパターンの形状に応じて、ベンディングしやすい方向が決まる。切れ目75は、例えば、螺旋状に連続する線形状、複数の孔を軸方向に配列した形状、またはそれらを組み合わせた形状とすることができる。 The second shaft 70 has a cut 75 that characterizes the bending shape. The direction in which the second shaft 70 is easily bent is determined according to the shape of the pattern of the cuts 75. The cut 75 can be, for example, a spiral continuous line shape, a shape in which a plurality of holes are arranged in the axial direction, or a combination thereof.
 第2シャフト70の外周側面は、切削部を有さず、また、凹凸が小さい滑らかな構成であり、非切削部として構成されている。これにより、第2シャフト70の外周側面が正常な血管に接触しても、血管にダメージを与えるリスクを低減することができる。 The outer peripheral side surface of the second shaft 70 does not have a cutting portion, and has a smooth configuration with small unevenness, and is configured as a non-cutting portion. Thereby, even if the outer peripheral side surface of the 2nd shaft 70 contacts a normal blood vessel, the risk of damaging a blood vessel can be reduced.
 第2シャフト70は、近位側から作用する回転の動力を遠位側に伝達可能な特性を持つ。第2シャフト70は、例えば、チタニウム、ステンレス鋼、NiTiのような金属もしくは合金などで構成されている。 The second shaft 70 has a characteristic capable of transmitting the rotational power acting from the proximal side to the distal side. The second shaft 70 is made of, for example, a metal or alloy such as titanium, stainless steel, or NiTi.
 第2シャフト70の内径は、適宜選択可能であるが、例えば1.0~2.5mmであり、一例として1.5mmとすることができる。第2シャフト70の外径は、適宜選択可能であるが、例えば1.1~2.6mmであり、一例として1.8mmとすることができる。 The inner diameter of the second shaft 70 can be selected as appropriate, but is 1.0 to 2.5 mm, for example, and can be 1.5 mm as an example. The outer diameter of the second shaft 70 can be selected as appropriate. For example, the outer diameter is 1.1 to 2.6 mm, and can be 1.8 mm as an example.
 図2に示す例においては、第2シャフト70は、外シース80の遠位側の端部付近において段差を有しているが、この段差を有さない構造であってもよい。但し、本実施形態のように段差を設け、外シース80の遠位端が第2シャフト70に突き当たるようにすれば、外シース80の遠位端が第2シャフト70の遠位端を収容することを防ぐことができ、第2シャフト70の遠位端を外シース80から露出させることができる。これにより、第2シャフト70の外シース80から露出している部分のベンディング状態を、任意の状態にコントロールし易くなる。また、外シース80の細径化を図ることができる。外シース80が、第2シャフト70の切れ目75を第2シャフト70の外側から塞ぐことで、吸引力の低下を防ぐことができる。 In the example shown in FIG. 2, the second shaft 70 has a step near the distal end of the outer sheath 80, but may have a structure without this step. However, if a step is provided as in the present embodiment and the distal end of the outer sheath 80 abuts against the second shaft 70, the distal end of the outer sheath 80 accommodates the distal end of the second shaft 70. This can prevent the distal end of the second shaft 70 from being exposed from the outer sheath 80. Thereby, it becomes easy to control the bending state of the portion exposed from the outer sheath 80 of the second shaft 70 to an arbitrary state. Further, the outer sheath 80 can be reduced in diameter. The outer sheath 80 closes the cut 75 of the second shaft 70 from the outside of the second shaft 70, so that a reduction in suction force can be prevented.
 外シース80は、第2シャフト70の外側に被さる管体である。外シース80は、第2シャフト70の回転には連動せず、第2シャフト70が回転していても外シース80は回転しない。このように、第2シャフト70を回転させた際に外シース80が回転しない構成とすることで、外シース80の側面によって正常な血管などの生体組織にダメージを与え難くすることができる。第2シャフト7とともに外シース80が回転する構成としてもよい。また、外シース80の内径は、第1テーパ部116の最大径よりも小さい。そのため、外シース80によって、回転構造体110が、血管内壁を押しつける力をより伝えることができ、効果的に切削することができる。 The outer sheath 80 is a tubular body that covers the outside of the second shaft 70. The outer sheath 80 does not interlock with the rotation of the second shaft 70, and the outer sheath 80 does not rotate even when the second shaft 70 is rotating. As described above, by configuring the outer sheath 80 not to rotate when the second shaft 70 is rotated, it is possible to make it difficult to damage a living tissue such as a normal blood vessel by the side surface of the outer sheath 80. The outer sheath 80 may be configured to rotate together with the second shaft 7. Further, the inner diameter of the outer sheath 80 is smaller than the maximum diameter of the first taper portion 116. Therefore, the outer sheath 80 can transmit more the force that the rotating structure 110 presses the inner wall of the blood vessel, and can be cut effectively.
 外シース80の構成材料は、特に限定されないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、PTFE等のフッ素系ポリマー、PEEK(ポリエーテルエーテルケトン)、ポリイミド、などが好適に使用できる。また、外シース80は、複数の材料によって構成されてもよく、線材などの補強部材が埋設されてもよい。 The constituent material of the outer sheath 80 is not particularly limited. For example, polyolefins such as polyethylene and polypropylene, polyesters such as polyamide and polyethylene terephthalate, fluorine-based polymers such as PTFE, PEEK (polyether ether ketone), and polyimide are preferable. Can be used. The outer sheath 80 may be composed of a plurality of materials, and a reinforcing member such as a wire may be embedded.
 外シース80の内径は、適宜選択可能であるが、例えば1.2~2.9mmであり、一例として1.9mmとすることができる。外シース80の外径は、適宜選択可能であるが、例えば1.3~3.0mmであり、一例として2.0mmとすることができる。 The inner diameter of the outer sheath 80 can be selected as appropriate, but is 1.2 to 2.9 mm, for example, and can be 1.9 mm as an example. The outer diameter of the outer sheath 80 can be selected as appropriate, but is 1.3 to 3.0 mm, for example, and can be set to 2.0 mm as an example.
 第1駆動装置91は、第1シャフト60に回転力を付与して第1シャフト60を自転させることができる。また、第1駆動装置91は、第1シャフト60の回転軸に平行な方向(軸方向)に第1シャフト60を移動させるように、第1シャフト60を駆動することができる。 The first driving device 91 can rotate the first shaft 60 by applying a rotational force to the first shaft 60. The first driving device 91 can drive the first shaft 60 so as to move the first shaft 60 in a direction (axial direction) parallel to the rotation axis of the first shaft 60.
 第2駆動装置92は、第2シャフト70に回転力を付与して第2シャフト70を回転させることができる。第2シャフト70の回転方向は選択可能であり、第1シャフト60の回転方向と同じ方向とすることもできるし、逆方向とすることもできる。第2シャフト70の回転方向を第1シャフト60の回転方向の逆方向とすると、回転構造体110が狭窄物Sを切削する際に、回転構造体110が狭窄物Sから逃げる動きを低減することができる。 The second driving device 92 can apply a rotational force to the second shaft 70 to rotate the second shaft 70. The rotation direction of the second shaft 70 can be selected, and can be the same direction as the rotation direction of the first shaft 60 or can be the opposite direction. When the rotation direction of the second shaft 70 is opposite to the rotation direction of the first shaft 60, the movement of the rotary structure 110 to escape from the constriction S when the rotary structure 110 cuts the constriction S is reduced. Can do.
 また、第2駆動装置92は、第2シャフト70の回転軸に平行な方向に第2シャフト70を移動させるように、第2シャフト70を駆動することができる。 Further, the second drive device 92 can drive the second shaft 70 so as to move the second shaft 70 in a direction parallel to the rotation axis of the second shaft 70.
 図3は、図2に示す医療デバイス10がベンディングしている状態を示す図である。図3に示す例では、第2シャフト70は、上方に向かってベンディングするパターンの切れ目75を有している。第1駆動装置91によって第1シャフト60を回転させ、伸縮部61を締め付け方向に回転させることにより、伸縮部61が軸方向に収縮し、回転構造体110から軸受部140を介して第2シャフト70に近位方向への力が加わる。そうすると、第2シャフト70は、上方に向いてベンディングするパターンの切れ目75を有しているため、湾曲部83において上方にベンディングする。 FIG. 3 is a diagram showing a state where the medical device 10 shown in FIG. 2 is bent. In the example shown in FIG. 3, the second shaft 70 has a pattern cut 75 that bends upward. By rotating the first shaft 60 by the first driving device 91 and rotating the expansion / contraction part 61 in the tightening direction, the expansion / contraction part 61 contracts in the axial direction, and the second shaft from the rotating structure 110 via the bearing part 140. A force in the proximal direction is applied to 70. Then, since the second shaft 70 has the cut line 75 that bends upward, the second shaft 70 bends upward at the curved portion 83.
 この際、第1シャフト60の回転速度を調整することによって、第2シャフト70のベンディングの程度を調節することができる。第1シャフト60の回転速度を増大させれば第2シャフト70は大きくベンディングし、第1シャフト60の回転速度を減少させれば第2シャフト70は小さくベンディングする。また、第1シャフト60の回転速度を一定に保つことにより、第2シャフト70のベンディングの程度を一定に保つことができる。また、切れ目75のパターンの形状により、第2シャフト70のベンディング形状を所望の形状に規定することができる。 At this time, the degree of bending of the second shaft 70 can be adjusted by adjusting the rotational speed of the first shaft 60. If the rotational speed of the first shaft 60 is increased, the second shaft 70 bends greatly, and if the rotational speed of the first shaft 60 is decreased, the second shaft 70 bends small. Further, the degree of bending of the second shaft 70 can be kept constant by keeping the rotation speed of the first shaft 60 constant. Further, the bending shape of the second shaft 70 can be defined as a desired shape by the shape of the pattern of the cuts 75.
 また、第1駆動装置91によって第1シャフト60を軸方向に移動させることにより、第2シャフト70のベンディングの程度を調節することも可能である。すなわち、第1シャフト60を軸方向に牽引する(近位側に移動させる)ことにより、第2シャフト70はより大きくベンディングし、第1シャフト60を軸方向に押し込む(遠位側に移動させる)ことにより、ベンディング量は小さくなる。 It is also possible to adjust the degree of bending of the second shaft 70 by moving the first shaft 60 in the axial direction by the first driving device 91. That is, by pulling the first shaft 60 in the axial direction (moving proximally), the second shaft 70 bends more and pushes the first shaft 60 axially (moves distally). As a result, the bending amount is reduced.
 さらに、第2駆動装置92によって第2シャフト70を軸方向に移動させることにより、第2シャフト70のベンディングの程度を調節することも可能である。すなわち、第2シャフト70を軸方向に押し込む(遠位側に移動させる)ことにより、第2シャフト70はより大きくベンディングし、第2シャフト70を軸方向に牽引する(近位側に移動させる)ことにより、ベンディング量は小さくなる。 Further, it is possible to adjust the degree of bending of the second shaft 70 by moving the second shaft 70 in the axial direction by the second driving device 92. That is, by pushing the second shaft 70 in the axial direction (moving it distally), the second shaft 70 bends more and pulls the second shaft 70 in the axial direction (moving it proximally). As a result, the bending amount is reduced.
 第1シャフト60と第2シャフト70とを相対的に回転可能とし、且つ、手元操作により軸方向の位置を相対的に移動可能とすることにより、回転によるベンディング力に加えて、軸方向に移動可能な第1シャフト60と第2シャフト70を移動することによって、ベンディング力を増大させることができ、また、ベンディング力を保持し易くすることが可能となる。 The first shaft 60 and the second shaft 70 can be rotated relatively, and the position in the axial direction can be moved relatively by hand operation, so that the first shaft 60 and the second shaft 70 move in the axial direction in addition to the bending force due to rotation. By moving the possible first shaft 60 and second shaft 70, the bending force can be increased and the bending force can be easily maintained.
 本実施形態では、回転により軸方向に伸縮するよう構成された伸縮部61を第1シャフト60にのみ設けているが、第1シャフト60に加えて第2シャフト70にも設けてもよいし、第2シャフト70のみに伸縮部を設けてもよい。その場合において、伸縮部の長さ、コイルの巻方向、層構造等は特に限定されない。 In the present embodiment, the expansion / contraction part 61 configured to expand and contract in the axial direction by rotation is provided only in the first shaft 60, but may be provided in the second shaft 70 in addition to the first shaft 60, An expansion / contraction part may be provided only on the second shaft 70. In that case, the length of the stretchable part, the winding direction of the coil, the layer structure, etc. are not particularly limited.
 第2シャフト70に伸縮部を設けた場合、第2駆動装置92によって第2シャフト70を回転させることにより、第2シャフト70のベンディングの程度を調節することができる。すなわち、伸縮部の締め付け方向に第2シャフト70を回転させることにより、第2シャフト70を軸方向に牽引するのと同様の作用が生じ、ベンディング量は小さくなる。また、伸縮部の緩み方向に第2シャフト70を回転させることにより、第2シャフト70を軸方向に押し込むのと同様の作用が生じ、ベンディング量が大きくなる。 When the second shaft 70 is provided with a telescopic part, the degree of bending of the second shaft 70 can be adjusted by rotating the second shaft 70 by the second driving device 92. That is, by rotating the second shaft 70 in the tightening direction of the telescopic portion, the same action as pulling the second shaft 70 in the axial direction occurs, and the bending amount is reduced. Further, by rotating the second shaft 70 in the loosening direction of the expansion / contraction part, the same action as pushing the second shaft 70 in the axial direction occurs, and the bending amount increases.
 生体管腔内の狭窄物S等の物体を切削する際の第1シャフト60の回転方向が伸縮部61の締め付け方向となっていることが好ましい。これによれば、第1シャフト60の回転によって締め付けられた伸縮部61の強度が高まり変形し難くなるため、回転構造体110を狭窄物Sに押し当てるようにトルクを効かせた状態で狭窄物Sを切削することができる。 It is preferable that the rotation direction of the first shaft 60 when cutting an object such as the constriction S in the body lumen is the tightening direction of the expansion / contraction part 61. According to this, since the strength of the expansion / contraction part 61 tightened by the rotation of the first shaft 60 is increased and is difficult to be deformed, the constricted object in a state where torque is applied so as to press the rotating structure 110 against the constricted object S. S can be cut.
 第2シャフト70に伸縮部を設ける場合においても、生体管腔内の狭窄物S等の物体を切削する際には、第2シャフト70が当該伸縮部の締め付け方向に回転していることが好ましい。このような構成とすることにより、締め付けられた伸縮部が変形し難くなるため、回転構造体110を狭窄物Sに押し当てるようにトルクを効かせた状態で狭窄物Sを切削することができる。 Even when the second shaft 70 is provided with an expansion / contraction portion, when cutting an object such as the constriction S in the living body lumen, it is preferable that the second shaft 70 is rotated in the tightening direction of the expansion / contraction portion. . With such a configuration, the tightened expansion / contraction part is difficult to be deformed, so that the constriction S can be cut in a state where torque is applied so as to press the rotating structure 110 against the constriction S. .
 図3においては、第2シャフト70が1つの湾曲部83でベンディングしている様子を示しているが、第2シャフト70は複数の湾曲部でベンディングする構成であってもよい。この場合、切れ目75を複数の湾曲部でベンディングするパターンとすることにより、第2シャフト70を複数の湾曲部でベンディングさせることができる。また、第2シャフト70は、切れ目75のパターンの形状により、種々の形状にベンディングさせることができる。例えば、切れ目75のパターンを、第2シャフト70が螺旋状にベンディングしやすくなるように構成してもよい。 3 shows a state in which the second shaft 70 is bent by one bending portion 83, the second shaft 70 may be bent by a plurality of bending portions. In this case, the second shaft 70 can be bent with a plurality of curved portions by making the cut 75 bend with a plurality of curved portions. The second shaft 70 can be bent into various shapes depending on the shape of the pattern of the cuts 75. For example, the pattern of the cuts 75 may be configured so that the second shaft 70 can be easily bent in a spiral shape.
 ここで、図4は、切れ目75のパターン一例を展開図で示したものであり、このパターンの切れ目75を第2シャフト70に設けることで、S字状に湾曲する湾曲部を形成することができる。図4における上下方向が第2シャフト70の周方向を示しており、左右方向が軸方向を示している。また、図4において、切れ目75のうち周方向で他の位置と比較して隙間の大きい部分76は、第2シャフト70が湾曲する際に圧縮側となる内側の面を構成する。 Here, FIG. 4 shows an example of a pattern of the cut 75 in a developed view. By providing the cut 75 of this pattern in the second shaft 70, a curved portion that curves in an S shape can be formed. it can. The vertical direction in FIG. 4 indicates the circumferential direction of the second shaft 70, and the horizontal direction indicates the axial direction. In FIG. 4, a portion 76 having a larger gap than the other positions in the circumferential direction in the cut 75 constitutes an inner surface that becomes the compression side when the second shaft 70 is curved.
 図5(a)、(b)に、図2に示す軸受部140の変形例としての軸受部141、142を示す。図5(a)に示すように、変形例に係る軸受部141は、回転構造体110の回転軸に対して回転対称ではない構造となっている。具体的には、軸受部141の端面のうち遠位側の端面に、軸方向に突出する突出部141aが設けられている。突出部141aは、周方向の一部(図5(a)では上側の一部)のみに設けられている。軸受部141がこのような構造となっていると、第2シャフト70は、第1シャフト60(図2等参照)を回転させて伸縮部61(図2等参照)が収縮した際に、回転構造体110が軸受部141の周方向の一部のみに当接することによりベンディングする。具体的に、第1シャフト60を回転させて伸縮部61が緩み方向に回転すると径方向に拡張し、伸縮部61が軸方向に縮むので、突出部141aのみが先に回転構造体110に接し、回転構造体110から近位側への力を付与される。これにより、元々、下側にベンディングしやすくなっている第2シャフト70の上側だけに、突出部141aが設けられている軸受部141の上側を介して近位方向の力が付与され、第2シャフト70がスムーズに下側にベンディングすることができる。また、このような構成とすることにより、ベンディングの際における回転構造体110と軸受部141との接触面積を小さくすることができるので、摩擦熱の発生を低減することも可能となる。 5A and 5B show bearing portions 141 and 142 as modifications of the bearing portion 140 shown in FIG. As shown in FIG. 5A, the bearing portion 141 according to the modification has a structure that is not rotationally symmetric with respect to the rotation axis of the rotating structure 110. Specifically, a protruding portion 141 a that protrudes in the axial direction is provided on the distal end surface of the end surface of the bearing portion 141. The protrusion 141a is provided only in a part in the circumferential direction (a part on the upper side in FIG. 5A). When the bearing portion 141 has such a structure, the second shaft 70 rotates when the first shaft 60 (see FIG. 2 and the like) is rotated and the telescopic portion 61 (see FIG. 2 and the like) contracts. The structure 110 is bent by contacting only a part of the bearing portion 141 in the circumferential direction. Specifically, when the first shaft 60 is rotated and the expansion / contraction part 61 rotates in the loosening direction, the expansion / contraction part 61 expands in the radial direction and the expansion / contraction part 61 contracts in the axial direction, so that only the protrusion 141a contacts the rotary structure 110 first. A force from the rotating structure 110 to the proximal side is applied. As a result, a force in the proximal direction is applied only to the upper side of the second shaft 70 that is easily bent downward, via the upper side of the bearing portion 141 provided with the protruding portion 141a. The shaft 70 can be smoothly bent downward. Further, by adopting such a configuration, it is possible to reduce the contact area between the rotating structure 110 and the bearing portion 141 during bending, and thus it is possible to reduce the generation of frictional heat.
 図5(b)に示す軸受部142には、軸受部142の端面のうち近位側の端面に、軸方向に突出する突出部142aが設けられている。軸受部142がこのような構造となっていると、第2シャフト70は、第1シャフト60を回転させて伸縮部61が締め付け方向に回転すると、径方向に収縮し、伸縮部61は軸方向に伸びるので、突出部142aのみが先に回転構造体110に接し、回転構造体110から遠位側への力を付与される。これにより、元々、下側にベンディングしやすくなっている第2シャフト70の下側だけに軸受部142の下側を介して遠位方向の力が付与され、第2シャフト70がスムーズに下側にベンディングすることができる。 5B is provided with a protruding portion 142a that protrudes in the axial direction on the end surface on the proximal side of the end surface of the bearing portion 142. When the bearing portion 142 has such a structure, the second shaft 70 contracts in the radial direction when the first shaft 60 is rotated and the telescopic portion 61 rotates in the tightening direction, and the telescopic portion 61 is in the axial direction. Therefore, only the protrusion 142a comes into contact with the rotating structure 110 first, and a force from the rotating structure 110 to the distal side is applied. As a result, a force in the distal direction is applied to the lower side of the second shaft 70, which is originally easy to bend downward, via the lower side of the bearing portion 142, so that the second shaft 70 can be smoothly moved to the lower side. Can be bent.
 続いて、図6を参照して、回転構造体110の構造について説明する。以後の説明において、「先端側」とは回転構造体110における遠位側のことを意味し、「基端側」とは回転構造体110における近位側のことを意味する。 Subsequently, the structure of the rotating structure 110 will be described with reference to FIG. In the following description, “tip side” means a distal side in the rotating structure 110, and “base end side” means a proximal side in the rotating structure 110.
 回転構造体110は、第1環状部112と、第1環状部112よりも先端側に位置する第2環状部111とを備える。また、回転構造体110は、第1環状部112と第2環状部111との間にくびれ部126を備える。また、回転構造体110は、第1環状部112の基端側に位置する第3環状部115と、第1環状部112と第3環状部115との間に位置し、第1環状部112及び第3環状部115の外径よりも小さい外径を有する小径環状部128と、を備えている。この小径環状部128と第2シャフト70との間には軸受部140が設けられる。第1環状部112は、第1テーパ部116の基端でもよい。第2環状部111は、第2テーパ部114の先端でもよい。 The rotating structure 110 includes a first annular portion 112 and a second annular portion 111 located on the tip side of the first annular portion 112. Further, the rotating structure 110 includes a constricted portion 126 between the first annular portion 112 and the second annular portion 111. The rotating structure 110 is located between the third annular portion 115 located on the proximal end side of the first annular portion 112 and between the first annular portion 112 and the third annular portion 115, and the first annular portion 112. And a small-diameter annular portion 128 having an outer diameter smaller than the outer diameter of the third annular portion 115. A bearing portion 140 is provided between the small-diameter annular portion 128 and the second shaft 70. The first annular portion 112 may be the proximal end of the first tapered portion 116. The second annular portion 111 may be the tip of the second tapered portion 114.
 くびれ部126は、第1環状部112の先端側で、先端側に向かって縮径する第1テーパ部116と、第2環状部111の基端側で、基端側に向かって縮径する第2テーパ部114とを備える。また、くびれ部126は、第1テーパ部116と第2テーパ部114をつなげる底部127を備える。底部127の径は、第1環状部112の径、及び第2環状部111の径よりも小さい。また、第1環状部112の径は、第3環状部115の径と略等しい。更に、第1環状部112の径は、第2環状部111の径よりも大きい。ここで、「径」とは、回転構造体110の回転軸Xを中心とする径のことを意味する。以後の説明においても同様である。くびれ部126の形状は、最大径が同じである第1テーパ部116と第2テーパ部114によって構成されてもよい。また、くびれ部126の形状は、第1テーパ部116と、最大径が第1テーパ部116より大きい第2テーパ部114とによって構成されてもよい。また、くびれ部126の形状は、最大径が第2テーパ部114より大きい第1テーパ部116と、第2テーパ部114とによって構成されてもよい。くびれ部126の軸方向の長さは、軸方向の長さが等しい第1テーパ部116と第2テーパ部114によって構成されてもよい。くびれ部126の軸方向の長さは、軸方向の長さが第2テーパ部114より長い第1テーパ部116と、第2テーパ部114とによって構成されてもよい。くびれ部126の軸方向の長さは、第1テーパ部116と、軸方向の長さが第1テーパ部116より長い第2テーパ部114によって構成されてもよい。 The constricted portion 126 has a first tapered portion 116 that decreases in diameter toward the distal end side at the distal end side of the first annular portion 112, and a diameter that decreases toward the proximal end side at the proximal end side of the second annular portion 111. 2nd taper part 114 is provided. In addition, the constricted portion 126 includes a bottom portion 127 that connects the first tapered portion 116 and the second tapered portion 114. The diameter of the bottom portion 127 is smaller than the diameter of the first annular portion 112 and the diameter of the second annular portion 111. Further, the diameter of the first annular portion 112 is substantially equal to the diameter of the third annular portion 115. Further, the diameter of the first annular portion 112 is larger than the diameter of the second annular portion 111. Here, the “diameter” means a diameter centered on the rotation axis X of the rotating structure 110. The same applies to the following description. The shape of the constricted portion 126 may be configured by the first tapered portion 116 and the second tapered portion 114 having the same maximum diameter. In addition, the shape of the constricted portion 126 may be configured by the first tapered portion 116 and the second tapered portion 114 whose maximum diameter is larger than the first tapered portion 116. In addition, the shape of the constricted portion 126 may be configured by the first tapered portion 116 having a maximum diameter larger than the second tapered portion 114 and the second tapered portion 114. The length of the constricted portion 126 in the axial direction may be configured by the first tapered portion 116 and the second tapered portion 114 having the same axial length. The length of the constricted portion 126 in the axial direction may be configured by the first tapered portion 116 and the second tapered portion 114 whose axial length is longer than that of the second tapered portion 114. The length of the constricted portion 126 in the axial direction may be configured by the first tapered portion 116 and the second tapered portion 114 whose axial length is longer than that of the first tapered portion 116.
 また、回転構造体110は、第2環状部111の先端側で、先端側に向かって縮径する第3テーパ部113を備える。 Further, the rotating structure 110 includes a third taper portion 113 that is reduced in diameter toward the distal end side at the distal end side of the second annular portion 111.
 第1テーパ部116は、周方向の一部に、軸直交断面においてV字状となるように切り込まれた第1切り込み部122を有し、第1切り込み部122の縁部に刃である第1切削部123が設けられる。第1切り込み部122は、周方向に1つのみ設けられても、2つ以上設けられてもよい。第1切り込み部122は、非対称でもよいし、対称でもよい。第1切り込み部122は、回転構造体110の回転方向と反対の第1切り込み部122の面の角度の方が、回転方向の第1切り込み部122の面より大きい。また、第1テーパ部116に砥粒や砥石等が電着されていてもよい。その場合、第1テーパ部116が第1切削部(第4切削部)となってもよい。第1テーパ部116は、第1切り込み部122の第1切削部123と砥粒や砥石が電着された第1切削部(第4切削部)を有する場合、第1切り込み部122の第1切削部123と砥粒や砥石が電着された第1切削部(第4切削部)によって、効率的に狭窄物を切削することができる。また、第1テーパ部116は、第1切り込み部122がなくてもよく、第4切削部だけでもよい。砥粒は、例えば、ダイアモンド砥粒等がある。 The first taper portion 116 has a first cut portion 122 cut into a V shape in a cross section perpendicular to the axis in a part of the circumferential direction, and is a blade at the edge of the first cut portion 122. A first cutting part 123 is provided. Only one first cut portion 122 may be provided in the circumferential direction, or two or more first cut portions 122 may be provided. The first cut portion 122 may be asymmetric or symmetric. The angle of the surface of the 1st notch part 122 opposite to the rotation direction of the rotary structure 110 is larger than the surface of the 1st notch part 122 of the 1st notch part 122 of a rotation direction. In addition, abrasive grains, a grindstone, or the like may be electrodeposited on the first taper portion 116. In that case, the 1st taper part 116 may become a 1st cutting part (4th cutting part). When the first taper portion 116 has the first cutting portion 123 of the first cut portion 122 and the first cutting portion (fourth cutting portion) on which the abrasive grains and the grindstone are electrodeposited, the first taper portion 116 first of the first cut portion 122. The narrow portion can be efficiently cut by the cutting portion 123 and the first cutting portion (fourth cutting portion) on which the abrasive grains and the grindstone are electrodeposited. Moreover, the 1st taper part 116 does not need to have the 1st cut part 122, and may be only a 4th cutting part. Examples of the abrasive grains include diamond abrasive grains.
 第2テーパ部114は、周方向の一部に、軸直交断面においてV字状となるように切り込まれた第2切り込み部120を有し、第2切り込み部120の縁部に刃である第2切削部121が設けられる。第2切り込み部120は、周方向に1つのみ設けられても、2つ以上設けられてもよい。第2切り込み部120は、非対称でもよいし、対称でもよい。第2切り込み部120は、回転構造体110の回転方向と反対の第2切り込み部120の面の角度の方が、回転方向の第2切り込み部120の面より大きい。また、第2テーパ部114に砥粒や砥石等が電着されている場合、第2切り込み部120の第2切削部121と砥粒や砥石が電着された切削部によって、効率的に狭窄物を切削することができる。また、第2テーパ部114は、第2切り込み部120がなくてもよく、砥粒や砥石が電着された切削部だけでもよい。 The 2nd taper part 114 has the 2nd cut part 120 cut | disconnected so that it might become V shape in an axial orthogonal cross section in a part of circumferential direction, and is a blade at the edge of the 2nd cut part 120. A second cutting part 121 is provided. Only one second cut portion 120 may be provided in the circumferential direction, or two or more second cut portions 120 may be provided. The second notch 120 may be asymmetric or symmetric. The angle of the surface of the 2nd notch part 120 opposite to the rotation direction of the rotating structure 110 is larger than the surface of the 2nd notch part 120 of the 2nd notch part 120 in a rotation direction. In addition, when abrasive grains, grindstones, and the like are electrodeposited on the second taper portion 114, the narrowing is efficiently performed by the second cutting portion 121 of the second cut portion 120 and the cutting portion on which the abrasive grains or grindstone are electrodeposited. You can cut things. Moreover, the 2nd taper part 114 does not need to have the 2nd cut | notch part 120, and may be only the cutting part by which the abrasive grain and the grindstone were electrodeposited.
 第3テーパ部113は、周方向の一部に、軸直交断面においてV字状となるように切り込まれた第3切り込み部117を有し、第3切り込み部117の縁部に刃である第3切削部118が設けられる。第3切り込み部117は、周方向に1つのみ設けられても、2つ以上設けられてもよい。第3切り込み部117は、非対称でもよいし、対称でもよい。第3切り込み部117は、回転構造体110の回転方向と反対の第3切り込み部117の面の角度の方が、回転方向の第3切り込み部117の面より大きい。また、第3テーパ部113に砥粒や砥石等が電着されている場合、第3切り込み部117の第3切削部118と砥粒や砥石が電着された切削部によって、効率的に狭窄物を切削することができる。また、第3テーパ部113は、第3切り込み部117がなくてもよく、砥粒や砥石が電着された切削部だけでもよい。 The third taper portion 113 has a third cut portion 117 cut into a V shape in a cross section perpendicular to the axis in a part of the circumferential direction, and is a blade at the edge of the third cut portion 117. A third cutting part 118 is provided. Only one third cut portion 117 may be provided in the circumferential direction, or two or more third cut portions 117 may be provided. The third cut portion 117 may be asymmetric or symmetric. The angle of the surface of the third cut portion 117 opposite to the rotation direction of the rotating structure 110 is larger than the surface of the third cut portion 117 in the rotation direction of the third cut portion 117. Further, when abrasive grains, grindstones, and the like are electrodeposited on the third taper portion 113, the narrowing is efficiently performed by the third cutting portion 118 of the third cut portion 117 and the cutting portion on which the abrasive grains or grindstone are electrodeposited. You can cut things. Moreover, the 3rd taper part 113 does not need to have the 3rd cutting part 117, and may be only the cutting part by which the abrasive grain and the grindstone were electrodeposited.
 第1切削部123及び第3切削部118は、先端側へ向かって縮径するテーパ状の部位に形成されているため、回転構造体110を遠位側へ押し込む際に、狭窄物Sを効果的に切削することができる。また、第2切削部121は、基端側へ向かって縮径するテーパ状の部位に形成されているため、回転構造体110を近位側へ牽引する際に、狭窄物Sを効果的に切削することができる。第1切り込み部122、第2切り込み部120、第3切り込み部117は、それぞれ第1テーパ部116、第2テーパ部114、第3テーパ部113の軸方向の長さに比例する。 Since the 1st cutting part 123 and the 3rd cutting part 118 are formed in the taper-shaped site | part reduced in diameter toward the front end side, when pushing in the rotating structure 110 to a distal side, the constriction S is effective. Can be cut. Moreover, since the 2nd cutting part 121 is formed in the taper-shaped site | part which is diameter-reduced toward the base end side, when pulling the rotary structure 110 to the proximal side, the narrowing thing S is effective. Can be cut. The first cut portion 122, the second cut portion 120, and the third cut portion 117 are proportional to the axial lengths of the first taper portion 116, the second taper portion 114, and the third taper portion 113, respectively.
 第2環状部111は、外周面を生体組織に対して滑らかに接触可能な形状、材質で構成し、外周面を第1非切削部124としてもよい。これにより、狭窄物Sを切削する際に生体組織にダメージを与えるリスクを低減することができる。また、第3テーパ部113は、先端側の端部の外周面に、周方向全域に亘って第3切り込み部117が形成されていない第2非切削部119を設けてもよい。こうすると、第3切削部118が、第1非切削部124と第2非切削部119の接線Lよりも外側に突出しないため、第3切削部118が生体組織に接触することを抑制することができ、高い安全性を確保することができる。 The second annular portion 111 may be formed of a shape and material that can smoothly contact the outer peripheral surface with the living tissue, and the outer peripheral surface may be the first non-cutting portion 124. Thereby, when cutting the constriction S, the risk of damaging the living tissue can be reduced. Moreover, the 3rd taper part 113 may provide the 2nd non-cutting part 119 in which the 3rd notch part 117 is not formed over the circumferential direction whole area | region in the outer peripheral surface of the edge part at the front end side. If it carries out like this, since the 3rd cutting part 118 does not protrude outside the tangent L of the 1st non-cutting part 124 and the 2nd non-cutting part 119, it suppresses that the 3rd cutting part 118 contacts a biological tissue. And high safety can be ensured.
 回転構造体110の構成材料は、特に限定されないが、例えば、ステンレス、Ta、Ti、Pt、Au、W、Ni、NiTi合金、超鋼(WC)、ハイス(HSS)、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、ポリエチレンテレフタレートなどのポリエステル、PTFE等のフッ素系ポリマー、PEEK(ポリエーテルエーテルケトン)、ポリイミド、などが好適に使用できる。 The constituent material of the rotating structure 110 is not particularly limited. For example, polyolefin such as stainless steel, Ta, Ti, Pt, Au, W, Ni, NiTi alloy, super steel (WC), high speed (HSS), polyethylene, and polypropylene. Polyester such as polyamide and polyethylene terephthalate, fluorine-based polymer such as PTFE, PEEK (polyetheretherketone), polyimide, and the like can be suitably used.
 本実施形態に係る医療デバイス10は、第2シャフト70のベンディングのための牽引ワイヤを第2シャフト70の内部に設けることなく、伸縮部61の伸縮を利用して第2シャフト70をベンディング可能としている。このため、第2シャフト70を細径化することが可能となる。第2シャフト70を細径化することで、より細い血管等の生体管腔に対する治療が可能となる。 In the medical device 10 according to the present embodiment, the second shaft 70 can be bent using the expansion and contraction of the expansion / contraction part 61 without providing a pull wire for bending the second shaft 70 inside the second shaft 70. Yes. For this reason, it is possible to reduce the diameter of the second shaft 70. By reducing the diameter of the second shaft 70, it is possible to treat a biological lumen such as a thinner blood vessel.
 また、本実施形態に係る医療デバイス10は、第1シャフト60を軸方向にも移動させることができるので、第2シャフト70のベンディングの程度を調節する際の精度を高めることができる。 Moreover, since the medical device 10 according to the present embodiment can move the first shaft 60 in the axial direction, it is possible to improve the accuracy when adjusting the degree of bending of the second shaft 70.
 また、本実施形態において、回転構造体110はくびれ部126を備え、くびれ部126は基端側に向かって縮径する第2テーパ部114を備え、第2テーパ部114は第2切削部121を有する。このように基端側に向かって縮径する第2テーパ部114に第2切削部121を設けることにより、回転構造体110を牽引する際にも生体管腔内の狭窄物Sを切削することができる。この際、回転構造体110を牽引することで強い力を狭窄物Sに与えることができるため、本実施形態に係る医療デバイス10は、生体管腔内における硬い狭窄物Sを切削することができる。また、この際、くびれ部126の底部127の径が、第1環状部112の径、及び第2環状部111の径よりも小さいため、正常な血管などの生体組織にダメージを与えるリスクを低減することができる。 Further, in the present embodiment, the rotating structure 110 includes a constricted portion 126, the constricted portion 126 includes a second tapered portion 114 whose diameter decreases toward the proximal end side, and the second tapered portion 114 includes the second cutting portion 121. Have By providing the second cutting part 121 in the second taper part 114 that decreases in diameter toward the proximal end in this way, the stenosis S in the living body lumen can be cut even when the rotating structure 110 is pulled. Can do. At this time, since a strong force can be applied to the stenosis S by pulling the rotating structure 110, the medical device 10 according to the present embodiment can cut the hard stenosis S in the living body lumen. . At this time, since the diameter of the bottom 127 of the constricted portion 126 is smaller than the diameter of the first annular portion 112 and the diameter of the second annular portion 111, the risk of damaging a living tissue such as a normal blood vessel is reduced. can do.
 図7に、本実施形態に係る医療デバイス10を用いて血管内の狭窄物Sを切削する様子を示す。図7(a)は、血管の周方向の一部(図7(a)では上方)に方向性を規定して狭窄物Sを切削している様子であり、図7(b)は、血管の周方向の別の一部(図7(b)では下方)に方向性を規定して狭窄物Sを切削している様子である。 FIG. 7 shows a state where the stenosis S in the blood vessel is cut using the medical device 10 according to the present embodiment. FIG. 7A shows a state in which the stenosis S is cut with a directionality defined in a part of the circumferential direction of the blood vessel (upward in FIG. 7A), and FIG. 7B shows the blood vessel. It is a state that the constriction S is cut with the directionality defined in another part of the circumferential direction (downward in FIG. 7B).
 図7に示す例では、第2シャフト70は、第1湾曲部84と第2湾曲部85の2箇所でベンディングしている。図7に示すように、第2シャフト70をベンディングさせた上で回転させ、回転軸Yを中心として回転構造体110を回転させると、第2シャフト70の第1湾曲部84よりも遠位側の部分を所望の方向に規定することができる。これにより、医療デバイス10の遠位側が狭窄物Sの方を向くように方向性を規定することができる。また、この際、第2駆動装置92で第2シャフト70の回転を駆動することにより、回転構造体110を狭窄物Sに押し当てるようにトルクを効かせた状態で狭窄物Sを切削することができる。この場合、第2シャフト70の第1湾曲部84から基端側が血管の内壁に接触し、第2シャフト70の血管の内壁に対する接触位置と反対側に、突出部141a、142a(図5(a)、(b)参照)が設けられていることが好ましい。また、第2シャフト70の血管の内壁に対する接触位置と反対側に第2シャフト70がベンディングするように、第2シャフト70の切れ目75が形成されていることが好ましい。これにより、さらに効果的に、回転構造体110を狭窄物Sに押し当てるようにトルクを効かせた状態で狭窄物Sを切削することができる。 In the example shown in FIG. 7, the second shaft 70 is bent at two locations of the first bending portion 84 and the second bending portion 85. As shown in FIG. 7, when the second shaft 70 is bent and rotated, and the rotating structure 110 is rotated about the rotation axis Y, the second shaft 70 is more distal than the first bending portion 84. Can be defined in a desired direction. Thereby, directionality can be defined so that the distal side of the medical device 10 faces the stenosis S. Further, at this time, by driving the rotation of the second shaft 70 by the second driving device 92, the narrowed object S is cut in a state where the torque is applied so as to press the rotating structure 110 against the narrowed object S. Can do. In this case, the proximal end side from the first curved portion 84 of the second shaft 70 is in contact with the inner wall of the blood vessel, and the projecting portions 141a and 142a (FIG. ) And (b) are preferably provided. Moreover, it is preferable that the cut | interruption 75 of the 2nd shaft 70 is formed so that the 2nd shaft 70 may bend on the opposite side to the contact position with respect to the inner wall of the blood vessel of the 2nd shaft 70. FIG. Thereby, the constriction thing S can be cut in the state which applied the torque so that the rotary structure 110 might be pressed on the constriction thing S more effectively.
 続いて、図8に、ベンディングさせた第2シャフト70を回転させて、回転構造体110を公転させることにより、広い範囲で狭窄物Sを切削している様子を示す。 Subsequently, FIG. 8 shows a state where the narrowed object S is cut in a wide range by rotating the bent second shaft 70 and revolving the rotating structure 110.
 図8に示す例も、図7と同様に、第2シャフト70は、第1湾曲部84と第2湾曲部85の2箇所でベンディングしている。この状態で、第2シャフト70を回転させると、第2シャフト70の第1湾曲部84よりも遠位側が大きく回転する。これにより、回転構造体110が公転し、広い範囲にわたって狭窄物Sを切削することができる。 In the example shown in FIG. 8 as well, the second shaft 70 is bent at two locations, the first bending portion 84 and the second bending portion 85, as in FIG. When the second shaft 70 is rotated in this state, the distal side of the second shaft 70 rotates more than the first bending portion 84. Thereby, the rotating structure 110 revolves and the constriction S can be cut over a wide range.
 第2駆動装置92は、公転の回転速度の方が自転の回転速度よりも遅くなるように、第2シャフト70の回転を駆動することにより、回転構造体110の自転による切削効果を向上させることができる。 The second driving device 92 improves the cutting effect by the rotation of the rotating structure 110 by driving the rotation of the second shaft 70 such that the rotation speed of revolution is slower than the rotation speed of rotation. Can do.
 このように、本実施形態に係る医療デバイス10は、第1シャフト60を囲う管状の第2シャフト70を備え、第2シャフト70はベンディング可能であり、かつ、回転可能である。これにより、医療デバイス10をベンディングさせた状態で第2シャフト70を回転させることで、回転構造体110を公転させることができるため、医療デバイス10の方向性を規定することができる。また、回転構造体110を公転させることにより、トルクを効かせた状態で回転構造体110を狭窄物Sに押しつけて狭窄物Sを切削することができる。 As described above, the medical device 10 according to this embodiment includes the tubular second shaft 70 surrounding the first shaft 60, and the second shaft 70 can be bent and rotated. Thereby, since the rotation structure 110 can be revolved by rotating the 2nd shaft 70 in the state which bent the medical device 10, the directionality of the medical device 10 can be prescribed | regulated. Moreover, by rotating the rotating structure 110, the rotating structure 110 can be pressed against the constricted object S in a state where torque is applied, and the constricted object S can be cut.
 本開示は、上述した実施形態のみに限定されず、本開示の技術的思想内において当業者により種々変更が可能である。例えば、医療デバイスが挿入される生体管腔は、血管に限定されず、例えば、脈管、尿管、胆管、卵管、肝管等であってもよい。 The present disclosure is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present disclosure. For example, a living body lumen into which a medical device is inserted is not limited to a blood vessel, and may be, for example, a vascular tube, a ureter, a bile duct, a fallopian tube, a hepatic tube, or the like.
 本開示は、医療デバイスに関する。 This disclosure relates to medical devices.
 10  医療デバイス
 60  第1シャフト
 61  伸縮部
 70  第2シャフト
 75  切れ目
 80  外シース
 83  湾曲部
 84  第1湾曲部
 85  第2湾曲部
 91  第1駆動装置
 92  第2駆動装置
 110 回転構造体
 111 第2環状部
 112 第1環状部
 113 第3テーパ部
 114 第2テーパ部
 115 第3環状部
 116 第1テーパ部
 117 第3切り込み部
 118 第3切削部
 119 第2非切削部
 120 第2切り込み部
 121 第2切削部
 122 第1切り込み部
 123 第1切削部
 124 第1非切削部
 126 くびれ部
 127 底部
 128 小径環状部
 140、141、142 軸受部
 141a、142a 突出部
 L   接線
 S   狭窄物(物体)
 X、Y 回転軸
DESCRIPTION OF SYMBOLS 10 Medical device 60 1st shaft 61 Expansion / contraction part 70 2nd shaft 75 Cut 80 Outer sheath 83 Bending part 84 1st bending part 85 2nd bending part 91 1st drive device 92 2nd drive device 110 Rotating structure 111 2nd ring Part 112 First annular part 113 Third tapered part 114 Second tapered part 115 Third annular part 116 First tapered part 117 Third cut part 118 Third cutting part 119 Second non-cutting part 120 Second cut part 121 Second Cutting portion 122 First cutting portion 123 First cutting portion 124 First non-cutting portion 126 Constricted portion 127 Bottom portion 128 Small-diameter annular portion 140, 141, 142 Bearing portion 141a, 142a Protruding portion L Tangent S Constriction (object)
X, Y rotation axis

Claims (9)

  1.  生体管腔内の物体を切削するための医療デバイスであって、
     切削部を有する回転構造体と、
     前記回転構造体に連結され、前記回転構造体の回転を駆動する第1シャフトと、
     前記第1シャフトを囲う管状の第2シャフトと、
     前記回転構造体と前記第2シャフトとの間に配置される軸受部と、
    を備え、
     前記第2シャフトは所定の方向にベンディング可能であり、
     前記第1シャフト及び前記第2シャフトの少なくとも一方は、回転により軸方向に伸縮するよう構成された伸縮部を有し、
     前記第2シャフトは、前記伸縮部の伸縮に伴い前記軸受部を介して前記回転構造体から受ける力によってベンディングするように構成されていることを特徴とする医療デバイス。
    A medical device for cutting an object in a biological lumen,
    A rotating structure having a cutting portion;
    A first shaft coupled to the rotating structure and driving rotation of the rotating structure;
    A tubular second shaft surrounding the first shaft;
    A bearing portion disposed between the rotating structure and the second shaft;
    With
    The second shaft can be bent in a predetermined direction;
    At least one of the first shaft and the second shaft has an expansion / contraction portion configured to expand and contract in the axial direction by rotation,
    The medical device, wherein the second shaft is configured to bend by a force received from the rotating structure via the bearing portion as the telescopic portion expands and contracts.
  2.  前記第1シャフトに前記伸縮部が設けられている、請求項1に記載の医療デバイス。 The medical device according to claim 1, wherein the telescopic portion is provided on the first shaft.
  3.  生体管腔内の物体を切削する際の前記第1シャフトの回転により、前記伸縮部が軸方向に収縮するよう構成されている、請求項2に記載の医療デバイス。 The medical device according to claim 2, wherein the expandable portion contracts in an axial direction by rotation of the first shaft when cutting an object in a living body lumen.
  4.  前記第2シャフトが回転可能であり、
     前記第2シャフトに前記伸縮部が設けられている、請求項1に記載の医療デバイス。
    The second shaft is rotatable;
    The medical device according to claim 1, wherein the telescopic portion is provided on the second shaft.
  5.  前記軸受部における軸方向の何れか一方側の端面に、軸方向に突出する突出部が設けられ、前記第2シャフトは、前記伸縮部の伸縮に伴い前記突出部と当接する前記回転構造体からの力を受けてベンディングする、請求項1~4の何れか一項に記載の医療デバイス。 A projecting portion projecting in the axial direction is provided on an end surface on either one side in the axial direction of the bearing portion, and the second shaft comes from the rotating structure that comes into contact with the projecting portion as the telescopic portion expands and contracts. The medical device according to any one of claims 1 to 4, wherein bending is performed under the force of the above.
  6.  前記第1シャフトと前記第2シャフトとは相対的に回転可能であり、且つ、軸方向の位置関係を相対的に移動可能である、請求項1~5の何れか一項に記載の医療デバイス。 The medical device according to any one of claims 1 to 5, wherein the first shaft and the second shaft are relatively rotatable, and are relatively movable in an axial positional relationship. .
  7.  前記第2シャフトの湾曲部から基端側を生体管腔の内壁に接触させた際に、該第2シャフトの前記生体管腔の内壁に対する接触位置と反対側となる位置に前記突出部が設けられている、請求項5に記載の医療デバイス。 When the proximal end side of the curved portion of the second shaft is brought into contact with the inner wall of the living body lumen, the protruding portion is provided at a position opposite to the contact position of the second shaft with respect to the inner wall of the living body lumen. The medical device according to claim 5, wherein
  8.  前記第2シャフトの湾曲部から基端側を生体管腔の内壁に接触させた際に、該第2シャフトの前記生体管腔の内壁に対する接触位置と反対側の方向に向けて前記第2シャフトがベンディングするように、前記第2シャフトに切れ目が形成されている、請求項1~7の何れか一項に記載の医療デバイス。 When the proximal end side of the curved portion of the second shaft is brought into contact with the inner wall of the living body lumen, the second shaft is directed in a direction opposite to the contact position of the second shaft with respect to the inner wall of the living body lumen. The medical device according to any one of claims 1 to 7, wherein a cut is formed in the second shaft such that the second shaft is bent.
  9.  前記伸縮部は、螺旋状に一方向に巻き回された単層コイル状又は巻方向が統一された多層コイル状である、請求項1~8の何れか一項に記載の医療デバイス。 The medical device according to any one of claims 1 to 8, wherein the stretchable portion is a single-layer coil shape spirally wound in one direction or a multilayer coil shape in which the winding direction is unified.
PCT/JP2017/033490 2016-09-16 2017-09-15 Medical device WO2018052123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016182405 2016-09-16
JP2016-182405 2016-09-16

Publications (1)

Publication Number Publication Date
WO2018052123A1 true WO2018052123A1 (en) 2018-03-22

Family

ID=61620058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033490 WO2018052123A1 (en) 2016-09-16 2017-09-15 Medical device

Country Status (1)

Country Link
WO (1) WO2018052123A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184582A (en) * 1991-07-22 1993-07-27 Dow Corning Wright Corp Atheroma-extirpating device with removable driver
JP2006149988A (en) * 2004-01-23 2006-06-15 Umi Kono Atherectomy head and atherectomy catheter using the same
WO2016007652A1 (en) * 2014-07-08 2016-01-14 Avinger, Inc. High speed chronic total occlusion crossing devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184582A (en) * 1991-07-22 1993-07-27 Dow Corning Wright Corp Atheroma-extirpating device with removable driver
JP2006149988A (en) * 2004-01-23 2006-06-15 Umi Kono Atherectomy head and atherectomy catheter using the same
WO2016007652A1 (en) * 2014-07-08 2016-01-14 Avinger, Inc. High speed chronic total occlusion crossing devices

Similar Documents

Publication Publication Date Title
JP4839307B2 (en) Apparatus and method for treating hardened vascular lesions
WO2016072107A1 (en) Medical device
WO2015190578A1 (en) Medical device
JP6754760B2 (en) Medical device
US20050119615A1 (en) Guidewire for crossing occlusions or stenoses
JP2016221081A (en) Medical device
US20220117624A1 (en) Medical device
US20230329745A1 (en) Medical device
JP2019503787A (en) Medical devices and related methods of use
WO2017154909A1 (en) Medical device and treatment method
JP6993404B2 (en) Medical device
WO2018052123A1 (en) Medical device
JP6946265B2 (en) Medical device
JP2018099485A (en) Medical device and treatment method
US11039852B2 (en) Medical device
US11896259B2 (en) Atherectomy device and method
US20220273323A1 (en) Aspiration devices for treatment of thrombosis including expandable distal ends and systems and methods thereof
US20240074770A1 (en) Systems, devices, and methods for aspiration, including expandable structures and rotatable shafts
WO2018221462A1 (en) Atherectomy device and method
WO2023249639A1 (en) Catheters, devices, and methods for removing materials from hollow bodies
JP2019050991A (en) Medical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17851021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17851021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP