WO2018052032A1 - Flexible solar cell - Google Patents

Flexible solar cell Download PDF

Info

Publication number
WO2018052032A1
WO2018052032A1 PCT/JP2017/033090 JP2017033090W WO2018052032A1 WO 2018052032 A1 WO2018052032 A1 WO 2018052032A1 JP 2017033090 W JP2017033090 W JP 2017033090W WO 2018052032 A1 WO2018052032 A1 WO 2018052032A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
solar cell
photoelectric conversion
insulating layer
Prior art date
Application number
PCT/JP2017/033090
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 榑林
元彦 浅野
森田 健晴
智仁 宇野
麻由美 湯川
明伸 早川
哲也 会田
雄一郎 福本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018539757A priority Critical patent/JP7016806B2/en
Publication of WO2018052032A1 publication Critical patent/WO2018052032A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible solar cell having excellent durability even when it has a photoelectric conversion layer containing an organic / inorganic perovskite compound.
  • a photoelectric conversion element of a solar cell a laminated body in which an N-type semiconductor layer and a P-type semiconductor layer are arranged between opposing electrodes has been actively developed, and silicon or the like is mainly used as the N-type or P-type semiconductor.
  • Inorganic semiconductors are used.
  • such inorganic solar cells are expensive to manufacture and difficult to increase in size, and have a problem in that the range of use is limited. Therefore, in recent years, perovskite solar cells using organic / inorganic perovskite compounds for photoelectric conversion layers have attracted attention.
  • Perovskite solar cells can be expected to have high photoelectric conversion efficiency and can be manufactured by a printing method, so that manufacturing costs can be greatly reduced.
  • a flexible solar cell using polyimide, polyester-based heat-resistant polymer materials or metal foils as a base material for solar cells have attracted attention.
  • a flexible solar cell has advantages such as ease of transportation and construction due to reduction in thickness and weight, and resistance to impact.
  • a flexible solar cell is manufactured by laminating a photoelectric conversion layer or the like having a function of generating a current when irradiated with light on a flexible substrate in a thin film shape. Furthermore, if necessary, the upper and lower surfaces of the solar cell element are sealed by laminating a solar cell sealing sheet (for example, Patent Document 1).
  • a photoelectric conversion layer containing an organic / inorganic perovskite compound is used in such a flexible solar cell, there is a problem that durability is poor.
  • An object of this invention is to provide the flexible solar cell which is excellent in durability, even if it has a photoelectric converting layer containing an organic inorganic perovskite compound in view of the said present condition.
  • the present invention is a flexible solar cell in which at least a flexible base material, an organic insulating layer, an electrode, a photoelectric conversion layer, a counter electrode, and a barrier layer are laminated in this order, and the flexible base material is It consists of metal foil, the photoelectric conversion layer contains an organic inorganic perovskite compound, and the barrier layer seals at least the photoelectric conversion layer and seals the entire side surface of the organic insulating layer. It is a flexible solar cell.
  • the present invention is described in detail below.
  • the present inventors examined the cause of poor durability when a photoelectric conversion layer containing an organic / inorganic perovskite compound was used in a flexible solar cell. It was found that the cause was deterioration.
  • FIG. 1 shows a cross-sectional view of a flexible solar cell using a conventional organic / inorganic perovskite compound.
  • a conventional flexible solar cell an organic insulating layer 12, an electrode 13, a photoelectric conversion layer (hereinafter simply referred to as a photoelectric conversion layer) 14, a counter electrode 15, and an organic insulating layer 12, an electrode 13, and an organic inorganic perovskite compound.
  • Barrier layers 16 are laminated in this order.
  • the electrode 13, the photoelectric conversion layer 14, and the counter electrode 15 are patterned by mask vapor deposition or laser, and a stacked body of the electrode 13, the photoelectric conversion layer 14, and the counter electrode 15 partitioned by patterning becomes each cell of the solar battery. Yes.
  • Each cell is connected in series by connecting the counter electrode 15 to the electrode 13 of the adjacent cell. At both ends of the cell, that is, at both ends of the electrode 13, extraction electrodes 17 for extracting current generated from the cell are provided. It is connected.
  • the organic / inorganic perovskite compound contained in the photoelectric conversion layer 14 is very sensitive to moisture. Therefore, the organic inorganic perovskite compound is protected by the barrier layer 16 in order to prevent deterioration due to moisture in the atmosphere, so that it does not come into contact with the atmosphere. It has become.
  • the photoelectric conversion layer 14 is in contact with the organic insulating layer 12 formed to insulate between the flexible base material 11 and the electrode 13, and the organic insulating layer 12 has a property of easily absorbing moisture.
  • the organic insulating layer 12 is exposed to the atmosphere on the side surface of the flexible solar cell, moisture enters the flexible solar cell from there, and the organic insulating layer 12 and the photoelectric conversion layer 14 As a result, the organic / inorganic perovskite compound was deteriorated.
  • the present inventors do not form a barrier layer up to the side surface of the flexible solar cell by adopting a structure in which the end portion of the organic insulating layer is positioned inside the end portion of the flexible base material. In both cases, it was found that the side surface of the organic insulating layer can be protected and that moisture in the atmosphere can be prevented from entering, and the present invention has been completed.
  • a flexible substrate hereinafter also simply referred to as “substrate”
  • organic insulating layer hereinafter also simply referred to as “substrate”
  • electrode an electrode
  • photoelectric conversion layer The counter electrode and the barrier layer are laminated in this order.
  • layer means not only a layer having a clear boundary but also a layer having a concentration gradient in which the contained elements gradually change.
  • the elemental analysis of the layer can be performed, for example, by performing FE-TEM / EDS line analysis measurement of the cross section of the solar cell and confirming the element distribution of the specific element.
  • a layer means not only a flat thin film-like layer but also a layer that can form a complicated and complicated structure together with other layers.
  • FIG. 2 shows a cross-sectional view of an example of the solar cell of the present invention.
  • an organic insulating layer 32 is formed on a substrate 31 made of a metal foil.
  • an electrode 33 On the organic insulating layer 32, an electrode 33, a photoelectric conversion layer (hereinafter simply referred to as a photoelectric conversion layer) 34 containing an organic / inorganic perovskite compound, and a counter electrode 35 are stacked in the same structure as a conventional solar cell.
  • a barrier layer 36 is laminated on the counter electrode 35 so as to seal the lower layer.
  • the barrier layer 36 is formed so as to cover the entire side surface of the organic insulating layer 32, and the entire side surface of the organic insulating layer 32 is formed. Is sealed.
  • extraction electrodes 37 are connected to both ends of the electrode 33.
  • FIG. 3 sectional drawing of another example of the solar cell of this invention is shown here in FIG.
  • the organic insulating layer 22 is formed on the inner side of the end portion of the base material 21 made of metal foil on the base material 21 made of metal foil.
  • an electrode 23, a photoelectric conversion layer 24, and a counter electrode 25 are stacked with the same structure as a conventional solar cell.
  • a barrier layer 26 is laminated on the counter electrode 25 so as to seal the lower layer.
  • the barrier layer 26 is formed so as to cover the entire side surface of the organic insulating layer 22, and the entire side surface of the organic insulating layer 22 is covered. Is sealed.
  • extraction electrodes 27 are connected to both ends of the electrode 23.
  • the barrier layer seals at least the photoelectric conversion layer and seals the entire side surface of the organic insulating layer.
  • the barrier layers 36 and 26 seal at least the photoelectric conversion layers 34 and 24 and seal the entire side surfaces of the organic insulating layers 32 and 22. Therefore, the moisture in the atmosphere does not enter the organic insulating layers 32 and 22, and the deterioration of the photoelectric conversion layers 34 and 24 can be prevented.
  • the barrier layer only needs to seal at least the photoelectric conversion layer and the entire side surface of the organic insulating layer.
  • the electrode, the counter electrode, an electron transport layer and a hole transport layer described later are used. Etc. may be further sealed.
  • the phrase “sealed” by the barrier layer means that the barrier layer covers the entire object so as to close its end.
  • the edge part of the said organic insulating layer may be located inside the edge part of the said base material.
  • the organic insulating layer 22 is located on the inner side from the end portions of the base material 21 (both ends of the base material 21). It may be formed so as to protrude. As a result, when the barrier layer 26 is formed, the side surfaces of the organic insulating layer 22 can be easily sealed, so that moisture in the atmosphere does not enter the organic insulating layer 22 and prevents deterioration of the photoelectric conversion layer 24. it can.
  • the organic insulating layer may be formed up to the end of the base material. Even in this case, as shown in FIG. 2 as an example, if the barrier layer 36 wraps around the side surface of the organic insulating layer 32 and seals it, moisture in the atmosphere can enter the organic insulating layer 32. The deterioration of the photoelectric conversion layer 34 can be prevented.
  • the distance between the end portion of the organic insulating layer and the end portion of the base material is preferably 0.5 mm or more, and more preferably 1 mm or more.
  • the organic insulating layer can be reliably sealed to the side surface by the barrier layer.
  • the upper limit of the distance between the edge part of the said base material and the edge part of the said organic insulating layer is not specifically limited, From the viewpoint of the running cost after solar cell installation, 10 mm or less is preferable.
  • the distance between the end portion of the organic insulating layer and the end portion of the base material can be measured by microscopic observation.
  • the barrier layer preferably has an opening for connecting the extraction electrode to the electrode.
  • the opening for connecting the extraction electrode can be formed by a method of forming a barrier layer by mask vapor deposition or a method of cutting with a laser or the like after forming the barrier layer.
  • the said base material consists of metal foil.
  • the cost can be reduced as compared with the case of using a heat-resistant polymer, and high-temperature treatment can be performed.
  • metal foil metals, such as aluminum, titanium, copper, gold
  • the thickness of the said base material is not specifically limited, A preferable minimum is 5 micrometers and a preferable upper limit is 500 micrometers.
  • a preferable minimum is 5 micrometers and a preferable upper limit is 500 micrometers.
  • the thickness of the substrate is 5 ⁇ m or more, a solar cell having sufficient mechanical strength and excellent handleability can be obtained.
  • the thickness of the substrate is 500 ⁇ m or less, a solar cell having excellent flexibility can be obtained.
  • a more preferable lower limit of the thickness of the substrate is 10 ⁇ m, and a more preferable upper limit is 100 ⁇ m.
  • the organic insulating layer has a role of insulating between the base material and the electrode.
  • a polyimide resin, a silicone resin, a fluororesin etc. are mentioned, for example. Among them, it is preferable to use a polyimide resin because of its excellent insulating properties.
  • the preferable lower limit of the thickness of the organic insulating layer is 0.1 ⁇ m, and the preferable upper limit is 10 ⁇ m.
  • the thickness of the organic insulating layer is 0.1 ⁇ m or more, the base material and the electrode can be reliably insulated.
  • the thickness of the organic insulating layer is 10 ⁇ m or less, a solar cell having excellent flexibility can be obtained.
  • a more preferable lower limit of the thickness of the organic insulating layer is 1 ⁇ m, and a more preferable upper limit is 7 ⁇ m.
  • the material of the said electrode and the said counter electrode is not specifically limited, A conventionally well-known material can be used.
  • the electrode and the counter electrode are often patterned electrodes.
  • the material for the electrode and the counter electrode include FTO (fluorine-doped tin oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / lithium Al 2 O 3 mixture, Al / LiF mixture, metal such as gold, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), GZO (gallium zinc oxide) Conductive transparent materials, conductive transparent polymers, and the like. These materials may be used alone or in combination of two or more. Further, either the electrode or the counter electrode may be a cathode or an anode.
  • the photoelectric conversion layer contains an organic / inorganic perovskite compound. Note that the photoelectric conversion layer is often a patterned layer. By using the organic-inorganic perovskite compound for the photoelectric conversion layer, the photoelectric conversion efficiency of the solar cell can be improved.
  • the organic / inorganic perovskite compound is an organic / inorganic perovskite compound represented by the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom). Is preferred.
  • the R is an organic molecule, and is preferably represented by C 1 N m H n (l, m, and n are all positive integers). Specifically, R is, for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropyl.
  • ions e.g., 3 NH 3
  • methylamine, ethylamine, propylamine, propylcarboxyamine, butylcarboxyamine, pentylcarboxyamine, formamidinium, guanidine and their ions are preferred, and methylamine, ethylamine, pentylcarboxyamine, formamidinium, guanidine and These ions are more preferred. Among them, methylamine, formamidinium, and these ions are more preferable because high photoelectric conversion efficiency can be obtained.
  • M is a metal atom, for example, lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, Europium etc. are mentioned.
  • lead or tin is preferable from the viewpoint of overlapping of electron orbits.
  • These metal atoms may be used independently and 2 or more types may be used together.
  • X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, and selenium. These halogen atoms or chalcogen atoms may be used alone or in combination of two or more. Among these, the halogen atom is preferable because the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method by containing halogen in the structure. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
  • the organic / inorganic perovskite compound preferably has a cubic structure in which a metal atom M is disposed at the body center, an organic molecule R is disposed at each vertex, and a halogen atom or a chalcogen atom X is disposed at the face center.
  • FIG. 4 shows an example of a crystal structure of an organic / inorganic perovskite compound having a cubic structure in which a metal atom M is arranged at the body center, an organic molecule R is arranged at each vertex, and a halogen atom or a chalcogen atom X is arranged at the face center. It is a schematic diagram.
  • the organic / inorganic perovskite compound is preferably a crystalline semiconductor.
  • the crystalline semiconductor means a semiconductor capable of measuring the X-ray scattering intensity distribution and detecting a scattering peak. If the organic / inorganic perovskite compound is a crystalline semiconductor, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved. In addition, if the organic / inorganic perovskite compound is a crystalline semiconductor, it is easy to suppress a decrease in photoelectric conversion efficiency (photodegradation) caused by continuing to irradiate light on a solar cell, particularly a photodegradation due to a decrease in short-circuit current. .
  • the degree of crystallization can be evaluated as an index of crystallization.
  • the degree of crystallinity is determined by separating the crystalline-derived scattering peak detected by the X-ray scattering intensity distribution measurement and the halo derived from the amorphous part by fitting, obtaining the respective intensity integrals, Can be obtained by calculating the ratio.
  • a preferable lower limit of the crystallinity of the organic-inorganic perovskite compound is 30%. If the crystallinity is 30% or more, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved.
  • the said crystallinity is 30% or more, it will become easy to suppress the photodegradation resulting from the fall (photodegradation) of photoelectric conversion efficiency by continuing irradiating a solar cell with light, especially the fall of a short circuit current.
  • a more preferred lower limit of the crystallinity is 50%, and a more preferred lower limit is 70%.
  • Examples of a method for increasing the crystallinity of the organic / inorganic perovskite compound include thermal annealing (heat treatment), irradiation with intense light such as a laser, and plasma irradiation.
  • the crystallite diameter can also be evaluated as another crystallization index.
  • the crystallite diameter can be calculated by the holder-Wagner method from the half width of the scattering peak derived from the crystal detected by the X-ray scattering intensity distribution measurement.
  • the crystallite diameter of the organic / inorganic perovskite compound is 5 nm or more, a decrease in photoelectric conversion efficiency (photodegradation) caused by continuing to irradiate light to the solar cell, particularly a photodegradation due to a decrease in short-circuit current is suppressed. . Further, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved.
  • a preferable lower limit of the crystallite diameter is 10 nm, and a more preferable lower limit is 20 nm.
  • the photoelectric conversion layer may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic / inorganic perovskite compound as long as the effects of the present invention are not impaired.
  • the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • conductive polymers having a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given.
  • compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, etc.
  • carbon-containing materials such as carbon nanotubes, graphene, and fullerene that may be surface-modified Also mentioned.
  • the inorganic semiconductor examples include titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI, MoO 3 , V 2 O 5 , WO 3 , MoS 2, MoSe 2, Cu 2 S , and the like.
  • the photoelectric conversion layer includes the organic-inorganic perovskite compound and the organic semiconductor or the inorganic semiconductor
  • the photoelectric conversion layer is a laminated body in which a thin-film organic semiconductor or an inorganic semiconductor portion and a thin-film organic-inorganic perovskite compound portion are stacked.
  • a composite film in which an organic semiconductor or inorganic semiconductor part and an organic / inorganic perovskite compound part are combined may be used.
  • a laminated body is preferable in that the production method is simple, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
  • the preferable lower limit of the thickness of the thin-film organic / inorganic perovskite compound site is 5 nm, and the preferable upper limit is 5000 nm. If the thickness is 5 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 5000 nm or less, since it can suppress that the area
  • the more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 500 nm.
  • a preferable lower limit of the thickness of the composite film is 30 nm, and a preferable upper limit is 3000 nm. If the thickness is 30 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 3000 nm or less, since it becomes easy to reach
  • the more preferable lower limit of the thickness is 40 nm, the more preferable upper limit is 2000 nm, the still more preferable lower limit is 50 nm, and the still more preferable upper limit is 1000 nm.
  • the photoelectric conversion layer is preferably subjected to thermal annealing (heat treatment) after the photoelectric conversion layer is formed.
  • thermal annealing heat treatment
  • the degree of crystallinity of the organic-inorganic perovskite compound in the photoelectric conversion layer can be sufficiently increased, and the decrease in photoelectric conversion efficiency (photodegradation) due to continued irradiation with light is further increased. Can be suppressed.
  • the temperature for heating the photoelectric conversion layer is not particularly limited, but is preferably 100 ° C. or higher and lower than 200 ° C.
  • the heating temperature is 100 ° C. or higher, the crystallinity of the organic / inorganic perovskite compound can be sufficiently increased. If the said heating temperature is less than 200 degreeC, it can heat-process, without thermally degrading the said organic-inorganic perovskite compound.
  • a more preferable heating temperature is 120 ° C. or higher and 170 ° C. or lower.
  • the heating time is not particularly limited, but is preferably 3 minutes or longer and 2 hours or shorter.
  • the heating time is 3 minutes or longer, the crystallinity of the organic-inorganic perovskite compound can be sufficiently increased. If the heating time is within 2 hours, the organic inorganic perovskite compound can be heat-treated without causing thermal degradation.
  • These heating operations are preferably performed in a vacuum or under an inert gas, and the dew point temperature is preferably 10 ° C or lower, more preferably 7.5 ° C or lower, and further preferably 5 ° C or lower.
  • the solar cell of this invention may have an electron carrying layer between the electrode used as a cathode, and the said photoelectric converting layer.
  • the electron transport layer is often a patterned layer.
  • the material of the electron transport layer is not particularly limited. For example, N-type conductive polymer, N-type low molecular organic semiconductor, N-type metal oxide, N-type metal sulfide, alkali metal halide, alkali metal, surface activity Agents and the like.
  • examples include compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
  • the electron transport layer may consist of only a thin film electron transport layer (buffer layer), but preferably includes a porous electron transport layer.
  • the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor site and an organic / inorganic perovskite compound are combined, a more complex composite film (a more complicated structure) is obtained, and the photoelectric conversion efficiency is improved.
  • the composite film is formed on the porous electron transport layer.
  • the preferable lower limit of the thickness of the electron transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, holes can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of electron transport, and photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • the solar cell of this invention may have a hole transport layer between the said photoelectric converting layer and the electrode used as an anode.
  • the hole transport layer is often a patterned layer.
  • the material for the hole transport layer is not particularly limited, and examples thereof include a P-type conductive polymer, a P-type low molecular organic semiconductor, a P-type metal oxide, a P-type metal sulfide, and a surfactant. Specific examples include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • conductive polymers having a triphenylamine skeleton, a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given.
  • compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, and a benzoporphyrin skeleton, a spirobifluorene skeleton, and the like can be given.
  • molybdenum oxide, vanadium oxide, tungsten oxide, nickel oxide, copper oxide, tin oxide, molybdenum sulfide, tungsten sulfide, copper sulfide, tin sulfide, etc. fluoro group-containing phosphonic acid, carbonyl group-containing phosphonic acid, CuSCN, CuI And carbon-containing materials such as carbon nanotubes, graphene and the like.
  • a part of the hole transport layer may be immersed in the photoelectric conversion layer (a structure complicated with the photoelectric conversion layer may be formed) or arranged in a thin film on the photoelectric conversion layer. May be.
  • the thickness when the hole transport layer is in the form of a thin film has a preferred lower limit of 1 nm and a preferred upper limit of 2000 nm. If the thickness is 1 nm or more, electrons can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of hole transport, and a photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • the barrier layer serves to protect the solar cell from external moisture and substances.
  • the barrier layer is preferably an inorganic material because it has a high water vapor barrier property and can make the barrier layer thin.
  • the inorganic material include Si, Al, Zn, Sn, In, Ti, Mg, Zr, Ni, Ta, W, Cu, or an oxide, nitride, or oxynitride of an alloy containing two or more of these. .
  • oxides, nitrides, or oxynitrides of metal elements including both metal elements of Zn and Sn are preferable.
  • the barrier layer has a preferable lower limit of 30 nm and a preferable upper limit of 3000 nm. If the said thickness is 30 nm or more, the said barrier layer can have sufficient water vapor
  • the more preferable lower limit of the thickness is 50 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 100 nm, and the still more preferable upper limit is 500 nm.
  • the thickness of the barrier layer can be measured using an optical interference film thickness measuring device (for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd.).
  • a vacuum deposition method As a method for forming the barrier layer, a vacuum deposition method, a sputtering method, a gas phase reaction method (CVD), or an ion plating method is preferable.
  • the sputtering method is preferable for forming a dense layer, and the DC magnetron sputtering method is more preferable among the sputtering methods.
  • a barrier layer made of an inorganic material can be formed by using a metal target and oxygen gas or nitrogen gas as raw materials and depositing the raw material on the counter electrode to form a film.
  • the end of the organic insulating layer is not covered with a mask, and the width is smaller than the width of the organic insulating layer. It is preferable to form a film using a sputtering target. Thereby, even if the said organic insulating layer is formed to the edge part of the said base material, the said barrier layer can wrap around to the side surface of the said organic insulating layer, and can be sealed. Furthermore, it is preferable that the pressure during film formation is higher than 0.5 Pa. As a result, the mean free path of the sputtered particles is shortened and the straightness is lowered, so that the sealing property of the side surface of the organic insulating layer is further improved. Moreover, in order to form the said barrier layer so that the whole side surface of the said organic insulating layer may be sealed, it is also preferable to locate the edge part of the said organic insulating layer inside the edge part of the said base material.
  • the barrier layer may be covered with another material such as a resin film, a resin film coated with an inorganic material, or a metal foil. That is, the solar cell of the present invention may be configured such that the space between the counter electrode and the other material is sealed, filled, or adhered by the barrier layer. Thereby, even if there is a pinhole in the barrier layer, water vapor can be sufficiently blocked, and the durability of the solar cell can be further improved.
  • the method for producing the solar cell of the present invention is not particularly limited.
  • the organic insulating layer, the electrode, the photoelectric conversion layer, the counter electrode, and the barrier layer are laminated on the substrate by the above method. Methods and the like.
  • a method of forming each layer after covering the predetermined position using a mask, or wiping the predetermined position after forming each layer A method of cutting with a laser or the like can be used.
  • Example 1 Manufacture of flexible solar cells for testing
  • An organic insulating layer made of polyimide resin (UV-S, manufactured by Ube Industries) with a thickness of 3 ⁇ m is formed on the surface of an aluminum foil with a thickness of 100 ⁇ m by spin coating after covering the edges of the aluminum foil with a mask. did. Thereby, the position of the edge part of an organic insulating layer was made into 2 mm inside from the edge part of aluminum foil. The mask was removed after forming the organic insulating layer.
  • UV-S polyimide resin
  • an aluminum film having a thickness of 200 nm was formed as a cathode at a predetermined position on the organic insulating layer using a mask.
  • the mask was removed after forming the cathode.
  • a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (a mixture of average particle diameters of 10 nm and 30 nm) is applied on the cathode by a spin coating method.
  • the titanium oxide paste was wiped off so that the part was exposed and dried at 150 ° C. for 10 minutes.
  • HLR100T-2 high-pressure mercury lamp
  • a high-pressure mercury lamp HLR100T-2, manufactured by Sen Special Light Source Co., Ltd.
  • ultraviolet rays were irradiated for 15 minutes at an irradiation intensity of 500 mW / cm 2 to form a porous electron transport layer made of titanium oxide having a thickness of 200 nm.
  • lead iodide as a metal halide compound was dissolved in N, N-dimethylformamide (DMF) to prepare a 1M solution, and a film was formed on the porous electron transport layer by a spin coating method.
  • methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare a 1M solution.
  • a layer containing CH 3 NH 3 PbI 3 which is an organic / inorganic perovskite compound is formed by immersing the sample in which the above lead iodide is formed in this solution, and the end of the aluminum foil and a part of the cathode are exposed. The layer containing the organic / inorganic perovskite compound was wiped off. Thereafter, the obtained sample was annealed at 120 ° C. for 30 minutes.
  • a 2% by weight chlorobenzene solution of Poly (4-butylphenyl-diphenyl-amine) (manufactured by 1-Material) was laminated to a thickness of 100 nm by spin coating on the organic / inorganic perovskite compound portion of the annealed photoelectric conversion layer.
  • a hole transport layer was formed.
  • the hole transport layer was wiped off so that the end of the aluminum foil and a part of the cathode were exposed.
  • an anode having a thickness of 1000 nm made of ITO was formed by electron beam evaporation at a predetermined position on the hole transport layer using a mask. After forming the anode, the mask was removed.
  • a portion connecting the cathode and the anode extraction electrode was covered with a mask, and a barrier layer made of ZnSnO of 100 nm was formed by sputtering to cover the entire surface of the aluminum foil and the entire side surface of the organic insulating layer. Thereafter, the mask was removed to obtain a test flexible solar cell.
  • Example 2 A test flexible solar cell was obtained in the same manner as in Example 1 except that the type of the organic insulating layer, the type of the barrier layer, and the distance between the edge of the base material and the edge of the organic insulating layer were changed as shown in Table 1. It was.
  • PTFE fluororesin
  • CTL-107MK manufactured by Asahi Glass Co., Ltd.
  • silicone resin KR255 manufactured by Shin-Etsu Silicone Co., Ltd. was used.
  • Comparative Example 1 The organic insulating layer was formed up to the end of the aluminum foil, and the barrier layer was not formed to the side of the organic insulating layer by forming a barrier layer after applying a mask to the end of the organic insulating layer. In the same manner as in Example 1, a test flexible solar cell was manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a flexible solar cell that has excellent durability, even when having a photoelectric conversion layer containing an organic/inorganic perovskite compound. The present invention is a flexible solar cell obtained by at least stacking a flexible substrate (31), an organic insulation layer (32), an electrode (33), a photoelectric conversion layer (34), an opposing electrode (35), and a barrier layer (36) in order, respectively, wherein the flexible substrate (31) is made from metal foil, the photoelectric conversion layer (34) contains an organic/inorganic perovskite compound, and the barrier layer (36) seals at least the photoelectric conversion layer (34) and seals the entirety of the side surface of the organic insulation layer (32).

Description

フレキシブル太陽電池Flexible solar cell
本発明は、有機無機ペロブスカイト化合物を含む光電変換層を有する場合であっても、耐久性に優れるフレキシブル太陽電池に関する。 The present invention relates to a flexible solar cell having excellent durability even when it has a photoelectric conversion layer containing an organic / inorganic perovskite compound.
従来、太陽電池の光電変換素子として、対向する電極間にN型半導体層とP型半導体層とを配置した積層体が盛んに開発されており、上記N型、P型半導体として主にシリコン等の無機半導体が用いられている。しかしながら、このような無機太陽電池は、製造にコストがかかるうえ大型化が困難であり、利用範囲が限られてしまうという問題があった。そこで、近年、有機無機ペロブスカイト化合物を光電変換層に用いたペロブスカイト太陽電池が注目されている。ペロブスカイト太陽電池は、高い光電変換効率が期待できるうえに、印刷法によって製造できることから製造コストを大幅に削減することができる。 Conventionally, as a photoelectric conversion element of a solar cell, a laminated body in which an N-type semiconductor layer and a P-type semiconductor layer are arranged between opposing electrodes has been actively developed, and silicon or the like is mainly used as the N-type or P-type semiconductor. Inorganic semiconductors are used. However, such inorganic solar cells are expensive to manufacture and difficult to increase in size, and have a problem in that the range of use is limited. Therefore, in recent years, perovskite solar cells using organic / inorganic perovskite compounds for photoelectric conversion layers have attracted attention. Perovskite solar cells can be expected to have high photoelectric conversion efficiency and can be manufactured by a printing method, so that manufacturing costs can be greatly reduced.
一方、近年太陽電池の基材として、ポリイミド、ポリエステル系の耐熱高分子材料や金属箔を基材とするフレキシブルな太陽電池が注目されるようになってきている。フレキシブル太陽電池は、薄型化や軽量化による運搬、施工の容易さや、衝撃に強い等の利点がある。 On the other hand, in recent years, flexible solar cells using polyimide, polyester-based heat-resistant polymer materials or metal foils as a base material for solar cells have attracted attention. A flexible solar cell has advantages such as ease of transportation and construction due to reduction in thickness and weight, and resistance to impact.
フレキシブル太陽電池は、フレキシブル基材上に、光が照射されると電流を生じる機能を有する光電変換層等を薄膜状に積層することにより製造される。更に、必要に応じて太陽電池素子の上下面を、太陽電池封止シートを積層して封止する(例えば、特許文献1等)。
しかしながら、このようなフレキシブル太陽電池に有機無機ペロブスカイト化合物を含む光電変換層を用いた場合、耐久性に劣るという問題があった。
A flexible solar cell is manufactured by laminating a photoelectric conversion layer or the like having a function of generating a current when irradiated with light on a flexible substrate in a thin film shape. Furthermore, if necessary, the upper and lower surfaces of the solar cell element are sealed by laminating a solar cell sealing sheet (for example, Patent Document 1).
However, when a photoelectric conversion layer containing an organic / inorganic perovskite compound is used in such a flexible solar cell, there is a problem that durability is poor.
国際公開第2012/046564号International Publication No. 2012/046564
本発明は、上記現状に鑑み、有機無機ペロブスカイト化合物を含む光電変換層を有する場合であっても、耐久性に優れるフレキシブル太陽電池を提供することを目的とする。 An object of this invention is to provide the flexible solar cell which is excellent in durability, even if it has a photoelectric converting layer containing an organic inorganic perovskite compound in view of the said present condition.
本発明は、少なくとも、フレキシブル基材と、有機絶縁層と、電極と、光電変換層と、対向電極と、バリア層とがこの順番に積層されたフレキシブル太陽電池であって、前記フレキシブル基材は金属箔からなり、前記光電変換層は、有機無機ペロブスカイト化合物を含んでおり、前記バリア層は、少なくとも前記光電変換層を封止し、かつ、前記有機絶縁層の側面全体を封止しているフレキシブル太陽電池である。
以下に本発明を詳述する。
The present invention is a flexible solar cell in which at least a flexible base material, an organic insulating layer, an electrode, a photoelectric conversion layer, a counter electrode, and a barrier layer are laminated in this order, and the flexible base material is It consists of metal foil, the photoelectric conversion layer contains an organic inorganic perovskite compound, and the barrier layer seals at least the photoelectric conversion layer and seals the entire side surface of the organic insulating layer. It is a flexible solar cell.
The present invention is described in detail below.
本発明者らは、フレキシブル太陽電池に有機無機ペロブスカイト化合物を含む光電変換層を用いた場合に耐久性が劣る原因を検討したところ、大気中の水分が有機絶縁層を透過して光電変換層を劣化させることが原因であることを見出した。 The present inventors examined the cause of poor durability when a photoelectric conversion layer containing an organic / inorganic perovskite compound was used in a flexible solar cell. It was found that the cause was deterioration.
図1に従来の有機無機ペロブスカイト化合物を用いたフレキシブル太陽電池の断面図を示した。従来のフレキシブル太陽電池では、金属箔からなるフレキシブル基材11の上に有機絶縁層12、電極13、有機無機ペロブスカイト化合物を含む光電変換層(以下単に光電変換層という。)14、対向電極15、バリア層16がこの順番で積層している。電極13、光電変換層14、対向電極15はマスク蒸着やレーザーによってパターニングされており、パターニングにより区切られた電極13、光電変換層14、対向電極15の積層体が太陽電池の各セルとなっている。各セルは対向電極15が隣のセルの電極13と接続することで直列につながっており、セルの両端、つまり電極13の両端部には、セルから生じた電流を取り出すための取り出し電極17が接続されている。
このようなフレキシブル太陽電池において、光電変換層14に含まれる有機無機ペロブスカイト化合物は水分に非常に弱いため、大気中の水分による劣化を防ぐためにバリア層16によって保護されており、大気と接触しないようになっている。しかし、光電変換層14は、フレキシブル基材11と電極13の間を絶縁するために形成される有機絶縁層12と接しており、この有機絶縁層12が水分を吸収しやすい性質をもっている。そして、従来のフレキシブル太陽電池では、有機絶縁層12がフレキシブル太陽電池の側面で大気に露出しているため、そこから水分がフレキシブル太陽電池の内部に侵入し、有機絶縁層12と光電変換層14との界面まで達することで、有機無機ペロブスカイト化合物を劣化させていた。
FIG. 1 shows a cross-sectional view of a flexible solar cell using a conventional organic / inorganic perovskite compound. In a conventional flexible solar cell, an organic insulating layer 12, an electrode 13, a photoelectric conversion layer (hereinafter simply referred to as a photoelectric conversion layer) 14, a counter electrode 15, and an organic insulating layer 12, an electrode 13, and an organic inorganic perovskite compound. Barrier layers 16 are laminated in this order. The electrode 13, the photoelectric conversion layer 14, and the counter electrode 15 are patterned by mask vapor deposition or laser, and a stacked body of the electrode 13, the photoelectric conversion layer 14, and the counter electrode 15 partitioned by patterning becomes each cell of the solar battery. Yes. Each cell is connected in series by connecting the counter electrode 15 to the electrode 13 of the adjacent cell. At both ends of the cell, that is, at both ends of the electrode 13, extraction electrodes 17 for extracting current generated from the cell are provided. It is connected.
In such a flexible solar cell, the organic / inorganic perovskite compound contained in the photoelectric conversion layer 14 is very sensitive to moisture. Therefore, the organic inorganic perovskite compound is protected by the barrier layer 16 in order to prevent deterioration due to moisture in the atmosphere, so that it does not come into contact with the atmosphere. It has become. However, the photoelectric conversion layer 14 is in contact with the organic insulating layer 12 formed to insulate between the flexible base material 11 and the electrode 13, and the organic insulating layer 12 has a property of easily absorbing moisture. And in the conventional flexible solar cell, since the organic insulating layer 12 is exposed to the atmosphere on the side surface of the flexible solar cell, moisture enters the flexible solar cell from there, and the organic insulating layer 12 and the photoelectric conversion layer 14 As a result, the organic / inorganic perovskite compound was deteriorated.
有機絶縁層からの水分の侵入を防ぐ方法としては、有機絶縁層の側面までバリア層を形成することが考えられたが、電極の両端部に取り出し電極を接続する必要があるため、製造工程の容易さの観点から、従来のフレキシブル太陽電池では取り出し電極の内側の範囲内でバリア層を形成することが通常であった。
これに対して、本発明者らは、有機絶縁層の側面まで敢えてバリア層で保護することにより、大気中の水分の侵入を防ぐことができることを見出した。なかでも、本発明者らは更に検討した結果、有機絶縁層の端部がフレキシブル基材の端部よりも内側に位置する構造とすることで、フレキシブル太陽電池の側面までバリア層を形成しなくとも有機絶縁層の側面を保護することができ、大気中の水分の侵入を防ぐことができることを見出し、本発明を完成させるに至った。
As a method for preventing moisture from entering from the organic insulating layer, it was considered to form a barrier layer up to the side surface of the organic insulating layer. However, since it is necessary to connect the electrodes to both ends of the electrode, From the viewpoint of easiness, in the conventional flexible solar cell, it is usual to form the barrier layer within the range inside the extraction electrode.
On the other hand, the present inventors have found that the penetration of moisture in the atmosphere can be prevented by intentionally protecting the side surface of the organic insulating layer with a barrier layer. Among others, as a result of further investigations, the present inventors do not form a barrier layer up to the side surface of the flexible solar cell by adopting a structure in which the end portion of the organic insulating layer is positioned inside the end portion of the flexible base material. In both cases, it was found that the side surface of the organic insulating layer can be protected and that moisture in the atmosphere can be prevented from entering, and the present invention has been completed.
本発明のフレキシブル太陽電池(以下、単に「太陽電池」ともいう。)では、少なくとも、フレキシブル基材(以下、単に「基材」ともいう。)と、有機絶縁層と、電極と、光電変換層と、対向電極と、バリア層とがこの順番に積層している。
なお、本明細書中、「層」とは、明確な境界を有する層だけではなく、含有元素が徐々に変化する濃度勾配のある層をも意味する。なお、層の元素分析は、例えば、太陽電池の断面のFE-TEM/EDS線分析測定を行い、特定元素の元素分布を確認する等によって行うことができる。また、本明細書中、層とは、平坦な薄膜状の層だけではなく、他の層と一緒になって複雑に入り組んだ構造を形成しうる層をも意味する。
In the flexible solar cell of the present invention (hereinafter also simply referred to as “solar cell”), at least a flexible substrate (hereinafter also simply referred to as “substrate”), an organic insulating layer, an electrode, and a photoelectric conversion layer. The counter electrode and the barrier layer are laminated in this order.
In the present specification, “layer” means not only a layer having a clear boundary but also a layer having a concentration gradient in which the contained elements gradually change. The elemental analysis of the layer can be performed, for example, by performing FE-TEM / EDS line analysis measurement of the cross section of the solar cell and confirming the element distribution of the specific element. In addition, in this specification, a layer means not only a flat thin film-like layer but also a layer that can form a complicated and complicated structure together with other layers.
ここで本発明の太陽電池の一例の断面図を図2に示す。図2に示す本発明の太陽電池は、金属箔からなる基材31の上に有機絶縁層32が形成されている。有機絶縁層32の上には電極33、有機無機ペロブスカイト化合物を含む光電変換層(以下単に光電変換層という。)34、対向電極35が従来の太陽電池と同様の構造で積層している。対向電極35の上にはバリア層36が下部の層を封止するように積層されており、バリア層36は有機絶縁層32の側面全体を覆うように形成され、有機絶縁層32の側面全体を封止している。また、電極33の両端部には取り出し電極37が接続されている。 Here, FIG. 2 shows a cross-sectional view of an example of the solar cell of the present invention. In the solar cell of the present invention shown in FIG. 2, an organic insulating layer 32 is formed on a substrate 31 made of a metal foil. On the organic insulating layer 32, an electrode 33, a photoelectric conversion layer (hereinafter simply referred to as a photoelectric conversion layer) 34 containing an organic / inorganic perovskite compound, and a counter electrode 35 are stacked in the same structure as a conventional solar cell. A barrier layer 36 is laminated on the counter electrode 35 so as to seal the lower layer. The barrier layer 36 is formed so as to cover the entire side surface of the organic insulating layer 32, and the entire side surface of the organic insulating layer 32 is formed. Is sealed. In addition, extraction electrodes 37 are connected to both ends of the electrode 33.
更にここで本発明の太陽電池の別の一例の断面図を図3に示す。図3に示す本発明の太陽電池は、金属箔からなる基材21の上に有機絶縁層22が金属箔からなる基材21の端部よりも内側に形成されている。有機絶縁層22の上には電極23、光電変換層24、対向電極25が従来の太陽電池と同様の構造で積層している。対向電極25の上にはバリア層26が下部の層を封止するように積層されており、バリア層26は有機絶縁層22の側面全体を覆うように形成され、有機絶縁層22の側面全体を封止している。また、電極23の両端部には取り出し電極27が接続されている。 Furthermore, sectional drawing of another example of the solar cell of this invention is shown here in FIG. In the solar cell of the present invention shown in FIG. 3, the organic insulating layer 22 is formed on the inner side of the end portion of the base material 21 made of metal foil on the base material 21 made of metal foil. On the organic insulating layer 22, an electrode 23, a photoelectric conversion layer 24, and a counter electrode 25 are stacked with the same structure as a conventional solar cell. A barrier layer 26 is laminated on the counter electrode 25 so as to seal the lower layer. The barrier layer 26 is formed so as to cover the entire side surface of the organic insulating layer 22, and the entire side surface of the organic insulating layer 22 is covered. Is sealed. In addition, extraction electrodes 27 are connected to both ends of the electrode 23.
本発明の太陽電池では、上記バリア層は、少なくとも上記光電変換層を封止し、かつ、上記有機絶縁層の側面全体を封止している。
本発明の太陽電池では、図2及び図3に一例として示すように、バリア層36、26が少なくとも光電変換層34、24を封止し、かつ、有機絶縁層32、22の側面全体を封止しているため、大気中の水分が有機絶縁層32、22へ侵入することがなく、光電変換層34、24の劣化を防止できる。
上記バリア層は、少なくとも上記光電変換層を封止し、かつ、上記有機絶縁層の側面全体を封止していればよいが、上記電極、上記対向電極、後述する電子輸送層及びホール輸送層等を更に封止していてもよい。なお、本明細書中、バリア層が「封止している」とは、バリア層がその端部を閉じるようにして対象物全体を覆っていることを意味する。
In the solar cell of the present invention, the barrier layer seals at least the photoelectric conversion layer and seals the entire side surface of the organic insulating layer.
In the solar cell of the present invention, as shown in FIG. 2 and FIG. 3 as an example, the barrier layers 36 and 26 seal at least the photoelectric conversion layers 34 and 24 and seal the entire side surfaces of the organic insulating layers 32 and 22. Therefore, the moisture in the atmosphere does not enter the organic insulating layers 32 and 22, and the deterioration of the photoelectric conversion layers 34 and 24 can be prevented.
The barrier layer only needs to seal at least the photoelectric conversion layer and the entire side surface of the organic insulating layer. However, the electrode, the counter electrode, an electron transport layer and a hole transport layer described later are used. Etc. may be further sealed. In the present specification, the phrase “sealed” by the barrier layer means that the barrier layer covers the entire object so as to close its end.
上記有機絶縁層の端部は、上記基材の端部よりも内側に位置していてもよい。
本発明の太陽電池では、図3に一例として示すように、有機絶縁層22が基材21の端部(基材21の両端)より内側、つまり、基材21が有機絶縁層22の外周からはみ出すように形成されていてもよい。その結果、バリア層26を形成した際に、有機絶縁層22の側面まで封止しやすくなるため、大気中の水分が有機絶縁層22へ侵入することがなく、光電変換層24の劣化を防止できる。
また、上記有機絶縁層の端部を上記基材の端部よりも内側にすることで、太陽電池の側面までバリア層を形成する必要がないため、高耐久性の太陽電池を低コストで製造することができる。
ただし、上記有機絶縁層は、上記基材の端部まで形成されていてもよい。この場合であっても、図2に一例として示すように、バリア層36が有機絶縁層32の側面まで回り込んで封止していれば、大気中の水分が有機絶縁層32へ侵入することがなく、光電変換層34の劣化を防止できる。
The edge part of the said organic insulating layer may be located inside the edge part of the said base material.
In the solar cell of the present invention, as shown in FIG. 3 as an example, the organic insulating layer 22 is located on the inner side from the end portions of the base material 21 (both ends of the base material 21). It may be formed so as to protrude. As a result, when the barrier layer 26 is formed, the side surfaces of the organic insulating layer 22 can be easily sealed, so that moisture in the atmosphere does not enter the organic insulating layer 22 and prevents deterioration of the photoelectric conversion layer 24. it can.
In addition, by making the end of the organic insulating layer inside the end of the base material, it is not necessary to form a barrier layer up to the side of the solar cell, so a highly durable solar cell is manufactured at low cost. can do.
However, the organic insulating layer may be formed up to the end of the base material. Even in this case, as shown in FIG. 2 as an example, if the barrier layer 36 wraps around the side surface of the organic insulating layer 32 and seals it, moisture in the atmosphere can enter the organic insulating layer 32. The deterioration of the photoelectric conversion layer 34 can be prevented.
上記有機絶縁層の端部と上記基材の端部との距離は、0.5mm以上であることが好ましく、1mm以上であることがより好ましい。上記有機絶縁層の端部が上記基材の端部から1mm以上離れた位置にあることで、バリア層によって上記有機絶縁層を側面まで確実に封止することができる。上記基材の端部と上記有機絶縁層の端部との間の距離の上限は特に限定されないが、太陽電池設置後のランニングコストの観点から10mm以内が好ましい。なお、上記有機絶縁層の端部と上記基材の端部との距離は顕微鏡観察によって測定できる。 The distance between the end portion of the organic insulating layer and the end portion of the base material is preferably 0.5 mm or more, and more preferably 1 mm or more. When the end portion of the organic insulating layer is located 1 mm or more away from the end portion of the base material, the organic insulating layer can be reliably sealed to the side surface by the barrier layer. Although the upper limit of the distance between the edge part of the said base material and the edge part of the said organic insulating layer is not specifically limited, From the viewpoint of the running cost after solar cell installation, 10 mm or less is preferable. The distance between the end portion of the organic insulating layer and the end portion of the base material can be measured by microscopic observation.
上記バリア層は、上記電極に取り出し電極を接続するための開口部を有していることが好ましい。なお、取り出し電極を接続するための開口部は、マスク蒸着によってバリア層を形成する方法や、バリア層を形成した後にレーザー等で削る方法によって形成することができる。 The barrier layer preferably has an opening for connecting the extraction electrode to the electrode. The opening for connecting the extraction electrode can be formed by a method of forming a barrier layer by mask vapor deposition or a method of cutting with a laser or the like after forming the barrier layer.
上記基材は、金属箔からなる。
フレキシブル基材を金属箔とすることで、耐熱性高分子を用いる場合と比べてコストを抑えられるとともに、高温処理を行うことができる。上記金属箔としては、例えば、アルミニウム、チタン、銅、金等の金属や、ステンレス鋼(SUS)等の合金を用いることができる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
The said base material consists of metal foil.
By making the flexible base material a metal foil, the cost can be reduced as compared with the case of using a heat-resistant polymer, and high-temperature treatment can be performed. As said metal foil, metals, such as aluminum, titanium, copper, gold | metal | money, and alloys, such as stainless steel (SUS), can be used, for example. These materials may be used alone or in combination of two or more.
上記基材の厚さは特に限定されないが、好ましい下限は5μm、好ましい上限は500μmである。上記基材の厚さが5μm以上であることで、充分な機械的強度を持つ、取扱い性に優れた太陽電池とすることができる。上記基材の厚さが500μm以下であることで、フレキシブル性に優れた太陽電池とすることができる。上記基材の厚さのより好ましい下限は10μm、より好ましい上限は100μmである。 Although the thickness of the said base material is not specifically limited, A preferable minimum is 5 micrometers and a preferable upper limit is 500 micrometers. When the thickness of the substrate is 5 μm or more, a solar cell having sufficient mechanical strength and excellent handleability can be obtained. When the thickness of the substrate is 500 μm or less, a solar cell having excellent flexibility can be obtained. A more preferable lower limit of the thickness of the substrate is 10 μm, and a more preferable upper limit is 100 μm.
上記有機絶縁層は、上記基材と上記電極との間を絶縁する役割を持つ。
上記有機絶縁層としては、例えば、ポリイミド樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。なかでも、絶縁性が優れていることから、ポリイミド樹脂を用いることが好ましい。
The organic insulating layer has a role of insulating between the base material and the electrode.
As said organic insulating layer, a polyimide resin, a silicone resin, a fluororesin etc. are mentioned, for example. Among them, it is preferable to use a polyimide resin because of its excellent insulating properties.
上記有機絶縁層の厚みの好ましい下限は0.1μm、好ましい上限は10μmである。上記有機絶縁層の厚みが0.1μm以上であることで、上記基材と上記電極とを確実に絶縁することができる。上記有機絶縁層の厚みが10μm以下であることで、フレキシブル性に優れた太陽電池とすることができる。上記有機絶縁層の厚みのより好ましい下限は1μm、より好ましい上限は7μmである。 The preferable lower limit of the thickness of the organic insulating layer is 0.1 μm, and the preferable upper limit is 10 μm. When the thickness of the organic insulating layer is 0.1 μm or more, the base material and the electrode can be reliably insulated. When the thickness of the organic insulating layer is 10 μm or less, a solar cell having excellent flexibility can be obtained. A more preferable lower limit of the thickness of the organic insulating layer is 1 μm, and a more preferable upper limit is 7 μm.
上記電極及び上記対向電極の材料は特に限定されず、従来公知の材料を用いることができる。なお、上記電極及び対向電極は、パターニングされた電極であることが多い。
上記電極及び上記対向電極の材料として、例えば、FTO(フッ素ドープ酸化スズ)、ナトリウム、ナトリウム-カリウム合金、リチウム、マグネシウム、アルミニウム、マグネシウム-銀混合物、マグネシウム-インジウム混合物、アルミニウム-リチウム合金、Al/Al混合物、Al/LiF混合物、金等の金属、CuI、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料、導電性透明ポリマー等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
また、上記電極及び上記対向電極は、どちらが陰極になってもよく、陽極になってもよい。
The material of the said electrode and the said counter electrode is not specifically limited, A conventionally well-known material can be used. The electrode and the counter electrode are often patterned electrodes.
Examples of the material for the electrode and the counter electrode include FTO (fluorine-doped tin oxide), sodium, sodium-potassium alloy, lithium, magnesium, aluminum, magnesium-silver mixture, magnesium-indium mixture, aluminum-lithium alloy, Al / lithium Al 2 O 3 mixture, Al / LiF mixture, metal such as gold, CuI, ITO (indium tin oxide), SnO 2 , AZO (aluminum zinc oxide), IZO (indium zinc oxide), GZO (gallium zinc oxide) Conductive transparent materials, conductive transparent polymers, and the like. These materials may be used alone or in combination of two or more.
Further, either the electrode or the counter electrode may be a cathode or an anode.
上記光電変換層は有機無機ペロブスカイト化合物を含む。なお、上記光電変換層は、パターニングされた層であることが多い。
上記光電変換層に上記有機無機ペロブスカイト化合物を用いることにより、太陽電池の光電変換効率を向上させることができる。上記有機無機ペロブスカイト化合物は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物であることが好ましい。
The photoelectric conversion layer contains an organic / inorganic perovskite compound. Note that the photoelectric conversion layer is often a patterned layer.
By using the organic-inorganic perovskite compound for the photoelectric conversion layer, the photoelectric conversion efficiency of the solar cell can be improved. The organic / inorganic perovskite compound is an organic / inorganic perovskite compound represented by the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom). Is preferred.
上記Rは有機分子であり、C(l、m、nはいずれも正の整数)で示されることが好ましい。
上記Rは、具体的には例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、イミダゾリン、カルバゾール、メチルカルボキシアミン、エチルカルボキシアミン、プロピルカルボキシアミン、ブチルカルボキシアミン、ペンチルカルボキシアミン、ヘキシルカルボキシアミン、ホルムアミジニウム、グアニジン、アニリン、ピリジン及びこれらのイオン(例えば、メチルアンモニウム(CHNH)等)やフェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、プロピルカルボキシアミン、ブチルカルボキシアミン、ペンチルカルボキシアミン、ホルムアミジニウム、グアニジン及びこれらのイオンが好ましく、メチルアミン、エチルアミン、ペンチルカルボキシアミン、ホルムアミジニウム、グアニジン及びこれらのイオンがより好ましい。中でも高い光電変換効率が得られることから、メチルアミン、ホルムアミジニウム及びこれらのイオンが更に好ましい。
The R is an organic molecule, and is preferably represented by C 1 N m H n (l, m, and n are all positive integers).
Specifically, R is, for example, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropyl. Amine, tributylamine, tripentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, imidazole, azole, pyrrole, aziridine, azirine, Azetidine, azeto, imidazoline, carbazole, methylcarboxyamine, ethylcarboxyamine, propylcarboxyamine, butyl Rubokishiamin, pentyl carboxyamine, hexyl carboxyamine, formamidinium, guanidine, aniline, pyridine and these ions (e.g., 3 NH 3) such as methyl ammonium (CH) and the like or phenethyl ammonium and the like. Of these, methylamine, ethylamine, propylamine, propylcarboxyamine, butylcarboxyamine, pentylcarboxyamine, formamidinium, guanidine and their ions are preferred, and methylamine, ethylamine, pentylcarboxyamine, formamidinium, guanidine and These ions are more preferred. Among them, methylamine, formamidinium, and these ions are more preferable because high photoelectric conversion efficiency can be obtained.
上記Mは金属原子であり、例えば、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。なかでも、電子軌道の重なりの観点から、鉛又はスズが好ましい。これらの金属原子は単独で用いられてもよく、2種以上が併用されてもよい。 M is a metal atom, for example, lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, Europium etc. are mentioned. Among these, lead or tin is preferable from the viewpoint of overlapping of electron orbits. These metal atoms may be used independently and 2 or more types may be used together.
上記Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらのハロゲン原子又はカルコゲン原子は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。 X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, and selenium. These halogen atoms or chalcogen atoms may be used alone or in combination of two or more. Among these, the halogen atom is preferable because the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method by containing halogen in the structure. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
上記有機無機ペロブスカイト化合物は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。
図4は、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造である、有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。詳細は明らかではないが、上記構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上すると推定される。
The organic / inorganic perovskite compound preferably has a cubic structure in which a metal atom M is disposed at the body center, an organic molecule R is disposed at each vertex, and a halogen atom or a chalcogen atom X is disposed at the face center.
FIG. 4 shows an example of a crystal structure of an organic / inorganic perovskite compound having a cubic structure in which a metal atom M is arranged at the body center, an organic molecule R is arranged at each vertex, and a halogen atom or a chalcogen atom X is arranged at the face center. It is a schematic diagram. Although details are not clear, since the orientation of the octahedron in the crystal lattice can be easily changed by having the structure described above, the mobility of electrons in the organic-inorganic perovskite compound is increased, and the photoelectric properties of the solar cell are increased. It is estimated that the conversion efficiency is improved.
上記有機無機ペロブスカイト化合物は、結晶性半導体であることが好ましい。結晶性半導体とは、X線散乱強度分布を測定し、散乱ピークが検出できる半導体を意味している。
上記有機無機ペロブスカイト化合物が結晶性半導体であれば、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。また、上記有機無機ペロブスカイト化合物が結晶性半導体であれば、太陽電池に光を照射し続けることによる光電変換効率の低下(光劣化)、特に短絡電流の低下に起因する光劣化が抑制されやすくなる。
The organic / inorganic perovskite compound is preferably a crystalline semiconductor. The crystalline semiconductor means a semiconductor capable of measuring the X-ray scattering intensity distribution and detecting a scattering peak.
If the organic / inorganic perovskite compound is a crystalline semiconductor, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved. In addition, if the organic / inorganic perovskite compound is a crystalline semiconductor, it is easy to suppress a decrease in photoelectric conversion efficiency (photodegradation) caused by continuing to irradiate light on a solar cell, particularly a photodegradation due to a decrease in short-circuit current. .
また、結晶化の指標として結晶化度を評価することもできる。結晶化度は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークと非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶部分の比を算出することにより求めることができる。
上記有機無機ペロブスカイト化合物の結晶化度の好ましい下限は30%である。上記結晶化度が30%以上であれば、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。また、上記結晶化度が30%以上であれば、太陽電池に光を照射し続けることによる光電変換効率の低下(光劣化)、特に短絡電流の低下に起因する光劣化が抑制されやすくなる。上記結晶化度のより好ましい下限は50%、更に好ましい下限は70%である。
また、上記有機無機ペロブスカイト化合物の結晶化度を上げる方法として、例えば、熱アニール(加熱処理)、レーザー等の強度の強い光の照射、プラズマ照射等が挙げられる。
In addition, the degree of crystallization can be evaluated as an index of crystallization. The degree of crystallinity is determined by separating the crystalline-derived scattering peak detected by the X-ray scattering intensity distribution measurement and the halo derived from the amorphous part by fitting, obtaining the respective intensity integrals, Can be obtained by calculating the ratio.
A preferable lower limit of the crystallinity of the organic-inorganic perovskite compound is 30%. If the crystallinity is 30% or more, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved. Moreover, if the said crystallinity is 30% or more, it will become easy to suppress the photodegradation resulting from the fall (photodegradation) of photoelectric conversion efficiency by continuing irradiating a solar cell with light, especially the fall of a short circuit current. A more preferred lower limit of the crystallinity is 50%, and a more preferred lower limit is 70%.
Examples of a method for increasing the crystallinity of the organic / inorganic perovskite compound include thermal annealing (heat treatment), irradiation with intense light such as a laser, and plasma irradiation.
また、他の結晶化の指標として結晶子径を評価することもできる。結晶子径は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークの半値幅からhalder-wagner法で算出することができる。
上記有機無機ペロブスカイト化合物の結晶子径が5nm以上であれば、太陽電池に光を照射し続けることによる光電変換効率の低下(光劣化)、特に短絡電流の低下に起因する光劣化が抑制される。また、上記有機無機ペロブスカイト化合物中の電子の移動度が高くなり、太陽電池の光電変換効率が向上する。上記結晶子径の好ましい下限は10nm、より好ましい下限は20nmである。
The crystallite diameter can also be evaluated as another crystallization index. The crystallite diameter can be calculated by the holder-Wagner method from the half width of the scattering peak derived from the crystal detected by the X-ray scattering intensity distribution measurement.
When the crystallite diameter of the organic / inorganic perovskite compound is 5 nm or more, a decrease in photoelectric conversion efficiency (photodegradation) caused by continuing to irradiate light to the solar cell, particularly a photodegradation due to a decrease in short-circuit current is suppressed. . Further, the mobility of electrons in the organic / inorganic perovskite compound is increased, and the photoelectric conversion efficiency of the solar cell is improved. A preferable lower limit of the crystallite diameter is 10 nm, and a more preferable lower limit is 20 nm.
上記光電変換層は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、更に、有機半導体又は無機半導体を含んでいてもよい。
上記有機半導体として、例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物や、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。
The photoelectric conversion layer may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic / inorganic perovskite compound as long as the effects of the present invention are not impaired.
Examples of the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene). In addition, for example, conductive polymers having a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given. Further, for example, compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, etc., and carbon-containing materials such as carbon nanotubes, graphene, and fullerene that may be surface-modified Also mentioned.
上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、CuO、CuI、MoO、V、WO、MoS、MoSe、CuS等が挙げられる。 Examples of the inorganic semiconductor include titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI, MoO 3 , V 2 O 5 , WO 3 , MoS 2, MoSe 2, Cu 2 S , and the like.
上記光電変換層は、上記有機無機ペロブスカイト化合物と上記有機半導体又は上記無機半導体とを含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜であってもよい。製法が簡便である点では積層体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合膜が好ましい。 In the case where the photoelectric conversion layer includes the organic-inorganic perovskite compound and the organic semiconductor or the inorganic semiconductor, the photoelectric conversion layer is a laminated body in which a thin-film organic semiconductor or an inorganic semiconductor portion and a thin-film organic-inorganic perovskite compound portion are stacked. Alternatively, a composite film in which an organic semiconductor or inorganic semiconductor part and an organic / inorganic perovskite compound part are combined may be used. A laminated body is preferable in that the production method is simple, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。 The preferable lower limit of the thickness of the thin-film organic / inorganic perovskite compound site is 5 nm, and the preferable upper limit is 5000 nm. If the thickness is 5 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 5000 nm or less, since it can suppress that the area | region which cannot carry out charge separation generate | occur | produces, it leads to the improvement of photoelectric conversion efficiency. The more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 500 nm.
上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、上記複合膜の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であれば、電荷が電極に到達しやすくなるため、光電変換効率が高くなる。上記厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。 When the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor part and an organic / inorganic perovskite compound part are combined, a preferable lower limit of the thickness of the composite film is 30 nm, and a preferable upper limit is 3000 nm. If the thickness is 30 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 3000 nm or less, since it becomes easy to reach | attain an electrode, a photoelectric conversion efficiency becomes high. The more preferable lower limit of the thickness is 40 nm, the more preferable upper limit is 2000 nm, the still more preferable lower limit is 50 nm, and the still more preferable upper limit is 1000 nm.
上記光電変換層は、光電変換層形成後に熱アニール(加熱処理)が施されていることが好ましい。熱アニール(加熱処理)を施すことにより、光電変換層中の有機無機ペロブスカイト化合物の結晶化度を充分に上げることができ、光を照射し続けることによる光電変換効率の低下(光劣化)をより抑制することができる。従来の耐熱高分子材料からなるフレキシブル基材を用いたフレキシブル太陽電池にこのような熱アニール(加熱処理)を行うと、フレキシブル基材と光電変換層等との線膨張係数の相違により、アニール時に歪みが生じ、その結果、高い光電変換効率を達成することが難しくなる。これに対して本発明では、上記フレキシブル基材として金属箔を用いることにより、熱アニール(加熱処理)を行っても、歪みの発生を最小限に抑えて、高い光電変換効率を有するフレキシブル太陽電池を得ることができる。 The photoelectric conversion layer is preferably subjected to thermal annealing (heat treatment) after the photoelectric conversion layer is formed. By performing thermal annealing (heat treatment), the degree of crystallinity of the organic-inorganic perovskite compound in the photoelectric conversion layer can be sufficiently increased, and the decrease in photoelectric conversion efficiency (photodegradation) due to continued irradiation with light is further increased. Can be suppressed. When such a thermal annealing (heat treatment) is performed on a flexible solar cell using a flexible base material made of a conventional heat-resistant polymer material, due to the difference in coefficient of linear expansion between the flexible base material and the photoelectric conversion layer, etc. Distortion occurs, and as a result, it becomes difficult to achieve high photoelectric conversion efficiency. On the other hand, in the present invention, by using a metal foil as the flexible substrate, even if thermal annealing (heat treatment) is performed, the generation of distortion is minimized, and the flexible solar cell has high photoelectric conversion efficiency. Can be obtained.
上記熱アニール(加熱処理)を行う場合、上記光電変換層を加熱する温度は特に限定されないが、100℃以上、200℃未満であることが好ましい。上記加熱温度が100℃以上であれば、上記有機無機ペロブスカイト化合物の結晶化度を充分に上げることができる。上記加熱温度が200℃未満であれば、上記有機無機ペロブスカイト化合物を熱劣化させることなく加熱処理を行うことができる。より好ましい加熱温度は、120℃以上、170℃以下である。また、加熱時間も特に限定されないが、3分以上、2時間以内であることが好ましい。上記加熱時間が3分以上であれば、上記有機無機ペロブスカイト化合物の結晶化度を充分に上げることができる。上記加熱時間が2時間以内であれば、上記有機無機ペロブスカイト化合物を熱劣化させることなく加熱処理を行うことができる。
これらの加熱操作は真空又は不活性ガス下で行われることが好ましく、露点温度は10℃以下が好ましく、7.5℃以下がより好ましく、5℃以下が更に好ましい。
When performing the thermal annealing (heat treatment), the temperature for heating the photoelectric conversion layer is not particularly limited, but is preferably 100 ° C. or higher and lower than 200 ° C. When the heating temperature is 100 ° C. or higher, the crystallinity of the organic / inorganic perovskite compound can be sufficiently increased. If the said heating temperature is less than 200 degreeC, it can heat-process, without thermally degrading the said organic-inorganic perovskite compound. A more preferable heating temperature is 120 ° C. or higher and 170 ° C. or lower. The heating time is not particularly limited, but is preferably 3 minutes or longer and 2 hours or shorter. When the heating time is 3 minutes or longer, the crystallinity of the organic-inorganic perovskite compound can be sufficiently increased. If the heating time is within 2 hours, the organic inorganic perovskite compound can be heat-treated without causing thermal degradation.
These heating operations are preferably performed in a vacuum or under an inert gas, and the dew point temperature is preferably 10 ° C or lower, more preferably 7.5 ° C or lower, and further preferably 5 ° C or lower.
本発明の太陽電池は、陰極となる電極と上記光電変換層との間に、電子輸送層を有してもよい。なお、上記電子輸送層は、パターニングされた層であることが多い。
上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられる。具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
The solar cell of this invention may have an electron carrying layer between the electrode used as a cathode, and the said photoelectric converting layer. The electron transport layer is often a patterned layer.
The material of the electron transport layer is not particularly limited. For example, N-type conductive polymer, N-type low molecular organic semiconductor, N-type metal oxide, N-type metal sulfide, alkali metal halide, alkali metal, surface activity Agents and the like. Specifically, for example, cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene derivative, phosphine oxide compound, phosphine sulfide Examples include compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, and zinc sulfide.
上記電子輸送層は、薄膜状の電子輸送層(バッファ層)のみからなっていてもよいが、多孔質状の電子輸送層を含むことが好ましい。特に、上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物を複合化した複合膜である場合、より複雑な複合膜(より複雑に入り組んだ構造)が得られ、光電変換効率が高くなることから、多孔質状の電子輸送層上に複合膜が製膜されていることが好ましい。 The electron transport layer may consist of only a thin film electron transport layer (buffer layer), but preferably includes a porous electron transport layer. In particular, when the photoelectric conversion layer is a composite film in which an organic semiconductor or an inorganic semiconductor site and an organic / inorganic perovskite compound are combined, a more complex composite film (a more complicated structure) is obtained, and the photoelectric conversion efficiency is improved. In order to increase the thickness, it is preferable that the composite film is formed on the porous electron transport layer.
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。上記厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。 The preferable lower limit of the thickness of the electron transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, holes can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of electron transport, and photoelectric conversion efficiency will become high. The more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
本発明の太陽電池は、上記光電変換層と陽極となる電極との間に、ホール輸送層を有してもよい。なお、上記ホール輸送層は、パターニングされた層であることが多い。
上記ホール輸送層の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられる。具体的には例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、トリフェニルアミン骨格、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物等が挙げられる。更に、例えば、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸、CuSCN、CuI等の銅化合物、カーボンナノチューブ、グラフェン等のカーボン含有材料等が挙げられる。
The solar cell of this invention may have a hole transport layer between the said photoelectric converting layer and the electrode used as an anode. The hole transport layer is often a patterned layer.
The material for the hole transport layer is not particularly limited, and examples thereof include a P-type conductive polymer, a P-type low molecular organic semiconductor, a P-type metal oxide, a P-type metal sulfide, and a surfactant. Specific examples include compounds having a thiophene skeleton such as poly (3-alkylthiophene). In addition, for example, conductive polymers having a triphenylamine skeleton, a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given. Furthermore, for example, compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, and a benzoporphyrin skeleton, a spirobifluorene skeleton, and the like can be given. Further, for example, molybdenum oxide, vanadium oxide, tungsten oxide, nickel oxide, copper oxide, tin oxide, molybdenum sulfide, tungsten sulfide, copper sulfide, tin sulfide, etc., fluoro group-containing phosphonic acid, carbonyl group-containing phosphonic acid, CuSCN, CuI And carbon-containing materials such as carbon nanotubes, graphene and the like.
上記ホール輸送層は、その一部が上記光電変換層に浸漬していてもよい(上記光電変換層と入り組んだ構造を形成していてもよい)し、上記光電変換層上に薄膜状に配置されてもよい。上記ホール輸送層が薄膜状に存在する時の厚みは、好ましい下限は1nm、好ましい上限は2000nmである。上記厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。 A part of the hole transport layer may be immersed in the photoelectric conversion layer (a structure complicated with the photoelectric conversion layer may be formed) or arranged in a thin film on the photoelectric conversion layer. May be. The thickness when the hole transport layer is in the form of a thin film has a preferred lower limit of 1 nm and a preferred upper limit of 2000 nm. If the thickness is 1 nm or more, electrons can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of hole transport, and a photoelectric conversion efficiency will become high. The more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
上記バリア層は太陽電池を外部の水分や物質から保護する役割を持つ。上記バリア層は、水蒸気バリア性が高く、バリア層を薄くできることから無機材料であることが好ましい。
上記無機材料としては、Si、Al、Zn、Sn、In、Ti、Mg、Zr、Ni、Ta、W、Cu若しくはこれらを2種以上含む合金の酸化物、窒化物又は酸窒化物が挙げられる。なかでも、上記バリア層に水蒸気バリア性及び柔軟性を付与するために、Zn、Snの両金属元素を含む金属元素の酸化物、窒化物又は酸窒化物が好ましい。
The barrier layer serves to protect the solar cell from external moisture and substances. The barrier layer is preferably an inorganic material because it has a high water vapor barrier property and can make the barrier layer thin.
Examples of the inorganic material include Si, Al, Zn, Sn, In, Ti, Mg, Zr, Ni, Ta, W, Cu, or an oxide, nitride, or oxynitride of an alloy containing two or more of these. . Among these, in order to impart water vapor barrier properties and flexibility to the barrier layer, oxides, nitrides, or oxynitrides of metal elements including both metal elements of Zn and Sn are preferable.
上記バリア層の厚みは、好ましい下限が30nm、好ましい上限が3000nmである。上記厚みが30nm以上であれば、上記バリア層が充分な水蒸気バリア性を有することができ、太陽電池の耐久性が向上する。上記厚みが3000nm以下であれば、上記バリア層の厚みが増した場合であっても、発生する応力が小さいため、上記バリア層の剥離を抑制することができる。上記厚みのより好ましい下限は50nm、より好ましい上限は1000nmであり、更に好ましい下限は100nm、更に好ましい上限は500nmである。
なお、上記バリア層の厚みは、光学干渉式膜厚測定装置(例えば、大塚電子社製のFE-3000等)を用いて測定することができる。
The barrier layer has a preferable lower limit of 30 nm and a preferable upper limit of 3000 nm. If the said thickness is 30 nm or more, the said barrier layer can have sufficient water vapor | steam barrier property, and durability of a solar cell improves. When the thickness is 3000 nm or less, even when the thickness of the barrier layer is increased, the generated stress is small, and thus the peeling of the barrier layer can be suppressed. The more preferable lower limit of the thickness is 50 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 100 nm, and the still more preferable upper limit is 500 nm.
The thickness of the barrier layer can be measured using an optical interference film thickness measuring device (for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd.).
上記バリア層を形成する方法としては、真空蒸着法、スパッタリング法、気相反応法(CVD)、イオンプレーティング法が好ましい。なかでも、緻密な層を形成するためにはスパッタリング法が好ましく、スパッタリング法のなかでもDCマグネトロンスパッタリング法がより好ましい。
上記スパッタリング法においては、金属ターゲット、及び、酸素ガス又は窒素ガスを原料とし、上記対向電極上に原料を堆積して製膜することにより、無機材料からなるバリア層を形成することができる。
上記有機絶縁層の側面全体を封止するように上記バリア層を形成するためには、上記有機絶縁層の端部をマスクで覆うことなく、かつ、上記有機絶縁層の幅よりも小さい幅のスパッタターゲットを用いて製膜することが好ましい。これにより、上記有機絶縁層を上記基材の端部まで形成したとしても、上記バリア層が上記有機絶縁層の側面まで回り込んで封止することができる。更には、製膜時の圧力を0.5Paよりも高くすることが好ましい。これにより、スパッタ粒子の平均自由行程が短くなり直進性が低くなるため、上記有機絶縁層の側面の封止性がより向上する。また、上記有機絶縁層の側面全体を封止するように上記バリア層を形成するためには、上記有機絶縁層の端部を上記基材の端部よりも内側に位置させることも好ましい。
As a method for forming the barrier layer, a vacuum deposition method, a sputtering method, a gas phase reaction method (CVD), or an ion plating method is preferable. Of these, the sputtering method is preferable for forming a dense layer, and the DC magnetron sputtering method is more preferable among the sputtering methods.
In the sputtering method, a barrier layer made of an inorganic material can be formed by using a metal target and oxygen gas or nitrogen gas as raw materials and depositing the raw material on the counter electrode to form a film.
In order to form the barrier layer so as to seal the entire side surface of the organic insulating layer, the end of the organic insulating layer is not covered with a mask, and the width is smaller than the width of the organic insulating layer. It is preferable to form a film using a sputtering target. Thereby, even if the said organic insulating layer is formed to the edge part of the said base material, the said barrier layer can wrap around to the side surface of the said organic insulating layer, and can be sealed. Furthermore, it is preferable that the pressure during film formation is higher than 0.5 Pa. As a result, the mean free path of the sputtered particles is shortened and the straightness is lowered, so that the sealing property of the side surface of the organic insulating layer is further improved. Moreover, in order to form the said barrier layer so that the whole side surface of the said organic insulating layer may be sealed, it is also preferable to locate the edge part of the said organic insulating layer inside the edge part of the said base material.
本発明の太陽電池においては、更に、上記バリア層上を、例えば樹脂フィルム、無機材料を被覆した樹脂フィルム、金属箔等のその他の材料が覆っていてもよい。即ち、本発明の太陽電池は、上記対向電極と上記その他の材料との間を、上記バリア層によって封止、充填又は接着している構成であってもよい。これにより、仮に上記バリア層にピンホールがあった場合にも充分に水蒸気をブロックすることができ、太陽電池の耐久性をより向上させることができる。 In the solar cell of the present invention, the barrier layer may be covered with another material such as a resin film, a resin film coated with an inorganic material, or a metal foil. That is, the solar cell of the present invention may be configured such that the space between the counter electrode and the other material is sealed, filled, or adhered by the barrier layer. Thereby, even if there is a pinhole in the barrier layer, water vapor can be sufficiently blocked, and the durability of the solar cell can be further improved.
本発明の太陽電池を製造する方法は特に限定されず、例えば、上記基材上に、上記有機絶縁層、上記電極、上記光電変換層、上記対向電極、上記バリア層を上記の方法で積層する方法等が挙げられる。なお、各層をパターニングしたり、所定の位置に形成したりするためには、マスクを用いて所定の位置を覆ったうえで各層を形成する方法や、各層を形成した後に所定の位置を拭き取ったりレーザー等で削ったりする方法を用いることができる。 The method for producing the solar cell of the present invention is not particularly limited. For example, the organic insulating layer, the electrode, the photoelectric conversion layer, the counter electrode, and the barrier layer are laminated on the substrate by the above method. Methods and the like. In addition, in order to pattern each layer or to form at a predetermined position, a method of forming each layer after covering the predetermined position using a mask, or wiping the predetermined position after forming each layer A method of cutting with a laser or the like can be used.
本発明によれば、有機無機ペロブスカイト化合物を含む光電変換層を有する場合であっても、耐久性に優れるフレキシブル太陽電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it has a photoelectric converting layer containing an organic inorganic perovskite compound, the flexible solar cell excellent in durability can be provided.
従来の有機無機ペロブスカイト化合物を用いたフレキシブル太陽電池の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the flexible solar cell using the conventional organic inorganic perovskite compound. 本発明の有機無機ペロブスカイト化合物を用いたフレキシブル太陽電池の一例を模式的に示した断面図である。It is sectional drawing which showed typically an example of the flexible solar cell using the organic inorganic perovskite compound of this invention. 本発明の有機無機ペロブスカイト化合物を用いたフレキシブル太陽電池の別の一例を模式的に示した断面図である。It is sectional drawing which showed typically another example of the flexible solar cell using the organic inorganic perovskite compound of this invention. 有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。It is a schematic diagram which shows an example of the crystal structure of an organic inorganic perovskite compound.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(試験用フレキシブル太陽電池の製造)
耐久性を評価するためのサンプルとして以下の工程で試験用フレキシブル太陽電池を製造した。
厚さ100μmのアルミニウム箔の表面上に、アルミニウム箔の端をマスクで覆った上でスピンコートすることで厚さ3μmのポリイミド樹脂(UV-S、宇部興産社製)からなる有機絶縁層を形成した。これにより、有機絶縁層の端部の位置をアルミニウム箔の端部より2mm内側とした。有機絶縁層形成後にマスクを除去した。
次いで、有機絶縁層上に、陰極として真空蒸着法により厚み200nmのアルミニウム膜を、マスクを用いて所定の位置に形成した。陰極形成後にマスクを除去した。
その後、陰極上に有機バインダとしてのポリイソブチルメタクリレートと酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布し、アルミニウム箔の端部と陰極の一部が露出するように酸化チタンペーストを拭き取り、150℃で10分間乾燥させた。更に、高圧水銀ランプ(セン特殊光源社製、HLR100T-2)を用いて、紫外線を射強度500mW/cmで15分間照射し、酸化チタンからなる厚み200nmの多孔質状の電子輸送層を形成した。
次いで、ハロゲン化金属化合物としてヨウ化鉛をN,N-ジメチルホルムアミド(DMF)に溶解させて1Mの溶液を調製し、上記多孔質状の電子輸送層上にスピンコート法によって製膜した。更に、アミン化合物としてヨウ化メチルアンモニウムを2-プロパノールに溶解させて1Mの溶液を調製した。この溶液内に上記のヨウ化鉛を製膜したサンプルを浸漬させることによって有機無機ペロブスカイト化合物であるCHNHPbIを含む層を形成し、アルミニウム箔の端部と陰極の一部が露出するように有機無機ペロブスカイト化合物を含む層を拭き取った。その後、得られたサンプルに対して120℃にて30分間アニール処理を行った。
アニール後の光電変換層の有機無機ペロブスカイト化合物部位上に、Poly(4-butylphenyl-diphenyl-amine)(1-Material社製)の2重量%クロロベンゼン溶液を、スピンコート法によって100nmの厚みに積層してホール輸送層を形成した。アルミニウム箔の端部と陰極の一部が露出するようにホール輸送層を拭き取った。
次いで、マスクを用いて、ホール輸送層上の所定の位置に、電子ビーム蒸着法によってITOからなる厚み1000nmの陽極を形成した。陽極の形成後、マスクを除去した。
次いで、陰極と陽極の取り出し電極を接続する部分をマスクで覆い、スパッタ法により100nmのZnSnOからなるバリア層を、アルミニウム箔の全面かつ有機絶縁層の側面全体を覆うように形成した。その後マスクを除去して試験用フレキシブル太陽電池を得た。
(Example 1)
(Manufacture of flexible solar cells for testing)
As a sample for evaluating durability, a test flexible solar cell was manufactured by the following steps.
An organic insulating layer made of polyimide resin (UV-S, manufactured by Ube Industries) with a thickness of 3 μm is formed on the surface of an aluminum foil with a thickness of 100 μm by spin coating after covering the edges of the aluminum foil with a mask. did. Thereby, the position of the edge part of an organic insulating layer was made into 2 mm inside from the edge part of aluminum foil. The mask was removed after forming the organic insulating layer.
Next, an aluminum film having a thickness of 200 nm was formed as a cathode at a predetermined position on the organic insulating layer using a mask. The mask was removed after forming the cathode.
Thereafter, a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (a mixture of average particle diameters of 10 nm and 30 nm) is applied on the cathode by a spin coating method. The titanium oxide paste was wiped off so that the part was exposed and dried at 150 ° C. for 10 minutes. Furthermore, using a high-pressure mercury lamp (HLR100T-2, manufactured by Sen Special Light Source Co., Ltd.), ultraviolet rays were irradiated for 15 minutes at an irradiation intensity of 500 mW / cm 2 to form a porous electron transport layer made of titanium oxide having a thickness of 200 nm. did.
Next, lead iodide as a metal halide compound was dissolved in N, N-dimethylformamide (DMF) to prepare a 1M solution, and a film was formed on the porous electron transport layer by a spin coating method. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare a 1M solution. A layer containing CH 3 NH 3 PbI 3 which is an organic / inorganic perovskite compound is formed by immersing the sample in which the above lead iodide is formed in this solution, and the end of the aluminum foil and a part of the cathode are exposed. The layer containing the organic / inorganic perovskite compound was wiped off. Thereafter, the obtained sample was annealed at 120 ° C. for 30 minutes.
A 2% by weight chlorobenzene solution of Poly (4-butylphenyl-diphenyl-amine) (manufactured by 1-Material) was laminated to a thickness of 100 nm by spin coating on the organic / inorganic perovskite compound portion of the annealed photoelectric conversion layer. Thus, a hole transport layer was formed. The hole transport layer was wiped off so that the end of the aluminum foil and a part of the cathode were exposed.
Next, an anode having a thickness of 1000 nm made of ITO was formed by electron beam evaporation at a predetermined position on the hole transport layer using a mask. After forming the anode, the mask was removed.
Next, a portion connecting the cathode and the anode extraction electrode was covered with a mask, and a barrier layer made of ZnSnO of 100 nm was formed by sputtering to cover the entire surface of the aluminum foil and the entire side surface of the organic insulating layer. Thereafter, the mask was removed to obtain a test flexible solar cell.
(実施例2~8)
有機絶縁層の種類、バリア層の種類及び基材の端部と有機絶縁層の端部との距離を表1の通りに変更した以外は実施例1と同様にして試験用フレキシブル太陽電池を得た。なお、フッ素樹脂(PTFE)は、旭硝子社製CTL-107MKを、シリコーン樹脂は、信越シリコーン社製KR255を用いた。
(Examples 2 to 8)
A test flexible solar cell was obtained in the same manner as in Example 1 except that the type of the organic insulating layer, the type of the barrier layer, and the distance between the edge of the base material and the edge of the organic insulating layer were changed as shown in Table 1. It was. As the fluororesin (PTFE), CTL-107MK manufactured by Asahi Glass Co., Ltd. was used, and as the silicone resin, KR255 manufactured by Shin-Etsu Silicone Co., Ltd. was used.
(比較例1)
有機絶縁層をアルミニウム箔の端部まで形成し、有機絶縁層の端部にテープを貼ってマスクしたうえでバリア層を形成することにより有機絶縁層の側面までバリア層を形成しなかった以外は実施例1と同様にして、試験用フレキシブル太陽電池を製造した。
(Comparative Example 1)
The organic insulating layer was formed up to the end of the aluminum foil, and the barrier layer was not formed to the side of the organic insulating layer by forming a barrier layer after applying a mask to the end of the organic insulating layer. In the same manner as in Example 1, a test flexible solar cell was manufactured.
(比較例2、3)
有機絶縁層の種類及びバリア層の種類を表1に記載のものに変更した以外は比較例1と同様にして、試験用フレキシブル太陽電池を製造した。
(Comparative Examples 2 and 3)
A test flexible solar cell was manufactured in the same manner as in Comparative Example 1 except that the type of the organic insulating layer and the type of the barrier layer were changed to those shown in Table 1.
<評価>
実施例、比較例で得られた試験用フレキシブル太陽電池について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed about the flexible solar cell for a test obtained by the Example and the comparative example. The results are shown in Table 1.
(耐久性の評価)
太陽電池の電極間に、電源(KEITHLEY社製、236モデル)を接続し、強度100mW/cmのソーラーシミュレーション(山下電装社製)を用いて、露光面積0.01cmにて光電変換効率を測定し、得られた光電変換効率を初期光電変換効率とした。その後、太陽電池を85%RH、85℃の条件下に置いて耐久試験を行った。耐久試験を100時間行うごとに初期光電変換効率と同様にして光電変換効率を測定し、光電変換効率が初期光電変換効率の80%となった時の時間を測定した。なお、1000時間後の測定においても光電変換効率が初期光電変換効率の80%以上であった場合には劣化無しとした。
(Durability evaluation)
Connect a power source (made by KEITHLEY, 236 model) between the electrodes of the solar cell, and use a solar simulation (manufactured by Yamashita Denso Co., Ltd.) with an intensity of 100 mW / cm 2 to obtain a photoelectric conversion efficiency at an exposure area of 0.01 cm 2 . The measured photoelectric conversion efficiency was defined as the initial photoelectric conversion efficiency. Thereafter, a durability test was performed by placing the solar cell under conditions of 85% RH and 85 ° C. Every time the durability test was performed for 100 hours, the photoelectric conversion efficiency was measured in the same manner as the initial photoelectric conversion efficiency, and the time when the photoelectric conversion efficiency was 80% of the initial photoelectric conversion efficiency was measured. In the measurement after 1000 hours, when the photoelectric conversion efficiency was 80% or more of the initial photoelectric conversion efficiency, it was determined that there was no deterioration.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
本発明によれば、有機無機ペロブスカイト化合物を含む光電変換層を有する場合であっても、耐久性に優れるフレキシブル太陽電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where it has a photoelectric converting layer containing an organic inorganic perovskite compound, the flexible solar cell excellent in durability can be provided.
11、21、31 金属箔からなるフレキシブル基材
12、22、32 有機絶縁層
13、23、33 電極
14、24、34 有機無機ペロブスカイト化合物を含む光電変換層
15、25、35 対向電極
16、26、36 バリア層
17、27、37 取り出し電極
11, 21, 31 Flexible base material 12, 22, 32 made of metal foil Organic insulating layers 13, 23, 33 Electrodes 14, 24, 34 Photoelectric conversion layers 15, 25, 35 containing organic inorganic perovskite compounds Counter electrodes 16, 26 36 Barrier layers 17, 27, 37 Extraction electrodes

Claims (3)

  1. 少なくとも、フレキシブル基材と、有機絶縁層と、電極と、光電変換層と、対向電極と、バリア層とがこの順番に積層されたフレキシブル太陽電池であって、
    前記フレキシブル基材は金属箔からなり、
    前記光電変換層は、有機無機ペロブスカイト化合物を含んでおり、
    前記バリア層は、少なくとも前記光電変換層を封止し、かつ、前記有機絶縁層の側面全体を封止している
    ことを特徴とするフレキシブル太陽電池。
    At least, a flexible solar cell in which a flexible base material, an organic insulating layer, an electrode, a photoelectric conversion layer, a counter electrode, and a barrier layer are laminated in this order,
    The flexible substrate is made of a metal foil,
    The photoelectric conversion layer contains an organic-inorganic perovskite compound,
    The flexible solar cell, wherein the barrier layer seals at least the photoelectric conversion layer and seals the entire side surface of the organic insulating layer.
  2. バリア層は、電極に取り出し電極を接続するための開口部を有していることを特徴とする請求項1記載のフレキシブル太陽電池。 The flexible solar cell according to claim 1, wherein the barrier layer has an opening for connecting the electrode to the electrode.
  3. 有機絶縁層の端部は、フレキシブル基材の端部よりも内側に位置することを特徴とする請求項1又は2記載のフレキシブル太陽電池。 3. The flexible solar cell according to claim 1, wherein an end portion of the organic insulating layer is positioned inside an end portion of the flexible base material.
PCT/JP2017/033090 2016-09-14 2017-09-13 Flexible solar cell WO2018052032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018539757A JP7016806B2 (en) 2016-09-14 2017-09-13 Flexible solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179762 2016-09-14
JP2016-179762 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018052032A1 true WO2018052032A1 (en) 2018-03-22

Family

ID=61618815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033090 WO2018052032A1 (en) 2016-09-14 2017-09-13 Flexible solar cell

Country Status (2)

Country Link
JP (1) JP7016806B2 (en)
WO (1) WO2018052032A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175909A (en) * 2018-03-27 2019-10-10 積水化学工業株式会社 Flexible solar cell and manufacturing method therefor
JP2021174884A (en) * 2020-04-24 2021-11-01 フジプレアム株式会社 Perovskite type solar battery
WO2023037853A1 (en) 2021-09-07 2023-03-16 株式会社エネコートテクノロジーズ Perovskite solar cell
WO2024070498A1 (en) * 2022-09-30 2024-04-04 パナソニックホールディングス株式会社 Solar cell module and method for manufacturing solar cell module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127323A (en) * 1999-10-28 2001-05-11 Nisshin Steel Co Ltd Insulating metallic foil band for solar cell board coated with polyimide-based paint thin film, and method for manufacturing the same
JP2011119685A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element and organic photoelectric conversion module
WO2014132076A1 (en) * 2013-03-01 2014-09-04 Isis Innovation Limited Semiconducting layer production process
JP2015046298A (en) * 2013-08-28 2015-03-12 コニカミノルタ株式会社 Photoelectric conversion element and method for manufacturing the same, and solar cell including the photoelectric conversion element
WO2015080990A1 (en) * 2013-11-26 2015-06-04 Hunt Energy Enterprises, L.L.C. Perovskite and other solar cell materials
JP2015154049A (en) * 2014-02-19 2015-08-24 三菱化学株式会社 Thin film solar cell module
JP2015185836A (en) * 2014-03-26 2015-10-22 株式会社豊田中央研究所 Composite self-supporting film, solar cell, method of producing composite self-supporting film
JP2016092296A (en) * 2014-11-07 2016-05-23 富士フイルム株式会社 Perovskite film-forming liquid, perovskite film, photoelectric conversion element, and solar battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011108883A (en) 2009-11-18 2011-06-02 Mitsubishi Chemicals Corp Solar cell
JP2016091793A (en) 2014-11-05 2016-05-23 コニカミノルタ株式会社 Organic electroluminescent device and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127323A (en) * 1999-10-28 2001-05-11 Nisshin Steel Co Ltd Insulating metallic foil band for solar cell board coated with polyimide-based paint thin film, and method for manufacturing the same
JP2011119685A (en) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd Organic photoelectric conversion element and organic photoelectric conversion module
WO2014132076A1 (en) * 2013-03-01 2014-09-04 Isis Innovation Limited Semiconducting layer production process
JP2015046298A (en) * 2013-08-28 2015-03-12 コニカミノルタ株式会社 Photoelectric conversion element and method for manufacturing the same, and solar cell including the photoelectric conversion element
WO2015080990A1 (en) * 2013-11-26 2015-06-04 Hunt Energy Enterprises, L.L.C. Perovskite and other solar cell materials
JP2015154049A (en) * 2014-02-19 2015-08-24 三菱化学株式会社 Thin film solar cell module
JP2015185836A (en) * 2014-03-26 2015-10-22 株式会社豊田中央研究所 Composite self-supporting film, solar cell, method of producing composite self-supporting film
JP2016092296A (en) * 2014-11-07 2016-05-23 富士フイルム株式会社 Perovskite film-forming liquid, perovskite film, photoelectric conversion element, and solar battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019175909A (en) * 2018-03-27 2019-10-10 積水化学工業株式会社 Flexible solar cell and manufacturing method therefor
JP7112225B2 (en) 2018-03-27 2022-08-03 積水化学工業株式会社 FLEXIBLE SOLAR CELL AND METHOD FOR MANUFACTURING FLEXIBLE SOLAR CELL
JP2021174884A (en) * 2020-04-24 2021-11-01 フジプレアム株式会社 Perovskite type solar battery
WO2023037853A1 (en) 2021-09-07 2023-03-16 株式会社エネコートテクノロジーズ Perovskite solar cell
WO2024070498A1 (en) * 2022-09-30 2024-04-04 パナソニックホールディングス株式会社 Solar cell module and method for manufacturing solar cell module

Also Published As

Publication number Publication date
JP7016806B2 (en) 2022-02-07
JPWO2018052032A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6154058B2 (en) Flexible solar cell
WO2018052032A1 (en) Flexible solar cell
JP6286106B2 (en) Solar cell and organic semiconductor materials
WO2018159799A1 (en) Solar cell and method for manufacturing solar cell
JP2018170476A (en) Flexible solar cell manufacturing method and flexible solar cell
JP6876480B2 (en) Solar cell
JP6989391B2 (en) Solar cell
JP6592639B1 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
JP6927834B2 (en) Manufacturing method of solar cells and solar cells
JP2019169684A (en) Solar battery
JP6745116B2 (en) Flexible solar cell
JP2016082003A (en) Method for manufacturing thin-film solar battery
EP3522245B1 (en) Flexible solar cell
JP2018056213A (en) Flexible solar cell and manufacturing method of flexible solar cell
WO2018139146A1 (en) Flexible solar cell
JP6804957B2 (en) Flexible solar cell and manufacturing method of flexible solar cell
JP2018147956A (en) Solar battery
JP2017034089A (en) Thin film solar cell
JP2018163939A (en) Solar cell
JP2018056233A (en) Solar battery
JP7112225B2 (en) FLEXIBLE SOLAR CELL AND METHOD FOR MANUFACTURING FLEXIBLE SOLAR CELL
JP6943713B2 (en) Solar cell
JP7328956B2 (en) SOLAR CELL MANUFACTURING METHOD AND SOLAR CELL
JP2018125522A (en) Flexible solar cell
JP2018125523A (en) Flexible solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850933

Country of ref document: EP

Kind code of ref document: A1