WO2018047516A1 - 電動駆動装置及び電動パワーステアリング装置 - Google Patents

電動駆動装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018047516A1
WO2018047516A1 PCT/JP2017/027593 JP2017027593W WO2018047516A1 WO 2018047516 A1 WO2018047516 A1 WO 2018047516A1 JP 2017027593 W JP2017027593 W JP 2017027593W WO 2018047516 A1 WO2018047516 A1 WO 2018047516A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric
circuit unit
metal cover
motor housing
power supply
Prior art date
Application number
PCT/JP2017/027593
Other languages
English (en)
French (fr)
Inventor
啓二 濱田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/331,060 priority Critical patent/US20190193775A1/en
Priority to KR1020197006534A priority patent/KR20190032586A/ko
Priority to CN201780054439.4A priority patent/CN109690922A/zh
Priority to DE112017004576.2T priority patent/DE112017004576T5/de
Publication of WO2018047516A1 publication Critical patent/WO2018047516A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • B62D5/0406Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box including housing for electronic control unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/10Casings or enclosures characterised by the shape, form or construction thereof with arrangements for protection from ingress, e.g. water or fingers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks

Definitions

  • the present invention relates to an electric drive device and an electric power steering device, and more particularly to an electric drive device and an electric power steering device incorporating an electronic control device.
  • a mechanical control element is driven by an electric motor.
  • an electronic control unit including a semiconductor element or the like for controlling the rotational speed or rotational torque of the electric motor is electrically driven.
  • a so-called electromechanical integrated electric drive device that is integrated into a motor is beginning to be adopted.
  • an electromechanically integrated electric drive device for example, in an electric power steering device of an automobile, a rotation direction and a rotation torque of a steering shaft that is rotated by a driver operating a steering wheel are detected.
  • the electric motor is driven to rotate in the same direction as the rotation direction of the steering shaft based on the detected value, and the steering assist torque is generated.
  • an electronic control unit (ECU: Electronic Control Unit) is provided in the power steering apparatus.
  • Patent Document 1 describes an electric power steering device that includes an electric motor unit and an electronic control unit.
  • the electric motor of the electric motor unit is housed in a motor housing having a cylindrical part made of aluminum alloy or the like, and the board on which the electronic components of the electronic control unit are mounted is the output shaft in the axial direction of the motor housing. It is attached to a heat sink that functions as an ECU housing arranged on the opposite side.
  • the substrate attached to the heat sink includes a power supply circuit unit, a power conversion circuit unit having a power switching element such as a MOSFET or IGBT for driving and controlling the electric motor, and a control circuit unit for controlling the power switching element, and power switching.
  • the output terminal of the element and the input terminal of the electric motor are electrically connected via a bus bar.
  • the electronic control unit attached to the heat sink is supplied with electric power from a power source through a connector case made of synthetic resin, and detection signals such as an operation state are supplied from detection sensors.
  • the connector case functions as a lid, is fixed so as to seal and close the heat sink, and is fixed to the outer peripheral surface of the heat sink with fixing bolts.
  • an electric drive device integrated with an electronic control device an electric brake, an electric hydraulic controller for various hydraulic controls, and the like are known.
  • an electric power steering device is representative. explain.
  • the metal motor housing, the metal heat sink, and the synthetic resin connector case are inserted through a fixing portion that protrudes to the outer peripheral side. It is the structure fastened together with a fixing bolt. Further, an O-ring is interposed between the motor housing and the heat sink and between the heat sink and the connector case to prevent water from entering.
  • a heat sink member for radiating heat of the power supply circuit unit and the power conversion circuit unit to the outside is particularly provided with the motor housing. Arranged between the ECU housings. For this reason, the length in the axial direction tends to be longer by the amount of the heat sink member.
  • the electrical components that constitute the power supply circuit unit and the power conversion circuit unit generate a large amount of heat, and it is necessary to efficiently dissipate this heat to the outside when downsizing. Therefore, it is also required to reduce the axial length as much as possible and to efficiently dissipate the heat of the power supply circuit unit and the power conversion circuit unit to the outside.
  • the main object of the present invention is to provide a novel electric drive device and electric power steering device having a reduced external shape, a reduced weight and a reduced number of parts, and good heat dissipation characteristics.
  • the feature of the present invention is that the metal made of aluminum metal that covers the outer peripheral surface of the end surface of the motor housing made of aluminum metal opposite to the output part of the rotating shaft of the electric motor, or the electronic control unit that controls the electric motor.
  • a stepped portion that is recessed inward in the radial direction is formed, and a fitting portion is formed by fitting the opening portion of the metal cover to the stepped portion.
  • the step formed on the outer peripheral surface of the end surface portion of the motor housing made of aluminum metal and the opening of the metal cover made of aluminum metal are engaged and friction stir welded.
  • the external shape can be reduced to reduce the weight, and the number of parts can be reduced because the fixing bolt and the O-ring can be omitted.
  • the motor housing and the metal cover are integrated by welding, the thermal resistance can be reduced, and furthermore, the heat radiation can be improved by the metal cover, so that the heat radiation characteristics can be improved.
  • FIG. 1 is an overall perspective view of a steering apparatus as an example to which the present invention is applied.
  • 1 is an overall perspective view of an electric power steering apparatus according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the electric power steering device shown in FIG. 2.
  • It is a perspective view of the motor housing shown in FIG.
  • FIG. 5 is a cross-sectional view of the motor housing shown in FIG. 4 taken along the axial direction.
  • It is a perspective view which shows the state which mounted and fixed the power conversion circuit part in the motor housing shown in FIG.
  • FIG. shows the state which mounted and fixed the power supply circuit part to the motor housing shown in FIG.
  • It is a perspective view which shows the state which mounted and fixed the control circuit part in the motor housing shown in FIG.
  • FIG. 12 It is a perspective view which shows the state which mounted and fixed the connector terminal assembly to the motor housing shown in FIG. It is a fragmentary sectional view which shows the axial cross section of the junction part vicinity of a motor housing and a metal cover. It is a fragmentary sectional view of the part by which the friction stir welding of the junction part of the motor housing and metal cover of FIG. It is a fragmentary sectional view which shows the axial cross section of the junction part vicinity of the motor housing and metal cover of other embodiment. It is a fragmentary sectional view of the part by which friction stir welding of the junction part of the motor housing of FIG. 12 and a metal cover was carried out.
  • the steering device 1 is configured as shown in FIG.
  • a pinion (not shown) is provided at the lower end of the steering shaft 2 connected to a steering wheel (not shown), and this pinion meshes with a rack (not shown) that is long in the left-right direction of the vehicle body.
  • Tie rods 3 for steering the front wheels in the left-right direction are connected to both ends of the rack, and the rack is covered with a rack housing 4.
  • a rubber boot 5 is provided between the rack housing 4 and the tie rod 3.
  • An electric power steering device 6 is provided to assist the torque when the steering wheel is turned.
  • a torque sensor 7 that detects the turning direction and turning torque of the steering shaft 2 is provided, and an electric motor unit 8 that applies a steering assist force to the rack via the gear 10 based on the detection value of the torque sensor 7.
  • an electronic control unit (ECU) unit 9 that controls the electric motor disposed in the electric motor unit 8 is provided.
  • the electric motor unit 8 is connected to the gear 10 through bolts (not shown) on the outer peripheral portion on the output shaft side, and the electronic control unit 9 on the opposite side of the output shaft of the electric motor 8 unit. Is provided.
  • the torque sensor 7 determines the rotational direction and the rotational torque of the steering shaft 2. Based on the detected value, the control circuit unit calculates the drive operation amount of the electric motor.
  • the electric motor is driven by the power switching element of the power conversion circuit unit based on the calculated drive operation amount, and the output shaft of the electric motor is rotated so as to drive the steering shaft 2 in the same direction as the operation direction.
  • the rotation of the output shaft is transmitted from a pinion (not shown) to a rack (not shown) via the gear 10 to steer the automobile. Since these structures and operations are already well known, further explanation is omitted.
  • the metal motor housing, the metal heat sink, and the synthetic resin connector case are inserted through the fixing portion protruding to the outer peripheral side. It is the structure fastened together with a fixing bolt. Further, an O-ring is interposed between the motor housing and the heat sink and between the heat sink and the connector case to prevent water from entering.
  • the present embodiment proposes an electric power steering apparatus having the following configuration. That is, in the present embodiment, a stepped portion that is recessed radially inward is formed on the outer peripheral surface of the end surface portion of the aluminum-based metal motor housing opposite to the output portion of the rotating shaft of the electric motor. A fitting portion is formed by fitting an opening portion of an aluminum-based metal cover that covers the electronic control portion that controls the electric motor, and the motor housing and the metal cover are welded and joined to the fitting portion. The friction stir joint is formed.
  • the fixing bolt or O-ring can be eliminated, the weight can be reduced by reducing the external shape, and the number of parts can be reduced because the fixing bolt and O-ring can be omitted, and the heat resistance is reduced because the motor housing and the metal cover are integrated by welding.
  • the heat can be radiated by the metal cover, the heat radiation characteristics can be improved.
  • FIGS. 2 to 10 is a diagram showing the overall configuration of the electric power steering apparatus according to the present embodiment
  • FIG. 3 is a diagram showing the components of the electric power steering apparatus shown in FIG. 4 to 9 are drawings showing a state in which each component is assembled according to the assembly order of each component
  • FIG. 10 is a drawing showing an axial cross section near the joint portion of the metal cover. It is. Therefore, in the following description, description will be made with reference to each drawing as appropriate.
  • the electric motor unit 8 constituting the electric power steering apparatus includes a motor housing 11 having a cylindrical part made of aluminum or an aluminum metal such as an aluminum alloy and an electric motor (not shown) housed in the motor housing 11.
  • the electronic control unit 9 is composed of a motor, and the electronic control unit 9 is disposed on the side opposite to the output shaft in the axial direction of the motor housing 11 and is housed in the metal cover 12 made of aluminum metal such as aluminum or aluminum alloy. And an electronic control assembly (not shown).
  • the motor housing 11 and the metal cover 12 are integrally fixed to each other by a friction stir welding described later in a circumferential fitting area EA along the outer circumferential direction formed on the opposite end face.
  • the electronic control assembly housed in the metal cover 12 has a power conversion unit having a power switching element made up of a power source circuit unit for generating a necessary power source, a MOSFET or IGBT for driving and controlling the electric motor of the electric motor unit 8.
  • the circuit includes a control circuit unit that controls the power switching element, and the output terminal of the power switching element and the coil input terminal of the electric motor are electrically connected via a bus bar.
  • the connector terminal assembly 13 is exposed at the end surface of the metal cover 12 opposite to the motor housing 11 from the hole formed in the metal cover 12.
  • the connector terminal assembly 13 is fixed to a fixing portion formed on the motor housing 11 with fixing bolts.
  • the connector terminal assembly 13 includes a connector terminal forming portion 13A for supplying power, a connector terminal forming portion 13B for detection sensor, and a connector terminal forming portion 13C for sending a control state for sending a control state to an external device.
  • the electronic control assembly housed in the metal cover 12 is supplied with electric power from the power supply via a connector terminal forming portion 13A for supplying electric power made of synthetic resin, and detects an operating state from detection sensors.
  • the signal is supplied via the detection sensor connector terminal forming portion 13B, and the current control state signal of the electric power steering apparatus is sent via the control state sending connector terminal forming portion 13C.
  • FIG. 3 shows an exploded perspective view of the electric power steering apparatus 6.
  • An annular iron side yoke (not shown) is fitted inside the motor housing 11, and an electric motor (not shown) is accommodated in the side yoke.
  • the output unit 14 of the electric motor applies a steering assist force to the rack via a gear. Since the specific structure of the electric motor is well known, the description thereof is omitted here.
  • the motor housing 11 is made of an aluminum alloy and functions as a heat sink member that releases heat generated by the electric motor and heat generated by a power supply circuit unit and a power conversion circuit unit, which will be described later, to the outside atmosphere.
  • the electric motor and the motor housing 11 constitute an electric motor unit 8.
  • An electronic control unit EC is attached to the end surface portion 15 of the motor housing 11 opposite to the output portion 14 of the electric motor portion 8.
  • the electronic control unit EC includes a power conversion circuit unit 16, a power supply circuit unit 17, a control circuit unit 18, and a connector terminal assembly 13.
  • the end surface portion 15 of the motor housing 11 is formed integrally with the motor housing 11. However, only the end surface portion 15 may be formed separately and integrated with the motor housing 11 by bolts or welding.
  • the power conversion circuit unit 16, the power supply circuit unit 17, and the control circuit unit 18 constitute a redundant system, and constitute a dual system of the main electronic control unit and the sub electronic control unit.
  • the electric motor is controlled and driven by the main electronic control unit.
  • the electric motor is controlled and driven by switching to the sub electronic control unit. It will be.
  • heat from the main electronic control unit is transmitted to the motor housing 11, and if an abnormality or failure occurs in the main electronic control unit, the main electronic control unit stops and the sub electronic control unit operates.
  • the heat from the sub-electronic control unit is transmitted to the motor housing 11.
  • the main electronic control unit and the sub electronic control unit are combined to function as a regular electronic control unit, and if one electronic control unit malfunctions or fails, the other electronic It is also possible to control and drive the electric motor with half the capacity in the control unit. In this case, the capacity of the electric motor is halved, but a so-called “limp home function” is ensured. Therefore, in the normal case, heat from the main electronic control unit and the sub electronic control unit is transmitted to the motor housing 11.
  • the electronic control unit EC is composed of a control circuit unit 18, a power supply circuit unit 17, a power conversion circuit unit 16, and a connector terminal assembly 13, and the power conversion circuit unit 16, in the direction away from the end face unit 15 side,
  • the power supply circuit unit 17, the control circuit unit 18, and the connector terminal assembly 13 are arranged in this order.
  • the control circuit unit 18 generates a control signal for driving the switching element of the power conversion circuit unit 16, and includes a microcomputer, a peripheral circuit, and the like.
  • the power supply circuit unit 17 generates a power source for driving the control circuit unit 18 and a power source for the power conversion circuit unit 16, and includes a capacitor, a coil, a switching element, and the like.
  • the power conversion circuit unit 16 adjusts the electric power flowing through the coil of the electric motor, and is composed of a switching element or the like that constitutes a three-phase upper and lower arm.
  • the electronic control unit EC generates a large amount of heat mainly from the power conversion circuit unit 16 and the power supply circuit unit 17, and the heat of the power conversion circuit unit 16 and the power supply circuit unit 17 is radiated from the motor housing 11 made of an aluminum alloy. It is what is done. This configuration will be described later.
  • a connector terminal assembly 13 made of a synthetic resin is provided between the control circuit unit 18 and the metal cover 12, and is connected to a vehicle battery (power source) and other control devices (not shown). Needless to say, the connector terminal assembly 13 is connected to the power conversion circuit unit 16, the power supply circuit unit 17, and the control circuit unit 18.
  • the metal cover 12 has a function of accommodating the power conversion circuit unit 16, the power supply circuit unit 17, and the control circuit unit 18 and sealing them in a liquid-tight manner. Is fixed to the motor housing 11.
  • the fixing bolt can be omitted to reduce the external shape, and the fixing bolt and the watertight O-ring can be omitted.
  • the metal cover 12 and the motor housing 11 are welded, the thermal resistance is reduced, and the heat transfer performance between the metal cover 12 and the motor housing can be improved.
  • the metal cover 12 is made of metal, heat generated by the power conversion circuit unit 16, the power supply circuit unit 17, and the like can be radiated to the outside.
  • FIG. 4 shows the appearance of the motor housing 11, and FIG. 5 shows an axial cross section thereof.
  • the motor housing 11 is formed in a cylindrical shape and closes the side peripheral surface portion 11A, the end surface portion 15 that closes one end of the side peripheral surface portion 11A, and the other end of the side peripheral surface portion 11A.
  • an end face portion 19 In the present embodiment, the motor housing 11 has a bottomed cylindrical shape, and the side peripheral surface portion 11A and the end surface portion 15 are integrally formed.
  • the end surface portion 19 has a lid function and closes the other end of the side peripheral surface portion 11A after the electric motor is stored in the side peripheral surface portion 11A.
  • annular step 35 that is recessed inward in the radial direction is formed on the peripheral surface of the end surface 15, and the opening of the metal cover 12 is fitted into this step 35.
  • This fitting area is the circumferential fitting area EA shown in FIG. 2, but the fitting form between the step portion 35 and the opening of the metal cover 12 is a so-called “print stamp engagement” or “print stamp fit”. It is a form called.
  • a stator 21 in which a coil 20 is wound around an iron core is fitted in the side peripheral surface portion 11 ⁇ / b> A, and a rotor 22 in which a permanent magnet is embedded rotates in the stator 21. It is stored as possible.
  • a rotation shaft 23 is fixed to the rotor 22, one end is an output unit 14, and the other end is a rotation detection unit 24 for detecting the rotation phase and the number of rotations of the rotation shaft 23.
  • the rotation detection unit 24 is provided with a permanent magnet, and protrudes to the outside through a through hole 25 provided in the end surface portion 15. Then, the rotational phase and the rotational speed of the rotary shaft 23 are detected by a magnetic sensing unit comprising a GMR element or the like (not shown).
  • the power conversion circuit unit 16 (see FIG. 3) and the power supply circuit unit 17, which are the features of the present embodiment, are provided on the surface of the end surface 15 located on the opposite side of the output unit 14 of the rotating shaft 23.
  • Heat radiation portions 15A and 15B (see FIG. 3) are formed.
  • Board / connector fixing convex portions 26 are integrally planted at the four corners of the end surface portion 15, and screw holes are formed therein.
  • the board / connector fixing convex part 26 is provided to fix the board of the control circuit part 18 and the connector terminal assembly 13 described later.
  • the substrate receiving portion 27 is for mounting and fixing a glass epoxy substrate 31 of the power supply circuit portion 17 described later.
  • a radial plane region perpendicular to the rotation axis 23 that forms the end face portion 15 is divided into two. One forms a power conversion heat dissipation region 15A to which the power conversion circuit unit 16 is attached, and the other forms a power supply heat dissipation region 15B to which the power supply circuit unit 17 is attached.
  • the power conversion heat dissipation region 15A is formed to have a larger area than the power supply heat dissipation region 15B. This is because the installation area of the power conversion circuit unit 16 is secured because the dual system is adopted as described above.
  • the power conversion heat dissipation region 15A and the power supply heat dissipation region 15B have steps with different heights in the axial direction (the direction in which the rotating shaft 23 extends). That is, the heat-dissipating region for power supply 15B is formed with a step in a direction away from the heat-dissipating region for power conversion 15A when viewed in the direction of the rotating shaft 23 of the electric motor. This step is set to a length that does not cause interference between the power conversion circuit unit 16 and the power supply circuit unit 17 when the power supply circuit unit 17 is installed after the power conversion circuit unit 16 is installed.
  • the protruding heat radiating portion 28 extends so as to protrude in a direction away from the electric motor when viewed in the direction of the rotating shaft 23 of the electric motor.
  • the heat radiation area 15B for power supply is planar and is provided with a power supply circuit portion 17 to be described later. Therefore, the projecting heat radiating portion 28 functions as a heat radiating portion that transfers the heat generated in the power conversion circuit portion 16 to the end face portion 15, and the power radiating area 15 B has the heat generated in the power supply circuit portion 17 at the end face portion. 15 functions as a heat dissipating part that conducts heat to 15.
  • the protruding heat radiation part 28 can be omitted, and in this case, the power conversion heat radiation area 15 ⁇ / b> A functions as a heat radiation part that transfers heat generated in the power conversion circuit part 16 to the end face part 15.
  • the metal substrate of the power conversion circuit unit 16 is welded to the projecting heat radiating unit 28 by friction stir welding to ensure secure fixing.
  • the heat sink member is omitted and the axial length can be shortened. Further, since the motor housing 11 has a sufficient heat capacity, the heat of the power supply circuit unit 17 and the power conversion circuit unit 16 can be efficiently radiated to the outside.
  • FIG. 6 shows a state where the power conversion circuit unit 16 is installed in the protruding heat radiation unit 28 (see FIG. 4).
  • the power conversion circuit unit 16 composed of a double system is installed on the upper part of the protruding heat radiation unit 28 (see FIG. 4) formed in the heat conversion heat radiation region 15 ⁇ / b> A.
  • the switching elements constituting the power conversion circuit unit 16 are placed on a metal substrate (here, aluminum-based metal is used) and are configured to be easily radiated.
  • the metal substrate is welded to the projecting heat radiating portion 28 by friction stir welding.
  • the metal substrate is firmly fixed to the projecting heat radiating portion 28 (see FIG. 4), and heat generated by the switching element can be efficiently transferred to the projecting heat radiating portion 28 (see FIG. 4).
  • the heat transmitted to the projecting heat radiating portion 28 (see FIG. 4) is diffused into the power conversion heat radiating region 15A, further transferred to the side peripheral surface portion 11A of the motor housing 11, and radiated to the outside.
  • the height of the power conversion circuit unit 16 in the axial direction is lower than the height of the heat dissipation region 15B for power supply, it does not interfere with the power supply circuit unit 17 described later.
  • the power conversion circuit unit 16 is installed on the upper part of the protruding heat dissipation unit 28 formed in the power conversion heat dissipation region 15A. Therefore, the heat generated by the switching element of the power conversion circuit unit 16 can be efficiently transferred to the projecting heat radiating unit 28. Further, the heat transmitted to the projecting heat radiating portion 28 is diffused to the power conversion heat radiating region 15A, and is transferred to the side peripheral surface portion 11A of the motor housing 11 to be radiated to the outside.
  • FIG. 7 shows a state in which the power supply circuit unit 17 is installed from above the power conversion circuit unit 16.
  • a power supply circuit unit 17 is installed on the upper portion of the heat dissipation region 15 ⁇ / b> B for power supply.
  • a capacitor 29, a coil 30, and the like constituting the power supply circuit unit 17 are placed on a glass epoxy substrate 31.
  • the power supply circuit unit 17 also adopts a double system, and as can be seen from the figure, a power supply circuit composed of a capacitor 29, a coil 30, and the like is formed symmetrically.
  • the surface of the glass epoxy substrate 31 on the side of the power dissipation region 15B (see FIG. 6) is fixed to the end face 15 so as to be in contact with the power dissipation region 15B.
  • the fixing method is fixed to a screw hole provided in the substrate receiving portion 27 of the substrate fixing convex portion 26 by a fixing bolt (not shown). Further, it is also fixed to a screw hole provided in the heat radiation area 15B for power supply (see FIG. 6) by a fixing bolt (not shown).
  • the power supply circuit unit 17 is formed of the glass epoxy substrate 31, double-sided mounting is possible.
  • the surface of the glass epoxy substrate 31 on the side of the heat radiation area 15B for power supply (see FIG. 6) is mounted with a rotational phase / rotational speed detection unit including a GMR element (not shown) and its detection circuit.
  • the rotation detection unit 24 (see FIG. 5) provided in FIG. 5, the rotation phase and the number of rotations are detected.
  • the glass epoxy substrate 31 is fixed so as to be in contact with the power supply heat dissipation region 15B (see FIG. 6). Therefore, the heat generated in the power supply circuit unit 17 is efficiently transferred to the power supply heat dissipation region 15B (FIG. 6). Heat transfer).
  • the heat transferred to the heat dissipation region 15B for power supply (see FIG. 6) is diffused and transferred to the side peripheral surface portion 11A of the motor housing 11 to be radiated to the outside.
  • any one of an adhesive, a heat radiation grease, and a heat radiation sheet having a good heat transfer property is interposed to further heat transfer. Performance can be improved.
  • the power supply circuit portion 17 is installed on the upper portion of the heat dissipation region 15B for power supply.
  • the surface of the glass epoxy substrate 31 on which the circuit elements of the power supply circuit section 17 are placed is fixed to the end face section 15 so as to be in contact with the power supply heat dissipation area 15B. Therefore, the heat generated in the power supply circuit unit 17 can be efficiently transferred to the heat dissipation region 15B for power supply.
  • the heat transmitted to the power radiation region 15B is diffused and transferred to the side peripheral surface portion 11A of the motor housing 11 to be radiated to the outside.
  • FIG. 8 shows a state where the control circuit unit 18 is installed from above the power supply circuit unit 17.
  • a control circuit unit 18 is installed above the power supply circuit unit 17.
  • the microcomputer 32 and the peripheral circuit 33 constituting the control circuit unit 18 are placed on a glass epoxy substrate 34.
  • the control circuit unit 18 also employs a double system, and as can be seen from the figure, control circuits comprising a microcomputer 32 and a peripheral circuit 33 are formed symmetrically.
  • the microcomputer 32 and the peripheral circuit 33 may be provided on the surface of the glass epoxy substrate 34 on the power supply circuit unit 17 side.
  • the glass epoxy board 34 is fixed by fixing bolts (not shown) in a form of being sandwiched by the connector terminal assemblies 13 in screw holes provided at the top of the board fixing convex portion 26 (see FIG. 7). 7 is disposed between the glass epoxy substrate 31 of the power supply circuit unit 17 (see FIG. 7) and the glass epoxy substrate 34 of the control circuit unit 18. It is a space.
  • FIG. 9 shows a state where the connector terminal assembly 13 is installed from above the control circuit section 18.
  • the connector terminal assembly 13 is installed above the control circuit unit 18.
  • the connector terminal assembly 13 is fixed by a fixing bolt 36 so as to sandwich the control circuit portion 18 in a screw hole provided at the top of the board fixing convex portion 26.
  • the connector terminal assembly 13 is connected to the power conversion circuit unit 16, the power supply circuit unit 17, and the control circuit unit 18, and the opening 37 of the metal cover 12 is connected to the motor housing 11.
  • step portion 35 It is fitted to the step portion 35 by stamping or the like, and this circumferential fitting region EA is joined by friction stir welding, so that the power conversion circuit portion 16, the power supply circuit portion 17, and the control circuit portion 18 are sealed in a liquid-tight manner. It is what is done.
  • FIG. 10 an axial cross section in the vicinity of the circumferential fitting area EA between the motor housing 11 and the metal cover 12 is shown in FIG.
  • the electronic control unit EC is disposed adjacent to the end surface portion 15 of the motor housing 11, and is covered with the metal cover 12 so that the storage space Sh formed by the metal cover 12 and the end surface portion 15 is covered.
  • An electronic control unit EC is accommodated.
  • a magnet holding portion 38 is fixed to the end of the rotating shaft 23 opposite to the output portion 14, and a permanent magnet (sensor magnet) 39 that constitutes a rotation detecting portion is housed and fixed thereto. ing.
  • the end portion of the rotating shaft 23, the magnet holding portion 38, and the permanent magnet 39 extend beyond the end surface portion 15 of the motor housing 11 to the electronic control portion EC side.
  • a magnetic sensor 40 having a magnetosensitive function such as a GMR element is fixed to the surface of the glass epoxy substrate 31 of the power supply circuit unit 17 disposed on the electronic control unit EC side, which has a magnetic sensing function such as a GMR element.
  • the rotation phase of the rotary shaft 23 is detected by the rotation of 39.
  • a ball bearing 42 is interposed in a through hole 41 formed in the vicinity of the center of the end surface portion 15 and through which the rotary shaft 23 passes.
  • the rotary shaft 23 is rotatably supported by the ball bearing 42.
  • the step portion 35 formed on the outer peripheral surface of the end surface portion 15 includes a step portion side wall 35 ⁇ / b> S receding radially inward, and the side peripheral surface portion 11 ⁇ / b> A and the step portion side wall 35 ⁇ / b> S of the end surface portion 15.
  • stepped bottom wall 35B An opening 37 of the metal cover 12 is fitted into the step portion 35 formed by the step portion bottom wall 35B and the step portion side wall 35S by a stamping fitting. Therefore, the contact portion between the step portion side wall 35S and the metal cover 12 is formed as a circumferential fitting region EA.
  • the friction stir welding process is performed with the contact portion (butting portion) between the step bottom wall 35B and the opening 37 of the metal cover 12 being the center. That is, the contact region of the step bottom wall 35B and the tip of the opening 37 of the metal cover 12 and the contact region of the step side wall 35S and the inner periphery of the opening 37 of the metal cover 12 are welded by friction stir welding. Thus, the friction stir welding portion FSW is formed.
  • the step side wall 35 ⁇ / b> S and the inner contact area of the opening 37 of the metal cover 12 are deeply joined, but the step bottom wall 35 ⁇ / b> B and the tip of the opening 37 of the metal cover 12 are joined. It is also possible to keep it in a shallow junction up to the contact area.
  • the friction stir welding means that a cylindrical tool having a protrusion at the tip is rotated with a strong force and pressed into the joint of the member to which the protrusion is joined, thereby generating frictional heat.
  • the periphery of the joint is plastically flowed by the rotational force of the tool, and the plurality of members are integrated by kneading and mixing.
  • the stepped portion 35 that is retracted radially inward is formed on the outer peripheral surface of the end surface portion 15 of the motor housing 11 made of aluminum-based metal, and the metal made of aluminum-based metal is formed on the stepped portion 35.
  • the opening 37 of the cover 12 is fitted, and a friction stir welding portion FSW between the motor housing and the metal cover is formed in the circumferential fitting area EA.
  • the step part 35 formed in the outer peripheral surface of the end surface part 15 of a motor housing and the opening part 37 of the metal cover 12 were fitted and friction stir welding was carried out, a fixed volt
  • the weight can be reduced and the number of parts can be reduced because the fixing bolt and the O-ring can be omitted.
  • the motor housing 11 and the metal cover 12 are integrated by welding, the thermal resistance can be reduced, and further, the heat radiation can be improved by the metal cover, so that the heat radiation characteristics can be improved.
  • the metal cover 12 and the motor housing 11 are integrated, the heat capacity can be increased and the heat dissipation characteristics can be improved.
  • the power conversion circuit unit 16 is installed on the upper portion of the protruding heat dissipation unit 28 formed in the power conversion heat dissipation region 15A. Therefore, the heat generated by the switching element of the power conversion circuit unit 16 can be efficiently transferred to the projecting heat radiating unit 28. Further, the heat transmitted to the projecting heat radiating portion 28 is diffused to the power conversion heat radiating region 15A, and is transferred to the side peripheral surface portion 11A of the motor housing 11 to be radiated to the outside.
  • the power supply circuit unit 17 is installed on the upper part of the heat dissipation region 15B for power supply.
  • the surface of the glass epoxy substrate 31 on which the circuit elements of the power supply circuit section 17 are placed is fixed to the end face section 15 so as to be in contact with the power supply heat dissipation area 15B. Therefore, the heat generated in the power supply circuit unit 17 can be efficiently transferred to the heat dissipation region 15B for power supply.
  • the heat transmitted to the power radiation region 15B is diffused and transferred to the side peripheral surface portion 11A of the motor housing 11 to be radiated to the outside.
  • the heat generated in the power supply circuit unit 17 and the power conversion circuit unit 16 is transferred to the end surface portion 15 of the motor housing 11, so that the heat sink member is omitted and the length in the axial direction is reduced. Can be shortened. Moreover, since the motor housing 11 has a sufficient heat capacity, the heat of the power supply circuit unit and the power conversion circuit unit can be efficiently radiated to the outside.
  • the present invention forms a stepped portion that is recessed radially inward on the outer peripheral surface of the end surface portion of the aluminum-based metal motor housing opposite to the output portion of the rotating shaft of the electric motor.
  • An opening of an aluminum-based metal cover that covers the electronic control unit that controls the electric motor is fitted to the stepped portion, and a friction stir welding portion that welds and joins the motor housing and the metal cover is formed in the fitting portion. Adopting the configuration.
  • the step of the motor housing and the opening of the metal cover are engaged and friction stir welding is performed, so that the fixing bolt and the O-ring can be eliminated, the external shape can be reduced, the weight can be reduced, and the number of parts can be reduced. Is. Further, since the motor housing and the metal cover are integrated by welding, the thermal resistance can be reduced, and furthermore, the heat radiation can be improved by the metal cover, so that the heat radiation characteristics can be improved.
  • the stepped portion 35 formed on the outer peripheral surface of the metal cover 12 includes a stepped portion side wall 35 ⁇ / b> C receding radially inward, a side peripheral surface portion 12 ⁇ / b> A and a stepped portion side wall 35 ⁇ / b> S of the metal cover 12. It is formed from the step part connection wall 35D which connects.
  • the step portion 35 formed by the step portion connecting wall 35D and the step portion side wall 35C is fitted into the opening 43 of the motor housing 11 by a seal fitting. Therefore, the contact portion between the stepped side wall 35C and the opening 43 of the motor housing 11 is formed as the circumferential fitting area EA.
  • the friction stir welding process is performed with the contact portion (butting portion) between the step connecting wall 35D and the opening 43 of the motor housing 11 as the center. That is, the contact region of the stepped connection wall 35D and the tip of the opening 43 of the motor housing 11 and the contact region of the stepped side wall 35C and the inner periphery of the opening 43 of the motor housing 11 are welded by friction stir welding. Thus, the friction stir welding portion FSW is formed. Also in this embodiment, the same effect as in the previous embodiment can be obtained.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the electric drive device is, in one aspect thereof, an aluminum metal motor housing in which an electric motor that drives a mechanical control element is housed, and an output portion of a rotating shaft of the electric motor.
  • An electronic control unit that is disposed on the side of the end surface of the motor housing and includes a control circuit unit for driving the electric motor, a power supply circuit unit, a power conversion circuit unit, and an aluminum-based metal that covers the electronic control unit A metal cover, and retracted radially inward to the outer peripheral surface of the end surface portion of the motor housing on the opposite side of the output portion of the rotating shaft of the electric motor or the outer peripheral surface of the metal cover
  • An annular step portion is formed, and a fitting portion is formed by fitting the opening portion of the metal cover to the step portion, and the motor housing and the metal cover are welded to the fitting portion. Friction stir welding portion is formed to have.
  • the step portion formed on the outer peripheral surface of the end surface portion connects the step portion side wall receding radially inward, the side peripheral surface portion of the end surface portion, and the step portion side wall. It is formed from a step bottom wall, and the opening of the metal cover is fitted to the step portion formed by the step bottom wall and the step side wall, and further, The friction stir joint is formed with the contact portion between the bottom wall of the stepped portion and the opening of the metal cover as the center.
  • the step bottom surface wall and a contact region of the tip of the opening of the metal cover, the step side wall, and the opening of the metal cover is formed in a part of the contact region on the inner periphery of the friction stir welding portion.
  • a power conversion heat dissipation region and a power supply heat dissipation region are formed on the end surface portion of the motor housing, and the power conversion heat dissipation region includes The power conversion circuit unit is installed, the power circuit unit is installed in the power dissipation heat dissipation region, and heat generated in the power conversion circuit unit and the power supply circuit unit is converted into the power conversion heat dissipation region and the power supply. The heat is radiated to the motor housing through the heat radiation area.
  • the heat dissipation region for power supply formed in the end surface portion of the motor housing is the power conversion as viewed in the direction of the rotation axis of the electric motor.
  • a step is formed in a direction away from the heat radiation area.
  • the power conversion heat dissipation region extends in a direction away from the electric motor when viewed in the rotation axis direction of the electric motor. Is formed.
  • the electronic control unit is configured to move the power conversion circuit unit and the power source in a direction away from the electric motor when viewed in the rotation axis direction of the electric motor.
  • the circuit unit and the control circuit unit are arranged in this order.
  • the electric power steering device includes an electric motor that applies a steering assist force to the steering shaft based on an output from a torque sensor that detects a rotation direction and a rotation torque of the steering shaft, A motor housing in which the electric motor is housed, a control circuit unit for driving the electric motor, and a power source, disposed on the side of the end surface of the motor housing opposite to the output part of the rotating shaft of the electric motor
  • An electronic control unit including a circuit unit and a power conversion circuit unit; and an aluminum-based metal cover that covers the electronic control unit, the motor on the side opposite to the output unit of the rotating shaft of the electric motor.
  • An annular step portion that is recessed radially inward is formed on the outer peripheral surface of the end surface portion of the housing or the outer peripheral surface of the metal cover.
  • the stepped portion formed on the outer peripheral surface of the end surface portion includes a stepped portion side wall that is recessed radially inward, a side peripheral surface portion of the end surface portion, and the stepped portion side wall.
  • the opening portion of the metal cover is fitted by a stamping fitting to the step portion formed by the step portion bottom wall and the step portion side wall.
  • the friction stir welding portion is formed with the contact portion between the bottom wall of the stepped portion and the opening of the metal cover as the center.
  • the step bottom surface wall and a contact region at the tip of the opening of the metal cover, the step side wall, and the opening of the metal cover is formed in a part of the contact area on the inner periphery of the part.
  • a power conversion heat dissipation region and a power supply heat dissipation region are formed on the end surface portion of the motor housing, and the power conversion heat dissipation region is formed in the power conversion heat dissipation region.
  • the power conversion circuit unit is installed, the power circuit unit is installed in the heat dissipation region for power supply, and the heat generated in the power conversion circuit unit and the power supply circuit unit is the heat dissipation region for power conversion, and The heat is radiated to the motor housing through the heat radiation area.
  • the power dissipation heat radiation region formed on the end surface portion of the motor housing is the electric power when viewed in the rotation axis direction of the electric motor.
  • a step is formed in a direction away from the conversion heat dissipation region.
  • the heat dissipation region for power conversion has a protruding heat dissipation extending in a direction away from the electric motor when viewed in the rotation axis direction of the electric motor.
  • the part is formed.
  • the electronic control unit is arranged to move away from the electric motor when viewed in the rotation axis direction of the electric motor,
  • the power supply circuit unit and the control circuit unit are arranged in this order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Steering Mechanism (AREA)

Abstract

電動モータの回転軸(23)の出力部(14)とは反対側のアルミ系金属製のモータハウジング(11)の端面部(15)の外周面、または電動モータを制御する電子制御部(9)を覆うアルミ系金属製の金属カバー(12)の外周面に径方向内側に後退した段部(35)を形成し、この段部(35)に金属カバー(12)とモータハウジング(11)を嵌合させると共に、この嵌合部(37)にモータハウジング(11)と金属カバー(12)を溶着結合する摩擦撹拌接合部(FSW)を形成した。かかる構成から、固定ボルトやOリングを廃止できるため、外観形状が小さくなって重量低減できると共に、部品点数を少なくできる。また、モータハウジング(11)と金属カバー(12)が溶着によって一体化されているので熱抵抗を小さくでき、更に金属カバー(12)によって放熱できるので放熱特性を向上できる。

Description

電動駆動装置及び電動パワーステアリング装置
 本発明は電動駆動装置及び電動パワーステアリング装置に係り、特に電子制御装置を内蔵した電動駆動装置及び電動パワーステアリング装置に関するものである。
 一般的な産業機械分野においては、電動モータによって機械系制御要素を駆動することが行われているが、最近では電動モータの回転速度や回転トルクを制御する半導体素子等からなる電子制御部を電動モータに一体的に組み込む、いわゆる機電一体型の電動駆動装置が採用され始めている。
 機電一体型の電動駆動装置の例として、例えば自動車の電動パワーステアリング装置においては、運転者がステアリングホイールを操作することにより回動するステアリングシャフトの回動方向と回動トルクとを検出し、この検出値に基づいてステアリングシャフトの回動方向と同じ方向へ回動するように電動モータを駆動し、操舵アシストトルクを発生させるように構成されている。この電動モータを制御するため、電子制御部(ECU:Electronic Control Unit)がパワーステアリング装置に設けられている。
 従来の電動パワーステアリング装置としては、例えば、特開2015-134598号公報(特許文献1)に記載のものが知られている。特許文献1には、電動モータ部と電子制御部とにより構成された電動パワーステアリング装置が記載されている。そして、電動モータ部の電動モータは、アルミ合金等から作られた筒部を有するモータハウジングに収納され、電子制御部の電子部品が実装された基板は、モータハウジングの軸方向の出力軸とは反対側に配置されたECUハウジングとして機能するヒートシンクに取り付けられている。ヒートシンクに取り付けられる基板は、電源回路部、電動モータを駆動制御するMOSFET、或いはIGBT等のようなパワースイッチング素子を有する電力変換回路部、及びパワースイッチング素子を制御する制御回路部を備え、パワースイッチング素子の出力端子と電動モータの入力端子とは、バスバーを介して電気的に接続されている。
 そして、ヒートシンクに取り付けられた電子制御部には、合成樹脂から作られたコネクタケースを介して電源から電力が供給され、また検出センサ類から運転状態等の検出信号が供給されている。コネクタケースは、蓋体として機能しており、ヒートシンクを密閉して塞ぐように固定され、また固定ボルトによってヒートシンクの外周表面に固定されている。
 尚、この他に電子制御装置を一体化した電動駆動装置としては、電動ブレーキや各種油圧制御用の電動油圧制御器等が知られているが、以下の説明では代表して電動パワーステアリング装置について説明する。
特開2015-134598号公報
 ところで、特許文献1にあるような構成の電動パワーステアリング装置においては、金属製のモータハウジングと金属製のヒートシンク及び合成樹脂製のコネクタケースは、外周側に突出して形成された固定部を挿通した固定ボルトによって共締めされる構成である。また、モータハウジングとヒートシンクの間、及びヒートシンクとコネクタケースの間にはOリングが介装され、水の侵入を防止する構成となっている。
 しかしながら、モータハウジングとヒートシンク及びコネクタケースの外周に固定部及び固定ボルトを設けると、外観形状が大きくなる、重量が増加するという課題が生じる。また、固定ボルトの他に水密用のOリングも必要なことから、部品点数が多くなり、製品単価が高騰するという課題も生じる。更には、モータハウジング、ヒートシンクの間は密着しているが、密着部分は熱抵抗が大きくなり良好な熱移動ができず放熱特性が良くない、合成樹脂製のコネクタケースによって電子制御部を密閉しているのでコネクタケースが放熱に寄与しておらず放熱特性が良くないという課題も生じる。したがって、これらの課題を解決した電動駆動装置及び電動パワーステアリング装置が要請されている。
 更に、副次的であるが、特許文献1にあるような構成の電動パワーステアリング装置においては、特に電源回路部、電力変換回路部の熱を外部に放熱するためのヒートシンク部材が、モータハウジングとECUハウジングの間に配置されている。このため、ヒートシンク部材の分だけ余分に軸方向の長さが長くなる傾向になる。また、電源回路部や電力変換回路部を構成する電気部品は発熱量が大きく、小型化する場合はこの熱を効率よく外部に放熱してやる必要がある。したがって、軸方向の長さをできるだけ短くすると共に、電源回路部や電力変換回路部の熱を効率よく外部に放熱することも求められている。
 本発明の主たる目的は、外観形状を小さくし、また重量及び部品点数を低減すると共に、良好な放熱特性を備えた新規な電動駆動装置及び電動パワーステアリング装置を提供することにある。
 本発明の特徴は、電動モータの回転軸の出力部とは反対側のアルミ系金属製のモータハウジングの端面部の外周面、または電動モータを制御する電子制御部を覆うアルミ系金属製の金属カバーの外周面に、径方向内側に後退した段部が形成され、この段部に金属カバーの開口部を嵌合させた嵌合部が形成されると共に、この嵌合部にモータハウジングと金属カバーを溶着結合した摩擦撹拌接合部が形成されている、ところにある。
 本発明によれば、アルミ系金属製のモータハウジングの端面部の外周面に形成した段部とアルミ系金属製の金属カバーの開口部を係合させて摩擦撹拌接合したので、固定ボルトやOリングを廃止して外観形状を小さくして重量を低減でき、しかも固定ボルトやOリングが省略できるので部品点数を少なくできる。また、モータハウジングと金属カバーが溶着によって一体化されているので熱抵抗を小さくでき、更に金属カバーによって放熱できるので放熱特性を向上することができるものである。
本発明が適用される一例としての操舵装置の全体斜視図である。 本発明の実施形態になる電動パワーステアリング装置の全体斜視図である。 図2に示す電動パワーステアリング装置の分解斜視図である。 図3に示すモータハウジングの斜視図である。 図4に示すモータハウジングを軸方向に断面した断面図である。 図4に示すモータハウジングに電力変換回路部を載置、固定した状態を示す斜視図である。 図6に示すモータハウジングに電源回路部を載置、固定した状態を示す斜視図である。 図7に示すモータハウジングに制御回路部を載置、固定した状態を示す斜視図である。 図8に示すモータハウジングにコネクタ端子組立体を載置、固定した状態を示す斜視図である。 モータハウジングと金属カバーの接合部付近の軸方向断面を示す部分断面図である。 図11のモータハウジングと金属カバーの接合部の摩擦撹拌接合された部分の部分断面図である。 他の実施形態のモータハウジングと金属カバーの接合部付近の軸方向断面を示す部分断面図である。 図12のモータハウジングと金属カバーの接合部の摩擦撹拌接合された部分の部分断面図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 本発明の実施形態を説明する前に本発明が適用される一例としての操舵装置の構成について図1を用いて簡単に説明する。
 まず、自動車の前輪を操舵するための操舵装置について説明する。操舵装置1は、図1に示すように構成されている。図示しないステアリングホイールに連結されたステアリングシャフト2の下端には、図示しないピニオンが設けられ、このピニオンは、車体左右方向へ長い図示しないラックと噛み合っている。このラックの両端には、前輪を左右方向へ操舵するためのタイロッド3が連結されており、ラックは、ラックハウジング4に覆われている。そして、ラックハウジング4とタイロッド3との間には、ゴムブーツ5が設けられている。
 ステアリングホイールを回動操作する際のトルクを補助するため、電動パワーステアリング装置6が設けられている。即ち、ステアリングシャフト2の回動方向と回動トルクとを検出するトルクセンサ7が設けられ、トルクセンサ7の検出値に基づいてラックにギヤ10を介して操舵補助力を付与する電動モータ部8と、電動モータ部8に配置された電動モータを制御する電子制御装置(ECU)部9とが設けられている。電動パワーステアリング装置6の電動モータ部8は、出力軸側の外周部の3箇所が図示しないボルトを介してギヤ10に接続され、電動モータ8部の出力軸とは反対側に電子制御部9が設けられている。
 電動パワーステアリング装置6においては、ステアリングホイールが操作されることによりステアリングシャフト2がいずれかの方向へ回動操作されると、このステアリングシャフト2の回動方向と回動トルクとをトルクセンサ7が検出し、この検出値に基づいて制御回路部が電動モータの駆動操作量を演算する。この演算された駆動操作量に基づいて電力変換回路部のパワースイッチング素子により電動モータが駆動され、電動モータの出力軸はステアリングシャフト2を操作方向と同じ方向へ駆動するように回動される。出力軸の回動は、図示しないピニオンからギヤ10を介して図示しないラックへ伝達され、自動車が操舵されるものである。これらの構成、作用は既によく知られているので、これ以上の説明は省略する。
 上述したように、特許文献1にあるような構成の電動パワーステアリング装置においては、金属製のモータハウジングと金属製のヒートシンク及び合成樹脂製のコネクタケースは、外周側に突出した固定部を挿通した固定ボルトによって共締めされる構成である。また、モータハウジングとヒートシンクの間、及びヒートシンクとコネクタケースの間にはOリングが介装され、水の侵入を防止する構成となっている。
 このため、モータハウジングとヒートシンク及びコネクタケースの外周に固定部及び固定ボルトを設けると、外観形状が大きくなり、また重量が増加するという課題がある。また、固定ボルトの他に水密用のOリングも必要なことから、部品点数が多くなり、製品単価が高騰するという課題がある。更には、モータハウジング、ヒートシンクの間の密着部分は熱抵抗が大きくなり良好な熱移動ができない、及び合成樹脂製のコネクタケースによって電子制御部を密閉しているのでコネクタケースが放熱に寄与していないという理由から、放熱特性が良くないという課題がある。
 このような背景から、本実施形態は、次のような構成の電動パワーステアリング装置を提案するものである。つまり、本実施形態においては、電動モータの回転軸の出力部とは反対側のアルミ系金属製のモータハウジングの端面部の外周面に、径方向内側に後退した段部が形成され、この段部に電動モータを制御する電子制御部を覆うアルミ系金属製の金属カバーの開口部を嵌合させた嵌合部が形成されると共に、この嵌合部にモータハウジングと金属カバーを溶着結合した摩擦撹拌接合部が形成されている、構成としたものである。
 これによれば、アルミ系金属製のモータハウジングの端面部の外周面に形成した段部とアルミ系金属製の金属カバーの開口部を係合させて摩擦撹拌接合したので、固定ボルトやOリングが廃止され、外観形状を小さくして重量を低減でき、しかも固定ボルトやOリングが省略できるので部品点数を少なくできると共に、モータハウジングと金属カバーが溶着によって一体化されているので熱抵抗を小さくでき、更に金属カバーによって放熱できるので放熱特性を向上することができるものである。
 以下、本発明の一実施形態になる電動パワーステアリング装置の具体的な構成について、図2乃至図10を用いて詳細に説明する。尚、図2は本実施形態になる電動パワーステアリング装置の全体的な構成を示した図面であり、図3は図2に示す電動パワーステアリング装置の構成部品を分解して斜め方向から見た図面であり、図4乃至図9は各構成部品の組み立て順序にしたがって各構成部品を組み付けていった状態を示す図面であり、図10は、金属カバーの接合部付近の軸方向断面を示した図面である。したがって、以下の説明では、各図面を適宜引用しながら説明を行うものとする。
 図2に示すように、電動パワーステアリング装置を構成する電動モータ部8は、アルミニウム、或いはアルミ合金等のアルミ系金属から作られた筒部を有するモータハウジング11及びこれに収納された図示しない電動モータから構成され、電子制御部9は、モータハウジング11の軸方向の出力軸とは反対側に配置された、アルミニウム、或いはアルミ合金等のアルミ系金属で作られた金属カバー12及びこれに収納された図示しない電子制御組立体から構成されている。
 モータハウジング11と金属カバー12は、その対向端面に形成した外周方向に沿った周方向嵌合領域EAで、後述する摩擦撹拌接合によって一体的に固着されている。金属カバー12の内部に収納された電子制御組立体は、必要な電源を生成する電源回路部や、電動モータ部8の電動モータを駆動制御するMOSFET或いはIGBT等からなるパワースイッチング素子を有する電力変換回路や、このパワースイッチング素子を制御する制御回路部からなり、パワースイッチング素子の出力端子と電動モータのコイル入力端子とは、バスバーを介して電気的に接続されている。
 モータハウジング11とは反対側の金属カバー12の端面には、金属カバー12に形成した孔部からコネクタ端子組立体13が露出している。また、コネクタ端子組立体13は、モータハウジング11に形成した固定部に固定ボルトによって固定されている。コネクタ端子組立体13は、電力供給用のコネクタ端子形成部13A、検出センサ用のコネクタ端子形成部13B、制御状態を外部機器に送出する制御状態送出用のコネクタ端子形成部13Cを備えている。
 そして、金属カバー12に収納された電子制御組立体は、合成樹脂から作られた電力供給用のコネクタ端子形成部13Aを介して電源から電力が供給され、また検出センサ類から運転状態等の検出信号が検出センサ用のコネクタ端子形成部13Bを介して供給され、現在の電動パワーステアリング装置の制御状態信号が制御状態送出用のコネクタ端子形成部13Cを介して送出されている。
 図3は、電動パワーステアリング装置6の分解斜視図を示している。モータハウジング11には、内部に円環状の鉄製のサイドヨーク(図示せず)が嵌合されており、このサイドヨーク内に電動モータ(図示せず)が収納されているものである。電動モータの出力部14は、ギヤを介してラックに操舵補助力を付与している。尚、電動モータの具体的な構造は良く知られているので、ここでは説明を省略する。
 モータハウジング11は、アルミ合金から作られており、電動モータで発生した熱や、後述する電源回路部や電力変換回路部で発生した熱を外部大気に放出するヒートシンク部材として機能している。電動モータとモータハウジング11で電動モータ部8を構成している。
 電動モータ部8の出力部14の反対側のモータハウジング11の端面部15には、電子制御部ECが取り付けられている。電子制御部ECは、電力変換回路部16、電源回路部17、制御回路部18、コネクタ端子組立体13から構成されている。モータハウジング11の端面部15は、モータハウジング11と一体的に形成されているが、この他に端面部15だけを別体に形成し、ボルトや溶接によってモータハウジング11と一体化しても良い。
 ここで、電力変換回路部16、電源回路部17、制御回路部18は冗長系を構成するものであり、主電子制御部と副電子制御部の二重系を構成している。そして、通常は、主電子制御部によって電動モータが制御、駆動されているが、主電子制御部に異常や故障が生じると、副電子制御部に切り換えられて電動モータが制御、駆動されるようになるものである。
 したがって、後述するが、通常は主電子制御部からの熱がモータハウジング11に伝えられ、主電子制御部に異常や故障が生じると、主電子制御部が停止して副電子制御部が作動し、モータハウジング11には副電子制御部からの熱が伝えられるものである。
 ただ、本実施形態では採用していないが、主電子制御部と副電子制御部とを合わせて正規の電子制御部として機能させ、一方の電子制御部に異常、故障が生じると、他方の電子制御部で半分の能力によって電動モータを制御、駆動することも可能である。この場合、電動モータの能力は半分となるが、いわゆる「リンプホーム機能」は確保されるようになっている。したがって、通常の場合は、主電子制御部と副電子制御部の熱がモータハウジング11に伝えられるものである。
 電子制御部ECは、制御回路部18、電源回路部17、電力変換回路部16、コネクタ端子組立体13から構成されており、端面部15側から離れる方向に向かって、電力変換回路部16、電源回路部17、制御回路部18、コネクタ端子組立体13の順序で配置されている。制御回路部18は、電力変換回路部16のスイッチング素子を駆動する制御信号を生成するもので、マイクロコンピュータ、周辺回路等から構成されている。電源回路部17は、制御回路部18を駆動する電源及び電力変換回路部16の電源を生成するもので、コンデンサ、コイル、スイッチング素子等から構成されている。電力変換回路部16は、電動モータのコイルに流れる電力を調整するもので、3相の上下アームを構成するスイッチング素子等から構成されている。
 電子制御部ECで発熱量が多いのは、主に電力変換回路部16、電源回路部17であり、電力変換回路部16、電源回路部17の熱は、アルミ合金からなるモータハウジング11から放熱されるものである。この構成については、後述する。
 制御回路部18と金属カバー12の間には、合成樹脂からなるコネクタ端子組立体13が設けられており、車両バッテリ(電源)や外部の図示しない他の制御装置と接続されている。もちろん、このコネクタ端子組立体13は、電力変換回路部16、電源回路部17、制御回路部18と接続されていることはいうまでもない。
 金属カバー12は、電力変換回路部16、電源回路部17、制御回路部18を収納してこれらを液密的に封止する機能を備えているものであり、本実施形態では、摩擦撹拌接合によってモータハウジング11に固着されている。
 したがって、固定ボルトを省略して外観形状を小さくできると共に、固定ボルトや水密用のOリングを省略することができる。また、金属カバー12とモータハウジング11が溶着されているので熱抵抗が少なくなり、金属カバー12とモータハウジングの間での熱伝達性能を向上することができる。更に、金属カバー12は金属で作られているので、電力変換回路部16、電源回路部17等によって発生した熱を外部に放熱することができる。
 次に、図4乃至図9に基づき各構成部品の構成と組み立て方法について説明する。先ず、図4はモータハウジング11の外観を示しており、図5はその軸方向断面を示している。図4、図5において、モータハウジング11は、筒状の形態に形成されて側周面部11Aと、側周面部11Aの一端を閉塞する端面部15と、側周面部11Aの他端を閉塞する端面部19とから構成されている。本実施形態では、モータハウジング11は有底円筒状であり、側周面部11Aと端面部15は一体的に形成されている。また、端面部19は、蓋の機能を備えており、側周面部11Aに電動モータを収納した後に側周面部11Aの他端を閉塞するものである。
 また、端面部15の端面周面には、径方向内側に後退した環状の段部35が形成されており、この段部35に金属カバー12の開口部が嵌合するものである。この嵌合する領域が図2に示す周方向嵌合領域EAとなるものであるが、段部35と金属カバー12の開口部の嵌合形態は、いわゆる「印籠係合」或いは「印籠嵌め」と呼ばれる形態である。
 図5にあるように、側周面部11Aの内部には、鉄心にコイル20が巻回されたステータ21が嵌合されており、このステータ21の内部に、永久磁石を埋設したロータ22が回転可能に収納されている。ロータ22には回転軸23が固定されており、一端は出力部14となり、他端は回転軸23の回転位相や回転数を検出するための回転検出部24となっている。回転検出部24には永久磁石が設けてあり、端面部15に設けた貫通孔25を貫通して外部に突き出している。そして、図示しないGMR素子等からなる感磁部によって回転軸23の回転位相や回転数を検出するようになっている。
 図4に戻って、回転軸23の出力部14とは反対側に位置する端面部15の面には、本実施形態の特徴である電力変換回路部16(図3参照)、電源回路部17(図3参照)の放熱部15A、15Bが形成されている。端面部15の四隅には、基板/コネクタ固定凸部26が一体的に植立されており、内部にネジ穴が形成されている。基板/コネクタ固定凸部26は、後述する制御回路部18の基板、及びコネクタ端子組立体13を固定するために設けられている。また、後述する電力変換用放熱領域15Aから植立した基板固定凸部26には、これも後述する電源用放熱領域15Bと軸方向で同じ高さの基板受け部27が形成されている。この基板受け部27は、後述する電源回路部17のガラスエポキシ基板31を載置、固定するためのものである。端面部15を形成する、回転軸23と直交する径方向の平面領域は、2分割されている。1つは電力変換回路部16が取り付けられる電力変換用放熱領域15Aを形成し、もう1つは電源回路部17が取り付けられる電源用放熱領域15Bを形成している。本実施形態では、電力変換用放熱領域15Aの方が、電源用放熱領域15Bより面積が大きく形成されている。これは、上述したように二重系を採用しているため、電力変換回路部16の設置面積を確保するためである。
 そして、電力変換用放熱領域15Aと電源用放熱領域15Bは、軸方向(回転軸23が延びる方向)に向けて高さが異なる段差を有している。つまり、電源用放熱領域15Bは、電動モータの回転軸23の方向で見て、電力変換用放熱領域15Aに対して離れる方向に段差を有して形成されている。この段差は、電力変換回路部16を設置した後に電源回路部17を設置した場合に、電力変換回路部16と電源回路部17が夫々干渉しない長さに設定されている。
 電力変換用放熱領域15Aには、3個の細長い矩形の突状放熱部28が形成されている。この突状放熱部28は、後述する二重系の電力変換回路部16が設置されるものである。また、突状放熱部28は、電動モータの回転軸23の方向で見て電動モータから離れる方向に突出して延びているものである。
 また、電源用放熱領域15Bは、平面状であって、後述する電源回路部17が設置されるものである。したがって、突状放熱部28は、電力変換回路部16で発生した熱を端面部15に伝熱する放熱部として機能し、電源用放熱領域15Bは、電源回路部17で発生した熱を端面部15に伝熱する放熱部として機能するものである。
 尚、突状放熱部28は省略することができ、この場合は、電力変換用放熱領域15Aが、電力変換回路部16で発生した熱を端面部15に伝熱する放熱部として機能する。ただ、本実施形態では、突状放熱部28に電力変換回路部16の金属基板を摩擦撹拌接合によって溶着することで、確実な固定を図っている。
 このように、本実施形態になるモータハウジング11の端面部15においては、ヒートシンク部材を省略して軸方向の長さを短くできるようになるものである。また、モータハウジング11は十分な熱容量を有しているので、電源回路部17や電力変換回路部16の熱を効率よく外部に放熱することができるようになるものである。
 次に、図6は、電力変換回路部16を突状放熱部28(図4参照)に設置した状態を示している。図6にある通り、電力変換用放熱領域15Aに形成された突状放熱部28(図4参照)の上部には、二重系よりなる電力変換回路部16が設置されている。電力変換回路部16を構成するスイッチング素子は、金属基板(ここではアルミ系の金属を使用している)に載置され、放熱されやすく構成されている。そして、金属基板は、突状放熱部28に摩擦撹拌接合によって溶着されている。
 したがって、金属基板は、突状放熱部28(図4参照)に強固に固定され、またスイッチング素子で発生した熱を効率良く突状放熱部28(図4参照)に伝熱させることができる。突状放熱部28(図4参照)に伝えられた熱は、電力変換用放熱領域15Aに拡散され、更にモータハウジング11の側周面部11Aに伝熱されて外部に放熱されるものである。ここで、上述した通り、電力変換回路部16の軸方向の高さは、電源用放熱領域15Bの高さより低くなっているので、後述する電源回路部17と干渉することはないものである。
 このように、電力変換用放熱領域15Aに形成された突状放熱部28の上部に、電力変換回路部16が設置されている。したがって、電力変換回路部16のスイッチング素子で発生した熱を効率良く突状放熱部28に伝熱させることができる。更に、突状放熱部28に伝えられた熱は、電力変換用放熱領域15Aに拡散され、モータハウジング11の側周面部11Aに伝熱されて外部に放熱されるようになる。
 次に、図7は、電力変換回路部16の上から電源回路部17を設置した状態を示している。図7にある通り、電源用放熱領域15Bの上部には、電源回路部17が設置されている。電源回路部17を構成するコンデンサ29やコイル30等は、ガラスエポキシ基板31に載置されている。電源回路部17も二重系が採用されており、図からわかるように、夫々対称にコンデンサ29やコイル30等からなる電源回路が形成されている。
 このガラスエポキシ基板31の電源用放熱領域15B(図6参照)側の面は、電源用放熱領域15Bと接触するようにして端面部15に固定されている。固定方法は、図7にあるように、基板固定凸部26の基板受け部27に設けられたネジ穴に図示しない固定ボルトによって固定されている。また、電源用放熱領域15B(図6参照)に設けられたネジ穴にも図示しない固定ボルトによって固定されている。
 尚、電源回路部17がガラスエポキシ基板31で形成されているため、両面実装が可能となっている。そして、ガラスエポキシ基板31の電源用放熱領域15B(図6参照)側の面には、図示しないGMR素子やこれの検出回路等からなる回転位相、回転数検出部が実装され、回転軸23(図5参照)に設けた回転検出部24(図5参照)と協働して、回転の回転位相や回転数を検出するようになっている。
 このように、ガラスエポキシ基板31は電源用放熱領域15B(図6参照)に接触するようにして固定されているので、電源回路部17で発生した熱を効率良く電源用放熱領域15B(図6参照)に伝熱させることができる。電源用放熱領域15B(図6参照)に伝えられた熱は、モータハウジング11の側周面部11Aに拡散して伝熱されて外部に放熱されるものである。ここで、ガラスエポキシ基板31と電源用放熱領域15B(図6参照)の間には、熱伝達性の良い接着剤、放熱グリース、放熱シートのいずれか1つを介在させることで、更に熱伝達性能を向上させることができる。
 このように、電源用放熱領域15Bの上部には、電源回路部17が設置されている。電源回路部17の回路素子が載置されたガラスエポキシ基板31の電源用放熱領域15B側の面は、電源用放熱領域15Bと接触するようにして端面部15に固定されている。したがって、電源回路部17で発生した熱を効率良く電源用放熱領域15Bに伝熱させることができる。電源用放熱領域15Bに伝えられた熱は、モータハウジング11の側周面部11Aに拡散して伝熱されて外部に放熱されるようになる。
 次に、図8は、電源回路部17の上から制御回路部18を設置した状態を示している。図8にある通り、電源回路部17の上部には、制御回路部18が設置されている。制御回路部18を構成するマイクロコンピュータ32や周辺回路33は、ガラスエポキシ基板34に載置されている。制御回路部18も二重系が採用されており、図からわかるように、夫々対称にマイクロコンピュータ32や周辺回路33からなる制御回路が形成されている。尚、マイクロコンピュータ32や周辺回路33は、ガラスエポキシ基板34の電源回路部17側の面に設けられていても良いものである。
 このガラスエポキシ基板34は、図8にあるように、基板固定凸部26(図7参照)の頂部に設けられたネジ穴にコネクタ端子組立体13によって挟まれる形態で図示しない固定ボルトによって固定されており、電源回路部17(図7参照)のガラスエポキシ基板31と制御回路部18のガラスエポキシ基板34の間は、図7に示す電源回路部17のコンデンサ29やコイル30等が配置される空間となっている。
 次に、図9は、制御回路部18の上からコネクタ端子組立体13を設置した状態を示している。図9にある通り、制御回路部18の上部には、コネクタ端子組立体13が設置されている。そして、コネクタ端子組立体13は、基板固定凸部26の頂部に設けられたネジ穴に制御回路部18を挟み込むようにして固定ボルト36によって固定されている。この状態で、図3に示すようにコネクタ端子組立体13が電力変換回路部16、電源回路部17、制御回路部18と接続され、更に、金属カバー12の開口部37が、モータハウジング11の段部35に印籠嵌め等によって嵌合され、この周方向嵌合領域EAが摩擦撹拌接合によって接合されて、電力変換回路部16、電源回路部17、制御回路部18が液密的に封止されるものである。
 ここで、モータハウジング11と金属カバー12の周方向嵌合領域EA付近の軸方向断面を、図10に示している。図10において、電子制御部ECは、モータハウジング11の端面部15に隣接して配置されており、金属カバー12によって覆われることで、金属カバー12と端面部15によって形成された収納空間Shに電子制御部ECが収納されている。そして、回転軸23の出力部14とは反対側の端部には、磁石保持部38が固定されており、更にこれに回転検出部を構成する永久磁石(センサマグネット)39が収納、固定されている。
 この回転軸23の端部、磁石保持部38、永久磁石39は、モータハウジング11の端面部15を越えて電子制御部EC側に延びている。電子制御部EC側に配置されている電源回路部17のガラスエポキシ基板31のモータハウジング11側の面には、GMR素子のような感磁機能を有する磁気センサ40が固定されており、永久磁石39の回転によって回転軸23の回転位相等を検出している。端面部15の中央付近に形成した回転軸23が貫通する貫通孔41には、ボールベアリング42が介装されており、このボールベアリング42に回転軸23が回転可能に軸支されている。
 図10、図11にある通り、端面部15の外周面に形成した段部35は、径方向内側に後退した段部側面壁35Sと、端面部15の側周面部11Aと段部側面壁35Sを繋ぐ段部底面壁35Bから形成されている。段部底面壁35Bと段部側面壁35Sで形成される段部35には、金属カバー12の開口部37が印籠嵌めによって嵌合されている。したがって、段部側面壁35Sと金属カバー12の接触部が、周方向嵌合領域EAとして形成されている。
 図11に示している通り、段部底面壁35Bと金属カバー12の開口部37の接触部分(突合せ部分)を中央にして摩擦撹拌接合処理が行われている。すなわち、段部底面壁35Bと金属カバー12の開口部37の先端の接触領域と、段部側面壁35Sと金属カバー12の開口部37の内周の一部の接触領域が摩擦撹拌接合によって溶着され、摩擦撹拌接合部FSWが形成されている。
 尚、図11の例では、段部側面壁35Sと金属カバー12の開口部37の内周の接触領域まで深く接合されているが、段部底面壁35Bと金属カバー12の開口部37の先端の接触領域までの浅い接合に留めておくことも可能である。
 ここで、摩擦撹拌接合とは、先端に突起部のある円筒状の工具を回転させながら強い力で押し付けることで、突起部を接合させる部材の接合部に貫入させ、これによって摩擦熱を発生させて母材を軟化させるとともに、工具の回転力によって接合部周辺を塑性流動させて練り混ぜることで複数の部材を一体化させるものである。
 このように、本実施形態では、アルミ系金属製のモータハウジング11の端面部15の外周面に、径方向内側に後退した段部35を形成し、この段部35にアルミ系金属製の金属カバー12の開口部37を嵌合させると共に、この周方向嵌合領域EAにモータハウジングと金属カバーの摩擦撹拌接合部FSWを形成したものである。
 そして、モータハウジングの端面部15の外周面に形成した段部35と金属カバー12の開口部37を嵌合させて摩擦撹拌接合したので、固定ボルトやOリングを廃止して外観形状を小さくして重量を低減でき、しかも固定ボルトやOリングが省略できるので部品点数を少なくできるものである。また、モータハウジング11と金属カバー12が溶着によって一体化されているので熱抵抗を小さくでき、更に金属カバーによって放熱できるので放熱特性を向上することができるものである。更に金属カバー12とモータハウジング11を一体化したので熱容量を大きくでき、放熱特性を向上することができるものである。
 また、これに加えて、本実施形態によれば、電力変換用放熱領域15Aに形成された突状放熱部28の上部に、電力変換回路部16が設置されている。したがって、電力変換回路部16のスイッチング素子で発生した熱を効率良く突状放熱部28に伝熱させることができる。更に、突状放熱部28に伝えられた熱は、電力変換用放熱領域15Aに拡散され、モータハウジング11の側周面部11Aに伝熱されて外部に放熱されるようになる。
 同様に、電源用放熱領域15Bの上部には、電源回路部17が設置されている。電源回路部17の回路素子が載置されたガラスエポキシ基板31の電源用放熱領域15B側の面は、電源用放熱領域15Bと接触するようにして端面部15に固定されている。したがって、電源回路部17で発生した熱を効率良く電源用放熱領域15Bに伝熱させることができる。電源用放熱領域15Bに伝えられた熱は、モータハウジング11の側周面部11Aに拡散して伝熱されて外部に放熱されるようになる。
 このような構成によれば、少なくとも電源回路部17及び電力変換回路部16で発生した熱をモータハウジング11の端面部15に伝熱させることで、ヒートシンク部材を省略して軸方向の長さを短くできるようになる。また、モータハウジング11は十分な熱容量を有しているので、電源回路部や電力変換回路部の熱を効率よく外部に放熱することができるようになる。
 以上述べた通り、本発明は、電動モータの回転軸の出力部とは反対側のアルミ系金属製のモータハウジングの端面部の外周面に、径方向内側に後退した段部を形成し、この段部に電動モータを制御する電子制御部を覆うアルミ系金属製の金属カバーの開口部を嵌合させると共に、この嵌合部にモータハウジングと金属カバーを溶着結合する摩擦撹拌接合部を形成した、構成を採用している。
 これによって、モータハウジングの段部と金属カバーの開口部を係合させて摩擦撹拌接合したので、固定ボルトやOリングを廃止でき外観形状を小さくして重量を低減でき、また部品点数を少なくできるものである。また、モータハウジングと金属カバーが溶着によって一体化されているので熱抵抗を小さくでき、更に金属カバーによって放熱できるので放熱特性を向上することができるものである。
 図12、図13に他の実施例を示す。先の実施例との違いは、段部を金属カバーに設けた点であり、他の構成は同じである。図12、図13にある通り、金属カバー12の外周面に形成した段部35は、径方向内側に後退した段部側面壁35Cと、金属カバー12の側周面部12Aと段部側面壁35Sを繋ぐ段部接続壁35Dから形成されている。段部接続壁35Dと段部側面壁35Cで形成される段部35は、モータハウジング11の開口部43に印籠嵌めによって嵌合されている。したがって、段部側面壁35Cとモータハウジング11の開口部43の接触部が、周方向嵌合領域EAとして形成されている。
 図13に示している通り、段部接続壁35Dとモータハウジング11の開口部43の接触部分(突合せ部分)を中央にして摩擦撹拌接合処理が行われている。すなわち、段部接続壁35Dとモータハウジング11の開口部43の先端の接触領域と、段部側面壁35Cとモータハウジング11の開口部43の内周の一部の接触領域が摩擦撹拌接合によって溶着され、摩擦撹拌接合部FSWが形成されている。本実施例においても、先の実施例と同様な効果が得られる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 以上説明した実施形態に基づく電動駆動装置としては、例えば以下に述べる態様のものが考えられる。
 すなわち、前記電動駆動装置は、その1つの態様において、機械系制御要素を駆動する電動モータが収納されたアルミ系金属製のモータハウジングと、前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面部の側に配置された、前記電動モータを駆動するための制御回路部、電源回路部、電力変換回路部からなる電子制御部と、前記電子制御部を覆うアルミ系金属製の金属カバーと、を備え、前記電動モータの前記回転軸の前記出力部とは反対側の前記モータハウジングの前記端面部の外周面、または前記金属カバーの外周面に、径方向内側に後退した環状の段部が形成され、前記段部に前記金属カバーの開口部を嵌合させた嵌合部が形成されると共に、前記嵌合部に前記モータハウジングと前記金属カバーを溶着結合した摩擦撹拌接合部が形成されている。
 前記電動駆動装置の好ましい態様において、前記端面部の外周面に形成した前記段部は、径方向内側に後退した段部側面壁と、前記端面部の側周面部と前記段部側面壁を繋ぐ段部底面壁から形成されており、前記段部底面壁と前記段部側面壁で形成される段部部分には、前記金属カバーの前記開口部が印籠嵌めによって嵌合されており、更に、前記段部底面壁と前記金属カバーの前記開口部の接触部分を中央にして前記摩擦撹拌接合部が形成されている。
 別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記段部底面壁と前記金属カバーの前記開口部の先端の接触領域と、前記段部側面壁と前記金属カバーの前記開口部の内周の一部の接触領域に前記摩擦撹拌接合部が形成されている。
 さらに別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記モータハウジングの前記端面部には電力変換用放熱領域、及び電源用放熱領域が形成され、前記電力変換用放熱領域には前記電力変換回路部が設置され、前記電源用放熱領域には前記電源回路部が設置され、前記電力変換回路部及び前記電源回路部で発生した熱が、前記電力変換用放熱領域、及び前記電源用放熱領域を介して前記モータハウジングに放熱される。
 さらに別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記モータハウジングの前記端面部に形成された前記電源用放熱領域は、前記電動モータの回転軸方向で見て、前記電力変換用放熱領域に対して離れる方向に段差を有して形成されている。
 さらに別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記電力変換用放熱領域には、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に延びた突状放熱部が形成されている。
 さらに別の好ましい態様では、前記電動駆動装置の態様のいずれかにおいて、前記電子制御部は、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に、前記電力変換回路部、前記電源回路部、前記制御回路部の順番で配置されている。
 また、前記実施形態に基づく電動パワーステアリング装置としては、例えば以下に述べる態様のものが考えられる。
 すなわち、前記電動パワーステアリング装置は、その1つの態様において、ステアリングシャフトの回動方向と回動トルクとを検出するトルクセンサからの出力に基づきステアリングシャフトに操舵補助力を付与する電動モータと、前記電動モータが収納されたモータハウジングと、前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面部の側に配置された、前記電動モータを駆動するための制御回路部、電源回路部、電力変換回路部からなる電子制御部と、前記電子制御部を覆うアルミ系金属製の金属カバーと、を備え、前記電動モータの前記回転軸の前記出力部とは反対側の前記モータハウジングの前記端面部の外周面、または前記金属カバーの外周面に、径方向内側に後退した環状の段部が形成され、前記段部に前記金属カバーの開口部を嵌合させた嵌合部が形成されると共に、前記嵌合部に前記モータハウジングと前記金属カバーを溶着結合した摩擦撹拌接合部が形成されている。
 前記電動パワーステアリング装置の好ましい態様において、前記端面部の外周面に形成した前記段部は、径方向内側に後退した段部側面壁と、前記端面部の側周面部と前記段部側面壁を繋ぐ段部底面壁から形成されており、前記段部底面壁と前記段部側面壁で形成される段部部分には、前記金属カバーの前記開口部が印籠嵌めによって嵌合されており、更に、前記段部底面壁と前記金属カバーの前記開口部の接触部分を中央にして前記摩擦撹拌接合部が形成されている。
 別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記段部底面壁と前記金属カバーの前記開口部の先端の接触領域と、前記段部側面壁と前記金属カバーの前記開口部の内周の一部の接触領域に前記摩擦撹拌接合部が形成されている。
 さらに別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記モータハウジングの前記端面部には電力変換用放熱領域、及び電源用放熱領域が形成され、前記電力変換用放熱領域には前記電力変換回路部が設置され、前記電源用放熱領域には前記電源回路部が設置され、前記電力変換回路部及び前記電源回路部で発生した熱が、前記電力変換用放熱領域、及び前記電源用放熱領域を介して前記モータハウジングに放熱される。
 さらに別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記モータハウジングの前記端面部に形成された前記電源用放熱領域は、前記電動モータの回転軸方向で見て、前記電力変換用放熱領域に対して離れる方向に段差を有して形成されている。
 さらに別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記電力変換用放熱領域には、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に延びた突状放熱部が形成されている。
 さらに別の好ましい態様では、前記電動パワーステアリング装置の態様のいずれかにおいて、前記電子制御部は、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に、前記電力変換回路部、前記電源回路部、前記制御回路部の順番で配置されている。

Claims (14)

  1.  機械系制御要素を駆動する電動モータが収納されたアルミ系金属製のモータハウジングと、前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面部の側に配置された、前記電動モータを駆動するための制御回路部、電源回路部、電力変換回路部からなる電子制御部と、前記電子制御部を覆うアルミ系金属製の金属カバーと、を備え、
     前記電動モータの前記回転軸の前記出力部とは反対側の前記モータハウジングの前記端面部の外周面、または前記金属カバーの外周面に、径方向内側に後退した環状の段部が形成され、
     前記段部に前記金属カバーの開口部を嵌合させた嵌合部が形成されると共に、前記嵌合部に前記モータハウジングと前記金属カバーを溶着結合した摩擦撹拌接合部が形成されていることを特徴とする電動駆動装置。
  2.  請求項1に記載の電動駆動装置において、
     前記端面部の外周面に形成した前記段部は、径方向内側に後退した段部側面壁と、前記端面部の側周面部と前記段部側面壁を繋ぐ段部底面壁から形成されており、
     前記段部底面壁と前記段部側面壁で形成される段部部分には、前記金属カバーの前記開口部が印籠嵌めによって嵌合されており、
     更に、前記段部底面壁と前記金属カバーの前記開口部の接触部分を中央にして前記摩擦撹拌接合部が形成されていることを特徴とする電動駆動装置。
  3.  請求項2に記載の電動駆動装置において、
     前記段部底面壁と前記金属カバーの前記開口部の先端の接触領域と、前記段部側面壁と前記金属カバーの前記開口部の内周の一部の接触領域に前記摩擦撹拌接合部が形成されていることを特徴とする電動駆動装置。
  4.  請求項2に記載の電動駆動装置において、
     前記モータハウジングの前記端面部には電力変換用放熱領域、及び電源用放熱領域が形成され、前記電力変換用放熱領域には前記電力変換回路部が設置され、前記電源用放熱領域には前記電源回路部が設置され、
     前記電力変換回路部及び前記電源回路部で発生した熱が、前記電力変換用放熱領域、及び前記電源用放熱領域を介して前記モータハウジングに放熱されることを特徴とする電動駆動装置。
  5.  請求項4に記載の電動駆動装置において、
     前記モータハウジングの前記端面部に形成された前記電源用放熱領域は、前記電動モータの回転軸方向で見て、前記電力変換用放熱領域に対して離れる方向に段差を有して形成されていることを特徴とする電動駆動装置。
  6.  請求項5に記載の電動駆動装置において、
     前記電力変換用放熱領域には、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に延びた突状放熱部が形成されていることを特徴とする電動駆動装置。
  7.  請求項6に記載の電動駆動装置において、
     前記電子制御部は、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に、前記電力変換回路部、前記電源回路部、前記制御回路部の順番で配置されていることを特徴とする電動駆動装置。
  8.  ステアリングシャフトの回動方向と回動トルクとを検出するトルクセンサからの出力に基づきステアリングシャフトに操舵補助力を付与する電動モータと、
     前記電動モータが収納されたモータハウジングと、
     前記電動モータの回転軸の出力部とは反対側の前記モータハウジングの端面部の側に配置された、前記電動モータを駆動するための制御回路部、電源回路部、電力変換回路部からなる電子制御部と、
     前記電子制御部を覆うアルミ系金属製の金属カバーと、を備え、
     前記電動モータの前記回転軸の前記出力部とは反対側の前記モータハウジングの前記端面部の外周面、または前記金属カバーの外周面に、径方向内側に後退した環状の段部が形成され、
     前記段部に前記金属カバーの開口部を嵌合させた嵌合部が形成されると共に、前記嵌合部に前記モータハウジングと前記金属カバーを溶着結合した摩擦撹拌接合部が形成されていることを特徴とする電動パワーステアリング装置。
  9.  請求項8に記載の電動パワーステアリング装置において、
     前記端面部の外周面に形成した前記段部は、径方向内側に後退した段部側面壁と、前記端面部の側周面部と前記段部側面壁を繋ぐ段部底面壁から形成されており、
     前記段部底面壁と前記段部側面壁で形成される段部部分には、前記金属カバーの前記開口部が印籠嵌めによって嵌合されており、
     更に、前記段部底面壁と前記金属カバーの前記開口部の接触部分を中央にして前記摩擦撹拌接合部が形成されていることを特徴とする電動パワーステアリング装置。
  10.  請求項9に記載の電動パワーステアリング装置において、
     前記段部底面壁と前記金属カバーの前記開口部の先端の接触領域と、前記段部側面壁と前記金属カバーの前記開口部の内周の一部の接触領域に前記摩擦撹拌接合部が形成されていることを特徴とする電動パワーステアリング装置。
  11.  請求項10に記載の電動パワーステアリング装置において、
     前記モータハウジングの前記端面部には電力変換用放熱領域、及び電源用放熱領域が形成され、前記電力変換用放熱領域には前記電力変換回路部が設置され、前記電源用放熱領域には前記電源回路部が設置され、
     前記電力変換回路部及び前記電源回路部で発生した熱が、前記電力変換用放熱領域、及び前記電源用放熱領域を介して前記モータハウジングに放熱されることを特徴とする電動パワーステアリング装置。
  12.  請求項11に記載の電動パワーステアリング装置において、
     前記モータハウジングの前記端面部に形成された前記電源用放熱領域は、前記電動モータの回転軸方向で見て、前記電力変換用放熱領域に対して離れる方向に段差を有して形成されていることを特徴とする電動パワーステアリング装置。
  13.  請求項12に記載の電動パワーステアリング装置において、
     前記電力変換用放熱領域には、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に延びた突状放熱部が形成されていることを特徴とする電動パワーステアリング装置。
  14.  請求項13に記載の電動パワーステアリング装置において、
     前記電子制御部は、前記電動モータの回転軸方向で見て前記電動モータから離れる方向に、前記電力変換回路部、前記電源回路部、前記制御回路部の順番で配置されていることを特徴とする電動パワーステアリング装置。
PCT/JP2017/027593 2016-09-12 2017-07-31 電動駆動装置及び電動パワーステアリング装置 WO2018047516A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/331,060 US20190193775A1 (en) 2016-09-12 2017-07-31 Electromotive Drive Device and Electrically-Powered Steering Device
KR1020197006534A KR20190032586A (ko) 2016-09-12 2017-07-31 전동 구동 장치 및 전동 파워 스티어링 장치
CN201780054439.4A CN109690922A (zh) 2016-09-12 2017-07-31 电动驱动装置以及电动动力转向装置
DE112017004576.2T DE112017004576T5 (de) 2016-09-12 2017-07-31 Elektromotorische antriebsvorrichtung und elektrisch betriebene lenkvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177264A JP2018046591A (ja) 2016-09-12 2016-09-12 電動駆動装置及び電動パワーステアリング装置
JP2016-177264 2016-09-12

Publications (1)

Publication Number Publication Date
WO2018047516A1 true WO2018047516A1 (ja) 2018-03-15

Family

ID=61561745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027593 WO2018047516A1 (ja) 2016-09-12 2017-07-31 電動駆動装置及び電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US20190193775A1 (ja)
JP (1) JP2018046591A (ja)
KR (1) KR20190032586A (ja)
CN (1) CN109690922A (ja)
DE (1) DE112017004576T5 (ja)
WO (1) WO2018047516A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182486B2 (ja) * 2019-02-06 2022-12-02 日立Astemo株式会社 電動駆動装置
JPWO2021065299A1 (ja) 2019-09-30 2021-04-08
CN115123372A (zh) * 2021-03-25 2022-09-30 操纵技术Ip控股公司 用于电动助力转向***的动力机组
US11843305B2 (en) * 2021-06-30 2023-12-12 Canoo Technologies Inc. Multiple-discharge rain manifold for electric motor cooling and related system and method
WO2023093666A1 (zh) * 2021-11-25 2023-06-01 北京经纬恒润科技股份有限公司 一种eps控制器和电机集成的动力组结构、装配方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322984A (ja) * 1997-05-20 1998-12-04 Showa Alum Corp モーターケースの製造方法
JP2009241771A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 軸箱支持装置用軸ばね座及びその製造方法
JP2010178589A (ja) * 2009-02-02 2010-08-12 Mazda Motor Corp 回転電機
JP2013045782A (ja) * 2011-08-22 2013-03-04 Toyota Motor Corp 冷却器
JP2014187760A (ja) * 2013-03-22 2014-10-02 Mitsuba Corp モータ装置
JP2016073098A (ja) * 2014-09-30 2016-05-09 株式会社デンソー 回転電機制御装置
WO2016117144A1 (ja) * 2015-01-23 2016-07-28 三菱電機株式会社 電動パワーステアリング用モータ駆動制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6457256B2 (ja) 2013-12-19 2019-01-23 日本電産エレシス株式会社 電動パワーステアリング用のモータ駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10322984A (ja) * 1997-05-20 1998-12-04 Showa Alum Corp モーターケースの製造方法
JP2009241771A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 軸箱支持装置用軸ばね座及びその製造方法
JP2010178589A (ja) * 2009-02-02 2010-08-12 Mazda Motor Corp 回転電機
JP2013045782A (ja) * 2011-08-22 2013-03-04 Toyota Motor Corp 冷却器
JP2014187760A (ja) * 2013-03-22 2014-10-02 Mitsuba Corp モータ装置
JP2016073098A (ja) * 2014-09-30 2016-05-09 株式会社デンソー 回転電機制御装置
WO2016117144A1 (ja) * 2015-01-23 2016-07-28 三菱電機株式会社 電動パワーステアリング用モータ駆動制御装置

Also Published As

Publication number Publication date
DE112017004576T5 (de) 2019-06-13
KR20190032586A (ko) 2019-03-27
JP2018046591A (ja) 2018-03-22
CN109690922A (zh) 2019-04-26
US20190193775A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2017154498A1 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6524023B2 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2018087965A1 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2018047516A1 (ja) 電動駆動装置及び電動パワーステアリング装置
KR102066361B1 (ko) 전동 구동 장치 및 전동 파워 스티어링 장치
WO2018055913A1 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2017154500A1 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2018230211A1 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6723201B2 (ja) 電動駆動装置及び電動パワーステアリング装置
JP2017159771A (ja) 電動駆動装置及び電動パワーステアリング装置
JP2017159772A (ja) 電動駆動装置及び電動パワーステアリング装置
WO2019159405A1 (ja) 電動駆動装置及び電動パワーステアリング装置
JP2018125948A (ja) 電動駆動装置及び電動パワーステアリング装置
WO2019049423A1 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2020090568A1 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6864029B2 (ja) 電動駆動装置
JP6909689B2 (ja) 電動駆動装置及び電動パワーステアリング装置
JP6852945B2 (ja) 電動駆動装置及び電動パワーステアリング装置
WO2019159406A1 (ja) 電子制御装置及び電動駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197006534

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17848461

Country of ref document: EP

Kind code of ref document: A1