WO2018045965A1 - 检测光纤事件点的装置及方法 - Google Patents

检测光纤事件点的装置及方法 Download PDF

Info

Publication number
WO2018045965A1
WO2018045965A1 PCT/CN2017/100721 CN2017100721W WO2018045965A1 WO 2018045965 A1 WO2018045965 A1 WO 2018045965A1 CN 2017100721 W CN2017100721 W CN 2017100721W WO 2018045965 A1 WO2018045965 A1 WO 2018045965A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
data
signal
squared
light
Prior art date
Application number
PCT/CN2017/100721
Other languages
English (en)
French (fr)
Inventor
金建锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018045965A1 publication Critical patent/WO2018045965A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Definitions

  • the present disclosure relates to the field of fiber optic inspection, for example, to an apparatus and method for detecting fiber event points.
  • the Optical Time Domain Reflectometer can detect the event points by using the principle of reflection and scattering of light. It can be used to test the attenuation of the entire fiber link and provide length-dependent attenuation details. Detecting, locating, and measuring events anywhere on the fiber link (incidents are defects due to splices, connectors, bends, etc. in the fiber link, and changes in the optical transmission characteristics of the event can be measured).
  • the non-destructive, one-end access and intuitive speed of OTDR testing make OTDR an indispensable instrument in the production, construction and maintenance of fiber optic cable.
  • the OTDR cannot detect or miss the detection of the event point when performing long-distance fiber inspection.
  • the present disclosure provides an apparatus and method for detecting an optical fiber event point, which can solve the problem that an OTDR cannot detect or leak an event point when performing long-distance fiber inspection.
  • a device for detecting a fiber event point comprising:
  • the wavelet calculation module is configured to perform wavelet operation on the signal data of the backscattered light and the reflected light of the detected optical pulse in the optical fiber, and then squared to obtain the squared data of the signal;
  • a window dividing module is configured to divide the square data of the signal into n segments, and each segment corresponds to a detection window; wherein n is a natural number greater than 1;
  • the event point detection module is configured to search for event points in a plurality of the detection windows, respectively.
  • the event point detection module includes multiple sub-detection modules; one of the sub-detections The module corresponds to one of the detection windows;
  • Each of the sub-detection modules is configured to search for the relationship between the check threshold of the detection window corresponding to the sub-detection module and the squared data of the signal in the detection window corresponding to the sub-detection module.
  • the event points in the window are detected; wherein the check thresholds of the plurality of detection windows are different from each other.
  • each of the sub-detection modules is configured to sort the squared data of the signals in the detection window corresponding to the sub-detection module from large to small, and start from the maximum signal squared data, according to the sorting selection. Setting a quantity of the signal squared data for an average calculation;
  • the signal squared data in the detection window that is larger than the set threshold of the inspection threshold is used as the event point.
  • the device further includes:
  • An optical pulse generation module configured to generate the detection light pulse using a Gray complementary sequence and incident on the optical fiber
  • a data sampling module configured to receive the backscattered light and the reflected light of the detection light pulse, and convert the received backscattered light and the reflected light optical signal into an electrical signal
  • a voltage loss conversion module configured to convert the electrical signal into a loss
  • an operation module configured to calculate the loss of the conversion and the Gray complementary sequence to obtain signal data of the backscattered light and the reflected light.
  • the optical pulse generating module is further configured to set the number of bits of the Gray complementary sequence according to the detection distance of the optical fiber.
  • the wavelet calculation module is configured to perform wavelet operation on signal data of the backscattered light and the reflected light to obtain high frequency partial data after wavelet operation;
  • the high frequency portion data is squared to obtain signal squared data.
  • a method of detecting an optical fiber event point comprising:
  • the searching for event points in the plurality of the detection windows respectively includes:
  • each of the detection windows searching for an event point in the detection window according to a relationship between a check threshold of the detection window and the squared data of the signal in the detection window; wherein, the plurality of The check thresholds of the detection windows are different from each other.
  • searching for the event point in the detection window according to the relationship between the check threshold of the detection window and the squared data of the signal in the detection window includes:
  • the signal squared data in the detection window that is larger than the set threshold of the inspection threshold is used as the event point.
  • the method before performing the wavelet operation on the signal data of the backscattered light and the reflected light for detecting the optical pulse in the optical fiber, the method further includes:
  • the electrical signal is converted into a loss, and the loss is computed with the Gray complementary sequence to obtain signal data of the backscattered light and the reflected light.
  • the method further includes:
  • the number of bits of the Gray complementary sequence is set according to the detection distance of the optical fiber.
  • performing wavelet processing on the signal data of the backscattered light and the reflected light of the detected optical pulse in the optical fiber, and performing squared to obtain the squared data of the signal including:
  • the backscattered light of the detection light pulse and the signal data of the reflected light in the optical fiber Perform wavelet operation to obtain high frequency part data after wavelet operation;
  • the high frequency portion data is squared to obtain signal squared data.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions for performing the above method for detecting a fiber event point.
  • the embodiment also provides an electronic device including one or more processors, a memory, and one or more programs, the one or more programs being stored in the memory when executed by one or more processors.
  • the embodiment further provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer And causing the computer to perform any of the above methods of detecting an optical fiber event point.
  • the apparatus and method of the present disclosure can highlight the event points in discrete data points by wavelet operation and square calculation, and then reduce the detection time by detecting in multiple detection windows respectively, thereby solving the problem that the OTDR cannot be inspected for long-distance optical fibers.
  • the problem of detecting or leaking the detection event point achieves the purpose of detecting the remote event point and effectively improves the detection accuracy.
  • FIG. 1 is a schematic structural diagram of an apparatus for detecting an event point of an optical fiber in this embodiment
  • Figure 3 is a partial enlarged view of the distal end window of the wavelet after the embodiment
  • FIG. 5 is a schematic structural diagram of hardware of an electronic device according to this embodiment.
  • an apparatus for detecting an optical fiber event point in this embodiment includes the following modules.
  • the wavelet calculation module 10 is configured to perform wavelet processing on the signal data of the backscattered light and the reflected light for detecting the optical pulse in the optical fiber, and then squared to obtain the squared data of the signal.
  • the window dividing module 20 is configured to divide the square data of the signal into n segments, and each segment corresponds to a detection window; wherein n is a natural number greater than 1.
  • the event point detection module 30 is configured to look up event points in a plurality of detection windows, respectively.
  • the detection principle of OTDR is to transmit narrow pulsed light with a certain repetition period and width into the fiber under test.
  • scattering phenomenon occurs, that is, scattered light in multiple directions is generated in the fiber.
  • the refractive index abrupt changes, and a part of the backward scattered light and reflected light can be transmitted back to the incident end along the fiber.
  • the parameter characteristic distribution of the north side optical fiber line can be obtained according to the amplitude curve of the backward optical signal along the time axis.
  • the detection device receives the reflection of the remote event point, the scattering signal is very weak, and the problem of the detection or the leak detection is not caused.
  • the wavelet calculation module 10 performs the wavelet operation and the square calculation, and the discrete data is performed.
  • the abnormal point (event point) is highlighted in the point, and then the window (detection window) detection is performed by the event point detecting module, which shortens the detection time and solves the problem that the OTDR cannot detect or miss the detection event point when performing long-distance fiber inspection.
  • the purpose of detecting the remote event point is achieved, and the detection precision is effectively improved.
  • the number of n is determined by the detection distance of the optical fiber.
  • the event point detection module includes a plurality of sub-detection modules; wherein one of the sub-detection modules corresponds to one detection window.
  • Each sub-detection module is set to check threshold according to the corresponding detection window of the sub-detection module and the The relationship between the squared data of the signals in the detection window corresponding to the sub-detection module is used to find an event point in the detection window; wherein the check thresholds of the multiple detection windows are different from each other.
  • one sub-detection module is set for each detection window, and the check threshold in each detection module can be set according to the detection distance to improve Detection accuracy.
  • each of the sub-detection modules may be configured to sort the square data of the signals in the detection window corresponding to the sub-detection module according to the largest to the smallest, and start from the maximum signal squared data, and select according to the ranking.
  • a predetermined number of the squared data of the signal is averaged; the calculated average value is used as a check threshold; and the square of the signal in the detection window that is larger than the set threshold of the check threshold is used as the event point.
  • the window method can be used to solve problems such as undetectable or leak detection.
  • the window size can be adjusted as required.
  • the squared data is divided into multiple time windows (ie, detection windows), and its own processing is performed in the time window. Look for the "event point" in the window, the event point is satisfied: take the 10 largest data in the window to average, and use this average as the threshold of the window. If the data in the window is twice the average value, then It is the event point.
  • the wavelet calculation module is configured to perform wavelet operation on the signal data of the backscattered light and the reflected light to obtain high frequency partial data after wavelet operation; and square the high frequency partial data Get the squared data of the signal.
  • the wavelet operation performs signal processing by convolution at the time of event point search, and determines the position of the event point by judging the abnormal point of the high frequency portion.
  • high-frequency data is obtained from the wavelet operation result, and the high-frequency data is squared. Since only the wavelet high-frequency portion data is acquired, the calculation amount of the square operation is reduced, and thus the square operation of the high-frequency partial data is performed. The time consuming can be half of the wavelet full square operation.
  • the apparatus further includes the following modules.
  • An optical pulse generation module configured to generate the detection light pulse using a Gray complementary sequence and to be incident Into the fiber.
  • a data sampling module configured to receive the backscattered light and the reflected light of the detected light pulse, and convert the received backscattered light and the reflected light optical signal into an electrical signal.
  • a voltage loss conversion module configured to convert the electrical signal into a loss.
  • an operation module configured to calculate the loss of the conversion and the Gray complementary sequence to obtain signal data of the backscattered light and the reflected light.
  • the optical pulse generating module is further configured to set the number of bits of the Gray complementary sequence according to the detection distance of the optical fiber.
  • high-power light-emitting devices in the related art can also achieve the purpose of detecting remote event points of long-distance fibers, but high-power light-emitting devices are expensive.
  • the present embodiment can achieve the same effect of using a high-power light-emitting device based on the Gray complementary sequence and the low-power light-emitting device, and thus can save cost.
  • a flexible variable Gray complementary sequence number of bits is used.
  • the number of bits in the Gray complementary sequence is set based on the estimated length of the test fiber distance. For long-distance detection, the use of the Gray complementary sequence with a large number of bits can increase the accuracy of the distal test; for short-distance detection, the use of the Gray complementary sequence with a small number of bits can shorten the test time.
  • the device for detecting an optical fiber event point in this application example includes the following modules.
  • Optical pulse generation module data sampling module, voltage loss conversion module, correlation operation module, wavelet calculation module, window division module and event point detection module.
  • the testing process includes the following steps.
  • the pulse generator ie, the optical pulse generation module
  • the pulse generator emits a narrow-pulse drive laser diode (LD) with adjustable width to generate a pulse of light of a desired width, which is incident on the fiber under test after passing through the directional coupler.
  • LD narrow-pulse drive laser diode
  • OTDR using Golay complementary sequences K by the A, B K generated four unipolar pulses U K, And WK, Feed into the fiber
  • the Gray complementary sequence is generated as follows.
  • a K [a 0 , a 1 , ..., a n-1 ];
  • B k [b 0 , b 1 , . . . , b n-1 ];
  • a K and B K are a pair of Gray complementary sequences, and S1 and S2 are pairs of Gray complementary sequences after synthesis.
  • step 2 the backscattered light and the Fresnel reflected light in the optical fiber enter the photodetector through the coupler, and the photodetector converts the received scattered light and the reflected optical signal into an electrical signal, which is amplified by the amplifier and sent to Sampling device (data sampling module).
  • step 3 the sampling device converts the acquired sampled data into a loss.
  • step 4 the arithmetic module performs arithmetic processing on the data.
  • the first parity single sequence sends U k and That is, U k occurs even times, and odd times occur.
  • the second parity single sequence sends W k and Even sending W k even times, sending odd times
  • the test After the test, four sets of data are obtained, that is, the first set of unipolar pulses of the backscattered light and the reflected light signal and the second set of unipolar pulsed backscattered light are obtained by the first parity single sequence test.
  • the reflected light signal, the second odd-even sequence test results in a third set of unipolar pulsed backscattered light and reflected light signals and a fourth set of unipolar pulsed backscattered and reflected light signals.
  • the backscattered light and the reflected light signal of the first and second sets of unipolar pulses are then subtracted to obtain detected data a n .
  • the backscattered light and the reflected light signal of the third and fourth sets of unipolar pulses are subtracted to obtain detected data bn .
  • the correlation operation is as follows.
  • N is the number of data, 0 ⁇ n ⁇ (N-1), 0 ⁇ (n + j) ⁇ Gray complementary sequence number, (-N + 1) ⁇ j ⁇ (N-1).
  • the two correlation operation results c j and d j are added to obtain correlated backscattered light and signal data of the reflected light.
  • step 5 wavelet operation is performed on the data after the correlation operation, wherein FIG. 2 is a data map calculated by using wavelet; FIG. 3 is a partial enlarged view of the far-end window after wavelet calculation; the following is a remote event point found. the result of.
  • the noise is 0.005282 and the event point is 0.007231 (the noise is relatively large and very close to the event point).
  • the first event point location: 20050, reflection intensity: 2.896377, loss: 0.024590, remarks: reflection event!
  • step 6 the square is calculated by window to obtain event point information.
  • the squared result is windowed, and the threshold in each window is averaged according to the 10 largest data in the window, and the value is used as a threshold in the window.
  • the threshold is calculated. If it is greater than 2 times the threshold in this window, it is considered as the event point.
  • the device of the embodiment can achieve the purpose of detecting the remote event point while shortening the detection time. Therefore, the solution provided by the embodiment can shorten the detection time and effectively reduce the problem of missed detection of the event caused by testing the long-distance fiber.
  • high-power light-emitting devices can also achieve the purpose of detecting remote event points of long-distance fibers, but the high-power light-emitting devices are expensive, so the light pulse generating module of the present device uses low-power illumination under the premise of cost saving.
  • the device can achieve the same effect with high power illuminators.
  • a method for detecting an optical fiber event point in this embodiment is used for an optical time domain reflectometer, and the method includes the following steps.
  • step 410 the signal data of the backscattered light and the reflected light of the detected optical pulse in the optical fiber are subjected to wavelet operation, and then squared to obtain signal squared data.
  • step 420 the signal squared data is divided into n segments, and each segment corresponds to a detection window; wherein n is a natural number greater than 1.
  • step 430 event points are looked up in a plurality of said detection windows, respectively.
  • the searching for an event point in the plurality of the detection windows respectively includes the following steps.
  • each of the detection windows searching for an event point in the detection window according to a relationship between an inspection threshold of the detection window and a squared data of the signal in the detection window; wherein, the detection thresholds of the plurality of detection windows are not mutually the same.
  • searching for the event point in the detection window according to the relationship between the check threshold of the detection window and the square data of the signal in the detection window includes the following steps.
  • the squared data of the signals in the detection window are sorted from largest to smallest, and the maximum signal squared data is used, and the set number of signal squared data is selected according to the sorting to perform an average calculation.
  • the calculated average value is taken as the inspection threshold.
  • the signal squared data in the detection window that is larger than the set threshold of the inspection threshold is used as the event point.
  • the following steps are further included.
  • the detection light pulse is generated using a Golay complementary sequence and incident on the fiber.
  • the electrical signal is converted into a loss, and the loss is computed with the Gray complementary sequence to obtain signal data of the backscattered light and the reflected light.
  • the method further comprises the following steps.
  • the number of bits of the Gray complementary sequence is set according to the detection distance of the optical fiber.
  • performing squared to obtain the squared data of the signal including the following steps.
  • the high frequency portion data is squared to obtain signal squared data.
  • the method embodiment provides a method for detecting a long-distance fiber event point in an OTDR design, where the calculated data is a discrete point, and the discrete The data points are wavelet processed to highlight the abnormal points. Then use the window method to process the window from near to far. It is effective to solve the long-distance fiber detection for OTDR. Because the distance of the test fiber is far, the reflection and scattering signals received by the detection device at the far-end event point are very weak, which makes it impossible to detect. Or leak detection and other issues.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions for performing the above method.
  • FIG. 5 is a schematic structural diagram of hardware of an electronic device according to the embodiment, as shown in FIG. 5,
  • the electronic device includes one or more processors 510 and a memory 520.
  • One processor 510 is taken as an example in FIG.
  • the electronic device may further include: an input device 530 and an output device 540.
  • the processor 510, the memory 520, the input device 530, and the output device 540 in the electronic device may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the input device 530 can receive input numeric or character information
  • the output device 540 can include a display device such as a display screen.
  • the memory 520 is a computer readable storage medium that can be used to store software programs, computer executable programs, and modules.
  • the processor 510 executes various functional applications and data processing by executing software programs, instructions, and modules stored in the memory 520 to implement any of the above embodiments.
  • the memory 520 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created according to usage of the electronic device, and the like.
  • the memory may include volatile memory such as random access memory (RAM), and may also include non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • Memory 520 can be a non-transitory computer storage medium or a transitory computer storage medium.
  • the non-transitory computer storage medium such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 520 can optionally include memory remotely located relative to processor 510, which can be connected to the electronic device over a network. Examples of the above networks may include the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • Input device 530 can be configured to receive input numeric or character information and to generate key signal inputs related to user settings and function control of the electronic device.
  • the output device 540 can include a display device such as a display screen.
  • the electronic device of the present embodiment may further include a communication device 550 that transmits and/or receives information over a communication network.
  • a person skilled in the art can understand that all or part of the process of implementing the above embodiment method can be completed by executing related hardware by a computer program, and the program can be stored in a non-transitory computer readable storage medium.
  • the program when executed, may include the flow of an embodiment of the method as described above, wherein the non-transitory computer readable storage medium may be a magnetic disk, an optical disk, a read only memory (ROM), or a random access memory (RAM). Wait.
  • the apparatus and method for detecting an optical fiber event point highlights an event point in discrete data points by wavelet operation and square calculation, and then respectively reduces detection time by detecting in multiple detection windows, thereby solving the problem that the OTDR is long.
  • the optical fiber is inspected, the problem of detecting the event point cannot be detected or leaked, and the purpose of detecting the remote event point is achieved, and the detection precision is effectively improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种检测光纤事件点的装置及方法,所述装置包括:小波计算模块,设置为在对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据;窗口划分模块,设置为将所述信号平方数据划分到预置数量的检测窗口中;事件点检测模块,设置为分别在多个所述检测窗口中查找事件点。

Description

检测光纤事件点的装置及方法 技术领域
本公开涉及光纤检测领域,例如涉及一种检测光纤事件点的装置及方法。
背景技术
光时域反射计(Optical Time Domain Reflectometer,OTDR)可以利用光的反射、散射原理,实现对事件点的检测,可以用于测试整个光纤链路的衰减并提供与长度有关的衰减细节,表现为探测、定位和测量光纤链路上任何位置的事件(事件是指因光纤链路中熔接、连接器、弯曲等形成的缺陷,事件的光传输特性的变化可以被测量)。OTDR测试的非破坏性、只需一端接入以及直观快速的优点使OTDR成为光纤光缆生产、施工、维护中不可缺少的仪器。
光在传输过程中会发生损耗,长距离情况下损耗更是非常大,因此导致OTDR在进行长距离光纤的检查时,无法检测或漏检测事件点的问题。
发明内容
本公开提供一种检测光纤事件点的装置及方法,可以解决OTDR在进行长距离光纤的检查时无法检测或漏检测事件点的问题。
一种检测光纤事件点的装置,包括:
小波计算模块,设置为对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据;
窗口划分模块,设置为将所述信号平方数据分成n段,每段对应设置一检测窗口;其中,n为大于1的自然数;
事件点检测模块,设置为分别在多个所述检测窗口中查找事件点。
可选地,所述事件点检测模块包括多个子检测模块;其中一个所述子检测 模块对应一个所述检测窗口;
每个所述子检测模块,设置为根据所述子检测模块对应的所述检测窗口的检查阈值和所述子检测模块对应的检测窗口中的所述信号平方数据之间的关系,查找所述检测窗口中的所述事件点;其中,多个检测窗口的检查阈值互不相同。
可选地,每个所述子检测模块,设置为将所述子检测模块对应的检测窗口中的信号平方数据按照从大到小排序,并从最大的信号平方数据开始,按照所述排序选择设定数量的所述信号平方数据进行平均计算;
将计算得到的平均值作为所述检查阈值;
将该检测窗口中大于所述检查阈值设定倍数的所述信号平方数据作为所述事件点。
可选地,所述装置还包括:
光脉冲发生模块,设置为使用格雷互补序列生成所述检测光脉冲,并入射到所述光纤中;
数据采样模块,设置为接收所述检测光脉冲的所述后向散射光和所述反射光,并将接收到的所述后向散射光和所述反射光的光信号转换成电信号;
电压损耗转化模块,设置为将所述电信号转换成损耗;
运算模块,设置为将转换的损耗与所述所述格雷互补序列进行运算,得到所述后向散射光和所述反射光的信号数据。
可选地,所述光脉冲发生模块,还设置为根据所述光纤的检测距离设置所述格雷互补序列的位数。
可选地,所述小波计算模块,是设置为对所述后向散射光和所述反射光的信号数据进行小波运算,获取小波运算后的高频部分数据;
将所述高频部分数据进行平方得到信号平方数据。
一种检测光纤事件点的方法,包括:
对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据;
将所述信号平方数据分成n段,每段对应设置一检测窗口;其中,n为大于1的自然数;
分别在多个所述检测窗口中查找事件点。
可选地,所述分别在多个所述检测窗口中查找事件点,包括:
在每个所述检测窗口中,根据所述检测窗口的检查阈值和所述检测窗口中的所述信号平方数据之间的关系,查找所述检测窗口中的事件点;其中,多个所述检测窗口的检查阈值互不相同。
可选地,所述根据所述检测窗口的检查阈值和所述检测窗口中的所述信号平方数据之间的关系,查找所述检测窗口中的事件点,包括:
将所述检测窗口中的信号平方数据按照从大到小排序,并从最大的信号平方数据开始,按照所述排序选择设定数量的信号平方数据进行平均计算;
将计算得到的平均值作为所述检查阈值;
将所述检测窗口中大于所述检查阈值设定倍数的所述信号平方数据作为所述事件点。
可选地,所述在对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算之前,还包括:
使用格雷互补序列生成所述检测光脉冲,并入射到所述光纤中;
接收所述检测光脉冲的所述后向散射光和所述反射光,并将接收到的所述后向散射光和所述反射光的光信号转换成电信号;
将所述电信号转换成损耗,并将所述损耗与所述格雷互补序列进行运算,得到所述后向散射光和所述反射光的信号数据。
可选地,所述方法还包括:
根据所述光纤的检测距离设置所述格雷互补序列的位数。
可选地,所述对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据,包括:
对所述光纤中所述检测光脉冲的所述后向散射光和所述反射光的信号数据 进行小波运算,获取小波运算后的高频部分数据;
将所述高频部分数据进行平方得到信号平方数据。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述检测光纤事件点方法。
本实施例还提供一种电子设备,该电子设备包括一个或多个处理器、存储器以及一个或多个程序,所述一个或多个程序存储在存储器中,当被一个或多个处理器执行时,执行上述检测光纤事件点方法。
本实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述检测光纤事件点任意一种方法。
本公开的装置和方法通过小波运算和平方计算,在离散的数据点中突出事件点,然后通过在多个检测窗口分别检测,缩短了检测时间,解决了OTDR在进行长距离光纤的检查时无法检测或漏检测事件点的问题,实现了达到检测远端事件点的目的,并有效提高了检测精度。
附图说明
图1是本实施例中一种检测光纤事件点的装置结构示意图;
图2是本实施例中装置使用小波计算后的数据图;
图3是本实施例中小波后远端视窗局部放大图;
图4是本实施例中一种检测光纤事件点的方法流程图;
图5是本实施例提供的一种电子设备的硬件结构示意图。
具体实施方式
为了解决OTDR在进行长距离光纤的检查时无法检测或漏检测事件点的问题,本公开提供了一种检测光纤事件点的装置及方法,以下结合附图以及实施 例,对本公开进行说明。如图1所示,本实施例中一种检测光纤事件点的装置,包括以下模块。
小波计算模块10,设置为在对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据。
窗口划分模块20,设置为将所述信号平方数据分成n段,每段对应设置一检测窗口;其中,n为大于1的自然数。
事件点检测模块30,设置为分别在多个检测窗口中查找事件点。
OTDR的检测原理是发射具有一定重复周期和宽度的窄脉冲光注入被测光纤,光在光纤中传输时会产生散射现象,即在光纤中产生多个方向的散射光。光纤的事件点(几何缺陷或断裂面)处会使折射率突变产生反射,其中一部分向后传输的后向散射光和反射光可沿光纤传回入射端。通过检测光纤的后向散射光和反射光,根据后向光信号沿时间轴的幅度曲线可得到北侧光纤线路的参数特性分布。
由于测试光纤距离远,检测器件接收到远端事件点的反射、散射信号非常弱,导致无法检测或漏检测等问题,本实施例通过小波计算模块10进行小波运算和平方计算,在离散的数据点中突出异常点(事件点),然后通过事件点检测模块进行视窗(检测窗口)检测,缩短了检测时间,解决了OTDR在进行长距离光纤的检查时无法检测或漏检测事件点的问题,实现了达到检测远端事件点的目的,并有效提高了检测精度。
在上述实施例的基础上,可以提出上述实施例的变型实施方式,在以下变型实施方式中仅描述与上述实施例的不同之处。
其中,n的个数由所述光纤的检测距离确定。根据检测距离设置检测窗口的数量,可以实现近及远的视窗处理,可以提高检测精度。
在本实施例的一个实施方式中,所述事件点检测模块包括多个子检测模块;其中一个子检测模块对应一个检测窗口。
每个子检测模块,设置为根据该子检测模块对应检测窗口的检查阈值和该 子检测模块对应的检测窗口中的信号平方数据之间的关系,查找该检测窗口中的事件点;其中,多个检测窗口的检查阈值互不相同。
因为检测距离不同,后向散射光和反射光的损耗也是不同的,因此本实施方式中对每个检测窗口设置一个子检测模块,每个检测模块中的检查阈值可以根据检测距离设置,以提高检测精度。
可选地,每个所述子检测模块,可以设置为将子检测模块对应的检测窗口中的信号平方数据按照从大到小排序,并从最大的信号平方数据开始,按照所述排序选择设定数量的所述信号平方数据进行平均计算;将计算得到的平均值作为检查阈值;将该检测窗口中大于所述检查阈值设定倍数的信号平方数据作为所述事件点。
例如,本实施方式使用小波运算和平方运算,放大特征点后,再采用视窗方法就可以很好的解决无法检测或漏检测等问题。视窗大小可以根据要求可以进行调节。将平方后的数据划分为多个时间窗(即检测窗口),在时间窗内做自已的处理。在视窗内找“事件点”,事件点是满足:在视窗内取10个最大数据做平均值,并将这个平均值作为视窗的阈值,如果视窗内的数据是平均值的2倍,则认为是事件点。
可选地,所述小波计算模块,设置为对所述后向散射光和所述反射光的信号数据进行小波运算,获取小波运算后的高频部分数据;将所述高频部分数据进行平方得到信号平方数据。
本实施例中,小波运算是在事件点查找时利用卷积进行信号处理,通过对高频部分进行异常突变点的判断来确定事件点的位置。本实施方式中,从小波运算结果中获取高频数据,并将该高频数据进行平方运算,由于只获取小波高频部分数据,减少了平方运算的计算量,因此高频部分数据的平方运算耗时可以是小波全量平方运算的一半。
在本实施例的另一个实施方式中,所述装置还包括以下模块。
光脉冲发生模块,设置为使用格雷互补序列生成所述检测光脉冲,并入射 到所述光纤中。数据采样模块,设置为接收所述检测光脉冲的后向散射光和反射光,并将接收到的所述后向散射光和所述反射光的光信号转换成电信号。
电压损耗转化模块,设置为将所述电信号转换成损耗。
运算模块,设置为将转换的损耗与所述格雷互补序列进行运算,得到所述后向散射光和所述反射光的信号数据。
可选地,所述光脉冲发生模块,还设置为根据所述光纤的检测距离设置所述格雷互补序列的位数。
相关技术中使用大功率发光器件也能达到检测长距离光纤远端事件点的目的,但是大功率发光器件的价格不菲。本实施方式基于格雷互补序列和小功率发光器件一起能达到使用大功率发光器件相同的效果,因此可以节约成本。
可选地,使用灵活可变的格雷互补序列位数。根据估算测试光纤距离的长度,来设定格雷互补序列的位数。对于长距离检测,使用位数多的格雷互补序列,能增加远端测试准确度;对于短距离检测,使用位数少的格雷互补序列,可以缩短测试时间。
以下通过一应用例,简述本实施例的检测流程。
本应用例中检测光纤事件点装置包含以下模块。
光脉冲发生模块、数据采样模块、电压损耗转化模块、相关运算模块、小波计算模块、窗口划分模块和事件点检测模块。
检测流程包括以下步骤。
在步骤1中,脉冲发生器(即光脉冲发生模块)发出宽度可调的窄脉冲驱动激光二极管(Laser Diode,LD),产生所需宽度的光脉冲,经方向耦合器后入射到被测光纤。
其中,OTDR使用的是格雷互补序列,由AK、BK生成的四组单极性脉冲UK
Figure PCTCN2017100721-appb-000001
和WK、
Figure PCTCN2017100721-appb-000002
送入光纤,格雷互补序列生成如下。
AK=[a0,a1,……,an-1];
Bk=[b0,b1,……,bn-1];
AK和BK为一对格雷互补序列,S1和S2为合成以后的格雷互补序列对。
S1=AKBk=a0,a1,……,an-1,b0,b1,……,bn-1
Figure PCTCN2017100721-appb-000003
式中,
Figure PCTCN2017100721-appb-000004
表示bi的取补,即0变成1,1变成0。
其中把AK、Bk分别生成Uk
Figure PCTCN2017100721-appb-000005
和Wk
Figure PCTCN2017100721-appb-000006
Uk=β(1+Ak),Wk=β(1+Bk);
Figure PCTCN2017100721-appb-000007
式中β为偏置常数,可根据实际情况取不同的数,现设β=1/2,则:
Figure PCTCN2017100721-appb-000008
Figure PCTCN2017100721-appb-000009
其中,
Figure PCTCN2017100721-appb-000010
在步骤2中,光纤中的后向散射光和菲涅耳反射光经耦合器进入光电探测器,光电探测器把接收到的散射光和反射光信号转换成电信号,由放大器放大后送到采样器件(数据采样模块)。
在步骤3中,采样器件将获取到采样数据转换为损耗。
在步骤4中,运算模块将数据进行运算处理。
在现场可编程门阵列(Field Programmable Gata Array,FPGA)中,分别发生两次奇偶单次序列的测试,即可实现格雷互补序列的测试。例如,第一次奇偶单次序列发送Uk
Figure PCTCN2017100721-appb-000011
即偶数次发生Uk,奇数次发生
Figure PCTCN2017100721-appb-000012
第二次奇偶单次序列发送Wk
Figure PCTCN2017100721-appb-000013
即偶数次发送Wk,奇数次发送
Figure PCTCN2017100721-appb-000014
测试后得到四组数据,即,第一次奇偶单次序列的测试得到的第一组单极性脉冲的后向散射光和反射光信号和第二组单极性脉冲的后向散射光和反射光信号,第二次奇偶单次序列的测试得到的第三组单极性脉冲的后向散射光和反射光信号和第四组单极性脉冲的后向散射光和反射光信号。
然后将第一组和第二组单极性脉冲的后向散射光和反射光信号相减,得到 检测数据an。第三组和第四组单极性脉冲的后向散射光和反射光信号相减,得到检测数据bn
将检测数据an和格雷互补序列g1n+j的第一码进行相关运算,得到cj;将检测数据bn和格雷互补序列g2n+j的第二码进行相关运算,得到dj;相关运算如下式。
Figure PCTCN2017100721-appb-000015
其中,cj和dj表示相关运算结果,an和bn表示检测数据,g1n+j和g2n+j分别表示格雷互补序列。N为数据个数,0≤n≤(N-1),0≤(n+j)≤格雷互补序列位数,(-N+1)≤j≤(N-1)。
将两个相关运算结果cj和dj相加得到相关后的所述后向散射光和所述反射光的信号数据。
在步骤5中,对相关运算后的数据进行小波运算,其中,图2是使用小波计算后的数据图;图3是小波计算后远端视窗局部放大图;以下是查找到的远端事件点的结果。
噪声0.005282,事件点0.007231(噪声比较大而且非常接近事件点)。
仅使用小波阈值找不到事件点,使用视窗找到下列事件点。
第1个事件点,位置:20050,反射强度:2.896577,损耗:0.024590,备注:反射事件!
第2个事件点,位置:40097,反射强度:5.021379,损耗:0.005900,备注:反射事件!
第3个事件点,位置:60246,反射强度:2.617850,损耗:0.012000,备注:光纤远端!
从上述查找到的远端事件点的结果中可以看出,通过小、波处理后,可以突 出异常点。
在步骤6中,平方进行视窗计算获取事件点信息。
可选地,对平方后的结果进行视窗,对应每个视窗内的阈值是根据本视窗内取10个最大数据做平均值,并将这个值做为视窗内的阈值。
阈值计算出来,在本视窗内如果大于阈值2倍的则认为是事件点。
本实施例装置,能在缩短检测时间的同时达到检测远端事件点的目的。因此使用本实施例提供的方案既能缩短检测时间,又能有效的减少测试长距离光纤而引起的事件点漏检等问题。
在使用大功率发光器件也能达到检测长距离光纤远端事件点的目的,但是大功率发光器件的价格不菲,因此在节约成本的前提下,本实施装置的光脉冲发生模块采用小功率发光器件就能达到使用大功率发光器件相同的效果。
如图4所示,本实施例中一种检测光纤事件点的方法,用于光时域反射计,所述方法包括以下步骤。
在步骤410中,对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据。
在步骤420中,将所述信号平方数据分成n段,每段对应设置一检测窗口;其中,n为大于1的自然数。
在步骤430中,分别在多个所述检测窗口中查找事件点。
可选地,所述分别在多个所述检测窗口中查找事件点,包括以下步骤。
在每个所述检测窗口中,根据该检测窗口的检查阈值和该检测窗口中的信号平方数据之间的关系,查找该检测窗口中的事件点;其中,多个检测窗口的检查阈值互不相同。
可选地,所述根据该检测窗口的检查阈值和该检测窗口中的信号平方数据之间的关系,查找该检测窗口中的事件点,包括以下步骤。
将该检测窗口中的信号平方数据按照从大到小排序,并从最大的信号平方数据开始,按照所述排序选择设定数量的信号平方数据进行平均计算。
将计算得到的平均值作为检查阈值。
将该检测窗口中大于所述检查阈值设定倍数的信号平方数据作为所述事件点。
可选地,所述在对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算之前,还包括以下步骤。
使用格雷互补序列生成所述检测光脉冲,并入射到所述光纤中。
接收所述检测光脉冲的所述后向散射光和所述反射光,并将接收到的所述后向散射光和所述反射光的光信号转换成电信号。
将所述电信号转换成损耗,并将所述损耗与所述格雷互补序列进行运算,得到所述后向散射光和所述反射光的信号数据。
可选地,所述方法还包括以下步骤。
根据所述光纤的检测距离设置所述格雷互补序列的位数。
可选地,所述对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据,包括以下步骤。
对所述光纤中所述检测光脉冲的所述后向散射光和所述反射光的信号数据进行小波运算,获取小波运算后的高频部分数据;
将所述高频部分数据进行平方得到信号平方数据。
本方法实施例在实现时可以参阅图上述的装置实施例,本方法实施例提出一种在OTDR设计中检测长距离光纤事件点的方法,用于计算的数据是离散的点,通过对离散的数据点进行小波处理,可以突出异常点。然后再使用视窗法,由近及远进行视窗处理,有效解决针对OTDR检测长距离光纤时,由于测试光纤距离远,检测器件接收到远端事件点的反射、散射信号则非常弱,导致无法检测或漏检测等问题。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
图5是根据本实施例的一种电子设备的硬件结构示意图,如图5所示,该 电子设备包括:一个或多个处理器510和存储器520。图5中以一个处理器510为例。
所述电子设备还可以包括:输入装置530和输出装置540。
所述电子设备中的处理器510、存储器520、输入装置530和输出装置540可以通过总线或者其他方式连接,图5中以通过总线连接为例。
输入装置530可以接收输入的数字或字符信息,输出装置540可以包括显示屏等显示设备。
存储器520作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块。处理器510通过运行存储在存储器520中的软件程序、指令以及模块,从而执行多种功能应用以及数据处理,以实现上述实施例中的任意一种方法。
存储器520可以包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器可以包括随机存取存储器(Random Access Memory,RAM)等易失性存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或者其他非暂态固态存储器件。
存储器520可以是非暂态计算机存储介质或暂态计算机存储介质。该非暂态计算机存储介质,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器520可选包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例可以包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置530可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置540可包括显示屏等显示设备。
本实施例的电子设备还可以包括通信装置550,通过通信网络传输和/或接收信息。
本领域普通技术人员可理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来执行相关的硬件来完成的,该程序可存储于一个非暂态计算机可读存储介质中,该程序在执行时,可包括如上述方法的实施例的流程,其中,该非暂态计算机可读存储介质可以为磁碟、光盘、只读存储记忆体(ROM)或随机存储记忆体(RAM)等。
工业实用性
本公开提供的检测光纤事件点的装置和方法通过小波运算和平方计算,在离散的数据点中突出事件点,然后通过在多个检测窗口分别检测,缩短了检测时间,解决了OTDR在进行长距离光纤的检查时无法检测或漏检测事件点的问题,实现了达到检测远端事件点的目的,并有效提高了检测精度。

Claims (13)

  1. 一种检测光纤事件点的装置,包括:
    小波计算模块,设置为对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据;
    窗口划分模块,设置为将所述信号平方数据分成n段,每段对应设置一个检测窗口;其中,n为大于1的自然数;
    事件点检测模块,设置为分别在多个所述检测窗口中查找事件点。
  2. 如权利要求1所述的装置,其中,所述事件点检测模块包括多个子检测模块,其中一个所述子检测模块对应一个所述检测窗口;
    每个所述子检测模块,设置为根据所述子检测模块对应的检测窗口的检查阈值和所述子检测模块对应的检测窗口中的信号平方数据之间的关系,查找所述检测窗口中的所述事件点;其中,多个检测窗口的检查阈值互不相同。
  3. 如权利要求2所述的装置,其中,每个所述子检测模块,设置为将所述子检测模块对应的检测窗口中的信号平方数据按照从大到小排序,并从最大的信号平方数据开始,按照所述排序选择设定数量的所述信号平方数据进行平均计算;
    将计算得到的平均值作为所述子检测模块对应的检测窗口的检查阈值;
    将所述子检测模块对应的检测窗口中大于所述检查阈值设定倍数的信号平方数据作为所述事件点。
  4. 如权利要求1-3中任意一项所述的装置,还包括:
    光脉冲发生模块,设置为使用格雷互补序列生成所述检测光脉冲,并入射到所述光纤中;
    数据采样模块,设置为接收所述检测光脉冲的所述后向散射光和所述反射光,并将接收到的所述后向散射光和所述反射光的光信号转换成电信号;
    电压损耗转化模块,设置为将所述电信号转换成损耗;
    运算模块,设置为将所述损耗与所述格雷互补序列进行运算,得到所述后 向散射光和所述反射光的信号数据。
  5. 如权利要求4所述的装置,其中,所述光脉冲发生模块,还设置为根据所述光纤的检测距离设置所述格雷互补序列的位数。
  6. 如权利要求1-3中任意一项所述的装置,其中,所述小波计算模块,是设置为对所述后向散射光和所述反射光的信号数据进行小波运算,获取小波运算后的高频部分数据;
    将所述高频部分数据进行平方得到信号平方数据。
  7. 一种检测光纤事件点的方法,包括:
    对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据;
    将所述信号平方数据分成n段,每段对应设置一检测窗口;其中,n为大于1的自然数;
    分别在多个所述检测窗口中查找事件点。
  8. 如权利要求7所述的方法,其中,所述分别在多个所述检测窗口中查找所述事件点,包括:
    在每个所述检测窗口中,根据所述检测窗口的检查阈值和所述检测窗口中的所述信号平方数据之间的关系,查找所述检测窗口中的事件点;其中,多个所述检测窗口的检查阈值互不相同。
  9. 如权利要求8所述的方法,其中,所述根据所述检测窗口的检查阈值和所述检测窗口中的所述信号平方数据之间的关系,查找所述检测窗口中的事件点,包括:
    将所述检测窗口中的信号平方数据按照从大到小排序,并从最大的信号平方数据开始,按照所述排序选择设定数量的信号平方数据进行平均计算;
    将计算得到的平均值作为所述检查阈值;
    将所述检测窗口中大于所述检查阈值设定倍数的所述信号平方数据作为所述事件点。
  10. 如权利要求7-9中任意一项所述的方法,其中,所述在对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算之前,还包括:
    使用格雷互补序列生成所述检测光脉冲,并入射到所述光纤中;
    接收所述检测光脉冲的所述后向散射光和所述反射光,并将接收到的所述后向散射光和所述反射光的光信号转换成电信号;
    将所述电信号转换成损耗,并将所述损耗与所述格雷互补序列进行运算,得到所述后向散射光和所述反射光的信号数据。
  11. 如权利要求10所述的方法,还包括:
    根据所述光纤的检测距离设置所述格雷互补序列的位数。
  12. 如权利要求7-9中任意一项所述的方法,其中,所述对光纤中检测光脉冲的后向散射光和反射光的信号数据进行小波运算后,进行平方得到信号平方数据,包括:
    对所述光纤中所述检测光脉冲的所述后向散射光和所述反射光的信号数据进行小波运算,获取小波运算后的高频部分数据;
    将所述高频部分数据进行平方得到信号平方数据。
  13. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求7-12任一项的方法。
PCT/CN2017/100721 2016-09-08 2017-09-06 检测光纤事件点的装置及方法 WO2018045965A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610812050.9 2016-09-08
CN201610812050.9A CN107809279B (zh) 2016-09-08 2016-09-08 检测光纤事件点的装置及方法

Publications (1)

Publication Number Publication Date
WO2018045965A1 true WO2018045965A1 (zh) 2018-03-15

Family

ID=61561696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100721 WO2018045965A1 (zh) 2016-09-08 2017-09-06 检测光纤事件点的装置及方法

Country Status (2)

Country Link
CN (1) CN107809279B (zh)
WO (1) WO2018045965A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492930B (zh) * 2019-08-15 2021-04-16 深圳市矽赫科技有限公司 一种光纤故障点测量方法、装置、***和存储介质
CN112787714B (zh) * 2019-11-07 2023-04-11 阿里巴巴集团控股有限公司 光纤监测方法、设备、***及存储介质
CN111998933B (zh) * 2020-08-10 2023-01-24 武汉理工大学 一种基于脉冲编码的光纤光栅振动测量装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052541A (zh) * 2014-05-06 2014-09-17 上海温光自动化技术有限公司 光纤检测的显示方法、***及光时域反射仪
CN104283610A (zh) * 2014-09-02 2015-01-14 上海交通大学 多级无源光网络故障监测***及实现方法
US9197319B2 (en) * 2013-01-18 2015-11-24 Electronics And Telecommunications Research Institute Device for monitoring optical link fault and method thereof
CN105141477A (zh) * 2015-08-20 2015-12-09 中国人民解放军西安通信学院 一种基于光纤传感的光网络信息安全监测***及监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280001B (zh) * 2011-07-29 2013-01-16 电子科技大学 基于φ-otdr的分布式光纤围栏入侵检测与定位方法
CA2887950A1 (en) * 2012-10-18 2014-04-24 Ntest, Inc. Passive optical network loss analysis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197319B2 (en) * 2013-01-18 2015-11-24 Electronics And Telecommunications Research Institute Device for monitoring optical link fault and method thereof
CN104052541A (zh) * 2014-05-06 2014-09-17 上海温光自动化技术有限公司 光纤检测的显示方法、***及光时域反射仪
CN104283610A (zh) * 2014-09-02 2015-01-14 上海交通大学 多级无源光网络故障监测***及实现方法
CN105141477A (zh) * 2015-08-20 2015-12-09 中国人民解放军西安通信学院 一种基于光纤传感的光网络信息安全监测***及监测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIAO, MINMIN ET AL.: "Positioning and Detecting of Fault Points in Optical Communication Cable Lines", STUDY ON OPTICAL COMMUNICATIONS, 201500228 *

Also Published As

Publication number Publication date
CN107809279B (zh) 2022-03-25
CN107809279A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
CN108627317A (zh) 光纤测试方法、设备及***
WO2018045965A1 (zh) 检测光纤事件点的装置及方法
US11181440B2 (en) OTDR method targeting identified event
CN112051030B (zh) 重复otdr测量检测
CN110635840B (zh) 一种双向otdr测试曲线的拼接方法
JP2017003338A (ja) モード結合比率分布測定方法及びモード結合比率分布測定装置
US20160233956A1 (en) Optical fiber link monitoring apparatus and method capable of trace-based automatic gain control
CN105651373B (zh) 一种基于偏振光时域反射技术中测量两点同频振动的方法
JPH06307896A (ja) 分布型導波路センサ
JP2019105530A (ja) モード遅延時間差分布試験方法および試験装置
JP2009156718A (ja) 光パルス試験装置
WO2022101958A1 (ja) 空間多重光伝送路の特性を評価する装置及び方法
CN104215427A (zh) 一种基于otdr的光缆监测定位无盲区的装置和方法
CN111162834B (zh) 光时域反射仪测试方法及光时域反射仪
US10135524B2 (en) Method and apparatus for compensating for signal error at transmit end of optical time domain reflectometer
CN108337044B (zh) 一种基于白光干涉的高灵敏度光缆普查装置及方法
CN210536634U (zh) 光缆识别装置
US11359993B2 (en) Pulse testing method and device, testing apparatus, and storage medium
CN105784324A (zh) 一种光纤断点位置检测方法、装置及***
CN113834631A (zh) 一种光纤测量方法、***及装置
JP5623575B2 (ja) 光パルス試験器
CN105515646A (zh) 一种光路检测方法、装置、***和相关设备
CN114486179B (zh) 一种反卷积滤波的高精度光纤质量检测方法及***
JP2019105531A (ja) 光ファイバ群遅延時間測定方法および測定装置
CN108072506B (zh) 双重复频率otdr的快速测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848138

Country of ref document: EP

Kind code of ref document: A1