WO2018045732A1 - 一种激光阵列装置及其投影机照明光路 - Google Patents

一种激光阵列装置及其投影机照明光路 Download PDF

Info

Publication number
WO2018045732A1
WO2018045732A1 PCT/CN2017/075615 CN2017075615W WO2018045732A1 WO 2018045732 A1 WO2018045732 A1 WO 2018045732A1 CN 2017075615 W CN2017075615 W CN 2017075615W WO 2018045732 A1 WO2018045732 A1 WO 2018045732A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
laser
group
light source
laser light
Prior art date
Application number
PCT/CN2017/075615
Other languages
English (en)
French (fr)
Inventor
高志强
杨伟樑
赖鸿基
林清云
Original Assignee
广景视睿科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广景视睿科技(深圳)有限公司 filed Critical 广景视睿科技(深圳)有限公司
Publication of WO2018045732A1 publication Critical patent/WO2018045732A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam

Definitions

  • the present invention relates to the field of digital projection display technology, and more particularly to a laser array device and a projector illumination path thereof.
  • FIG. 1 is a structural scheme of the telescope group.
  • the telescope group scheme to compress the spatial size of the laser beam can achieve a satisfactory compression effect, but there are several problems: the telescope group will occupy more spatial positions, including horizontal and vertical spatial dimensions, especially for In the case where space compactness is required to be high, the use of a telescope group often fails to meet the actual use requirements because it takes up valuable space. With the telescope group, the cost will be relatively high because of the cost of adding two lenses.
  • an object of the present invention is to provide a solution to the problem that a telescope group occupies a large space size, and while compressing a plurality of laser beams, a space compactness is ensured, and some space compactness requirements are required. Under the scheme, the usage requirements can still be met, the cost of the solution can be reduced, and the solution of shrinking the lens can be avoided.
  • the present invention provides a laser array device comprising: a laser array composed of a plurality of sets of laser light source groups, each set of the plurality of sets of laser light source groups comprising: a laser unit for emitting a laser light source and a a collimating lens corresponding thereto, capable of radiating a monochromatic beam and collimating the beam; one or more sets of mirror groups; each set of the mirror group being first mirrored and paired with the first mirror a second mirror, the first mirror and the second mirror are arranged in parallel; the plurality of sets of laser light sources are arranged in parallel with each other such that light beams emitted by the plurality of sets of laser light sources are emitted in parallel in the same direction; the mirror It is configured to change the direction of the multi-beam direction parallel beams emitted by the laser source group twice, and the multi-beam direction parallel beams are concentrated and emitted in one direction to compress the slow axis space of the laser array laser beam.
  • the number of groups of the laser light source groups is greater than the number of groups of mirror groups; the number of groups of the laser light source groups is different from the number of groups of mirror groups.
  • the first mirrors in each group of the mirror group are respectively disposed directly in front of the optical path of the corresponding laser light source group; the first mirror is not disposed directly in front of the light path of one of the plurality of groups of the laser light source groups a second mirror in each group of the mirror group is disposed in front of an optical path of the laser light source group in which the first mirror is not disposed, and does not block the laser light source group from which the first mirror is not disposed a position of the light beam; the first mirror in each group of the mirror group receives the light beam emitted by the corresponding laser light source group and reflects, and the reflected light beam is incident on the second mirror corresponding thereto, The second mirror reflects the received beam; all of the beams reflected by each of the second mirrors are close to each other and exit in parallel in the same direction.
  • the number of groups of the laser light source group is a natural number, and the value ranges from 2 ⁇ the number of groups of the laser light source group is ⁇ 20.
  • the number of groups of the laser light source group is a natural number, and the value ranges from 3 ⁇ the number of groups of the laser light source group ⁇ 5.
  • the first mirror and the second mirror of each group of the mirror group are at an angle of 45 ° C to the central optical axis of the beam emitted by the laser source group.
  • a laser array combining device comprising: one or more rows, or one or more columns of the aforementioned laser array device, the one or more rows, or a column Or each row or column of the multi-row laser array device is disposed in parallel with each other.
  • the number of rows or columns of the one or more rows, or one or more columns of the laser array device is a natural number greater than 2, and the number of groups of the 4 ⁇ laser light source group is ⁇ 100.
  • a projector illumination light path comprising: the laser array device described above, wherein the laser light sources are all blue laser light sources; a phosphor plate, the phosphor plate For exciting by the laser beam, emitting a green fluorescent beam, which can be reflected by the phosphor plate or transmitted to the next optical device; the red LED light source device and the blue LED light source device are respectively used to emit red LEDs The light beam and the blue LED beam are collimated; the collecting lens is configured to receive the blue laser beam from the laser array device, and the concentrated laser beam excites the phosphor layer of the phosphor plate to emit a green fluorescent beam; and two directions a color dichroic mirror group for reflecting or transmitting a green fluorescent beam, a red LED beam and a blue LED beam, and causing the reflected or transmitted beam to synthesize a white light beam in the same direction, and Enter the next optical device.
  • the dichroic dichroic mirror group includes a first dichroic dichroic mirror and a second dichroic dichroic mirror; the first dichroic dichroic mirror and the second dichroic dichroic mirror It is configured to transmit a green fluorescent beam and reflect the red LED beam and the blue LED beam, respectively.
  • the present invention has the following beneficial effects: a plurality of sets of laser arrays of laser light source groups arranged in parallel, the set of laser light source groups comprising: a laser unit and a collimating lens corresponding thereto, capable of radiating Monochromatic beam and collimating the beam; multiple sets of parallel sets a group of mirrors, the mirror group being composed of a first mirror and a second mirror paired with the first mirror, the first mirror and the second mirror being arranged in parallel; the invention adopts the form of a mirror Instead of the prior art telescope mirror set to compress the slow axis distance of the laser array, the compression of the multiple laser beams in spatial size is achieved.
  • FIG. 1 is a schematic structural view of a laser array device using a telescope group to compress a light beam in the prior art
  • FIG. 2 is a schematic structural view of a first embodiment of a laser light source device according to the present invention.
  • FIG. 3 is a schematic structural view showing a group of laser light source groups of 3 in a first embodiment of a laser light source device according to the present invention
  • 4a-4e are schematic views showing various arrangement structures of a laser light source device of the present invention.
  • FIG. 5 is a schematic structural view of a preferred embodiment of a laser array assembly device according to the present invention.
  • FIG. 6 is a schematic structural view of a first embodiment of an illumination light path of a projector according to the present invention.
  • FIG. 7 is a schematic structural view of a second embodiment of a projector illumination light path according to the present invention.
  • the invention provides a laser array device comprising: a laser unit for emitting a laser light source and a collimating lens corresponding thereto, capable of radiating a monochromatic beam and collimating the beam; one or more sets of mirror groups Each set of the mirror groups is composed of a first mirror and a second mirror paired with the first mirror, the first mirror and the second mirror being disposed in parallel; the plurality of groups
  • the laser light source groups are arranged in parallel with each other such that the light beams emitted by the plurality of sets of laser light source groups are emitted in parallel in the same direction; the mirrors are configured to change the direction of the multiple beam directions parallel to the laser light source group twice, and the multiple beam directions
  • the parallel beams are concentrated in one direction, compressing the slow axis space of the laser beam of the laser array.
  • the collimator lens is not necessary, and the collimator lens is only used to collimate the beam, so that the beam radiation effect is better.
  • the mirror group may be composed of two groups, or may be composed of one or more groups according to actual conditions.
  • the mirror may be set as a plane mirror, or may be set as a curved mirror as needed.
  • the plurality of sets of laser light source groups may also be arranged to be non-parallel according to actual needs, and the mirror group is arranged such that the outgoing beams of the laser light source group are reflected by the mirror group and then exited in parallel.
  • each group of the mirror group may include not only two mirrors, but also one or more mirrors, and the mirrors of each group may be arranged in parallel or not in parallel, and may be according to a laser light source.
  • the position and the outgoing direction of the group set the position and the outgoing direction of the mirror as long as the reflected light beams can be concentrated and emitted in parallel in the same direction.
  • the number of groups of the laser light source groups may be set to be larger than the number of groups of the mirror groups, and the difference is preferably 1.
  • the difference may be other values, but when the difference is 1, the effect of concentrated beam contraction is best.
  • the number of groups of the laser light source group and the number of groups of the mirror group may also be set according to actual needs, and the two may be set to be equal, or the number of groups of the laser light source group may be smaller than the number of groups of the mirror group, and The difference can be adjusted according to actual needs.
  • the number of mirrors of each group of the mirror group can be set as needed.
  • the number of secondary mirror groups and the number and position of the mirror groups of each stage are set, and the structure setting can be set according to actual conditions.
  • each set of the mirror groups is composed of a first mirror and a second mirror paired with the first mirror, the first mirror and the second mirror being arranged in parallel.
  • the first mirrors in each group of the mirror group are respectively disposed directly in front of the optical path of one of the laser light source groups; the first mirror is not disposed directly in front of the light path of one of the laser light source groups;
  • the second mirror in each group of the mirror group is disposed in front of the light path of the light beam emitted by one of the laser light source groups of the first mirror, and does not block the first mirror a position of a light beam emitted by one of the groups of laser light sources;
  • a first mirror in each group of the mirror group receives a light beam emitted by its corresponding laser light source group and reflects, and the reflected light beam is incident To the second mirror corresponding thereto, the second mirror reflects the received light beam; all the light beams reflected by each of the second mirrors are close to each other and are emitted in parallel in the same direction. This arrangement can change and direct the beam path; this in turn compresses the slow axis distance of the laser beam.
  • the number of groups of the plurality of sets of laser light source groups arranged in parallel may be set to N groups, and the number of groups of the one or more sets of mirror groups arranged in parallel may be set to N-1 groups.
  • the N is a natural number, and the value of N ranges from 2 ⁇ N ⁇ 20. Within this numerical range, the use of the mirror group of the present invention to compress a light beam is more compact than using a telescope to compress. In actual conditions, the value range of N is 3 ⁇ N ⁇ 5, that is, the beam slow axis compression effect is better for 3 groups or 4 groups or 5 groups of laser units, and is widely used.
  • first mirror and the second mirror of each group of the mirror group and the central optical axis of the beam emitted by the laser source group are at an angle of 45 ° C.
  • a laser array device comprises: N sets of laser light source groups 101, 102, ... 10N arranged in parallel, comprising a laser array, the set of laser light source groups comprising: a laser unit and a Corresponding collimating lens capable of radiating a monochromatic beam and collimating the beam; N-1 sets of mirror groups arranged in parallel, the mirror group being composed of a first mirror and a second reflection paired with the first mirror
  • the mirror composition is, for example, a first mirror A01 and a second mirror A02; a first mirror B01 and a second mirror B02;
  • the first mirrors (A01, B01, etc.) are sequentially disposed in front of the optical path of the N-1 group of laser light source groups arranged in parallel, wherein the first mirror is not disposed in front of the optical path of the Nth group of laser light sources; the second mirror (A02, B02, etc.) is disposed in front of the optical path of the Nth group of laser light source groups, and does not block the optical path
  • the N-1 group of mirrors are respectively disposed in front of the N-1 group of laser light source groups for changing and guiding the corresponding beams from the laser source group to be close to and in the same direction as the beams of the Nth group of laser source groups.
  • the N-th laser light source group is not provided with a mirror group in front to change and guide the beam direction; thereby compressing the slow-axis distance of the laser array laser beam.
  • the first group of laser light source groups 11, the second group of laser light source groups 12, and the third group of laser light source groups 13 each include a laser unit and a Corresponding collimating lens capable of radiating a monochromatic beam and collimating the beam;
  • the first mirror group is composed of a first reflecting mirror M1 and a second reflecting mirror M2 arranged in parallel for pairing the first group of laser light sources
  • the laser beam of 11 is reflected twice, so that the beam is close to and in the same direction as the beam of the third group of laser source groups; similarly, the second mirror group is provided by the first reflecting mirror N1 and the second reflecting mirror N2 arranged in parallel.
  • the first reflecting mirror is disposed in front of the optical path of the first laser light source group 11 and the second laser light source group 12; the first reflecting mirror is not disposed in front of the light source optical path of the third group of laser units 13; and the second reflecting mirrors M2 and N2 are disposed in the third group Laser unit 1 3, near the front of the light path of the light source, does not block the exit route of the light source of the third group of laser units 13; the first mirror group and the second mirror group are arranged in parallel; by means of the mirror group, the laser light source group is adjacent to the two groups of lasers The distance between the beams is compressed by D to d 2 .
  • the spatial filling rate Fs of the laser array laser beam in the slow axis direction can be expressed by the following formula:
  • Sa is the distance of the slow axis direction of the single laser unit beam of the laser array
  • D is the distance between the two sets of laser beams from the laser source group
  • the laser array laser beam compression ratio M represents:
  • the distance between the beams from the two parallel laser units is D, and the distance between the two laser beams after compression is d2.
  • the arrangement of the laser array device is not limited to the above arrangement; as shown in FIG. 4a to FIG. 4e, the N-1 group of mirror groups may be respectively set to any N.
  • the beams of the N-1 group of laser light source groups are brought into proximity and in the same direction as the Nth group of beams.
  • the first reflective lens of the N-1 group must be disposed directly in front of the corresponding laser light source group, and the first reflective lens is not disposed in front of the optical path of the Nth group of laser light sources; the position of the second reflective lens of the N-1 group of mirror groups It may be disposed above or below the beam of the Nth group of laser light sources, and does not block the position of the light source beam emitted by the Nth group of laser light sources.
  • the first reflecting mirror is not disposed in front of the optical path of the Nth group of laser light source groups, and N is arbitrarily selectable, which is determined according to actual conditions.
  • the present invention further provides a laser array assembly device comprising: one or more rows or columns or columns of any one of the above laser array combining devices, the one or more rows, or a column or Each row or column of the multi-row laser array device is disposed in parallel with each other.
  • the number of rows or columns of the laser array combining device may be set to M, the M is a natural number greater than 2, and the 4 ⁇ M ⁇ N ⁇ 100, at this time, the mirror pair is used.
  • the compression of the laser array beam is better than the conventional use of the telescope group.
  • 5 is a schematic structural view of a preferred embodiment of a laser array combining device according to the present invention; as shown in FIG. 5, the laser array device has a 3 ⁇ 3 arrangement, that is, each row and each column is composed of three sets of laser light source groups.
  • a projector illumination light path comprising: the foregoing laser array device, wherein the laser light source is a blue laser light source; a phosphor plate, the phosphor plate is used for receiving laser light The light beam is excited to emit a green fluorescent light beam; the red LED light source device and the blue LED light source device are respectively used for emitting and collimating the red LED light beam and the blue LED light beam; and the collecting lens for receiving and collecting the blue light from the laser array device a laser beam, the concentrated laser beam excites a phosphor layer of the phosphor plate to emit a green fluorescent beam; and a dichroic dichroic mirror group for reflecting or transmitting the green fluorescent beam, red The LED beam and the blue LED beam, and the reflected or transmitted beam combines the white light beam in the same direction and enters the next optical device.
  • the green fluorescent light beam can be reflected by the phosphor plate or transmitted to the next optical device.
  • the dichroic dichroic mirror group comprises a first dichroic dichroic mirror and a second dichroic dichroic mirror; the first dichroic dichroic mirror and the second dichroic dichroic mirror are configured The green fluorescent light beam is transmitted and the red LED light beam and the blue LED light beam are respectively reflected.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a projector illumination optical path according to the present invention.
  • the projection illumination pipeline includes: any one of the laser array devices 100 described above, wherein the laser The array is a blue laser light source; a collecting lens 201 and a phosphor plate 202; a dichroic dichroic mirror group composed of a first dichroic mirror 206 and a second dichroic mirror 207; a red LED
  • the light source device 204 and the blue LED light source device 205 are respectively used to emit a red LED beam and a blue LED beam and collimate.
  • the condensing lens 201 is disposed on the light beam path of the laser beam emitted by the laser array device; the phosphor plate 202 is disposed on the light path of the condensing lens 201, and the laser beam emitted by the condensing lens 201 excites the fluorescence
  • the phosphor layer of the powder plate 202 emits a green fluorescent light beam.
  • the first dichroic dichroic mirror 206 is disposed on the optical path of the outgoing beam of the green fluorescent light beam, and the first dichroic dichroic mirror 206 is simultaneously disposed on the light outgoing path of the red LED light source device 204, the first The dichroic dichroic mirror 206 transmits the outgoing light beam of the green fluorescent light beam and simultaneously reflects the outgoing light beam of the red LED light source device 204; the second dichroic dichroic mirror 207 is disposed on the optical path of the outgoing light beam of the green fluorescent light beam, and The second dichroic dichroic mirror 207 is simultaneously disposed on the light outgoing path of the blue LED light source device 205, and the second dichroic dichroic mirror 207 transmits the outgoing light beam of the green fluorescent light beam while reflecting the blue LED light source device 205.
  • the light beam of the first dichroic dichroic mirror 206 and the central light axis of the light beam of the green fluorescent light beam and the light beam of the red LED light source device 204 are respectively 45 ° C; the second dichroic color
  • the angle between the color mirror 207 and the light beam of the green fluorescent light beam and the center light axis of the light beam of the blue color LED light source device 205 is 45 ° C; the light beam of the red LED light source device 204 and the green fluorescent light beam
  • the central optical axis of the outgoing light beam is perpendicular; the outgoing light beam of the blue LED light source device 205 is perpendicular to the central optical axis of the outgoing light beam of the green fluorescent light beam.
  • the condensing lens 201 is configured to receive a blue laser beam from the laser array device 100.
  • the condensed laser beam excites the phosphor layer of the phosphor plate 202 to emit a green fluorescent beam, and the green fluorescent beam is transmitted from the phosphor plate.
  • the collimating lens 203; under the action of the dichroic dichroic mirror group, the green fluorescent beam and the red LED beam and the blue LED beam combine to form a white light beam into the next optical device.
  • the positions of the red LED beam and the blue LED beam can be mutually exchanged.
  • the projection illumination light path may further include: being disposed in the first two directions A focusing lens or relay lens 208 between the color mirror 206 and the second dichroic mirror 207; the laser array device 100 compresses the slow axis of the beam so that the subsequent collecting lens 201, phosphor plate 202, and collimation are used The size and structure of the optical elements such as the lens 203 are reduced, thereby reducing the size and weight of the projector.
  • the dichroic dichroic mirror group is composed of a first dichroic color separation mirror 302.
  • the second dichroic dichroic mirror 305 and the third dichroic dichroic mirror 306 are configured to transmit the green fluorescent light beam and reflect the laser beam emitted by the laser array device.
  • the first dichroic dichroic mirror 302 is disposed on the light outgoing path of the laser beam emitted by the laser array device, and is simultaneously disposed on the optical path of the light beam of the collecting lens, the first dichroic color separating mirror 302.
  • the collecting lens 303 is disposed on the optical path after the beam emitted by the laser array device is reflected by the first dichroic mirror 302;
  • the phosphor plate is disposed on the light outgoing path of the collecting lens 303, and is excited by the laser beam condensed and transmitted by the collecting lens 303 to emit a green fluorescent light beam, and reflects the excited green fluorescent light beam back to the collecting lens.
  • the first dichroic dichroic mirror 302 transmits a green fluorescent light beam; the second dichroic dichroic mirror 305 is disposed on the optical path of the green fluorescent light beam, and the second dichroic dichroic mirror 305 is simultaneously disposed at The second dichroic dichroic mirror 305 reflects the outgoing light beam of the green fluorescent light beam and simultaneously transmits the outgoing light beam of the red LED light source device 307; the third two The color dichroic mirror 306 is disposed on the optical path of the light beam of the red LED light source device 307, and the third dichroic color dichroic mirror is simultaneously disposed on the optical path of the light beam of the blue LED light source device, the third dichroic color
  • the dichroic mirror 306 transmits the outgoing light beam of the red LED light source device 307 and simultaneously reflects the outgoing light beam of the blue LED light source device 308; the first dichroic dichroic mirror 303 and the laser beam emitted by the laser array device and the green fluorescent beam The angle of the central optical axi
  • the blue laser beam from the laser array device is reflected by the dichroic dichroic mirror 302 and enters the phosphor plate 301 to excite the phosphor layer to emit a green fluorescent beam.
  • the green fluorescent beam is reflected by the reflective film layer of the phosphor plate 301 and then passed through.
  • the collecting lens 303 condenses and then transmits the dichroic dichroic mirror 302 to the subsequent optical device; a relay lens 304 can be disposed in front of the optical path of the dichroic dichroic mirror 302 to focus and shape the light beam.
  • the number, relative position, and structural arrangement of the dichroic dichroic mirror and the laser array and the LED light source are not limited to the two embodiments listed above, and the invention can achieve the object of the present invention. Embodiments of the invention may also be implemented using other numbers, locations, and configurations for dichroic dichroic mirrors and laser arrays and LED light sources.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种激光阵列装置,包括:多组激光光源组(101、102、……10N)组成的激光阵列,多组激光光源组(101、102、……10N)的每组包括:一用于发出激光光源的激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;一组或多组反射镜组,反射镜组的每组由第一反射镜(A01,B01,等)和与第一反射镜(A01,B01,等)配对的第二反射镜(A02,B02,等)组成,第一反射镜(A01,B01,等)和第二反射镜(A02,B02,等)平行设置;多组激光光源组(101、102、……10N)相互平行设置,使得多组激光光源组(101、102、……10N)发出的光束沿同一个方向平行出射;反射镜配置成用于两次改变激光光源组(101、102、……10N)发出的多束方向平行的光束方向,多束方向平行的光束沿一个方向集中出射,压缩激光阵列激光光束的慢轴空间。激光阵列装置采用反射镜的形式来替代现有技术中的望远镜镜组来压缩激光阵列的慢轴距离,进而实现多束激光束在空间尺寸上的压缩。

Description

一种激光阵列装置及其投影机照明光路 技术领域
本发明涉及数字投影显示技术领域,更具体地说,涉及一种激光阵列装置及其投影机照明光路。
背景技术
近年来,便携式电子设备功能的提升,使得用户对人机界面的显示器件的要求越来越向着微型、大屏幕以及高分辨率方向发展。在广大用户强烈需求的促使下,投影机技术发展迅猛,DLP、LCOS等产品纷纷推出了性能高、尺寸小且重量轻的便携式的投影机。
在激光投影领域,常采用多颗激光器组成激光器阵列来作为***的光源,而每颗激光器前一般会配一颗准直透镜,用于输出准直的激光束,此时,激光器阵列可输出多束准直激光束。一般而言,为了使得多束准直激光束可以进入后续的光学***,常常需要对它们的空间尺寸做压缩处理,目前主流的方案是采用望远镜组来实现光束空间尺寸的压缩,如图1所示,图1为所述望远镜组结构方案。
采用望远镜组的方案来压缩激光束的空间尺寸,可以达到比较满意的压缩效果,但是存在以下的几个问题:望远镜组会占用较多的空间位置,包括横向和纵向的空间尺寸,特别是对于空间紧凑度要求较高的情况,采用望远镜组往往无法满足实际的使用要求,因为占用了宝贵的空间。采用望远镜组的方案,成本也会相对较高,因为增加了两片透镜的成本。
发明内容
针对上述技术问题,本发明的目的在于提供一种解决望远镜组占用较大空间尺寸的问题,在压缩多束激光束的同时,保证空间上的紧凑度,在一些对空间紧凑度要求较高的方案下,依然可以满足使用要求,降低方案的成本,避免使用透镜缩束的方案。
为实现上述目的,本发明提供了一种激光阵列装置,包括:多组激光光源组组成的激光阵列,所述多组激光光源组的每组包括:一用于发出激光光源的激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;一组或多组反射镜组;所述反射镜组的每组由第一反射镜和与第一反射镜配对的第二反射镜组成,所述第一反射镜和第二反射镜平行设置;所述多组激光光源组相互平行设置,使得多组激光光源组发出的光束沿同一个方向平行出射;所述反射镜配置成用于两次改变激光光源组发出的多束方向平行的光束方向,多束方向平行的光束沿一个方向集中出射,压缩激光阵列激光光束的慢轴空间。
优选地,所述激光光源组的组数大于反射镜组的组数;所述激光光源组的组数与反射镜组的组数差为1。
优选地,所述反射镜组的每组中的第一反射镜分别设置于对应激光光源组的光路正前方;所述多组激光光源组的其中一组的光路正前方不设置第一反射镜;所述反射镜组的每组中的第二反射镜设置于不设置第一反射镜的激光光源组的光路前方,且不遮挡所述不设置第一反射镜的所述激光光源组发出的光束的位置;所述反射镜组的每组中的第一反射镜接收其对应的激光光源组发出的光束并进行反射,并且将反射后的光束入射到与其对应的第二反射镜,所述第二反射镜将接收到的光束进行反射;所有通过每个第二反射镜反射后的光束相互靠近并且沿同一方向平行出射。
优选地,所述激光光源组的组数为自然数,且取值范围为2≤激光光源组的组数≤20。
优选地,所述激光光源组的组数为自然数,且取值范围为3≤激光光源组的组数≤5。
优选地,所述反射镜组的每组的第一反射镜和第二反射镜与激光光源组发出的光束的中心光轴夹角为45℃。
根据本发明的另一实施例,还提供了一种激光阵列组合装置,包括:一排或多排,或者一列或多列前述所述的激光阵列装置,所述一排或多排,或者一列或多列激光阵列装置的每排或每列相互平行设置。
优选地,所述一排或多排,或者一列或多列激光阵列装置的排数或列数为大于2的自然数,所述4≤激光光源组的组数≤100。
根据本发明的另一实施例,还提供了一种投影机照明光路,包括:前述所述的激光阵列装置,其中所述激光光源均为蓝色激光光源;荧光粉板,所述荧光粉板用于受激光光束激发,发出绿色荧光光束,所述绿色荧光光束可经荧光粉板反射后或透射后进入下一光学装置;红色LED光源装置和蓝色LED光源装置,分别用于发出红色LED光束和蓝色LED光束并准直;聚光透镜,用于接收汇聚来自激光阵列装置的蓝色激光光束,汇聚后的激光光束激发荧光粉板的荧光粉层,发出绿色荧光光束;以及二向色分色镜组,所述二向色分色镜组用于反射或透射绿色荧光光束,红色LED光束和蓝色LED光束,并使得经反射或透射后的光束沿同一方向合成白光光束,并进入下一光学装置。
优选地,所述二向色分色镜组包括第一二向色分色镜和第二二向色分色镜;所述第一二向色分色镜和第二二向色分色镜配置成透射绿色荧光光束,并且分别反射红色LED光束和蓝色LED光束。
与现有技术相比,本发明具有以下有益效果:多组平行设置的激光光源组组成的激光阵列,所述一组激光光源组包括:一激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;多组平行设置的反 射镜组,所述反射镜组由第一反射镜和与第一反射镜配对的第二反射镜组成,所述第一反射镜和第二反射镜平行设置;本发明采用反射镜的形式来替代现有技术中的望远镜镜组来压缩激光阵列的慢轴距离,进而实现多束激光束在空间尺寸上的压缩。
附图说明
图1是现有技术采用望远镜组压缩光束的激光阵列装置结构示意图;
图2是本发明的一种激光光源装置实施例一结构示意图;
图3是本发明的一种激光光源装置实施例一中,激光光源组的组数为3的结构示意图;
图4a-4e是本发明的一种激光光源装置多种排列结构示意图;
图5是本发明一种激光阵列组合装置最优实施例结构示意图;
图6是本发明的一种投影机照明光路实施例一结构示意图;
图7是本发明的一种投影机照明光路实施例二结构示意图。
具体实施方式
下面结合附图,对本实用新型的具体实施方式进行详细描述,但应当理解本实用新型的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
本发明提供了一种激光阵列装置,包括:一用于发出激光光源的激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;一组或多组反射镜组;所述反射镜组的每组由第一反射镜和与第一反射镜配对的第二反射镜组成,所述第一反射镜和第二反射镜平行设置;所述多组 激光光源组相互平行设置,使得多组激光光源组发出的光束沿同一个方向平行出射;所述反射镜配置成用于两次改变激光光源组发出的多束方向平行的光束方向,多束方向平行的光束沿一个方向集中出射,压缩激光阵列激光光束的慢轴空间。
其中,准直透镜并不是必须的,准直透镜的使用只是为了准直光束,使得光束辐射的效果更好。
其中,所述反射镜组可以由两组组成,也可以根据实际情况由1组或多组组成。
其中,所述反射镜可以设置为平面反射镜,也可以根据需要设置为曲面反射镜。
其中,所述多组激光光源组也可以根据实际需要设置成不平行,反射镜组设置成使得激光光源组的出射光束经过反射镜组反射后平行出射。
其中,所述反射镜组的每组不仅可以包括两个反射镜,也可以包括一个或更多个反射镜,每组的反射镜之间可以平行设置,也可以不平行设置,可以根据激光光源组的位置和出射方向设置反射镜的位置和出射方向,只要能够使得经反射后的光束沿同一个方向集中平行出射即可。
其中,所述激光光源组的组数可以设置成大于反射镜组的组数,且优选差为1,也可以使得差为其他数值,但是差为1时,光束集中收缩的效果最好。
其中,所述激光光源组的组数和反射镜组的组数也可以根据实际需要设置,可以将两者设置成相等,或者激光光源组的组数小于反射镜组的组数都可,且差数可以根据实际需要调整。
其中,反射镜组的每组反射镜的个数可以根据需要设置数量。可以先 设置一定数额的初级反射镜组,使得激光光源组发出的光束经初级反射镜组反射后沿几个方向或一个方向分散出射;再设置一定数额的次级反射镜组,使得经初级反射镜组反射后的光束再经次级反射镜组反射最终沿同一方向集中平行出射。其中,设置几级次级反射镜组,以及每级的反射镜组的个数和位置,结构设置可以根据实际情况设定。
其中,所述反射镜组的每组由第一反射镜和与第一反射镜配对的第二反射镜组成,所述第一反射镜和第二反射镜平行设置。
所述反射镜组的每组中的第一反射镜分别设置于激光光源组的其中一组的光路正前方;所述激光光源组的其中一组的光路正前方不设置第一反射镜;所述反射镜组的每组中的第二反射镜设置于不设置第一反射镜的所述激光光源组的其中一组发出的光束的光路前方,且不遮挡所述不设置第一反射镜的所述激光光源组的其中一组发出的光束的位置;所述反射镜组的每组中的第一反射镜接收其对应的激光光源组发出的光束并进行反射,并且将反射后的光束入射到与其对应的第二反射镜,所述第二反射镜将接收到的光束进行反射;所有通过每个第二反射镜反射后的光束相互靠近并且沿同一方向平行出射。这样设置可以改变及引导其光束走向;进而压缩了激光阵列激光光束的慢轴距离。
在本发明实施例中,所述多组平行设置的激光光源组的组数可以设置为N组,所述一组或多组平行设置的反射镜组的组数可以设置为N-1组,所述N为自然数,N的取值范围为2≤N≤20,在此数值范围内,使用本发明所述的反射镜组来压缩光束会比使用望远镜来压缩,结构上更紧凑。实际情况,N的取值范围为3≤N≤5,即对3组或者4组或者5组激光单元组进行光束慢轴压缩效果比较好,使用比较广泛。
其中,所述反射镜组的每组的第一反射镜和第二反射镜与激光光源组发出的光束的中心光轴夹角为45℃。
如图2所示,一种激光阵列装置,包括:N组平行设置的激光光源组101、102、……10N,组成的激光阵列,所述一组激光光源组包括:一激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;N-1组平行设置的反射镜组,所述反射镜组由第一反射镜和与第一反射镜配对的第二反射镜组成,如:第一反射镜A01与第二反射镜A02;第一反射镜B01与第二反射镜B02;等。第一反射镜(A01,B01,等)依次设置在N-1组平行设置的激光光源组的光路前方,其中,第N组激光光源组的光路前方不设置第一反射镜;第二反射镜(A02,B02,等)设置在第N组激光光源组的光路前方附近,且不遮挡第N组激光光源组发出的光束的光路;所述第一反射镜(A01,B01,等)和第二反射镜(A02,B02,等)等平行设置;所述反射镜组的每组中的第一反射镜(A01,B01,等)接收其对应的激光光源组发出的光束并进行反射,并且将反射后的光束入射到与其对应的(A02,B02,等),所述第二反射镜(A02,B02,等)将接收到的光束进行反射;所有通过每个第二反射镜(A02,B02,等)反射后的光束相互靠近并且沿同一方向平行出射。所述N-1组反射镜组分别设置于N-1组激光光源组前方,用于改变及引导对应的来自激光光源组的光束,使其与第N组激光光源组的光束靠近并同向,所述第N组激光光源组前方没有设置反射镜组来改变及引导其光束走向;进而压缩了激光阵列激光光束的慢轴距离。
下面对3组激光光源组的情况进行描述,如图3所示,第一组激光光源组11、第二组激光光源组12以及第三组激光光源组13均包括一激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;第一反射镜组由平行设置的第一反射镜片M1和第二反射镜片M2组成,用于对来自第一组激光光源组11的激光光束进行两次反射,使其光束与第三组激光光源组13的光束靠近并同向;同理,第二反射镜组由平行设置的第一反射镜片N1和第二反射镜片N2组成,用于对来自第二组激光单元12的激光光束进行两次反射,使其光束与第三组激光光源组13的光束靠近并同向; 其中第一反射镜片M1和第一反射镜片N1分别设置于第一激光光源组11和第二激光光源组12的光路正前方;第三组激光单元13的光源光路前方不设置第一反射镜;第二反射镜片M2和N2设置在第三组激光单元13的光源光路前方附近,不遮挡第三组激光单元13的光源的出射路线;所述第一反射镜组和第二反射镜组平行设置;借助反射镜组,激光光源组相邻两组激光光束之间的距离由D压缩为d2
在本发明中,所述激光阵列激光光束慢轴方向的空间填充率Fs,可以由下述公式表示:
Fs=Sa/D
其中,Sa为激光阵列单个激光单元光束的慢轴方向的间距,D为来自激光光源组两组激光光束之间的距离;
所述激光阵列激光光束压缩比M表示:
M=D/d2
其中,来自两平行设置的激光单元的光束间距为D,压缩后所述两激光束间距为d2。
值得注意的是,在本发明实施例中,激光阵列装置的排列方式并不限制于上述的排列方式;如图4a-图4e所示,N-1组反射镜组可以对应分别设置于任意N-1组激光光源组前方,将N-1组激光光源组的光束靠近并与第N组光束同向。其中N-1组第一反射镜片必须设置于对应的激光光源组正前方,第N组激光光源组的光路前方不设置第一反射镜片;N-1组反射镜组的第二反射镜片的位置可以设置于第N组激光光源组光束的上方或者下方,且不遮挡第N组激光光源组发出的光源光束的位置。其中所述第N组激光光源组的光路前方不设置第一反射镜片,N是可以任意选择的,根据实际情况而定。
为实现上述目的,本发明还提供了一种激光阵列组合装置,包括:一排或多排或一列或多列上述的任一种激光阵列组合装置,所述一排或多排,或一列或多列激光阵列装置的每排或每列相互平行设置。
在本发明实施例中,所述激光阵列组合装置的排数或者列数可以设置为M,所述M为大于2的自然数,所述4≤M×N≤100,此时使用反射镜组对激光阵列光束进行压缩比常规使用望远镜组效果更好。图5是本发明一种激光阵列组合装置最优实施例结构示意图;如图5所示,激光阵列装置为3×3的排列方式,即每排每列均由3组激光光源组组成。
根据本发明第一实施例,提供了一种投影机照明光路,包括:前述的激光阵列装置,其中所述激光光源均为蓝色激光光源;荧光粉板,所述荧光粉板用于受激光光束激发,发出绿色荧光光束;红色LED光源装置和蓝色LED光源装置,分别用于发出红色LED光束和蓝色LED光束并准直;聚光透镜,用于接收汇聚来自激光阵列装置的蓝色激光光束,汇聚后的激光光束激发荧光粉板的荧光粉层,发出绿色荧光光束;以及二向色分色镜组,所述二向色分色镜组用于反射或透射绿色荧光光束,红色LED光束和蓝色LED光束,并使得经反射或透射后的光束沿同一方向合成白光光束,并进入下一光学装置。
其中,绿色荧光光束可经荧光粉板反射后或透射后进入下一光学装置。
其中,所述二向色分色镜组包括第一二向色分色镜和第二二向色分色镜;所述第一二向色分色镜和第二二向色分色镜配置成透射绿色荧光光束,并且分别反射红色LED光束和蓝色LED光束。
如图6所示,为本发明一种投影机照明光路实施例一结构示意图,如图5所示,所述投影照明管路包括:上述描述的任一种激光阵列装置100,其中所述激光阵列均为蓝色激光光源;聚光透镜201及荧光粉板202;由第一二向色镜206和第二二向色镜207组成的二向色分色镜组;红色LED 光源装置204和蓝色LED光源装置205,分别用于发出红色LED光束和蓝色LED光束并准直。
所述聚光透镜201设置在激光阵列装置发出的激光光束的出光光路上;所述荧光粉板202设置在所述聚光透镜201的出光光路上,并且聚光透镜201发出的激光光束激发荧光粉板202的荧光粉层,发出绿色荧光光束。所述第一二向色分色镜206设置于绿色荧光光束的出光光束的光路上,并且第一二向色分色镜206同时设置在红色LED光源装置204的出光光路上,所述第一二向色分色镜206透射绿色荧光光束的出光光束并同时反射红色LED光源装置204的出光光束;所述第二二向色分色镜207设置于绿色荧光光束的出光光束的光路上,并且第二二向色分色镜207同时设置在蓝色LED光源装置205的出光光路上,所述第二二向色分色镜207透射绿色荧光光束的出光光束并同时反射蓝色LED光源装置205的出光光束;所述第一二向色分色镜206与绿色荧光光束的出光光束以及红色LED光源装置204的出光光束的中心光轴夹角分别为45℃;所述第二二向色分色镜207与绿色荧光光束的出光光束以及蓝色色LED光源装置205的出光光束的中心光轴夹角分别为45℃;所述红色LED光源装置204的出光光束的与绿色荧光光束的出光光束的中心光轴垂直;所述蓝色LED光源装置205的出光光束的与绿色荧光光束的出光光束的中心光轴垂直。
所述聚光透镜201用于接收汇聚来自激光阵列装置100的蓝色激光光束,汇聚后的激光光束激发荧光粉板202的荧光粉层,发出绿色荧光光束,绿色荧光光束从荧光粉板透射进入准直透镜203;在二向色分色镜组的作用下,绿色荧光光束与红色LED光束和蓝色LED光束合成白光光束进入下一光学装置。
其中,所述红色LED光束和蓝色LED光束的位置可以相互调换。
在本发明实施例中,所述投影照明光路还可以包括:设置于第一二向 色镜206和第二二向色镜207之间的聚焦透镜或者中继透镜208;激光阵列装置100对光束慢轴进行压缩,使得后续所使用的聚光透镜201、荧光粉板202以及准直透镜203等光学元件的尺寸和结构减小,进而减小了投影机的尺寸和重量。
图7为本发明一种投影机照明光路实施例二结构示意图;如图7所示,与实施例一不同的是,所述二向色分色镜组由第一二向色分色镜302、第二二向色分色镜305和第三二向色分色镜306组成,所述第一二向色分色镜302配置成透射绿色荧光光束,并反射激光阵列装置发出的激光光束。所述第一二向色分色镜302设置于激光阵列装置发出的激光光束的出光光路上,并且同时设置在聚光透镜的出光光束的光路上,所述第一二向色分色镜302反射激光阵列装置发出的激光光束,并同时透射聚光透镜303的出光光束;所述聚光透镜303设置在激光阵列装置发出的光束经第一二向色分色镜302反射后的光路上;所述荧光粉板设置在所述聚光透镜303的出光光路上,并受聚光透镜303聚光透射的激光光束激发,发出绿色荧光光束,并将激发发出的绿色荧光光束反射回聚光透镜;所述第一二向色分色镜302透射绿色荧光光束;所述第二二向色分色镜305设置于绿色荧光光束的光路上,并且第二二向色分色镜305同时设置在红色LED光源装置307的出光光路上,所述第二二向色分色镜305反射绿色荧光光束的出光光束并同时透射红色LED光源装置307的出光光束;所述第三二向色分色镜306设置于红色LED光源装置307的出光光束的光路上,并且第三二向色分色镜同时设置在蓝色LED光源装置的出光光束的光路上,所述第三二向色分色镜306透射红色LED光源装置307的出光光束并同时反射蓝色LED光源装置308的出光光束;所述第一二向色分色镜303与激光阵列装置发出的激光光束以及绿色荧光光束的出光光束的中心光轴夹角分别为45℃;所述第二二向色分色镜与绿色荧光光束的出光光束以及红色LED光源装置的出光光束的中心光轴夹角分别为45℃;所述第三二向色分色镜与红色LED光源装置的出光光束以及蓝色LED光源装置的出光光束的中心光 轴夹角分别为45℃,所述红色LED光源装置的出光光束的与绿色荧光光束的出光光束的中心光轴垂直;所述蓝色LED光源装置的出光光束的与红色LED光源装置的出光光束的中心光轴垂直。
来自激光阵列装置的蓝色激光光束经二向色分色射镜302反射后进入荧光粉板301激发荧光粉层发出绿色荧光光束,绿色荧光光束经荧光粉板301的反射膜层反射后再经聚光透镜303聚光,然后透射二向色分色镜302进入后续光学装置;二向色分色镜302光路前方还可设置一中继透镜304对光束进行汇聚整形。
其中,本发明实施例中,二向色分色镜与激光阵列和LED光源的的个数、相对位置和结构设置不限于上述列出的两种实施例,在能够实现本发明目的的前提下,还可以对二向色分色镜与激光阵列和LED光源设置使用其他的个数、位置和结构来实现本发明实施例。
前述对本实用新型的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本实用新型限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本实用新型的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本实用新型的各种不同的示例性实施方案以及各种不同的选择和改变。本实用新型的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种激光阵列装置,其特征在于,包括:
    多组激光光源组组成的激光阵列,所述多组激光光源组的每组包括:一用于发出激光光源的激光单元和一与其对应的准直透镜,能够辐射单色光束并对光束进行准直;
    一组或多组反射镜组,所述反射镜组的每组由第一反射镜和与第一反射镜配对的第二反射镜组成,所述第一反射镜和第二反射镜平行设置;
    所述多组激光光源组相互平行设置,使得多组激光光源组发出的光束沿同一个方向平行出射;
    所述反射镜组配置成用于两次改变激光光源组发出的多束方向平行的光束方向,多束方向平行的光束沿一个方向集中出射,压缩激光阵列激光光束的慢轴空间。
  2. 根据权利要求1所述的激光阵列装置,其特征在于,所述激光光源组的组数大于反射镜组的组数;所述激光光源组的组数与反射镜组的组数差为1。
  3. 根据权利要求2所述的激光阵列装置,其特征在于,所述反射镜组的每组中的第一反射镜分别设置于对应激光光源组的光路正前方;所述多组激光光源组的其中一组的光路正前方不设置第一反射镜;
    所述反射镜组的每组中的第二反射镜设置于不设置第一反射镜的激光光源组的光路前方,且不遮挡所述不设置第一反射镜的所述激光光源组发出的光束的位置;
    所述反射镜组的每组中的第一反射镜接收其对应的激光光源组发出的光束并进行反射,并且将反射后的光束入射到与其对应的第二反射镜,所述第二反射镜将接收到的光束进行反射;
    所有通过每个第二反射镜反射后的光束相互靠近并且沿同一方向平行 出射。
  4. 根据权利要求1所述的激光阵列装置,其特征在于,所述激光光源组的组数为自然数,且取值范围为2≤激光光源组的组数≤20。
  5. 根据权利要求1所述的激光阵列装置,其特征在于,所述激光光源组的组数为自然数,且取值范围为3≤激光光源组的组数≤5。
  6. 根据权利要求1所述的激光阵列装置,其特征在于,所述反射镜组的每组的第一反射镜和第二反射镜与激光光源组发出的光束的中心光轴夹角为45℃。
  7. 一种激光阵列组合装置,其特征在于,包括:一排或多排,或者一列或多列权利要求1-6任一项所述的激光阵列装置,所述一排或多排,或者一列或多列激光阵列装置的每排或每列相互平行设置。
  8. 根据权利要求7所述的激光阵列组合装置,其特征在于,所述一排或多排,或者一列或多列激光阵列装置的排数或列数为大于2的自然数,所述4≤激光光源组的组数≤100。
  9. 一种投影机照明光路,其特征在于,包括:
    权利要求1─6任一项所述的激光阵列装置,其中所述激光光源均为蓝色激光光源;
    荧光粉板,所述荧光粉板用于受激光光束激发,发出绿色荧光光束,所述绿色荧光光束可经荧光粉板反射后或透射后进入下一光学装置;
    红色LED光源装置和蓝色LED光源装置,分别用于发出红色LED光束和蓝色LED光束并准直;
    聚光透镜,用于接收汇聚来自激光阵列装置的蓝色激光光束,汇聚后的激光光束激发荧光粉板的荧光粉层,发出绿色荧光光束;
    以及二向色分色镜组,所述二向色分色镜组用于反射或透射绿色荧光光束,红色红色LED光束和蓝色LED光束,并使得经反射或透射后的光束沿同一方向合成白光光束,并进入下一光学装置。
  10. 根据权利要求9所述的投影机照明光路,其特征在于,所述二向色分色镜组包括第一二向色分色镜和第二二向色分色镜;所述第一二向色分色镜和第二二向色分色镜配置成透射绿色荧光光束,并且分别反射红色LED光束和蓝色LED光束。
PCT/CN2017/075615 2016-09-07 2017-03-03 一种激光阵列装置及其投影机照明光路 WO2018045732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610806652.3 2016-09-07
CN201610806652.3A CN106292145A (zh) 2016-09-07 2016-09-07 一种激光阵列装置及其投影机照明光路

Publications (1)

Publication Number Publication Date
WO2018045732A1 true WO2018045732A1 (zh) 2018-03-15

Family

ID=57710518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/075615 WO2018045732A1 (zh) 2016-09-07 2017-03-03 一种激光阵列装置及其投影机照明光路

Country Status (2)

Country Link
CN (1) CN106292145A (zh)
WO (1) WO2018045732A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3799228A1 (en) * 2019-09-30 2021-03-31 Ushio Denki Kabushiki Kaisha Light source device
CN113867090A (zh) * 2021-09-30 2021-12-31 深圳市火乐科技发展有限公司 投影设备及其光源装置
CN115356887A (zh) * 2018-11-09 2022-11-18 扬明光学股份有限公司 照明***
CN116400325A (zh) * 2022-09-14 2023-07-07 苏州睿新微***技术有限公司 一种光发射组件及激光雷达
WO2024015554A1 (en) * 2022-07-15 2024-01-18 Quantinuum Llc Spatial period converter with monolithic zoom

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292145A (zh) * 2016-09-07 2017-01-04 广景视睿科技(深圳)有限公司 一种激光阵列装置及其投影机照明光路
CN106785871A (zh) * 2017-03-08 2017-05-31 严伟 基于红绿蓝半导体激光器合成白光的装置及方法
CN109283781B (zh) * 2018-11-23 2023-10-03 中山联合光电科技股份有限公司 基于孔径压缩的投影仪光源装置
DE102019210041B4 (de) * 2019-07-08 2021-02-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Vorrichtung für eine mehrkanalige optomechanische Adressiereinheit
CN112684464A (zh) * 2020-01-07 2021-04-20 光为科技(广州)有限公司 用于投射激光线的设备及方法、光探测测距设备
WO2021185084A1 (zh) * 2020-03-20 2021-09-23 青岛海信激光显示股份有限公司 激光光源及激光投影设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252743A1 (en) * 2003-06-11 2004-12-16 Anikitchev Serguei G. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
JP2007003914A (ja) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd 発光モジュールとこれを用いた投映型表示装置用光源ユニット
US20090262308A1 (en) * 2008-04-16 2009-10-22 Casio Computer Co., Ltd. Light source unit and projector
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
CN103189794A (zh) * 2010-10-19 2013-07-03 Nec显示器解决方案株式会社 照明设备以及使用其的投影型显示设备
CN103201678A (zh) * 2010-11-09 2013-07-10 Nec显示器解决方案株式会社 照明装置和使用其的投影型显示装置
CN103619234A (zh) * 2012-04-04 2014-03-05 奥林巴斯医疗株式会社 光源装置
CN106292145A (zh) * 2016-09-07 2017-01-04 广景视睿科技(深圳)有限公司 一种激光阵列装置及其投影机照明光路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101174322B1 (ko) * 2005-08-19 2012-08-16 리모 파텐트페어발퉁 게엠베하 운트 코. 카게 레이저 어레이
CN102955340A (zh) * 2011-08-29 2013-03-06 鸿富锦精密工业(深圳)有限公司 投影机光源装置
CN203069883U (zh) * 2013-01-22 2013-07-17 吉林省永利激光科技有限公司 多束激光集合装置
CN203930191U (zh) * 2014-05-19 2014-11-05 深圳市绎立锐光科技开发有限公司 光源模组及投影设备
US9864263B2 (en) * 2014-09-30 2018-01-09 Canon Kabushiki Kaisha Optical unit, optical apparatus using the same, light source apparatus, and projection display apparatus
CN205301795U (zh) * 2015-12-23 2016-06-08 深圳市光峰光电技术有限公司 一种发光装置及投影***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040252743A1 (en) * 2003-06-11 2004-12-16 Anikitchev Serguei G. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
JP2007003914A (ja) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd 発光モジュールとこれを用いた投映型表示装置用光源ユニット
US20090262308A1 (en) * 2008-04-16 2009-10-22 Casio Computer Co., Ltd. Light source unit and projector
CN103189794A (zh) * 2010-10-19 2013-07-03 Nec显示器解决方案株式会社 照明设备以及使用其的投影型显示设备
CN103201678A (zh) * 2010-11-09 2013-07-10 Nec显示器解决方案株式会社 照明装置和使用其的投影型显示装置
CN103619234A (zh) * 2012-04-04 2014-03-05 奥林巴斯医疗株式会社 光源装置
CN102789121A (zh) * 2012-04-10 2012-11-21 海信集团有限公司 一种投影显示光源
CN106292145A (zh) * 2016-09-07 2017-01-04 广景视睿科技(深圳)有限公司 一种激光阵列装置及其投影机照明光路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115356887A (zh) * 2018-11-09 2022-11-18 扬明光学股份有限公司 照明***
EP3799228A1 (en) * 2019-09-30 2021-03-31 Ushio Denki Kabushiki Kaisha Light source device
US11906430B2 (en) 2019-09-30 2024-02-20 Ushio Denki Kabushiki Kaisha Light source device including laser-excited light source
CN113867090A (zh) * 2021-09-30 2021-12-31 深圳市火乐科技发展有限公司 投影设备及其光源装置
CN113867090B (zh) * 2021-09-30 2024-02-09 深圳市火乐科技发展有限公司 投影设备及其光源装置
WO2024015554A1 (en) * 2022-07-15 2024-01-18 Quantinuum Llc Spatial period converter with monolithic zoom
CN116400325A (zh) * 2022-09-14 2023-07-07 苏州睿新微***技术有限公司 一种光发射组件及激光雷达
CN116400325B (zh) * 2022-09-14 2024-01-26 苏州睿新微***技术有限公司 一种光发射组件及激光雷达

Also Published As

Publication number Publication date
CN106292145A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2018045732A1 (zh) 一种激光阵列装置及其投影机照明光路
EP2466375B1 (en) Light Source Apparatus
US10830409B2 (en) Light source module and projection device
US8403496B2 (en) High efficiency micro projection optical engine
KR101321631B1 (ko) 집광 광학계 및 투사형 화상 표시 장치
JP6349784B2 (ja) 光源ユニット並びに照明装置及び画像投射装置
JP5954845B2 (ja) 照明光学系、照明光学系の色むら改善方法、プロジェクターおよびプロジェクターシステム
JPH1152289A (ja) 二次元照明光学系及びこれを用いた液晶プロジェクター
CN101546045B (zh) 偏振转换装置及使用其的投影***
CN102866500A (zh) 照明光学***和图像显示设备
JP2014178464A (ja) 光源ユニット並びに照明装置及び画像投射装置
JP2013540282A (ja) 傾斜式ダイクロイック色合成器iii
CN107436526B (zh) 一种光源装置以及投影显示装置
JP6632231B2 (ja) 光源装置及びこれを用いた照明装置、投射型表示装置
GB2531920A (en) Optical unit, optical apparatus using the same, light source apparatus, and projection display apparatus
CN109557754B (zh) 光源***及投影设备
KR20100112115A (ko) 엘이디 어레이와 색선별 쐐기를 이용한 소형 투사 장치
JP2013545122A (ja) 傾斜式ダイクロイック色合成器ii
US20130169937A1 (en) Tilted dichroic color combiner i
CN212391676U (zh) 光学***及投影设备
JP2019078947A (ja) 光源装置およびプロジェクター
US10690931B2 (en) Light source device and projection display apparatus
WO2011162321A1 (ja) 照明装置及びプロジェクタ
CN213810092U (zh) 一种高均匀性led投影照明匀光***
US11112689B2 (en) Light source device and projection type display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.08.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17847908

Country of ref document: EP

Kind code of ref document: A1