WO2018048220A1 - 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물 - Google Patents

염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2018048220A1
WO2018048220A1 PCT/KR2017/009824 KR2017009824W WO2018048220A1 WO 2018048220 A1 WO2018048220 A1 WO 2018048220A1 KR 2017009824 W KR2017009824 W KR 2017009824W WO 2018048220 A1 WO2018048220 A1 WO 2018048220A1
Authority
WO
WIPO (PCT)
Prior art keywords
inflammatory
mscs
treatment
mesenchymal stem
stem cells
Prior art date
Application number
PCT/KR2017/009824
Other languages
English (en)
French (fr)
Inventor
송순욱
이택기
Original Assignee
에스씨엠생명과학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스씨엠생명과학 주식회사 filed Critical 에스씨엠생명과학 주식회사
Priority to EP17849104.9A priority Critical patent/EP3586853A4/en
Priority to US16/331,426 priority patent/US20190262404A1/en
Priority to JP2019513066A priority patent/JP7212371B2/ja
Publication of WO2018048220A1 publication Critical patent/WO2018048220A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/05Adjuvants
    • C12N2501/052Lipopolysaccharides [LPS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/59Lectins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells

Definitions

  • the present invention relates to a pharmaceutical composition for the prevention or treatment of immune diseases or inflammatory diseases, including inflammatory stimulated mesenchymal stem cells, and a method for producing mesenchymal stem cells for the prevention or treatment of immune diseases or inflammatory diseases.
  • Bone marrow a soft substance in bone, is an active tissue produced by new blood cells and contains at least two types of stem cells.
  • Hematopoietic stem cells are self-renewing stem cells produced in all blood passages. Unlike the hematopoietic stem cells, rare stem cells derived from non-hematopoietic cells supply and constitute a supportive matrix structure for hematopoiesis. It can differentiate into somatic cells of the mesenchymal passage.
  • Non-hematopoietic stem cells that support hematopoietic action are defined as bone marrow stromal cells or mesenchymal stem cells (MSCs).
  • Mesenchymal stem cells have been isolated from various adult tissues and are known to differentiate into mesenchymal cell types as well as non-mesenchymal stem cell types such as neurons. Mesenchymal stem cells are inherently pluripotent, but from the standpoint of their differentiation potential, the uncertainty of in vivo transdifferentiation has limited potential for clinical applications.
  • immunosuppressants or anti-inflammatory agents have been developed to date, and the most commonly used immunosuppressive agents are cyclosporine (Neoral, Cipol A), azacioprine (imuran) and prednisolone (a kind of steroid).
  • the immunosuppressive agent inhibits immune suppression by inhibiting several processes such as phagocytosis of antigen by macrophages, antigen recognition by lymphocytes, cell division, T cell and B cell division, and antibody generation during the process from antigen stimulation to antibody production.
  • phagocytosis of antigen by macrophages antigen recognition by lymphocytes, cell division, T cell and B cell division
  • antibody generation during the process from antigen stimulation to antibody production.
  • Most of them have antitumor activity because they inhibit cell division through the mediation of DNA disorders and the inhibition of DNA synthesis.
  • azachioprine inhibits bone marrow function, such as decreased white blood cell count, anemia, and platelet reduction.
  • pancreatitis, hepatitis, and biliary retention may rarely cause hair loss and fever.
  • Prednisolone one of the steroid preparations, was the first to be used as an immunosuppressant, but it is a drug that needs attention because it not only promotes atherosclerosis but also causes hypertension, gastric ulcer, diabetes, growth inhibition, osteoporosis, cataracts, and glaucoma. There is a need for inhibitors or anti-inflammatory agents.
  • Bone marrow a soft substance in bone, is an active tissue produced by new blood cells and contains at least two types of stem cells.
  • Hematopoietic stem cells are self-renewing stem cells produced in all blood passages. Unlike the hematopoietic stem cells, rare stem cells derived from non-hematopoietic cells supply and constitute a supportive matrix structure for hematopoiesis. It can differentiate into somatic cells of the mesenchymal passage.
  • Non-hematopoietic stem cells that support hematopoietic action are defined as bone marrow stromal cells or mesenchymal stem cells (MSCs).
  • Mesenchymal stem cells have been isolated from various adult tissues and are known to differentiate into mesenchymal cell types as well as non-mesenchymal stem cell types such as neurons. Mesenchymal stem cells are inherently pluripotent, but from the standpoint of their differentiation potential, the uncertainty of in vivo transdifferentiation has limited potential for clinical applications.
  • immunosuppressants or anti-inflammatory agents have been developed to date, and the most commonly used immunosuppressive agents are cyclosporine (Neoral, Cipol A), azacioprine (imuran) and prednisolone (a kind of steroid).
  • the immunosuppressive agent inhibits immune suppression by inhibiting several processes such as phagocytosis of antigen by macrophages, antigen recognition by lymphocytes, cell division, T cell and B cell division, and antibody generation during the process from antigen stimulation to antibody production.
  • phagocytosis of antigen by macrophages antigen recognition by lymphocytes, cell division, T cell and B cell division
  • antibody generation during the process from antigen stimulation to antibody production.
  • Most of them have antitumor activity because they inhibit cell division through the mediation of DNA disorders and the inhibition of DNA synthesis.
  • azachioprine inhibits bone marrow function, such as decreased white blood cell count, anemia, and platelet reduction.
  • pancreatitis, hepatitis, and biliary retention may rarely cause hair loss and fever.
  • Prednisolone one of the steroid preparations, was the first to be used as an immunosuppressant, but it is a drug that needs attention because it not only promotes atherosclerosis but also causes hypertension, gastric ulcer, diabetes, growth inhibition, osteoporosis, cataracts, and glaucoma. There is a need for inhibitors or anti-inflammatory agents.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of immune diseases or inflammatory diseases, including inflammatory stimulated mesenchymal stem cells.
  • the present invention provides a method for producing mesenchymal stem cells for the prevention or treatment of immune diseases or inflammatory diseases comprising; culturing by applying inflammatory stimulation to mesenchymal stem cells.
  • Inflammatory stimulated mesenchymal stem cells of the present invention has the effect of secreting acetylcholine, which can replace the existing immunosuppressive agents and inflammatory inhibitors known to have side effects, and can be used economically as a cell therapy of immune diseases and inflammatory diseases It can be usefully used for prevention or treatment.
  • Figure 1a is a diagram showing the results confirming that the MSCs of the present invention have a fibroblast-like form.
  • b is a diagram showing the results of confirming the differentiation potential of the MSCs of the present invention into adipogenically, chondrogenically and osteogenically.
  • C is a diagram showing the results of flow cytometry analysis of positive or negative markers of MSCs of the present invention.
  • Figure 2a is a diagram showing the results confirmed through the lymphocyte proliferation and activity homologous (alloantigenic) immune response according to the presence or absence of MSCs on PBMCs (P or Po) and mixed lymphocyte reaction (MLR).
  • b is a diagram showing the results of lymphocyte proliferation and activity according to the presence or absence of co-culture with MSCs in PBMCs (P), PHA (1 ⁇ g / ml) treated human PBMCs (P PHA ).
  • c is a diagram showing the results of confirming abnormal morphological changes by optical microscopy when co-culturing MSCs in MLR-activated or PHA-activated PBMCs.
  • d and e show the results of confirming neuronal-like morphological characteristics after co-culture of MSCs in MLR-activated or PHA-activated PBMCs.
  • f and g show the results of confirming the neurosphere-like cell cluster (red arrow) after co-culture of MSCs in MLR-activated or PHA-activated PBMCs.
  • Figure 3a is a diagram showing the results of confirming the spheroid generation in MSCs for inflammatory conditions.
  • b is a diagram showing the results of confirming whether MSCs produce spheroids and changes in MSCs characteristics when inflammatory conditions are minimized.
  • Figure 4a is a diagram confirming the expression of nestin, Tuj1, MAP2, NF-M and GFAP by performing semi-quantitative RT-PCR after co-culturing MSCs in MLR-activated or PHA-activated PBMCs.
  • b is a diagram showing the flow cytometry results of nestin, Tuj1 and GFAP after co-culture of MSCs in MLR-activated or PHA-activated PBMCs.
  • c and d are diagrams confirming the expression level of nestin, Tuj1, NCAM1, GFAP and O4 by co-culture of MSCs in MLR-activated or PHA-activated PBMCs and immunofluorescence staining.
  • 5A is a diagram confirming TrkA, TrkB, TrkC and p75 NTR expression by co-culturing MSCs in MLR-activated or PHA-activated PBMCs and performing Semi-quantitative RT-PCR.
  • b and c show the expression of TrkA, TrkB, TrkC and p75 NTR via qRT-PCR after co-culture of MSCs in MLR-activated or PHA-activated PBMCs.
  • d is a diagram confirming TrkA, TrkB, TrkC and p75 NTR expression by performing a western blot after co-culturing MSCs in MLR-activated or PHA-activated PBMCs.
  • e and f are diagrams confirming the results of TrkA expression by co-culturing MSCs in MLR-activated or PHA-activated PBMCs, and performing immunofluorescence staining.
  • Figure 6a is a diagram showing the results of confirming the expression level of NGF and BDNF by performing a semi-quantitative RT-PCR MLR-activated PBMCs.
  • b is a diagram showing the results of confirming the expression level of NGF and BDNF by performing qRT-PCR on MLR-activated PBMCs.
  • c is a diagram showing the results of confirming the expression level of NGF and BDNF by performing Semi-quantitative RT-PCR PHA-activated PBMCs.
  • d is a diagram showing the results of confirming the expression level of NGF and BDNF by performing qRT-PCR on PHA-activated PBMCs.
  • e to h are diagrams showing the results of confirming the secretion amount of NGF and BDNF secreted from MLR-activated or PHA-activated PBMCs by ELISA.
  • Figure 7a is a diagram showing the results of confirming the spheroid formation of MSCs by inflammatory conditions.
  • b is a diagram showing the results of confirming the expression level of Tuj1, NF-M and MAP2 of the spheroid of MSCs.
  • Figure 8a is a diagram showing the results confirming the spheroid formation of PBMCs activated by inflammatory conditions.
  • b is a diagram showing the results of confirming the degree of inhibition of lymphocyte proliferation according to the ratio (1: 2, 1: 5 and 1:20) of MSCs spheroid or MSCs monomolecule under mixed lymphocyte reaction (MLR) conditions.
  • c is a diagram showing the result of confirming the degree of inhibition of lymphocyte proliferation according to the ratio of MSCs spheroid or MSCs monomolecular film (1: 2, 1: 5 and 1:20) under phytohemagglutinin (PHA) conditions.
  • d is a diagram showing the results confirmed by flow cytometry expression of Tuj1 and nestin of MSCs spheroids under inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions).
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • Figure 9a is a diagram showing the results of confirming the expression of Tuj1, nestin, MBP and NF-M after culturing nothing treated MSCs in neurobasal medium medium.
  • b is a diagram showing the results of confirming the expression of Tuj1, nestin, MBP and NF-M after culturing MSCs in mixed lymphocyte reaction (MLR) conditions in neurobasal medium medium.
  • MLR mixed lymphocyte reaction
  • 10 a is a diagram showing the results of confirming the expression level of ChAT, TH and GABA by immunofluorescence staining after co-culture of MSCs in MLR-activated or PHA-activated PBMCs.
  • b is a diagram showing the degree of ChAT expression by performing qRT-PCR after co-culturing MSCs in MLR-activated or PHA-activated PBMCs.
  • c is a diagram confirming the degree of ChAT expression by performing a western blot after co-culture of MSCs in MLR-activated or PHA-activated PBMCs.
  • d is a diagram showing the expression level of ChAT, NCAM1, MBP, Tuj1, NF-M, nestin, TrkA and GABA through co-culture of MSCs in MLR-activated PBMCs and immunofluorescence staining.
  • e is a diagram showing the results of confirming the acetylcholine secretion compared to the PBMCs alone (P and Po) group after co-culture of MSCs in MLR-activated PBMCs.
  • f is a diagram showing the results of confirming the acetylcholine secretion compared to the PBMCs alone (P) group after co-culture of MSCs in PHA-activated PBMCs.
  • 11 a is a diagram showing the results of confirming the change in the cholinergic neuron-like phenotype of the MSCs in inflammatory conditions, compared to normal culture or trans well plate culture.
  • b is a diagram showing the results of the change in the cholinergic neuron-like phenotype of the conditioned medium (CM) conditions.
  • c is a diagram showing the results of confirming the expression of ChAT, NCAM1, NF-M and Tuj1 in condition b.
  • Figure 12a is a semi-quantitative RT-PCR compared to the PBMCs alone (P and Po) group after co-culture of MSCs in MLR-activated or PHA-activated PBMCs of nAChR ⁇ 3, nAChR ⁇ 5, nAChR ⁇ 7, nAChR ⁇ 8, nAChR ⁇ 2 The result of confirming the expression level.
  • b is a diagram showing the results of confirming the expression level of nAChR ⁇ 5 or nAChR ⁇ 7 by performing qRT-PCR compared to PBMCs alone (P and Po) group after co-culturing MSCs in MLR-activated or PHA-activated PBMCs.
  • d is a diagram showing the results of confirming the expression level of nAChR ⁇ 7 through western blot, compared to the PBMCs alone (P and Po) group after co-culturing MSCs in MLR-activated or PHA-activated PBMCs.
  • Figure 13 shows the results of flow cytometry analysis of PBMCs cultured in inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions).
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • Figure 14a to c shows the results of each lymphocyte proliferation, TNF- ⁇ and IFN- ⁇ compared to the PBMCs alone (P and Po) group after co-culturing MSCs in MLR-activated PBMCs in the medium with ⁇ -BTX The figure which showed the confirmed result.
  • d to f is a result of confirming the results of each lymphocyte proliferation, TNF- ⁇ and IFN- ⁇ compared to PBMCs alone (P and Po) group after co-culturing MSCs in PHA-activated PBMCs in the medium added ⁇ -BTX Is a diagram showing.
  • g to i show the results of confirming the results of each lymphocyte proliferation, TNF- ⁇ and IFN- ⁇ compared to the PBMCs alone (P and Po) group after co-culturing MSCs in MLR-activated PBMCs in medium with ACh-Cl It is also.
  • j to l shows the results of confirming the results of each lymphocyte proliferation, TNF- ⁇ and IFN- ⁇ after co-culturing MSCs in PHA-activated PBMCs in medium containing ACh-Cl and comparing with PBMCs alone (P and Po) groups. The figure shown.
  • 15A to 15D show the addition of carbachol, a nonspecific cholinergic agony to the medium, followed by co-culturing MSCs in MLR-activated or PHA-activated PBMCs compared to PBMCs alone (P and Po) groups. It is the figure which showed the result which confirmed each lymphocyte proliferation, TNF-alpha, and IFN-gamma result.
  • 16a shows CD3 / CD28-activated mouse splenocytes (2 ⁇ 10 5 ) and MSCs (4 ⁇ 10 3 to 4 ⁇ 10 4 ) 1: 5, 1:10, 1:20, and 1:50 It is a figure which confirmed the lymphocyte proliferation suppression result after incubation by the ratio of.
  • b is a diagram showing the results of confirming the change in cholinergic neurons-like phenotype of splenocytes treated MSCs of mice.
  • c is a diagram showing the results of confirming the expression of ChAT, NCAM1, Tuj1, NF-M, nestin, MBP and TH of mouse splenocytes treated MSCs.
  • 17A shows incubation of splenocytes (2 ⁇ 10 5 ) and MSCs (4 ⁇ 10 3 to 4 ⁇ 10 4 ) of CD3 / CD28-activated rats at a ratio of 1: 5, 1:10 and 1:20. It is a figure which confirmed the lymphocyte proliferation inhibitory result later.
  • b is a diagram showing the results confirming the change in cholinergic neuron-like phenotype of rat splenocytes treated MSCs.
  • c is a diagram showing the results of confirming the expression of ChAT, NCAM1, Tuj1, NF-M, nestin, TH and GABA of mouse splenocytes treated MSCs.
  • FIG. 18A is a diagram schematically illustrating a process of identifying ChAT + nestin + human cells by inoculating PBMCs and MSCs into a transient humanized GVHD mouse model.
  • b shows the expression level of anti-ChAT and anti-nestin antibodies in each mouse treated with human MSCs in PBMCs (P1 or P2) or mixed PBMCs (P1 + P2) injected mice to identify ChAT + nestin + human cells.
  • the result is.
  • c shows the results of injecting biocompatible silica-coated fluorescent nanoparticles into each mouse treated with human MSCs in PBMCs (P1 or P2) or mixed PBMCs (P1 + P2) injected mice to determine whether MSC was cytoplasmic. Results shown (arrows indicate MSC cytoplasm).
  • 19 is a schematic of the cholinergic anti-inflammatory mechanisms of MSCs for inflammatory stimuli of the present invention.
  • the present invention provides a pharmaceutical composition for the prevention or treatment of immune diseases or inflammatory diseases, including inflammatory stimulated mesenchymal stem cells.
  • the mesenchymal stem cells can be separated by a layer separation culture (Subfractionation Culturing Method), the mesenchymal stem cells of the present invention separated by the method is CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA-I) and Oct4 can be expressed.
  • a layer separation culture Subfractionation Culturing Method
  • “layer separation culture” is obtained by culturing the bone marrow from the individual and cultivating it, only the culture supernatant is moved to a new container and cultured, and only the culture supernatant generated in the culture is treated with a coating agent
  • a coating agent Means a method for obtaining mesenchymal stem cells through the step of repeat culture in a culture vessel or a culture vessel not treated, the contents described in KR 10-0802011 can be referred to as a whole in the present invention, preferably It is possible to carry out a layered culture method as disclosed in the above document.
  • the inflammatory stimulated mesenchymal stem cells are cultured in one or more culture conditions selected from the group consisting of mixed lymphocyte reaction (MLR) conditions, mitogen treatment conditions and cytokine treatment conditions
  • MLR mixed lymphocyte reaction
  • the mitotic promoter is phytohemagglutinin (PHA), concanavalin A (Con A), PWM (pokeweed mitogen), lipopolysaccharide, streptolysin S
  • PHA phytohemagglutinin
  • Con A concanavalin A
  • PWM pokeweed mitogen
  • the "mixed lymphocyte reaction (MLR)” is a method of measuring cellular immune function in vitro, and used to examine histocompatibility between donor and recipient during organ transplantation. It is a test method. When cells are cultured by mixing donor and recipient lymphocytes, lymphocytes begin to divide if the two tissue synthesis antigens are different. Whether or not cleavage can be determined depending on whether 3H thymidine, previously added to the medium, is accommodated in DNA.
  • mixed lymphocyte reaction means culturing each PBMCs obtained from different donors together, and treating mesenchymal stem cells therein to obtain inflammatory stimulated mesenchymal stem cells of the present invention.
  • mitogen refers to a substance that induces cell division, and immunologically means to induce division by phantomizing lymphocytes non-specifically (polyclonal).
  • phytohemagglutinin means a lectin (glycoprotein) with plant-aggregation activity (aggregation activity of cells), and is characterized by acting only on T cells .
  • phytoagglutinate treatment means treatment of PHAs with PBMCs obtained from a donor, followed by treatment of mesenchymal stem cells, and the inflammatory-stimulated mesenchymal stem cells of the present invention through such treatment. To obtain.
  • Concanavalin A is pea ( Canavalia) ensiformis ) is one of the crystalline proteins obtained from seeds. Con A activates T cells but does not activate B cells, which inactivates B cells. In addition, since several cancer cells show higher cohesiveness to Con A than normal cells, it is used as a means of studying the specificity of cancer cell membrane structure.
  • the "inflammatory stimulated mesenchymal stem cells” are stimulated by inflammation of the mixed lymphocyte reaction (MLR), mitogen treatment, and cytokine treatment, or preferably, Inflammatory stimulation under mixed lymphocyte reaction (MLR) or phytohemagglutinin (PHA) conditions means that mesenchymal stem cells have similar characteristics to neurons, and in one embodiment of the present invention, Inflammatory stimulated mesenchymal stem cells of the present invention were changed to neuron-like morphology, expressing neuronal markers Tuj1, nestin and MAP2, GFAP and oligodendrocyte marker GFAP and oligodendrocyte marker O4. It was confirmed that glial markers did not express.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • the inflammatory stimulated mesenchymal stem cells can change into cholinergic neuron-like phenotypes and secrete acetylcholine.
  • cholinergic neuron means a neuron that secretes acetylcholine as a chemical transporter from the nerve fiber terminal.
  • acetylcholine is a neurotransmitter which is an ester of choline and acetic acid and is secreted at the nerve terminal, and is a chemical that transmits nerve stimulation to muscle.
  • the composition may further include an agonist of acetylcholine, such as, for example, ACh chloride (ACh-Cl), carbachol, epivatidine, dimethylphenylpiperazinium (DMPP), suzamethonium ( At least one selected from the group consisting of suxamethonium, cytisine, nicotine, nicotine, nifene, varenicline, MDMA (3,4-Methylenedioxymethamphetamine) and emphhetamine It may further include, but is not limited thereto if it is for the prevention or treatment of immune diseases or inflammatory diseases.
  • ACh chloride ACh-Cl
  • carbachol epivatidine
  • DMPP dimethylphenylpiperazinium
  • suzamethonium At least one selected from the group consisting of suxamethonium, cytisine, nicotine, nicotine, nifene, varenicline, MDMA (3,4-Methylenedioxyme
  • the immune disease or inflammatory disease may be at least one selected from the group consisting of autoimmune disease, transplant rejection, arthritis, graft versus host disease, bacterial infection, sepsis and inflammation, and the autoimmune disease is Crohn's disease, erythema disease, atopy, Rheumatoid arthritis, Hashimoto's thyroiditis, pernicious anemia, Edison's disease, type 1 diabetes, lupus, chronic fatigue syndrome, fibromyalgia, hypothyroidism, hypertension, scleroderma, Behcet's disease, inflammatory bowel disease, multiple sclerosis, myasthenia gravis, meniere At least one selected from the group consisting of Meniere's syndrome, Guilian-Barre syndrome, Sjogren's syndrome, vitiligo, endometriosis, psoriasis, vitiligo, pancreatic scleroderma, asthma and ulcerative colitis
  • the present invention is not limited thereto.
  • compositions of the present invention may further comprise suitable carriers, excipients and diluents commonly used in the manufacture of pharmaceutical compositions.
  • preparation of the pharmaceutical compositions may be used as additives for the preparation of solids or liquids.
  • the additive for preparation may be either organic or inorganic.
  • excipients include lactose, sucrose, white sugar, glucose, corn starch, starch, talc, sorbet, crystalline cellulose, dextrin, kaolin, calcium carbonate, silicon dioxide and the like.
  • binder include polyvinyl alcohol, polyvinyl ether, ethyl cellulose, methyl cellulose, gum arabic, tragacanth, gelatin, shellac, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, calcium citrate, Dextrin, pectin and the like.
  • the lubricant include magnesium stearate, talc, polyethylene glycol, silica, hardened vegetable oil, and the like.
  • coloring agent if it is normally permitted to add to a pharmaceutical, all can be used. These tablets and granules can be appropriately coated according to sugar, gelatin coating and other needs. Moreover, preservatives, antioxidants, etc. can be added as needed.
  • the pharmaceutical compositions of the present invention may be prepared in any formulation commonly prepared in the art (e.g., Remington's Pharmaceutical Science, latest edition; Mack Publishing Company, Easton PA), although the form of the formulation is not particularly limited. Preferably, it may be an external preparation.
  • the external preparation of the present invention includes a sheet, a liquid coating, a spray, a lotion, a cream, a pape, a powder, a penetrating pad, a spray, a gel, a pasta, a linen, an ointment, an aerosol, a powder, a suspension, a transdermal Conventional forms of external preparations such as absorbents may be included. These formulations are described in Remington's Pharmaceutical Science, 15th Edition, 1975, Mack Publishing Company, Easton, Pennsylvania 18042 (Chapter 87: Blaug, Seymour), a prescription generally known for all pharmaceutical chemistry.
  • the pharmaceutically effective amount of the present invention may vary depending on the type of wound, the application site, the number of treatments, the treatment time, the dosage form, the condition of the patient, the type of adjuvant, and the like.
  • the amount used is not particularly limited, but may generally be 0.00001 to 10000 ⁇ g when the daily effective amount of the pharmaceutical composition of the present invention is applied to a patient.
  • the daily dose may be administered once a day or divided into two to three times a day at appropriate intervals, or may be administered intermittently at intervals of several days.
  • the amount of the pharmaceutical composition of the present invention may be used in such a manner as the route of administration, the age, sex, weight of the patient, the severity of the patient, the type of wound, the site of application, the number of treatments, the treatment time, the dosage form, the condition of the patient, the type of supplement,
  • the effective amount is not to be understood as limiting the scope of the present invention in any aspect because it is determined in view of various related factors.
  • the present invention also provides a method of inhibiting an immune response or an inflammatory response of an individual, comprising administering the inflammatory stimulated mesenchymal stem cells to the individual.
  • the present invention also provides a method for preventing or treating an inflammatory disease in an individual, comprising administering the inflammatory stimulated mesenchymal stem cells to the individual.
  • “individual” means a mammal including a cow, a dog, a pig, a chicken, a sheep, a horse, and a human, but is not limited thereto.
  • the mesenchymal stem cells may be characterized in that the separation by the subfractionation culture method (Subfractionation Culturing Method), CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA- I) and Oct4 may be characterized.
  • Subfractionation Culturing Method Subfractionation Culturing Method
  • CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA- I) and Oct4 may be characterized.
  • Inflammatory stimulated mesenchymal stem cells used in the method of the present invention is selected from the group consisting of mixed lymphocyte reaction (MLR) conditions, mitogen treatment conditions and cytokine treatment conditions 1 It may be characterized in that cultured in more than one culture conditions, the mitosis promoting material is phytohemagglutinin (PHA), concanavalin A (Con A), PWM (pokeweed mitogen), lipopolysaccharide, streptolysin S, It may be at least one selected from the group consisting of mercury compounds and anti-lymphocyte antibodies, and inflammatory stimulated mesenchymal stem cells may be characterized as changed to cholinergic neuron-like phenotypes.
  • MLR mixed lymphocyte reaction
  • mitogen treatment conditions cytokine treatment conditions 1 It may be characterized in that cultured in more than one culture conditions, the mitosis promoting material is phytohemagglutinin (PHA), concanavalin A (Con A), PWM (pokeweed mit
  • the inflammation-induced mesenchymal stem cells may be characterized by secreting acetylcholine, and the immune disease or inflammatory disease is an autoimmune disease, transplant rejection, arthritis, graft-versus-host disease, bacterial infection, sepsis and inflammation. It may be at least one selected from.
  • the present invention also provides a method for producing mesenchymal stem cells for the prevention or treatment of immune diseases or inflammatory diseases comprising the step of culturing by applying inflammatory stimulation to mesenchymal stem cells.
  • the inflammatory stimulus is at least one selected from the group consisting of mixed lymphocyte reaction (MLR) conditions, mitogen treatment and cytokine treatment, and the mitosis promoter is a plant agglutinate ( phytohemagglutinin (PHA), concanavalin A (Con A), PWM (pokeweed mitogen), lipopolysaccharide, streptolysin S, mercury compounds and anti-lymphocytic antibodies, at least one selected from the group consisting of mixed lymphocyte reaction conditions Or plant coagulation, but is not limited thereto.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • Con A concanavalin A
  • PWM pokeweed mitogen
  • lipopolysaccharide streptolysin S
  • mercury compounds mercury compounds and anti-lymphocytic antibodies
  • the mesenchymal stem cells produced by the above production method secrete acetylcholine and can be used as immunosuppressants or inflammatory agents.
  • immunosuppressant refers to mesenchymal stem cells or cultures cultured under mixed lymphocyte reaction (MLR) conditions, phytohemagglutinin (PHA) treatment, or cytokine treatment conditions.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • cytokine treatment conditions By means of a preparation comprising an agent that can treat the immune disease by suppressing the immune response.
  • anti-inflammatory includes mesenchymal stem cells or cultures cultured under mixed lymphocyte reaction (MLR) conditions, phytohemagglutinin (PHA) treatment or cytokine treatment conditions.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • cytokine treatment conditions By the agent to mean an agent capable of treating the inflammatory disease by inhibiting the inflammatory response.
  • culture means to grow the mesenchymal stem cells of the present invention in an appropriately artificial environment.
  • the mesenchymal stem cells of the present invention can be grown in a conventional medium, and for the purpose of culturing the mesenchymal stem cells of the present invention, a substance for a particular purpose is to contain a nutrient substance required by the cells to be cultured, that is, the culture. It may be further added and mixed.
  • the medium may also be referred to as an incubator or a culture medium, and is a concept that includes all natural, synthetic, or selective media.
  • the medium used for the cultivation should meet the requirements of the particular strain in an appropriate manner while controlling the temperature, pH, etc. in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
  • Carbon sources that can be used include mixed sugars of glucose and xylose as the main carbon source, and sugars and carbohydrates such as sucrose, lactose, fructose, maltose, starch and cellulose, soybean oil, sunflower oil, castor oil, coconut Oils such as oils and fats, fatty acids such as palmitic acid, stearic acid, linoleic acid, alcohols such as glycerol, ethanol, organic acids such as acetic acid. These materials can be used individually or as a mixture.
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride, ammonium acetate, ammonium phosphate, anmonium carbonate, and ammonium nitrate; Amino acids such as glutamic acid, methionine, glutamine and organic nitrogen sources such as peptone, NZ-amine, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, fish or its degradation product, skim soy cake or its degradation product Can be. These nitrogen sources may be used alone or in combination.
  • the medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts.
  • Personnel that may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate and calcium carbonate may be used.
  • essential growth substances such as amino acids and vitamins can be used.
  • suitable precursors to the culture medium may be used.
  • the raw materials described above may be added batchwise, fed-batch or continuous in a suitable manner to the culture in the culture process, but is not particularly limited thereto.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid can be used in an appropriate manner to adjust the pH of the culture.
  • MSCs are mesenchymal stem cells isolated by the Subfractionation Culturing Method disclosed in KR 10-0802011. Isolation and characterization of the MSCs were confirmed by cell morphology, marker expression and mesenchymal differentiation and the results are shown in FIG. 1.
  • Antibodies for flow cytometry include anti-CD14 (BD Biosciences, San Diego, CA, USA), anti-CD29 (Serotec, Kidlington, UK), anti-CD34 (BD Biosciences), anti-CD44 (Serotec), anti-CD45 (BD Biosciences), anti-CD49f (BD Biosciences), anti-CD73 (BD Biosciences), anti-CD90 (BD Biosciences), anti-CD105 (Serotec), anti-CD106 ((BD Biosciences), anti-CD146 (BD Biosciences), anti-HLA class I (BD Biosciences), anti-HLA-DR (BD Biosciences), and anti-Oct4 (BD Biosciences) antibodies were used The isotype-matched control antibody was used as a control.
  • the mesenchymal stem differentiation potential was assessed with reference to conventional literature (Jung, KH et al., Gastroenterology 140, 998-1008 (2011).) MSCs were evaluated in 10% fetal bovine serum (Gibco). -Low glucose (low glucose, Gibco-BRL, Gaithersburg, MD, USA) supplemented with 1% penicillin / streptomycin (Gibco-BRL) and 1% mycogon (Genlantis, San Diego, Calif., USA) Dulbecco's inclusive Cultured in modified Eagle's medium in a humidified CO 2 incubator at 37 ° C. When the cells reached 70-80%, they were isolated with trypsin / EDTA and sub-cultured for further culture.
  • PBMCs Human peripheral blood mononuclear cells
  • MLRs mixed lymphocyte reactions
  • 4 ⁇ 10 4 MSCs were co-cultured for 5 days on mixed lymphocyte response (MLR).
  • MSC mixed lymphocyte response
  • 2 ⁇ 10 5 PBMCs were stimulated with 1 ⁇ g / mL phytohemagglutinin (PHA) (Sigma, St. Louis, MO, USA).
  • PHA phytohemagglutinin
  • Lymphocyte proliferation was analyzed by incorporation of [ 3 H] thymidine (1 ⁇ Ci / well) using a ⁇ -counter (Perkin-Elmer, Waltham, Mass., USA). Inflammatory response was confirmed by lymphocyte activity by MLR or PHA treatment.
  • Co-cultured media were obtained, including nAChR antagonists or agonists.
  • the secreted proinflammatory cytokines were quantified using ELISA kits for TNF- ⁇ (BD Biosciences; cat. # 555212) and IFN- ⁇ (BD Biosciences; cat. # 555141).
  • Assays for NGF (R & D Systems, Minneapolis, MN, USA; cat. # DY256-05) and BDNF (R & D Systems; cat. # DBD00) were performed using medium in which PBMCs activated with MLR or PHA were cultured.
  • RNA isolation RNA isolation , semi-quantitative RT- PCR and quantitative RT- PCR ( qRT - PCR )
  • the primers were TrkA (Hs01021011), TrkB (Hs00178811), TrkC (Hs00176797), p75NTR (Hs00609977), nAChR ⁇ 7 (Hs04189909), nAChR ⁇ 5 (Hs00181248), ChAT (Hs00252848), and 18s rRNA (Hs0389) and Applied to amplify (Es0392) Qoster-PCR was purchased from Foster City, CA, USA. The qRT-PCR was performed in a real-time thermal cycler (StepOne Real-Time RT-PCR system, Applied Biosystems).
  • Anti-GFAP (BD Biosciences; 51449), anti-Tuj1 (BD Biosciences; 560381) and anti-nestin (BD Biosciences; 56130) antibodies were used. Isotype-matched control antibodies were used as controls and analyzed using a FACS Calibur flow cytometer (BD Biosciences).
  • lysis buffer 50 mM Tris-HCl, 150 mM NaCl, 1 mM ethylenediaminetetraacetic acid (Sigma), 1 mM sodium orthovanadate ( Sigma), 1 mM sodium fluoride, 1 mM phenylmethanesulfonylfluoride (Sigma), 1% Triton-X 100, protease inhibition cocktail (Pierce, Rockford, IL, USA) and phosphatase Inhibition cocktail (Pierce)) was treated by placing in ice for 30 minutes. Cell debris was removed by centrifugation at 15,000 ⁇ g for 15 minutes, and then the supernatant was transferred to a new microtube.
  • Protein concentration in the cell lysate was measured using a BCA protein assay reagent kit (Pierce). Equivalent proteins were separated using 10% SDS-polyacrylamide gel electrophoresis under reducing conditions, and electrophoresis was performed on the Immobilon P membrane (EMD Millipore).
  • EMD Millipore Immobilon P membrane
  • anti-TrkA EMD Millipore; cat. # 06-574
  • anti-TrkC Cell Signaling Technology, Danvers, MA, USA
  • anti-p75NTR Cell Signaling Technology
  • cat. # 8238 anti-ChAT
  • anti-nAChR 7 Alomone, Jerusalem, Israel; cat.
  • MSCs stimulated with MLR or PHA for 24 hours were incubated and each MSCs were obtained.
  • ACh / choline was quantified using the Enzychrom Acetylcholine Assay Kit (BioAssay Systems, Hayward, CA, USA; EACL-100) according to the manufacturer's manual.
  • 1% Pluronic F-127 (Sigma, dissolved in distilled water) was coated on a petri dish (diameter, 100 mm) for 30 minutes at room temperature, and then sufficiently washed with PBS.
  • Cells of each experimental group were fixed with 4% paraformaldehyde and permeabilized using 0.5% TritonX-100 (Sigma) dissolved in PBS.
  • the cells were treated with anti-TrkA (EMD Millipore, Billerica, MA, USA; cat. # 06-574), anti-ChAT (EMD Millipore; cat. # AB144P), anti-Tuj1 (EMD Millipore; cat. # MAB1637), anti-TH (Cell Signaling Technology; cat. # 2792), anti-NCAM1 (EMD Millipore; cat. # CBL275), anti-MBP (EMD Millipore; cat. # AB980), anti-O4 (Sigma; cat.
  • the cells were stained with 4,6-diamidino-2-phenylindole (DAPI; Molecular Probes) for 1 minute and observed using confocal microscopy (Zeiss LSM510 Meta Confocal Imaging System; Carl Zeiss, Thornwood, NY, USA). It was.
  • DAPI 4,6-diamidino-2-phenylindole
  • ⁇ -Bungarotoxin (EMD Millipore; cat. # 203980) is an antagonist of nAChR ⁇ 7 and added to the medium at 1 M concentration.
  • cholinergic agonists experiments were performed by adding ACh chloride (Sigma; cat. # A6625) and carbachol (EMD Millipore; cat. # 212385) at 1 nM and 10 pM concentrations, respectively.
  • MSCs were separated by the Subfractionation Culturing Method.
  • MSCs have the advantage of high purity of stem cells because they are not mixed with other types of cells but only stem cells are separated. .
  • the MSCs were used to identify the characteristics of the MSCs used in the following series of experiments.
  • the MSCs of the present invention was confirmed to exhibit a fibroblast-like morphology.
  • the MSCs of the present invention were found to have differentiation potential into adipogenically, chondrogenically and osteogenically.
  • MSCs of the present invention confirmed that the positive markers CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA-I) and Oct4 normally expressed.
  • Lymphocyte proliferation inhibitory effect and morphological changes were confirmed by inflammatory conditions (Mixed Lymphocyte Reaction (MLR) conditions or Phytohemagglutinin (PHA) treatment conditions).
  • MLR ixed Lymphocyte Reaction
  • PHA Phytohemagglutinin
  • the mixed lymphocyte reaction (MLR) condition is to culture each PBMCs obtained from different donors together, the plant hemagglutinin (PHA) treatment condition is treated with PHA to PBMCs Condition.
  • PHA plant hemagglutinin
  • MSCs group co-cultured under mixed lymphocyte reaction (MLR) conditions effectively inhibited lymphocyte proliferation induced by an allogeneic immune response.
  • MLR mixed lymphocyte reaction
  • abnormal morphological changes including specific elongation, filamentation and branching of MSCs co-cultured in mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) conditions It was confirmed that appears.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • MSCs were found to change abnormally in inflammatory conditions (Mixed Lymphocyte Reaction (MLR) conditions or Phytohemagglutinin (PHA) treatment conditions).
  • MLR Mated Lymphocyte Reaction
  • PHA Phytohemagglutinin
  • the mixed lymphocyte reaction (MLR) condition is to culture each PBMCs obtained from different donors together, the plant hemagglutinin (PHA) treatment condition is treated with PHA to PBMCs By the conditions generated by, it was confirmed whether the spheroid object generation.
  • the supernatant containing the structure of the non-attached spheroids of MSCs was transferred to fresh medium and cultured for 24 hours. The results are shown in FIG.
  • MLR ixed Lymphocyte Reaction
  • PHA Phytohemagglutinin
  • the mixed lymphocyte reaction (MLR) condition is to incubate each PBMCs obtained from different donors together, and the plant hemagglutinin (PHA) treatment condition is a condition generated by treating PBMCs with PHA.
  • MLR mixed lymphocyte reaction
  • PHA plant hemagglutinin
  • MSCs group (MSC in P PHA ) co-cultured to PHA treatment conditions were subjected to semi-quantitative RT-PCR according to the method of Experimental Example 1-4, to nestin, Tuj1, MAP2, and NF. Expression of -M and GFAP was confirmed.
  • flow cytometry of nestin, Tuj1 and GFAP was performed according to the method of Experimental Example 1-5.
  • immunofluorescence staining was performed according to the method of Experimental Example 1-9 to confirm the expression levels of nestin, Tuj1, NCAM1, GFAP and O4. The results are shown in FIG.
  • neuronal markers Tuj1 and MAP2 were expressed in MSCs cultured under inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions). Glial cells) were not expressed.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • nestin and Tuj1 were expressed in MSCs cultured in inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions), but not GFAP.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • neuronal markers such as nestin and Tuj1 are expressed in MSCs cultured in inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions).
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • glial markers such as GFAP, astrocyte markers, and oligodendrocyte marker O4, were not expressed.
  • MSCs cultured in inflammatory conditions suppressed incomplete and immature neuronal characteristics and exhibited similar characteristics to neurons.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • Example 4 caused by inflammatory conditions MSCs Nerve growth factor receptor ( neurotrophin receptor) and neuronal growth factor expression
  • the mixed lymphocyte reaction (MLR) condition is to incubate each PBMCs obtained from different donors together, and the plant hemagglutinin (PHA) treatment condition is a condition generated by treating PBMCs with PHA.
  • each group of PBMCs obtained from different donors (P and Po) alone; MSCs group (MSC in MLR) co-cultured in mixed lymphocyte reaction (MLR) conditions; Mixed lymphocyte reaction condition group (MLR) without MSCs; MSCs group (MSC in P PHA ) co-cultured to treatment conditions of plant hemagglutinin ( PHA );
  • MSCs group MSC in P PHA co-cultured to treatment conditions of plant hemagglutinin ( PHA );
  • the expression of nerve growth factor receptors including the Trk family (A, B and C) and p75 NTR was confirmed in PHA treated group (MSC + PHA) in general MSC.
  • TrkA and p75 NTR were significantly expressed in MSCs cultured in inflammatory conditions (Mixed Lymphocyte Reaction (MLR) conditions or Hemagglutinin (PHA) treatment conditions). Although confirmed, the expression of TrkB and TrkC was confirmed to be low.
  • MLR ixed Lymphocyte Reaction
  • PHA Hemagglutinin
  • TrkA protein is expressed in MSCs cultured in inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions).
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • nerve growth factor NGF
  • BDNF brain-derived growth factor
  • PBMCs cultured under inflammatory conditions express both nerve growth factor-receptors and nerve growth factors, thereby stimulating the MSCs so that MSCs are neurons. It was confirmed that similar features appeared.
  • Example 5 singyeonggu constituting the MSCs by inflammatory conditions inhibiting expression and lymphocyte proliferative neuronal marker of de Roy similar to Spanish (Neurosphere-like spheroids) determine the effect
  • Neurosphere marker expression and lymphocyte proliferation inhibitory effects of neurosphere-like spheroids constituting MSCs under inflammatory conditions were confirmed.
  • the spheroidal structure in MSCs under inflammatory conditions resembles neurospheres, and neurosphere-like spheroids (Neurosphere) constituting MSCs under inflammatory conditions of the present invention.
  • neurosphere-like spheroids Neurosphere-like spheroids constituting MSCs under inflammatory conditions of the present invention.
  • spheroids of MSCs under inflammatory conditions were obtained according to the method of Experimental Example 1-8, cultured in a Matrigel-coated medium, and then in the medium. The attached spheroids were identified.
  • neurobasal medium Gibco-BRL
  • 2% B27 supplement Gibco-BRL
  • 1% non-essential amino acids 10 ng / ml BDNF, 20 ng / ml Cultured in neuronal differentiation medium containing epithelial growth factor, 40 ng / ml basic fibroblast growth factor and 10 ng / ml fibroblast growth factor 8 (Peprotech, Rehovot, Israel).
  • immunofluorescence staining confirmed the expression of neuronal markers Tuj1, NF-M and MAP2 and the expression of nestin, a marker of neural progenitor cells (NPCs). The results are shown in FIG.
  • MSCspheroids caused by MLR inflammatory conditions inhibit lymphocyte proliferation
  • each PBMCs single group (P or Po) obtained from different donors; Mixed lymphocyte reaction condition group (MLR) without MSCs; PHA condition group without MSCs (P PHA ); Spheroids incubated at a ratio of 1: 2, 1: 5 and 1:20 between MSCs spheroids and MLR or PHA-activated PBMCs;
  • MLR Mixed lymphocyte reaction condition group
  • P PHA PHA condition group without MSCs
  • Spheroids incubated at a ratio of 1: 2, 1: 5 and 1:20 between MSCs spheroids and MLR or PHA-activated PBMCs was confirmed.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • MSCs without any treatment were used as a control.
  • 2% N 2 supplement (Gibco-BRL) 1% non-essential amino acids, 10 ng / ml BDNF, 20 ng / ml epithelial cell growth factor, 40 ng / ml basic fibroblast growth factor and 10 ng / ml fibroblast growth Cultured in neurobasal medium containing factor 8, it was expressed as MSC1 and MSC2. Thereafter, expression of neuronal markers or neuronal precursor markers Tuj1, nestin, MBP, and NF-M was confirmed.
  • each PBMCs obtained from different donors were co-cultured with MSC, 2% N 2 supplement (Gibco-BRL), 1% non-essential amino acids, 10 ng / ml Cultured in neurobasal medium medium containing BDNF, 20 ng / ml epithelial cell growth factor, 40 ng / ml basic fibroblast growth factor and 10 ng / ml fibroblast growth factor 8, indicated as MSC1 and MSC2, respectively. Thereafter, expression of neuronal markers or neuronal precursor markers Tuj1, nestin, MBP, and NF-M was confirmed. The results are shown in FIG.
  • neurosphere-like spheroids can exert similar functions as neuronal cells.
  • Example 6 caused by inflammatory conditions MSCs Acetylcholine ( ACh Secretion confirmation
  • MSCs due to inflammatory conditions were confirmed to have neuronal-like characteristics, confirming the secretion of the neurotransmitter acetylcholine (ACh).
  • ACh neurotransmitter acetylcholine
  • the mixed lymphocyte reaction (MLR) condition means culturing each PBMCs obtained from different donors together, and plant hemagglutinin (PHA) Treatment conditions refer to conditions produced by treatment of PHA with PBMCs, and are referred to as inflammatory conditions, including two conditions.
  • MSCs group MSC in P PHA co-cultured to PHA treatment conditions
  • qRT-PCR was performed according to the method of Experimental Example 1-5 to confirm the degree of ChAT (choline acetyltransferase) expression.
  • Western blot was performed in accordance with the method of Experimental Example 1-6 to determine the degree of ChAT expression.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • MSCs cultured in inflammatory conditions were found to express higher ChAT than cells in other conditions.
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • MSCs cultured in inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or plant hemagglutinin (PHA) treatment conditions) secrete acetylcholine.
  • MLR mixed lymphocyte reaction
  • PHA plant hemagglutinin
  • MSC mixed lymphocyte reaction
  • CM conditioned medium
  • MSCs CM from MLR
  • CM controlled medium
  • MSCs CM from P PHA
  • CM modulated medium
  • CM modulated medium
  • MLR Mated Lymphocyte Reaction
  • PHA Hemagglutinin
  • Example 7 confirmed nicotinic cholinergic receptor expression and choline St. inhibition mechanism of the PBMCs by inflammatory conditions
  • the mixed lymphocyte reaction (MLR) condition is to incubate each PBMCs obtained from different donors together, and the plant hemagglutinin (PHA) treatment condition is a condition generated by treating PBMCs with PHA.
  • MLR mixed lymphocyte reaction
  • PHA plant hemagglutinin
  • MSCs group MLR
  • MLR mixed lymphocyte reaction
  • MLR mixed lymphocyte reaction condition group
  • PHA plant hemagglutinin
  • nAChR ⁇ 3, nAChR ⁇ 5, nAChR ⁇ 7, nAChR ⁇ 8, nAChR ⁇ 2 was confirmed by performing Semi-quantitative RT-PCR, and qRT-PCR was performed to confirm the expression level of nAChR ⁇ 5 or nAChR ⁇ 7.
  • Western blot was performed in accordance with the method of Experimental Example 1-6 to confirm the expression level of nAChR ⁇ 7. The results are shown in FIG.
  • spheroids of PBMCs express nAChR ⁇ 5 and nAChR ⁇ 7 under inflammatory conditions (mixed lymphocyte reaction (MLR) conditions or phytohemagglutinin (PHA) treatment conditions).
  • MLR mixed lymphocyte reaction
  • PHA phytohemagglutinin
  • MSCs express nicotine cholinergic receptors
  • experiments were performed according to the method of Experimental Example 1-2.
  • MSCs alone (MSC control); MSCs group (MSC in MLR) co-cultured in mixed lymphocyte reaction (MLR) conditions;
  • MSCs group (MSC in MLR) co-cultured in mixed lymphocyte reaction (MLR) conditions;
  • MLR mixed lymphocyte reaction
  • PHA plant hemagglutinin
  • the nicotine cholinergic receptor nAChR ⁇ 7 is expressed only in PBMC cells, which are immune cells. Accordingly, it was confirmed that the acetylcholine secreted from the stem cell MSC binds only to immune cells expressing the nicotine cholinergic receptor.
  • the mixed lymphocyte reaction (MLR) condition is to incubate each PBMCs obtained from different donors together, and the plant hemagglutinin (PHA) treatment condition is a condition generated by treating PBMCs with PHA.
  • MSCs group MLR
  • MLR mixed lymphocyte reaction
  • MLR mixed lymphocyte reaction condition group
  • PHA plant hemagglutinin
  • ⁇ -BTX ⁇ -bungarotoxin, antagonist of nAChR ⁇ 7, which is a cholinergic antagonist
  • Cholinergic agonists ACh chloride ACh-Cl, agonists of AChR
  • carbachol which is a nonspecific cholinergic agonist
  • lymphocyte proliferation, TNF- ⁇ and IFN- ⁇ which are inhibited by MSCs cultured under mixed lymphocyte reaction (MLR), an inflammatory condition, are activated again with ⁇ -BTX. It was confirmed.
  • MLR mixed lymphocyte reaction
  • lymphocyte proliferation, TNF- ⁇ and IFN- ⁇ which were inhibited by MSCs cultured under inflammatory hemagglutinin (PHA) treatment conditions, were incubated with ⁇ -BTX. It was confirmed that it is activated.
  • PHA hemagglutinin
  • MLR mixed lymphocyte reaction
  • PHA hemagglutinin
  • carbachol a nonspecific cholinergic agony
  • carbachol a nonspecific cholinergic agony
  • Example 8 Identification of Inflammatory Stimulation , Morphological Changes, and Neuronal Similarity of MSCs by Inflammatory Cell Treatment of Mice or Rats
  • Example 8-1 Inflammatory stimulation , morphological changes, and neuronal cell-like properties of MSCs by mouse or rat inflammatory cell treatment
  • mice The treatment of splenocytes, one of the inflammation-related cells in mice, confirmed the inflammatory stimulus of MSCs, and the morphological changes of MSCs and the degree of change in cholinergic neuron-like phenotype.
  • splenocytes of C57BL / 6 mice (Orient, Sungnam, Korea) were incubated with 1 ⁇ g / ml anti-CD3 (BD Biosciences) and anti-CD28 (BD Biosciences) antibodies ( ⁇ CD3 / CD28). was activated. Thereafter, the ratio of CD3 / CD28-activated mouse splenocytes (2 ⁇ 10 5 ) and MSCs (4 ⁇ 10 3 to 4 ⁇ 10 4 ) is 1: 5, 1:10, 1:20, and 1:50. And morphological changes were confirmed.
  • mouse splenocytes treated with MSCs did not become inflammatory stimuli, and it was confirmed that lymphocyte proliferation was not properly achieved.
  • mouse splenocytes treated with MSCs are not inflammatory stimulation, so cholinergic neurons or neuronal precursor cell-related markers ChAT, NCAM1, Tuj1, NF-M, nestin, MBP and TH is not expressed.
  • Example 8-2 Inflammatory Stimulation, Morphological Changes, and Neuronal Similarity of MSCs in Rats Treated with Inflammatory Cells
  • splenocytes SP of Sprague-Dawley rats (Orient, Sungnam, Korea) were cultured with 1 ⁇ g / ml anti-CD3 (BD Biosciences) and anti-CD28 (BD Biosciences) antibodies ( ⁇ CD3 / CD28). was activated. Thereafter, CD3 / CD28-activated mouse splenocytes (2 ⁇ 10 5 ) and MSCs (4 ⁇ 10 3 to 4 ⁇ 10 4 ) were cultured at a ratio of 1: 5, 1:10 and 1:20, Morphological changes were confirmed.
  • SP splenocytes
  • MSCs 4 ⁇ 10 3 to 4 ⁇ 10 4
  • TrkA, TrkB, TrkC, and p75 NTR which are neuronal growth factor receptors of rat splenocytes treated MSCs. The results are shown in FIG.
  • rat splenocytes treated with MSCs did not inflammatory stimulation, it was confirmed that the lymphocyte proliferation is not properly achieved.
  • rat splenocytes treated with MSCs did not become inflammatory stimuli and did not change to cholinergic neuron-like phenotype.
  • rat splenocytes treated with MSCs did not become inflammatory stimuli, resulting in cholinergic neurons or neuronal progenitor cell markers ChAT, NCAM1, Tuj1, NF-M, nestin, MBP, TH and GABA. It was confirmed that it was not expressed.
  • rat splenocytes treated with MSCs did not become inflammatory stimuli, and it was confirmed that mRNA expression of nerve growth factor receptors TrkA, TrkB, TrkC and p75 NTR was lower than that of general MSCs.
  • Example 9 Check whether ChAT or the mouse nestin expression in human cells and cells to be generated MSC
  • PBMCs P1 or P2; 5 ⁇ 10 6 cells / each / head
  • mixed PBMCs P1 + P2; 1 ⁇ 10 7 cells / head, mixing ratio 1: 1). It was.
  • mice 48 hours after injecting human MSCs (1 ⁇ 10 6 cells / head) into the mice, respectively, the mice were sacrificed to secondary lymphoid organs (spleen and superficial cervical, axillary, mesenteric and Inguinal lymph nodes were extracted and frozen to prepare each section.
  • secondary lymphoid organs spleen and superficial cervical, axillary, mesenteric and Inguinal lymph nodes were extracted and frozen to prepare each section.
  • secondary lymphoid organs spleen and superficial cervical, axillary, mesenteric and Inguinal lymph nodes were extracted and frozen to prepare each section.
  • secondary lymphoid organs spleen and superficial cervical, axillary, mesenteric and Inguinal lymph nodes were extracted and frozen to prepare each section.
  • ChAT + nestin + human cells each mouse was identified by immunofluorescence staining with human-specific anti-ChAT and anti-nestin antibodies. DAPI was used to confirm staining of the nucleus.
  • each mouse was labeled with biocompatible silica-coated fluorescent nanoparticles (Neostem; Biterials, Seoul, Korea) to confirm cytoplasmic status of MSCs according to the manufacturer's protocol. The results are shown in FIG.
  • the inflammatory conditions (Mixed Lymphocyte Reaction (MLR) condition or phytohemagglutinin (PHA) treatment condition) treatment of the present invention
  • MSCs treated with inflammatory conditions increased the expression of neurotrophin receptors and nicotine cholinergic receptors.
  • TrkA and p75 NTR in the nerve growth factor receptors was significantly increased, and the inflammatory environment was significantly increased. It was confirmed that the neuronal growth factors expressed in immune cells were stimulated by NGF and BDNFs and changed into cholinergic neuron-like cell morphology.
  • MSCs treated with the inflammatory conditions of the present invention were able to secrete acetylcholine to inhibit immune cells activated through nAChR ⁇ 7, which is an increased nicotinic cholinergic receptor on the surface of immune cells. These can be used for the prevention or treatment of immune diseases or inflammatory diseases.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Pain & Pain Management (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물, 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법에 관한 것이다. 본 발명의 염증 자극된 중간엽 줄기세포는 아세틸콜린을 분비하는 효과가 있어, 부작용이 알려진 기존의 면역억제제 및 염증억제제를 대체할 수 있고, 경제적으로 사용될 수 있는 세포치료제로서 면역질환 및 염증질환의 예방 또는 치료에 유용하게 이용할 수 있다.

Description

염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물
본 발명은 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물, 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법에 관한 것이다.
뼈 안의 부드러운 물질인 골수는 새로운 혈액 세포에서 생산되는 활성 조직이며, 적어도 두가지 타입의 줄기세포를 포함한다. 조혈모 줄기세포 (Hematopoietic stem cells, HSCs)는 자가-갱신 줄기세포로서 모든 혈액 계대에서 생산된다. 상기 조혈모 줄기세포와는 달리, 비조혈 유래의 희귀한 줄기세포는 조혈작용(hematopoiesis)을 위한 지지적 기질 구조를 공급 및 구성한다. 이는 중간엽 계대의 체세포로 분화될 수 있다. 조혈 작용을 돕는 비-조혈 줄기세포는 골수 기질 세포 또는 중간엽 줄기세포(mesenchymal stem cells, MSCs)로 정의된다. 중간엽 줄기세포는 다양한 성인 조직으로부터 분리되었으며, 중간엽 세포 타입뿐만 아니라 신경세포와 같은 비 중간엽 줄기세포 타입으로도 분화되는 것으로 알려져 있다. 중간엽 줄기세포는 본래 다능성을 갖고 있지만, 분화 가능성의 관점에서는, in vivo상의 전환 분화(transdifferentiation)를 위한 불확실한 능력은 임상적 적용에 대해 제한되어 사용할 가능성이 있다.
현재까지 많은 화합물 면역억제제 또는 항염증제가 개발되어 있고, 임상적으로 가장 흔히 사용되는 면역억제제로는 싸이클로스포린 (cyclosporine, Neoral, Cipol A), 아자치오프린(imuran), 프레드니솔론(일종의 스테로이드)이 있다. 상기 면역억제제는 항원자극에서 항체생성에 이르는 과정 중 대식세포에 의한 항원의 탐식, 림프구 등에 의한 항원 인식, 세포 분열, T세포와 B세포의 분열, 항체 생성 등 몇 가지 과정을 저해시킴으로써 면역 억제를 야기한다. 대부분 항종양 활성을 가지고 있는데, 그 이유는 DNA 장애, DNA 합성 저지 등을 매개로 하여 세포 분열을 저지하기 때문이다. 그러나 이에 따른 대표적인 부작용으로 고혈압과 신독성(콩팥기능이 저하됨)이 있으며 이 부작용의 발생률이 높기 때문에 사용할 때 충분히 경과를 관찰해야 하는 등의 문제가 있어 왔다. 그 외 부작용으로 드물게 떨림, 발작, 간염, 담액 저류, 혈중 뇨산증가, 근육기력 저하, 조모증 (hypertrichosis), 치은 비대(gingival hypertrophy)등이 있다. 흔히 쓰이는 억제제 중 아자치오프린은 백혈구수치의 감소, 빈혈, 혈소판 감소 등 골수 기능을 억제하기도 하며 췌장염, 간염, 담즙저류와 함께 드물게 탈모, 발열 등을 보이는 합병증이 있을 수 있다. 스테로이드 제제의 하나인 프레드니솔론은 면역 억제제 중 가장 먼저 사용되기 시작하였으나, 동맥 경화증을 촉진시킬 뿐 아니라 고혈압, 위궤양, 당뇨, 성장 저해, 골다공증, 백내장, 녹내장 등을 일으키므로 주의해야 할 약물이므로, 안전한 면역억제제 또는 항염증제의 필요성이 대두되고 있다.
뼈 안의 부드러운 물질인 골수는 새로운 혈액 세포에서 생산되는 활성 조직이며, 적어도 두가지 타입의 줄기세포를 포함한다. 조혈모 줄기세포 (Hematopoietic stem cells, HSCs)는 자가-갱신 줄기세포로서 모든 혈액 계대에서 생산된다. 상기 조혈모 줄기세포와는 달리, 비조혈 유래의 희귀한 줄기세포는 조혈작용(hematopoiesis)을 위한 지지적 기질 구조를 공급 및 구성한다. 이는 중간엽 계대의 체세포로 분화될 수 있다. 조혈 작용을 돕는 비-조혈 줄기세포는 골수 기질 세포 또는 중간엽 줄기세포(mesenchymal stem cells, MSCs)로 정의된다. 중간엽 줄기세포는 다양한 성인 조직으로부터 분리되었으며, 중간엽 세포 타입뿐만 아니라 신경세포와 같은 비 중간엽 줄기세포 타입으로도 분화되는 것으로 알려져 있다. 중간엽 줄기세포는 본래 다능성을 갖고 있지만, 분화 가능성의 관점에서는, in vivo상의 전환 분화(transdifferentiation)를 위한 불확실한 능력은 임상적 적용에 대해 제한되어 사용할 가능성이 있다.
현재까지 많은 화합물 면역억제제 또는 항염증제가 개발되어 있고, 임상적으로 가장 흔히 사용되는 면역억제제로는 싸이클로스포린 (cyclosporine, Neoral, Cipol A), 아자치오프린(imuran), 프레드니솔론(일종의 스테로이드)이 있다. 상기 면역억제제는 항원자극에서 항체생성에 이르는 과정 중 대식세포에 의한 항원의 탐식, 림프구 등에 의한 항원 인식, 세포 분열, T세포와 B세포의 분열, 항체 생성 등 몇 가지 과정을 저해시킴으로써 면역 억제를 야기한다. 대부분 항종양 활성을 가지고 있는데, 그 이유는 DNA 장애, DNA 합성 저지 등을 매개로 하여 세포 분열을 저지하기 때문이다. 그러나 이에 따른 대표적인 부작용으로 고혈압과 신독성(콩팥기능이 저하됨)이 있으며 이 부작용의 발생률이 높기 때문에 사용할 때 충분히 경과를 관찰해야 하는 등의 문제가 있어 왔다. 그 외 부작용으로 드물게 떨림, 발작, 간염, 담액 저류, 혈중 뇨산증가, 근육기력 저하, 조모증 (hypertrichosis), 치은 비대(gingival hypertrophy)등이 있다. 흔히 쓰이는 억제제 중 아자치오프린은 백혈구수치의 감소, 빈혈, 혈소판 감소 등 골수 기능을 억제하기도 하며 췌장염, 간염, 담즙저류와 함께 드물게 탈모, 발열 등을 보이는 합병증이 있을 수 있다. 스테로이드 제제의 하나인 프레드니솔론은 면역 억제제 중 가장 먼저 사용되기 시작하였으나, 동맥 경화증을 촉진시킬 뿐 아니라 고혈압, 위궤양, 당뇨, 성장 저해, 골다공증, 백내장, 녹내장 등을 일으키므로 주의해야 할 약물이므로, 안전한 면역억제제 또는 항염증제의 필요성이 대두되고 있다.
상기와 같은 과제를 해결하기 위해, 본 발명은 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 중간엽 줄기세포에 염증 자극을 가하여 배양하는 단계;를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법을 제공한다.
본 발명의 염증 자극된 중간엽 줄기세포는 아세틸콜린을 분비하는 효과가 있어, 부작용이 알려진 기존의 면역억제제 및 염증억제제를 대체할 수 있고, 경제적으로 사용될 수 있는 세포치료제로서 면역질환 및 염증질환의 예방 또는 치료에 유용하게 이용할 수 있다.
도 1의 a는 본 발명의 MSCs가 섬유아세포-유사 형태를 갖는 것을 확인한 결과를 나타낸 도이다. b는 본 발명의 MSCs의 지방세포화(adipogenically), 연골분화(chondrogenically) 및 골 분화(osteogenically)로의 분화 잠재력을 확인한 결과를 나타낸 도이다. C는 본 발명의 MSCs의 양성 또는 음성 마커를 유세포 분석한 결과를 나타낸 도이다.
도 2의 a는 PBMCs (P 또는 Po) 및 혼합림프구반응(MLR) 상에서 MSCs 유무에 따른 동종 항원성(alloantigenic) 면역 반응을 림프구 증식 및 활성을 통하여 확인한 결과를 나타낸 도이다. b는 PBMCs (P), PHA(1μg/ml) 처리된 인간 PBMCs(PPHA)에 MSCs 공동 배양 유무에 따른 림프구 증식 및 활성 결과를 나타낸 도이다. c는 MLR-활성화 또는 PHA- 활성화된 PBMCs에서 MSCs를 공동 배양했을 때 비정상적인 형태학적 변화를 광학 현미경으로 확인한 결과를 나타낸 도이다. d 및 e는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 신경세포-유사 형태적 특징을 확인한 결과를 나타낸 도이다. f 및 g는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 신경구-유사 세포 클러스터(붉은 화살표)를 확인한 결과를 나타낸 도이다.
도 3의 a는 염증성 조건에 대한 MSCs에서 스페로이드 개체 생성을 확인한 결과를 나타낸 도이다. b는 염증성 조건을 최소화하였을 때 MSCs의 스페로이드 생성 여부 및 MSCs 특성 변화를 확인한 결과를 나타낸 도이다.
도 4의 a는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 Semi-quantitative RT-PCR을 수행하여, nestin, Tuj1, MAP2, NF-M 및 GFAP의 발현을 확인한 도이다. b는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 nestin, Tuj1 및 GFAP의 유세포 분석 결과를 나타낸 도이다. c 및 d는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 면역형광 염색하여 nestin, Tuj1, NCAM1, GFAP 및 O4의 발현 정도를 확인한 도이다.
도 5의 a는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 Semi-quantitative RT-PCR을 수행하여, TrkA, TrkB, TrkC 및 p75NTR 발현을 확인한 도이다. b 및 c는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 qRT-PCR을 통하여 TrkA, TrkB, TrkC 및 p75NTR 발현을 확인한 도이다. d는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 웨스턴 블랏을 수행하여, TrkA, TrkB, TrkC 및 p75NTR 발현을 확인한 도이다. e 및 f는 MLR-활성화 또는 PHA- 활성화된 PBMCs 에 MSCs를 공동 배양 후, 면역형광 염색을 수행하여 TrkA 발현 정도를 확인한 결과를 확인한 도이다.
도 6의 a는 MLR-활성화된 PBMCs을 Semi-quantitative RT-PCR을 수행하여, NGF 및 BDNF의 발현 정도를 확인한 결과를 나타낸 도이다. b는 MLR-활성화된 PBMCs에 qRT-PCR을 수행하여, NGF 및 BDNF의 발현 정도를 확인한 결과를 나타낸 도이다. c는 PHA-활성화된 PBMCs을 Semi-quantitative RT-PCR을 수행하여, NGF 및 BDNF의 발현 정도를 확인한 결과를 나타낸 도이다. d는 PHA-활성화된 PBMCs에 qRT-PCR을 수행하여, NGF 및 BDNF의 발현 정도를 확인한 결과를 나타낸 도이다. e 내지 h는 ELISA를 수행하여 MLR-활성화 또는 PHA- 활성화된 PBMCs로부터 분비된 NGF 및 BDNF의 분비양을 확인한 결과를 나타낸 도이다.
도 7의 a는 염증성 조건에 의한 MSCs의 스페로이드 형성을 확인한 결과를 나타낸 도이다. b는 MSCs의 스페로이드의 Tuj1, NF-M 및 MAP2의 발현 정도를 확인한 결과를 나타낸 도이다.
도 8의 a는 염증성 조건에 의해 활성화된 PBMCs의 스페로이드 형성을 확인한 결과를 나타낸 도이다. b는 혼합림프구반응(MLR) 조건에서, MSCs 스페로이드 또는 MSCs 단일분자막의 비율(1:2, 1:5 및 1:20)에 따른 림프구 증식 억제 정도를 확인한 결과를 나타낸 도이다. c는 식물성혈구응집소(PHA) 조건에서, MSCs 스페로이드 또는 MSCs 단일분자막의 비율(1:2, 1:5 및 1:20)에 따른 림프구 증식 억제 정도를 확인한 결과를 나타낸 도이다. d는 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 MSCs 스페로이드의 Tuj1 및 nestin의 발현을 유세포분석하여 확인한 결과를 나타낸 도이다.
도 9의 a는 아무것도 처리하지 않은 MSCs을 neurobasal medium 배지에 배양한 후 Tuj1, nestin, MBP 및 NF-M의 발현을 확인한 결과를 나타낸 도이다. b는 혼합림프구반응(MLR) 조건의 MSCs을 neurobasal medium 배지에 배양한 후 Tuj1, nestin, MBP 및 NF-M의 발현을 확인한 결과를 나타낸 도이다.
도 10의 a는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 면역형광 염색하여 ChAT, TH 및 GABA의 발현 정도를 확인한 결과를 나타낸 도이다. b는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 qRT-PCR을 수행하여 ChAT 발현 정도를 확인한 도이다. c는 MLR-활성화 또는 PHA-활성화된 PBMCs에 MSCs를 공동 배양 후 웨스턴 블랏을 수행하여 ChAT 발현 정도를 확인한 도이다. d는 MLR-활성화된 PBMCs에 MSCs를 공동 배양 후 면역형광 염색을 통하여 ChAT, NCAM1, MBP, Tuj1, NF-M, nestin, TrkA 및 GABA의 발현 정도를 나타낸 도이다. e는 MLR-활성화된 PBMCs에 MSCs를 공동 배양한 후, PBMCs단독(P 및 Po)군과 비교하여 아세틸콜린 분비를 확인한 결과를 나타낸 도이다. f는 PHA-활성화된 PBMCs에 MSCs의 공동 배양한 후, PBMCs단독(P)군과 비교하여 아세틸콜린 분비를 확인한 결과를 나타낸 도이다.
도 11의 a는 일반 배양 또는 트렌스 웰 플레이트 배양과 비교하여, 염증성 조건에서 MSCs의 콜린성 뉴런-유사 표현형으로의 변화를 확인한 결과를 나타낸 도이다. b는 조정배지(conditioned medium, CM) 조건에서 MSCs의 콜린성 뉴런-유사 표현형으로의 변화를 확인한 결과를 나타낸 도이다. c는 b조건에서 ChAT, NCAM1, NF-M 및 Tuj1의 발현을 확인한 결과를 나타낸 도이다.
도 12의 a는 MLR-활성화 또는 PHA- 활성화된 PBMCs에 MSCs를 공동 배양 후 PBMCs단독(P 및 Po)군과 비교하여 Semi-quantitative RT-PCR을 수행하여 nAChRα3, nAChRα5, nAChRα7, nAChRα8, nAChRβ2의 발현 정도를 확인한 결과이다. b는 MLR-활성화 또는 PHA- 활성화된 PBMCs에 MSCs를 공동 배양 후 PBMCs단독(P 및 Po)군과 비교하여 qRT-PCR을 수행하여 nAChRα5 또는 nAChRα7의 발현 정도를 확인한 결과를 나타낸 도이다. d는 MLR-활성화 또는 PHA- 활성화된 PBMCs에 MSCs를 공동 배양 후 PBMCs단독(P 및 Po)군과 비교하여, 웨스턴 블랏을 통해 nAChRα7의 발현 정도를 확인한 결과를 나타낸 도이다.
도 13는 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 PBMCs를 유세포 분석한 결과를 나타낸 도이다.
도 14의 a 내지 c는 는 α-BTX를 첨가한 배지에 MLR-활성화 PBMCs에 MSCs를 공동 배양 후 PBMCs단독(P 및 Po)군과 비교하여 각 림프구 증식, TNF-α및 IFN-γ 결과를 확인한 결과를 나타낸 도이다. d 내지 f는 는 α-BTX를 첨가한 배지에 PHA- 활성화된 PBMCs에 MSCs를 공동 배양 후 PBMCs 단독(P 및 Po)군과 비교하여 각 림프구 증식, TNF-α및 IFN-γ 결과를 확인한 결과를 나타낸 도이다. g 내지 i는 ACh-Cl를 첨가한 배지에 MLR-활성화 PBMCs에 MSCs를 공동 배양 후 PBMCs단독(P 및 Po)군과 비교하여 각 림프구 증식, TNF-α및 IFN-γ 결과를 확인한 결과를 나타낸 도이다. j 내지 l은 ACh-Cl를 첨가한 배지에 PHA- 활성화된 PBMCs에 MSCs를 공동 배양 후 PBMCs단독(P 및 Po)군과 비교하여 각 림프구 증식, TNF-α및 IFN-γ 결과를 확인한 결과를 나타낸 도이다.
도 15의 a 내지 d는 비특이적 콜린성 아고니스인 카바콜(carbachol)을 배지에 첨가한 후, MLR-활성화 또는 PHA- 활성화된 PBMCs에 MSCs를 공동 배양 후 PBMCs 단독(P 및 Po)군과 비교하여 각 림프구 증식, TNF-α및 IFN-γ 결과를 확인한 결과를 나타낸 도이다.
도 16의 a는 CD3/CD28-활성화된 마우스 비장세포(2×105)와 MSCs(4×103 내지 4×104)을 1:5, 1:10, 1:20, 및 1:50의 비율로 배양 후, 림프구 증식 억제 결과를 확인한 도이다. b는 마우스의 비장세포 처리된 MSCs의 콜린성 신경세포 유사 표현형 변화 여부를 확인한 결과를 나타낸 도이다. c는 마우스의 비장세포 처리된 MSCs의 ChAT, NCAM1, Tuj1, NF-M, nestin, MBP 및 TH의 발현을 확인한 결과를 나타낸 도이다.
도 17의 a는 CD3/CD28-활성화된 래트의 비장세포(2×105)와 MSCs(4×103 내지 4×104)을 1:5, 1:10 및 1:20의 비율로 배양 후, 림프구 증식 억제 결과를 확인한 도이다. b는 래트의 비장세포 처리된 MSCs의 콜린성 신경세포 유사 표현형 변화 여부를 확인한 결과를 나타낸 도이다. c는 마우스의 비장세포 처리된 MSCs의 ChAT, NCAM1, Tuj1, NF-M, nestin, TH 및 GABA의 발현을 확인한 결과를 나타낸 도이다.
도 18의 a는 일시적인(transient) 인간화 GVHD 마우스 모델에 PBMCs 및 MSCs 접종하여 ChAT+ nestin+ 인간 세포를 확인 과정을 모식화한 도이다. b는 ChAT+ nestin+ 인간 세포를 확인하기 위하여, PBMCs(P1 또는 P2) 또는 혼합된 PBMCs (P1+P2) 주입 마우스에 인간 MSCs를 처리한 각 마우스에서 항- ChAT 및 항-nestin 항체의 발현 정도를 확인한 결과이다. c는 MSC 세포질 여부를 확인하기 위하여, PBMCs(P1 또는 P2) 또는 혼합된 PBMCs (P1+P2) 주입 마우스에 인간 MSCs를 처리한 각 마우스에 생체 적합한 실리카-코팅된 형광 나노입자를 주입한 결과를 나타낸 결과이다(화살표는 MSC 세포질을 나타냄).
도 19는 본 발명의 염증성 자극에 대한 MSCs의 콜린성 항-염증 메커니즘을 모식화한 도이다.
본 발명은 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 중간엽 줄기세포는 층분리배양법(Subfractionation Culturing Method)으로 분리될 수 있고, 상기 방법으로 분리된 본 발명의 중간엽 줄기세포는 CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA-I) 및 Oct4를 발현할 수 있다.
본 발명에 있어서, "층분리배양법"은 개체로부터 골수를 채취하고 이를 배양한 후, 상기 배양 상층액만 새로운 용기로 이동시켜 배양하고, 상기 배양에서 생성되는 배양 상층액만 분리하여 코팅제가 처리된 배양용기 또는 코팅제가 처리되지 않은 배양용기에서 반복배양하는 단계를 거쳐 중간엽 줄기세포를 수득하는 방법을 의미하며, KR 10-0802011에 기재된 내용이 본 발명에 전체로서 참조될 수 있고, 바람직하게는 상기 문헌에 개시된 바에 따라 층분리배양법을 수행할 수 있다.
상기 염증 자극된 중간엽 줄기세포는 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 유사분열 촉진물질(mitogen) 처리 조건 및 사이토카인(Cytokine) 처리 조건으로 이루어진 군에서 선택된 1종 이상의 배양 조건에서 배양하는 방법을 통해 염증 자극된 중간엽 줄기세포일 수 있으며, 상기 유사분열 촉진물질은 식물성응집소(phytohemagglutinin, PHA), 콘카나발린 A(Con A), PWM(pokeweed mitogen), 지질다당, 스트렙토리신S, 수은화합물 및 항림프구항체로 이루어진 군에서 선택된 1종 이상이고, 이에 제한되지 않는다.
본 발명에 있어서, "혼합림프구반응(mixed lymphocyte reaction, MLR)"은 세포성 면역기능을 시험관에서 측정하는 방법의 하나로 장기이식 시, 공여자와 혜용자 사이의 조직적합성(histocompatibility)을 조사하기 위해 이용되는 시험법이다. 공여자와 수혜자의 림프구를 섞어서 세포배양을 했을때 만일 양자의 조직적 합성 항원이 서로 다르면 림프구는 분열을 시작한다. 분열했는지의 여부는 미리 배지에 가해 둔 3H 타이미딘이 DNA에 수용되었는 지의 여부에 따라서 알 수 있다. 본 발명에 있어서, 혼합림프구반응은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것을 의미하며, 여기에 중간엽 줄기세포를 처리하여, 본 발명의 염증 자극된 중간엽 줄기세포를 수득한다.
본 발명에 있어서, "유사분열 촉진물질(mitogen)"은 세포분열을 유발하는 물질을 의미하며, 면역학적으로는 항원비특이적(다중클론성)으로 림프구를 유령화하여 분열을 유발시키는 것을 의미한다.
본 발명에 있어서, "식물성응집소(phytohemagglutinin, PHA)"은 식물 유래의 세포응집 활성(aggregation activity of cell)을 갖춘 렉틴[lectin(당결합단백질)]을 의미하며, T세포에만 작용하는 특징이 있다. 본 발명에 있어서, 식물성응집소 처리는 공여자에서 수득한 PBMCs에 PHA를 처리한 후, 여기에 중간엽 줄기세포를 처리하는 것을 의미하며, 이와 같은 처리를 통해 본 발명의 염증 자극된 중간엽 줄기세포를 수득한다.
본 발명에 있어서, "콘카나발린 A(Con A)"은 완두(Canavalia ensiformis)의 종자로부터 얻어진 결정성 단백질의 하나이다. Con A는 T세포를 활성화시키지만 B세포는 활성화시키지 않아, 불용화하면 B세포도 활성화된다. 또 여러 암세포에서 정상세포에 비하여 Con A에 대한 높은 응집성을 나타내기 때문에 암세포막 구조의 특이성을 연구하는 수단으로 이용되고 있다.
본 발명에 있어서, "염증 자극된 중간엽 줄기세포"는 혼합림프구반응(mixed lymphocyte reaction, MLR), 유사분열 촉진물질(mitogen) 처리 및 사이토카인(Cytokine) 처리 조건으로 염증 자극 되거나, 바람직하게는, 혼합림프구반응(mixed lymphocyte reaction, MLR) 또는 식물성응집소(phytohemagglutinin, PHA) 조건으로 염증 자극되어 중간엽 줄기세포가 신경 세포와 유사한 특징을 갖는 것을 의미하며, 본 발명의 일실시예에 있어서, 본 발명의 염증 자극된 중간엽 줄기세포는 신경세포와 유사한 형태로 변화하였고, 신경세포 마커인 Tuj1, nestin 및 MAP2을 발현하고, 성상교세포(별아교세포) 마커인 GFAP 및 희소돌기신경교 마커인 O4과 같은 신경교 마커는 발현하지 않음을 확인하였다.
상기 염증 자극된 중간엽 줄기세포는 콜린성 뉴런-유사 표현형(cholinergic neuron-like phenotype)으로 변화하고, 아세틸콜린을 분비할 수 있다.
본 발명에 있어서, "콜린성 뉴런(cholinergic neuron)"은 신경섬유 말단으로부터 화학전달물질로서 아세틸콜린을 분비하는 뉴런을 의미한다.
본 발명에 있어서, "아세틸콜린"은 콜린과 아세트산의 에스테르인 신경전달물질이며 신경의 말단에서 분비되며, 신경의 자극을 근육에 전달하는 화학물질이다.
상기 조성물에는 아세틸콜린의 아고니스트(agonist)를 더 포함할 수 있고, 예컨대, ACh chloride(ACh-Cl), 카바콜(carbachol), 에피바티딘(epibatidine), DMPP(dimethylphenylpiperazinium), 수자메토늄(suxamethonium), 시티신(cytisine), 니코틴(nicotine), 니펜(nifene), 바레니클린(varenicline), MDMA(3,4-Methylenedioxymethamphetamine) 및 엠파타민(methamphetamine)으로 이루어진 군에서 선택된 1종 이상을 선택하여 더 포함할 수 있고, 면역질환 또는 염증 질환의 예방 또는 치료를 위한 것이라면 이에 제한되지 않는다.
상기 면역질환 또는 염증질환은 자가면역질환, 이식거부, 관절염, 이식편대숙주병, 세균감염, 패혈증 및 염증으로 이루어진 군에서 선택된 1종 이상일 수 있으며, 상기 자가면역질환은 크론씨병, 홍반병, 아토피, 류마티스 관절염, 하시모토 갑상선염, 악성빈혈, 에디슨씨 병, 제1형 당뇨, 루프스, 만성피로증후군, 섬유근육통, 갑상선기능저하증, 항진증, 경피증, 베체트병, 염증성 장질환, 다발성 경화증, 중증 근무력증, 메니에르 증후군(Meniere's syndrome), 길리안-바레 증후근(Guilian-Barre syndrome), 쇼그렌 증후군(Sjogren's syndrome), 백반증, 자궁내막증, 건선, 백반증, 전신성 경피증, 천식 및 궤양성 대장염으로 이루어진 군에서 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.
본 발명의 약학적 조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다. 또한, 약학 조성물의 제조에는 고체 또는 액체의 제제용 첨가물을 사용할 수 있다. 제제용 첨가물은 유기 또는 무기 중 어느 것이어도 된다.
부형제로서는 예를 들면 유당, 자당, 백당, 포도당, 옥수수 전분 (corn starch), 전분, 탈크, 소르비트, 결정 셀룰로오스, 덱스트린, 카올린, 탄산칼슘, 이산화규소 등을 들 수 있다. 결합제로서는 예를 들면 폴리비닐알코올, 폴리비닐에테르, 에틸셀룰로오스, 메틸셀룰로오스, 아라비아고무, 트래거캔스 (tragacanth), 젤라틴, 셀락(shellac), 히드록시프로필셀룰로오스, 히드록시프로필메틸셀룰로오스, 구연산칼슘, 덱스트린, 펙틴 (pectin)등을 들 수 있다. 활택제로서는 예를 들면 스테아린산마그네슘, 탈크, 폴리에틸렌글리콜, 실리카, 경화식물유 등을 들 수 있다. 착색제로서는 통상 의약품에 첨가하는 것이 허가되어 있는 것이라면 모두 사용할 수 있다. 이들의 정제, 과립제에는 당의(糖衣), 젤라틴코팅, 기타 필요에 따라 적절히 코팅할 수 있다. 또한, 필요에 따라 방부제, 항산화제 등을 첨가할 수 있다.
본 발명의 약학적 조성물은 당업계에서 통상적으로 제조되는 어떠한 제형으로도 제조될 수 있으며 (예: 문헌[Remington's Pharmaceutical Science, 최신판; Mack Publishing Company, Easton PA), 제제의 형태는 특별히 한정되는 것은 아니나, 바람직하게는 외용제일 수 있다. 본 발명의 외용제에는 시트제, 액상도포제, 분무제, 로션제, 크림제, 파프제, 분제, 침투 패드제, 분무제, 겔제, 파스타제, 리니멘트제, 연고제, 에어로졸, 분말제, 현탁액제, 경피흡수제 등의 통상적인 외용제의 형태가 포함될 수 있다. 이들 제형은 모든 제약 화학에 일반적으로 공지된 처방서인 문헌 [Remington's Pharmaceutical Science, 15th Edition, 1975, Mack Publishing Company, Easton, Pennsylvania 18042 (Chapter 87: Blaug, Seymour)에 기술되어 있다.
본 발명의 약학적 유효량은 환자의 상처 종류, 적용부위, 처리회수, 처리시간, 제형, 환자의 상태, 보조제의 종류 등에 따라 변할 수 있다. 사용량은 특별히 한정되지 않지만, 통상 본 발명의 약학 조성물의 일일 유효량을 환자에 적용시 0.00001 내지 10000 μg일 수 있다. 상기 1 일량은 1일에 1회, 또는 적당한 간격을 두고 하루에 2~3회에 나눠 투여해도 되고, 수일(數日) 간격으로 간헐(間歇)투여해도 된다.
그러나, 본 발명의 약학적 조성물의 상기 사용량은 투여 경로, 환자의 연령, 성별, 체중, 환자의 중증도, 상처 종류, 적용부위, 처리회수, 처리시간, 제형, 환자의 상태, 보조제의 종류 등의 여러 관련 인자에 비추어 결정되는 것이므로 상기 유효량은 어떠한 측면으로든 본 발명의 범위를 제한하는 것으로 이해되어서는 아니 된다.
또한, 본 발명은 상기 염증 자극된 중간엽 줄기세포를 개체에 투여하는 단계를 포함하는, 개체의 면역반응 또는 염증반응을 억제하는 방법을 제공한다.
또한, 본 발명은 상기 염증 자극된 중간엽 줄기세포를 개체에 투여하는 단계를 포함하는, 개체의 염증성 질환의 예방 또는 치료 방법을 제공한다.
본 발명에 있어서, "개체"란 소, 개, 돼지, 닭, 양, 말, 인간을 포함한 포유동물을 의미하나 이에 제한되는 것은 아니다.
상기 방법에 있어서, 상기 중간엽 줄기세포는 층분리배양법(Subfractionation Culturing Method)으로 분리된 것을 특징으로 할 수 있으며, CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I(HLA-I) 및 Oct4를 발현하는 것을 특징으로 할 수 있다.
본 발명의 방법에 사용되는 염증 자극된 중간엽 줄기세포는 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 유사분열 촉진물질(mitogen) 처리 조건 및 사이토카인(Cytokine) 처리 조건으로 이루어진 군에서 선택된 1종 이상의 배양 조건에서 배양된 것을 특징으로 할 수 있으며, 상기 유사 분열 촉진 물질은 식물성응집소(phytohemagglutinin, PHA), 콘카나발린 A(Con A), PWM(pokeweed mitogen), 지질다당, 스트렙토리신 S, 수은화합물 및 항-림프구항체로 이루어진 군에서 선택된 1종 이상일 수 있고, 염증 자극된 중간엽 줄기세포는 콜린성 뉴런-유사 표현형(cholinergic neuron-like phenotype)으로 변화한 것을 특징으로 할 수 있다.
상기 염증 자극된 중간엽 줄기세포는 아세틸 콜린을 분비하는 것을 특징으로 할 수 있으며, 면역질환 또는 염증 질환은 자가면역질환, 이식거부, 관절염, 이식편대숙주병, 세균감염, 패혈증 및 염증으로 이루어진 군에서 선택된 1종 이상일 수 있다.
또한, 본 발명은 중간엽 줄기세포에 염증 자극을 가하여 배양하는 단계를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법을 제공한다.
상기 염증 자극은 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 유사분열 촉진물질(mitogen) 처리 및 사이토카인(Cytokine) 처리로 이루어진 군에서 선택된 1종 이상이고, 상기 유사분열 촉진물질은 식물성응집소(phytohemagglutinin, PHA), 콘카나발린 A(Con A), PWM(pokeweed mitogen), 지질다당, 스트렙토리신S, 수은화합물 및 항림프구항체로 이루어진 군에서 선택된 1종 이상이며, 바람직하게는 혼합림프구반응 조건 또는 식물성응집소 처리이나, 이에 제한되지 않는다.
상기 제조 방법에 의해 제조된 중간엽 줄기세포는 아세틸콜린을 분비하며, 면역억제제 또는 함염증제로 사용될 수 있다.
본 발명에 있어서, "면역억제제"란 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 식물성응집소(phytohemagglutinin, PHA) 처리 또는 사이토카인(Cytokine) 처리 조건에서 배양한 중간엽 줄기세포 또는 그 배양물을 포함하는 제제로 면역 반응을 억제하여 면역질환을 치료할 수 있는 제제를 의미한다.
본 발명에 있어서, "항염증제"란 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 식물성응집소(phytohemagglutinin, PHA) 처리 또는 사이토카인(Cytokine) 처리 조건에서 배양한 중간엽 줄기세포 또는 그 배양물을 포함하는 제제로 염증 반응을 억제하여 염증 질환을 치료할 수 있는 제제를 의미한다.
본 발명에서 용어 "배양"은 본 발명의 중간엽 줄기세포를 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다.
상기 본 발명의 중간엽 줄기세포는 통상의 배지에서 생육 가능하며, 본 발명의 중간엽 줄기세포 배양하기 위하여 배양대상 즉 배양체가 되는 세포가 필요로 하는 영양물질을 포함하는 것으로 특수한 목적을 위한 물질이 추가로 첨가되어 혼합된 것일 수 있다. 상기 배지는 배양기 또는 배양액이라고도 하며, 천연배지, 합성배지 또는 선택배지를 모두 포함하는 개념이다.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 글루코즈 및 자일로즈의 혼합당을 주 탄소원으로 사용하며 이외에 수크로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 및 질산암모늄과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민과 같은 아미노산 및 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해생성물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소듐-함유 염이 포함될 수 있다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있다. 마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.
이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실험예 1. 재료 및 방법
1-1. 중간엽줄기세포(Mesenchymal Stem Cells, MSCs) 분리, 특징 및 배양
MSCs는 KR 10-0802011에 개시된 층분리배양법(Subfractionation Culturing Method)으로 분리된 중간엽 줄기세포이다. 상기 MSCs의 분리 및 특징은 세포 모양, 마커 발현 및 중간엽 분화로 확인하였으며 그 결과를 도 1에 나타내었다. 유세포 분석을 위한 항체는 anti-CD14(BD Biosciences, San Diego, CA, USA), anti-CD29(Serotec, Kidlington, UK), anti-CD34(BD Biosciences), anti-CD44(Serotec), anti-CD45(BD Biosciences), anti-CD49f(BD Biosciences), anti-CD73(BD Biosciences), anti-CD90(BD Biosciences), anti-CD105(Serotec), anti-CD106((BD Biosciences), anti-CD146(BD Biosciences), anti-HLA class I(BD Biosciences), anti-HLA-DR(BD Biosciences), 및 anti-Oct4 (BD Biosciences) 항체를 이용하였다. 이소타입-매치된 대조 항체는 대조군으로서 사용하였다. 지방 세포, 골 형성 및 연골 분화를 포함하는 중간엽 줄기 분화 가능성은 종래의 문헌(Jung, K. H. 등, Gastroenterology 140, 998-1008 (2011))을 참고하여 평가하였다. MSCs는 10% 소 태아 혈청(Gibco-BRL), 1% 페니실린/스트렙토 마이신(Gibco-BRL) 및 1% 마이코곤(Genlantis, San Diego, CA, USA)으로 보충된 저 글루코스(low glucose, Gibco-BRL, Gaithersburg, MD, USA)을 포함하는 Dulbecco's modified Eagle's 배지에 37도로 가습된 CO2 배양기에서 배양하였다. 세포가 70-80% 정도에 도달하면, 트립신/ EDTA를 포함하여 분리한 후, 추가 배양을 위하여, 서브-배양하였다.
1-2. 면역억제 분석 및 염증 조건
인간 말초혈액단핵세포(peripheral blood mononuclear cell, PBMC)는 두 환자에서 분리하였고, 각 환자의 1×105 PBMCs를 혼합 림프구 반응(mixed lymphocyte reaction, MLR)을 위하여 96-웰 플레이트에 공동-배양하였다. 림프구 증식에서 MSCs의 효과를 평가하기 위하여, 4×104 MSCs를 혼합 림프구 반응(MLR)상에서 5일 동안 공동-배양하였다. 미토겐(mitogen) 활성을 위하여, 2×105 PBMCs을 1 μg/mL 식물성응집소(phytohemagglutinin, PHA)(Sigma, St. Louis, MO, USA)로 자극하였다. 또한, 4×104 MSCs을 PBMCs와 함께 3일 동안 배양하였다. 림프구 증식은 [3H]티미딘(1μCi/well)의 합입(incorporation)에 의해 방출된 방사선은 β-카운터(Perkin-Elmer, Waltham, MA, USA)을 이용하여 분석하였다. MLR 또는 PHA 처리에 의한 림프구 활성으로 염증 반응을 확인하였다.
1-3. ELISA
nAChR 안타고니스트(antagonist) 또는 아고니스트(agonist)를 포함하여 공동-배양한 배지를 수득하였다. TNF-α(BD Biosciences; cat. # 555212) 및 IFN-γ(BD Biosciences; cat. # 555141)에 대한 ELISA 키트를 이용하여 분비된 전염증성 사이토카인을 정량하였다. MLR 또는 PHA이 활성된 PBMCs를 배양한 배지를 이용하여 NGF (R&D Systems, Minneapolis, MN, USA; cat. # DY256-05) 및 BDNF (R&D Systems; cat. # DBD00)에 대한 분석을 수행하였다.
1-4. RNA분리 , semi-quantitative RT- PCR 및 quantitative RT- PCR ( qRT - PCR ) 수행
총 RNA는 easyBlue RNA isolation reagent(Intron, Sungnam, Korea)을 이용하여 분리하였다. AccuPower cDNA Synthesis Kit (Bioneer, Daejeon, Korea)를 이용하여 1g의 총 RNA로 cDNA를 합성하였다. Semi-quantitative RT-PCR는AccuPower PCR premix(Bioneer)를 이용하여 수행하였다. 앰플리콘(amplicons)은 SyberSafe (Invitrogen, Carlsbad, CA, USA)을 포함하는 1% 아가로스 겔로 전기영동을 수행하였고, fluorescence image analyzer LAS4000 mini(Fuji PhotoFilm, Tokyo, Japan)을 이용하여 분석하였다. PCR 프라이머 서열은 하기 표 1에 나타내었다. 상기 프라이머는 TrkA(Hs01021011), TrkB(Hs00178811), TrkC(Hs00176797), p75NTR(Hs00609977), nAChRα7(Hs04189909), nAChRα5(Hs00181248), ChAT(Hs00252848) 및 18s rRNA(Hs03928985)을 증폭하기 위하여 Applied Biosystems (Foster City, CA, USA)에서 구입하여 qRT-PCR을 수행하였다. 상기 qRT-PCR는 real-time thermal cycler(StepOne Real-Time RT-PCR system, Applied Biosystems)에서 수행하였다.
Gene Primers Sequence (5`-3`) Ta (oC) Cycle Products (bp) 서열번호
MAP2 Forward TAAGTTTGGAGCAAGCAGTTACAG 56 35 508 1
Reverse TTCTCTCCATACACTTTTGGATCA 2
Tuj1 Forward AACGAGGCCTCTTCTCACAA 56 25 537 3
Reverse CGATACCAGGTGGTTGAGGT 4
GFAP Forward GAGTACCAGTACCTGAAGA 55 30 203 5
Reverse TTCACCACGATGTTCCTCTT 6
NF -M Forward TTTGGTTTCCTCTATGATCTCCTC 54 25 212 7
Reverse AGATGGCTCTGGATATAGAAATCG 8
nestin Forward TCCAGAGCTGTCAATGACTCTAAG 56 37 596 9
Reverse GACCACTCCAGTTTAGAGGCTAAG 10
TrkA Forward GAAGAGTGGTCTCCGTTTCG 62 35 410 11
Reverse CTGACTGCTCCAGCTCTGTG 12
TrkB Forward ATCCCTTCCACAGACGTCAC 50 40 494 13
Reverse TCCTGCTCAGGACAGAGGTT 14
TrkC Forward ACAAGATGCTTGTGGCTGTG 201 40 201 15
Reverse GGGCCCTGAGGAACTTATTC 16
p75NTR Forward AGCCTTCAAGAGGTGGAACA 62 35 447 17
Reverse CTGCACAGACTCTCCACGAG 18
NGF Forward ATACAGGCGGAACCACACTC 56 30 408 19
Reverse GTCTGTGGCGGTGGTCTTAT 20
BDNF Forward TGGCTGACACTTTCGAACAC 54 30 520 21
Reverse CTTATGAATCGCCAGCCAAT 22
nAchRa3 Forward CCATGTCTCAGCTGGTG 53.5 35 502 23
Reverse GTCCTTGAGGTTCATGGA 24
nAchRa5 Forward GATAATGCAGATGGACGT 54 35 506 25
Reverse TGATGGTATGATCTCTTC 26
nAchRa7 Forward CCCGGCAAGAGGAGTGAAAGGT 61 31 442 27
Reverse CCGGGCCTCTTCATTCGCAG 28
nAchRa9 Forward CTACAATGGCAATCAGGTGG 60 30 425 29
Reverse ATGATGGTCAACGCAGTGG 30
nAchRb2 Forward CAGCTCATCAGTGTGCA 58.5 40 410 31
Reverse GTGCGGTCGTAGGTCCA 32
GAPDH Forward GTCATCCATGACAACTTTGGTATC 56 25 476 33
Reverse CTGTAGCCAAATTCGTTGTCATAC 34
1-5. 유세포 분석
유세포 분석을 위하여, Anti-GFAP(BD Biosciences; 51449), anti-Tuj1(BD Biosciences; 560381) 및 anti-nestin(BD Biosciences; 56130) 항체를 이용하였다. 이소타입-매치된 대조 항체는 대조군으로서 이용하였으며, FACS Calibur flow cytometer (BD Biosciences)을 이용하여 분석하였다.
1-6. 웨스턴 블랏 분석
각 실험군의 세포를 PBS로 2회 세척한 후, 용해 완충액(50 mM Tris-HCl, 150 mM NaCl, 1 mM 에틸렌디아민테트라 아세트산(ethylenediaminetetraacetic acid)(Sigma), 1mM 오르토바나듐산 나트륨(sodium orthovanadate)(Sigma), 1 mM 염화 불소(sodium fluoride), 1 mM 페닐메탄슬포릴 플루오리드 (phenylmethanesulfonylfluoride)(Sigma), 1% Triton-X 100, 프로테아제 저해 칵테일(Pierce, Rockford, IL, USA) 및 포스파타아제 저해 칵테일(Pierce))을 30분간 아이스에 두어 처리하였다. 세포 파편은 15,000×g로 15분간 원심분리하여 제거한 후, 상층액을 새로운 마이크로 튜브로 옮겼다. 세포 용해물에서 단백질 농도는 BCA protein assay reagent kit (Pierce)를 이용하여 측정하였다. 동등한 단백질은 환원 조건하에서 10 % SDS-폴리아크릴아미드 겔 전기영동을 사용하여 분리하였고, 이모빌론 P 멤브레인(EMD Millipore)에 전기 이동을 수행하였다. 면역검출을 위하여, anti-TrkA (EMD Millipore; cat. # 06-574), anti-TrkC (Cell Signaling Technology, Danvers, MA, USA; cat. # 3376), anti-p75NTR (Cell Signaling Technology; cat. # 8238), anti-ChAT (EMD Millipore; cat. # AB144P), anti-nAChR 7 (Alomone, Jerusalem, Israel; cat. # ANC-007), 또는 anti-Actin (Santa Cruz Biotechnology, Dallas, TX, USA; cat. # SC-47778) 항체를 일차 항체로서 이용하였다. 겨자무과산화효소(horseradish peroxidase)에 공여하여 이차 항체를 처리하여 배양한 후, 밴드의 강화된 화학발광은 West-Zol Plus (Intron)을 이용하여 검출하였다.
1-8. ACh 분석
24시간 동안 MLR 또는 PHA로 자극된 MSCs를 배양하고, 각 MSCs를 수득하였다. ACh/콜린은 제조사의 매뉴얼에 따라 Enzychrom Acetylcholine Assay Kit (BioAssay Systems, Hayward, CA, USA; EACL-100)을 이용하여 정량하였다.
1-9. 스페로이드 형성 확인
세포 접종 전에, 1% Pluronic F-127 (Sigma, 증류수에 용해함)을 페트리디쉬(diameter, 100mm)에 실온 조건으로 30분간 코팅한 후, PBS로 충분히 세척하였다. 총 1×106 MSCs를 1% 비 필수 아미노산(Gibco-BRL), 1% L-글루타민 (Gibco-BRL), 1% N2 보충제(Gibco-BRL), 20ng/ml 상피세포 성장 인자 (R&D Systems), 20ng/ml 염기성 섬유아세포 증식인자 (R&D Systems)를 포함하는 디쉬에 접종한 후 24-72 시간 동안 배양하였다.
1-10. 면역형광 염색 및 공초점 현미경 사용
각 실험군의 세포를 4% 파라포름알데히드로 고정한 후, PBS로 용해된 0.5% TritonX-100 (Sigma)를 이용하여 투과화하였다. 상기 세포를 anti-TrkA (EMD Millipore, Billerica, MA, USA; cat. # 06-574), anti-ChAT (EMD Millipore; cat. # AB144P), anti-Tuj1 (EMD Millipore; cat. # MAB1637), anti-TH (Cell Signaling Technology; cat. # 2792), anti-NCAM1 (EMD Millipore; cat. # CBL275), anti-MBP (EMD Millipore; cat. # AB980), anti-O4 (Sigma; cat. # O7139), anti-NF-M (EMD Millipore; cat. # AB1987), anti-Nestin (EMD Millipore; cat. # MAB5326), 또는 anti-GABA (Abcam, Cambridge, MA, USA; cat. # Ab86186)인 일차 항체(1:200 - 1:1000 희석)로 4도 조건으로 밤새 표지하였다. 일차 항체와 배양한 후, 상기 세포를 AlexaFluor488 또는 AlexaFluor594-공여된 이차 항체(Molecular Probes, Carlsbad, CA, USA) (1:300 희석)로 1시간 동안 배양하였다. 상기 세포를 4,6-diamidino-2-phenylindole (DAPI; Molecular Probes)로 1분 동안 염색하고, 이를 공초점 현미경(Zeiss LSM510 Meta Confocal Imaging System; Carl Zeiss, Thornwood, NY, USA)을 이용하여 관찰하였다.
1-11. 콜린성 안타고니스트 ( cholinergic antagonist) 또는 아고니스트(agonist) 처리
α-벙가로톡신(α-Bungarotoxin)(EMD Millipore; cat. # 203980)는 nAChRα7의 안타고니스트이며, 1 M 농도로 배지에 첨가하였다. 콜린성 아고니스트로서, ACh 클로라이드(ACh chloride)(Sigma; cat. # A6625) 및 카르바콜(carbachol)(EMD Millipore; cat. # 212385)을 각 1 nM 및 10 pM 농도로 첨가하여 실험을 수행하였다.
실시예 1. 본 발명의 MSCs의 특성 확인
본 발명의 MSCs는 층분리배양법(Subfractionation Culturing Method)으로 분리하였다. 본 발명의 MSCs는 종래의 농도구배원심분리법(Density gradient centrifugation method)으로 분리된 MSCs과 비교하였을 때, 줄기세포가 아닌 다른 종류의 세포들이 섞여있지 않고, 줄기세포만 분리되어 줄기세포의 순도가 높은 장점이 있다. 상기 MSCs를 이용하여 하기 일련의 실험에 사용하는 MSCs의 특성을 확인하였다.
구체적으로, 본 발명의 MSCs를 배양한 후, 이의 형태적 특성을 확인하였다. 또한, MSCs의 분화 잠재력을 확인하기 위하여, 지방 세포-특이적 지질 액체(adipocyte-specific lipid droplets)인 Oil Red O를 이용하여 시각화하였고, 연골-특이적 프로테오글리칸(cartilage-specific proteoglycans)인 Safranin O를 이용하여 시각화하였으며, 골-특이적 무기화작용(bone-specific mineralization)은 Alizarin Red S를 이용하여 시각화하였다. 또한, 유세포 분석을 수행하여 본 발명의 MSCs를 특성을 확인하기 위하여, 양성 마커인 CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA-I) 및 Oct4를 이용하였다. 음성 마커는 CD14, CD34, CD45, CD106 및 HLA-DR을 포함하는 조혈성/내피 마커를 이용하였다. 그 결과를 도 1에 나타내었다.
도 1의 a에 나타낸 바와 같이, 본 발명의 MSCs는 섬유아세포-유사 형태를 나타냄을 확인하였다.
도 1의 b에 나타낸 바와 같이, 본 발명의 MSCs는 지방세포화(adipogenically), 연골분화(chondrogenically) 및 골 분화(osteogenically)로의 분화 잠재력이 존재함을 확인하였다.
도 1의 c에 나타낸 바와 같이, 본 발명의 MSCs는 양성 마커인 CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I (HLA-I) 및 Oct4가 정상적으로 발현함을 확인하였다.
실시예 2. 염증성 조건에 의한 MSCs의 림프구 증식 억제 효과, 형태학적 변화, 스페로이드 개체 생성 여부 및 면역 억제와의 관계 확인
2-1. 염증성 조건에 의한 MSCs의 림프구 증식 억제 효과 및 형태학적 변화 확인
염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에 의한 인간 MSCs의 림프구 증식 억제 효과 및 형태학적 변화를 확인하였다.
구체적으로, 상기 실험예 1-2의 방법에 따라, 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것이고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건이다. 상기 염증성 조건에 따라, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 및 Po); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); MSCs이 없는 혼합림프구반응 조건군(MLR); 또는 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA)에 대하여, 동종 항원성(alloantigenic) 면역 반응에 따른 림프구 증식 억제 효과 및 형태학적 변화를 확인하였다. 그 결과를 도 2에 나타내었다.
도 2의 a에 나타낸 바와 같이, 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군에서 동종 항원성(alloantigenic) 면역 반응에 의해 유도된 림프구 증식을 효과적으로 억제함을 확인하였다.
도 2의 b에 나타낸 바와 같이, 식물성혈구응집소(PHA) 조건에서 공동 배양한 MSCs는 림프구 증식을 억제함을 확인하였다.
도 2의 c에 나타낸 바와 같이, 혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 조건에서 공동 배양한 MSCs의 특이적인 신장, 필라멘트(filamentation) 및 분기(branching)를 포함하는 비정상적인 형태학적 변화가 나타남을 확인하였다.
도 2의 d 및 e에 나타낸 바와 같이, 혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 조건에서 공동 배양한 MSCs의 수상돌기-유사 세포와 같은 신경세포와 유사한 형태적 특징이 나타남을 확인하였다. 또한, 수상돌기-유사 경로를 통하여 인접 세포와 연결됨을 확인하였다.
도 2의 f 및 g에 나타낸 바와 같이, 염증성 조건에서 MSCs는 신경 세포와 유사한 형태가 나타남을 확인하였다.
따라서, MSCs는 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 비정상적으로 형태가 변함을 확인하였다.
2-2. 염증성 조건에 의한 MSCs의 스페로이드 개체 생성 여부 및 면역 억제와의 관계
염증성 조건에 대한 MSCs에서 스페로이드 개체(spheroid entities) 생성 여부 및 상기 개체가 아노이키스(anoikis) 작용 기전에 의한 사멸보다 면역 억제와 관련이 있는지 확인하였다.
구체적으로, 상기 실험예 1-2의 방법에 따라, 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것이고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건으로, 스페로이드 개체 생성 여부를 확인하였다. 또한, 상기 혼합림프구반응(MLR) 조건 효과에 대한 중화 및 효과를 최소화하기 위하여, MSCs의 부착되지 않은 스페로이드 개체의 구조를 포함하는 상층액을 새로운 배지에 옮겨 24시간 배양하였다. 그 결과를 도 3에 나타내었다.
도 3의 a에 나타낸 바와 같이, MLR의 염증성 조건에 의하여 MSCs에서 스페로이드 개체가 생성됨을 확인하였다.
도 3의 b에 나타낸 바와 같이, MLR의 염증성 조건을 최소화하였을 때, MSCs에서 스페로이드 개체가 아닌 배지에 부착된 섬유아세포-유사 MSCs 형태가 나타남을 확인하였다.
따라서, 염증성 조건을 최소화하였을 때는 스페이로이드 개체의 생성이 저해되고, 섬유아세포-유사 MSCs로 발현됨을 확인하여, 염증성 조건은 MSCs에서 스페로이드 개체(spheroid entities) 생성을 유도하고, MSCs의 특성을 변화시킴을 확인하였다.
실시예 3. 염증성 조건에 의한 MSCs의 신경세포-유사 특성 확인
염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에 의하여 인간 MSCs가 신경세포-유사 특성으로 변하는지 확인하였다.
구체적으로, 상기 실험예 1-2의 방법에 따라, 신경성장인자 수용체 발현을 확인하였다. 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것이고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건이다. 상기 염증성 조건에 따라, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 및 Po); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); MSCs이 없는 혼합림프구반응 조건군(MLR); 또는 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA)에 대하여, 상기 실험예 1-4의 방법에 따라 Semi-quantitative RT-PCR을 수행하여 nestin, Tuj1, MAP2, NF-M 및 GFAP의 발현을 확인하였다. 또한, 실험예 1-5의 방법에 따라 nestin, Tuj1 및 GFAP의 유세포 분석을 수행하였다. 또한, 실험예 1-9의 방법에 따라 면역형광 염색하여 nestin, Tuj1, NCAM1, GFAP 및 O4의 발현 정도를 확인하였다. 그 결과를 도 4에 나타내었다.
도 4의 a에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs에서 신경세포 마커인 Tuj1 및 MAP2는 발현됨을 확인하였으나, 성상교세포(별아교세포)인 GFAP는 발현되지 않음을 확인하였다.
도 4의 b에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs에서 nestin 및 Tuj1는 발현하나, GFAP는 발현되지 않음을 확인하였다.
도 4의 c 및 d에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs에서 nestin 및 Tuj1과 같은 신경세포 마커는 발현함을 확인하였다. 그러나, 성상교세포(별아교세포) 마커인 GFAP 및 희소돌기신경교 마커인 O4과 같은 신경교 마커는 발현하지 않음을 확인하였다.
따라서, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs는 불완전 및 미성숙 신경세포 특징이 억제되고, 신경세포와 유사한 특징이 나타남을 확인하였다.
실시예 4. 염증성 조건에 의한 MSCs의 신경성장인자 수용체( neurotrophin receptor) 및 신경성장인자 발현 확인
4-1. 염증성 조건에 따른 MSCs의 신경성장인자 수용체 발현 확인
염증성 조건에 따른 MSCs의 신경성장인자 수용체의 발현을 확인하기 위하여, 상기 실험예 1-2의 방법에 따라, 성장인자 수용체 발현을 확인하였다. 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것이고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건이다. 상기 염증성 조건에 따라, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 및 Po); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); MSCs이 없는 혼합림프구반응 조건군(MLR); 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA); 또는 일반 MSC에 PHA처리군(MSC+PHA)에 대하여, Trk 패밀리(A, B 및 C) 및 p75NTR를 포함하는 신경성장인자 수용체의 발현을 확인하였다.
상기 실험예 1-4의 방법에 따라 Semi-quantitative RT-PCR 또는 qRT-PCR을 수행하여 TrkA, TrkB, TrkC 및 p75NTR의 발현을 확인하였다. 또한, 실험예 1-6의 방법에 따라 웨스턴 블랏을 수행하여 TrkA, TrkB, TrkC 및 p75NTR의 발현을 확인하였다. 또한, 실험예 1-9의 방법에 따라 면역형광 염색하여 TrkA 발현 정도를 확인하였다. 그 결과를 도 5에 나타내었다.
도 5의 a, b 및 c에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs에서 TrkA 및 p75NTR의 발현은 유의적으로 발현되었음을 확인하였으나, TrkB 및 TrkC의 발현은낮은 것을 확인하였다.
도 5의 e 및 f에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs에서 TrkA 단백질이 발현됨을 확인하였다.
4-2. 염증성 조건에 따른 PBMCs의 신경성장인자 발현 확인
신경성장인자로 알려진 NGF(nerve growth factor) 및 BDNF(brain-derived growth factor)의 발현을 PBMCs에서 확인하였다.
구체적으로, 상기 3-1과 같은 조건으로, 상기 실험예 1-4의 방법에 따라 Semi-quantitative RT-PCR 또는 qRT-PCR을 수행하여 NGF 및 BDNF의 발현을 확인하였다. 또한, 실험예 1-3의 방법에 따라, ELISA를 수행하여 NGF 및 BDNF의 발현을 확인하였다. 그 결과를 도 6에 나타내었다.
도 6의 a 내지 h에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 PBMCs에서 NGF 및 BDNF이 모두 발현이 현저하게 증가함을 확인하였다.
따라서, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 PBMCs에서 신경성장인자-수용체 및 신경성장인자 모두를 발현하여, 상기 MSCs를 자극하여 MSCs가 신경세포 유사 특징이 나타남을 확인하였다.
실시예 5. 염증성 조건에 의한 MSCs를 구성하는 신경구 -유사 스페로이 드(Neurosphere-like spheroids)의 신경세포 마커 발현 및 림프구 증식 억제 효과 확인
염증성 조건에 의한 MSCs를 구성하는 신경구-유사 스페로이드(Neurosphere-like spheroids)의 신경세포 마커 발현 및 림프구 증식 억제 효과를 확인하였다.
5-1. 염증성 조건에 의한 MSCs를 구성하는 신경구 -유사 스페로이드(Neurosphere-like spheroids)의 신경세포 마커 발현 확인
구체적으로, 상기 실시예 1에 나타낸 바와 같이, 염증성 조건에 의한 MSCs에서 타원체(spheroidal) 구조는 신경구(neurospheres)와 닮았으며, 본 발명의 염증성 조건에 의한 MSCs를 구성하는 신경구-유사 스페로이드(Neurosphere-like spheroids)의 신경구(neurospheres) 특성을 확인하기 위하여, 염증성 조건에 의한 MSCs의 스페로이드를 상기 실험예 1-8의 방법에 따라 수득하여 마트리겔-코팅된 배지에 두어 배양한 후, 배지에 부착된 스페로이드를 확인하였다. 또한, 상기 스페로이드의 신경세포 마커 발현을 확인하기 위하여, neurobasal medium (Gibco-BRL), 2% B27 supplement(Gibco-BRL), 1% 비-필수적 아미노산, 10 ng/ml BDNF, 20 ng/ml 상피세포 성장 인자, 40 ng/ml 염기성 섬유아세포 성장 인자 및 10 ng/ml 섬유아세포 성장 인자 8(Peprotech, Rehovot, Israel)를 포함하는 신경성 분화 배지에 배양하였다. 그 후, 면역 형광 염색하여 신경세포 마커인 Tuj1, NF-M 및 MAP2의 발현과 신경전구세포(neural progenitor cell, NPCs)의 마커인 nestin의 발현을 확인하였다. 그 결과를 도 7에 나타내었다.
도 7의 a에 나타낸 바와 같이, 염증성 조건에 의한 MSCs는 스페로이드를 성공적으로 생성시킴을 확인하였다. 또한, 도 7의 b에 나타낸 바와 같이, 신경 세포 마커인 Tuj1, NF-M 및 MAP2의 발현 및 신경전구세포(neural progenitor cell, NPCs)의 마커인 nestin이 발혐됨을 확인하여, 본 발명의 염증성 조건에 의한 MSCs를 구성하는 신경구-유사 스페로이드(Neurosphere-like spheroids)의 신경구(neurospheres) 특성이 나타남을 확인하였다.
5-2. 염증성 조건에 의한 MSCs를 구성하는 신경구 -유사 스페로이드(Neurosphere-like spheroids)의 림프구 증식 억제 효과 확인
염증성 조건에 의한 MSCs를 구성하는 신경구-유사 스페로이드(Neurosphere-like spheroids)와 PBMCs간의 관계를 확인하기 위하여, 혼합림프구반응(MLR) 조건으로 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 실험을 수행하였고, 식물성혈구응집소(PHA) 처리 조건으로 PBMCs에 PHA를 처리하여 3 또는 5일동안 배양하는 실험을 수행하였으며, 이에 따른 스페로이드 형성을 확인하였다.
또한, MLR 염증성 조건에 의한 MSC 스페로이드가 림프구 증식을 억제하는지 확인하기 위하여, 세포 수에 의존적인 단일분자막으로 배양된 MSCs와 비교하였다. 구체적으로, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 또는 Po); MSCs이 없는 혼합림프구반응 조건군(MLR); MSCs이 없는 PHA 조건군(PPHA); MSCs 스페로이드와 MLR 또는 PHA-활성화된 PBMCs간의 1:2, 1:5 및 1:20의 비율로 배양된 군(spheroids); MSCs 단일분자막과 MLR 또는 PHA-활성화된 PBMCs간의 1:2, 1:5 및 1:20의 비율로 배양된 군(monolayer)에 대한 림프구 증식 억제 정도를 확인하였다.
또한, 상기 실험예 1-5에 나타낸 바와 같이, 유세포 분석을 수행하여, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 MSCs 스페로이드의 Tuj1 및 nestin의 발현 정도를 확인하였다. 그 결과를 도 8에 나타내었다.
도 8의 a에 나타낸 바와 같이, 상기 염증성 조건에 의해 활성화된 PBMCs(MLR)에서 둥근 모양의 스페로이드가 형성됨을 확인하여, PBMCs 및 MSC 스페로이드 간의 상호 관계가 형성됨을 확인하였다.
도 8의 b 및 c에 나타낸 바와 같이, MLR 또는 PHA-활성화된 PBMCs와 MSCs 스페로이드의 혼합 배양군(spheroids)에서, MSCs 스페로이드의 비율이 높을수록 림프구 증식 억제가 효과적임을 확인하였다. 또한, MLR 또는 PHA-활성화된 PBMCs와 MSCs 단일분자막의 혼합 배양군(monolayer)에서 림프구 증식 억제가 더 활성화됨을 확인하였다.
도 8의 d에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 MSCs 스페로이드의 Tuj1 및 nestin의 발현이 증가됨을 확인하였다.
5-3. 신경성 포텐셜 (high neurogenic potential)에 따른 염증성 조건에 의한 MSCs의 신경구-유사 스페로이드(Neurosphere-like spheroids)의 신경 세포 마커 발현 확인
신경성 포텐셜에 따른 염증성 조건에 의한 MSCs의 스페로이드의 신경세포 마커의 발현을 확인하기 위하여, 대조군으로, 아무것도 처리하지 않은 MSCs를 2% N2 supplement(Gibco-BRL), 1% 비-필수 아미노산, 10 ng/ml BDNF, 20 ng/ml 상피 세포 성장 인자, 40 ng/ml 염기성 섬유아세포 성장 인자 및 10 ng/ml 섬유아세포 성장인자 8를 포함한 neurobasal medium 배지에 배양하여, MSC1 및 MSC2으로 나타내었다. 그 후, 신경세포 마커 또는 신경전구세포 마커인 Tuj1, nestin, MBP 및 NF-M의 발현을 확인하였다.
또한, 혼합림프구반응(MLR) 조건으로, 서로 다른 공여자에서 수득한 각 PBMCs를 MSC와 공동 배양하여 수행하였으며, 2% N2 supplement(Gibco-BRL), 1% 비-필수 아미노산, 10 ng/ml BDNF, 20 ng/ml 상피 세포 성장 인자, 40 ng/ml 염기성 섬유아세포 성장 인자 및 10 ng/ml 섬유아세포 성장인자 8를 포함한 neurobasal medium 배지에 배양하여, 각각 MSC1 및 MSC2으로 나타내었다. 그 후, 신경세포 마커 또는 신경전구세포 마커인 Tuj1, nestin, MBP 및 NF-M의 발현을 확인하였다. 그 결과를 도 9에 나타내었다.
도 9의 a 및 b에 나타낸 바와 같이, 신경구-유사 스페로이드에서 신경세포 마커들이 발현된다는 사실을 확인하여, 상기 신경구-유사 스페로이드는 신경유사 세포들처럼 유사한 기능을 발휘할 수 있음을 확인하였다.
실시예 6. 염증성 조건에 의한 MSCs의 아세틸콜린( ACh ) 분비 확인
6-1. 염증성 조건에 의한 MSCs의 아세틸콜린( ACh ) 분비 확인
염증성 조건에 의한 MSCs는 신경세포 유사 특징을 갖는 것으로 확인되어, 신경전달 물질인 아세틸콜린(ACh)의 분비를 확인하였다.
구체적으로, 상기 실험예 1-2의 방법 및 1-7의 방법과 같이, 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것을 의미하고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건을 의미하며, 두가지 조건을 포함하여 염증성 조건이라 언급한다. 상기 염증성 조건에 따라, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 및 Po); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); MSCs이 없는 혼합림프구반응 조건군(MLR); 또는 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA)에 대하여, 실험예 1-5의 방법에 따라, qRT-PCR을 수행하여 ChAT(choline acetyltransferase) 발현 정도를 확인하였다. 또한, 상기 실험예 1-6의 방법에 따라 웨스턴 블랏을 수행하여 ChAT 발현 정도를 확인하였다. 또한, 실험예 1-9의 방법에 따라 면역형광 염색하여 ChAT, TH(tyrosine hydroxylase) 및 GABA(γ-aminobutyric acid); 또는 ChAT, NCAM1, MBP, Tuj1, NF-M, nestin, TrkA 및 GABA;에 대한 발현 정도를 확인하였다. 그 결과를 도 10에 나타내었다.
도 10의 a에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs에서 콜린성(cholinergic)인 ChAT가 발현함을 확인하였다. 반면, 가바성(GABAergic)인 GABA 및 도파민성(dopaminergic) TH는 발현하지 않음을 확인하였다.
도 10의 b 및 c에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs는 다른 조건의 세포보다 ChAT이 높게 발현됨을 확인하였다.
도 10의 d에 나타낸 바와 같이, MSCs의 스페로이드는 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에 의해 MSCs는 콜린성으로 유도됨을 확인하였다.
도 10의 e 및 f에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs는 아세틸콜린을 분비함을 확인하였다.
6-2. 염증성 조건에서 분비된 수용성 인자(Soluble factors)에 의해 MSCs의 콜린성 뉴런-유사 표현형으로의 변화 확인
염증성 조건에서 세포와 세포간의 contact으로 야기된 콜린성 뉴런-유사 표현형으로의 변화가 아닌, 어떤 분비된 수용성 인자(Soluble factors)에 의해 MSCs의 콜린성 뉴런-유사 표현형으로의 변화를 트렌스웰 플레이트를 이용한 실험을 통하여 확인하였다.
구체적으로, 0.4m-pore의 트렌스웰 플레이트에(Corning, Tewksbury, MA, USA) 십만 개의 MSCs를 하단 웰에 접종하고, 혼합림프구반응(MLR)-활성화된 PBMCs (1×106) (bottom: MSC, insert: P+Po) 또는 배지(bottom: MSC, insert: medium)를 삽입하여 3일간 배양하였다. 또한, 트렌스웰이 아닌 일반 배양방법으로 혼합림프구반응(MLR) 조건으로 MSCs를 배양하여(MSC in MLR (co-culture)) 콜린작동성 뉴런-유사 표현형으로의 변화를 확인하였다.
또한, 조정배지(conditioned medium, CM)에 배양하지 않은 MSCs(no CM); 혼합림프구반응(MLR) 조건에서 활성화된 PBMCs의 조정배지(CM)에 MSCs 배양(CM from MLR); 및 혼합림프구반응(MLR) 조건에서 활성화된 PBMCs의 조정배지(CM)에 MSCs 배양(CM from PPHA)하여, 상기 MSCs의 콜린작동성 뉴런-유사 표현형으로의 변화를 확인하였다. 또한, ChAT, NCAM1, NF-M 및 Tuj1의 발현을 확인하였다. 그 결과를 도 11에 나타내었다.
도 11의 a에 나타낸 바와 같이, 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에서 배양된 MSCs의 신경-유사 형태학적 변화는 트렌스웰 분석상에도 확인되었다.
도 11의 b 및 c에 나타낸 바와 같이, 조정배지(CM) 조건에서도 상기 MSCs는 콜린작동성 뉴런-유사 표현형이 나타냄을 확인하였고, ChAT, NCAM1, NF-M 및 Tuj1의 발현 또한 나타남을 확인하였다.
실시예 7. 염증성 조건에 의한 PBMCs의 니코틴 콜린성 수용체 발현 및 콜린성 억제 메커니즘을 확인
7-1. 염증성 조건에 의한 PBMCs의 니코틴 콜린성 수용체 발현 확인
염증성 조건에 의한 PBMCs가 니코틴 콜린성 수용체를 발현하는지 확인하기 위하여, 상기 실험예 1-2의 방법에 따라 실험을 수행하였다. 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것이고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건이다. 상기 염증성 조건에 따라, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 및 Po); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); MSCs이 없는 혼합림프구반응 조건군(MLR); 또는 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA)을 두었다.
실험예 1-5의 방법에 따라, Semi-quantitative RT-PCR을 수행하여 nAChRα3, nAChRα5, nAChRα7, nAChRα8, nAChRβ2의 발현 정도를 확인하였고, qRT-PCR을 수행하여 nAChRα5 또는 nAChRα7의 발현 정도를 확인하였다. 또한, 상기 실험예 1-6의 방법에 따라 웨스턴 블랏을 수행하여 nAChRα7의 발현 정도를 확인하였다. 그 결과를 도 12에 나타내었다.
도 12의 a 내지 c에 나타낸 바와 같이, PBMCs의 스페로이드는 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에 의해 nAChRα5 및 nAChRα7을 발현함을 확인하였다.
도 12의 d에 나타낸 바와 같이, PBMCs의 스페로이드는 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건)에 의해 nAChRα7을 발현함을 확인하였다.
7-2. MSCs의 니코틴 콜린성 수용체 발현 확인
MSCs가 니코틴 콜린성 수용체를 발현하는지 확인하기 위하여, 상기 실험예 1-2의 방법에 따라 실험을 수행하였다. MSCs 단독군(MSC control); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); 또는 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA)을 두었다. 그 결과를 도 13에 나타내었다.
도 13에 나타낸 바와 같이, MSCs 단독군은 nAChRα7의 발현이 적거나, 나타나지 않음을 확인하였다.
따라서, 상기 7-1 및 7-2의 실시예에 따라, 니코틴 콜린성 수용체인 nAChRα7는 면역세포인 PBMC 세포에서만 발현됨을 확인하였다. 이에 따라, 줄기세포인 MSC에서 분비된 아세틸콜린이 상기 니코틴 콜린성 수용체가 발현된 면역세포들에만 결합함을 확인하였다.
7-3. 염증성 조건에 의한 MSCs의 ACh - nAChR 경로 메커니즘 확인
염증성 조건에 의한 MSCs에서 ACh-nAChR 경로 메커니즘을 확인하기 위하여, 상기 실험예 1-2 및 1-10의 방법에 따라 실험을 수행하였다. 혼합림프구반응(MLR) 조건은 서로 다른 공여자에서 수득한 각 PBMCs를 함께 배양하는 것이고, 식물성혈구응집소(PHA) 처리 조건은 PBMCs에 PHA를 처리하여 생성한 조건이다. 상기 염증성 조건에 따라, 서로 다른 공여자에서 수득한 각 PBMCs 단독군(P 및 Po); 혼합림프구반응(MLR) 조건에 공동 배양한 MSCs군(MSC in MLR); MSCs이 없는 혼합림프구반응 조건군(MLR); 또는 식물성혈구응집소(PHA) 처리 조건에 공동 배양한 MSCs군(MSC in PPHA)을 두었다. 콜린성 안타고니스트(antagonist)인 α-BTX(α-bungarotoxin, nAChRα7의 안타고니스트); 콜린성 아고니스트(agonist)인 ACh chloride(ACh-Cl, AChR의 아고니스트); 또는 비특이적 콜린성 아고니스트인 카바콜(carbachol)을 배지에 첨가한 후, 각 염증성 조건에 의한 MSCs의 TNF-α 및 IFN-γ의 활성을 확인하였다. 그 결과를 도 14에 나타내었다.
도 14의 a 내지 c에 나타낸 바와 같이, 염증성 조건인 혼합림프구반응(MLR) 조건으로 배양된 MSCs에 의해 억제된 림프구 증식, TNF-α 및 IFN-γ이 α-BTX와 함께 배양함에 따라 다시 활성화됨을 확인하였다.
도 14의 d 내지 f에 나타낸 바와 같이, 염증성 조건인 식물성혈구응집소(PHA) 처리 조건으로 배양된 MSCs에 의해 억제된 림프구 증식, TNF-α 및 IFN-γ이 α-BTX와 함께 배양함에 따라 다시 활성화됨을 확인하였다.
도 14의 g 내지 i에 나타낸 바와 같이, 염증성 조건인 혼합림프구반응(MLR) 조건으로 배양된 MSCs에 의해 억제된 림프구 증식, TNF-α 및 IFN-γ이 ACh-Cl와 함께 배양함에 따라 유의적으로 더 억제됨을 확인하였다.
도 14의 j 내지 l에 나타낸 바와 같이, 염증성 조건인 식물성혈구응집소(PHA) 처리 조건으로 배양된 MSCs에 의해 억제된 림프구 증식, TNF-α 및 IFN-γ이 ACh-Cl와 함께 배양함에 따라 유의적으로 더 억제됨을 확인하였다.
도 15의 a 내지 d에 나타낸 바와 같이, 비특이적 콜린성 아고니스인 카바콜(carbachol)을 본 발명의 염증성 조건의 MSCs 배양 배지에 첨가하여 배양 시, 상기 MSCs의 림프구 증식 및 염증성 사이토카인의 방출을 억제함을 확인하여, 특이적 또는 비특이적 콜린성 아고니스트 모두에서 ACh-nAChR 경로 메커니즘을 확인하였다.
실시예 8. 마우스 또는 래트의 염증 세포 처리를 통한 MSCs의 염증성 자극 여부, 형태적 변화 및 신경세포 유사 특성 확인
실시예 8-1. 마우스 또는 래트의 염증 세포 처리를 통한 MSCs의 염증성 자극 여부, 형태적 변화 및 신경세포 유사 특성 확인
마우스의 염증 관련 세포 중 하나인 비장세포 처리를 통하여 MSCs에 염증성 자극 여부를 확인하고, 이에 따른 MSCs의 형태적 변화 및 콜린성 신경세포 유사 표현형으로의 변화 정도를 확인하였다.
구체적으로, C57BL/6 마우스(Orient, Sungnam, Korea)의 비장세포(Splenocytes, SP)를 1μg/ml anti-CD3 (BD Biosciences) 및 anti-CD28 (BD Biosciences) 항체(αCD3/CD28)와 함께 배양하여 활성하였다. 이 후, CD3/CD28-활성화된 마우스 비장세포(2×105)와 MSCs(4×103 내지 4×104)을 1:5, 1:10, 1:20, 및 1:50의 비율로 배양하고, 이의 형태학적 변화를 확인하였다.
또한, 콜린성 뉴런 또는 신경전구세포 관련 마커인 ChAT, NCAM1, Tuj1, NF-M, nestin, MBP 및 TH을 이용하여 이의 발현을 확인하였다. 그 결과를 도 16에 나타내었다.
도 16의 a에 나타낸 바와 같이, 마우스의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 림프구 증식 억제가 제대로 이루어지지 않음을 확인하였다.
도 16의 b에 나타낸 바와 같이, 마우스의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 콜린성 신경세포 유사 표현형으로 변화되지 않음을 확인하였다.
도 16의 c에 나타낸 바와 같이, 마우스의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 콜린성 뉴런 또는 신경전구세포 관련 마커인 ChAT, NCAM1, Tuj1, NF-M, nestin, MBP 및 TH이 발현되지 않음을 확인하였다.
실시예 8-2. 래트의 염증 세포 처리를 통한 MSCs의 염증성 자극 여부, 형태적 변화 및 신경세포 유사 특성 확인
래트의 염증 관련 세포 중 하나인 비장세포 처리를 통하여 MSCs에 염증성 자극 여부를 확인하고, 이에 따른 MSCs의 형태적 변화 및 콜린성 신경세포 유사 표현형으로의 변화 정도를 확인하였다.
구체적으로, Sprague-Dawley 래트(Orient, Sungnam, Korea)의 비장세포(Splenocytes, SP)를 1μg/ml anti-CD3 (BD Biosciences) 및 anti-CD28 (BD Biosciences) 항체(αCD3/CD28)와 함께 배양하여 활성하였다. 이 후, CD3/CD28-활성화된 마우스 비장세포(2×105)와 MSCs(4×103 내지 4×104)을 1:5, 1:10 및 1:20의 비율로 배양하고, 이의 형태학적 변화를 확인하였다.
또한, 콜린성 뉴런 또는 신경전구세포 관련 마커인 ChAT, NCAM1, Tuj1, NF-M, nestin, MBP, TH 및 GABA을 이용하여 이의 발현을 확인하였다. 또한, 래트의 비장세포 처리된 MSCs의 신경성장인자 수용체인 TrkA, TrkB, TrkC 및 p75NTR의 mRNA 발현 정도를 확인하였다. 그 결과를 도 17에 나타내었다.
도 17의 a에 나타낸 바와 같이, 래트의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 림프구 증식 억제가 제대로 이루어지지 않음을 확인하였다.
도 17의 b에 나타낸 바와 같이, 래트의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 콜린성 신경세포 유사 표현형으로 변화되지 않음을 확인하였다.
도 17의 c에 나타낸 바와 같이, 래트의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 콜린성 뉴런 또는 신경 전구 세포 관련 마커인 ChAT, NCAM1, Tuj1, NF-M, nestin, MBP, TH 및 GABA이 발현되지 않음을 확인하였다.
도 17의 d에 나타낸 바와 같이, 래트의 비장세포 처리된 MSCs는 염증성 자극이 되지 않아, 신경성장인자 수용체인 TrkA, TrkB, TrkC 및 p75NTR의 mRNA 발현이 일반 MSCs보다 더 낮음을 확인하였다.
따라서, MSCs의 콜린성 뉴런-유사 표현형(cholinergic neuron-like phenotype)으로의 변화 및 신경세포 유사 특성은 마우스 또는 래트에서는 나타나지 않는 인간 특이적 현상임을 확인하였다.
실시예 9. 마우스 내 인간 세포의 ChAT 또는 nestin 발현 여부 및 MSC 세포 질 발생 여부 확인
PBMCs 및 MSCs 처리에 따른 마우스 내 인간 세포의 ChAT 또는 nestin 발현 여부 및 MSC 세포질 발생 여부 확인하였다.
구체적으로, 도 18의 a에 나타낸 바와 같이, 일시적인(transient) 인간화 GVHD 마우스 모델을 제작하기 위하여, 10주령의 Balb/c 수컷 마우스(Central Lab Animal, Seoul, Korea) (n = 3)에 8.5 Gy (4MV Linac; Siemens, Berlin, Germany)를 방사선 조사하였다. 조사 24시간 후, 상기 마우스에 각각 PBMCs(P1 또는 P2; 5 ×106 cells/each/head) 또는 혼합된 PBMCs (P1+P2; 1×107 cells/head, 혼합비는 1:1)를 주입하였다. 그 후, 인간 MSCs (1×106 cells/head)를 상기 마우스에 각각 주입하고 48시간 후, 상기 각 마우스를 희생시켜 2차 림프 기관(비장 및 표면 자궁경부(superficial cervical), 겨드랑이, 장간막 및 서혜부의 림프 노드(inguinal lymph nodes))을 적출한 후, 동결하여 각 절편을 준비하였다. ChAT+ nestin+ 인간 세포를 확인하기 위하여, 상기 각 마우스에 인간-특이적 항- ChAT 및 항-nestin 항체로 면역형광 염색하여 이를 확인하였다. DAPI는 핵의 염색을 확인하기 위해 사용하였다. 또한, MSC 추적 실험을 위해, 상기 각 마우스에 제조사의 프로토콜에 따라, MSC의 세포질 여부를 확인하기 위하여, 생체 적합한 실리카-코팅된 형광 나노입자(Neostem; Biterials, Seoul, Korea)로 표지하였다. 그 결과를 도 18에 나타내었다.
도 18의 b에 나타낸 바와 같이, 혼합된 PBMCs (P1+P2)를 주입 후, 인간 MSCs를 주입한 마우스의 장간막 림프 노드(mesenteric lymph nodes)에서 anti-ChAT 및 anti-nestin의 항체가 발현됨을 확인하였다.
*도 18의 c에 나타낸 바와 같이, 혼합된 PBMCs (P1+P2)를 주입 후, 인간 MSCs를 주입한 마우스에서 MSC의 세포질이 발견됨을 확인하였다.
상기 일련의 실험을 통하여, 도 19에 나타낸 바와 같이, 본 발명의 염증성 조건(혼합림프구반응(MLR) 조건 또는 식물성혈구응집소(PHA) 처리 조건) 처리는 MSCs를 실제 뉴런세포로의 전환분화(transdifferentiation)시키는 것이 아니라, 콜린성 뉴런-유사 표현형으로 변화시킨다는 것을 확인하였다. 염증성 조건으로 처리된 MSCs는 신경성장인자 수용체(neurotrophin receptor), 니코틴 콜린성 수용체의 발현이 증가하며, 구체적으로, 상기 신경성장인자 수용체 중 TrkA 및 p75NTR의 발현이 유의적으로 증가하였으며, 염증환경에 있는 면역세포들에서 발현된 신경성장인자 NGF 및 BDNF들에 의해 자극받아 콜린성 뉴런-유사 세포 모양으로 변화됨을 확인하였다. 또한, 본 발명의 염증성 조건으로 처리된 MSCs는 아세틸콜린을 분비하여 면역세포 표면에 증가된 니코틴 콜린성 수용체(nicotinic cholinergic receptors)인 nAChRα7을 통하여 활성화된 면역세포들을 억제할 수 있음을 확인하였고, 이러한 특성들을 활용하면 면역질환 또는 염증 질환의 예방 또는 치료에 이용할 수 있다.

Claims (13)

  1. 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  2. 제1항에 있어서,
    상기 중간엽 줄기세포는 층분리배양법(Subfractionation Culturing Method)으로 분리된 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  3. 제1항에 있어서,
    상기 중간엽 줄기세포는 CD29, CD44, CD49f, CD73, CD90, CD105, CD146, HLA-class I(HLA-I) 및 Oct4를 발현하는 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  4. 제1항에 있어서,
    상기 염증 자극된 중간엽 줄기세포는 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 유사분열 촉진물질(mitogen) 처리 조건 및 사이토카인(Cytokine) 처리 조건으로 이루어진 군에서 선택된 1종 이상의 배양 조건에서 배양된 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  5. 제4항에 있어서,
    상기 유사분열 촉진물질은 식물성응집소(phytohemagglutinin, PHA), 콘카나발린 A(Con A), PWM(pokeweed mitogen), 지질다당, 스트렙토리신 S, 수은화합물 및 항-림프구항체로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  6. 제1항에 있어서,
    상기 염증 자극된 중간엽 줄기세포는 콜린성 뉴런-유사 표현형(cholinergic neuron-like phenotype)으로 변화한 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  7. 제1항에 있어서,
    상기 염증 자극된 중간엽 줄기세포는 아세틸콜린을 분비하는 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  8. 제1항에 있어서,
    상기 면역질환 또는 염증질환은 자가면역질환, 이식거부, 관절염, 이식편대숙주병, 세균감염, 패혈증 및 염증으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  9. 제8항에 있어서,
    상기 자가면역질환은 크론씨병, 홍반병, 아토피, 류마티스 관절염, 하시모토 갑상선염, 악성빈혈, 에디슨씨 병, 제1형 당뇨, 루프스, 만성피로증후군, 섬유근육통, 갑상선기능저하증, 항진증, 경피증, 베체트병, 염증성 장질환, 다발성 경화증, 중증 근무력증, 메니에르 증후군(Meniere's syndrome), 길리안-바레 증후근(Guilian-Barre syndrome), 쇼그렌 증후군(Sjogren's syndrome), 백반증, 자궁내막증, 건선, 백반증, 전신성 경피증, 천식 및 궤양성 대장염으로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물.
  10. 중간엽 줄기세포에 염증 자극을 가하여 배양하는 단계;를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법.
  11. 제10항에 있어서,
    상기 염증 자극은 혼합림프구반응(mixed lymphocyte reaction, MLR) 조건, 유사분열 촉진물질(mitogen) 처리 및 사이토카인(Cytokine) 처리로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법.
  12. 제11항에 있어서,
    상기 유사분열 촉진물질은 식물성응집소(phytohemagglutinin, PHA), 콘카나발린 A(Con A), PWM(pokeweed mitogen), 지질다당, 스트렙토리신 S, 수은화합물 및 항림프구항체로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법.
  13. 제10항에 있어서,
    상기 중간엽 줄기세포는 아세틸콜린을 분비하는 것을 특징으로 하는, 면역질환 또는 염증 질환의 예방 또는 치료용 중간엽 줄기세포 제조 방법.
PCT/KR2017/009824 2016-09-07 2017-09-07 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물 WO2018048220A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17849104.9A EP3586853A4 (en) 2016-09-07 2017-09-07 PHARMACEUTICAL COMPOSITION CONSISTING OF MESENCHYMATIC STEM CELL STIMULATED BY INFLAMMATION FOR THE PREVENTION OR TREATMENT OF IMMUNE OR INFLAMMATORY DISEASE
US16/331,426 US20190262404A1 (en) 2016-09-07 2017-09-07 Pharmaceutical composition for preventing or treating immune disease or inflammatory disease including inflammatory stimulated mesenchymal stem cell
JP2019513066A JP7212371B2 (ja) 2016-09-07 2017-09-07 炎症刺激された間葉系幹細胞を含む免疫疾患または炎症疾患の予防または治療用薬学的組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160115081A KR101816246B1 (ko) 2016-09-07 2016-09-07 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물
KR10-2016-0115081 2016-09-07

Publications (1)

Publication Number Publication Date
WO2018048220A1 true WO2018048220A1 (ko) 2018-03-15

Family

ID=61003833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009824 WO2018048220A1 (ko) 2016-09-07 2017-09-07 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물

Country Status (5)

Country Link
US (1) US20190262404A1 (ko)
EP (1) EP3586853A4 (ko)
JP (1) JP7212371B2 (ko)
KR (1) KR101816246B1 (ko)
WO (1) WO2018048220A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479576A (zh) * 2018-06-13 2020-07-31 仿生技术支持有限公司 作为单胺产生促进剂的包含间充质干细胞的医药组合物
JP2022512987A (ja) * 2018-11-09 2022-02-07 コアステム カンパニー リミテッド タンパク質キナーゼc活性化剤で処理された幹細胞またはその培養物を含む自己免疫疾患の予防または治療用薬学的組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111019889A (zh) * 2019-12-25 2020-04-17 依科赛生物科技(太仓)有限公司 一种间充质干细胞化学成分限定无血清培养基及其用途
CN111979187B (zh) * 2020-08-21 2022-04-08 遵义医科大学附属医院 一种抗人间充质干细胞衰老及增强其干性特征的方法
CN111979186B (zh) * 2020-08-21 2022-04-08 遵义医科大学附属医院 一种快速高效体外扩增人间充质干细胞的方法及应用
CN114984051A (zh) * 2022-06-27 2022-09-02 广州惠善医疗技术有限公司 间充质干细胞在制备治疗炎症及免疫相关疾病的药物中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080063406A (ko) * 2005-10-13 2008-07-03 안트로제네시스 코포레이션 태반 줄기세포를 이용한 면역 조절
US20100278790A1 (en) * 2008-06-18 2010-11-04 The Texas A&M University System Mesenchymal stem cells, compositions, and methods for treatment of cardiac tissue damage
US20120121611A1 (en) * 2007-08-09 2012-05-17 Genzyme Corporation Method of treating autoimmune disease with mesenchymal stem cells
KR20130111448A (ko) * 2012-03-29 2013-10-10 가톨릭대학교 산학협력단 간엽줄기세포를 포함하는 자가면역질환 치료용 조성물
US20150272997A1 (en) * 2004-03-22 2015-10-01 Mesoblast International Sárl Mesenchymal Stem Cells and Uses Therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100802011B1 (ko) * 2005-08-10 2008-02-12 인하대학교 산학협력단 층분리배양법을 이용한 골수에서의 중간엽 줄기세포분리방법
WO2009114860A2 (en) * 2008-03-14 2009-09-17 The Board Of Trustees Of The University Of Illinois Activated mesenchymal stem cells for the prevention and repair of inflammatory states
KR20160037113A (ko) * 2014-09-25 2016-04-05 주식회사 강스템바이오텍 인터페론-감마 또는 인터류킨-1베타를 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물
WO2016125582A1 (ja) * 2015-02-05 2016-08-11 国立大学法人東京医科歯科大学 間葉系幹細胞の増殖促進剤、間葉系幹細胞の軟骨分化促進剤、間葉系幹細胞の調製方法、軟骨細胞の調製方法、及び間葉系幹細胞用培養培地

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150272997A1 (en) * 2004-03-22 2015-10-01 Mesoblast International Sárl Mesenchymal Stem Cells and Uses Therefor
KR20080063406A (ko) * 2005-10-13 2008-07-03 안트로제네시스 코포레이션 태반 줄기세포를 이용한 면역 조절
US20120121611A1 (en) * 2007-08-09 2012-05-17 Genzyme Corporation Method of treating autoimmune disease with mesenchymal stem cells
US20100278790A1 (en) * 2008-06-18 2010-11-04 The Texas A&M University System Mesenchymal stem cells, compositions, and methods for treatment of cardiac tissue damage
KR20130111448A (ko) * 2012-03-29 2013-10-10 가톨릭대학교 산학협력단 간엽줄기세포를 포함하는 자가면역질환 치료용 조성물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3586853A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111479576A (zh) * 2018-06-13 2020-07-31 仿生技术支持有限公司 作为单胺产生促进剂的包含间充质干细胞的医药组合物
JP2022512987A (ja) * 2018-11-09 2022-02-07 コアステム カンパニー リミテッド タンパク質キナーゼc活性化剤で処理された幹細胞またはその培養物を含む自己免疫疾患の予防または治療用薬学的組成物
JP7277582B2 (ja) 2018-11-09 2023-05-19 コアステム カンパニー リミテッド タンパク質キナーゼc活性化剤で処理された幹細胞またはその培養物を含む自己免疫疾患の予防または治療用薬学的組成物

Also Published As

Publication number Publication date
KR101816246B1 (ko) 2018-01-08
JP7212371B2 (ja) 2023-01-25
EP3586853A4 (en) 2020-12-09
EP3586853A1 (en) 2020-01-01
JP2019531281A (ja) 2019-10-31
US20190262404A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018048220A1 (ko) 염증 자극된 중간엽 줄기세포를 포함하는 면역질환 또는 염증 질환의 예방 또는 치료용 약학적 조성물
WO2019135644A1 (ko) 유도만능 줄기세포 유래 중간엽 줄기세포 및 이로부터 유래된 엑소좀을 포함하는 피부질환의 개선, 예방 또는 치료용 조성물
WO2016048107A1 (ko) 인터페론-감마 또는 인터류킨-1베타를 처리한 줄기세포 또는 그 배양물을 포함하는 면역질환 또는 염증질환의 예방 또는 치료용 약학조성물
EP2279247B1 (en) Retinal pigment epithelial stem cells
WO2019135645A1 (ko) 인터페론 감마로 전처리된 유도만능 줄기세포 유래 중간엽 줄기세포 및 이로부터 유래된 엑소좀을 포함하는 피부질환의 개선, 예방 또는 치료용 조성물
WO2013009100A2 (ko) 탯줄 추출물의 제조방법 및 그의 용도
WO2011096728A2 (en) Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling
WO2015056982A1 (ko) 만능 줄기세포의 유도 방법 및 상기 방법에 의해 제조된 만능줄기세포
Cacci et al. Generation of human cortical neurons from a new immortal fetal neural stem cell line
Roche et al. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes
WO2019198995A1 (ko) 엑소좀 기반의 면역세포의 교차분화 방법
WO2018088693A1 (ko) 2dg를 이용한 줄기세포 역량 향상 방법
WO2017146538A1 (ko) 조절 t 세포 매개성 질환의 예방 또는 치료용 약학적 조성물
WO2012047037A2 (ko) 배아줄기세포 유래 심근세포 및 이를 유효성분으로 포함하는 세포치료제
WO2012008733A2 (ko) 1기 태반조직 유래 줄기세포 및 이를 함유하는 세포치료제
WO2019050350A2 (ko) 줄기세포 유래 세르톨리유사세포, 그 제조방법, 및 그의 용도
WO2022004938A1 (ko) 유사 중간엽 줄기세포의 제조방법
WO2021025533A1 (ko) 골격근 줄기세포 유래 엑소좀을 유효성분으로 포함하는 피부상태 개선용 조성물
WO2011102680A2 (ko) Pi3k/akt/gsk3 경로를 통해 성체줄기세포의 증식, 다분화능 및 재프로그래밍을 촉진하는 cd49f
WO2014042392A1 (ko) 메트포민을 이용한 루프스를 포함하는 면역질환의 예방 또는 치료용 조성물
WO2016117960A1 (ko) 면역질환 치료 효능을 갖는 grim19이 과발현된 중간엽줄기세포 및 이의 용도
WO2019027214A9 (ko) 동종-중간엽 줄기세포 및 이의 용도
WO2022108165A1 (ko) 역분화 줄기세포 유래 중간엽 줄기세포로부터 분리된 엑소좀의 제조방법 및 이의 용도
WO2021107234A1 (ko) Hiv 감염 치료 또는 예방을 위한 ccr5/cxcr4 유전자 동시 넉아웃 환자맞춤형 조혈모세포 및 이의 제조방법
WO2019190175A2 (ko) 편도 유래 중간엽 줄기세포로부터 운동신경세포의 분화방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17849104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017849104

Country of ref document: EP

Effective date: 20190408