WO2018051642A1 - Lighting device, exposure device, and method for manufacturing article - Google Patents

Lighting device, exposure device, and method for manufacturing article Download PDF

Info

Publication number
WO2018051642A1
WO2018051642A1 PCT/JP2017/027008 JP2017027008W WO2018051642A1 WO 2018051642 A1 WO2018051642 A1 WO 2018051642A1 JP 2017027008 W JP2017027008 W JP 2017027008W WO 2018051642 A1 WO2018051642 A1 WO 2018051642A1
Authority
WO
WIPO (PCT)
Prior art keywords
fly
light
eye lens
microlenses
integrator
Prior art date
Application number
PCT/JP2017/027008
Other languages
French (fr)
Japanese (ja)
Inventor
孝昭 寺師
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to KR1020197009186A priority Critical patent/KR20190046920A/en
Priority to CN201780055492.6A priority patent/CN109964176A/en
Publication of WO2018051642A1 publication Critical patent/WO2018051642A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an illumination device, an exposure device, and an article manufacturing method.
  • An exposure apparatus is used as an apparatus for manufacturing a TFT (Thin Film Transistor) panel of a flat panel display device such as a liquid crystal display device or a plasma display device (see Patent Document 1).
  • a mask pattern is transferred to a substrate on a stage via a projection optical system.
  • the projection optical system includes, for example, a convex mirror and a concave mirror, and includes a reflection optical system that forms a good image area in an off-axis arc area.
  • the panel of a flat panel display device has been increased in size.
  • the exposure area per shot varies depending on the number of exposures. For example, when the substrate is divided into two vertically and divided into two horizontally and exposed in four shots, the exposure area per shot is 1100 mm long ⁇ 1200 mm wide. Further, when the substrate is divided into 2 parts vertically and 3 parts horizontally and exposed in 6 shots, the exposure area per shot is 1100 mm vertically and 800 mm horizontally.
  • the exposure apparatus is required to increase the throughput as well as to expand the exposure area.
  • the energy per unit time given to the entire exposure area is the same, the illuminance decreases and the throughput decreases. Therefore, there is a demand for exposure without reducing illuminance (that is, without reducing throughput) by increasing the output of the light source, increasing the number of lamps, and improving the illumination efficiency.
  • JP-A-8-306618 Japanese Patent Laid-Open No. 3-165023
  • Patent Document 2 discloses a specific method for suppressing a decrease in illumination efficiency when the exposure area changes with respect to an arc-shaped exposure area as disclosed in Patent Document 1. It has not been.
  • the present invention provides an illuminating device that is advantageous for illuminating an arc-shaped region on a surface to be illuminated.
  • an illumination device is an illumination device that illuminates a surface to be illuminated with light from a light source, and is provided on a surface optically conjugate with the surface to be illuminated.
  • An optical system that forms a rectangular illumination region having a longitudinal direction along one direction and a short direction along a second direction orthogonal to the first direction; and optically conjugate with the surface to be illuminated
  • a light-shielding plate disposed on a flat surface and provided with an arc-shaped opening, and the optical system is disposed so as to be exchangeable in the optical path of the light, and covers the illumination area covering the arc-shaped opening.
  • first integrator including a first integrator and a second integrator to be formed;
  • the second integrator is shorter than the first length in the first direction.
  • a second illumination area having a length of 3 and having a fourth length shorter than the second length in the second direction, the arcuate shape of the sides of the first illumination area along the first direction.
  • the convex side of the aperture and the convex side of the arc-shaped aperture among the sides along the first direction of the second illumination region are formed to be coincident with each other.
  • an illuminating device that is advantageous for illuminating an arc-shaped region on a surface to be illuminated.
  • FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 100 as one aspect of the present invention.
  • the exposure apparatus 100 is a lithography apparatus that forms a pattern by exposing the substrate 15 using light from the light source unit LU.
  • the exposure apparatus 100 employs a step-and-scan method, and transfers the pattern of the mask 12 to the substrate 15 while scanning the mask 12 and the substrate 15.
  • a coordinate system is defined in which the direction perpendicular to the scanning direction (direction perpendicular to the paper surface) is the x-axis, the scanning direction is the y-axis, and the direction orthogonal thereto is the z-axis.
  • the exposure apparatus 100 includes a condenser lens 5, a plurality of optical integrators 6, an aperture stop 7, a condenser lens 8, a slit (light shielding plate) 9, a masking blade 10, and a condenser lens 11.
  • the exposure apparatus 100 further includes a mask stage 13, a projection optical system 14, and a substrate stage 16.
  • the condenser lens 5, the plurality of optical integrators 6, the aperture stop 7, the condenser lens 8, the slit 9, the masking blade 10, and the condenser lens 11 illuminate the surface to be illuminated (mask 12 or substrate 15) with light from the light source 1.
  • the apparatus IL is configured.
  • the light source unit LU includes, for example, a light source 1 that emits ultraviolet light (light) such as a halogen lamp, and a condenser mirror 2.
  • the condensing mirror 2 has an elliptical shape.
  • a light emitting unit of the light source 1 is disposed in the vicinity of the first focal point 3 of the condenser mirror 2 (ellipse), and light from the light source 1 is condensed (imaged) on the second focal point 4 of the condenser mirror 2.
  • the condenser lens 5 condenses the light collected at the second focal point 4 on an optical integrator (incident surface) disposed in the optical path of the light from the light source 1 among the plurality of optical integrators 6.
  • the plurality of optical integrators 6 are arranged so as to be exchangeable in the optical path of the light from the light source 1, and in this embodiment, a structure (turret) capable of selecting the optical integrator to be arranged in the optical path according to the variation of the exposure area per shot. Etc.).
  • the plurality of optical integrators 6 form illumination areas having different areas.
  • the plurality of optical integrators 6 include a first integrator 6a and a second integrator 6b. Detailed configurations of the first integrator 6a and the second integrator 6b will be described later.
  • the aperture stop 7 is disposed in the vicinity of the exit surface of the first integrator 6a or the second integrator 6b disposed in the optical path of the light from the light source 1.
  • the light that has passed through the first integrator 6a or the second integrator 6b passes through the aperture stop 7 and the condenser lens 8, and the slit 9 that defines the shape of the light incident on the projection optical system 14 and the masking blade 10 that defines the exposure area.
  • the slit 9 and the masking blade 10 may be disposed in the vicinity of a surface optically conjugate with the surface to be illuminated (mask 12 or substrate 15), and is not limited to being disposed at the position shown in FIG.
  • the light that has passed through the slit 9 and the masking blade 10 illuminates the mask 12 disposed on the object plane of the projection optical system 14 via the condenser lens 11.
  • the projection optical system 14 is an optical system that projects the pattern of the mask 12 onto the substrate 15 disposed on the image plane of the projection optical system 14, and includes a reflection optical system or a catadioptric optical system.
  • the mask 12 and the substrate 15 are arranged in an optically conjugate relationship with respect to the projection optical system 14.
  • the mask stage 13 is a stage that moves while holding the mask 12, and realizes a function of moving (scanning) the mask 12 in the scanning direction, for example.
  • the substrate stage 16 is a stage that holds and moves the substrate 15 and realizes, for example, a function of moving (scanning) the substrate 15 in the scanning direction. While scanning the mask 12 and the substrate 15 with the mask stage 13 and the substrate stage 16, the substrate 15 is exposed with slit-shaped light.
  • the projection optical system 14 is embodied as a reflection optical system, and forms an arcuate exposure region as shown in FIG. 2A. As shown in FIG. 2B, such an arc-shaped exposure area cuts out rectangular light (illumination area) 30 that is Koehler-illuminated by the optical integrator 6 and the condenser lens 8 by a slit 9 having an arc-shaped opening. Is formed.
  • a shot size to be exposed that is, an exposure area per shot
  • a device for example, a screen size
  • region per shot in the exposure apparatus 100 is demonstrated.
  • the length required for the exposure width in the non-scanning direction of the exposure region is a length Xa
  • a length Xb is a short length.
  • the illumination device IL has a rectangular illumination having a longitudinal direction along the first direction (x-axis direction) and a short direction along a second direction (y-axis direction) orthogonal to the first direction. Form a region.
  • the exposure region in the non-scanning direction When the length of the exposure region in the non-scanning direction is the length Xa, as shown in FIG. 3A, the exposure region has a length (first length) Xa and a length (first length) in the short direction.
  • An illumination area (first illumination area) 30a having (2 lengths) Ya is formed.
  • the length of the exposure region in the non-scanning direction is the length Xb, as shown in FIG. 3B
  • the length (the third length shorter than the first length) Xb in the longitudinal direction has a short length.
  • An illumination region (second illumination region) 30b having a length (fourth length shorter than the second length) Yb in the hand direction is formed.
  • the illumination areas 30a and 30b are formed so as to cover the arc-shaped opening of the slit 9, that is, the arc-shaped exposure area (arc area). Further, the left ends of the illumination region 30a and the illumination region 30b are aligned, that is, the side SXa on the convex side of the arc region of the sides along the x-axis direction of the illumination region 30a and the side along the x-axis direction of the illumination region 30b Of these, it is necessary to form so that the convex side SXb of the arc region coincides. Therefore, as shown in FIG.
  • the change of the illumination area and the shift of the center position of the illumination area are realized by the first integrator 6a and the second integrator 6b.
  • the first integrator 6a is used when the length of the exposure region in the non-scanning direction is long (arranged in the optical path of light from the light source 1) and has a length Xa in the longitudinal direction (x-axis direction).
  • the illumination region 30a (FIG. 3A) having a length Ya in the short direction (y-axis direction) is formed.
  • the second integrator 6b is used when the length of the exposure region in the non-scanning direction is short (arranged in the optical path of light from the light source 1) and has a length Xb in the longitudinal direction (x-axis direction).
  • the illumination region 30b (FIG. 3B) having a length Yb in the short direction (y-axis direction) is formed.
  • FIGS. 4A and 4B are diagrams showing the configuration of the first integrator 6a and the illumination region 30a formed by the first integrator 6a.
  • 4A shows a cross-sectional view in the xz direction
  • FIG. 4B shows a cross-sectional view in the yz direction.
  • the first integrator 6a includes a fly-eye lens 61a in which a plurality of microlenses are arranged on a light incident side surface and a plurality of microlenses on a light emission side surface in order along the light traveling direction. And a fly eye lens 62a.
  • 4A and 4B only a pair of microlenses among the plurality of microlenses is illustrated as the fly-eye lenses 61a and 62a.
  • fly-eye lenses 61a and 62a there are many fly-eye lenses 61a and 62a in the x-axis direction and the y-axis direction.
  • a micro lens is arranged.
  • the fly-eye lenses 61a and 62a have a cross-sectional shape that is substantially similar to the shape of the illumination region 30a formed on the illuminated surface.
  • the light that has passed through the microlenses of the fly-eye lenses 61a and 62a constituting the first integrator 6a forms a secondary light source.
  • the light emitted from the first integrator 6a illuminates the illuminated surface uniformly via the condenser lens 8.
  • FIG. 5A and 5B are diagrams showing the configuration of the second integrator 6b and the illumination region 30b formed by the second integrator 6b.
  • FIG. 5A shows a cross-sectional view in the xz direction
  • FIG. 5B shows a cross-sectional view in the yz direction.
  • the second integrator 6b includes, in order along the light traveling direction, a first fly-eye lens 61b in which a plurality of first microlenses are arranged on a light incident side surface, and a plurality of first eyelets on a light emission side surface. And a second fly-eye lens 62b in which two microlenses are arranged.
  • the illumination area 30b formed by the second integrator 6b is smaller in the x-axis direction and the y-axis direction than the illumination area 30a formed by the first integrator 6a. Accordingly, the size of each microlens of the first fly-eye lens 61b and the second fly-eye lens 62b is smaller than the size of each microlens of the fly-eye lenses 61a and 62b. 5A and 5B, only a pair of microlenses is illustrated as the first fly-eye lens 61b and the second fly-eye lens 62b, but in actuality, there are many in the x-axis direction and the y-axis direction. A micro lens is arranged.
  • the center (center position) in the y-axis direction of the light incident side surface of each of the plurality of first microphone lenses of the first fly-eye lens 61b is 61Cb.
  • the center (center position) in the y-axis direction of the surface on the light emission side of each of the plurality of second microlenses of the second fly-eye lens 62b corresponding to each of the plurality of first microlenses is set to 62Cb.
  • the first fly-eye lens 61b and the second fly-eye are arranged such that the center 61Cb of each first microlens and the center 62Cb of each second microlens are relatively shifted (shifted) in the y-axis direction.
  • a lens 62b is disposed.
  • the angle of the principal ray emitted from the second fly-eye lens 62b is inclined, so that the center position of the illumination region 30b formed on the illuminated surface can be shifted.
  • the center 31b in the y-axis direction of the illumination region 30b formed by the second integrator 6b is shifted by ⁇ y in the y-axis direction with respect to the center 31a in the y-axis direction of the illumination region 30a formed by the first integrator 6a. (FIG. 3C).
  • the center position of the illumination area can be shifted by relatively shifting the first fly-eye lens 61b and the second fly-eye lens 62b in the y-axis direction. Therefore, the exposure apparatus 100 (illumination apparatus IL) can achieve efficient illumination when changing the exposure area.
  • the second integrator 6b is incorporated in, for example, a turret or the like with the first fly-eye lens 61b and the second fly-eye lens 62b relatively shifted in the y-axis direction.
  • a shift mechanism that relatively shifts the first fly-eye lens 61b and the second fly-eye lens 62b in the y-axis direction may be provided.
  • the light from the light source 1 is incident on the second integrator 6b as parallel light.
  • the light from the light source 1 is incident on the second integrator 6b as condensed light (that is, with an angle).
  • the incident angle of the light with respect to the 2nd integrator 6b changes with the design conditions of illuminating device IL.
  • a case where light spreads to the lens boundary in the y-axis direction on the exit surface of the second integrator 6b, that is, each of the second microlenses of the second fly-eye lens 62b will be described as an example.
  • FIG. 6A shows a case where in the second integrator 6b, the first fly-eye lens 61b and the second fly-eye lens 62b are not relatively shifted in the y-axis direction, that is, the center of the illumination region 30b is not shifted. ing.
  • the relationship between the lens boundary on the second microlens of the second fly-eye lens 62b and the spread of the light 60 is shown in FIG. 7A.
  • the light 60 incident as the condensed light on the second integrator 6b spreads to the lens boundary in the y-axis direction of the microlens of the second fly-eye lens 62b.
  • FIG. 6B shows a case where in the second integrator 6b, the first fly-eye lens 61b and the second fly-eye lens 62b are relatively shifted in the y-axis direction, that is, the center of the illumination region 30b is shifted.
  • FIG. 7B shows the relationship between the lens boundary on the second microlens of the second fly's eye lens 62b and the spread of the light 60 in the case shown in FIG. 6B.
  • the first fly-eye lens 61b and the second fly-eye lens 62b are relatively shifted in the y-axis direction, they enter the second integrator 6b at the lens boundary of the second microlens.
  • a part of the light 60 is garbled.
  • the light emitted at the lens boundary of the second microlens is incident on an adjacent second microlens (not shown) and becomes unnecessary light that is not used for illumination of the illuminated surface. This leads to a decrease in throughput.
  • a deflection member 75 is provided between the light source 1 and the first fly-eye lens 61b, that is, on the incident side of the first fly-eye lens 61b. Deploy.
  • the deflection member 75 is a wedge-shaped optical member, and deflects the light 60 incident as the condensed light on the second integrator 6b in the y-axis direction. Further, the deflection member 75 emits the light 60 so that the light emitted from the first fly-eye lens 61b and incident on the second fly-eye lens 62b is increased as compared with the case where the deflection member 75 is not disposed. It is configured to deflect in the y-axis direction.
  • the deflecting member 75 is incorporated in the turret together with the second integrator 6b, but a mechanism for inserting and removing the deflecting member 75 with respect to the optical path of light from the light source 1 is assumed. May be provided.
  • the first fly-eye lens 61b and the second fly-eye lens 62b are tilted (rotated) around the x-axis to thereby center the illumination area formed by the second integrator 6b. Can also be shifted.
  • each of the first microphone lens of the first fly-eye lens 61b and the second microlens of the second fly-eye lens 62b has a center of curvature on the outer shape center of each lens, and Are arranged coaxially without relatively shifting.
  • the first fly-eye lens 61b and the second fly-eye lens 62b are arranged so as to have an inclination around the x axis.
  • the first fly-eye lens 61b and the second fly-eye lens 62b are arranged so that the straight line L1 connecting the center 61Cb of the first microlens and the center 62Cb of the second microlens intersects the optical axis OA.
  • the optical axis OA is set to be parallel to the z-axis direction (third direction) orthogonal to the x-axis direction (first direction) and the y-axis direction (second direction).
  • the second integrator 6b is incorporated into, for example, a turret with the first fly-eye lens 61b and the second fly-eye lens 62b tilted around the x axis.
  • a rotation mechanism that rotates the first fly-eye lens 61b and the second fly-eye lens 62b around the x axis may be provided.
  • the second integrator 90 sequentially includes a first fly-eye lens 91 in which a plurality of first microlenses are arranged on a light incident side surface and a plurality of first eyelets on a light emission side surface along the light traveling direction. And a second fly-eye lens 92 in which two microlenses are arranged. As shown in FIG. 9, the center (center position) in the y-axis direction of the light incident side surface of each of the plurality of first microphone lenses of the first fly-eye lens 91 is 91C.
  • the center (center position) in the y-axis direction of the light exit side surface of each of the plurality of second microlenses of the second fly-eye lens 92 corresponding to each of the plurality of first microlenses is set to 92C.
  • the first fly-eye lens 91 and the second fly-eye are arranged so that the center 91C of each first microlens and the center 92C of each second microlens are on the same axis along the z-axis direction.
  • a lens 92 is disposed.
  • Each of the plurality of first microlenses of the first fly-eye lens 91 has a curved surface on the light incident side, and the apex 93 and the center 91C of the curved surface coincide with each other.
  • each of the plurality of second microlenses of the second fly-eye lens 92 has a curved surface on the light emission side, and has a vertex 94 of the curved surface shifted from the center 92C in the y-axis direction.
  • the apex 94 of the curved surface of the second microlens is shifted (eccentric) in the y-axis direction.
  • the inclination angle of the light emitted from the second fly-eye lens 92 is ⁇
  • the second micro of the second fly-eye lens 92 with respect to the apex 93 of the curved surface of the first micro-lens of the first fly-eye lens 91 Let dy be the shift amount of the apex 94 of the curved surface of the lens in the y-axis direction. Also, as shown in FIG. 10, the radius of curvature of the exit surface of the second microlens of the second fly's eye lens 92 is R, and its refractive index is n. In this case, the relationship between the shift amount dy and the inclination angle ⁇ is expressed by the following equation.
  • the second integrator 110 includes a first fly-eye lens 111 in which a plurality of first microlenses are arranged on a light incident side surface and a plurality of first eyelets on a light emission side surface in order along the light traveling direction. And a second fly-eye lens 112 in which two microlenses are arranged. As shown in FIG. 11, the center (center position) in the y-axis direction of the light incident side surface of each of the plurality of first microphone lenses of the first fly-eye lens 111 is 111C.
  • the center (center position) in the y-axis direction of the surface on the light exit side of each of the plurality of second microlenses of the second fly-eye lens 112 corresponding to each of the plurality of first microlenses is 112C.
  • the first fly-eye lens 111 and the second fly-eye are arranged so that the center 111C of each first microlens and the center 112C of each second microlens are on the same axis along the z-axis direction.
  • a lens 112 is disposed.
  • each of the plurality of first microlenses of the first fly-eye lens 111 has a curved surface on the light incident side, and the vertex of the curved surface coincides with the center 111C.
  • each of the plurality of second microlenses of the second fly's eye lens 112 has a curved surface on the light emission side, and the vertex of the curved surface coincides with the center 112C.
  • the surface 114 on the second fly-eye lens 112 side is a flat surface (first flat surface), and the flat surface is orthogonal to the z-axis direction orthogonal to the x-axis direction and the y-axis direction.
  • the surface 115 on the first fly-eye lens 111 side is a flat surface (second flat surface), and the flat surface is inclined with respect to the surface 114.
  • the surface 115 of the second fly-eye lens 112 has a wedge shape inclined about the x axis.
  • the second integrator 110 As light incident on the second integrator 110, parallel light is indicated by a solid line, and condensed light is indicated by a dotted line. Since the surface 115 of the second fly-eye lens 112 has a wedge shape inclined about the x-axis, the parallel light incident on the second integrator 110 is emitted from the second fly-eye lens 112 while being inclined. In addition, since the center 111C of the first microlens and the center 112C of the second microlens are arranged on the same axis, the condensed light incident on the second integrator 110 is blocked by the second fly-eye lens 112. There is no. Therefore, the second integrator 110 can realize the shift of the center position of the illumination area formed on the illuminated surface without causing a light amount loss.
  • the reduction of the illumination light rate is suppressed even when the exposure area changes with respect to the arc-shaped exposure area, and the substrate 15 is exposed with high throughput. be able to.
  • the article manufacturing method in the embodiment of the present invention is suitable for manufacturing articles such as devices (semiconductor elements, magnetic storage media, liquid crystal display elements, etc.), color filters, and the like.
  • a manufacturing method includes a step of exposing a substrate coated with a photosensitive agent using the exposure apparatus 100 and a step of developing the exposed substrate.
  • Such a manufacturing method may include other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like).
  • the method for manufacturing an article in the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Provided is a lighting device for lighting a surface to be lit with light from a light source, wherein the lighting device is characterized by comprising: an optical system forming, on a surface optically conjugate to the surface to be lit, a rectangular lighting region that has a longitudinal direction along a first direction and has a transverse direction along a second direction orthogonal to the first direction; and a light shielding plate which is arranged on the surface optically conjugate to the surface to be lit and to which an arcuate opening is provided. The lighting device is further characterized in that: the optical system comprises a first integrator and second integrator that are arranged so as to be replaceable on an optical path of the light and form the lighting region which covers the arcuate opening; the first integrator forms a first lighting region that has a first length in the first direction and has a second length in the second direction; and the second integrator forms a second lighting region that has a third length shorter than the first length in the first direction and a fourth length shorter than the second length in the second direction, such that a convex-side edge of the arcuate opening, of the edge of the first lighting region along the first direction, and a convex-side edge of the arcuate opening, of the edge of the second lighting region along the first direction, coincide.

Description

照明装置、露光装置及び物品の製造方法Illumination apparatus, exposure apparatus, and article manufacturing method
 本発明は、照明装置、露光装置及び物品の製造方法に関する。 The present invention relates to an illumination device, an exposure device, and an article manufacturing method.
 液晶ディスプレイ装置やプラズマディスプレイ装置などのフラットパネルディスプレイ装置のTFT(Thin Film Transistor)のパネルを製造する装置として、露光装置が使用されている(特許文献1参照)。このような露光装置では、マスクのパターンを、投影光学系を介して、ステージ上の基板に転写している。投影光学系は、例えば、凸面ミラーや凹面ミラーを含み、軸外の円弧領域に良像域を形成する反射光学系で構成されている。 An exposure apparatus is used as an apparatus for manufacturing a TFT (Thin Film Transistor) panel of a flat panel display device such as a liquid crystal display device or a plasma display device (see Patent Document 1). In such an exposure apparatus, a mask pattern is transferred to a substrate on a stage via a projection optical system. The projection optical system includes, for example, a convex mirror and a concave mirror, and includes a reflection optical system that forms a good image area in an off-axis arc area.
 近年、フラットパネルディスプレイ装置のパネルの大型化が進み、例えば、第8世代の基板(縦2200mm×横2400mm)を露光する場合、その露光回数によって1ショットあたりの露光領域が変化する。例えば、かかる基板を縦に2分割、横に2分割して4ショットで露光する場合、1ショットあたりの露光領域は、縦1100mm×横1200mmとなる。また、かかる基板を縦に2分割、横に3分割して6ショットで露光する場合、1ショットあたりの露光領域は、縦1100mm×横800mmとなる。 In recent years, the panel of a flat panel display device has been increased in size. For example, when an 8th generation substrate (vertical 2200 mm × horizontal 2400 mm) is exposed, the exposure area per shot varies depending on the number of exposures. For example, when the substrate is divided into two vertically and divided into two horizontally and exposed in four shots, the exposure area per shot is 1100 mm long × 1200 mm wide. Further, when the substrate is divided into 2 parts vertically and 3 parts horizontally and exposed in 6 shots, the exposure area per shot is 1100 mm vertically and 800 mm horizontally.
 露光装置には、露光領域の拡大とともに、スループットの向上も要求されている。露光領域を拡大する場合、その露光領域全体に与えられる単位時間あたりのエネルギーが同じであるとすると、照度が落ちるため、スループットが低下してしまう。従って、光源の出力アップや多灯化、照明効率の向上によって照度を落とさずに(即ち、スループットを低下させずに)露光することが求められている。 The exposure apparatus is required to increase the throughput as well as to expand the exposure area. When enlarging an exposure area, if the energy per unit time given to the entire exposure area is the same, the illuminance decreases and the throughput decreases. Therefore, there is a demand for exposure without reducing illuminance (that is, without reducing throughput) by increasing the output of the light source, increasing the number of lamps, and improving the illumination efficiency.
 また、露光領域が変化する場合に、その露光領域に応じてオプティカルインテグレータを切り替えることで、照明効率の低下を抑制する技術が提案されている(特許文献2参照)。 Also, a technique has been proposed in which when the exposure area changes, the optical integrator is switched in accordance with the exposure area to suppress a decrease in illumination efficiency (see Patent Document 2).
特開平8-306618号公報JP-A-8-306618 特開平3-165023号公報Japanese Patent Laid-Open No. 3-165023
 しかしながら、特許文献2には、特許文献1に開示されているような円弧状の露光領域に対して、その露光領域が変化する場合において照明効率の低下を抑制するための具体的な方法が開示されていない。 However, Patent Document 2 discloses a specific method for suppressing a decrease in illumination efficiency when the exposure area changes with respect to an arc-shaped exposure area as disclosed in Patent Document 1. It has not been.
 本発明は、被照明面において円弧状の領域を照明するのに有利な照明装置を提供する。 The present invention provides an illuminating device that is advantageous for illuminating an arc-shaped region on a surface to be illuminated.
 上記目的を達成するために、本発明の一側面としての照明装置は、光源からの光で被照明面を照明する照明装置であって、前記被照明面と光学的に共役な面に、第1方向に沿って長手方向を有し、前記第1方向に直交する第2方向に沿って短手方向を有する矩形状の照明領域を形成する光学系と、前記被照明面と光学的に共役な面に配置され、円弧状の開口が設けられた遮光板と、を有し、前記光学系は、前記光の光路に交換可能に配置され、前記円弧状の開口をカバーする前記照明領域を形成する第1インテグレータ及び第2インテグレータを含み、前記第1インテグレータは、前記第1方向に第1長さを有し、前記第2方向に第2長さを有する第1照明領域を形成し、前記第2インテグレータは、前記第1方向に前記第1長さより短い第3長さを有し、前記第2方向に前記第2長さより短い第4長さを有する第2照明領域を、前記第1照明領域の前記第1方向に沿った辺のうちの前記円弧状の開口の凸側の辺と前記第2照明領域の前記第1方向に沿った辺のうちの前記円弧状の開口の凸側の辺とが一致するように形成することを特徴とする。 In order to achieve the above object, an illumination device according to one aspect of the present invention is an illumination device that illuminates a surface to be illuminated with light from a light source, and is provided on a surface optically conjugate with the surface to be illuminated. An optical system that forms a rectangular illumination region having a longitudinal direction along one direction and a short direction along a second direction orthogonal to the first direction; and optically conjugate with the surface to be illuminated A light-shielding plate disposed on a flat surface and provided with an arc-shaped opening, and the optical system is disposed so as to be exchangeable in the optical path of the light, and covers the illumination area covering the arc-shaped opening. Forming a first illumination region having a first length in the first direction and having a second length in the second direction, the first integrator including a first integrator and a second integrator to be formed; The second integrator is shorter than the first length in the first direction. A second illumination area having a length of 3 and having a fourth length shorter than the second length in the second direction, the arcuate shape of the sides of the first illumination area along the first direction. The convex side of the aperture and the convex side of the arc-shaped aperture among the sides along the first direction of the second illumination region are formed to be coincident with each other.
 本発明によれば、例えば、被照明面において円弧状の領域を照明するのに有利な照明装置を提供することができる。 According to the present invention, for example, it is possible to provide an illuminating device that is advantageous for illuminating an arc-shaped region on a surface to be illuminated.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
本発明の一側面としての露光装置の構成を示す概略図である。 円弧状の露光領域を示す図である。 円弧状の露光領域と矩形状の照明領域との関係を示す図である。 図1に示す露光装置における照明領域の変更を説明するための図である。 図1に示す露光装置における照明領域の変更を説明するための図である。 図1に示す露光装置における照明領域の変更を説明するための図である。 図1に示す露光装置における第1インテグレータの構成及び照明領域を示す図である。 図1に示す露光装置における第1インテグレータの構成及び照明領域を示す図である。 図1に示す露光装置における第2インテグレータの構成及び照明領域を示す図である。 図1に示す露光装置における第2インテグレータの構成及び照明領域を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。 第2マイクロレンズ上でのレンズ境界と光の広がりとの関係を示す図である。 第2マイクロレンズ上でのレンズ境界と光の広がりとの関係を示す図である。 第2マイクロレンズ上でのレンズ境界と光の広がりとの関係を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。 図1に示す露光装置における第2インテグレータの構成を示す図である。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
It is the schematic which shows the structure of the exposure apparatus as 1 side surface of this invention. It is a figure which shows an arc-shaped exposure area | region. It is a figure which shows the relationship between an arc-shaped exposure area | region and a rectangular-shaped illumination area | region. It is a figure for demonstrating the change of the illumination area in the exposure apparatus shown in FIG. It is a figure for demonstrating the change of the illumination area in the exposure apparatus shown in FIG. It is a figure for demonstrating the change of the illumination area in the exposure apparatus shown in FIG. It is a figure which shows the structure and illumination area | region of a 1st integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure and illumination area | region of a 1st integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure and illumination area of a 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure and illumination area of a 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the relationship between the lens boundary on the 2nd micro lens, and the breadth of light. It is a figure which shows the relationship between the lens boundary on the 2nd micro lens, and the breadth of light. It is a figure which shows the relationship between the lens boundary on the 2nd micro lens, and the breadth of light. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG. It is a figure which shows the structure of the 2nd integrator in the exposure apparatus shown in FIG.
 図1は、本発明の一側面としての露光装置100の構成を示す概略図である。露光装置100は、光源部LUからの光を用いて基板15を露光してパターンを形成するリソグラフィ装置である。露光装置100は、本実施形態では、ステップ・アンド・スキャン方式を採用し、マスク12と基板15とを走査しながらマスク12のパターンを基板15に転写する。図1では、走査方向に垂直な方向(紙面に垂直な方向)をx軸とし、走査方向にy軸とし、それらと直交する方向をz軸とする座標系を定義している。 FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 100 as one aspect of the present invention. The exposure apparatus 100 is a lithography apparatus that forms a pattern by exposing the substrate 15 using light from the light source unit LU. In this embodiment, the exposure apparatus 100 employs a step-and-scan method, and transfers the pattern of the mask 12 to the substrate 15 while scanning the mask 12 and the substrate 15. In FIG. 1, a coordinate system is defined in which the direction perpendicular to the scanning direction (direction perpendicular to the paper surface) is the x-axis, the scanning direction is the y-axis, and the direction orthogonal thereto is the z-axis.
 露光装置100は、コンデンサーレンズ5と、複数のオプティカルインテグレータ6と、開口絞り7と、コンデンサーレンズ8と、スリット(遮光板)9と、マスキングブレード10と、コンデンサーレンズ11とを有する。更に、露光装置100は、マスクステージ13と、投影光学系14と、基板ステージ16とを有する。コンデンサーレンズ5、複数のオプティカルインテグレータ6、開口絞り7、コンデンサーレンズ8、スリット9、マスキングブレード10及びコンデンサーレンズ11は、光源1からの光で被照明面(マスク12や基板15)を照明する照明装置ILを構成する。 The exposure apparatus 100 includes a condenser lens 5, a plurality of optical integrators 6, an aperture stop 7, a condenser lens 8, a slit (light shielding plate) 9, a masking blade 10, and a condenser lens 11. The exposure apparatus 100 further includes a mask stage 13, a projection optical system 14, and a substrate stage 16. The condenser lens 5, the plurality of optical integrators 6, the aperture stop 7, the condenser lens 8, the slit 9, the masking blade 10, and the condenser lens 11 illuminate the surface to be illuminated (mask 12 or substrate 15) with light from the light source 1. The apparatus IL is configured.
 光源部LUは、例えば、ハロゲンランプなどの紫外線(光)を射出する光源1と、集光ミラー2とを含む。集光ミラー2は、本実施形態では、楕円形状を有する。集光ミラー2(楕円)の第1焦点3の近傍には、光源1の発光部が配置され、光源1からの光は、集光ミラー2の第2焦点4に集光(結像)される。 The light source unit LU includes, for example, a light source 1 that emits ultraviolet light (light) such as a halogen lamp, and a condenser mirror 2. In the present embodiment, the condensing mirror 2 has an elliptical shape. A light emitting unit of the light source 1 is disposed in the vicinity of the first focal point 3 of the condenser mirror 2 (ellipse), and light from the light source 1 is condensed (imaged) on the second focal point 4 of the condenser mirror 2. The
 コンデンサーレンズ5は、第2焦点4に集光された光を、複数のオプティカルインテグレータ6のうち光源1からの光の光路に配置されたオプティカルインテグレータ(の入射面)に集光する。複数のオプティカルインテグレータ6は、光源1からの光の光路に交換可能に配置され、本実施形態では、1ショットあたりの露光領域の変動に応じて光路に配置するオプティカルインテグレータを選択可能な構造(ターレットなど)を有する。また、複数のオプティカルインテグレータ6は、互いに異なる面積の照明領域を形成する。本実施形態では、複数のオプティカルインテグレータ6は、第1インテグレータ6aと、第2インテグレータ6bとを含む。第1インテグレータ6a及び第2インテグレータ6bの詳細な構成は後述する。 The condenser lens 5 condenses the light collected at the second focal point 4 on an optical integrator (incident surface) disposed in the optical path of the light from the light source 1 among the plurality of optical integrators 6. The plurality of optical integrators 6 are arranged so as to be exchangeable in the optical path of the light from the light source 1, and in this embodiment, a structure (turret) capable of selecting the optical integrator to be arranged in the optical path according to the variation of the exposure area per shot. Etc.). The plurality of optical integrators 6 form illumination areas having different areas. In the present embodiment, the plurality of optical integrators 6 include a first integrator 6a and a second integrator 6b. Detailed configurations of the first integrator 6a and the second integrator 6b will be described later.
 開口絞り7は、光源1からの光の光路に配置された第1インテグレータ6a又は第2インテグレータ6bの射出面の近傍に配置されている。第1インテグレータ6a又は第2インテグレータ6bを通過した光は、開口絞り7及びコンデンサーレンズ8を介して、投影光学系14に入射する光の形状を規定するスリット9及び露光領域を規定するマスキングブレード10をケーラー照明する。スリット9及びマスキングブレード10は、被照明面(マスク12や基板15)と光学的に共役な面の近傍に配置すればよく、図1に示す位置に配置することに限定されるものではない。スリット9及びマスキングブレード10を通過した光は、コンデンサーレンズ11を介して、投影光学系14の物体面に配置されたマスク12を照明する。 The aperture stop 7 is disposed in the vicinity of the exit surface of the first integrator 6a or the second integrator 6b disposed in the optical path of the light from the light source 1. The light that has passed through the first integrator 6a or the second integrator 6b passes through the aperture stop 7 and the condenser lens 8, and the slit 9 that defines the shape of the light incident on the projection optical system 14 and the masking blade 10 that defines the exposure area. Koehler lighting. The slit 9 and the masking blade 10 may be disposed in the vicinity of a surface optically conjugate with the surface to be illuminated (mask 12 or substrate 15), and is not limited to being disposed at the position shown in FIG. The light that has passed through the slit 9 and the masking blade 10 illuminates the mask 12 disposed on the object plane of the projection optical system 14 via the condenser lens 11.
 投影光学系14は、マスク12のパターンを、投影光学系14の像面に配置された基板15に投影する光学系であって、反射光学系又は反射屈折光学系を含む。マスク12と基板15とは、投影光学系14に関して、光学的に共役な関係に配置される。 The projection optical system 14 is an optical system that projects the pattern of the mask 12 onto the substrate 15 disposed on the image plane of the projection optical system 14, and includes a reflection optical system or a catadioptric optical system. The mask 12 and the substrate 15 are arranged in an optically conjugate relationship with respect to the projection optical system 14.
 マスクステージ13は、マスク12を保持して移動するステージであって、例えば、マスク12を走査方向に移動させる(走査する)機能を実現する。基板ステージ16は、基板15を保持して移動するステージであって、例えば、基板15を走査方向に移動させる(走査する)機能を実現する。マスクステージ13及び基板ステージ16によってマスク12と基板15とを走査しながらスリット状の光で基板15を露光する。 The mask stage 13 is a stage that moves while holding the mask 12, and realizes a function of moving (scanning) the mask 12 in the scanning direction, for example. The substrate stage 16 is a stage that holds and moves the substrate 15 and realizes, for example, a function of moving (scanning) the substrate 15 in the scanning direction. While scanning the mask 12 and the substrate 15 with the mask stage 13 and the substrate stage 16, the substrate 15 is exposed with slit-shaped light.
 投影光学系14は、本実施形態では、反射光学系として具現化され、図2Aに示すように、円弧状の露光領域を形成する。このような円弧状の露光領域は、図2Bに示すように、オプティカルインテグレータ6及びコンデンサーレンズ8によってケーラー照明された矩形状の光(照明領域)30を、円弧状の開口を有するスリット9で切り出すことで形成される。 In the present embodiment, the projection optical system 14 is embodied as a reflection optical system, and forms an arcuate exposure region as shown in FIG. 2A. As shown in FIG. 2B, such an arc-shaped exposure area cuts out rectangular light (illumination area) 30 that is Koehler-illuminated by the optical integrator 6 and the condenser lens 8 by a slit 9 having an arc-shaped opening. Is formed.
 フラットパネルディスプレイ装置のパネルの製造では、1つの基板を露光する際に作成するデバイス(例えば、画面サイズ)に応じて、露光するショットサイズ、即ち、1ショットあたりの露光領域を変更する。このような場合、照明効率の観点では、露光領域の変更に合わせて、被照明面に形成する照明領域も変更することが好ましい。 In manufacturing a panel of a flat panel display device, a shot size to be exposed, that is, an exposure area per shot, is changed according to a device (for example, a screen size) created when exposing one substrate. In such a case, from the viewpoint of illumination efficiency, it is preferable to change the illumination area formed on the illuminated surface in accordance with the change of the exposure area.
 図3A乃至図3Cを参照して、露光装置100における1ショットあたりの露光領域の変更に応じた照明領域の変更について説明する。ここでは、露光領域の非走査方向の露光幅として必要な長さが、長い場合を長さXa、短い場合を長さXbとする。また、照明装置ILは、第1方向(x軸方向)に沿って長手方向を有し、第1方向に直交する第2方向(y軸方向)に沿って短手方向を有する矩形状の照明領域を形成する。 With reference to FIG. 3A thru | or FIG. 3C, the change of the illumination area | region according to the change of the exposure area | region per shot in the exposure apparatus 100 is demonstrated. Here, the length required for the exposure width in the non-scanning direction of the exposure region is a length Xa, and a length Xb is a short length. Further, the illumination device IL has a rectangular illumination having a longitudinal direction along the first direction (x-axis direction) and a short direction along a second direction (y-axis direction) orthogonal to the first direction. Form a region.
 露光領域の非走査方向の長さが長さXaである場合には、図3Aに示すように、長手方向に長さ(第1長さ)Xaを有し、短手方向に長さ(第2長さ)Yaを有する照明領域(第1照明領域)30aを形成する。また、露光領域の非走査方向の長さが長さXbである場合には、図3Bに示すように、長手方向に長さ(第1長さより短い第3長さ)Xbを有し、短手方向に長さ(第2長さより短い第4長さ)Ybを有する照明領域(第2照明領域)30bを形成する。照明領域30a及び30bは、スリット9の円弧状の開口、即ち、円弧状の露光領域(円弧領域)をカバーするように形成される。また、照明領域30aと照明領域30bの左端を揃える、即ち、照明領域30aのx軸方向に沿った辺のうちの円弧領域の凸側の辺SXaと照明領域30bのx軸方向に沿った辺のうちの円弧領域の凸側の辺SXbとが一致するように形成する必要がある。従って、図3Cに示すように、照明領域30aの中心(中心位置)31aと照明領域30bの中心(中心位置)31bとを、走査方向(y軸方向)において、Δy=(Ya-Yb)/2だけずらしている(シフトさせている)。 When the length of the exposure region in the non-scanning direction is the length Xa, as shown in FIG. 3A, the exposure region has a length (first length) Xa and a length (first length) in the short direction. An illumination area (first illumination area) 30a having (2 lengths) Ya is formed. Further, when the length of the exposure region in the non-scanning direction is the length Xb, as shown in FIG. 3B, the length (the third length shorter than the first length) Xb in the longitudinal direction has a short length. An illumination region (second illumination region) 30b having a length (fourth length shorter than the second length) Yb in the hand direction is formed. The illumination areas 30a and 30b are formed so as to cover the arc-shaped opening of the slit 9, that is, the arc-shaped exposure area (arc area). Further, the left ends of the illumination region 30a and the illumination region 30b are aligned, that is, the side SXa on the convex side of the arc region of the sides along the x-axis direction of the illumination region 30a and the side along the x-axis direction of the illumination region 30b Of these, it is necessary to form so that the convex side SXb of the arc region coincides. Therefore, as shown in FIG. 3C, the center (center position) 31a of the illumination area 30a and the center (center position) 31b of the illumination area 30b are set to Δy = (Ya−Yb) / in the scanning direction (y-axis direction). It is shifted by 2 (shifted).
 このような照明領域の変更及び照明領域の中心位置のシフトを、本実施形態では、第1インテグレータ6a及び第2インテグレータ6bによって実現する。例えば、第1インテグレータ6aは、露光領域の非走査方向の長さが長い場合に用いられ(光源1からの光の光路に配置され)、長手方向(x軸方向)に長さXaを有し、短手方向(y軸方向)に長さYaを有する照明領域30a(図3A)を形成する。また、第2インテグレータ6bは、露光領域の非走査方向の長さが短い場合に用いられ(光源1からの光の光路に配置され)、長手方向(x軸方向)に長さXbを有し、短手方向(y軸方向)に長さYbを有する照明領域30b(図3B)を形成する。 In this embodiment, the change of the illumination area and the shift of the center position of the illumination area are realized by the first integrator 6a and the second integrator 6b. For example, the first integrator 6a is used when the length of the exposure region in the non-scanning direction is long (arranged in the optical path of light from the light source 1) and has a length Xa in the longitudinal direction (x-axis direction). The illumination region 30a (FIG. 3A) having a length Ya in the short direction (y-axis direction) is formed. The second integrator 6b is used when the length of the exposure region in the non-scanning direction is short (arranged in the optical path of light from the light source 1) and has a length Xb in the longitudinal direction (x-axis direction). The illumination region 30b (FIG. 3B) having a length Yb in the short direction (y-axis direction) is formed.
 図4A及び図4Bは、第1インテグレータ6aの構成及び第1インテグレータ6aによって形成される照明領域30aを示す図である。図4Aは、xz方向の断面図を示し、図4Bは、yz方向の断面図を示している。第1インテグレータ6aは、光の進行方向に沿って順に、光の入射側の面に複数のマイクロレンズが配列されたフライアイレンズ61aと、光の射出側の面に複数のマイクロレンズが配列されたフライアイレンズ62aとを含む。図4A及び図4Bでは、フライアイレンズ61a及び62aとして、複数のマイクロレンズのうちの一対のマイクロレンズだけを図示しているが、実際には、x軸方向及びy軸方向のそれぞれに多数のマイクロレンズが配置されている。フライアイレンズ61a及び62aは、被照明面に形成される照明領域30aの形状と略相似となる断面形状を有する。第1インテグレータ6aを構成するフライアイレンズ61a及び62aの各マイクロレンズを通過した光が2次光源を形成する。第1インテグレータ6aから射出された光は、コンデンサーレンズ8を介して、被照明面を均一に照明する。 4A and 4B are diagrams showing the configuration of the first integrator 6a and the illumination region 30a formed by the first integrator 6a. 4A shows a cross-sectional view in the xz direction, and FIG. 4B shows a cross-sectional view in the yz direction. The first integrator 6a includes a fly-eye lens 61a in which a plurality of microlenses are arranged on a light incident side surface and a plurality of microlenses on a light emission side surface in order along the light traveling direction. And a fly eye lens 62a. 4A and 4B, only a pair of microlenses among the plurality of microlenses is illustrated as the fly- eye lenses 61a and 62a. In practice, however, there are many fly- eye lenses 61a and 62a in the x-axis direction and the y-axis direction. A micro lens is arranged. The fly- eye lenses 61a and 62a have a cross-sectional shape that is substantially similar to the shape of the illumination region 30a formed on the illuminated surface. The light that has passed through the microlenses of the fly- eye lenses 61a and 62a constituting the first integrator 6a forms a secondary light source. The light emitted from the first integrator 6a illuminates the illuminated surface uniformly via the condenser lens 8.
 図5A及び図5Bは、第2インテグレータ6bの構成及び第2インテグレータ6bによって形成される照明領域30bを示す図である。図5Aは、xz方向の断面図を示し、図5Bは、yz方向の断面図を示している。第2インテグレータ6bは、光の進行方向に沿って順に、光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズ61bと、光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズ62bとを含む。第2インテグレータ6bが形成する照明領域30bは、第1インテグレータ6aが形成する照明領域30aに対して、x軸方向及びy軸方向に小さくなる。従って、第1フライアイレンズ61b及び第2フライアイレンズ62bのそれぞれのマイクロレンズのサイズは、フライアイレンズ61a及び62bのそれぞれのマイクロレンズのサイズより小さくなっている。図5A及び図5Bでは、第1フライアイレンズ61b及び第2フライアイレンズ62bとして、一対のマイクロレンズだけを図示しているが、実際には、x軸方向及びy軸方向のそれぞれに多数のマイクロレンズが配置されている。 5A and 5B are diagrams showing the configuration of the second integrator 6b and the illumination region 30b formed by the second integrator 6b. FIG. 5A shows a cross-sectional view in the xz direction, and FIG. 5B shows a cross-sectional view in the yz direction. The second integrator 6b includes, in order along the light traveling direction, a first fly-eye lens 61b in which a plurality of first microlenses are arranged on a light incident side surface, and a plurality of first eyelets on a light emission side surface. And a second fly-eye lens 62b in which two microlenses are arranged. The illumination area 30b formed by the second integrator 6b is smaller in the x-axis direction and the y-axis direction than the illumination area 30a formed by the first integrator 6a. Accordingly, the size of each microlens of the first fly-eye lens 61b and the second fly-eye lens 62b is smaller than the size of each microlens of the fly- eye lenses 61a and 62b. 5A and 5B, only a pair of microlenses is illustrated as the first fly-eye lens 61b and the second fly-eye lens 62b, but in actuality, there are many in the x-axis direction and the y-axis direction. A micro lens is arranged.
 図5Bに示すように、第1フライアイレンズ61bの複数の第1マイクレンズのそれぞれの光の入射側の面のy軸方向における中心(中心位置)を61Cbとする。また、複数の第1マイクロレンズのそれぞれに対応する、第2フライアイレンズ62bの複数の第2マイクロレンズのそれぞれの光の射出側の面のy軸方向における中心(中心位置)を62Cbとする。本実施形態では、各第1マイクロレンズの中心61Cbと各第2マイクロレンズの中心62Cbとがy軸方向に相対的にずれる(シフトする)ように、第1フライアイレンズ61bと第2フライアイレンズ62bとが配置されている。これにより、第2フライアイレンズ62bから射出される主光線の角度が傾くことになるため、被照明面に形成される照明領域30bの中心位置をシフトさせることが可能となる。従って、第1インテグレータ6aによって形成される照明領域30aのy軸方向の中心31aに対して、第2インテグレータ6bによって形成される照明領域30bのy軸方向の中心31bをy軸方向にΔyだけシフトさせることができる(図3C)。ここで、照明領域30bの中心31bのシフト量Δyは、コンデンサーレンズ8の焦点距離をf、第2インテグレータ6bから射出される主光線の傾き角をθとすると、Δy=f×sinθで表すことができる。 As shown in FIG. 5B, the center (center position) in the y-axis direction of the light incident side surface of each of the plurality of first microphone lenses of the first fly-eye lens 61b is 61Cb. Further, the center (center position) in the y-axis direction of the surface on the light emission side of each of the plurality of second microlenses of the second fly-eye lens 62b corresponding to each of the plurality of first microlenses is set to 62Cb. . In the present embodiment, the first fly-eye lens 61b and the second fly-eye are arranged such that the center 61Cb of each first microlens and the center 62Cb of each second microlens are relatively shifted (shifted) in the y-axis direction. A lens 62b is disposed. As a result, the angle of the principal ray emitted from the second fly-eye lens 62b is inclined, so that the center position of the illumination region 30b formed on the illuminated surface can be shifted. Accordingly, the center 31b in the y-axis direction of the illumination region 30b formed by the second integrator 6b is shifted by Δy in the y-axis direction with respect to the center 31a in the y-axis direction of the illumination region 30a formed by the first integrator 6a. (FIG. 3C). Here, the shift amount Δy of the center 31b of the illumination region 30b is expressed as Δy = f × sin θ, where f is the focal length of the condenser lens 8 and θ is the tilt angle of the principal ray emitted from the second integrator 6b. Can do.
 このように、第1フライアイレンズ61bと第2フライアイレンズ62bとをy軸方向に相対的にシフトさせることで、照明領域の中心位置のシフトを実現することができる。従って、露光装置100(照明装置IL)では、露光領域を変更する場合において、効率的な照明を実現することができる。なお、本実施形態では、第1フライアイレンズ61bと第2フライアイレンズ62bとをy軸方向に相対的にシフトさせた状態で第2インテグレータ6bを、例えば、ターレットなどに組み込むことを想定している。但し、第1フライアイレンズ61bと第2フライアイレンズ62bとをy軸方向に相対的にシフトさせるシフト機構を設けてもよい。 Thus, the center position of the illumination area can be shifted by relatively shifting the first fly-eye lens 61b and the second fly-eye lens 62b in the y-axis direction. Therefore, the exposure apparatus 100 (illumination apparatus IL) can achieve efficient illumination when changing the exposure area. In the present embodiment, it is assumed that the second integrator 6b is incorporated in, for example, a turret or the like with the first fly-eye lens 61b and the second fly-eye lens 62b relatively shifted in the y-axis direction. ing. However, a shift mechanism that relatively shifts the first fly-eye lens 61b and the second fly-eye lens 62b in the y-axis direction may be provided.
 また、図5A及び図5Bでは、光源1からの光は、第2インテグレータ6bに対して平行光として入射している。しかしながら、実際には、図6A乃至図6Cに示すように、光源1からの光は、第2インテグレータ6bに対して集光光として(即ち、角度を有して)入射する。第2インテグレータ6bに対する光の入射角度は、照明装置ILの設計条件によって変化する。本実施形態では、第2インテグレータ6bの射出面、即ち、第2フライアイレンズ62bの第2マイクロレンズのそれぞれにおいて、y軸方向のレンズ境界まで光が広がっている場合を例に説明する。 In FIGS. 5A and 5B, the light from the light source 1 is incident on the second integrator 6b as parallel light. However, actually, as shown in FIGS. 6A to 6C, the light from the light source 1 is incident on the second integrator 6b as condensed light (that is, with an angle). The incident angle of the light with respect to the 2nd integrator 6b changes with the design conditions of illuminating device IL. In the present embodiment, a case where light spreads to the lens boundary in the y-axis direction on the exit surface of the second integrator 6b, that is, each of the second microlenses of the second fly-eye lens 62b will be described as an example.
 図6Aは、第2インテグレータ6bにおいて、第1フライアイレンズ61bと第2フライアイレンズ62bとをy軸方向に相対的にシフトさせていない、即ち、照明領域30bの中心をシフトさせない場合を示している。図6Aに示す場合において、第2フライアイレンズ62bの第2マイクロレンズ上でのレンズ境界と光60の広がりとの関係を図7Aに示す。図7Aを参照するに、第2インテグレータ6bに集光光として入射した光60は、第2フライアイレンズ62bのマイクロレンズのy軸方向のレンズ境界まで広がっている。 FIG. 6A shows a case where in the second integrator 6b, the first fly-eye lens 61b and the second fly-eye lens 62b are not relatively shifted in the y-axis direction, that is, the center of the illumination region 30b is not shifted. ing. In the case shown in FIG. 6A, the relationship between the lens boundary on the second microlens of the second fly-eye lens 62b and the spread of the light 60 is shown in FIG. 7A. Referring to FIG. 7A, the light 60 incident as the condensed light on the second integrator 6b spreads to the lens boundary in the y-axis direction of the microlens of the second fly-eye lens 62b.
 図6Bは、第2インテグレータ6bにおいて、第1フライアイレンズ61bと第2フライアイレンズ62bとをy軸方向に相対的にシフトさせた、即ち、照明領域30bの中心をシフトさせた場合を示している。図6Bに示す場合において、第2フライアイレンズ62bの第2マイクロレンズ上でのレンズ境界と光60の広がりとの関係を図7Bに示す。図7Bを参照するに、第1フライアイレンズ61bと第2フライアイレンズ62bとをy軸方向に相対的にシフトさせているため、第2マイクロレンズのレンズ境界において、第2インテグレータ6bに入射した光60の一部にけられが生じている。第2マイクロレンズのレンズ境界でけられた光は、例えば、隣接する第2マイクロレンズ(不図示)に入射し、被照明面に対する照明には利用されない不要な光となるため、光量ロスとなり、スループットの低下を招くことになる。 FIG. 6B shows a case where in the second integrator 6b, the first fly-eye lens 61b and the second fly-eye lens 62b are relatively shifted in the y-axis direction, that is, the center of the illumination region 30b is shifted. ing. FIG. 7B shows the relationship between the lens boundary on the second microlens of the second fly's eye lens 62b and the spread of the light 60 in the case shown in FIG. 6B. Referring to FIG. 7B, since the first fly-eye lens 61b and the second fly-eye lens 62b are relatively shifted in the y-axis direction, they enter the second integrator 6b at the lens boundary of the second microlens. A part of the light 60 is garbled. For example, the light emitted at the lens boundary of the second microlens is incident on an adjacent second microlens (not shown) and becomes unnecessary light that is not used for illumination of the illuminated surface. This leads to a decrease in throughput.
 そこで、このような光量ロスを改善するために、図6Cに示すように、光源1と第1フライアイレンズ61bとの間、即ち、第1フライアイレンズ61bの入射側に、偏向部材75を配置する。偏向部材75は、楔状の光学部材であって、第2インテグレータ6bに集光光として入射する光60をy軸方向に偏向する。また、偏向部材75は、偏向部材75を配置していない場合と比較して、第1フライアイレンズ61bから射出して第2フライアイレンズ62bに入射する光が増加するように、光60をy軸方向に偏向するように構成されている。これにより、図7Cに示すように、第2マイクロレンズのレンズ境界での光60のけられが抑制されるため、光量ロスを抑えて所期のスループットを維持することができる。なお、本実施形態では、偏向部材75を、第2インテグレータ6bとともに、例えば、ターレットなどに組み込むことを想定しているが、光源1からの光の光路に対して偏向部材75を挿脱する機構を設けてもよい。 Therefore, in order to improve such a light amount loss, as shown in FIG. 6C, a deflection member 75 is provided between the light source 1 and the first fly-eye lens 61b, that is, on the incident side of the first fly-eye lens 61b. Deploy. The deflection member 75 is a wedge-shaped optical member, and deflects the light 60 incident as the condensed light on the second integrator 6b in the y-axis direction. Further, the deflection member 75 emits the light 60 so that the light emitted from the first fly-eye lens 61b and incident on the second fly-eye lens 62b is increased as compared with the case where the deflection member 75 is not disposed. It is configured to deflect in the y-axis direction. As a result, as shown in FIG. 7C, the swaying of the light 60 at the lens boundary of the second microlens is suppressed, so that the desired throughput can be maintained while suppressing the light amount loss. In this embodiment, it is assumed that the deflecting member 75 is incorporated in the turret together with the second integrator 6b, but a mechanism for inserting and removing the deflecting member 75 with respect to the optical path of light from the light source 1 is assumed. May be provided.
 また、図8に示すように、第1フライアイレンズ61bと第2フライアイレンズ62bとをx軸回りに傾かせる(回転させる)ことで、第2インテグレータ6bによって形成される照明領域の中心位置をシフトさせることも可能である。図8を参照するに、第1フライアイレンズ61bの第1マイクレンズ及び第2フライアイレンズ62bの第2マイクロレンズのそれぞれは、各レンズの外形中心上に曲率中心を有し、且つ、それらは相対的にシフトせずに同軸上に配置されている。また、第1フライアイレンズ61bと第2フライアイレンズ62bとがx軸回りに傾きを有するように配置されている。換言すれば、第1マイクロレンズの中心61Cbと第2マイクロレンズの中心62Cbとを結ぶ直線L1と、光軸OAとが交差するように、第1フライアイレンズ61bと第2フライアイレンズ62bとが配置されている。ここで、光軸OAは、x軸方向(第1方向)及びy軸方向(第2方向)に直交するz軸方向(第3方向)と平行となるように設定されている。これにより、第2インテグレータ6bから射出される主光線の角度が傾くことになるため、被照明面に形成される照明領域30bの中心位置をシフトさせることが可能となる。また、上述したように、第1フライアイレンズ61bの入射側に偏向部材75を配置することで、第2マイクロレンズのレンズ境界での光60のけられを抑制することができる。 Further, as shown in FIG. 8, the first fly-eye lens 61b and the second fly-eye lens 62b are tilted (rotated) around the x-axis to thereby center the illumination area formed by the second integrator 6b. Can also be shifted. Referring to FIG. 8, each of the first microphone lens of the first fly-eye lens 61b and the second microlens of the second fly-eye lens 62b has a center of curvature on the outer shape center of each lens, and Are arranged coaxially without relatively shifting. Further, the first fly-eye lens 61b and the second fly-eye lens 62b are arranged so as to have an inclination around the x axis. In other words, the first fly-eye lens 61b and the second fly-eye lens 62b are arranged so that the straight line L1 connecting the center 61Cb of the first microlens and the center 62Cb of the second microlens intersects the optical axis OA. Is arranged. Here, the optical axis OA is set to be parallel to the z-axis direction (third direction) orthogonal to the x-axis direction (first direction) and the y-axis direction (second direction). Thereby, since the angle of the chief ray emitted from the second integrator 6b is inclined, the center position of the illumination area 30b formed on the illuminated surface can be shifted. Further, as described above, by arranging the deflecting member 75 on the incident side of the first fly-eye lens 61b, the swaying of the light 60 at the lens boundary of the second microlens can be suppressed.
 なお、本実施形態では、第1フライアイレンズ61bと第2フライアイレンズ62bとをx軸回りに傾かせた状態で第2インテグレータ6bを、例えば、ターレットなどに組み込むことを想定している。但し、第1フライアイレンズ61bと第2フライアイレンズ62bとをx軸回りに回転させる回転機構を設けてもよい。 In the present embodiment, it is assumed that the second integrator 6b is incorporated into, for example, a turret with the first fly-eye lens 61b and the second fly-eye lens 62b tilted around the x axis. However, a rotation mechanism that rotates the first fly-eye lens 61b and the second fly-eye lens 62b around the x axis may be provided.
 また、図5A及び図5Bや図8に示す第2インテグレータ6bを、図9に示す第2インテグレータ90に置換することも可能である。第2インテグレータ90は、光の進行方向に沿って順に、光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズ91と、光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズ92とを含む。図9に示すように、第1フライアイレンズ91の複数の第1マイクレンズのそれぞれの光の入射側の面のy軸方向における中心(中心位置)を91Cとする。また、複数の第1マイクロレンズのそれぞれに対応する、第2フライアイレンズ92の複数の第2マイクロレンズのそれぞれの光の射出側の面のy軸方向における中心(中心位置)を92Cとする。本実施形態では、各第1マイクロレンズの中心91Cと各第2マイクロレンズの中心92Cとがz軸方向に沿った同じ軸上に存在するように、第1フライアイレンズ91と第2フライアイレンズ92とが配置されている。第1フライアイレンズ91の複数の第1マイクロレンズのそれぞれは、光の入射側の面が曲面で構成され、かかる曲面の頂点93と中心91Cとが一致している。また、第2フライアイレンズ92の複数の第2マイクロレンズのそれぞれは、光の射出側の面が曲面で構成され、かかる曲面の頂点94を中心92Cからy軸方向にずれた位置に有する。換言すれば、第2マイクロレンズの曲面の頂点94をy軸方向にシフト(偏心)させている。 Further, the second integrator 6b shown in FIGS. 5A, 5B, and 8 can be replaced with the second integrator 90 shown in FIG. The second integrator 90 sequentially includes a first fly-eye lens 91 in which a plurality of first microlenses are arranged on a light incident side surface and a plurality of first eyelets on a light emission side surface along the light traveling direction. And a second fly-eye lens 92 in which two microlenses are arranged. As shown in FIG. 9, the center (center position) in the y-axis direction of the light incident side surface of each of the plurality of first microphone lenses of the first fly-eye lens 91 is 91C. Further, the center (center position) in the y-axis direction of the light exit side surface of each of the plurality of second microlenses of the second fly-eye lens 92 corresponding to each of the plurality of first microlenses is set to 92C. . In the present embodiment, the first fly-eye lens 91 and the second fly-eye are arranged so that the center 91C of each first microlens and the center 92C of each second microlens are on the same axis along the z-axis direction. A lens 92 is disposed. Each of the plurality of first microlenses of the first fly-eye lens 91 has a curved surface on the light incident side, and the apex 93 and the center 91C of the curved surface coincide with each other. In addition, each of the plurality of second microlenses of the second fly-eye lens 92 has a curved surface on the light emission side, and has a vertex 94 of the curved surface shifted from the center 92C in the y-axis direction. In other words, the apex 94 of the curved surface of the second microlens is shifted (eccentric) in the y-axis direction.
 図9では、第2インテグレータ90に入射する光として、平行光を実線で示し、集光光を点線で示している。第2マイクロレンズの曲面の頂点94がy軸方向にシフトしているため、第2インテグレータ90に入射した平行光は、第2フライアイレンズ92から傾いて射出される。また、第1マイクロレンズの中心91Cと第2マイクロレンズの中心92Cとが同軸上に配置されているため、第2インテグレータ90に入射した集光光は、第2フライアイレンズ92でけられることがない。従って、第2インテグレータ90は、光量ロスを生じさせることなく、被照明面に形成される照明領域の中心位置のシフトを実現することが可能である。 In FIG. 9, as light incident on the second integrator 90, parallel light is indicated by a solid line, and condensed light is indicated by a dotted line. Since the apex 94 of the curved surface of the second microlens is shifted in the y-axis direction, the parallel light that has entered the second integrator 90 is tilted and emitted from the second fly-eye lens 92. In addition, since the center 91C of the first microlens and the center 92C of the second microlens are arranged coaxially, the condensed light incident on the second integrator 90 is blocked by the second fly-eye lens 92. There is no. Therefore, the second integrator 90 can realize the shift of the center position of the illumination area formed on the illuminated surface without causing a light amount loss.
 また、図9において、第2フライアイレンズ92から射出される光の傾き角度をθ、第1フライアイレンズ91の第1マイクロレンズの曲面の頂点93に対する第2フライアイレンズ92の第2マイクロレンズの曲面の頂点94のy軸方向へのシフト量をdyとする。また、図10に示すように、第2フライアイレンズ92の第2マイクロレンズの射出面の曲率半径をR、その屈折率をnとする。この場合、シフト量dyと傾き角度θとの関係は、以下の式で表される。
n×sinθ’=sin(θ+θ’)
dy=R×sinθ’
 なお、図8では、第1フライアイレンズ61bと第2フライアイレンズ62bとをx軸回りに傾かせた角度θが、第2インテグレータ6bから射出する光の傾き角度と一致する。
In FIG. 9, the inclination angle of the light emitted from the second fly-eye lens 92 is θ, and the second micro of the second fly-eye lens 92 with respect to the apex 93 of the curved surface of the first micro-lens of the first fly-eye lens 91. Let dy be the shift amount of the apex 94 of the curved surface of the lens in the y-axis direction. Also, as shown in FIG. 10, the radius of curvature of the exit surface of the second microlens of the second fly's eye lens 92 is R, and its refractive index is n. In this case, the relationship between the shift amount dy and the inclination angle θ is expressed by the following equation.
n × sin θ ′ = sin (θ + θ ′)
dy = R × sin θ ′
In FIG. 8, the angle θ obtained by inclining the first fly-eye lens 61b and the second fly-eye lens 62b about the x axis coincides with the inclination angle of the light emitted from the second integrator 6b.
 また、図5A及び図5Bや図8に示す第2インテグレータ6bを、図11に示す第2インテグレータ110に置換することも可能である。第2インテグレータ110は、光の進行方向に沿って順に、光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズ111と、光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズ112とを含む。図11に示すように、第1フライアイレンズ111の複数の第1マイクレンズのそれぞれの光の入射側の面のy軸方向における中心(中心位置)を111Cとする。また、複数の第1マイクロレンズのそれぞれに対応する、第2フライアイレンズ112の複数の第2マイクロレンズのそれぞれの光の射出側の面のy軸方向における中心(中心位置)を112Cとする。本実施形態では、各第1マイクロレンズの中心111Cと各第2マイクロレンズの中心112Cとがz軸方向に沿った同じ軸上に存在するように、第1フライアイレンズ111と第2フライアイレンズ112とが配置されている。また、第1フライアイレンズ111の複数の第1マイクロレンズのそれぞれは、光の入射側の面が曲面で構成され、かかる曲面の頂点と中心111Cとが一致している。同様に、第2フライアイレンズ112の複数の第2マイクロレンズのそれぞれは、光の射出側の面が曲面で構成され、かかる曲面の頂点と中心112Cとが一致している。 Further, the second integrator 6b shown in FIGS. 5A, 5B, and 8 can be replaced with the second integrator 110 shown in FIG. The second integrator 110 includes a first fly-eye lens 111 in which a plurality of first microlenses are arranged on a light incident side surface and a plurality of first eyelets on a light emission side surface in order along the light traveling direction. And a second fly-eye lens 112 in which two microlenses are arranged. As shown in FIG. 11, the center (center position) in the y-axis direction of the light incident side surface of each of the plurality of first microphone lenses of the first fly-eye lens 111 is 111C. The center (center position) in the y-axis direction of the surface on the light exit side of each of the plurality of second microlenses of the second fly-eye lens 112 corresponding to each of the plurality of first microlenses is 112C. . In the present embodiment, the first fly-eye lens 111 and the second fly-eye are arranged so that the center 111C of each first microlens and the center 112C of each second microlens are on the same axis along the z-axis direction. A lens 112 is disposed. In addition, each of the plurality of first microlenses of the first fly-eye lens 111 has a curved surface on the light incident side, and the vertex of the curved surface coincides with the center 111C. Similarly, each of the plurality of second microlenses of the second fly's eye lens 112 has a curved surface on the light emission side, and the vertex of the curved surface coincides with the center 112C.
 第1フライアイレンズ111は、第2フライアイレンズ112の側の面114が平面(第1平面)で構成され、かかる平面は、x軸方向及びy軸方向に直交するz軸方向に直交する。また、第2フライアイレンズ112は、第1フライアイレンズ111の側の面115が平面(第2平面)で構成され、かかる平面は、面114に対して傾いている。換言すれば、第2フライアイレンズ112の面115は、x軸回りに傾いた楔状となっている。 In the first fly-eye lens 111, the surface 114 on the second fly-eye lens 112 side is a flat surface (first flat surface), and the flat surface is orthogonal to the z-axis direction orthogonal to the x-axis direction and the y-axis direction. . In the second fly-eye lens 112, the surface 115 on the first fly-eye lens 111 side is a flat surface (second flat surface), and the flat surface is inclined with respect to the surface 114. In other words, the surface 115 of the second fly-eye lens 112 has a wedge shape inclined about the x axis.
 図11では、第2インテグレータ110に入射する光として、平行光を実線で示し、集光光を点線で示している。第2フライアイレンズ112の面115がx軸回りに傾いた楔状であるため、第2インテグレータ110に入射した平行光は、第2フライアイレンズ112から傾いて射出される。また、第1マイクロレンズの中心111Cと第2マイクロレンズの中心112Cとが同軸上に配置されているため、第2インテグレータ110に入射した集光光は、第2フライアイレンズ112でけられることがない。従って、第2インテグレータ110は、光量ロスを生じさせることなく、被照明面に形成される照明領域の中心位置のシフトを実現することが可能である。 In FIG. 11, as light incident on the second integrator 110, parallel light is indicated by a solid line, and condensed light is indicated by a dotted line. Since the surface 115 of the second fly-eye lens 112 has a wedge shape inclined about the x-axis, the parallel light incident on the second integrator 110 is emitted from the second fly-eye lens 112 while being inclined. In addition, since the center 111C of the first microlens and the center 112C of the second microlens are arranged on the same axis, the condensed light incident on the second integrator 110 is blocked by the second fly-eye lens 112. There is no. Therefore, the second integrator 110 can realize the shift of the center position of the illumination area formed on the illuminated surface without causing a light amount loss.
 このように、本実施形態の露光装置100によれば、円弧状の露光領域に対して、その露光領域が変化する場合においても照明光率の低下を抑制し、高いスループットで基板15を露光することができる。 As described above, according to the exposure apparatus 100 of the present embodiment, the reduction of the illumination light rate is suppressed even when the exposure area changes with respect to the arc-shaped exposure area, and the substrate 15 is exposed with high throughput. be able to.
 本発明の実施形態における物品の製造方法は、例えば、デバイス(半導体素子、磁気記憶媒体、液晶表示素子など)、カラーフィルターなどの物品を製造するのに好適である。かかる製造方法は、露光装置100を用いて、感光剤が塗布された基板を露光する工程と、露光された基板を現像する工程を含む。また、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージングなど)を含みうる。本実施形態における物品の製造方法は、従来に比べて、物品の性能、品質、生産性及び生産コストの少なくとも1つにおいて有利である。 The article manufacturing method in the embodiment of the present invention is suitable for manufacturing articles such as devices (semiconductor elements, magnetic storage media, liquid crystal display elements, etc.), color filters, and the like. Such a manufacturing method includes a step of exposing a substrate coated with a photosensitive agent using the exposure apparatus 100 and a step of developing the exposed substrate. Such a manufacturing method may include other well-known steps (oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, packaging, and the like). The method for manufacturing an article in the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
 本願は、2016年9月13日提出の日本国特許出願特願2016-179023を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority on the basis of Japanese Patent Application No. 2016-179023 filed on Sep. 13, 2016, the entire contents of which are incorporated herein by reference.

Claims (9)

  1.  光源からの光で被照明面を照明する照明装置であって、
     前記被照明面と光学的に共役な面に、第1方向に沿って長手方向を有し、前記第1方向に直交する第2方向に沿って短手方向を有する矩形状の照明領域を形成する光学系と、
     前記被照明面と光学的に共役な面に配置され、円弧状の開口が設けられた遮光板と、を有し、
     前記光学系は、前記光の光路に交換可能に配置され、前記円弧状の開口をカバーする前記照明領域を形成する第1インテグレータ及び第2インテグレータを含み、
     前記第1インテグレータは、前記第1方向に第1長さを有し、前記第2方向に第2長さを有する第1照明領域を形成し、
     前記第2インテグレータは、前記第1方向に前記第1長さより短い第3長さを有し、前記第2方向に前記第2長さより短い第4長さを有する第2照明領域を、前記第1照明領域の前記第1方向に沿った辺のうちの前記円弧状の開口の凸側の辺と前記第2照明領域の前記第1方向に沿った辺のうちの前記円弧状の開口の凸側の辺とが一致するように形成することを特徴とする照明装置。
    An illumination device that illuminates an illuminated surface with light from a light source,
    A rectangular illumination region having a longitudinal direction along a first direction and a short direction along a second direction orthogonal to the first direction is formed on a surface optically conjugate with the illuminated surface. An optical system to
    A light shielding plate disposed on a surface optically conjugate with the illuminated surface and provided with an arc-shaped opening,
    The optical system includes a first integrator and a second integrator that are arranged in the optical path of the light so as to be exchangeable and form the illumination area that covers the arc-shaped opening,
    The first integrator forms a first illumination region having a first length in the first direction and a second length in the second direction;
    The second integrator has a second illumination area having a third length shorter than the first length in the first direction and a fourth length shorter than the second length in the second direction. The convex side of the arc-shaped opening among the sides along the first direction of one illumination area and the convex of the arc-shaped opening among the sides along the first direction of the second illumination area A lighting device, characterized in that the lighting device is formed so as to coincide with a side edge.
  2.  前記第2インテグレータは、前記光の進行方向に沿って順に、前記光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズと、前記光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズと、を含み、
     前記複数の第1マイクロレンズのそれぞれの前記光の入射側の面の前記第2方向における中心位置と前記複数の第1マイクロレンズのそれぞれに対応する前記複数の第2マイクロレンズのそれぞれの前記光の射出側の面の前記第2方向における中心位置とが前記第2方向に相対的にずれるように、前記第1フライアイレンズと前記第2フライアイレンズとが配置されていることを特徴とする請求項1に記載の照明装置。
    The second integrator includes a first fly-eye lens in which a plurality of first microlenses are arranged on a surface on the light incident side, and a plurality on the surface on the light emission side, in order along the traveling direction of the light. A second fly-eye lens in which the second microlenses are arranged,
    The center position in the second direction of the light incident surface of each of the plurality of first microlenses and the light of each of the plurality of second microlenses corresponding to each of the plurality of first microlenses. The first fly-eye lens and the second fly-eye lens are arranged such that a center position in the second direction of the surface on the emission side of the lens is relatively displaced in the second direction. The lighting device according to claim 1.
  3.  前記第2インテグレータは、前記光の進行方向に沿って順に、前記光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズと、前記光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズと、を含み、
     前記複数の第1マイクロレンズのそれぞれの前記光の入射側の面の前記第2方向における中心位置と前記複数の第1マイクロレンズのそれぞれに対応する前記複数の第2マイクロレンズのそれぞれの前記光の射出側の面の前記第2方向における中心位置とを結ぶ直線と、前記第1方向及び前記第2方向に直交する第3方向とが交差するように、前記第1フライアイレンズと前記第2フライアイレンズとが配置されていることを特徴とする請求項1に記載の照明装置。
    The second integrator includes a first fly-eye lens in which a plurality of first microlenses are arranged on a surface on the light incident side, and a plurality on the surface on the light emission side, in order along the traveling direction of the light. A second fly-eye lens in which the second microlenses are arranged,
    The center position in the second direction of the light incident surface of each of the plurality of first microlenses and the light of each of the plurality of second microlenses corresponding to each of the plurality of first microlenses. The first fly-eye lens and the first lens are arranged so that a straight line connecting the center position in the second direction of the surface on the exit side of the first and second directions intersects with the first direction and the third direction orthogonal to the second direction. The lighting apparatus according to claim 1, wherein two fly-eye lenses are arranged.
  4.  前記光は、集光光として前記第1フライアイレンズに入射し、
     前記光学系は、前記光路に前記第2インテグレータが配置される場合に、前記光源と前記第1フライアイレンズとの間に配置される偏向部材を更に有し、
     前記偏向部材は、前記光を前記第2方向に偏向することを特徴とする請求項2に記載の照明装置。
    The light is incident on the first fly-eye lens as condensed light,
    The optical system further includes a deflecting member disposed between the light source and the first fly-eye lens when the second integrator is disposed in the optical path,
    The lighting device according to claim 2, wherein the deflecting member deflects the light in the second direction.
  5.  前記偏向部材は、前記偏向部材を前記光路に配置していない場合と比較して、前記第1フライアイレンズから射出して前記第2フライアイレンズに入射する光が増加するように、前記光を前記第2方向に偏向することを特徴とする請求項4に記載の照明装置。 The deflecting member increases the light emitted from the first fly-eye lens and incident on the second fly-eye lens as compared with a case where the deflecting member is not disposed in the optical path. The lighting device according to claim 4, wherein the lighting device is deflected in the second direction.
  6.  前記第2インテグレータは、前記光の進行方向に沿って順に、前記光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズと、前記光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズと、を含み、
     前記複数の第1マイクロレンズのそれぞれの前記光の入射側の面の前記第2方向における中心位置と前記複数の第1マイクロレンズのそれぞれに対応する前記複数の第2マイクロレンズのそれぞれの前記光の射出側の面の前記第2方向における中心位置とが前記第1方向及び前記第2方向に直交する第3方向に沿った同じ軸上に存在するように、前記第1フライアイレンズと前記第2フライアイレンズとが配置され、
     前記複数の第2マイクロレンズのそれぞれは、前記光の射出側の面が曲面で構成され、前記複数の第2マイクロレンズのそれぞれの前記光の射出側の面の前記第2方向における中心位置から前記第2方向にずれた位置に前記曲面の頂点を有することを特徴とする請求項1に記載の照明装置。
    The second integrator includes a first fly-eye lens in which a plurality of first microlenses are arranged on a surface on the light incident side, and a plurality on the surface on the light emission side, in order along the traveling direction of the light. A second fly-eye lens in which the second microlenses are arranged,
    The center position in the second direction of the light incident surface of each of the plurality of first microlenses and the light of each of the plurality of second microlenses corresponding to each of the plurality of first microlenses. The first fly-eye lens and the center position in the second direction of the surface on the emission side of the first fly-eye lens and the first fly-eye lens so as to exist on the same axis along a third direction orthogonal to the first direction and the second direction. A second fly-eye lens is disposed,
    Each of the plurality of second microlenses has a curved surface on the light emission side, and each of the plurality of second microlenses has a center surface in the second direction of the light emission side surface of each of the plurality of second microlenses. The lighting device according to claim 1, wherein the curved surface has a vertex at a position shifted in the second direction.
  7.  前記第2インテグレータは、前記光の進行方向に沿って順に、前記光の入射側の面に複数の第1マイクロレンズが配列された第1フライアイレンズと、前記光の射出側の面に複数の第2マイクロレンズが配列された第2フライアイレンズと、を含み、
     前記複数の第1マイクロレンズのそれぞれの前記光の入射側の面の前記第2方向における中心位置と前記複数の第1マイクロレンズのそれぞれに対応する前記複数の第2マイクロレンズのそれぞれの前記光の射出側の面の前記第2方向における中心位置とが前記第1方向及び前記第2方向に直交する第3方向に沿った同じ軸上に存在するように、前記第1フライアイレンズと前記第2フライアイレンズとが配置され、
     前記第1フライアイレンズは、前記第2フライアイレンズの側の面が第1平面で構成され、
     前記第2フライアイレンズは、前記第1フライアイレンズの側の面が第2平面で構成され、
     前記第1平面は、前記第1方向及び前記第2方向に直交する第3方向に直交し、
     前記第2平面は、前記第1平面に対して傾いていることを特徴とする請求項1に記載の照明装置。
    The second integrator includes a first fly-eye lens in which a plurality of first microlenses are arranged on a surface on the light incident side, and a plurality on the surface on the light emission side, in order along the traveling direction of the light. A second fly-eye lens in which the second microlenses are arranged,
    The center position in the second direction of the light incident surface of each of the plurality of first microlenses and the light of each of the plurality of second microlenses corresponding to each of the plurality of first microlenses. The first fly-eye lens and the center position in the second direction of the surface on the emission side of the first fly-eye lens and the first fly-eye lens so as to exist on the same axis along a third direction orthogonal to the first direction and the second direction. A second fly-eye lens is disposed,
    In the first fly-eye lens, a surface on the side of the second fly-eye lens is constituted by a first plane,
    In the second fly-eye lens, the surface on the first fly-eye lens side is constituted by a second plane,
    The first plane is orthogonal to a third direction orthogonal to the first direction and the second direction,
    The lighting device according to claim 1, wherein the second plane is inclined with respect to the first plane.
  8.  基板を露光する露光装置であって、
     マスクを照明する請求項1に記載の照明装置と、
     前記照明装置によって照明された前記マスクのパターンを前記基板に投影する投影光学系と、
     を有することを特徴とする露光装置。
    An exposure apparatus for exposing a substrate,
    The illumination device according to claim 1, which illuminates a mask;
    A projection optical system that projects the pattern of the mask illuminated by the illumination device onto the substrate;
    An exposure apparatus comprising:
  9.  請求項8に記載の露光装置を用いて基板を露光する工程と、
     露光した前記基板を現像する工程と、
     を有し、現像された前記基板から物品を製造することを特徴とする物品の製造方法。
    Exposing the substrate using the exposure apparatus according to claim 8;
    Developing the exposed substrate;
    And manufacturing the article from the developed substrate.
PCT/JP2017/027008 2016-09-13 2017-07-26 Lighting device, exposure device, and method for manufacturing article WO2018051642A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197009186A KR20190046920A (en) 2016-09-13 2017-07-26 Lighting apparatus, exposure apparatus and manufacturing method of article
CN201780055492.6A CN109964176A (en) 2016-09-13 2017-07-26 The manufacturing method of lighting device, exposure device and article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-179023 2016-09-13
JP2016179023A JP2018045060A (en) 2016-09-13 2016-09-13 Illumination device, exposure device and production method of article

Publications (1)

Publication Number Publication Date
WO2018051642A1 true WO2018051642A1 (en) 2018-03-22

Family

ID=61619992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027008 WO2018051642A1 (en) 2016-09-13 2017-07-26 Lighting device, exposure device, and method for manufacturing article

Country Status (4)

Country Link
JP (1) JP2018045060A (en)
KR (1) KR20190046920A (en)
CN (1) CN109964176A (en)
WO (1) WO2018051642A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7446096B2 (en) 2019-12-04 2024-03-08 キヤノン株式会社 Illumination optical system and article manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794403A (en) * 1993-09-20 1995-04-07 Canon Inc Lighting device and projection aligner using same
JPH0831736A (en) * 1994-05-09 1996-02-02 Nikon Corp Illumination optical device
JPH10172878A (en) * 1996-12-06 1998-06-26 Nikon Corp Method of adjusting scan type aligner and scan type aligner using the method
JPH11231221A (en) * 1998-02-10 1999-08-27 Nikon Corp Illuminator and aligner, and manufacturing method of semiconductor device
JPH11338162A (en) * 1998-05-28 1999-12-10 Nippon Seiko Kk Exposure device
JP2005292316A (en) * 2004-03-31 2005-10-20 Ushio Inc Light irradiating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759890B2 (en) 1989-11-24 1998-05-28 ウシオ電機株式会社 Exposure equipment
JP3445021B2 (en) 1995-04-28 2003-09-08 キヤノン株式会社 Optical device
JP2005005637A (en) * 2003-06-16 2005-01-06 Canon Inc Circular arc region lighting optical device and projection aligner using it
TW200607008A (en) * 2004-08-09 2006-02-16 Adv Lcd Tech Dev Ct Co Ltd Light irradiation apparatus, crystallization apparatus, crystallization method and device
JP2009253214A (en) * 2008-04-10 2009-10-29 Canon Inc Exposure device and device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794403A (en) * 1993-09-20 1995-04-07 Canon Inc Lighting device and projection aligner using same
JPH0831736A (en) * 1994-05-09 1996-02-02 Nikon Corp Illumination optical device
JPH10172878A (en) * 1996-12-06 1998-06-26 Nikon Corp Method of adjusting scan type aligner and scan type aligner using the method
JPH11231221A (en) * 1998-02-10 1999-08-27 Nikon Corp Illuminator and aligner, and manufacturing method of semiconductor device
JPH11338162A (en) * 1998-05-28 1999-12-10 Nippon Seiko Kk Exposure device
JP2005292316A (en) * 2004-03-31 2005-10-20 Ushio Inc Light irradiating apparatus

Also Published As

Publication number Publication date
JP2018045060A (en) 2018-03-22
KR20190046920A (en) 2019-05-07
CN109964176A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
JP3633002B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP5142892B2 (en) Illumination optical system and exposure apparatus
JP2009093175A (en) Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
TWI579657B (en) Optical integrator, illumination optical system, exposure apparatus and device manufacturing method
JP2022051810A (en) Exposure device and exposure method
US8149386B2 (en) Illumination optical system, exposure apparatus using the same and device manufacturing method
TW200839460A (en) Exposure apparatus and semiconductor device fabrication method
US9946056B2 (en) Illumination optical system, exposure apparatus, and method of manufacturing article
JP6651124B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
WO2018051642A1 (en) Lighting device, exposure device, and method for manufacturing article
KR102144863B1 (en) Illuminating apparatus, exposure apparatus, exposure method and device manufacturing method
JPH0684759A (en) Illuminator
WO2018168993A1 (en) Illumination device and method, exposure device and method, and device manufacturing method
JP2014195048A (en) Illumination optical system, exposure equipment, and method of manufacturing device
TWI587097B (en) Illumination device, exposure apparatus, adjusting method, and method for manufacturing object
WO2011010560A1 (en) Lighting optical system, exposure apparatus, and device manufacturing method
JP2006253529A (en) Illumination optical apparatus, exposure apparatus, and exposure method
KR20180007672A (en) Exposure apparatus, exposure method, and method of manufacturing article
WO2009150913A1 (en) Illumination apparatus, exposure apparatus, and device fabrication method
TW202111382A (en) Exposure apparatus and method of manufacturing article advantageous for miniaturization of a concave mirror in a projection optical system
JP3879142B2 (en) Exposure equipment
WO2004090955A1 (en) Illuminating optical device, projection exposure system and exposure method
JP2002025897A (en) Illuminating optical device, aligner provided with the illuminating optical device, and microdevice manufacturing method using the aligner
JP2005331694A (en) Projection optical system, exposure apparatus and exposure method
JP2002025898A (en) Illuminating optical device, and aligner provided with the illuminating optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009186

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17850548

Country of ref document: EP

Kind code of ref document: A1