WO2018043179A1 - 放熱板及びその製造方法 - Google Patents

放熱板及びその製造方法 Download PDF

Info

Publication number
WO2018043179A1
WO2018043179A1 PCT/JP2017/029787 JP2017029787W WO2018043179A1 WO 2018043179 A1 WO2018043179 A1 WO 2018043179A1 JP 2017029787 W JP2017029787 W JP 2017029787W WO 2018043179 A1 WO2018043179 A1 WO 2018043179A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
heat sink
composite
manufacturing
layer
Prior art date
Application number
PCT/JP2017/029787
Other languages
English (en)
French (fr)
Inventor
星明 寺尾
功一 橋本
Original Assignee
Jfe精密株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe精密株式会社 filed Critical Jfe精密株式会社
Priority to KR1020197008727A priority Critical patent/KR102324373B1/ko
Priority to EP17846187.7A priority patent/EP3509100B1/en
Priority to CN201780052821.1A priority patent/CN109690760B/zh
Priority to US16/328,426 priority patent/US11270926B2/en
Publication of WO2018043179A1 publication Critical patent/WO2018043179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/10Heat sinks
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates

Definitions

  • the present invention relates to a heat radiating plate used for efficiently dissipating heat generated from a heating element such as a semiconductor element, and a manufacturing method thereof.
  • heat sink In order to efficiently dissipate the heat generated from the semiconductor element from the semiconductor device, a heat sink (heat sink) is used.
  • This heat sink is required to have high thermal conductivity in terms of its function, and since it is joined to a semiconductor, ceramic circuit board, metal package member, etc. by soldering or brazing, it has a thermal expansion coefficient close to that of the member to be joined (low heat Expansion coefficient).
  • a Mo—Cu composite material has been used as a heat radiating plate having a high thermal conductivity and a low thermal expansion coefficient (for example, Patent Document 1).
  • the Mo—Cu composite material used for the heat sink is formed by pressing a Mo powder or a mixed powder of Mo powder and Cu powder into a green compact, and this green compact is subjected to reduction sintering as necessary. Thereafter, Cu infiltration or densification treatment is performed to obtain a Mo—Cu composite material, and the Mo—Cu composite material is rolled. Since Mo is hardly dissolved in Cu, this Mo-Cu composite material has a two-phase structure of Mo and Cu, and a heat sink utilizing the characteristics of Mo having a low thermal expansion coefficient and Cu having a high thermal conductivity.
  • Patent Document 2 discloses a heat sink based on the Mo—Cu composite material as described above, in which a Cu plate is pressure-bonded to both sides of a Mo—Cu composite material obtained through a specific rolling process.
  • the heat radiating plate has a higher thermal conductivity than the [Cu / Mo / Cu] clad material and is excellent in press punchability.
  • Patent Document 1 discloses a manufacturing method in which warm rolling is performed by primary rolling and cold rolling is performed by secondary rolling. However, even in this manufacturing method, Mo particles are hardly deformed. On the premise, warm rolling (primary rolling) is an essential process.
  • heat dissipation of a heat sink has become more important due to higher output of semiconductors.
  • heat dissipation in the thickness direction is more important than heat dissipation in the plate surface direction.
  • an object of the present invention is to provide a heat dissipation plate having a low thermal expansion coefficient and a high thermal conductivity having a clad structure of a Mo—Cu composite material and a Cu material.
  • Another object of the present invention is to provide a manufacturing method capable of stably and inexpensively manufacturing a heat sink having such excellent heat characteristics.
  • the cladding structure of the heat dissipation plate described in Patent Document 2 is a Cu / (Cu—Mo) / Cu structure, but according to the study of the present inventors, (Cu—Mo) / Cu / (Cu—Mo). ) It was found that a higher thermal conductivity can be obtained by using the structure while having a similar low thermal expansion coefficient. Specifically, in the (Cu—Mo) / Cu / (Cu—Mo) structure, the heat conduction in the plate thickness direction is the same as that of the Cu / (Cu—Mo) / Cu structure even though the reduction ratio is the same at the same Cu ratio. It was found that the rate increased by 10 W / m ⁇ K or more, and further increased depending on the conditions.
  • the clad material having such a (Cu—Mo) / Cu / (Cu—Mo) structure is manufactured, the material is cold-rolled at a high pressure reduction rate (total reduction rate), so that the thermal expansion coefficient is reduced. It turns out that it falls more effectively.
  • a (Cu—Mo) / Cu / (Cu—Mo) clad material particularly by optimizing the Cu content of the Cu—Mo composite layer, high thermal conductivity and low thermal expansion coefficient can be achieved. It turned out to be highly satisfying.
  • the present invention has been made on the basis of the above-described findings and has the following gist.
  • a radiator plate in which a Cu—Mo composite layer, a Cu layer, and a Cu—Mo composite layer are laminated in this order in the thickness direction of the plate, The heat dissipation plate, wherein the Cu—Mo composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix.
  • Cu—Mo composite layers and Cu layers are alternately laminated to form three or more Cu—Mo composite layers and two or more Cu layers.
  • An outer layer is a heat sink made of a Cu-Mo composite layer, The heat dissipation plate, wherein the Cu—Mo composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix.
  • the thermal conductivity in the thickness direction is 200 W / m ⁇ K or more, and the in-plane average thermal expansion coefficient from 50 ° C. to 800 ° C. is 10 A heat radiating plate characterized by being 0.0 ppm / K or less.
  • the thermal conductivity in the thickness direction is 250 W / m ⁇ K or more, and the average in-plane thermal expansion coefficient from 50 ° C. to 800 ° C.
  • the heat conductivity in the thickness direction is provided on one or both sides of the heat sink main body composed of the laminated Cu—Mo composite layer and the Cu layer.
  • a method of manufacturing a heat sink comprising obtaining a heat sink in which a Cu—Mo composite layer made of Cu—Mo composite (a) and a Cu layer made of Cu material (b) are laminated.
  • the Cu—Mo composite material (a) is a step of pressing a mixed powder of Mo powder and Cu powder into a green compact, and reducing the green compact
  • a heat-radiating plate manufacturing method characterized by being obtained through a step of sintering in a neutral atmosphere or vacuum to form a sintered body.
  • the Cu—Mo composite material (a) is formed by pressing a mixed powder of Mo powder and Cu powder into a green compact, and reducing the green compact.
  • a heat-radiating plate manufacturing method characterized by being obtained through a step of sintering in a neutral atmosphere or vacuum to form a sintered body and a step of densifying the sintered body.
  • the Cu—Mo composite material (a) is formed by pressing a Mo powder or a mixed powder of Mo powder and Cu powder into a green compact; It was obtained through a step of sintering the body in a reducing atmosphere or vacuum to obtain a sintered body, and a step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or vacuum.
  • a manufacturing method of a heat sink characterized by being.
  • the Cu—Mo composite material (a) is a step of pressing a mixed powder of Mo powder and Cu powder into a green compact, and reducing the green compact A step of sintering in a neutral atmosphere or vacuum to form a sintered body, a step of densifying the sintered body, and a step of rolling (y) the densified Cu-Mo composite material A method of manufacturing a heat sink, characterized by being obtained through the process.
  • the Cu—Mo composite material (a) is a step of pressing a Mo powder or a mixed powder of Mo powder and Cu powder into a green compact; A step of sintering the body in a reducing atmosphere or vacuum to form a sintered body, a step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or vacuum, and impregnating the Cu A method of manufacturing a heat sink, characterized by being obtained through a step of rolling (y) the Cu—Mo composite material. [17] In the manufacturing method of [15] or [16], the total rolling reduction of the Cu—Mo composite (a) obtained by combining the cold rolling (x) and the rolling (y) is 70 to 99%.
  • the manufacturing method of a heat sink characterized by performing the following (1) or / and (2) warm rolling. (1) Perform warm rolling instead of cold rolling (x). (2) Rolling (y) is performed by warm rolling.
  • the heat sink of the present invention has excellent thermal characteristics such as low thermal expansion coefficient and high thermal conductivity. Moreover, according to the manufacturing method of this invention, the heat sink which has such the outstanding thermal characteristic can be manufactured stably and at low cost.
  • Explanatory drawing which shows typically the board thickness cross section of the heat sink of this invention which has a three-layer clad structure
  • Explanatory drawing which shows typically the plate
  • the graph which shows the thermal characteristic (The thermal conductivity of a plate
  • the graph which shows the thermal characteristic (The thermal conductivity of a plate
  • the graph which shows the heat characteristic (heat conductivity of a plate
  • the one having a three-layer clad structure is a heat sink in which a Cu—Mo composite layer, a Cu layer, and a Cu—Mo composite layer are laminated in this order in the thickness direction.
  • the composite layer has a plate thickness cross-sectional structure in which a flat Mo phase is dispersed in a Cu matrix.
  • FIG. 1 schematically shows a thickness cross section of the heat sink of the present invention having this three-layer cladding structure.
  • the Cu—Mo composite layer and the Cu layer of the heat dissipation plate of the present invention are formed by diffusion bonding the laminated Cu—Mo composite material and the Cu material, and have a diffusion bonding portion between both layers.
  • the heat dissipation plate of the present invention may have a clad structure of five or more layers.
  • the clad structure has a Cu—Mo composite layer and a Cu layer that are alternately laminated in the plate thickness direction to form three or more layers of Cu—
  • the heat sink is composed of a Mo composite layer and two or more Cu layers, and the outermost layer on both sides is a Cu-Mo composite layer, and the Cu-Mo composite layer is flat in a Cu matrix. It has a plate thickness cross-sectional structure in which the Mo phase is dispersed.
  • FIG. 2 schematically shows a thickness cross section of the heat sink of the present invention having a five-layer cladding structure.
  • a heat sink of the present invention for example, a heat sink of a (Cu—Mo) / Cu / (Cu—Mo) structure) in which the outermost layers on both sides are composed of a Cu—Mo composite layer as described above is disclosed in Patent Document 2. Although it has a higher thermal conductivity than a heat sink with a Cu / (Cu—Mo) / Cu structure, it is considered that this is due to the following difference in action and effect. In other words, in the case of the Cu / (Cu—Mo) / Cu structure disclosed in Patent Document 2, the thermal conductivity is between the outer layer (Cu layer)> the inner layer (Cu—Mo composite layer), and therefore, between the outer layer and the inner layer.
  • the heat resistance at the interface is high, and the heat that enters the outer layer (Cu layer) is reflected and scattered at the interface between the outer layer and inner layer, disturbing the heat flow, so the heat does not transfer well to the inner layer (Cu-Mo composite layer) side. Therefore, the thermal conductivity in the plate thickness direction is considered to be lowered.
  • the thermal conductivity is the outer layer (Cu—Mo composite layer) ⁇ the inner layer (Cu layer). ⁇ There is almost no thermal resistance at the interface between the inner layers, and heat entering the outer layer (Cu-Mo composite layer) is directly transferred to the inner layer (Cu layer) side, so that high thermal conductivity in the thickness direction can be obtained. it is conceivable that.
  • the number of laminated layers in the cladding structure is not particularly limited, and the larger the number of laminated layers, the lower the coefficient of thermal expansion and the better the press workability, which is advantageous for press work.
  • the upper limit is about 11 layers in the total number of stacked layers.
  • the Cu content of the Cu—Mo composite layer is not particularly limited, but is generally about 10 to 50% by mass. As will be described later, when a relatively high Cu content (for example, 40% by mass or more) is cold-rolled at a high pressure rate, the cold rolling property is improved, and by cold rolling at a high pressure rate. It is easy to obtain an effect of decreasing the thermal expansion coefficient.
  • the Cu content is preferably about 30 to 45% by mass mainly from the viewpoint of workability such as cold rollability.
  • the Cu content of the Cu—Mo composite layer is preferably about 15 to 30% by mass, which is excellent in satisfying high thermal conductivity and low thermal expansion coefficient. It was found that thermal characteristics were obtained.
  • the Cu content of the Cu—Mo composite layer is preferably about 15 to 30% by mass.
  • the Cu content of the Cu—Mo composite layer (Cu—Mo composite material) is less than 20% by mass, there is a possibility of causing problems in cold rollability.
  • the Cu content of the Cu—Mo composite layer is more preferably about 20 to 30% by mass.
  • FIG. 3 and 4 show the thermal characteristics of a part of the heat radiating plates of the examples to be described later, and FIG. 3 shows the thermal conductivity in the thickness direction (thermal conductivity at room temperature). ) And the average thermal expansion coefficient in the plate surface from 50 ° C. to 800 ° C., FIG. 4 shows the thermal conductivity in the thickness direction (thermal conductivity at room temperature) and the average thermal expansion in the plate surface from 50 ° C. to 400 ° C. Each rate is shown.
  • the coefficient of thermal expansion in the plate surface was measured by a push rod type displacement detection method, and the difference in elongation between 50 ° C.-800 ° C. and 50 ° C.-400 ° C. was divided by the temperature difference to obtain 50 ° C.
  • the average in-plane coefficient of thermal expansion from 1 to 800 ° C. and the average in-plane coefficient of thermal expansion from 50 ° C. to 400 ° C. were determined. Further, the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature) was measured by a flash method. The method for measuring and calculating the thermal characteristics is the same for the thermal characteristics shown in FIGS.
  • FIG. 3 and 4 show a heat sink made of a single Cu—Mo composite material (comparative example), and a heat sink made of a three-layer clad material of Cu / (Cu—Mo) / Cu structure of Patent Document 2 (comparative example).
  • the thermal characteristics of the heat radiating plate (invention example) made of the three-layer to seven-layer clad material of the present invention are shown.
  • what is surrounded by a circle and connected by an arrow is a heat sink having substantially the same density. According to this, when comparing the thermal characteristics of heat sinks having substantially the same density, the heat sink of Cu / (Cu—Mo) / Cu structure in Patent Document 2 is used as a heat sink of a single Cu—Mo composite material.
  • the heat dissipation plate of the present invention has substantially the same in-plane thermal expansion coefficient as the thermal characteristics of the heat dissipation plate of this Cu / (Cu—Mo) / Cu structure, but the thermal conductivity in the plate thickness direction. Is significantly higher (in this example, about 50 to 70 W / m ⁇ K higher).
  • FIG. 5 and 6 show the influence of the Cu content of the Cu—Mo composite layer on the thermal characteristics of the heat sink of the present invention. This is a summary of the thermal characteristics of a part of the cladding material.
  • FIG. 5 shows the thermal conductivity in the thickness direction (thermal conductivity at room temperature) and the average thermal expansion coefficient in the plate surface from 50 ° C. to 800 ° C.
  • FIG. 6 shows the thermal conductivity in the thickness direction (heat at room temperature). Conductivity) and the in-plane average thermal expansion coefficient from 50 ° C. to 400 ° C., respectively.
  • FIG. 5 and 6 also show the thermal characteristics of a heat sink (comparative example) made of a single Cu-Mo composite in which the Cu content of the Cu-Mo composite is almost the same as that of the heat sink of the present invention.
  • the solid arrows connected to each other indicate that the Cu-Mo composite has almost the same Cu content as "a heat sink made of a single Cu-Mo composite” and "a heat sink of the present invention". It is.
  • the thermal conductivity in the plate thickness direction is high, and the average thermal expansion coefficient in the plate surface is low.
  • the Cu content of the Cu—Mo composite layer (Cu—Mo composite material) is less than 20 mass%, the cold rollability deteriorates, so the Cu content of the Cu—Mo composite layer is 15 mass. % Is produced by warm rolling.
  • the heat conductivity in the thickness direction of the heat sink of the example of the present invention is considerably higher than that of the heat sink (comparative example) made of a single Cu—Mo composite in which the Cu content of the Cu—Mo composite is almost equal. Although it is high, the degree is particularly remarkable when the Cu content of the Cu—Mo composite is relatively low (15 mass%, 25 mass%). From the results of FIG. 5 and FIG. 6, particularly excellent thermal properties are obtained when the Cu content of the Cu—Mo composite layer is 15 to 30% by mass (and further 20 to 30% by mass considering cold rolling properties). Is considered to be obtained.
  • the thicknesses of the Cu-Mo composite layer and the Cu layer, the layer thickness ratio of the Cu-Mo composite layer and the Cu layer, and the thickness of the heat sink are not particularly limited, but 5 layers or more (especially 7 layers or more)
  • the thicknesses of the plurality of Cu layers are the same in order to increase the binding force of the Cu layer by the Cu—Mo composite layer.
  • the thickness direction centering on the Cu-Mo composite layer at the center in the thickness direction so as to ensure thermal characteristics and prevent warping and distortion during rolling and practical use.
  • a symmetrical structure (a structure in which the thickness of the Cu—Mo composite layer and the Cu layer is symmetrical) is preferable.
  • the thickness of the heat sink is often around 1 mm, but is not particularly limited.
  • the layer thickness ratio between the Cu-Mo composite layer and the Cu layer if the layer thickness ratio of the Cu layer is large with respect to the Cu-Mo composite layer, the restraint of the Cu layer by the Cu-Mo composite layer is weakened. On the other hand, if the thermal expansion coefficient is high, and the layer thickness ratio of the Cu layer is small, the thermal conductivity is low. Therefore, the layer thickness ratio between the Cu—Mo composite layer and the Cu layer may be appropriately selected according to the thermal characteristics to be obtained, but the coefficient of thermal expansion at a low temperature (eg, 200 ° C., 400 ° C.) is lowered. From this point of view, it is better not to make the Cu layer too thick with respect to the Cu—Mo composite layer.
  • a low temperature eg, 200 ° C., 400 ° C.
  • this density is about 9.25 to 9.55 g / cm 3. It is preferable that it is about 9.30 to 9.45 g / cm 3 .
  • the heat sink of the present invention is manufactured by performing diffusion bonding after a Cu-Mo composite material manufactured in advance and a Cu material are diffusion-bonded, and may also be rolled in the manufacturing process of the Cu-Mo composite material. Therefore, the whole is a rolled structure, and the Mo phase dispersed in the Cu matrix of the Cu—Mo composite layer has a flatly stretched form, and usually the Mo phase in the plate thickness cross-sectional structure.
  • the aspect ratio (aspect ratio in the rolling direction) exceeds 2. Further, since the coefficient of thermal expansion is reduced by the flattening of the Mo phase by rolling (particularly cold rolling), the aspect ratio (aspect ratio in the rolling direction) is more preferably 3 or more.
  • the aspect ratio is the major axis / minor axis (length ratio) of the Mo phase in the sheet thickness sectional structure in the rolling direction.
  • the sheet thickness sectional structure (ion milling finish) in the rolling direction is used.
  • the thickness / cross-sectional texture of the Mo phase in each arbitrary visual field is determined by SEM, and the major axis / short axis of each Mo phase is determined. "
  • the Cu—Mo composite layer undergoes a rolling process in a direction (X-axis direction, Y-axis direction) orthogonal to each other in the plate surface, the aspect ratio in both rolling directions seems to satisfy the above conditions. It is preferable to make it.
  • the Mo phase dispersed in the Cu matrix of the Cu—Mo composite layer is a flat stretched form depending on the Mo content of the Cu—Mo composite layer, the rolling mode (unidirectional rolling, cross rolling), etc.
  • the flatly stretched Mo phase has a shape close to an individual island, but the Mo content is large.
  • the flatly stretched Mo phases are connected to each other, and the absence of stripes in which such a Mo phase and a Cu matrix are mixed has a marbled form (rolling structure). Therefore, in the latter case, the aspect ratio clearly exceeds 2, but there are cases where it cannot be specifically quantified.
  • the semiconductor package to which the heat sink of the present invention is mainly applied repeats the operation and the rest of the semiconductor, it is from room temperature (may be about ⁇ 50 ° C. in a cold region) to about 200 ° C. during semiconductor operation. Repeat until the temperature rises. For this reason, the heat sink needs to have a low coefficient of thermal expansion in order to cope with thermal fatigue. In addition, it is important that the thermal expansion coefficient is as low as about 800 ° C. for use in brazing and about 400 ° C. for use in soldering. On the other hand, the heat sink needs to have a high thermal conductivity, in particular, a high thermal conductivity in the thickness direction in order to obtain high heat dissipation.
  • the thermal conductivity in the plate thickness direction is It is preferably 200 W / m ⁇ K or more, more preferably 250 W / m ⁇ K or more, and particularly preferably 260 W / m ⁇ K or more.
  • the in-plane average thermal expansion coefficient from 50 ° C. to 800 ° C. is preferably 10.0 ppm / K or less, more preferably 8.0 ppm / K or less, and 7.5 ppm / K or less. It is particularly preferred.
  • the heat sink of the present invention is bonded to a ceramic such as an alumina substrate.
  • a heat sink of about 220 W / m ⁇ K is used. I came.
  • the thermal conductivity in the plate thickness direction is 260 W / m ⁇ K or more, It is particularly preferred that the in-plane average thermal expansion coefficient from 50 ° C. to 800 ° C. has a thermal characteristic of 7.5 ppm / K or less.
  • the Cu content of the Cu—Mo composite layer is 20 to 30% by mass, such particularly excellent thermal characteristics can be easily obtained.
  • the heat radiating plate of the present invention may be plated with Ni plating or the like on its surface for anticorrosive purposes or for joining with other members (brazing joining or soldering joining).
  • the plating film is formed with a thickness that does not significantly affect the thermal characteristics of the heat sink.
  • limiting in the kind of plating For example, Ni plating, Cu plating, Au plating, Ag plating etc. can be applied, and plating chosen from these can be given individually or in combination of 2 or more layers.
  • the plating film may be provided only on one side of the heat radiating plate (one surface of the two Cu—Mo composite layers as the outermost layer) or on both surfaces of the heat radiating plate.
  • the heat sink surface (the surface of the outermost Cu-Mo composite layer) has a thickness that does not affect the thermal characteristics. You may form Cu film (plating film etc.) of thickness (for example, thickness of about several micrometers).
  • the plating film must be formed with a film thickness that does not greatly affect the thermal characteristics of the heat sink main body composed of the Cu—Mo composite layer and the Cu layer. Specifically, since the thermal conductivity in the plate thickness direction generally decreases as the plating film becomes thicker, the thermal conductivity in the plate thickness direction of the plating film has a heat sink body (the heat sink having no plating film).
  • the film thickness is preferably such that it does not become lower than that of 10 W / m ⁇ K. For this reason, for example, when the plating film is a Cu plating film, it is generally preferable that the film thickness is 20 ⁇ m or less.
  • a Cu—Mo composite material (a) and a Cu material (b) having a plate thickness cross-sectional structure in which a Mo phase is dispersed in a Cu matrix are laminated, and this laminate After diffusion bonding, cold rolling (x) is performed to obtain a heat radiating plate in which a Cu—Mo composite layer made of Cu—Mo composite material (a) and a Cu layer made of Cu material (b) are laminated.
  • the Cu—Mo composite material (a) is manufactured in advance, but this Cu—Mo composite material (a) is not subjected to rolling (for example, the methods (i) to (iii) described later) ) Or a method of rolling (y) (for example, methods (iv) and (v) described later).
  • a method of rolling (y) for example, methods (iv) and (v) described later.
  • the following Perform warm rolling of 1) and / or (2). This manufacturing method will be described in detail later. (1) Perform warm rolling instead of cold rolling (x). (2) Rolling (y) is performed by warm rolling.
  • the thicknesses of the Cu—Mo composite material (a) and the Cu material (b) are selected according to the thickness of the Cu—Mo composite layer and the Cu layer of the heat sink to be manufactured. Depending on the thickness, Cu foil may be used as the Cu material (b).
  • the Cu—Mo composite material (a) may be composed of a plurality of thin Cu—Mo composite materials, or the Cu material (b) may be composed of a plurality of thin Cu materials. . Therefore, in that case, (1) a Cu—Mo composite material (a) composed of a plurality of Cu—Mo composite materials and a single Cu material (b) are laminated, and (2) a single Cu—Mo composite material.
  • a and a Cu material (b) made of a plurality of Cu materials are laminated, (3) a Cu-Mo composite material (a) made of a plurality of Cu-Mo composite materials and Cu made of a plurality of Cu materials.
  • a layered product is formed by either laminating the material (b), and this layered product is diffusion bonded.
  • SPS discharge plasma sintering
  • the Cu—Mo composite material (a) the following can be used.
  • a pure Cu plate including a pure Cu foil) is usually used.
  • the thermal expansion coefficient of the Cu—Mo composite material is reduced by rolling, and the Cu—Mo composite material is also rolled in the prior art. Since the Mo particles are hard and the primary particles are small, it is considered that the Mo particles are not easily deformed by rolling. Therefore, the rolling of the Cu—Mo composite material is carried out exclusively by warm rolling at about 200 to 400 ° C. Yes.
  • a method of performing cold rolling by secondary rolling on a 65 mass% Mo-35 mass% Cu composite material has also been proposed, but warm rolling is performed in the primary rolling.
  • the effect of lowering the thermal expansion coefficient can be expected by the cold rolling.
  • the Cu content of the Cu—Mo composite material is relatively small (for example, Cu content of 30% by mass or less)
  • the same effect as described above can be obtained although the degree is relatively small.
  • the Cu content of the Cu—Mo composite material is relatively small, since the restraint by Mo is strengthened as described above, an effect of reducing the thermal expansion coefficient from this surface can be expected.
  • the Cu—Mo composite material (a) is manufactured in advance, but the Cu—Mo composite material (a) is obtained, for example, by any of the following methods (i) to (iii): Can be used.
  • IIi) a step of pressing a mixed powder of Mo powder and Cu powder into a green compact, a step of sintering the green compact in a reducing atmosphere or vacuum to form a sintered body, Cu-Mo composite material (a) obtained through the step of densifying the sintered body
  • the cold rolling (x) of the clad material requires a reduction. It is desirable to perform rolling at a rate of 70 to 99%, more preferably 80 to 99%, particularly preferably 90 to 96%. This reduction ratio is also the reduction ratio of the Cu—Mo composite material (a).
  • the effect of lowering the thermal expansion coefficient is obtained by cold rolling at a high pressure reduction rate, and if the reduction rate is excessively high, the thermal conductivity tends to decrease.
  • % Preferably 96%, it is possible to effectively reduce the thermal expansion coefficient while suppressing a decrease in thermal conductivity.
  • Cold rolling (x) is performed in multiple passes.
  • Cold rolling (x) may be unidirectional rolling, but the in-plane anisotropy is reduced by reducing the difference in coefficient of thermal expansion between two directions (X-axis direction and Y-axis direction) orthogonal to each other in the plate surface.
  • cross rolling which performs rolling in two orthogonal directions may be performed.
  • rolling in two orthogonal directions may be performed at different reduction ratios, but when it is desired to obtain a rolled sheet having uniform thermal characteristics with no difference in thermal expansion coefficient between the X-axis direction and the Y-axis direction. It is preferable to roll at the same rolling reduction.
  • the Cu—Mo composite material (a) a material obtained by the following method (iv) or (v) may be used.
  • (Iv) a step of pressing a mixed powder of Mo powder and Cu powder into a green compact, a step of sintering the green compact in a reducing atmosphere or vacuum to form a sintered body, Cu-Mo composite material (a) obtained through a step of densifying the sintered body and a step of rolling (y) the densified Cu-Mo composite material (V)
  • Cu-Mo composite (a) a step of pressing a mixed powder of Mo powder and Cu
  • Rolling (y) can be performed by cold rolling.
  • the rolling (y) can be performed by cold rolling, but in some cases, it is performed by warm rolling. May be.
  • the rolling (y) may be unidirectional rolling, but the in-plane anisotropy is reduced by reducing the difference in thermal expansion coefficient between two directions (X-axis direction and Y-axis direction) orthogonal to each other in the plate surface. In order to reduce, cross rolling which performs rolling in two orthogonal directions may be performed.
  • the rolling in the two orthogonal directions may be performed at different reduction ratios, but the Cu—Mo composite material having uniform thermal characteristics with no difference in thermal expansion coefficient between the X-axis direction and the Y-axis direction (a) When it is desired to obtain the same, it is preferable to perform rolling at the same rolling reduction.
  • the Cu—Mo composite material (a) obtained by the above method (iv) or (v) is subjected to rolling (y)
  • cold rolling (x) of the clad material is cold rolling.
  • the total rolling reduction ratio of the Cu—Mo composite (a) in which (x) and rolling (y) are combined is 70 to 99%, more preferably 80 to 99%, particularly preferably 90 to 96%. It is desirable to roll at. The reason is the same as above. Further, for the same reason as the above-described cross rolling, when the Cu—Mo composite material (a) is unidirectionally rolled by rolling (y), the cold rolling (x) is performed by rolling the Cu—Mo composite material ( You may roll in the direction orthogonal to the rolling direction of y).
  • FIG. 7 and FIG. 8 are heat sinks of examples to be described later, in which heat characteristics of heat sinks with different cold rolling reduction ratios during manufacturing are arranged and shown in FIG.
  • the thermal conductivity in the plate thickness direction thermal conductivity at room temperature
  • FIG. 8 shows the thermal conductivity in the plate thickness direction (thermal conductivity at room temperature).
  • the in-plane average thermal expansion coefficient from 50 ° C. to 400 ° C., respectively.
  • the cold rolling reduction ratio 70 to 98%) is the total rolling reduction ratio of the reduction ratio of the Cu—Mo composite material alone and the reduction ratio of the Cu—Mo composite material during rolling of the clad material.
  • the Cu content of the Cu—Mo composite (a) when the Cu content of the Cu—Mo composite (a) is relatively low, it prevents the cracks caused by cold rolling, etc., depending on the total rolling reduction of the material. Therefore, it is preferable to use a production method incorporating warm rolling (however, including a production method in which the rolling (y) of the Cu—Mo composite material (a) is not performed). In this production method, for example, It is preferable to perform warm rolling under the following conditions.
  • the total reduction ratio of the material (total reduction ratio combining the reduction ratio of the Cu—Mo composite alone and the reduction ratio of the Cu—Mo composite during rolling of the clad material) is 70% or more, and the Cu—Mo
  • the Cu content of the composite (a) is less than 20 mass%, it is preferable to perform the following (1) or / and (2) warm rolling, particularly when the Cu content is 15 mass% or less.
  • the following (1) and (2) warm rolling is preferably performed. Even when the Cu content of the Cu—Mo composite (a) is 20 to 30 mass% and the total rolling reduction of the material is particularly high (for example, a total rolling reduction of 96% or more), the following (1) or / And it is preferable to perform the warm rolling of (2).
  • the rolling (y) is performed by warm rolling.
  • the Mo particles are deformed by the Cu phase as compared with the cold rolling.
  • the distance between Mo particles is not sufficient, but the rate of decrease in the thermal expansion coefficient due to rolling tends to be lower than that in cold rolling.
  • the relative position change between the Cu phase and the Mo particles is less likely to occur due to the shortened length of the Mo particles, the Mo particles are easily deformed. For this reason, even if warm rolling is performed under the above conditions, there is no great difference from the case of cold rolling. A heat sink having thermal properties is obtained.
  • the warm rolling is preferably performed at a temperature of about 200 to 300 ° C.
  • Mo is easily oxidized to form a surface oxide, which tends to cause problems such as peeling during rolling and adversely affecting product quality.
  • step (A) the step of pressing the Mo powder or a mixed powder of Mo powder and Cu powder to form a green compact is the step (A), and the green compact is sintered in a reducing atmosphere or vacuum.
  • step (B) the step of forming a sintered body is step (B)
  • step (C1) the step of impregnating the sintered body with Cu melted in a non-oxidizing atmosphere or vacuum is the step (C1)
  • step (C2) the step of densifying the sintered body
  • step (D) the step of rolling (y) the Cu-Mo composite material subjected to Cu infiltration or densification treatment
  • step (A) Mo powder or a mixed powder of Mo powder and Cu powder is pressure-formed into a green compact according to a conventional method.
  • Cu is infiltrated after the green compact is sintered (step (C1)), and Cu is infiltrated after the green compact is sintered.
  • the densification treatment is performed (step (C1)).
  • an amount of Cu powder corresponding to the Cu content of the Cu—Mo composite (a) is blended.
  • the purity and particle size of the Mo powder and Cu powder are not particularly limited. Usually, the Mo powder having a purity of 99.95% by mass or more and an FSSS average particle size of about 1 to 8 ⁇ m is used.
  • the Cu powder is usually pure Cu such as electrolytic copper powder or atomized copper powder and having an average particle diameter D50 of about 5 to 50 ⁇ m.
  • step (A) Mo powder or a mixed powder of Mo powder and Cu powder is filled into a mold, and pressure is adjusted while adjusting the pressure according to the target value of the filling property of the mixed powder to be used and the molding density of the green compact Molding to obtain a green compact.
  • step (B) the green compact obtained in the step (A) is sintered in a reducing atmosphere (such as a hydrogen atmosphere) or in a vacuum to obtain a sintered body. This sintering may be performed under normal conditions.
  • the temperature is about 900 to 1050 ° C. (preferably 950 to 1000 ° C.) for about 30 to 1000 minutes. It is preferable to carry out under the condition of holding.
  • Mo powder compacts it is preferably carried out at a temperature of about 1100 to 1400 ° C. (preferably 1200 to 1300 ° C.) for 30 to 1000 minutes.
  • step (C1) the sintered body (porous body) obtained in step (B) is impregnated with Cu melted in a non-oxidizing atmosphere or in a vacuum (Cu infiltration) to form a Cu-Mo composite material.
  • (A) is obtained.
  • a desired Cu content is obtained by Cu infiltration.
  • Infiltration of Cu may be performed under normal conditions.
  • a Cu plate or Cu powder is placed on the upper surface and / or lower surface of the sintered body and held at a temperature of about 1083 to 1300 ° C. (preferably 1150 to 1250 ° C.) for 20 to 600 minutes.
  • the non-oxidizing atmosphere is not particularly limited, but a hydrogen atmosphere is preferable. Further, from the viewpoint of improving workability after infiltration, infiltration in a vacuum is preferable.
  • a sintering temperature is first set in a state in which a Cu plate or Cu powder for Cu infiltration is arranged on the green compact obtained in the step (A).
  • the step (B) may be carried out by heating to a temperature, and then the temperature may be raised to the Cu infiltration temperature to carry out the step (C1).
  • the Cu—Mo composite material (infiltrated) obtained in this step (C1) is subjected to surface grinding (for example, in order to remove excess pure Cu remaining on the surface prior to cold rolling in the next step. It is preferable to perform surface grinding using a milling machine or a grindstone.
  • the sintered body obtained in the step (B) is densified to obtain the Cu—Mo composite material (a).
  • the temperature is further raised to perform the treatment for dissolving Cu (treatment at about 1200 to 1300 ° C. for about 20 to 120 minutes), and then the densification in the step (C2). Processing may be performed.
  • This densification treatment requires high temperature and pressure, and can be performed by methods such as hot pressing, spark plasma sintering (SPS), and hot rolling. By this densification treatment, the voids in the sintered body are reduced and densified to increase the relative density.
  • the Cu—Mo composite material obtained in the step (C1) or (C2) is rolled at a predetermined reduction rate for the purpose of reducing the thermal expansion coefficient of the Cu—Mo composite material (a).
  • (Y) is applied.
  • a homogenizing aging heat treatment may be performed at a temperature of about 800 to 1000 ° C. as necessary.
  • the heat sink of the present invention can be made into a product by performing cold rolling or warm rolling as it is, or by performing softening aging heat treatment. Further, if necessary, the surface may be further subjected to plating such as Ni plating for the purpose of improving the corrosion resistance assumed to be used as a semiconductor pedestal and the performance against electric corrosion. In this case, the plating film is formed with a thickness that does not significantly affect the thermal characteristics of the heat sink.
  • plating there is no special restriction
  • Plating may be performed only on one side of the heat sink (one surface of both Cu—Mo composite layers as the outermost layer) or on both sides of the heat sink. Further, in order to improve the plating property when plating such as Ni plating on the surface of the heat sink, Cu plating may be applied to the surface of the heat sink (the surface of the Cu—Mo composite layer that is the outermost layer) as a base. .
  • the preferable film thickness of the plating film formed by plating as described above is as described above.
  • the heat sink of the present invention can be suitably used for a semiconductor package such as a ceramic package or a metal package included in various semiconductor modules, and high heat dissipation and durability can be obtained.
  • a semiconductor package such as a ceramic package or a metal package included in various semiconductor modules
  • high heat dissipation and durability can be obtained.
  • a low thermal expansion coefficient is maintained even after being exposed to a high temperature exceeding 800 ° C., so there is no problem in applications such as brazing joining where the joining temperature is increased to 750 ° C. or higher. Applicable.
  • Example 1 (1) Manufacturing conditions of Cu—Mo composite material Mixed powder obtained by mixing Mo powder (FSSS average particle diameter: 6 ⁇ m) and pure Cu powder (average particle diameter D50: 5 ⁇ m) at a predetermined ratio into a mold (50 mm ⁇ 50 mm) The resulting green compact was pressed into a green compact having a thickness corresponding to the rolling reduction ratio in the subsequent cold rolling. The green compact was sintered (1000 ° C., 600 minutes) in a hydrogen atmosphere to obtain a sintered body. Next, a pure Cu plate is placed on the upper surface of the sintered body, heated to 1200 ° C. in a hydrogen atmosphere (holding time 180 minutes) to dissolve the pure Cu plate, and the sintered body is impregnated with the dissolved Cu.
  • Mo powder FSSS average particle diameter: 6 ⁇ m
  • pure Cu powder average particle diameter D50: 5 ⁇ m
  • a Cu—Mo composite material having a predetermined Cu content was obtained.
  • the Cu—Mo composite material was subjected to unidirectional rolling (y) (cold rolling) at a predetermined reduction rate to produce a Cu—Mo composite material. .
  • Example of the present invention A Cu—Mo composite material and a pure Cu plate having a predetermined plate thickness obtained as described above were made into (Cu—Mo) / Cu / (Cu—). A three-layer structure of Mo) or a five-layer structure of (Cu—Mo) / Cu / (Cu—Mo) / Cu / (Cu—Mo) is laminated, and this laminate is a spark plasma sintering (SPS) apparatus (Sumitomo). Using “DR.SINTER SPS-1050” manufactured by Coal Mining Co., Ltd., diffusion bonding was performed under the conditions of 950 ° C., holding for 18 minutes, and pressure of 20 MPa.
  • SPS spark plasma sintering
  • the heat sink of the example of the present invention is rolled (cold rolling) in the direction perpendicular to the rolling direction of the rolling (y) at the same reduction ratio as the rolling (y) (cold rolling) of the Cu—Mo composite material.
  • Plate thickness 1 mm was manufactured.
  • the Cu—Mo composite material alone was also used as a heat radiating plate (plate thickness 1 mm) as a comparative example (Comparative Examples 1, 2, 4, 6, 8, 10).
  • Example 2 (1) Manufacturing conditions of Cu—Mo composite material A Cu—Mo composite material having a Cu content of 30 mass% or more was produced by the same method and conditions as in Example 1. On the other hand, a Cu—Mo composite material having a Cu content of less than 30 mass% was manufactured as follows. Mo powder (FSSS average particle size: 6 ⁇ m) was put into a mold (50 mm ⁇ 50 mm) and subjected to pressure molding to obtain a green compact having a thickness corresponding to the rolling reduction ratio in the subsequent cold rolling. The green compact was sintered (1300 ° C., 600 minutes) in a hydrogen atmosphere to obtain a sintered body. Next, a pure Cu plate is placed on the upper surface of the sintered body, heated to 1200 ° C.
  • Mo powder FSSS average particle size: 6 ⁇ m
  • Example of the present invention A Cu—Mo composite material and a pure Cu plate having a predetermined plate thickness obtained as described above were made into (Cu—Mo) / Cu / (Cu—). Mo) three-layer structure, (Cu-Mo) / Cu / (Cu-Mo) / Cu / (Cu-Mo) five-layer structure, or (Cu-Mo) / Cu / (Cu-Mo) / Cu / (Cu—Mo) / Cu / (Cu—Mo) is laminated in a seven-layer structure, and diffusion bonding and rolling (cold rolling) are performed in the same manner and under the same conditions as in Example 1. (Plate thickness 1 mm) was manufactured.
  • thermal conductivity of the inventive example is significantly higher than that of the comparative example, and in particular, the Cu content of the Cu—Mo composite layer is 20 to 30% by mass, so that high thermal conductivity and low thermal expansion coefficient are obtained. Excellent thermal characteristics satisfying the above are obtained.
  • Example 3 (1) Manufacturing conditions for Cu—Mo composite material The same method and conditions as in Example 2 (in the case of a Cu—Mo composite material with a Cu content of less than 30 mass%) except that the rolling was performed at a temperature of 250 ° C. A Cu—Mo composite was produced. (2) Manufacturing conditions of each specimen of the present invention example A Cu—Mo composite material and a pure Cu plate having a predetermined plate thickness obtained as described above were prepared from (Cu—Mo) / Cu / (Cu—Mo).
  • the heat dissipation plate (plate thickness 1 mm) of the present invention example is manufactured by performing diffusion bonding and rolling in the same manner and conditions as in Example 1 except that the three-layer structure is laminated and the rolling is performed at a temperature of 250 ° C. did.
  • Example 4 (1) Manufacturing conditions for Cu—Mo composite material A Cu—Mo composite material was manufactured by the same method and conditions as in Example 2 (in the case of a Cu—Mo composite material with a Cu content of less than 30 mass%). (2) Manufacturing conditions of each specimen of the present invention example A Cu—Mo composite material and a pure Cu plate having a predetermined plate thickness obtained as described above were prepared from (Cu—Mo) / Cu / (Cu—Mo). Then, diffusion bonding and rolling (cold rolling) were performed under the same method and conditions as in Example 1 to produce a heat sink main body (plate thickness 1 mm). A Cu plating film having a film thickness of 10 ⁇ m or 20 ⁇ m was formed on both surfaces of the heat sink main body by electrolytic plating to produce a heat sink of the present invention example.
  • the thermal characteristics of the heat dissipation plates of Invention Examples 19 and 20 on which a Cu plating film having a thickness of 10 ⁇ m was formed are almost the same as those of the heat dissipation plates of Invention Examples 7 and 8, respectively.
  • the thermal characteristics of the heat sinks of Invention Examples 21 and 22 in which a Cu plating film having a film thickness of 20 ⁇ m was formed have a slightly lower thermal conductivity in the plate thickness direction than the heat sinks of Invention Examples 7 and 8. However, the amount of decrease is less than 10 W / m ⁇ K.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Powder Metallurgy (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Cu-Mo複合材とCu材のクラッド構造を有する低熱膨張率、高熱伝導率の放熱板を提供する。 板厚方向においてCu-Mo複合体層、Cu層、Cu-Mo複合体層がこの順に積層し、或いは板厚方向においてCu-Mo複合体層とCu層が交互に積層することで3層以上のCu-Mo複合体層と2層以上のCu層で構成されるとともに、両面の最外層がCu-Mo複合体層からなる放熱板であって、Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有する。このクラッド構造により、低熱膨張率でありながら高い熱伝導率が得られる。

Description

放熱板及びその製造方法
 本発明は、半導体素子などの発熱体から発生する熱を効率的に放散させるために用いる放熱板とその製造方法に関する。
 半導体素子から発生する熱を半導体機器から効率的に放散させるために、放熱板(ヒートシンク)が用いられている。この放熱板は、その機能上高い熱伝導率が求められるとともに、半導体やセラミック回路基板、金属パッケージ部材などにはんだ付けやろう付けで接合されるため、接合される部材に近い熱膨張率(低熱膨張率)であることが求められる。
 従来、高熱伝導率、低熱膨張率の放熱板として、Mo-Cu複合材が用いられている(例えば、特許文献1)。一般に、放熱板に用いるMo-Cu複合材は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とし、この圧粉体に必要に応じて還元焼結を施した後、Cu溶浸或いは緻密化処理を施すことによりMo-Cu複合材とし、このMo-Cu複合材を圧延することで製造される。MoはCuとはほとんど固溶しないことから、このMo-Cu複合材はMoとCuの2相組織となり、低熱膨張率であるMoと高熱伝導率であるCuの特性を活かした放熱板とすることができる。
 特許文献2には、上記のようなMo-Cu複合材をベースとした放熱板として、特定の圧延工程を経て得られたMo-Cu複合材の両面にCu板を圧着したものが示されており、この放熱板は、[Cu/Mo/Cu]クラッド材よりも高い熱伝導率を有し、プレス打ち抜き性にも優れているとしている。
 また、Mo-Cu複合材は、圧延することにより熱膨張率が低下することが定性的に知られており、このため上記のように圧延工程を経て製造される。従来、Mo粒子は硬くて1次粒子が小さいことから、圧延で変形されにくいと考えられており、このためMo-Cu複合材の圧延は、200~400℃程度の温間圧延で実施されている(特許文献1)。また、特許文献2には、一次圧延で温間圧延を実施し、二次圧延で冷間圧延を実施する製造方法が示されているが、この製造方法においても、Mo粒子は変形されにくいという前提で、温間圧延(一次圧延)を必須の工程としている。
 近年、半導体の高出力化により放熱板の放熱性がより重要になっている。一方、半導体モジュールの小型化へのニーズも高く、放熱板もより小さな面積からの放熱が求められている。そのため、板面方向での放熱よりも、厚さ方向での放熱性がより重要となってきている。
特開平11-307701号公報 特開2001-358266号公報
 しかし、本発明者が検討したところによれば、特許文献2のようなMo-Cu複合材とCu材のクラッド構造では、厚さ方向での熱伝導率の向上は十分ではなく、厚さ方向でのより高い熱伝導率が得られる最適なクラッド構造があることが判った。
 したがって本発明の目的は、Mo-Cu複合材とCu材のクラッド構造を有する低熱膨張率、高熱伝導率の放熱板を提供することにある。
 また、本発明の他の目的は、そのような優れた熱特性を有する放熱板を安定して且つ低コストに製造することができる製造方法を提供することにある。
 特許文献2に記載の放熱板のクラッド構造は、Cu/(Cu-Mo)/Cu構造であるが、本発明者が検討したところによれば、(Cu-Mo)/Cu/(Cu-Mo)構造とした方が、同程度の低熱膨張率でありながら、より高い熱伝導率が得られることが判った。具体的には、(Cu-Mo)/Cu/(Cu-Mo)構造では、同じCu比率で圧下率が同じでも、Cu/(Cu-Mo)/Cu構造に較べて板厚方向の熱伝導率が10W/m・K以上高くなり、条件によってはさらに高くなることが判った。また、そのような(Cu-Mo)/Cu/(Cu-Mo)構造のクラッド材を製造する際に、材料を高圧下率(総圧下率)で冷間圧延することにより、熱膨張率がより効果的に低下することが判った。さらに、そのような(Cu-Mo)/Cu/(Cu-Mo)構造のクラッド材において、特にCu-Mo複合体層のCu含有量を最適化することにより、高熱伝導率と低熱膨張率を高度に満足したものとなることが判った。
 本発明は、以上のような知見に基づきなされたもので、以下を要旨とするものである。
[1]板厚方向において、Cu-Mo複合体層、Cu層、Cu-Mo複合体層がこの順に積層した放熱板であって、
 Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有することを特徴とする放熱板。
[2]板厚方向において、Cu-Mo複合体層とCu層が交互に積層することで3層以上のCu-Mo複合体層と2層以上のCu層で構成されるとともに、両面の最外層がCu-Mo複合体層からなる放熱板であって、
 Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有することを特徴とする放熱板。
[3]上記[1]又は[2]の放熱板において、Cu-Mo複合体層はCu含有量が10~50質量%であることを特徴とする放熱板。
[4]上記[1]又は[2]の放熱板において、Cu-Mo複合体層はCu含有量が20~30質量%であることを特徴とする放熱板。
[5]上記[1]~[4]のいずれかの放熱板において、板厚方向の熱伝導率が200W/m・K以上、50℃から800℃までの板面内平均熱膨張率が10.0ppm/K以下であることを特徴とする放熱板。
[6]上記[1]~[4]のいずれかの放熱板において、板厚方向の熱伝導率が250W/m・K以上、50℃から800℃までの板面内平均熱膨張率が8.0ppm/K以下であることを特徴とする放熱板。
[7]上記[1]~[6]のいずれかの放熱板において、積層したCu-Mo複合体層とCu層とからなる放熱板本体の片面又は両面に、板厚方向の熱伝導率が放熱板本体よりも10W/m・K以上低くならないような膜厚のめっき皮膜が形成されたことを特徴とする放熱板。
[8]上記[1]~[6]のいずれかの放熱板の製造方法であって、
 Cuマトリクス中にMo相が分散した板厚断面組織を有するCu-Mo複合材(a)とCu材(b)を積層させ、該積層体を拡散接合した後、冷間圧延(x)を施すことにより、Cu-Mo複合材(a)によるCu-Mo複合体層とCu材(b)によるCu層が積層した放熱板を得ることを特徴とする放熱板の製造方法。
[9]上記[8]の製造方法において、Cu-Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を経て得られたものであることを特徴とする放熱板の製造方法。
[10]上記[8]の製造方法において、Cu-Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程を経て得られたものであることを特徴とする放熱板の製造方法。
[11]上記[8]の製造方法において、Cu-Mo複合材(a)は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を経て得られたものであることを特徴とする放熱板の製造方法。
[12]上記[8]~[11]のいずれかの製造方法において、冷間圧延(x)の圧下率が70~99%であることを特徴とする放熱板の製造方法。
[13]上記[12]の製造方法において、冷間圧延(x)の圧下率が90~96%であることを特徴とする放熱板の製造方法。
[14]上記[8]~[13]のいずれかの製造方法において、冷間圧延(x)をクロス圧延で行うことを特徴とする放熱板の製造方法。
[15]上記[8]の製造方法において、Cu-Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程と、前記緻密化処理されたCu-Mo複合材に圧延(y)を施す工程を経て得られたものであることを特徴とする放熱板の製造方法。
[16]上記[8]の製造方法において、Cu-Mo複合材(a)は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程と、前記Cuを含浸させたCu-Mo複合材に圧延(y)を施す工程を経て得られたものであることを特徴とする放熱板の製造方法。
[17]上記[15]又は[16]の製造方法において、冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が70~99%であることを特徴とする放熱板の製造方法。
[18]上記[17]の製造方法において、冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が90~96%であることを特徴とする放熱板の製造方法。
[19]上記[15]~[18]のいずれかの製造方法において、圧延(y)をクロス圧延で行うことを特徴とする放熱板の製造方法。
[20]上記[15]~[19]のいずれかの製造方法において、圧延(y)でCu-Mo複合材(a)を一方向圧延した場合に、冷間圧延(x)では、Cu-Mo複合材を圧延(y)の圧延方向と直交する方向に圧延することを特徴とする放熱板の製造方法。
[21]上記[8]~[20]のいずれかの製造方法において、Cu-Mo複合材(a)はCu含有量が10~50質量%であることを特徴とする放熱板の製造方法。
[22]上記[8]~[20]のいずれかの製造方法において、Cu-Mo複合材(a)はCu含有量が20~30質量%であることを特徴とする放熱板の製造方法。
[23]上記[21]の製造方法において、Cu-Mo複合材(a)のCu含有量が20mass%未満であり、冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が70%以上である製造方法(但し、Cu-Mo複合材(a)の圧延(y)を行わない製造方法を含む。)であって、
 下記(1)又は/及び(2)の温間圧延を行うことを特徴とする放熱板の製造方法。
 (1)冷間圧延(x)に代えて温間圧延を行う。
 (2)圧延(y)を温間圧延で行う。
[24]上記[22]の製造方法において、冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が96%以上である製造方法(但し、Cu-Mo複合材(a)の圧延(y)を行わない製造方法を含む。)であって、
 下記(1)又は/及び(2)の温間圧延を行うことを特徴とする放熱板の製造方法。
 (1)冷間圧延(x)に代えて温間圧延を行う。
 (2)圧延(y)を温間圧延で行う。
[25]上記[8]~[24]のいずれかの製造方法において、積層したCu-Mo複合体層とCu層とからなる放熱板本体の片面又は両面に、板厚方向での熱伝導率が放熱板本体よりも10W/m・K以上低くならないような膜厚のめっき皮膜を形成することを特徴とする放熱板の製造方法。
[26]上記[1]~[7]のいずれかに記載の放熱板を備えたことを特徴とする半導体パッケージ。
[27]上記[26]に記載の半導体パッケージを備えたことを特徴とする半導体モジュール。
 本発明の放熱板は、低熱膨張率、高熱伝導率の優れた熱特性を有する。また、本発明の製造方法によれば、そのような優れた熱特性を有する放熱板を安定して且つ低コストに製造することができる。
3層クラッド構造を有する本発明の放熱板の板厚断面を模式的に示す説明図 5層クラッド構造を有する本発明の放熱板の板厚断面を模式的に示す説明図 実施例の放熱板の熱特性(板厚方向の熱伝導率、50℃から800℃までの板面内平均熱膨張率)を示すグラフ 実施例の放熱板の熱特性(板厚方向の熱伝導率、50℃から400℃までの板面内平均熱膨張率)を示すグラフ 実施例の放熱板の熱特性(板厚方向の熱伝導率、50℃から800℃までの板面内平均熱膨張率)を示すグラフ 実施例の放熱板の熱特性(板厚方向の熱伝導率、50℃から400℃までの板面内平均熱膨張率)を示すグラフ 実施例の放熱板であって、製造時における冷間圧延の圧下率が異なる放熱板の熱特性(板厚方向の熱伝導率、50℃から800℃までの板面内平均熱膨張率)を示すグラフ 実施例の放熱板であって、製造時における冷間圧延の圧下率が異なる放熱板の熱特性(板厚方向の熱伝導率、50℃から400℃までの板面内平均熱膨張率)を示すグラフ
 本発明の放熱板のうち3層クラッド構造のものは、板厚方向において、Cu-Mo複合体層、Cu層、Cu-Mo複合体層がこの順に積層した放熱板であって、Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有する。図1は、この3層クラッド構造を有する本発明の放熱板の板厚断面を模式的に示している。
 本発明の放熱板のCu-Mo複合体層とCu層は、積層させたCu-Mo複合材とCu材を拡散接合させることにより構成されるものであり、両層間には拡散接合部を有するが、両部材のCuどうし(Cu-Mo複合材のCuとCu材)が拡散接合したものであるため、健全な拡散接合部が得られる。例えば、Mo(Mo材)とCu(Cu材)をクラッドする場合を考えると、MoとCuは合金化しないため、両部材の接合は拡散接合ではなく機械的接合になるが、このような接合では、接合界面に酸化膜や微細な空隙が残存しやすく、これらを起点として割れなどを生じやすい。これに対して本発明のように両部材のCuどうし(Cu-Mo複合材のCuとCu材)が拡散接合することにより、接合界面に酸化膜や微細な空隙が残存するようなことがなく、健全な接合部が得られる。
 本発明の放熱板は5層以上のクラッド構造としてもよく、このクラッド構造のものは、板厚方向において、Cu-Mo複合体層とCu層が交互に積層することで3層以上のCu-Mo複合体層と2層以上のCu層で構成されるとともに、両面の最外層がCu-Mo複合体層からなる放熱板であって、Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有する。図2は、5層クラッド構造を有する本発明の放熱板の板厚断面を模式的に示している。
 以上のような両面の最外層がCu-Mo複合体層からなる本発明の放熱板(例えば(Cu-Mo)/Cu/(Cu-Mo)構造の放熱板)は、特許文献2に示されるCu/(Cu-Mo)/Cu構造の放熱板に較べて高い熱伝導率を有するが、これは、以下のような作用効果の違いによるものと考えられる。すなわち、特許文献2に示されるCu/(Cu-Mo)/Cu構造の場合には、熱伝導率が外層(Cu層)>内層(Cu-Mo複合体層)であるため外層・内層間の界面の熱抵抗が高く、外層(Cu層)に入った熱が外層・内層間の界面で反射・散乱して熱流が乱れるため、熱が内層(Cu-Mo複合体層)側にうまく伝わらず、その分、板厚方向の熱伝導率は低くなるものと考えられる。これに対して本発明の(Cu-Mo)/Cu/(Cu-Mo)構造の場合には、熱伝導率が外層(Cu-Mo複合体層)<内層(Cu層)であるため、外層・内層間の界面の熱抵抗がほとんどなく、外層(Cu-Mo複合体層)に入った熱がそのまま内層(Cu層)側に伝わるので、板厚方向での高い熱伝導率が得られるものと考えられる。
 クラッド構造における積層数は特に制限はなく、積層数が多い方が熱膨張率が低くなり、また、プレス加工性も良くなるのでプレス加工には有利になる。但し、積層数が増えると厚さ方向の熱伝導率が若干低下傾向になることから、全積層数で11層程度が事実上の上限となる。
 Cu-Mo複合体層のCu含有量は特に制限はないが、一般には10~50質量%程度が適当である。後述するように、Cu含有量が比較的多い方(例えば、40質量%以上)が高圧下率で冷間圧延する場合に冷間圧延性が向上し、高圧下率で冷間圧延することによる熱膨張率の低下効果が得られやすい。一方、Cu層の熱膨張を拘束する効果(Cu層を両側から挟んで物理的に拘束する効果)を高める点では、圧延の圧下率だけでなく、Mo含有量が多いほうが好ましいが、熱伝導率がトレードオフの関係にあり、また、Mo含有量が多すぎると冷間圧延が難しくなる。このため主に冷間圧延性などの加工性の観点からは、Cu含有量は30~45質量%程度が好ましいと言える。これに対して、放熱板の熱特性の観点からは、Cu-Mo複合体層のCu含有量は15~30質量%程度が好適であり、高熱伝導率と低熱膨張率を高度に満足する優れた熱特性が得られることが判った。このため放熱板の熱特性の観点からは、Cu-Mo複合体層のCu含有量は15~30質量%程度とすることが好ましい。一方、後述するように、Cu-Mo複合体層(Cu-Mo複合材)のCu含有量が20質量%未満では冷間圧延性に問題を生じる可能性もあるので、放熱板の熱特性と冷間圧延性の観点からは、Cu-Mo複合体層のCu含有量は20~30質量%程度とすることがより好ましい。
 図3及び図4は、後述する実施例の放熱板の一部について、それらの熱特性を整理して示したものであり、図3は板厚方向の熱伝導率(室温での熱伝導率)と50℃から800℃までの板面内平均熱膨張率を、図4は板厚方向の熱伝導率(室温での熱伝導率)と50℃から400℃までの板面内平均熱膨張率を、それぞれ示している。ここで、板面内熱膨張率は押棒式変位検出法で測定されたものであり、50℃-800℃と50℃-400℃における各伸び量の差を温度差で割り算して、50℃から800℃までの板面内平均熱膨張率と50℃から400℃までの板面内平均熱膨張率を求めた。また、板厚方向の熱伝導率(室温での熱伝導率)はフラッシュ法で測定した。この熱特性の測定・算出方法は、後述する図5~図8の熱特性についても同様である。
 図3及び図4には、Cu-Mo複合材単体からなる放熱板(比較例)、特許文献2のCu/(Cu-Mo)/Cu構造の3層クラッド材からなる放熱板(比較例)、本発明の3層~7層クラッド材からなる放熱板(発明例)について、それらの熱特性を示している。図中、丸で囲い、矢印でつないだものが、ほぼ同等の密度を有する放熱板である。これによれば、ほぼ同等の密度を有する放熱板の熱特性を較べた場合、特許文献2のCu/(Cu-Mo)/Cu構造の放熱板は、Cu-Mo複合材単体の放熱板に較べて板厚方向の熱伝導率が若干低いが、板面内熱膨張率が大きく低下している。そして、このCu/(Cu-Mo)/Cu構造の放熱板の熱特性に対して、本発明の放熱板は、板面内熱膨張率はほぼ同等でありながら、板厚方向の熱伝導率が大幅に高く(この例では約50~70W/m・K程度高い)なっている。
 図5及び図6は、本発明の放熱板について、Cu-Mo複合体層のCu含有量が熱特性に及ぼす影響を示したもので、後述する実施例の放熱板(本発明例の3層クラッド材)の一部について、それらの熱特性を整理して示したものである。図5は板厚方向の熱伝導率(室温での熱伝導率)と50℃から800℃までの板面内平均熱膨張率を、図6は板厚方向の熱伝導率(室温での熱伝導率)と50℃から400℃までの板面内平均熱膨張率を、それぞれ示している。また、図5及び図6には、Cu-Mo複合体のCu含有量が本発明例の放熱板とほぼ同等であるCu-Mo複合体単体からなる放熱板(比較例)の熱特性も示してあり、図中、実線の矢印でつないだものが、Cu-Mo複合体のCu含有量がほぼ同等である「Cu-Mo複合体単体からなる放熱板」と「本発明例の放熱板」である。
 図5及び図6によれば、本発明例の放熱板は、Cu-Mo複合体層のCu含有量が15~45mass%の範囲において、Cu含有量が低いほど(Mo含有量が高いほど)板厚方向の熱伝導率が高く、且つ板面内平均熱膨張率は低くなっている。なお、後述するようにCu-Mo複合体層(Cu-Mo複合材)のCu含有量が20mass%未満となると冷間圧延性が低下するので、Cu-Mo複合体層のCu含有量が15mass%のものは温間圧延で製造したものである。また、本発明例の放熱板の板厚方向の熱伝導率は、Cu-Mo複合体のCu含有量がほぼ同等であるCu-Mo複合体単体からなる放熱板(比較例)に較べてかなり高いが、その程度は、Cu-Mo複合体のCu含有量が比較的低い場合(15mass%、25mass%)に特に顕著である。この図5及び図6の結果から、Cu-Mo複合体層のCu含有量が15~30質量%(さらに冷間圧延性を考慮すると20~30質量%)の場合に、特に優れた熱特性が得られるものと考えられる。
 Cu-Mo複合体層とCu層の各厚さ、Cu-Mo複合体層とCu層の層厚比、放熱板の板厚なども特に制限はないが、5層以上(特に7層以上)の多層のクラッド材の場合には、Cu-Mo複合体層によるCu層の拘束力を強くするため、複数のCu層の厚さは同じであることが好ましい。また、5層以上の多層の場合は、熱特性を確保するとともに、圧延時や実用時に反りやゆがみ等が発生しないように、厚さ方向中央のCu-Mo複合体層を中心として厚さ方向で対称形の構造(Cu-Mo複合体層とCu層の厚さが対称形の構造)が好ましい。また、放熱板の板厚は1mm前後の場合が多いが、特に制限はない。
 Cu-Mo複合体層とCu層の層厚比については、Cu-Mo複合体層に対してCu層の層厚比が大きいと、Cu-Mo複合体層によるCu層の拘束が弱くなるので熱膨張率が高くなり、一方、Cu層の層厚比が小さいと熱伝導率が低くなる。したがって、得ようとする熱特性に応じて、Cu-Mo複合体層とCu層の層厚比を適宜選択すればよいが、低温(例えば200℃、400℃)での熱膨張率を低くするという観点からは、Cu-Mo複合体層に対してCu層をあまり厚くしない方がよい。
 また、Cu-Mo複合体層のCu含有量やCu-Mo複合体層とCu層の層厚比は放熱板の密度にリンクするので、この密度は9.25~9.55g/cm程度であることが好ましく、9.30~9.45g/cm程度であることが特に好ましい。
 本発明の放熱板は、事前に製作されたCu-Mo複合材とCu材を拡散接合した後、圧延することにより製造され、また、Cu-Mo複合材の製造工程でも圧延が行われることがあるので、全体が圧延組織であり、また、Cu-Mo複合体層のCuマトリクス中に分散するMo相は扁平に延伸された形態を有し、通常、板厚断面組織中でのMo相のアスペクト比(圧延方向でのアスペクト比)は2超となる。また、このように圧延(特に冷間圧延)によってMo相が扁平となることにより熱膨張率が低下するので、アスペクト比(圧延方向でのアスペクト比)は3以上がより好ましい。
 ここで、アスペクト比とは、圧延方向における板厚断面組織中でのMo相の長軸/短軸(長さ比)であり、本発明では、圧延方向での板厚断面組織(イオンミリング仕上げした板厚断面組織)をSEMなどで観察し、任意の1視野に含まれる各Mo相の長軸/短軸を求め、それらの平均値をもって「板厚断面組織中でのMo相のアスペクト比」とする。また、Cu-Mo複合体層が板面内で直交する方向(X軸方向、Y軸方向)での圧延工程を経ている場合には、両圧延方向でのアスペクト比が上記条件を満すようにすることが好ましい。
 なお、Cu-Mo複合体層のCuマトリクス中に分散するMo相は、Cu-Mo複合体層のMo含有量や圧延の形態(一方向圧延、クロス圧延)などにより、扁平に延伸された形態が異なり、例えば、Cu-Mo複合体層のMo含有量が比較的少ない場合には、扁平に延伸されたMo相は、個々が独立した島状に近い形態を有するが、Mo含有量が多くなると、扁平に延伸されたMo相どうしが繋がり、このようなMo相とCuマトリクスが混在した縞状なしはマーブル状のような形態(圧延組織)となる。したがって、後者の場合には、アスペクト比は明らかに2超となるが、具体的に定量化することができない場合がある。
 本発明の放熱板が主に適用される半導体パッケージは、半導体が作動と休止を繰り返すことから、常温(寒冷地の場合には-50℃程度の場合もある)から半導体作動時の200℃程度までの昇温を繰り返す。このため放熱板は、熱疲労対応のために熱膨張率が低いことが必要である。また、ロウ付け接合を行う用途では800℃程度、はんだ付け接合を行う用途では400℃程度までの熱膨張率が低いことが重要である。一方、放熱板は、高い放熱性を得るために高い熱伝導率、特に板厚方向での高い熱伝導率を有することが必要である。
 本発明の放熱板は、高熱伝導率と低熱膨張率を兼ね備えた優れた熱特性を有するものであるが、具体的には、板厚方向での熱伝導率(室温での熱伝導率)が200W/m・K以上であることが好ましく、250W/m・K以上であることがより好ましく、260W/m・K以上であることが特に好ましい。また、50℃から800℃までの板面内平均熱膨張率が10.0ppm/K以下であることが好ましく、8.0ppm/K以下であることがより好ましく、7.5ppm/K以下であることが特に好ましい。
 本発明の放熱板が主に適用される半導体パッケージでは、放熱板はアルミナ基板などのようなセラミックと接合されるが、従来のSi半導体パッケージでは、220W/m・K程度の放熱板が使用されてきた。これに対して本発明の放熱板は、SiC半導体やGaN半導体などの高出力半導体に対応するため、板厚方向での熱伝導率(室温での熱伝導率)が260W/m・K以上、50℃から800℃までの板面内平均熱膨張率が7.5ppm/K以下の熱特性を有することが特に好ましい。特に、Cu-Mo複合体層のCu含有量を20~30質量%とした場合には、そのような特に優れた熱特性を容易に得ることができる。
 本発明の放熱板は、防食目的や他の部材との接合(ロウ付け接合やはんだ付け接合)のために、その表面にNiめっきなどのめっきを施してもよい。この場合、めっき皮膜は放熱板の熱特性に大きく影響しない程度の膜厚で形成される。めっきの種類に特別な制限はなく、例えば、Niめっき、Cuめっき、Auめっき、Agめっきなどが適用でき、これらの中から選ばれるめっきを単独で或いは2層以上を組み合わせて施すことができる。めっき皮膜は、放熱板の片面(最外層である両Cu-Mo複合体層のうちの一方の表面)のみに設けてもよいし、放熱板の両面に設けてもよい。また、放熱板表面にNiめっきなどのめっきを施す際のめっき性の改善のために、放熱板表面(最外層であるCu-Mo複合体層の表面)に、熱特性に影響しない程度の厚さ(例えば数μm程度の厚さ)のCu膜(めっき皮膜など)を形成してもよい。
 めっき皮膜は、Cu-Mo複合体層とCu層とからなる放熱板本体の熱特性に大きな影響を与えないような膜厚で形成する必要がある。具体的には、一般にめっき皮膜が厚くなると板厚方向での熱伝導率が低下するので、めっき皮膜は、板厚方向での熱伝導率が放熱板本体(めっき皮膜を有しない当該放熱板)のそれよりも10W/m・K以上低くならないような膜厚で形成されることが好ましい。このため、例えば、めっき皮膜がCuめっき皮膜の場合、一般には20μm以下の膜厚とすることが好ましい。
 次に、以上述べた本発明の放熱板の製造方法について説明する。
 本発明の放熱板の製造方法の一実施形態では、Cuマトリクス中にMo相が分散した板厚断面組織を有するCu-Mo複合材(a)とCu材(b)を積層させ、この積層体を拡散接合した後、冷間圧延(x)を施すことにより、Cu-Mo複合材(a)によるCu-Mo複合体層とCu材(b)によるCu層が積層した放熱板を得る。ここで、Cu-Mo複合材(a)は予め製作されたものであるが、このCu-Mo複合材(a)は圧延を行わない方法(例えば、後述する(i)~(iii)の方法)で製作したものでもよいし、圧延(y)を行う方法(例えば、後述する(iv)、(v)の方法)で製作したものでもよい。
 また、本発明の放熱板の製造方法の他の実施形態では、Cu-Mo複合材(a)のCu含有量が比較的低い場合に、冷間圧延による耳ワレなどを防止するために下記(1)又は/及び(2)の温間圧延を行う。なお、この製造方法については、後に詳述する。
 (1)冷間圧延(x)に代えて温間圧延を行う。
 (2)圧延(y)を温間圧延で行う。
 Cu-Mo複合材(a)とCu材(b)の厚さは、製造しようとする放熱板のCu-Mo複合体層とCu層の厚さに応じて選択され、したがって、Cu層の厚さによっては、Cu材(b)としてCu箔を用いてもよい。
 なお、Cu-Mo複合材(a)を積層した複数枚の薄いCu-Mo複合材で構成してもよいし、Cu材(b)を積層した複数枚の薄いCu材で構成してもよい。したがって、その場合には、(1)複数枚のCu-Mo複合材からなるCu-Mo複合材(a)と単体のCu材(b)を積層させる、(2)単体のCu-Mo複合材(a)と複数枚のCu材からなるCu材(b)を積層させる、(3)複数枚のCu-Mo複合材からなるCu-Mo複合材(a)と複数枚のCu材からなるCu材(b)を積層させる、のいずれかによる積層体とし、この積層体を拡散接合する。
 積層体の拡散接合を行う方法に特に制限はないが、放電プラズマ焼結(SPS)、ホットプレスによる拡散接合が好ましい。
 Cu-Mo複合材(a)は、下記のようなものを用いることができる。また、Cu材(b)としては、通常、純Cu板(純Cu箔を含む)を用いる。
 さきに述べたように、Cu-Mo複合材は、圧延することにより熱膨張率が低下することが定性的に知られており、従来技術でもCu-Mo複合材の圧延が行われているが、Mo粒子は硬くて1次粒子が小さいことから、圧延で変形されにくいと考えられており、このためCu-Mo複合材の圧延は、専ら200~400℃程度の温間圧延で実施されている。また、65mass%Mo-35mass%Cu複合材について二次圧延で冷間圧延を実施する方法も提案されているが、一次圧延では温間圧延を行っている。
 しかし、以上のような従来の認識とこれに基づく製造方法に対して、Cu-Mo複合材(特にCu含有量がそれほど低くないCu-Mo複合材)の圧延を温間圧延で行うと、Mo粒子の変形が適切に進まないため熱膨張率を低下させる効果が乏しいこと、これに対して圧延を冷間圧延で行うと、Mo粒子の変形が適切に進行して熱膨張率が効果的に低下することが判った。また、Cu-Mo複合材のCu含有量が比較的低い(例えば20質量%未満)場合は、冷間圧延を行うと圧下率によっては耳ワレなどを生じるおそれがあるため、一部又は全部の圧延を温間圧延とした方がよい場合があるが、Cu含有量が20質量%以上(特に25質量%以上)で且つ圧下率が極端に高くない場合は、Cu-Mo複合材の圧延を冷間圧延だけで行っても、大きな耳ワレが生じることもなく良好な圧延板が得られることが判った。このように温間圧延と冷間圧延でMo粒子の塑性変形形態が大きく異なるのは、次のような理由によるものと考えられる。
 Cu-Mo複合材を圧延した場合、MoとCuの降伏応力の違いから、圧延初期には、Mo粒子は変形するよりも、Cuマトリックス内での相対位置を変化させ、圧延が進んで板厚方向でMo粒子どうしが接触していくと変形を生じる傾向にある。冷間圧延では、Cuの加工硬化が生じることから、圧延の進行に伴ってMo粒子をCu相により変形させることができるようになっていき、このためMo粒子の変形が適切に進行するものと考えられる。これに対して、温間圧延ではMo粒子のCuマトリックス内での相対位置変化がより容易となり、Cuの加工硬化も生じにくいため、冷間圧延に較べてMo粒子をCu相によって変形させる作用が十分に得られず、このためMo粒子の変形が適切に進行しないものと考えられる。
 このようなCu-Mo複合材におけるMo粒子の塑性変形形態の違いは、Cu-Mo複合材のCu含有量が多くなるほど顕著になる。これは、温間圧延ではCuの加工硬化を利用できないことに加えて、Cuが多い分、Mo粒子がCuマトリックス内で相対位置を変化させやすくなるのに対して、冷間圧延では、Cuが多い分、Cuの加工硬化の影響をより多く受けるためであると考えられる。Cuは熱伝導率が高いが熱膨張率も高いため、Cu-Mo複合材のCu含有量が多くなると熱膨張率の面で問題を生じやすいが、所定の高圧下率で冷間圧延を行うことにより、Cu-Mo複合材の熱膨張率を効果的に低下させることができることが判った。また、後述するように、圧延の一部に温間圧延を取り入れ、冷間圧延と温間圧延を併用する場合でも、その冷間圧延により熱膨張率の低下効果が期待できる。
 また、Cu-Mo複合材のCu含有量が比較的少ない場合(例えば、Cu含有量30%質量以下)でも、その程度は相対的に小さくなるものの、上記と同様の効果が得られる。一方、Cu-Mo複合材のCu含有量が比較的少ない場合には、上述したようにMoによる拘束が強化されるので、この面からの熱膨張率の低下効果が期待できる。
 Cu-Mo複合材(a)は事前に製作されるものであるが、Cu-Mo複合材(a)としては、例えば、下記(i)~(iii)のいずれかの方法で得られたものを用いることができる。
 (i)Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を経て得られたCu-Mo複合材(a)
 (ii)Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程を経て得られたCu-Mo複合材(a)
 (iii)Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を経て得られたCu-Mo複合材(a)
 以上の(i)~(iii)のいずれかの方法で得られたCu-Mo複合材(a)は、冷間圧延が施されていないため、クラッド材の冷間圧延(x)では、圧下率70~99%、より好ましくは80~99%、特に好ましくは90~96%で圧延することが望ましい。この圧下率はCu-Mo複合材(a)の圧下率でもある。このように高圧下率で冷間圧延することにより熱膨張率を低下させる効果が得られ、また、圧下率が過剰に高いと熱伝導率が低下する傾向があるため、圧下率の上限を99%、好ましくは96%とすることにより、熱伝導率の低下を抑制しつつ熱膨張率を効果的に低下させることができる。冷間圧延(x)は複数パスで実施される。
 冷間圧延(x)は、一方向圧延としてもよいが、板面内で直交する2方向(X軸方向、Y軸方向)間の熱膨張率の差を小さくして面内異方性を減ずるために、直交する2方向で圧延を行うクロス圧延を行ってもよい。ここで、直交する2方向での圧延は、異なる圧下率で行ってもよいが、X軸方向とY軸方向で熱膨張率差のない均一な熱特性を有する圧延板を得たい場合には、同じ圧下率で圧延するのが好ましい。
 また、Cu-Mo複合材(a)としては、下記(iv)又は(v)の方法で得られたものを用いてもよい。
 (iv)Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程と、前記緻密化処理されたCu-Mo複合材に圧延(y)を施す工程を経て得られたCu-Mo複合材(a)
 (v)Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程と、前記Cuを含浸させたCu-Mo複合材に圧延(y)を施す工程を経て得られたCu-Mo複合材(a)
 圧延(y)は冷間圧延で行うことできる。Cu-Mo複合材(a)のCu含有量が40質量%未満(特に30質量%以下)の場合も圧延(y)を冷間圧延で行うことができるが、場合によっては温間圧延で行ってもよい。また、圧延(y)は、一方向圧延としてもよいが、板面内で直交する2方向(X軸方向、Y軸方向)間の熱膨張率の差を小さくして面内異方性を減ずるために、直交する2方向で圧延を行うクロス圧延を行ってもよい。ここで、直交する2方向での圧延は、異なる圧下率で行ってもよいが、X軸方向とY軸方向で熱膨張率差のない均一な熱特性を有するCu-Mo複合材(a)を得たい場合には、同じ圧下率で圧延するのが好ましい。
 以上の(iv)又は(v)の方法で得られたCu-Mo複合材(a)は、圧延(y)が施されているため、クラッド材の冷間圧延(x)では、冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が70~99%、より好ましくは80~99%、特に好ましくは90~96%となるような圧下率で圧延することが望ましい。その理由は上記と同様である。また、上述したクロス圧延と同様に理由から、圧延(y)でCu-Mo複合材(a)を一方向圧延した場合には、冷間圧延(x)では、Cu-Mo複合材を圧延(y)の圧延方向と直交する方向に圧延してもよい。
 図7及び図8は、後述する実施例の放熱板であって、製造時における冷間圧延の圧下率が異なる放熱板について、それらの熱特性を整理して示したものであり、図7は板厚方向の熱伝導率(室温での熱伝導率)と50℃から800℃までの板面内平均熱膨張率を、図8は板厚方向の熱伝導率(室温での熱伝導率)と50℃から400℃までの板面内平均熱膨張率を、それぞれ示している。ここで、冷間圧延の圧下率(70~98%)は、Cu-Mo複合材単体での圧下率とクラッド材圧延時のCu-Mo複合材の圧下率を合わせた総圧下率である。
 また、本発明の放熱板の製造において、Cu-Mo複合材(a)のCu含有量が比較的低い場合には、材料の総圧下率にもよるが、冷間圧延による耳ワレなどを防止するために、温間圧延を取り入れた製造方法(但し、Cu-Mo複合材(a)の圧延(y)を行わない製造方法を含む。)とすることが好ましく、この製造方法では、例えば、次のような条件で温間圧延を行うことが好ましい。
 すなわち、材料の総圧下率(Cu-Mo複合材単体での圧下率とクラッド材圧延時のCu-Mo複合材の圧下率を合わせた総圧下率)が70%以上であって、Cu-Mo複合材(a)のCu含有量が20mass%未満の場合には、下記(1)又は/及び(2)の温間圧延を行うことが好ましく、特にCu含有量が15mass%以下の場合には、下記(1)及び(2)の温間圧延を行うことが好ましい。また、Cu-Mo複合材(a)のCu含有量が20~30mass%であって、材料の総圧下率が特に高い場合(例えば総圧下率96%以上)にも、下記(1)又は/及び(2)の温間圧延を行うことが好ましい。
 (1)上記冷間圧延(x)に代えて温間圧延を行う。
 (2)上記圧延(y)を温間圧延で行う。
 さきに述べたように、温間圧延ではMo粒子のCuマトリックス内での相対位置変化がより容易となり、Cuの加工硬化も生じにくいため、冷間圧延に較べてMo粒子をCu相によって変形させる作用が十分に得られず、圧延による熱膨張率の低下の割合が冷間圧延に較べて低くなる傾向にあるが、低Cu含有量のCu-Mo複合材の場合には、Mo粒子間距離が短くなることからCu相とMo粒子の相対位置変化が生じにくいため、Mo粒子が変形されやすく、このため上記のような条件で温間圧延を行っても、冷間圧延した場合と大差ない熱特性を有する放熱板が得られる。
 温間圧延は200~300℃程度の温度で行うことが好ましい。温間圧延の温度が300℃超では、Moが酸化して表面酸化物が生成しやすくなり、それが圧延中に剥離して製品の品質に悪影響を及ぼすなどの問題を生じやすい。
 なお、上記(1)、(2)のいずれか一方の温間圧延を行う場合、Cu-Mo複合材(a)のCu含有量や厚さなどに応じて圧延性を考慮し、いずれか一方が選択される。
 次に、Cu-Mo複合材(a)を得るための上記(i)~(v)の方法の工程について説明する。
 以下の説明において、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程を工程(A)、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を工程(B)、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を工程(C1)、前記焼結体を緻密化処理する工程を工程(C2)、Cu溶浸又は緻密化処理したCu-Mo複合材に圧延(y)を施す工程を工程(D)という。
 工程(A)では、常法に従いMo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする。上述したCu-Mo複合材(a)の製造方法では、圧粉体の焼結後にCuの溶浸を行う場合(工程(C1))と、圧粉体の焼結後にCuの溶浸を行うことなく、緻密化処理を行う場合(工程(C1))とがあるが、後者の場合には、Cu-Mo複合材(a)のCu含有量に見合う量のCu粉末を配合する。
 Mo粉末やCu粉末の純度や粒径は特に限定しないが、通常、Mo粉末としては、純度が99.95質量%以上、FSSS平均粒径が1~8μm程度のものが用いられる。また、Cu粉末としては、通常、電解銅粉やアトマイズ銅粉末などの純Cuであって、平均粒径D50が5~50μm程度のものが用いられる。
 工程(A)では、Mo粉末又はMo粉末とCu粉末の混合粉末を型に充填し、使用する混合粉末の充填性や圧粉体の成形密度の目標値に応じて圧力を調整しながら加圧成形し、圧粉体を得る。
 工程(B)では、工程(A)で得られた圧粉体を還元性雰囲気(水素雰囲気など)中又は真空中で焼結して焼結体とする。この焼結も通常の条件で行えばよく、Mo粉末とCu粉末の混合粉末の圧粉体の場合には、900~1050℃(好ましくは950~1000℃)程度の温度で30~1000分程度保持する条件で行うことが好ましい。また、Mo粉末の圧粉体の場合には1100~1400℃(好ましくは1200~1300℃)程度の温度で30~1000分程度保持する条件で行うことが好ましい。
 工程(C1)では、工程(B)で得られた焼結体(多孔質体)に非酸化性雰囲気中又は真空中で溶融したCuを含浸(Cuの溶浸)させてCu-Mo複合材(a)を得る。この工程(C1)を行う場合には、Cu溶浸によって所望のCu含有量となる。
 Cuの溶浸も通常の条件で行えばよい。例えば、焼結体の上面及び/又は下面にCu板やCu粉末を配置し、1083~1300℃(好ましくは1150~1250℃)程度の温度で20~600分保持する。非酸化性雰囲気は特に限定しないが、水素雰囲気が好ましい。また、溶浸した後の加工性向上の観点からは、真空中で溶浸するのが好ましい。
 ここで、工程(B)と工程(C1)を順次行う場合に、工程(A)で得られた圧粉体にCu溶浸用のCu板やCu粉末を配置した状態で、まず焼結温度に加熱して工程(B)を実施し、しかる後、温度をCu溶浸温度まで上昇させて工程(C1)を実施するようにしてもよい。
 なお、この工程(C1)で得られたCu-Mo複合材(溶浸体)は、次工程での冷間圧延に先立ち、表面に残留した余剰の純Cuを除去するために表面研削(例えば、フライス盤や砥石などによる表面研削加工)を施すことが好ましい。
 また、工程(C1)に代えて行う工程(C2)では、工程(B)で得られた焼結体を緻密化処理してCu-Mo複合材(a)を得る。この場合、工程(B)の焼結後に、さらに温度を上げてCuを溶解する処理(1200~1300℃程度で20~120分程度保持する処理)を行った後、工程(C2)の緻密化処理を行ってもよい。
 この緻密化処理には高い温度と圧力が必要であり、ホットプレス、放電プラズマ焼結(SPS)、加熱圧延などの方法で行うことができる。この緻密化処理により、焼結体中の空隙を減らし緻密化させ、相対密度を高める。
 工程(D)では、Cu-Mo複合材(a)の熱膨張率を低下させることを目的として、工程(C1)又は(C2)で得られたCu-Mo複合材に所定の圧下率で圧延(y)を施す。
 なお、工程(C1)又は(C2)で得られたCu-Mo複合材を圧延する前に、必要に応じて800~1000℃程度の温度で均質化時効熱処理を施してもよい。
 本発明の放熱板は、冷間圧延又は温間圧延のままで、或いはさらに軟質化時効熱処理を施すことにより製品とすることができる。また、必要に応じて、半導体の台座としての使用を想定した耐食性及び電食に対する性能を向上させる目的で、表面にさらにNiめっきなどのめっきを施してもよい。この場合、めっき皮膜は放熱板の熱特性に大きく影響しない程度の膜厚で形成される。めっきの種類に特別な制限はなく、例えば、Niめっき、Cuめっき、Auめっき、Agめっきなどが適用でき、これらの中から選ばれるめっきを単独で或いは2層以上を組み合わせて施すことができる。めっきは、放熱板の片面(最外層である両Cu-Mo複合体層のうちの一方の表面)のみに施してもよいし、放熱板の両面に施してもよい。また、放熱板表面にNiめっきなどのめっきを施す際のめっき性の改善のために、放熱板表面(最外層であるCu-Mo複合体層の表面)に下地としてCuめっきを施してもよい。以上のようなめっきにより形成されるめっき皮膜の好ましい膜厚は、さきに述べた通りである。
 本発明の放熱板は、各種の半導体モジュールが備えるセラミックパッケージやメタルパッケージなどの半導体パッケージに好適に利用でき、高い放熱性と耐用性が得られる。特に、高熱伝導率でありながら、低い熱膨張率が800℃を超える高温に曝された後も保持されるので、接合温度が750℃以上と高くなるロウ付け接合を行なう用途などについても問題なく適用できる。
[実施例1]
(1)Cu-Mo複合材の製造条件
 Mo粉末(FSSS平均粒径:6μm)と純Cu粉末(平均粒径D50:5μm)を所定の割合で混合した混合粉末を型(50mm×50mm)に入れて加圧成形し、後工程の冷間圧延での圧下率に応じた厚さの圧粉体とした。この圧粉体を水素雰囲気中で焼結(1000℃、600分)して焼結体を得た。次いで、この焼結体の上面に純Cu板を置き、水素雰囲気中で1200℃に加熱(保持時間180分)して純Cu板を溶解させ、この溶解したCuを焼結体に含浸させることで、所定のCu含有量のCu-Mo複合材を得た。このCu-Mo複合材を、表面に残留するCuをフライス盤を用いて除去した後、所定の圧下率で一方向の圧延(y)(冷間圧延)を施し、Cu-Mo複合材を製作した。
(2)各供試体の製造条件
(2.1)本発明例
 上記のようにして得られた所定の板厚のCu-Mo複合材と純Cu板を、(Cu-Mo)/Cu/(Cu-Mo)の3層構造又は(Cu-Mo)/Cu/(Cu-Mo)/Cu/(Cu-Mo)の5層構造に積層させ、この積層体を放電プラズマ焼結(SPS)装置(住友石炭鉱業(株)社製「DR.SINTER  SPS-1050」)を用いて、950℃、18分保持、加圧力20MPaの条件で拡散接合させた。次いで、上記Cu-Mo複合材の圧延(y)(冷間圧延)と同じ圧下率で、圧延(y)の圧延方向と直交する方向に圧延(冷間圧延)し、本発明例の放熱板(板厚1mm)を製造した。
(2.2)比較例
 Cu-Mo複合材と純Cu板をCu/(Cu-Mo)/Cuの3層構造とした以外は、本発明例と同一の条件で比較例の放熱板(板厚1mm)を製造した(比較例3、5、7、9、11)。
 また、上記Cu-Mo複合材単体も比較例の放熱板(板厚1mm)とした(比較例1、2、4、6、8、10)。
(3)熱特性の測定
 各供試体について、板面内熱膨張率を押棒式変位検出法で測定し、50℃-400℃と50℃-800℃における各伸び量の差を温度差で割り算して、50℃から400℃までの板面内平均熱膨張率と50℃から800℃までの板面内平均熱膨張率を求めた。また、板厚方向の熱伝導率(室温での熱伝導率)をフラッシュ法で測定した。
(4)熱特性の評価
 表1及び表2に、各供試体の熱特性を製造条件とともに示す。これによれば、比較例に較べて本発明例は板厚方向の熱伝導率が大幅に増加していることが判る。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
[実施例2]
(1)Cu-Mo複合材の製造条件
 Cu含有量が30mass%以上のCu-Mo複合材については、実施例1と同様の方法及び条件で製作した。一方、Cu含有量が30mass%未満のCu-Mo複合材については、次のようにして製作した。Mo粉末(FSSS平均粒径:6μm)を型(50mm×50mm)に入れて加圧成形し、後工程の冷間圧延での圧下率に応じた厚さの圧粉体とした。この圧粉体を水素雰囲気中で焼結(1300℃、600分)して焼結体を得た。次いで、この焼結体の上面に純Cu板を置き、水素雰囲気中で1200℃に加熱(保持時間180分)して純Cu板を溶解させ、この溶解したCuを焼結体に含浸させることで、所定のCu含有量のCu-Mo複合材を得た。このCu-Mo複合材を、表面に残留するCuをフライス盤を用いて除去した後、所定の圧下率で一方向の圧延(y)(冷間圧延)を施し、Cu-Mo複合材を製作した。
(2)各供試体の製造条件
(2.1)本発明例
 上記のようにして得られた所定の板厚のCu-Mo複合材と純Cu板を、(Cu-Mo)/Cu/(Cu-Mo)の3層構造、(Cu-Mo)/Cu/(Cu-Mo)/Cu/(Cu-Mo)の5層構造、又は(Cu-Mo)/Cu/(Cu-Mo)/Cu/(Cu-Mo)/Cu/(Cu-Mo)の7層構造に積層させ、実施例1と同様の方法及び条件で拡散接合と圧延(冷間圧延)を行い、本発明例の放熱板(板厚1mm)を製造した。
(2.2)比較例
 Cu-Mo複合材と純Cu板をCu/(Cu-Mo)/Cuの3層構造とした以外は、本発明例と同一の条件で比較例の放熱板(板厚1mm)を製造した(比較例12、13)。
 また、上記Cu-Mo複合材単体も比較例の放熱板(板厚1mm)とした(比較例14~30)。
(3)熱特性の測定
 各供試体について、実施例1と同様の方法で板面内平均熱膨張率と板厚方向の熱伝導率(室温での熱伝導率)を測定・算出した。
(4)熱特性の評価
 表3及び表4に、各供試体の熱特性を製造条件とともに示す。これによれば、本発明例は比較例に較べて熱伝導率が大幅に高く、特にCu-Mo複合体層のCu含有量が20~30質量%であるため、高熱伝導率と低熱膨張率を高度に満足する優れた熱特性が得られている。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
[実施例3]
(1)Cu-Mo複合材の製造条件
 圧延を250℃の温間で行った以外は実施例2(Cu含有量が30mass%未満のCu-Mo複合材の場合)と同様の方法及び条件でCu-Mo複合材を製作した。
(2)本発明例の各供試体の製造条件
 上記のようにして得られた所定の板厚のCu-Mo複合材と純Cu板を、(Cu-Mo)/Cu/(Cu-Mo)の3層構造に積層させ、圧延を250℃の温間で行った以外は実施例1と同様の方法及び条件で拡散接合と圧延を行い、本発明例の放熱板(板厚1mm)を製造した。
(3)熱特性の測定
 各供試体について、実施例1と同様の方法で板面内平均熱膨張率と板厚方向の熱伝導率(室温での熱伝導率)を測定・算出した。
(4)熱特性の評価
 表5に、各供試体の熱特性を製造条件とともに示す。これによれば、温間圧延を行うことにより、Cu-Mo複合材のCu含有量が25mass%の場合には総圧下率98%での圧延が可能であり、Cu-Mo複合材のCu含有量が15mass%の場合には総圧下率96%での圧延が可能であり、いずれの本発明例も高熱伝導率と低熱膨張率を高度に満足する優れた熱特性が得られている。
Figure JPOXMLDOC01-appb-T000005
 
[実施例4]
(1)Cu-Mo複合材の製造条件
 実施例2(Cu含有量が30mass%未満のCu-Mo複合材の場合)と同様の方法及び条件でCu-Mo複合材を製作した。
(2)本発明例の各供試体の製造条件
 上記のようにして得られた所定の板厚のCu-Mo複合材と純Cu板を、(Cu-Mo)/Cu/(Cu-Mo)の3層構造に積層させ、実施例1と同様の方法及び条件で拡散接合と圧延(冷間圧延)を行い、放熱板本体(板厚1mm)を製作した。この放熱板本体の両面に電解めっきにより膜厚が10μm又は20μmのCuめっき皮膜を形成し、本発明例の放熱板を製造した。
(3)熱特性の測定
 各供試体について、実施例1と同様の方法で板面内平均熱膨張率と板厚方向の熱伝導率(室温での熱伝導率)を測定・算出した。
(4)熱特性の評価
 表6に、各供試体の熱特性を製造条件とともに示す。これらの供試体のうち、本発明例19と本発明例21の放熱板本体の構成は、本発明例7の放熱板とほぼ同等であり、本発明例20と本発明例22の放熱板本体の構成は、本発明例8の放熱板とほぼ同等であるので、それらの熱特性を対比することができる。
 膜厚10μmのCuめっき皮膜を形成した本発明例19、20の放熱板の熱特性は、それぞれ本発明例7、8の放熱板の熱特性とほぼ同等である。一方、膜厚20μmのCuめっき皮膜を形成した本発明例21、22の放熱板の熱特性は、本発明例7、8の放熱板に較べて板厚方向での熱伝導率が若干低くなっているが、その低下量は10W/m・K未満である。
Figure JPOXMLDOC01-appb-T000006
 

Claims (27)

  1.  板厚方向において、Cu-Mo複合体層、Cu層、Cu-Mo複合体層がこの順に積層した放熱板であって、
     Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有することを特徴とする放熱板。
  2.  板厚方向において、Cu-Mo複合体層とCu層が交互に積層することで3層以上のCu-Mo複合体層と2層以上のCu層で構成されるとともに、両面の最外層がCu-Mo複合体層からなる放熱板であって、
     Cu-Mo複合体層は、Cuマトリクス中に扁平なMo相が分散した板厚断面組織を有することを特徴とする放熱板。
  3.  Cu-Mo複合体層はCu含有量が10~50質量%であることを特徴とする請求項1又は2に記載の放熱板。
  4.  Cu-Mo複合体層はCu含有量が20~30質量%であることを特徴とする請求項1又は2に記載の放熱板。
  5.  板厚方向の熱伝導率が200W/m・K以上、50℃から800℃までの板面内平均熱膨張率が10.0ppm/K以下であることを特徴とする請求項1~4のいずれかに記載の放熱板。
  6.  板厚方向の熱伝導率が250W/m・K以上、50℃から800℃までの板面内平均熱膨張率が8.0ppm/K以下であることを特徴とする請求項1~4のいずれかに記載の放熱板。
  7.  積層したCu-Mo複合体層とCu層とからなる放熱板本体の片面又は両面に、板厚方向の熱伝導率が放熱板本体よりも10W/m・K以上低くならないような膜厚のめっき皮膜が形成されたことを特徴とする請求項1~6のいずれかに記載の放熱板。
  8.  請求項1~6のいずれかに記載の放熱板の製造方法であって、
     Cuマトリクス中にMo相が分散した板厚断面組織を有するCu-Mo複合材(a)とCu材(b)を積層させ、該積層体を拡散接合した後、冷間圧延(x)を施すことにより、Cu-Mo複合材(a)によるCu-Mo複合体層とCu材(b)によるCu層が積層した放熱板を得ることを特徴とする放熱板の製造方法。
  9.  Cu-Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程を経て得られたものであることを特徴とする請求項8に記載の放熱板の製造方法。
  10.  Cu-Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程を経て得られたものであることを特徴とする請求項8に記載の放熱板の製造方法。
  11.  Cu-Mo複合材(a)は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程を経て得られたものであることを特徴とする請求項8に記載の放熱板の製造方法。
  12.  冷間圧延(x)の圧下率が70~99%であることを特徴とする請求項8~11のいずれかに記載の放熱板の製造方法。
  13.  冷間圧延(x)の圧下率が90~96%であることを特徴とする請求項12に記載の放熱板の製造方法。
  14.  冷間圧延(x)をクロス圧延で行うことを特徴とする請求項8~13のいずれかに記載の放熱板の製造方法。
  15.  Cu-Mo複合材(a)は、Mo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体を緻密化処理する工程と、前記緻密化処理されたCu-Mo複合材に圧延(y)を施す工程を経て得られたものであることを特徴とする請求項8に記載の放熱板の製造方法。
  16.  Cu-Mo複合材(a)は、Mo粉末又はMo粉末とCu粉末の混合粉末を加圧成形して圧粉体とする工程と、前記圧粉体を還元性雰囲気中又は真空中で焼結して焼結体とする工程と、前記焼結体に非酸化性雰囲気中又は真空中で溶融したCuを含浸させる工程と、前記Cuを含浸させたCu-Mo複合材に圧延(y)を施す工程を経て得られたものであることを特徴とする請求項8に記載の放熱板の製造方法。
  17.  冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が70~99%であることを特徴とする請求項15又は16に記載の放熱板の製造方法。
  18.  冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が90~96%であることを特徴とする請求項17に記載の放熱板の製造方法。
  19.  圧延(y)をクロス圧延で行うことを特徴とする請求項15~18のいずれかに記載の放熱板の製造方法。
  20.  圧延(y)でCu-Mo複合材(a)を一方向圧延した場合に、冷間圧延(x)では、Cu-Mo複合材を圧延(y)の圧延方向と直交する方向に圧延することを特徴とする請求項15~19のいずれかに記載の放熱板の製造方法。
  21.  Cu-Mo複合材(a)はCu含有量が10~50質量%であることを特徴とする請求項8~20のいずれかに記載の放熱板の製造方法。
  22.  Cu-Mo複合材(a)はCu含有量が20~30質量%であることを特徴とする請求項8~20のいずれかに記載の放熱板の製造方法。
  23.  Cu-Mo複合材(a)のCu含有量が20mass%未満であり、冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が70%以上である製造方法(但し、Cu-Mo複合材(a)の圧延(y)を行わない製造方法を含む。)であって、
     下記(1)又は/及び(2)の温間圧延を行うことを特徴とする請求項21に記載の放熱板の製造方法。
     (1)冷間圧延(x)に代えて温間圧延を行う。
     (2)圧延(y)を温間圧延で行う。
  24.  冷間圧延(x)と圧延(y)を合わせたCu-Mo複合材(a)の総圧下率が96%以上である製造方法(但し、Cu-Mo複合材(a)の圧延(y)を行わない製造方法を含む。)であって、
     下記(1)又は/及び(2)の温間圧延を行うことを特徴とする請求項22に記載の放熱板の製造方法。
     (1)冷間圧延(x)に代えて温間圧延を行う。
     (2)圧延(y)を温間圧延で行う。
  25.  積層したCu-Mo複合体層とCu層とからなる放熱板本体の片面又は両面に、板厚方向での熱伝導率が放熱板本体よりも10W/m・K以上低くならないような膜厚のめっき皮膜を形成することを特徴とする請求項8~24のいずれかに記載の放熱板の製造方法。
  26.  請求項1~7のいずれかに記載の放熱板を備えたことを特徴とする半導体パッケージ。
  27.  請求項26に記載の半導体パッケージを備えたことを特徴とする半導体モジュール。
PCT/JP2017/029787 2016-08-31 2017-08-21 放熱板及びその製造方法 WO2018043179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197008727A KR102324373B1 (ko) 2016-08-31 2017-08-21 방열판 및 그 제조 방법
EP17846187.7A EP3509100B1 (en) 2016-08-31 2017-08-21 Heat sink and method for manufacturing same
CN201780052821.1A CN109690760B (zh) 2016-08-31 2017-08-21 散热板及其制造方法
US16/328,426 US11270926B2 (en) 2016-08-31 2017-08-21 Heat sink and method for manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-170339 2016-08-31
JP2016170339 2016-08-31
JP2017156796 2017-08-15
JP2017-156796 2017-08-15
JP2017158064A JP6233677B1 (ja) 2016-08-31 2017-08-18 放熱板及びその製造方法
JP2017-158064 2017-08-18

Publications (1)

Publication Number Publication Date
WO2018043179A1 true WO2018043179A1 (ja) 2018-03-08

Family

ID=60417513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029787 WO2018043179A1 (ja) 2016-08-31 2017-08-21 放熱板及びその製造方法

Country Status (7)

Country Link
US (1) US11270926B2 (ja)
EP (1) EP3509100B1 (ja)
JP (1) JP6233677B1 (ja)
KR (1) KR102324373B1 (ja)
CN (1) CN109690760B (ja)
TW (1) TWI633637B (ja)
WO (1) WO2018043179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040030A1 (ja) * 2019-08-29 2021-03-04 Jfe精密株式会社 放熱板、半導体パッケージ及び半導体モジュール

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7139862B2 (ja) * 2018-10-15 2022-09-21 株式会社デンソー 半導体装置
JP7147622B2 (ja) 2019-02-21 2022-10-05 コベルコ建機株式会社 建設機械
KR20200108599A (ko) * 2019-03-11 2020-09-21 주식회사 더굿시스템 방열판재
WO2020184773A1 (ko) * 2019-03-11 2020-09-17 주식회사 더굿시스템 방열판재
US20200368804A1 (en) * 2019-05-24 2020-11-26 Trusval Technology Co., Ltd. Manufacturing process for heat sink composite having heat dissipation function and manufacturing method for its finished product
CN113906554A (zh) * 2019-05-27 2022-01-07 罗姆股份有限公司 半导体装置
CN110944493B (zh) * 2019-12-09 2022-08-09 上海交通大学 一种基于气液相变的金属基复合材料器件及其制备方法
US20230023610A1 (en) * 2019-12-16 2023-01-26 AMOSENSE Co.,Ltd Ceramic substrate for power module and power module comprising same
CN114045410B (zh) * 2021-11-15 2022-10-28 西安瑞福莱钨钼有限公司 一种多层钼铜热沉复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307701A (ja) 1997-08-22 1999-11-05 Tokyo Tungsten Co Ltd 放熱基板及びその製造方法
JP2000323632A (ja) * 1999-05-10 2000-11-24 Tokyo Tungsten Co Ltd 放熱基板およびその製造方法
JP2001358266A (ja) 2000-01-26 2001-12-26 Allied Material Corp 半導体搭載用放熱基板材料、その製造方法、及びそれを用いたセラミックパッケージ
JP2003037230A (ja) * 2001-07-25 2003-02-07 Kyocera Corp 半導体素子収納用パッケージ
JP2007115731A (ja) * 2005-10-18 2007-05-10 Eiki Tsushima クラッド材およびその製造方法、クラッド材の成型方法、クラッド材を用いた放熱基板

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657610B2 (ja) * 1993-07-16 1997-09-24 東京タングステン株式会社 金属複合材料および電子回路用部品
JPH08169648A (ja) * 1994-12-20 1996-07-02 Canon Inc シート排出装置及び画像形成装置
US7083759B2 (en) 2000-01-26 2006-08-01 A.L.M.T. Corp. Method of producing a heat dissipation substrate of molybdenum powder impregnated with copper with rolling in primary and secondary directions
JPWO2003021664A1 (ja) * 2001-08-31 2005-07-07 株式会社日立製作所 半導体装置、構造体及び電子装置
JP2003100930A (ja) * 2001-09-20 2003-04-04 Kyocera Corp 半導体素子収納用パッケージ
JP4138844B2 (ja) * 2006-02-15 2008-08-27 Jfe精密株式会社 Cr−Cu合金およびその製造方法ならびに半導体用放熱板と半導体用放熱部品
JP2011011366A (ja) * 2009-06-30 2011-01-20 Sumitomo Electric Ind Ltd 金属積層構造体の製造方法
CN102612745B (zh) * 2009-10-01 2016-02-24 Jfe精密株式会社 电子设备用散热板及其制造方法
EP3057125B1 (en) * 2013-10-10 2020-09-30 Mitsubishi Materials Corporation Substrate for heat sink-equipped power module, and production method for same
TWI685116B (zh) * 2014-02-07 2020-02-11 日商半導體能源研究所股份有限公司 半導體裝置
KR101612346B1 (ko) * 2014-05-19 2016-04-15 (주)메탈라이프 클래드 소재 및 그의 제조방법, 방열 기판
WO2015182385A1 (ja) * 2014-05-29 2015-12-03 株式会社アライドマテリアル ヒートスプレッダとその製造方法
JP5818045B1 (ja) * 2014-12-05 2015-11-18 株式会社半導体熱研究所 放熱基板と、それを使用した半導体パッケージと半導体モジュール
US9984951B2 (en) * 2016-07-29 2018-05-29 Nxp Usa, Inc. Sintered multilayer heat sinks for microelectronic packages and methods for the production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307701A (ja) 1997-08-22 1999-11-05 Tokyo Tungsten Co Ltd 放熱基板及びその製造方法
JP2000323632A (ja) * 1999-05-10 2000-11-24 Tokyo Tungsten Co Ltd 放熱基板およびその製造方法
JP2001358266A (ja) 2000-01-26 2001-12-26 Allied Material Corp 半導体搭載用放熱基板材料、その製造方法、及びそれを用いたセラミックパッケージ
JP2003037230A (ja) * 2001-07-25 2003-02-07 Kyocera Corp 半導体素子収納用パッケージ
JP2007115731A (ja) * 2005-10-18 2007-05-10 Eiki Tsushima クラッド材およびその製造方法、クラッド材の成型方法、クラッド材を用いた放熱基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3509100A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040030A1 (ja) * 2019-08-29 2021-03-04 Jfe精密株式会社 放熱板、半導体パッケージ及び半導体モジュール

Also Published As

Publication number Publication date
JP6233677B1 (ja) 2017-11-22
EP3509100A4 (en) 2019-07-10
EP3509100A1 (en) 2019-07-10
CN109690760B (zh) 2022-12-27
KR20190042676A (ko) 2019-04-24
KR102324373B1 (ko) 2021-11-09
TWI633637B (zh) 2018-08-21
CN109690760A (zh) 2019-04-26
TW201826467A (zh) 2018-07-16
US20200051889A1 (en) 2020-02-13
EP3509100B1 (en) 2022-03-02
JP2019029631A (ja) 2019-02-21
US11270926B2 (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6233677B1 (ja) 放熱板及びその製造方法
JP6455896B1 (ja) 放熱板及びその製造方法
JP6462172B1 (ja) 放熱板及びその製造方法
JP5698947B2 (ja) 電子機器用放熱板およびその製造方法
US20180328677A1 (en) Heat-dissipating plate for high-power element
TWI661516B (zh) 接合體,附散熱器電源模組用基板,散熱器,接合體的製造方法,附散熱器電源模組用基板的製造方法及散熱器的製造方法
WO2016088687A1 (ja) 放熱基板及び該放熱基板の製造方法
WO2021040030A1 (ja) 放熱板、半導体パッケージ及び半導体モジュール
JP6981846B2 (ja) 放熱板及びその製造方法
JP7440944B2 (ja) 複合材料および放熱部品
WO2016167217A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP6784863B1 (ja) 放熱板
WO2023210395A1 (ja) 放熱部材および電子装置
JP2010118651A (ja) 放熱板、多層放熱板、及び放熱板の製造方法
WO2021100616A1 (ja) 複合基板及びその製造方法、並びに、回路基板及びその製造方法
JP2009149966A (ja) Cr−Cu合金板の製造方法
JP2013089867A (ja) 電子素子搭載用基板および放熱装置
JPH11330325A (ja) ヒートスプレッダおよびこれを用いた半導体装置ならびにヒートスプレッダの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197008727

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017846187

Country of ref document: EP

Effective date: 20190401