WO2018047776A1 - Protective tape and method for producing same - Google Patents

Protective tape and method for producing same Download PDF

Info

Publication number
WO2018047776A1
WO2018047776A1 PCT/JP2017/031828 JP2017031828W WO2018047776A1 WO 2018047776 A1 WO2018047776 A1 WO 2018047776A1 JP 2017031828 W JP2017031828 W JP 2017031828W WO 2018047776 A1 WO2018047776 A1 WO 2018047776A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective tape
film
film substrate
resin
resin film
Prior art date
Application number
PCT/JP2017/031828
Other languages
French (fr)
Japanese (ja)
Inventor
正志 中野
西松 英明
友彦 小田川
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2018538401A priority Critical patent/JPWO2018047776A1/en
Publication of WO2018047776A1 publication Critical patent/WO2018047776A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to an adhesive tape for protecting a semiconductor wafer surface.
  • ⁇ ⁇ ⁇ Tapes for protecting the wafer surface are used in various processes of semiconductor manufacturing. For example, in a back grinding process in which a pattern is formed on the wafer surface and then the wafer is ground from the back surface to a predetermined thickness, the back surface is ground with a protective tape applied to the wafer surface.
  • a protective tape a tape in which an ultraviolet (UV) curable pressure-sensitive adhesive layer is provided on one side of a polyolefin or polyethylene terephthalate (PET) film base is often used.
  • UV curable adhesives exhibit adhesiveness when affixed to a wafer, and when UV is irradiated, the adhesive cures and loses its adhesiveness.
  • the tape can be peeled off.
  • Patent Document 1 describes a wafer surface protecting adhesive tape having a UV curable adhesive layer on a substrate film such as PET.
  • a large dimensional change of the protective tape in the semiconductor manufacturing process is not preferable because it leads to breakage of the wafer, warpage, or peeling of the tape.
  • the protective tape is required to have heat resistance at 130 ° C. or higher or 150 ° C. or higher, and in some cases 200 ° C. or higher.
  • the thermal dimensional stability of the film substrate is low, and such a request cannot be met.
  • the present invention has been made in consideration of the above, and an object of the present invention is to provide a wafer protective tape excellent in thermal dimensional stability. Moreover, it aims at providing the manufacturing method of this masking tape.
  • the protective tape of the present invention has a resin film substrate and an ultraviolet (UV) curable adhesive layer.
  • the resin film substrate has a dimensional change rate of -1.5% or more and + 1.5% or less in both the vertical direction (MD) and the horizontal direction (TD) when held at 150 ° C. for 30 minutes.
  • MD vertical direction
  • TD horizontal direction
  • the difference between MD and TD is within 1%
  • the transmittance of light at 365 nm is 50% or more.
  • the method for producing a protective tape according to the present invention is a method for producing the above-mentioned protective tape, which includes a precursor film production step in which resin pellets are melt-extruded to form a film, and a film base material in which the precursor film is at least biaxially stretched A manufacturing process and a process of forming an ultraviolet curable pressure-sensitive adhesive layer on the surface of the film substrate.
  • a protective tape that is excellent in thermal dimensional stability and can be easily peeled off by UV irradiation after the process is completed. Thereby, even if the process temperature is increased, the dimensional change of the protective tape is small, so that the wafer is not easily warped, and the pattern formed on the wafer surface is not easily damaged.
  • FIG. 1 It is a figure which shows the structure of the masking tape of one Embodiment of this invention. It is a figure which shows the measurement result in the tension mode of the thermomechanical analysis (TMA) method of the resin film base material of Example 1.
  • TMA thermomechanical analysis
  • the protective tape 10 of this embodiment includes a resin film substrate 11 and a UV curable pressure-sensitive adhesive layer 12 formed on the surface thereof.
  • a UV curable adhesive layer is bonded to the wafer surface.
  • the resin film substrate 11 has predetermined thermal dimensional stability. Specifically, the resin film substrate has a dimensional change rate of ⁇ 1.5% to + 1.5% when held at 150 ° C. for 30 minutes in both the machine direction (MD) and the transverse direction (TD). The preferred range is -1.0% to + 1.0%, and the most preferred range is -0.5% to + 0.5%.
  • the minus sign of the dimensional change rate means contraction, and the plus sign means expansion.
  • the resin film substrate a dimensional change in the longitudinal direction alpha MD when held at 0.99 ° C.
  • the absolute value of the difference between the lateral dimensional change rate alpha TD is,
  • the resin film substrate 11 has a light transmittance of 365% or more at 365%. This is because, when the protective tape is peeled off after completion of the process, the UV curable pressure-sensitive adhesive layer 12 in contact with the wafer surface is irradiated with UV from the resin film substrate side, and the central wavelength of the frequently used UV light source is 365 nm. is there.
  • the resin film substrate 11 has a softening temperature measured in a tensile mode of a thermomechanical analysis (TMA) method, preferably 160 ° C. or higher, more preferably 220 ° C. or higher. This is because it is preferable that the dimensions of the protective tape do not change significantly within the operating temperature range.
  • TMA thermomechanical analysis
  • the softening temperature by the TMA method / tensile mode substantially matches the glass transition temperature.
  • the softening temperature by the TMA method / tensile mode is obtained directly from the dimensional change of the film, and reflects the structural change of the resin by film processing, so it is actually compared to the glass transition temperature by the differential scanning calorimetry (DSC) method.
  • DSC differential scanning calorimetry
  • the softening temperature by the TMA method / tensile mode rarely exceeds 300 ° C. for ordinary resins, but it is preferably 400 ° C. or lower even in such a case. This is because if the softening temperature is too high, film formation becomes difficult.
  • the material of the resin film substrate 11 is not particularly limited as long as it satisfies the above thermal dimensional stability and UV transmittance, but is preferably acid-modified polycyclohexylenedimethylene terephthalate (PCTA), polynonamethylene terephthalamide. (PA9T), polydecamethylene terephthalamide (PA10T), cycloolefin copolymer (COC), cycloolefin polymer (COP), polyethersulfone (PES), and syndiotactic polystyrene (SPS). This is because all of these resins are excellent in heat resistance and UV transparency and are suitable for film formation.
  • PCTA polycyclohexylenedimethylene terephthalate
  • PA9T polynonamethylene terephthalamide
  • PA10T polydecamethylene terephthalamide
  • COC cycloolefin copolymer
  • COP cycloolefin polymer
  • PES polyethersulfone
  • PCTA is obtained by replacing a part of terephthalic acid of polycyclohexylenedimethylene terephthalate (PCT) with another acid.
  • the material of the resin film substrate 11 is more preferably composed of PCTA, and particularly preferably an isophthalate obtained by polycondensation of a diol component composed of 1,4-cyclohexanedimethanol and a dicarboxylic acid component composed of terephthalic acid and isophthalic acid. It consists of acid-modified polycyclohexylene dimethylene terephthalate. This is because the latter is excellent in strength, followability to the wafer surface, hydrolysis resistance, hygroscopic dimensional stability, chemical resistance, and adhesiveness in addition to high heat resistance. This is because these properties required for the protective tape are provided at a high level and are easily available, so that the film can be easily manufactured.
  • COC and COP are cyclic olefin resins, and a typical one uses a norbornene derivative as a monomer.
  • COC is an addition copolymer of a cyclic olefin and an ⁇ -olefin, or a hydrogenated product thereof.
  • COP is a ring-opening (co) polymer of a cyclic olefin or a hydrogenated product thereof.
  • COC and COP it is preferable to use COC which is an addition copolymer of bicyclo [2.2.1] hept-2-ene (norbornene) and ethylene. This is because the water absorption is low in addition to heat resistance.
  • the resin film base material 11 should just consist of said each resin substantially, and may contain the additive in the range which does not impair required thermal dimensional stability and UV transmittance
  • a colorant, an antioxidant, an antistatic agent and the like may be included.
  • Resin film substrate 11 is preferably a biaxially oriented film. This is because the orientation of the resin can maintain the required dimensional stability up to a higher temperature even when the same resin is used.
  • the thickness of the resin film substrate is preferably 25 ⁇ m or more, more preferably 40 ⁇ m or more. This is because the thicker the film, the higher the strength. On the other hand, the thickness of the resin film substrate is preferably 200 ⁇ m or less, more preferably 125 ⁇ m or less. This is because the thinner the film, the easier it is to follow the irregularities on the wafer surface.
  • the UV curable pressure-sensitive adhesive layer 12 can be formed using a known pressure-sensitive adhesive.
  • a UV curable pressure sensitive adhesive prepared by blending an acrylic pressure sensitive adhesive, a photopolymerizable oligomer and a photoinitiator can be used. If necessary, a colorant, a tackifier, a tackifier, a surfactant, an inorganic filler for adjusting the thermal expansion coefficient, and the like may be appropriately added to the UV curable pressure sensitive adhesive.
  • Resin pellets used as a raw material for the resin film base material are melt-extruded to form a film to produce a precursor film.
  • the stretching method includes a sequential biaxial stretching method and a simultaneous biaxial stretching method, but a simultaneous biaxial stretching method is preferred. This is because the difference in the rate of thermal dimensional change between MD and TD can be further reduced.
  • the preferred range of the draw ratio varies depending on the resin, but is generally 1.2 times or more and 4.0 times or less in both MD and TD. This is because the larger the draw ratio, the better the thermal dimensional stability. On the other hand, if the draw ratio is too large, it becomes difficult to control the process, and the film tends to break during stretching.
  • a heat setting treatment is preferably performed. This is because the heat shrinkage decreases the absolute value of the thermal shrinkage rate, and higher thermal dimensional stability can be obtained.
  • the relaxation rate of the heat setting treatment is preferably 10% or less.
  • the heat setting can be performed by a known method.
  • the film is once cooled and then annealed again. Thereby, the absolute value of the thermal contraction rate of the resin film substrate is further reduced, and higher thermal dimensional stability is obtained.
  • the annealing treatment is preferably performed regardless of whether the stretching method is a sequential biaxial stretching method or a simultaneous biaxial stretching method, but when the precursor film is stretched by sequential biaxial stretching treatment, the annealing treatment is performed. It is particularly preferred to do this.
  • the annealing treatment is performed at a temperature higher than the use temperature of the protective tape.
  • the protective tape of this embodiment is obtained by coating the surface of the resin film substrate produced as described above with a UV curable adhesive to form a UV curable adhesive layer.
  • PES is amorphous and the glass transition temperature is generally 220 to 230 ° C.
  • the material of the resin film substrate is substantially made of an amorphous resin having such a glass transition temperature of 200 ° C. or higher, the required properties as a protective tape can be obtained without biaxial orientation of the film. realizable.
  • Resin pellets used as a raw material for the resin film substrate are formed into a film by melt extrusion, once cooled, and then annealed again to produce a film substrate.
  • the annealing treatment is performed at a temperature higher than the use temperature of the protective tape.
  • the protective tape of this embodiment is obtained by applying a UV curable pressure-sensitive adhesive to the surface of the film substrate to form a UV curable pressure-sensitive adhesive layer.
  • Resin film substrates of the protective tapes of Examples 1 to 5 were produced as follows. The following four types of resins were used as the material for the resin film substrate.
  • PCTA Eastman Chemical Co., Copolyester 13319
  • PA9T Kuraray Co., Ltd., Genesta N1000D COC: manufactured by Polyplastics Co., Ltd., TOPAS6015 -SPS: Made by Idemitsu Kosan Co., Ltd., Zalek 142ZE
  • Each resin pellet was melted at a predetermined temperature and extruded from a T-die to prepare a precursor film.
  • the precursor film was simultaneously biaxially stretched at a predetermined temperature and a predetermined magnification, and in Examples 1, 2, 4 and 5, the stretched film was heated to a predetermined temperature and heat-set.
  • the film after the heat setting treatment was once cooled to room temperature and then annealed again.
  • Table 1 shows the manufacturing conditions of the protective tapes of the examples and comparative examples.
  • the physical properties of the resin film substrate were measured by the following methods.
  • the transmittance of light having a wavelength of 365 nm was determined by irradiating a test piece with monochromatic light having a wavelength of 365 nm perpendicularly using a UV-visible spectrophotometer and measuring the amount of transmitted light.
  • the thermal dimensional change rate was measured by the following method. Three straight lines with a length of 100 mm are drawn on a test piece (150 mm ⁇ 150 mm) in parallel with MD and TD, and the test piece is left in a standard state (23 ° C. ⁇ 50% RH) for 2 hours. Was measured. Subsequently, in a hot air circulating thermostatic chamber set to an atmosphere of 150 ° C., it was left standing in a suspended state with one corner supported for 30 minutes, then taken out and cooled to a standard state for 2 hours. Thereafter, the length of each straight line was measured, and the amount of change from the length before the test was determined. For both MD and TD, the average value of the amount of change in each of the three straight lines was taken as the thermal dimensional change rate.
  • the softening temperature by the tensile mode of the TMA method was measured by the following method. Test specimens (2 mm ⁇ 25 mm) each having MD and TD in the length direction were prepared, and a tensile load of 5 gf / 2 mm width (about 0.05 N / mm) was obtained using a TMA measuring device (TA Instruments, Q400EM). The temperature was raised under the conditions of 2 mm width) and a heating rate of 10 ° C./min, and the softening temperature was measured. The softening temperature was indicated by the average value of the measured values of the test pieces whose tensile directions were MD and TD. As an example, FIG. 2 shows a measurement chart of the resin film substrate of Example 1.
  • Table 2 shows the physical properties of the protective tape of each example and comparative example.
  • the dimensional change rate when held at 150 ° C. for 30 minutes was negative for all film substrates. That is, the film contracted under these conditions.
  • the light transmittance at 365 nm was 80% or more.
  • the dimensional change rate when held at 150 ° C. for 30 minutes was 0.8% or less in both MD and TD, and the difference between MD and TD was 0.2% or less.
  • the softening temperature by the tensile mode of the TMA method was 180 ° C. or higher.
  • the thermal dimensional change rate of MD was ⁇ 1.6%, and the thermal shrinkage was large.
  • permeability of light with a wavelength of 365 nm was as low as 20%.
  • a UV curable acrylic pressure-sensitive adhesive was coated on each of the resin film substrates to form a UV curable pressure-sensitive adhesive layer with a thickness of 30 g / m 2 . Thereby, the protective tapes of Examples 1 to 5 and Comparative Examples 1 and 2 were produced.
  • a protective tape was attached to a silicon wafer, held in a thermostatic bath at 150 ° C. for 30 hours, allowed to cool in a standard state for 2 hours, and then irradiated with UV from the film substrate side to peel off the protective tape.
  • the protective tapes of Examples 1 to 5 the protective tape was not lifted, peeled off or warped during the test, and the protective tape could be easily peeled off from the wafer.
  • Comparative Example 1 a slight warpage was recognized on the wafer.
  • Comparative Example 2 the resistance when the protective tape was peeled off was large, and several adhesive residues were observed on the wafer surface.
  • the present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope of the technical idea. Further, the use of the protective tape of the present invention is not limited to the back grind tape, and it can be used for protecting the wafer surface in other processes of semiconductor manufacturing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

[Problem] To provide a protective tape for wafers, which has excellent thermal dimensional stability and is able to be used at higher temperatures than conventional protective tapes. [Solution] A protective tape 10 which comprises: a resin film substrate 11 that has a transmittance of 50% or more for light at 365 nm, while having a dimensional change rate of from -1.5% to +1.5% (inclusive) in both the machine direction (MD) and the transverse direction (TD) if held at 150°C for 30 minutes, with the difference between the dimensional change rate in MD and the dimensional change rate in TD being 1% or less; and an ultraviolet curable adhesive layer 12.

Description

保護テープおよびその製造方法Protective tape and manufacturing method thereof
 本発明は、半導体ウェハ表面を保護するための粘着テープに関する。 The present invention relates to an adhesive tape for protecting a semiconductor wafer surface.
 半導体製造の様々な工程で、ウェハ表面を保護するためのテープが利用される。例えば、ウェハ表面にパターンを形成した後、ウェハを裏面から所定厚さまで研削するバックグラインド工程では、ウェハ表面に保護テープを貼り付けた状態で裏面が研削される。このような保護テープでは、ポリオレフィンやポリエチレンテレフタレート(PET)のフィルム基材の片面に紫外線(UV)硬化型の粘着剤層を設けたテープが多く利用されている。UV硬化型の粘着剤は、ウェハへの貼り付け時には粘着性を示し、UVが照射されると硬化して粘着性を失うもので、これにより、工程終了後にウェハ表面を傷つけず、糊残りなくテープを剥がすことができる。特許文献1には、PETなどの基材フィルム上にUV硬化型の粘着剤層を有するウェハ表面保護用粘着テープが記載されている。 テ ー プ Tapes for protecting the wafer surface are used in various processes of semiconductor manufacturing. For example, in a back grinding process in which a pattern is formed on the wafer surface and then the wafer is ground from the back surface to a predetermined thickness, the back surface is ground with a protective tape applied to the wafer surface. As such a protective tape, a tape in which an ultraviolet (UV) curable pressure-sensitive adhesive layer is provided on one side of a polyolefin or polyethylene terephthalate (PET) film base is often used. UV curable adhesives exhibit adhesiveness when affixed to a wafer, and when UV is irradiated, the adhesive cures and loses its adhesiveness. The tape can be peeled off. Patent Document 1 describes a wafer surface protecting adhesive tape having a UV curable adhesive layer on a substrate film such as PET.
特開2015-179825号公報JP2015-179825A
 半導体製造工程での保護テープの大きな寸法変化はウェハの破損、反り、あるいはテープの剥がれにつながり好ましくない。一方で、近年の半導体工程の変遷に伴って、より高い温度で保護テープを使用したいという要望が高まっている。そのためには、保護テープに対して、130℃以上または150℃以上、場合によっては200℃以上での耐熱性が求められる。しかし、従来の保護テープでは、フィルム基材の熱寸法安定性が低く、かかる要求に応えられなかった。 A large dimensional change of the protective tape in the semiconductor manufacturing process is not preferable because it leads to breakage of the wafer, warpage, or peeling of the tape. On the other hand, with the recent transition of semiconductor processes, there is an increasing demand for using a protective tape at a higher temperature. For this purpose, the protective tape is required to have heat resistance at 130 ° C. or higher or 150 ° C. or higher, and in some cases 200 ° C. or higher. However, with the conventional protective tape, the thermal dimensional stability of the film substrate is low, and such a request cannot be met.
 本発明は上記を考慮してなされたものであり、熱寸法安定性に優れたウェハの保護テープを提供することを目的とする。併せて、かかる保護テープの製造方法を提供することを目的とする。 The present invention has been made in consideration of the above, and an object of the present invention is to provide a wafer protective tape excellent in thermal dimensional stability. Moreover, it aims at providing the manufacturing method of this masking tape.
 本発明の保護テープは、樹脂フィルム基材と紫外線(UV)硬化型粘着剤層を有する。そして、前記樹脂フィルム基材は、150℃で30分間保持したときの寸法変化率が、縦方向(MD)および横方向(TD)のいずれにおいても-1.5%以上、+1.5%以下であって、かつMDとTDとの差が1%以内であり、365nmの光の透過率が50%以上である。 The protective tape of the present invention has a resin film substrate and an ultraviolet (UV) curable adhesive layer. The resin film substrate has a dimensional change rate of -1.5% or more and + 1.5% or less in both the vertical direction (MD) and the horizontal direction (TD) when held at 150 ° C. for 30 minutes. In addition, the difference between MD and TD is within 1%, and the transmittance of light at 365 nm is 50% or more.
 本発明の保護テープの製造方法は、上記保護テープの製造方法であって、樹脂ペレットを溶融押し出ししてフィルム化する前駆体フィルム製造工程と、前記前駆体フィルムを少なくとも二軸延伸するフィルム基材製造工程と、前記フィルム基材の表面に紫外線硬化型粘着剤層を形成する工程とを有する。 The method for producing a protective tape according to the present invention is a method for producing the above-mentioned protective tape, which includes a precursor film production step in which resin pellets are melt-extruded to form a film, and a film base material in which the precursor film is at least biaxially stretched A manufacturing process and a process of forming an ultraviolet curable pressure-sensitive adhesive layer on the surface of the film substrate.
 本発明の保護テープまたは保護テープ製造方法によれば、熱寸法安定性に優れ、かつ工程終了後にUV照射により容易に剥離可能な保護テープが得られる。これにより、工程温度が高くなっても保護テープの寸法変化が小さいので、ウェハが反りにくく、ウェハ表面に形成されたパターンが損傷を受けにくい。 According to the protective tape or the protective tape manufacturing method of the present invention, a protective tape that is excellent in thermal dimensional stability and can be easily peeled off by UV irradiation after the process is completed. Thereby, even if the process temperature is increased, the dimensional change of the protective tape is small, so that the wafer is not easily warped, and the pattern formed on the wafer surface is not easily damaged.
本発明の一実施形態の保護テープの構成を示す図である。It is a figure which shows the structure of the masking tape of one Embodiment of this invention. 実施例1の樹脂フィルム基材の熱機械分析(TMA)法の引張モードでの測定結果を示す図である。It is a figure which shows the measurement result in the tension mode of the thermomechanical analysis (TMA) method of the resin film base material of Example 1. FIG.
 図1において、本実施形態の保護テープ10は、樹脂フィルム基材11と、その表面に形成されたUV硬化型粘着剤層12からなる。保護テープ使用時には、UV硬化型粘着剤層がウェハ表面に貼り合わされる。 In FIG. 1, the protective tape 10 of this embodiment includes a resin film substrate 11 and a UV curable pressure-sensitive adhesive layer 12 formed on the surface thereof. When the protective tape is used, a UV curable adhesive layer is bonded to the wafer surface.
 樹脂フィルム基材11は、所定の熱寸法安定性を有する。具体的には、樹脂フィルム基材は、縦方向(MD)および横方向(TD)のいずれにおいても、150℃で30分間保持したときの寸法変化率が-1.5%~+1.5%、好ましくは-1.0%~+1.0%、特に好ましくは、-0.5%~+0.5%である。ここで、寸法変化率のマイナスの符号は収縮を意味し、プラスの符号は膨張を意味する。さらに、樹脂フィルム基材は、150℃で30分間保持したときの縦方向の寸法変化率αMDと、横方向の寸法変化率αTDの差の絶対値が、|αMD-αTD|≦1%、好ましくは|αMD-αTD|≦0.6%である。方向による寸法変化率の差が大きすぎると、ウェハ表面に損傷を与えやすいからである。 The resin film substrate 11 has predetermined thermal dimensional stability. Specifically, the resin film substrate has a dimensional change rate of −1.5% to + 1.5% when held at 150 ° C. for 30 minutes in both the machine direction (MD) and the transverse direction (TD). The preferred range is -1.0% to + 1.0%, and the most preferred range is -0.5% to + 0.5%. Here, the minus sign of the dimensional change rate means contraction, and the plus sign means expansion. Further, the resin film substrate, a dimensional change in the longitudinal direction alpha MD when held at 0.99 ° C. 30 minutes, the absolute value of the difference between the lateral dimensional change rate alpha TD is, | α MDTD | ≦ 1%, preferably | α MD −α TD | ≦ 0.6%. This is because if the difference in the dimensional change rate depending on the direction is too large, the wafer surface is easily damaged.
 樹脂フィルム基材11は、365nmの光の透過率が50%以上である。工程終了後に保護テープを剥がすときに、ウェハ表面と接するUV硬化型粘着剤層12に、樹脂フィルム基材側からUVが照射されるからであり、多用されるUV光源の中心波長が365nmだからである。 The resin film substrate 11 has a light transmittance of 365% or more at 365%. This is because, when the protective tape is peeled off after completion of the process, the UV curable pressure-sensitive adhesive layer 12 in contact with the wafer surface is irradiated with UV from the resin film substrate side, and the central wavelength of the frequently used UV light source is 365 nm. is there.
 樹脂フィルム基材11は、熱機械分析(TMA)法の引張モードで測定した軟化温度が、好ましくは160℃以上、さらに好ましくは220℃以上である。使用温度範囲内で保護テープの寸法が大きく変化しないことが好ましいからである。TMA法・引張モードによる軟化温度は、フィルム基材が非晶質である場合は、ガラス転移温度とほぼ一致する。TMA法・引張モードによる軟化温度は、フィルムの寸法変化から直接求められ、フィルム加工による樹脂の構造変化をよく反映するので、示差走査熱量測定(DSC)法によるガラス転移温度等と比べて、実際の環境での使用可否を判断するための指標として優れている。なお、TMA法・引張モードによる軟化温度は、通常の樹脂では300℃を超えることは稀であるが、仮にそのような場合であっても400℃以下であることが好ましい。軟化温度が高すぎると、フィルム化が難しくなるからである。 The resin film substrate 11 has a softening temperature measured in a tensile mode of a thermomechanical analysis (TMA) method, preferably 160 ° C. or higher, more preferably 220 ° C. or higher. This is because it is preferable that the dimensions of the protective tape do not change significantly within the operating temperature range. When the film substrate is amorphous, the softening temperature by the TMA method / tensile mode substantially matches the glass transition temperature. The softening temperature by the TMA method / tensile mode is obtained directly from the dimensional change of the film, and reflects the structural change of the resin by film processing, so it is actually compared to the glass transition temperature by the differential scanning calorimetry (DSC) method. It is excellent as an index for determining whether or not it can be used in an environment. The softening temperature by the TMA method / tensile mode rarely exceeds 300 ° C. for ordinary resins, but it is preferably 400 ° C. or lower even in such a case. This is because if the softening temperature is too high, film formation becomes difficult.
 樹脂フィルム基材11の材料は、上記熱寸法安定性とUV透過性を満たすものであれば、特に限定されないが、好ましくは、酸変性ポリシクロヘキシレンジメチレンテレフタレート(PCTA)、ポリノナメチレンテレフタルアミド(PA9T)、ポリデカメチレンテレフタルアミド(PA10T)、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリエーテルサルフォン(PES)、シンジオタクティックポリスチレン(SPS)からなる群より選択される。これらの樹脂は、いずれも耐熱性とUV透過性に優れ、フィルム形成に適するからである。 The material of the resin film substrate 11 is not particularly limited as long as it satisfies the above thermal dimensional stability and UV transmittance, but is preferably acid-modified polycyclohexylenedimethylene terephthalate (PCTA), polynonamethylene terephthalamide. (PA9T), polydecamethylene terephthalamide (PA10T), cycloolefin copolymer (COC), cycloolefin polymer (COP), polyethersulfone (PES), and syndiotactic polystyrene (SPS). This is because all of these resins are excellent in heat resistance and UV transparency and are suitable for film formation.
 PCTAは、ポリシクロヘキシレンジメチレンテレフタレート(PCT)のテレフタル酸の一部を他の酸で置換したものである。樹脂フィルム基材11の材料は、より好ましくはPCTAからなり、特に好ましくは、1,4-シクロヘキサンジメタノールからなるジオール成分とテレフタル酸およびイソフタル酸からなるジカルボン酸成分とを重縮合させた、イソフタル酸変性ポリシクロヘキシレンジメチレンテレフタレートからなる。後者は、高い耐熱性に加えて、強度、ウェハ表面への追従性、耐加水分解性、吸湿寸法安定性、耐薬品性、粘着剤との密着性に優れるからである。そして、保護テープに求められるこれらの諸特性を高いレベルで備え、かつ、入手が容易であり、フィルムの製造が容易だからである。 PCTA is obtained by replacing a part of terephthalic acid of polycyclohexylenedimethylene terephthalate (PCT) with another acid. The material of the resin film substrate 11 is more preferably composed of PCTA, and particularly preferably an isophthalate obtained by polycondensation of a diol component composed of 1,4-cyclohexanedimethanol and a dicarboxylic acid component composed of terephthalic acid and isophthalic acid. It consists of acid-modified polycyclohexylene dimethylene terephthalate. This is because the latter is excellent in strength, followability to the wafer surface, hydrolysis resistance, hygroscopic dimensional stability, chemical resistance, and adhesiveness in addition to high heat resistance. This is because these properties required for the protective tape are provided at a high level and are easily available, so that the film can be easily manufactured.
 COCとCOPはいずれも環状オレフィン樹脂で、代表的なものは、ノルボルネン誘導体をモノマーとして用いる。COCは、環状オレフィンとα-オレフィン等との付加共重合体またはその水素添加物である。COPは、環状オレフィンの開環(共)重合体またはその水素添加物である。COCおよびCOPのなかでは、ビシクロ[2.2.1]ヘプタ-2-エン(ノルボルネン)とエチレンの付加共重合体であるCOCを用いるのが好ましい。耐熱性に加えて、吸水率が低いからである。 Both COC and COP are cyclic olefin resins, and a typical one uses a norbornene derivative as a monomer. COC is an addition copolymer of a cyclic olefin and an α-olefin, or a hydrogenated product thereof. COP is a ring-opening (co) polymer of a cyclic olefin or a hydrogenated product thereof. Among COC and COP, it is preferable to use COC which is an addition copolymer of bicyclo [2.2.1] hept-2-ene (norbornene) and ethylene. This is because the water absorption is low in addition to heat resistance.
 なお、樹脂フィルム基材11は、実質的に上記各樹脂からなっていればよく、所要の熱寸法安定性とUV透過性を損なわない範囲で添加剤を含んでいてもよい。例えば、着色剤、酸化防止剤、帯電防止剤などを含んでいてもよい。ただし、UV吸収剤は含まないことが望ましい。 In addition, the resin film base material 11 should just consist of said each resin substantially, and may contain the additive in the range which does not impair required thermal dimensional stability and UV transmittance | permeability. For example, a colorant, an antioxidant, an antistatic agent and the like may be included. However, it is desirable not to contain a UV absorber.
 樹脂フィルム基材11は、好ましくは二軸配向フィルムである。樹脂が配向することにより、同じ樹脂を用いる場合でも、より高温まで所要の寸法安定性を維持できるからである。 Resin film substrate 11 is preferably a biaxially oriented film. This is because the orientation of the resin can maintain the required dimensional stability up to a higher temperature even when the same resin is used.
 樹脂フィルム基材の厚さは、好ましくは25μm以上、より好ましくは40μm以上である。フィルムが厚いほど、強度が高くなるからである。一方、樹脂フィルム基材の厚さは、好ましくは200μm以下、より好ましくは125μm以下である。フィルムが薄いほど、ウェハ表面の凹凸に追従しやすいからである。 The thickness of the resin film substrate is preferably 25 μm or more, more preferably 40 μm or more. This is because the thicker the film, the higher the strength. On the other hand, the thickness of the resin film substrate is preferably 200 μm or less, more preferably 125 μm or less. This is because the thinner the film, the easier it is to follow the irregularities on the wafer surface.
 UV硬化型粘着剤層12は、公知の粘着剤を用いて形成することができる。例えば、粘着力を有するアクリル系粘着剤、光重合性オリゴマーおよび光開始剤をブレンドして調製されたUV硬化型粘着剤を用いることができる。UV硬化型粘着剤には、必要に応じて、着色剤、粘着付与剤、粘着調整剤、界面活性剤、熱膨張率調整のための無機フィラーなどを適宜加えてもよい。 The UV curable pressure-sensitive adhesive layer 12 can be formed using a known pressure-sensitive adhesive. For example, a UV curable pressure sensitive adhesive prepared by blending an acrylic pressure sensitive adhesive, a photopolymerizable oligomer and a photoinitiator can be used. If necessary, a colorant, a tackifier, a tackifier, a surfactant, an inorganic filler for adjusting the thermal expansion coefficient, and the like may be appropriately added to the UV curable pressure sensitive adhesive.
 次に、本実施形態の保護テープの製造方法を説明する。まず、樹脂フィルム基材を二軸配向させる場合を説明する。 Next, a method for manufacturing the protective tape of this embodiment will be described. First, the case where the resin film substrate is biaxially oriented will be described.
 樹脂フィルム基材の原料となる樹脂ペレットを溶融押し出しすることによってフィルム化し、前駆体フィルムを作製する。 Resin pellets used as a raw material for the resin film base material are melt-extruded to form a film to produce a precursor film.
 次いで、前駆体フィルムを縦方向(MD)および横方向(TD)に延伸する。延伸方式は、逐次二軸延伸方式と同時二軸延伸方式があるが、同時二軸延伸方式によるのが好ましい。MDとTDの熱寸法変化率差をより小さくできるからである。延伸倍率の好ましい範囲は樹脂によって異なるが一般的には、MDおよびTDのいずれにおいても、1.2倍以上、4.0倍以下である。延伸倍率が大きいほど熱寸法安定性が向上するからであり、一方、延伸倍率が大きすぎると工程の制御が難しくなり、延伸中にフィルムが破断しやすくなるからである。 Next, the precursor film is stretched in the machine direction (MD) and the transverse direction (TD). The stretching method includes a sequential biaxial stretching method and a simultaneous biaxial stretching method, but a simultaneous biaxial stretching method is preferred. This is because the difference in the rate of thermal dimensional change between MD and TD can be further reduced. The preferred range of the draw ratio varies depending on the resin, but is generally 1.2 times or more and 4.0 times or less in both MD and TD. This is because the larger the draw ratio, the better the thermal dimensional stability. On the other hand, if the draw ratio is too large, it becomes difficult to control the process, and the film tends to break during stretching.
 前駆体フィルムを延伸した後、好ましくは熱固定処理を行う。熱固定によって熱収縮率の絶対値が小さくなり、より高い熱寸法安定性が得られるからである。熱固定処理の弛緩率は、好ましくは10%以下である。熱固定は公知の方法によって行うことができる。 After the precursor film has been stretched, a heat setting treatment is preferably performed. This is because the heat shrinkage decreases the absolute value of the thermal shrinkage rate, and higher thermal dimensional stability can be obtained. The relaxation rate of the heat setting treatment is preferably 10% or less. The heat setting can be performed by a known method.
 前駆体フィルムを延伸・熱固定した後、好ましくは、フィルムを一旦冷却してから改めてアニール処理を行う。これにより、樹脂フィルム基材の熱収縮率の絶対値がさらに小さくなり、さらに高い熱寸法安定性が得られる。アニール処理は、延伸方式が逐次二軸延伸方式であるか同時二軸延伸方式であるかに関わらず行うことが好ましいが、前駆体フィルムを逐次二軸延伸処理によって延伸した場合は、アニール処理を行うことが特に好ましい。アニール処理は、保護テープの使用温度より高い温度で行う。 After the precursor film is stretched and heat-set, preferably, the film is once cooled and then annealed again. Thereby, the absolute value of the thermal contraction rate of the resin film substrate is further reduced, and higher thermal dimensional stability is obtained. The annealing treatment is preferably performed regardless of whether the stretching method is a sequential biaxial stretching method or a simultaneous biaxial stretching method, but when the precursor film is stretched by sequential biaxial stretching treatment, the annealing treatment is performed. It is particularly preferred to do this. The annealing treatment is performed at a temperature higher than the use temperature of the protective tape.
 上記のように作製した樹脂フィルム基材の表面に、UV硬化型粘着剤を塗工してUV硬化型粘着剤層を形成することにより、本実施形態の保護テープが得られる。 The protective tape of this embodiment is obtained by coating the surface of the resin film substrate produced as described above with a UV curable adhesive to form a UV curable adhesive layer.
 次に、本実施形態の保護テープの他の製造方法として、樹脂フィルム基材を二軸配向させない場合を説明する。 Next, as another manufacturing method of the protective tape of this embodiment, a case where the resin film substrate is not biaxially oriented will be described.
 上述した樹脂のうち、PESは非晶性であって、ガラス転移温度は一般に220~230℃である。樹脂フィルム基材の材料が実質的に、このような200℃以上のガラス転移温度を有する非晶性の樹脂からなる場合は、フィルムを二軸配向させることなく、保護テープとしての所要の特性を実現できる。 Of the above-mentioned resins, PES is amorphous and the glass transition temperature is generally 220 to 230 ° C. When the material of the resin film substrate is substantially made of an amorphous resin having such a glass transition temperature of 200 ° C. or higher, the required properties as a protective tape can be obtained without biaxial orientation of the film. realizable.
 樹脂フィルム基材の原料となる樹脂ペレットを溶融押し出しによってフィルム化し、一旦冷却してから改めてアニール処理を行ってフィルム基材を作製する。アニール処理は、保護テープの使用温度より高い温度で行う。次いで、フィルム基材の表面に、UV硬化型粘着剤を塗工してUV硬化型粘着剤層を形成することにより、本実施形態の保護テープが得られる。 Resin pellets used as a raw material for the resin film substrate are formed into a film by melt extrusion, once cooled, and then annealed again to produce a film substrate. The annealing treatment is performed at a temperature higher than the use temperature of the protective tape. Next, the protective tape of this embodiment is obtained by applying a UV curable pressure-sensitive adhesive to the surface of the film substrate to form a UV curable pressure-sensitive adhesive layer.
 実施例1~5の保護テープの樹脂フィルム基材を次のとおり作製した。樹脂フィルム基材の材料は、次の4種の樹脂を用いた。
  ・PCTA:イーストマン・ケミカル社製、コポリエステル13319
  ・PA9T:株式会社クラレ製、ジェネスタN1000D
  ・COC:ポリプラスチックス株式会社製、TOPAS6015
  ・SPS:出光興産株式会社製、ザレック142ZE
 各樹脂のペレットを所定温度で溶融し、Tダイより押し出して、前駆体フィルムを作製した。次いで、前駆体フィルムを所定温度、所定倍率で同時二軸延伸し、実施例1、2、4および5については、延伸後のフィルムを所定温度まで加熱して熱固定処理した。実施例5については、熱固定処理後のフィルムを一旦室温まで冷却した後に、再度アニール処理を行った。
Resin film substrates of the protective tapes of Examples 1 to 5 were produced as follows. The following four types of resins were used as the material for the resin film substrate.
PCTA: Eastman Chemical Co., Copolyester 13319
PA9T: Kuraray Co., Ltd., Genesta N1000D
COC: manufactured by Polyplastics Co., Ltd., TOPAS6015
-SPS: Made by Idemitsu Kosan Co., Ltd., Zalek 142ZE
Each resin pellet was melted at a predetermined temperature and extruded from a T-die to prepare a precursor film. Next, the precursor film was simultaneously biaxially stretched at a predetermined temperature and a predetermined magnification, and in Examples 1, 2, 4 and 5, the stretched film was heated to a predetermined temperature and heat-set. For Example 5, the film after the heat setting treatment was once cooled to room temperature and then annealed again.
 比較例1、2として、それぞれ市販のポリエチレンテレフタレート(PET)フィルムおよびポリエチレンナフタレート(PEN)フィルムを準備した。 As Comparative Examples 1 and 2, commercially available polyethylene terephthalate (PET) films and polyethylene naphthalate (PEN) films were prepared.
 表1に、各実施例および比較例の保護テープの製造条件を示す。 Table 1 shows the manufacturing conditions of the protective tapes of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 樹脂フィルム基材の物性は以下の方法で測定した。 The physical properties of the resin film substrate were measured by the following methods.
 波長365nmの光の透過率は、紫外可視分光光度計を用いて、モノクロメーターで波長365nmの単色光を試験片に垂直に照射し、透過した光量を測定して求めた。 The transmittance of light having a wavelength of 365 nm was determined by irradiating a test piece with monochromatic light having a wavelength of 365 nm perpendicularly using a UV-visible spectrophotometer and measuring the amount of transmitted light.
 熱寸法変化率は、次の方法で測定した。試験片(150mm×150mm)上に、長さ100mmの直線をMDおよびTDに平行にそれぞれ3本描き、この試験片を標準状態(23℃×50%RH)に2時間放置した後直線の長さを測定した。続いて、150℃の雰囲気に設定された熱風循環式恒温槽内で、一角を支持した宙吊り状態にて30分間放置した後、取り出して標準状態に2時間放置冷却した。その後各直線の長さを測定し、試験前の長さからの変化量を求めた。MD、TDとも各3本の直線の変化量の平均値をとって熱寸法変化率とした。 The thermal dimensional change rate was measured by the following method. Three straight lines with a length of 100 mm are drawn on a test piece (150 mm × 150 mm) in parallel with MD and TD, and the test piece is left in a standard state (23 ° C. × 50% RH) for 2 hours. Was measured. Subsequently, in a hot air circulating thermostatic chamber set to an atmosphere of 150 ° C., it was left standing in a suspended state with one corner supported for 30 minutes, then taken out and cooled to a standard state for 2 hours. Thereafter, the length of each straight line was measured, and the amount of change from the length before the test was determined. For both MD and TD, the average value of the amount of change in each of the three straight lines was taken as the thermal dimensional change rate.
 TMA法の引張モードによる軟化温度は次の方法で測定した。それぞれMDおよびTDを長さ方向とする試験片(2mm×25mm)を作製し、TMA測定装置(TAインスツルメント社製、Q400EM)を用いて、引張荷重5gf/2mm幅(約0.05N/2mm幅)、昇温速度10℃/分の条件で昇温して、軟化温度を測定した。軟化温度は引張方向がMDおよびTDである試験片での測定値の平均値で示した。例として、図2に、実施例1の樹脂フィルム基材の測定チャートを示す。 The softening temperature by the tensile mode of the TMA method was measured by the following method. Test specimens (2 mm × 25 mm) each having MD and TD in the length direction were prepared, and a tensile load of 5 gf / 2 mm width (about 0.05 N / mm) was obtained using a TMA measuring device (TA Instruments, Q400EM). The temperature was raised under the conditions of 2 mm width) and a heating rate of 10 ° C./min, and the softening temperature was measured. The softening temperature was indicated by the average value of the measured values of the test pieces whose tensile directions were MD and TD. As an example, FIG. 2 shows a measurement chart of the resin film substrate of Example 1.
 表2に、各実施例および比較例の保護テープの物性を示す。150℃で30分間保持したときの寸法変化率は、ずべてのフィルム基材で符号がマイナスであった。すなわち、この条件でフィルムは熱収縮した。実施例1~5すべてのフィルム基材で、365nmの光の透過率は80%以上であった。また、150℃で30分間保持したときの寸法変化率は、MDおよびTDのいずれにおいても0.8%以下であり、MDとTDの差は0.2%以下であった。また、TMA法の引張モードによる軟化温度は180℃以上であった。これに対して、比較例1のフィルム基材ではMDの熱寸法変化率が-1.6%で、熱収縮が大きかった。また比較例2のフィルム基材では、波長365nmの光の透過率が20%と低かった。 Table 2 shows the physical properties of the protective tape of each example and comparative example. The dimensional change rate when held at 150 ° C. for 30 minutes was negative for all film substrates. That is, the film contracted under these conditions. In all the film substrates of Examples 1 to 5, the light transmittance at 365 nm was 80% or more. Further, the dimensional change rate when held at 150 ° C. for 30 minutes was 0.8% or less in both MD and TD, and the difference between MD and TD was 0.2% or less. Further, the softening temperature by the tensile mode of the TMA method was 180 ° C. or higher. On the other hand, in the film base material of Comparative Example 1, the thermal dimensional change rate of MD was −1.6%, and the thermal shrinkage was large. Moreover, in the film base material of the comparative example 2, the transmittance | permeability of light with a wavelength of 365 nm was as low as 20%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記各樹脂フィルム基材上にUV硬化型アクリル系粘着剤を塗工して、30g/mの厚さでUV硬化型粘着剤層を形成した。これにより、実施例1~5と、比較例1および2の保護テープが作製できた。 A UV curable acrylic pressure-sensitive adhesive was coated on each of the resin film substrates to form a UV curable pressure-sensitive adhesive layer with a thickness of 30 g / m 2 . Thereby, the protective tapes of Examples 1 to 5 and Comparative Examples 1 and 2 were produced.
 保護テープをシリコンウェハに貼り付けて、150℃の恒温槽中で30時間保持し、標準状態に2時間放置冷却した後、フィルム基材側からUVを照射して、保護テープを剥がした。実施例1~5の保護テープでは、試験中に保護テープの浮き、剥がれやウェハの反りは発生せず、また、保護テープをウェハから容易に剥がすことができた。これに対して、比較例1では、ウェハにわずかな反りが認められた。また、比較例2では、保護テープを剥がす際の抵抗が大きく、ウェハ表面に数か所糊残りが認められた。 A protective tape was attached to a silicon wafer, held in a thermostatic bath at 150 ° C. for 30 hours, allowed to cool in a standard state for 2 hours, and then irradiated with UV from the film substrate side to peel off the protective tape. In the protective tapes of Examples 1 to 5, the protective tape was not lifted, peeled off or warped during the test, and the protective tape could be easily peeled off from the wafer. On the other hand, in Comparative Example 1, a slight warpage was recognized on the wafer. In Comparative Example 2, the resistance when the protective tape was peeled off was large, and several adhesive residues were observed on the wafer surface.
 本発明は上記の実施形態や実施例に限定されるものではなく、その技術的思想の範囲内で種々の変形が可能である。また、本発明の保護テープの用途はバックグラインドテープには限られず、半導体製造の他の工程においても、ウェハ表面の保護のために用いることができる。 The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope of the technical idea. Further, the use of the protective tape of the present invention is not limited to the back grind tape, and it can be used for protecting the wafer surface in other processes of semiconductor manufacturing.
 10 保護テープ
 11 樹脂フィルム基材
 12 UV硬化型粘着剤層
DESCRIPTION OF SYMBOLS 10 Masking tape 11 Resin film base material 12 UV curable adhesive layer

Claims (9)

  1.  150℃で30分間保持したときの寸法変化率が、縦方向(MD)および横方向(TD)のいずれにおいても-1.5%以上、+1.5%以下であって、かつMDとTDとの差が1%以内であり、365nmの光の透過率が50%以上である樹脂フィルム基材と、
     紫外線硬化型粘着剤層と
    を有する保護テープ。
    The dimensional change rate when held at 150 ° C. for 30 minutes is −1.5% or more and + 1.5% or less in both the vertical direction (MD) and the horizontal direction (TD), and MD and TD A difference of within 1%, and a resin film substrate having a light transmittance of 365 nm of 50% or more;
    A protective tape having an ultraviolet curable adhesive layer.
  2.  前記樹脂フィルム基材は、熱機械分析法の引張モードで測定した軟化温度が160℃以上である、
    請求項1に記載の保護テープ。
    The resin film substrate has a softening temperature of 160 ° C. or higher measured in a tensile mode of a thermomechanical analysis method.
    The protective tape according to claim 1.
  3.  前記樹脂フィルム基材が、酸変性ポリシクロヘキシレンジメチレンテレフタレート、ポリノナメチレンテレフタルアミド、ポリデカメチレンテレフタルアミド、シクロオレフィンコポリマー、シクロオレフィンポリマー、ポリエーテルサルフォン、シンジオタクティックポリスチレンからなる群より選択される樹脂から実質的になる、
    請求項1または2に記載の保護テープ。
    The resin film substrate is selected from the group consisting of acid-modified polycyclohexylenedimethylene terephthalate, polynonamethylene terephthalamide, polydecamethylene terephthalamide, cycloolefin copolymer, cycloolefin polymer, polyethersulfone, and syndiotactic polystyrene. Consisting essentially of resin
    The protective tape according to claim 1 or 2.
  4.  前記樹脂フィルム基材が、実質的に、酸変性ポリシクロヘキシレンジメチレンテレフタレートからなる、
    請求項3に記載の保護テープ。
    The resin film substrate substantially consists of acid-modified polycyclohexylenedimethylene terephthalate,
    The protective tape according to claim 3.
  5.  前記樹脂フィルム基材が二軸配向フィルムである、
    請求項1~4のいずれか一項に記載の保護テープ。
    The resin film substrate is a biaxially oriented film;
    The protective tape according to any one of claims 1 to 4.
  6.  請求項1~5のいずれか一項に記載された保護テープの製造方法であって、
     樹脂ペレットを溶融押し出ししてフィルム化する前駆体フィルム製造工程と、
     前記前駆体フィルムを少なくとも二軸延伸するフィルム基材製造工程と、
     前記フィルム基材の表面に紫外線硬化型粘着剤層を形成する工程と
    を有する保護テープの製造方法。
    A method for producing a protective tape according to any one of claims 1 to 5,
    A precursor film manufacturing process in which resin pellets are melt-extruded to form a film;
    A film base material manufacturing step of biaxially stretching the precursor film;
    Forming a UV curable pressure-sensitive adhesive layer on the surface of the film substrate.
  7.  前記フィルム基材製造工程は、前記前駆体フィルムを二軸延伸した後、熱固定する工程である、
    請求項6に記載の保護テープの製造方法。
    The film base material production step is a step of heat setting after biaxially stretching the precursor film.
    The manufacturing method of the protective tape of Claim 6.
  8.  前記フィルム基材製造工程は、前記前駆体フィルムを二軸延伸し、熱固定した後に、さらにアニール処理を行う工程である、
    請求項7に記載の保護テープの製造方法。
    The film base material production step is a step of performing an annealing treatment after biaxial stretching of the precursor film and heat setting,
    The manufacturing method of the protective tape of Claim 7.
  9.  請求項1または2に記載された保護テープの製造方法であって、
     樹脂ペレットを溶融押し出ししてフィルム化した後、アニール処理を行うことによりフィルム基材を製造する工程と、
     前記フィルム基材の表面に紫外線硬化型粘着剤層を形成する工程と
    を有する保護テープの製造方法。
    A method for producing a protective tape according to claim 1 or 2,
    After the resin pellets are melt extruded and formed into a film, a process of producing a film substrate by performing an annealing treatment,
    Forming a UV curable pressure-sensitive adhesive layer on the surface of the film substrate.
PCT/JP2017/031828 2016-09-06 2017-09-04 Protective tape and method for producing same WO2018047776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018538401A JPWO2018047776A1 (en) 2016-09-06 2017-09-04 Protective tape and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-174089 2016-09-06
JP2016174089 2016-09-06

Publications (1)

Publication Number Publication Date
WO2018047776A1 true WO2018047776A1 (en) 2018-03-15

Family

ID=61561838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031828 WO2018047776A1 (en) 2016-09-06 2017-09-04 Protective tape and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2018047776A1 (en)
WO (1) WO2018047776A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019150A (en) * 2019-07-23 2021-02-15 ロンシール工業株式会社 Film for adhesive tape base

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138228A (en) * 2001-11-02 2003-05-14 Nitto Denko Corp Pressure-sensitive adhesive sheet for protecting semiconductor wafer
JP2004311750A (en) * 2003-04-08 2004-11-04 Teijin Dupont Films Japan Ltd Base film for working semiconductor wafer
JP2012177084A (en) * 2011-01-31 2012-09-13 Dainippon Printing Co Ltd Heat-resistant temporary adhesive composition and heat-resistant temporary adhesive tape
WO2014030474A1 (en) * 2012-08-21 2014-02-27 東レ株式会社 Biaxially oriented polyethylene terephthalate film and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138228A (en) * 2001-11-02 2003-05-14 Nitto Denko Corp Pressure-sensitive adhesive sheet for protecting semiconductor wafer
JP2004311750A (en) * 2003-04-08 2004-11-04 Teijin Dupont Films Japan Ltd Base film for working semiconductor wafer
JP2012177084A (en) * 2011-01-31 2012-09-13 Dainippon Printing Co Ltd Heat-resistant temporary adhesive composition and heat-resistant temporary adhesive tape
WO2014030474A1 (en) * 2012-08-21 2014-02-27 東レ株式会社 Biaxially oriented polyethylene terephthalate film and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021019150A (en) * 2019-07-23 2021-02-15 ロンシール工業株式会社 Film for adhesive tape base

Also Published As

Publication number Publication date
JPWO2018047776A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6565681B2 (en) Multi-layer film and method for producing the same
CN113396179A (en) Polyester film and use thereof
JP2012159548A (en) Mold-release polyester film for polarizing plate
JP2015174357A (en) Multilayer polyester film
JP6318836B2 (en) Substrate for transfer and transfer sheet
JP2005059276A (en) Mold release film
WO2018047776A1 (en) Protective tape and method for producing same
JP2005336395A (en) Release film
JP4388417B2 (en) Release film
JP2011191354A (en) Mold release film for polarizing plate
JP2015208946A (en) Release polyester film
KR20140033680A (en) Silicone release film with excellent stability in peeling force over time and optical display using the same
JP5525764B2 (en) Release film, protective film for polarizing plate using the release film, and polarizing plate using protective film for the polarizing plate
JP2020059252A (en) Release film
KR20170080515A (en) Release film and manufacturing method thereof
JP2001047580A (en) Mold release film
JP7334416B2 (en) release film
JP6221315B2 (en) Release polyester film
JP6272048B2 (en) Polyester film
JP2015016676A (en) Release polyester film
JP2015016677A (en) Release polyester film
TW201932295A (en) Polarizing plate-carrier film laminate, manufacturing method thereof, method for manufacturing polarizing plate using the same, and polarizing plate
WO2013136875A1 (en) Biaxially oriented polyester film
TW201833168A (en) Optical film, production method, and multilayer film
JP2023059203A (en) Release film for compression molding

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018538401

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848716

Country of ref document: EP

Kind code of ref document: A1