WO2018045876A1 - 一种基于超声波实现机器人自主充电的方法及*** - Google Patents

一种基于超声波实现机器人自主充电的方法及*** Download PDF

Info

Publication number
WO2018045876A1
WO2018045876A1 PCT/CN2017/098795 CN2017098795W WO2018045876A1 WO 2018045876 A1 WO2018045876 A1 WO 2018045876A1 CN 2017098795 W CN2017098795 W CN 2017098795W WO 2018045876 A1 WO2018045876 A1 WO 2018045876A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
ultrasonic
charging
receiving module
module
Prior art date
Application number
PCT/CN2017/098795
Other languages
English (en)
French (fr)
Inventor
李庭亮
李震
Original Assignee
南京阿凡达机器人科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京阿凡达机器人科技有限公司 filed Critical 南京阿凡达机器人科技有限公司
Priority to US15/806,278 priority Critical patent/US20180069437A1/en
Publication of WO2018045876A1 publication Critical patent/WO2018045876A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/12Target-seeking control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/14Systems for determining distance or velocity not using reflection or reradiation using ultrasonic, sonic, or infrasonic waves
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the invention belongs to the field of robot auxiliary technology, and in particular relates to a method and a system for realizing autonomous charging of a robot based on ultrasonic waves.
  • the charging stand to guide the robot to trace the way.
  • the signal transmitter is installed on the charging stand, and the signal receiver is installed on the robot.
  • the commonly used method has infrared ranging positioning, but This form has many drawbacks. Because the infrared emission and reception are point-to-point, it is necessary to ensure that the infrared emitting head and the receiving head are at the same horizontal plane. It is difficult to locate the infrared positioning in a complicated and uneven environment, and the dust debris is easy.
  • the robot uses laser modeling or camera recognition to locate the orientation of the charger, combined with the motion control system of the robot.
  • the robot is automatically moved to the side of the charging stand to achieve self-charging, but this solution is difficult to implement and expensive.
  • An object of the present invention is to provide a method and system for autonomous charging of a robot based on ultrasonic waves, which is low in implementation cost and can be applied to a complicated environment.
  • a method for realizing self-robot charging based on ultrasonic waves comprising the following steps:
  • the robot detects its own electric quantity, and when detecting that its own electric quantity is low, the robot activates the charging base to generate an ultrasonic pulse signal through wireless communication;
  • the robot passes through a first ultrasonic receiving module and a second ultrasonic connection mounted thereon
  • the receiving module receives the ultrasonic pulse signal from the ultrasonic transmitting module of the charging stand;
  • the robot receives the signal strength and intensity difference of the ultrasonic pulse signal according to the first ultrasonic receiving module and the second ultrasonic receiving module, and calculates its own distance and deviation from the charging base.
  • the motion control system of the robot controls the robot to approach the charging base according to the distance and the deviation;
  • the robot When the robot reaches the front of the charging stand or the distance and the deviation are less than a set threshold, the robot docks with the charging stand to perform charging.
  • the two analog ultrasonic signals received are converted into digital signals by A/D, and then the two digital signals are respectively subjected to fast Fourier transform (FFT), and the data is windowed to obtain a finite-length sequence x(n) directly for Fourier transform.
  • FFT fast Fourier transform
  • the spectrum X(e jw ) take the square of the spectrum amplitude, and divide by N, as the estimation of the true power spectrum S X (e jw ) of x(n), and find the power spectrum intensity of the left and right signals.
  • the robot rotates 180° in the process of receiving the ultrasonic pulse signal from the ultrasonic transmitting module on the charging stand, and if the ultrasonic pulse signal from the ultrasonic transmitting module on the charging stand is still not received, the robot follows the clockwise direction. The direction enters the extension wall movement.
  • the system for the above method for realizing robot autonomous charging based on ultrasonic waves including a robot master control system, a robot power management system, a robot motion control system, a robot positioning, and a super
  • the system for implementing a method for autonomous charging of a robot based on ultrasonic waves further includes a charging management unit, a battery voltage current sampling unit, and a battery unit.
  • system for implementing a method for autonomous charging of a robot based on ultrasonic waves further includes a servo motor control unit and a robot chassis speed and a bias sampling unit.
  • the method and system for realizing automatic autonomous charging of a robot based on ultrasonic waves by installing an ultrasonic transmitting module and a wireless communication module on a charging base, two ultrasonic receiving modules and a wireless communication module are installed on the robot body, and the robot according to the received ultrasonic signal strength And the difference between the strength, calculate the distance and deviation of the robot relative to the charging seat, and combine the motion control system and attitude adjustment strategy to complete the robot's independent tracing, achieve autonomous charging, low cost, suitable for complex use environment, improve the robot's The degree of intelligence.
  • FIG. 1 is a schematic structural diagram of a system for realizing main charging from a robot according to the present invention
  • FIG. 2 is a schematic diagram of a robot system module of the present invention
  • FIG. 3 is a schematic diagram of a charging stand system module of the present invention
  • FIG. 4 is a flow chart of an embodiment of a method for realizing main charging from a robot according to the present invention
  • Figure 5 is a schematic diagram showing the distribution of ultrasonic emission intensity
  • Figure 6 is a schematic diagram of the amplitude of the ultrasonic receiving spectrum
  • FIG. 7 is a schematic diagram of the electrical principle of the ultrasonic transmitting module
  • FIG. 8 is a schematic diagram of an electrical principle of an ultrasonic receiving module
  • Figure 9 is a schematic diagram showing the electrical principle of the ultrasonic transmitting/receiving control unit.
  • a system for realizing autonomous charging of a robot based on ultrasonic waves comprises a robot main control system, a robot power management system, a robot motion control system, a robot positioning and an ultrasonic distance deviation calculation control board, a first ultrasonic receiving module 1, a second ultrasonic receiving module 2, and an analog-to-digital conversion mounted on the charging base.
  • Module AC to DC module
  • ultrasonic transmitter module 3 and wireless communication module.
  • charge management unit There are also a charge management unit, a battery voltage and current sampling unit, a battery unit, a servo motor control unit, and a robot chassis speed and a bias sampling unit.
  • a method for implementing autonomous charging of a robot based on ultrasonic waves includes the following steps:
  • the robot detects its own electric quantity, and when detecting that its own electric quantity is low, the robot activates the charging base to generate an ultrasonic pulse signal through wireless communication;
  • the robot receives an ultrasonic pulse signal emitted by the ultrasonic transmitting module of the charging stand through the first ultrasonic receiving module and the second ultrasonic receiving module mounted thereon;
  • the robot receives the signal strength and intensity difference of the ultrasonic pulse signal according to the first ultrasonic receiving module and the second ultrasonic receiving module, and calculates its own distance and deviation from the charging base.
  • the motion control system of the robot controls the robot to approach the charging base according to the distance and the deviation;
  • the robot When the robot reaches the front of the charging stand or the distance and the deviation are less than a set threshold, the robot docks with the charging stand to perform charging.
  • the robot power management system detects that the power is low, that is, when the detected power is lower than the preset threshold, the power is considered to be low, and is reported to the robot master control system, and the robot master control system enters the autonomous charging mode, and sends a command to the robot.
  • the robot motion control system is ready to enter the automatic charging tracing state.
  • the robot motion control system activates the ultrasonic receiving control unit and activates the charging base to transmit the ultrasonic signal through wireless communication.
  • FIG. 9 shows the electrical principle of the ultrasonic transmitting/receiving control unit, including the central control unit and the wireless transceiver module, and turns on the ultrasonic transmitting module 3 and the AC/DC charging power source.
  • Figure 7 shows the electrical principle of the ultrasonic transmitting module.
  • the ultrasonic transmitting module 3 emits a fan-shaped sound wave and starts to guide the robot to the charging stand.
  • Figure 8 shows the electrical principle of the ultrasonic receiver module. After the robot receives the ultrasonic signal, the distance and the deviation of the robot from the charging stand are calculated according to the difference in intensity and intensity of the ultrasonic waves received by the first ultrasonic receiving module 1 and the second ultrasonic receiving module 2. As shown in Fig. 5, the ultrasonic signal has strong and weak, and the two analog ultrasonic signals received are converted into digital signals by A/D, and then the two digital signals are respectively subjected to fast Fourier transform (FFT), and the data window is limited.
  • FFT fast Fourier transform
  • the long sequence x(n) directly finds the Fourier transform, and obtains the spectrum X(e jw ), takes the square of the spectral amplitude, and divides by N, as the true power spectrum S X (e jw ) for x(n) It is estimated that the power spectrum intensities P L and P R and the intensity difference P ⁇ of the left and right signals are obtained, thereby calculating the deviation and range of the ultrasonic transmitting module located in the charging stand from the two ultrasonic receiving modules of the robot, thereby calculating The approximate orientation of the robot relative to the charging cradle is calculated as follows:
  • the robot When the robot reaches the front of the charging stand, or when the distance is less than a certain threshold, the robot rotates 180 degrees in situ and runs backward until docking with the charging stand.
  • the robot power management system detects that there is charging voltage access, the robot is considered as the robot.
  • the charging stand has been reliably docked. At this time, the charging stand turns off the ultrasonic signal, and the robot also turns off the ultrasonic receiving signal.
  • the charging stand turns off the charging power output, and the entire autonomous charging process is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)
  • Manipulator (AREA)

Abstract

一种基于超声波实现机器人自主充电的方法及***,通过在充电座上安装超声波发射模块(3)和无线通讯模块,机器人本体上安装两个超声波接收模块(1、2)和无线通讯模块,机器人根据接收到的超声波信号强度和强度差,计算出机器人相对于充电座的距离和偏向,并结合运控控制***和姿态调整策略完成机器人的自主寻迹,实现自主充电,成本较低,适用于复杂的使用环境,提高机器人的智能化程度。

Description

一种基于超声波实现机器人自主充电的方法及***
本申请要求2016年09月08日提交的申请号为:201610810649.9、发明名称为“一种基于超声波强度实现机器人自主充电的方法及***”的中国专利申请的优先权,其全部内容合并在此。
技术领域
本发明属于机器人辅助技术领域,具体是一种基于超声波实现机器人自主充电的方法及***。
背景技术
目前实现机器人自主充电的方式主要有两种,一种是采用充电座引导机器人寻迹的方式,充电座上安装信号发射器,机器人上安装信号接收器,常用的方法有红外测距定位,但是这种形式会有很多弊端,因红外发射与接收是点对点的,必须保证红外发射头与接收头在同一水平面,在复杂的高低不平的使用环境中很难定位红外线定位,另外尘埃碎屑很容易对机身上的红外线接收产生干扰,并且红外线在传输过程中容易受到室内荧光灯干扰;另一种是机器人利用激光建模或摄像头识别的方式,定位出充电器的方位,结合机器人的运动控制***,使机器人自动移动到充电座旁,实现自主充电,但此种方案实现起来难度较大,且成本昂贵。
发明内容
本发明的目的是提供一种基于超声波实现机器人自主充电的方法及***,该方法及***的实现成本低,能够适用于复杂的环境中。
为实现上述发明目的,本发明采用以下技术方案:
一种基于超声波实现自机器人主充电的方法,包括以下步骤:
机器人检测自身电量,当检测到自身电量低时,所述机器人通过无线通讯启动充电座发出超声波脉冲信号;
所述机器人通过安装在其上的第一超声波接收模块和第二超声波接 收模块接收充电座的超声波发射模块发出的超声波脉冲信号;
所述机器人根据其第一超声波接收模块和第二超声波接收模块接收到超声波脉冲信号的信号强度和强度差,计算出其本身相对于充电座的距离和偏向。
所述机器人的运动控制***根据所述距离和偏向,控制机器人向充电座靠近;
当所述机器人到达充电座正前方或所述距离和偏向小于设定的阈值,机器人与充电座对接,进行充电。
进一步的,所述机器人计算出其本身相对于充电座的距离和偏向的过程为:
将接收到的两路模拟超声波信号通过A/D转换为数字信号,然后将两路数字信号分别进行快速傅立叶变换(FFT),数据加窗得到有限长序列x(n)直接求傅里叶变换,得频谱X(ejw),取频谱幅度的平方,并除以N,以此作为对x(n)真实功率谱SX(ejw)的估计,求出左右两路信号的功率谱强度PL和PR和强度差P□,从而计算出位于充电座的超声波发射模块距离两个位于机器人的超声波接模块的偏向和范围,从而计算出机器人相对于充电座的大致方位,计算公式如下:
Figure PCTCN2017098795-appb-000001
Figure PCTCN2017098795-appb-000002
进一步的,机器人在接收充电座上的超声波发射模块发出的超声波脉冲信号过程中,原地旋转180°,如果仍然接收不到充电座上的超声波发射模块发出的超声波脉冲信号,则机器人按照顺时针方向进入延墙运动。
用于上述基于超声波实现机器人自主充电的方法的***,包括机器人主控***、机器人电源管理***、机器人运动控制***、机器人定位及超 声波距离偏向计算控制板、第一超声波接收模块、第二超声波接收模块,以及安装在充电座上的模数转换模块(AC转DC模块)、超声波发射模块及无线通讯模块。
进一步的,所述基于超声波实现机器人自主充电的方法的***,还包括充电管理单元、电池电压电流采样单元、蓄电池单元。
进一步的,所述基于超声波实现机器人自主充电的方法的***,还包括伺服电机控制单元和机器人底盘电机速度与偏向采样单元。
本发明的基于超声波实现机器人自主充电的方法及***,通过在充电座上安装超声波发射模块和无线通讯模块,机器人本体上安装两个超声波接收模块和无线通讯模块,机器人根据接收到的超声波信号强度和强度差,计算出机器人相对于充电座的距离和偏向,并结合运动控制***和姿态调整策略完成机器人的自主寻迹,实现自主充电,成本较低,适用于复杂的使用环境,提高机器人的智能化程度。
附图说明
图1为本发明的实现自机器人主充电的***结构示意图;
图2为本发明的机器人***模块示意图;
图3为本发明的充电座***模块示意图
图4为本发明的实现自机器人主充电的方法一个实施例的流程图;
图5为超声波发射强度分布示意图;
图6超声波接收频谱幅值示意图;
图7为超声波发射模块电气原理示意图
图8为超声波接收模块电气原理示意图;
图9为超声波发射/接收控制单元电气原理示意图。
具体实施方式
下面结合附图,对本发明提出的一种基于超声波实现机器人自主充电的方法及***进行详细说明。
如图1至3所示,一种基于超声波实现机器人自主充电的方法的***, 包括机器人主控***、机器人电源管理***、机器人运动控制***、机器人定位及超声波距离偏向计算控制板、第一超声波接收模块1、第二超声波接收模块2,以及安装在充电座上的模数转换模块(AC转DC模块)、超声波发射模块3及无线通讯模块。还有充电管理单元、电池电压电流采样单元、蓄电池单元、伺服电机控制单元和机器人底盘电机速度与偏向采样单元。
如图4所示,一种基于超声波实现机器人自主充电的方法,包括以下步骤:
机器人检测自身电量,当检测到自身电量低时,所述机器人通过无线通讯启动充电座发出超声波脉冲信号;
所述机器人通过安装在其上的第一超声波接收模块和第二超声波接收模块接收充电座的超声波发射模块发出的超声波脉冲信号;
所述机器人根据其第一超声波接收模块和第二超声波接收模块接收到超声波脉冲信号的信号强度和强度差,计算出其本身相对于充电座的距离和偏向。
所述机器人的运动控制***根据所述距离和偏向,控制机器人向充电座靠近;
当所述机器人到达充电座正前方或所述距离和偏向小于设定的阈值,机器人与充电座对接,进行充电。
具体来说,当机器人电源管理***检测到电量低后,即当检测到电量低于预设阈值时,认为电量低,上报给机器人主控***,机器人主控***进入自主充电模式,并发指令给机器人运动控制***,准备进入自动充电寻迹状态。机器人运动控制***启动超声波接收控制单元,并通过无线通讯方式启动充电座发射超声波信号。
当充电座上接收到机器人发出的无线请求信号后,图9显示了超声波发射/接收控制单元电气原理,包括中央控制单元和无线收发模块,打开超声波发射模块3和AC/DC充电电源。图7显示了超声波发射模块电气原理,超声波发射模块3发出扇形声波,开始引导机器人靠近充电座。
图8显示了超声波接收模块电气原理。当机器人接收到超声波信号后,根据第一超声波接收模块1和第二超声波接收模块2接收到的超声波的强度和强度差,计算出机器人相对于充电座的距离和偏向。如图5所示,超声波信号有强弱,将接收到的两路模拟超声波信号通过A/D转换为数字信号,然后将两路数字信号分别进行快速傅立叶变换(FFT),数据加窗得到有限长序列x(n)直接求傅里叶变换,得频谱X(ejw),取频谱幅度的平方,并除以N,以此作为对x(n)真实功率谱SX(ejw)的估计,求出左右两路信号的功率谱强度PL和PR和强度差P□,从而计算出位于充电座的超声波发射模块距离两个位于机器人的超声波接收模块的偏向和范围,从而计算出机器人相对于充电座的大致方位,计算公式如下:
Figure PCTCN2017098795-appb-000003
Figure PCTCN2017098795-appb-000004
当机器人到达充电座正前方时,或距离小于一定阈值时,机器人原地旋转180度,并向后运行,直到与充电座对接,当机器人电源管理***检测到有充电电压接入时,认为机器人与充电座已可靠对接,此时充电座关闭超声波信号,机器人也关闭超声波接收信号,当充电完成时,充电座关闭充电电源输出,完成整个自主充电过程。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进也应视为本发明的保护范围。

Claims (10)

  1. 一种基于超声波实现机器人自主充电的方法,其特征在于,包括以下步骤:
    机器人检测自身电量,当检测到自身电量低于预设阈值时,所述机器人通过无线通讯启动充电座发出超声波脉冲信号;
    所述机器人通过安装在其上的第一超声波接收模块和第二超声波接收模块分别接收充电座的超声波发射模块发出的超声波脉冲信号;
    所述机器人根据其第一超声波接收模块和第二超声波接收模块分别接收到的超声波脉冲信号,计算出其本身相对于充电座的距离和偏向。
    所述机器人根据所述距离和偏向,向充电座靠近;
    当所述机器人到达充电座正前方或所述距离和偏向小于设定的阈值,机器人与充电座对接,进行充电。
  2. 根据权利要求1所述的基于超声波实现机器人自主充电的方法,其特征在于,所述机器人根据第一超声波接收模块和第二超声波接收模块分别接收到的超声波脉冲信号进一步包括:
    所述机器人根据第一超声波接收模块和第二超声波接收模块分别接收到的超声波脉冲信号的信号强度,以及,第一超声波接收模块和第二超声波接收模块分别接收到的信号强度之间的强度差。
  3. 根据权利要求2所述的基于超声波强度实现机器人自主充电的方法,其特征在于,所述计算出其本身相对于充电座的距离和偏向的过程为:
    将第一超声波接收模块和第二超声波接收模块分别接收到的两路模拟超声波信号通过模数转换模块转换为数字信号,然后将两路数字信号分别进行快速傅立叶变换(FFT),数据加窗得到有限长序列x(n)直接求傅里叶变换,得频谱X(ejw),取频谱幅度的平方,并除以N,以此作为对x(n)真实功率谱SX(ejw)的估计,求出左右两路信号的功率谱强度PL和PR, 以及,左右两路信号之间的强度差
    Figure PCTCN2017098795-appb-100001
    从而计算出位于充电座的超声波发射模块距离两个位于机器人的超声波接收模块的偏向和范围,从而计算出机器人相对于充电座的大致方位,计算公式如下:
    Figure PCTCN2017098795-appb-100002
    Figure PCTCN2017098795-appb-100003
  4. 根据权利要求1所述的基于超声波实现机器人自主充电的方法,其特征在于,所述机器人通过第一超声波接收模块和第二超声波接收模块分别接收充电座发出的超声波脉冲信号包括:
    当所述机器人接收到充电座的应答信号后,初次判断是否接收到充电座发出的超声波脉冲信号;
    当未接收到所述超声波脉冲信号时,所述机器人原地旋转180°寻找所述超声波信号。
  5. 根据权利要求4所述的基于超声波实现机器人自主充电的方法,其特征在于,所述机器人通过第一超声波接收模块和第二超声波接收模块分别接收充电座发出的超声波脉冲信号还包括:
    当所述机器人原地旋转180°后,再次判断是否接收到充电座发出的超声波脉冲信号;
    当所述机器人原地旋转180°后仍然接收不到充电座发出的超声波脉冲信号时,所述机器人按照顺时针方向进入延墙运动,且返回至初次判断是否接收到充电座发出的超声波脉冲信号。
  6. 根据权利要求1所述的基于超声波实现机器人自主充电的方法,其特征在于,所述机器人与充电座对接包括:
    所述机器人原地旋转180°,并向后运行,直到与充电座对接。
  7. 一种基于超声波实现机器人自主充电的***,其特征在于,包括:机器人和充电座;
    所述机器人包括:
    机器人主控***、机器人电源管理***、机器人运动控制***、机器人定位及超声波距离偏向计算控制板、第一超声波接收模块及第二超声波接收模块;
    所述充电座包括:
    模数转换模块、超声波发射模块及无线通讯模块。
  8. 根据权利要求7所述的基于超声波实现机器人自主充电的***,其特征在于,所述机器人还包括:
    充电管理单元、电池电压电流采样单元和蓄电池单元。
  9. 根据权利要求7所述的基于超声波实现机器人自主充电的***,其特征在于,所述机器人还包括:
    伺服电机控制单元和机器人底盘电机速度与偏向采样单元。
  10. 根据权利要求7所述的基于超声波实现机器人自主充电的***,其特征在于,所述充电座还包括:
    充电器电压电流采样单元。
PCT/CN2017/098795 2016-09-08 2017-08-24 一种基于超声波实现机器人自主充电的方法及*** WO2018045876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/806,278 US20180069437A1 (en) 2016-09-08 2017-11-07 Method and system for automatically charging robot based on ultrasonic wave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610810649.9 2016-09-08
CN201610810649.9A CN106292718A (zh) 2016-09-08 2016-09-08 一种基于超声波强度实现机器人自主充电的方法及***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/806,278 Continuation US20180069437A1 (en) 2016-09-08 2017-11-07 Method and system for automatically charging robot based on ultrasonic wave

Publications (1)

Publication Number Publication Date
WO2018045876A1 true WO2018045876A1 (zh) 2018-03-15

Family

ID=57711310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098795 WO2018045876A1 (zh) 2016-09-08 2017-08-24 一种基于超声波实现机器人自主充电的方法及***

Country Status (2)

Country Link
CN (1) CN106292718A (zh)
WO (1) WO2018045876A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149720A (zh) * 2018-10-02 2019-01-04 深圳市华君科技有限公司 一种超声波感应无线车载充电***
CN110558901A (zh) * 2019-09-09 2019-12-13 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人移动方法及扫地机器人
CN113282076A (zh) * 2021-03-31 2021-08-20 浙江大学 一种基于雷达射线分割地图的机器人远程回充装置及方法
CN113581390A (zh) * 2021-02-27 2021-11-02 安徽久吾天虹环保科技有限公司 一种水面清扫机器人设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101840A1 (zh) 2012-12-28 2014-07-03 苏州宝时得电动工具有限公司 自动割草***
CN106292718A (zh) * 2016-09-08 2017-01-04 南京阿凡达机器人科技有限公司 一种基于超声波强度实现机器人自主充电的方法及***
CN107272675A (zh) * 2017-06-06 2017-10-20 青岛克路德机器人有限公司 基于红外线和超声波的自主充电***
CN108089584A (zh) * 2017-12-25 2018-05-29 广州科语机器人有限公司 割草机器人的自主充电方法及割草机器人充电***
CN112823320A (zh) * 2018-04-27 2021-05-18 苏州宝时得电动工具有限公司 自动返回装置、***及自动行走设备自动返回方法
CN110058200B (zh) * 2019-05-28 2024-07-19 合肥有感科技有限责任公司 无线充电车辆的位置引导方法及***

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484043A (zh) * 2003-04-05 2004-03-24 封先河 波强度一维纵深测距方法及装置
CN100999078A (zh) * 2006-01-09 2007-07-18 田角峰 一种机器人自动充电方法及其自动充电装置
WO2009016152A1 (de) * 2007-08-02 2009-02-05 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und system zum bestimmen der position eines mobilen gerätes in bezug auf ein stationäres gerät, insbesondere eines akkumulatorbetriebenen staubsammelroboters in bezug auf ein akkumulator-ladegerät
CN201266322Y (zh) * 2008-09-27 2009-07-01 苏州大学 超声波目标定位与跟踪装置
CN103645733A (zh) * 2013-12-02 2014-03-19 江苏建威电子科技有限公司 自寻充电机器人及其自寻充电***和方法
CN204271703U (zh) * 2014-12-19 2015-04-15 南京阿凡达机器人科技有限公司 一种用于充电/供电机器人
CN105116378A (zh) * 2015-09-30 2015-12-02 长沙开山斧智能科技有限公司 一种无线、超声波复合定位***及其定位方法
CN105223543A (zh) * 2014-06-25 2016-01-06 Tcl集团股份有限公司 一种基于音响装置的声波定位方法及其***
CN105725932A (zh) * 2016-01-29 2016-07-06 江西智能无限物联科技有限公司 智能扫地机器人
CN106292718A (zh) * 2016-09-08 2017-01-04 南京阿凡达机器人科技有限公司 一种基于超声波强度实现机器人自主充电的方法及***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG72641A1 (en) * 1991-11-05 2000-05-23 Seiko Epson Corp Micro robot
KR100565227B1 (ko) * 2003-12-22 2006-03-30 엘지전자 주식회사 이동로봇의 위치인식장치 및 방법
CN102096413B (zh) * 2010-12-23 2012-05-30 中国民航大学 保安巡逻机器人***及其控制方法
CN103592618B (zh) * 2012-08-14 2016-01-20 广州光点信息科技有限公司 一种超声波定位方法及超声波定位***
CN104298234B (zh) * 2013-11-13 2017-02-08 沈阳新松机器人自动化股份有限公司 一种双引导式机器人自主充电方法
CN105629971A (zh) * 2014-11-03 2016-06-01 贵州亿丰升华科技机器人有限公司 一种机器人自动充电***及其控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484043A (zh) * 2003-04-05 2004-03-24 封先河 波强度一维纵深测距方法及装置
CN100999078A (zh) * 2006-01-09 2007-07-18 田角峰 一种机器人自动充电方法及其自动充电装置
WO2009016152A1 (de) * 2007-08-02 2009-02-05 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und system zum bestimmen der position eines mobilen gerätes in bezug auf ein stationäres gerät, insbesondere eines akkumulatorbetriebenen staubsammelroboters in bezug auf ein akkumulator-ladegerät
CN201266322Y (zh) * 2008-09-27 2009-07-01 苏州大学 超声波目标定位与跟踪装置
CN103645733A (zh) * 2013-12-02 2014-03-19 江苏建威电子科技有限公司 自寻充电机器人及其自寻充电***和方法
CN105223543A (zh) * 2014-06-25 2016-01-06 Tcl集团股份有限公司 一种基于音响装置的声波定位方法及其***
CN204271703U (zh) * 2014-12-19 2015-04-15 南京阿凡达机器人科技有限公司 一种用于充电/供电机器人
CN105116378A (zh) * 2015-09-30 2015-12-02 长沙开山斧智能科技有限公司 一种无线、超声波复合定位***及其定位方法
CN105725932A (zh) * 2016-01-29 2016-07-06 江西智能无限物联科技有限公司 智能扫地机器人
CN106292718A (zh) * 2016-09-08 2017-01-04 南京阿凡达机器人科技有限公司 一种基于超声波强度实现机器人自主充电的方法及***

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149720A (zh) * 2018-10-02 2019-01-04 深圳市华君科技有限公司 一种超声波感应无线车载充电***
CN110558901A (zh) * 2019-09-09 2019-12-13 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人移动方法及扫地机器人
CN113581390A (zh) * 2021-02-27 2021-11-02 安徽久吾天虹环保科技有限公司 一种水面清扫机器人设备
CN113282076A (zh) * 2021-03-31 2021-08-20 浙江大学 一种基于雷达射线分割地图的机器人远程回充装置及方法
CN113282076B (zh) * 2021-03-31 2022-09-27 浙江大学 一种基于雷达射线分割地图的机器人远程回充装置及方法

Also Published As

Publication number Publication date
CN106292718A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018045876A1 (zh) 一种基于超声波实现机器人自主充电的方法及***
WO2018045875A1 (zh) 一种实现机器人自主充电的方法及***
CN106406316B (zh) 家庭智能陪护机器人的自主充电***及其充电方法
WO2020062835A1 (zh) 机器人及其自动回充方法、***、电子设备、存储介质
CN205736996U (zh) 一种电动车自动充电机械臂
JP5396577B2 (ja) 動作システム
CN107402574B (zh) 机器人自主充电***和方法
US9354634B2 (en) Automatic homing and charging method for self-moving cleaning apparatus
CN105629971A (zh) 一种机器人自动充电***及其控制方法
CN104369842A (zh) 基于自主水下航行器的水面辅助机器人及使用方法
US20170225581A1 (en) Autonomous vehicle charging station connection
CN104953709A (zh) 一种变电站智能巡视机器人
CN205049975U (zh) 一种射频rssi值结合红外导航技术的机器人回仓充电***
CN104635728A (zh) 机器人自主充电***和方法
JP3206660U (ja) 充電ステーション及び充電システム
CN111026102A (zh) 基于上下位机协同规划的移动机器人自主回充方法与***
CN104267725A (zh) 扫地机器人自主充电用的室内导航定位***
CN105406556B (zh) 一种辅助设备充电***及方法
CN106338290B (zh) 一种机器人自主充电的导航***及方法
CN202711064U (zh) 一种agv小车引导传感装置
US20180069437A1 (en) Method and system for automatically charging robot based on ultrasonic wave
CN111572737A (zh) 一种基于声学和光学引导的auv捕获引导方法
CN102983454A (zh) 人工智能充电***
CN204178236U (zh) 扫地机器人自主充电用的室内导航定位***
CN106125736B (zh) 一种机器人的回航方法、机器人及***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848049

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17848049

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17848049

Country of ref document: EP

Kind code of ref document: A1