WO2018042140A1 - System for communication and transfer between an object on the surface and a submerged object, assembly comprising an object on the surface, a submerged object and method for setting up communication and transfer between the object on the surface and the submerged object - Google Patents

System for communication and transfer between an object on the surface and a submerged object, assembly comprising an object on the surface, a submerged object and method for setting up communication and transfer between the object on the surface and the submerged object Download PDF

Info

Publication number
WO2018042140A1
WO2018042140A1 PCT/FR2017/052334 FR2017052334W WO2018042140A1 WO 2018042140 A1 WO2018042140 A1 WO 2018042140A1 FR 2017052334 W FR2017052334 W FR 2017052334W WO 2018042140 A1 WO2018042140 A1 WO 2018042140A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
connecting member
umbilical
submerged
communication
Prior art date
Application number
PCT/FR2017/052334
Other languages
French (fr)
Inventor
Gautier DREYFUS
Maxime CERRAMON
Original Assignee
Forssea Robotics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forssea Robotics filed Critical Forssea Robotics
Publication of WO2018042140A1 publication Critical patent/WO2018042140A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • B63G2008/007Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled by means of a physical link to a base, e.g. wire, cable or umbilical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/008Docking stations for unmanned underwater vessels, or the like

Definitions

  • the invention relates to subsea operations and in particular communication systems in marine or fluvial environment. More specifically, the invention relates to communication and data and energy transfer systems between an emergent object and a submerged object.
  • Submarine operations for example for scientific exploration purposes or to perform inspections or work on an underwater industrial site, are often carried out using two types of submerged vehicles: unmanned underwater vehicles and autonomous underwater robots.
  • a remotely operated submarine vehicle also known as ROV (Remotely operated vehicle)
  • ROV Remotely operated vehicle
  • An umbilical can supply electrical energy to the remote control vehicle and remotely control it.
  • An autonomous underwater robot also known by the acronym AUV (Autonomous underwater vehicle) includes an accumulator battery that provides it with the electrical energy necessary for its operation. In addition, it includes a microprocessor that controls its movement and accumulates data related to its underwater mission. Thus, when the autonomous submarine robot completes its mission or its accumulator battery is close to being empty, it goes back to the emerged object so that the accumulated data can be recovered and the batteries recharged or replaced. This decreases the underwater autonomy of the autonomous underwater robot.
  • AUV autonomous underwater vehicle
  • ROVs are most often deployed from a cage including a winding system (known by the acronym TMS for tether management System). These cages have been democratized since the 1970s because they allow to ball the umbilical and go deeper to the vertical of the ship.
  • the system comprising the umbilical, the cage, the cable and the ROV is heavy and requires the presence of a large-sized vessel at the surface, which increases the cost of the operation.
  • AUVs are not wired to the surface and a relatively small vessel is capable of launching them and recovering them at the end of their mission.
  • the regular surface lifts of the AUVs, necessary for reloading or replacing the batteries, and for the recovery of mission data, are a factor in the loss of time, and therefore in the increase in the cost of using a battery. AUV.
  • a specialized team (diver, technician) must also be on site to receive the AUV before releasing it. The presence of a ship is therefore always necessary on site, even though these AUV robots are able to evolve autonomously in the marine environment.
  • AUVs are limited in power and can not carry out work or maintenance tasks that require handling heavy equipment. Finally, AUVs communicate with the surface only with great difficulty. For example, it is almost impossible to exchange video data between the ship and the AUV at the bottom.
  • a robot resides, that is to say that stays for a long time on the bottom, can assist a site over long periods without going back to the surface.
  • This is enabled by the presence of a body that houses the ROV such as a garage, also called a docking station that houses the robot (ROV or AUV) and is connected to the surface via an umbilical.
  • an element of an underwater industrial site such as an oil wellhead, a mechanical, electrical, hydraulic or electronic unit, or simply a system placed on the ocean floor, may require regular connection or not with the surface, to exchange electricity and / or data.
  • Document US Pat. No. 6,390,012 in particular discloses a device that makes it possible to communicate, from an emergent object such as a ship, with an underwater autonomous submerged robot being explored.
  • the device comprises a remote-controlled underwater vehicle connected to the emerged object and comprising electrical connection means to the autonomous underwater robot.
  • the remote-controlled underwater vehicle is connected, by means of a flexible cable to a rigid intermediate frame, which carries a unwinder of the flexible cable.
  • the intermediate frame is connected to the emerged object by means of an umbilical.
  • the umbilical, the flexible cable and the unmanned underwater vehicle form an electrical communication channel between the emerged object and the autonomous underwater robot. It is therefore possible to exchange information between the emerged object and the autonomous underwater robot and also to provide the autonomous underwater robot with electrical energy.
  • the device only works for certain specific configurations. Indeed, the device described applies only to a particular type of autonomous underwater robots and a limited range of depths.
  • the device does not describe the method of connection in open water that is not feasible from the given information.
  • the device comprises a wet-mate-type connector that requires a push of several tens of pounds between the remote-controlled underwater vehicle and the autonomous underwater robot, which would push the latter.
  • the device described has a significant weight, which prevents its deployment from a light vessel. There is no mention of the method used to locate the submerged submarine robot.
  • An object of the invention is to provide a communication system between any type of emerged object and submerged object to a depth of more than a hundred meters, whose versatility is improved and in order to democratize it.
  • the invention provides a communication and transfer system between an emergent object and an object immersed in a marine or fluvial environment, characterized in that it comprises:
  • an umbilical having a first end adapted to be connected to the emerged object and a second end
  • a connecting member comprising an electrical transformer and connected to the second end of the umbilical
  • an elongated connecting member comprising a first end connected to the connecting member and a second end
  • a connector connected to the second end of the elongate connecting member, comprising means for connection to the immersed object, propulsion means and an automated positioning module with respect to the immersed object,
  • the junction member is immersed at an intermediate depth between the surface and that of the immersed object. It is therefore possible to transport a high-voltage electrical current, for example between 1000 and 5000 volts, or even at very high voltage, for example between 5000 and 20000 volts, using the umbilical between the immersed object and the junction member. The intensity of the current transported can therefore be less important, with equal power output, which limits losses in line.
  • the transformer makes it possible to convert this high voltage into a lower voltage, in accordance with that which the submerged object can withstand. This voltage for the immersed object can be between 30 and 400 volts. It is therefore possible to electrically connect the emerged object and the immersed object even when the latter is located at a significant depth, for example 3000 meters. It is thus possible in particular to provide the immersed object with a large power, for example 200 kW.
  • the electrical transformer makes it possible to adjust as closely as possible the power transmitted to the connector and to the immersed object.
  • the connection and transfer system according to the invention makes it possible to make electrical conductors which supply the connector and the immersed object completely independent. The reliability of the system is therefore considerably increased.
  • the connecting member is to ballast, because of the weight of the transformer, the umbilical so that it is aligned with the ship and this, whatever the sea currents.
  • the connector can thus have a minimum weight.
  • the horizontal distance between the emergent object and the junction member must not exceed the length of the flexible elongate member.
  • the weight of the junction member is adjusted using a hydrodynamic calculation table which depends in particular on the depth to which the junction member must descend. It is thus possible to introduce weights into the junction member.
  • An advantage of the transformer is to limit the amount of weight to use.
  • the connector comprises an automated positioning module and propulsion means, it approaches autonomously the immersed object to connect to it.
  • the connector thus improves the efficiency of the system by reducing the risk of pilot error from the surface, especially in case of bad weather and weather conditions.
  • the immersed object comprises a complementary base, capable of receiving the connector of the communication and transfer system.
  • the complementary base advantageously comprises an acoustic beacon allowing a precise location of the base.
  • the position in three dimensions of the space of the base and therefore a fortiori of the immersed object is precisely known.
  • the base can have a recognizable shape so that a computer can perform a digital processing of the captured image by a possible camera carried by the connector, which thus allows to precisely position the connector relative to the base according to the 3 dimensions of space.
  • the base may comprise a particular shaped member, or a reflective color patch, or several submarine light-emitting diodes distributed so that a recognizable shape is distinguishable.
  • At least two of these options can also be combined, in particular to allow optical guidance in murky, highly reflective waters or in low visibility.
  • the base can have a hollow funnel shape to guide the final approach of the connector and allow a perfect alignment between male and female plugs.
  • the connector may also comprise a fin device unequally distributed on the connector and complementary to a network of slots on the base.
  • the connector may contain a hook-on recovery device capable of holding the connector in its socket after the connector enters the funnel.
  • a hook-on recovery device capable of holding the connector in its socket after the connector enters the funnel.
  • This can for example take the form of mechanical dogs that engage in contact with the connector in its base. It can also take the appearance of a piston associated with an engine controlled by the onboard computer and whose horizontal movement allows, thanks to the shape of the piston, to bring the connector of the base and maintain the connection.
  • the means evoked allow a single hooked position between the connector and the base.
  • the elongate connecting member is more flexible than the umbilical.
  • the umbilical is intended to be longer than the elongate connecting member and to be relatively straight under water.
  • the longiligne connecting member is intended to follow the movements of the connector.
  • the umbilical must therefore be more rigid and have greater inertia so that the marine currents cause the connecting member and the connector to a too great distance from the immersed object.
  • the elongate connecting member has a neutral buoyancy.
  • it effectively damps the movements of the connecting member and the connector does not therefore undergo the constraints related to the movement of the junction member, a movement that may for example be due to constraints from the emerging object surface.
  • the umbilical, the connecting member, the elongate connection member and the connector also form an optical communication channel between the emerged object and the immersed object.
  • optical signal also makes it possible to exchange data at a high rate, for example several high definition video signals.
  • the umbilical and the elongate connection member contain at least one optical fiber.
  • Optical fiber is a simple and effective way to exchange information in the form of an optical signal.
  • the connector comprises a receiver adapted to receive a movement control of the emerged object.
  • the connecting member comprises a direct current converter AC and vice versa.
  • the umbilical contains an electrical cable capable of carrying an alternating current and / or a direct current.
  • the elongate connecting member encloses an electric cable able to carry an alternating current and / or a direct current.
  • the umbilical is able to carry a current whose voltage is greater than a voltage of a current that the elongate connecting member is able to carry.
  • the elongate connecting member comprises a protective sheath comprising poly (p-phenylene terephthalamide), also known as Kevlar.
  • the elongate connecting member is solid.
  • the Kevlar is incompressible to a significant depth, namely up to about 3000 meters and also allows to provide the connecting elongate member a neutral buoyancy, or slightly positive, to this limiting depth .
  • floats distributed along the elongate connection member make it possible to give it neutral buoyancy.
  • These floats may for example be made of incompressible foam and whose positive buoyancy compensates for the negative buoyancy of the elongate connecting member.
  • the joining member comprises at least one ballast.
  • the connecting member is therefore positioned stably under water.
  • the joining member comprises electrically insulating oil.
  • the junction member is most often in the form of a housing comprising oil to electrically isolate the inside and outside of the junction member.
  • the connecting member comprises a compensator for balancing the external pressure of the marine environment with the internal pressure of the body, maintaining a slight overpressure from the inside to the outside.
  • the insulating oil will leave the housing and prevent the infiltration of salt water conductive properties.
  • a tank is associated with the compensator.
  • the compensator generally houses a membrane associated with a spring allowing slight overpressure. The reliability of this connecting member is therefore increased.
  • the connecting member is connected to the second end of the umbilical removably.
  • This removable connection can also be used to transmit the vertical tension of the umbilical to the connecting member so as not to put the internal cables to the junction member in tension.
  • the connector is connected to the second end of the elongate connecting member removably.
  • the first end of the elongate connecting member is connected to the connecting member removably.
  • the automated positioning module of the connector comprises at least one of the following navigation tools: a camera, preferably a high definition type (HD) camera, a depth gauge, an instantaneous speed sensor, a gyroscope, an inertial unit and a compass.
  • the automated positioning module comprises an acoustic module and a hydrophone.
  • the automated positioning module moves reliably in an automated manner and, on the other hand, it can send navigational data to the emerging object.
  • the connector propulsion means comprise at least two thrusters, preferably of the vector type.
  • a vector-type thruster is effective for underwater travel. It may for example be an electronic or hydraulic thruster.
  • the automated positioning module of the connector comprises acoustic positioning means.
  • the automated positioning module of the connector comprises an acoustic communication modem of the Short Base Line (SBL) or Ultra Short Base Line (USBL) type.
  • SBL Short Base Line
  • USB Ultra Short Base Line
  • the tracking of the submerged object is therefore simpler.
  • the connector comprises automated means capable of disconnecting the connector from the immersed object in the event of detection of a bad connection between the connector and the immersed object.
  • the connector disconnects from the submerged object.
  • an assembly comprising an object immersed in a marine or fluvial environment and a communication system as previously described, the connector of the communication system is connected to the immersed object.
  • the assembly comprises an emergent object, the first end of the umbilical is connected to the emerged object.
  • the emerging object is an oil or mining extraction vessel or platform or an aircraft, preferably the aircraft is a helicopter.
  • the immersed object is a vehicle of the remote-controlled underwater vehicle type also known as Remotely operated vehicle (ROV) or autonomous underwater robot also under the name Autonomous underwater vehicle (AUV), or an autonomous underwater station or underwater garage laid on the bottom.
  • ROV Remotely operated vehicle
  • UAV Autonomous underwater vehicle
  • the communication system can be used both with a remote-controlled underwater vehicle and an autonomous underwater robot.
  • the first end of the umbilical is connected to the emerging object
  • the emerged object comprises an electric generator and the immersed object comprises at least one battery, the battery is supplied with electrical energy from the generator by means of the communication system.
  • the emerged object can remain underwater longer and carry out a longer exploration mission.
  • the connector comprises a receiver adapted to receive a movement control of the connector and the immersed object comprises an emitter capable of transmitting a command to move the connector, the displacement of the connector is controlled from the immersed object.
  • the connecting member does not include a reel for the elongate connecting member.
  • the elongate connecting member generally has a relatively short length, which makes it possible to dispense with the retractor and thus lighten the communication system and transfer.
  • FIG. 1 is a front view of a communication system according to the invention, of an immersed object and of an emergent object,
  • FIG. 2 diagrammatically represents a connecting member and a connector of the telecommunication system
  • FIG. 3 illustrates an umbilical of the communication system seen in section along a plane transverse to a longitudinal axis of the umbilical
  • FIG. 4 is a perspective view of the junction member.
  • FIG. 1 shows a communication and transfer system 10 according to an exemplary embodiment of the invention.
  • the communication system 10 is intended to allow communication between an emergent object and an immersed object.
  • the emerging object is in the form of a ship 12. More generally, the emerging object can be any type of floating object, but also a flying object such as a helicopter, preferably hovering. It will be noted that the communication system 10 can be deployed from an emerging object of low mass. The emerged object can also be mounted on pillars resting on a seabed such as an oil or mining extraction platform.
  • the submerged object is in the form of an underwater station 14.
  • the submerged object may be an autonomous underwater robot known by the acronym AUV (Autonomous underwater vehiclé) or a remote controlled submarine vehicle, also known by the acronym ROV (Remotely operated vehicle).
  • AUV Autonomous underwater vehiclé
  • ROV Remote controlled submarine vehicle
  • the submerged object may be an underwater power generation unit, of the tidal turbine type or wind turbine pillar, or an underwater unit for performing measurements of a scientific nature. More generally, the immersed object can be any type of vehicle or object capable of being immersed.
  • the underwater station 14 has a fixed position. It is here of the underwater garage type intended to house one or more autonomous submarine robots or remote controlled submarine vehicles. Alternatively, the underwater station 14 may also for example be a head of an oil or gas well underwater.
  • the underwater station 14 is here immersed in a marine environment, namely an ocean 15, having a surface 17 on which the vessel 12 floats. It can also be immersed in a sea. It can also be immersed in a fluvial environment and more generally, in any type of water that is deep enough.
  • the underwater station 14 comprises a storage battery which provides it with the energy necessary for its operation.
  • the communication system 10 comprises an umbilicus 16, a connecting member 18, an elongate connection member 20 and a connector 22.
  • the umbilical 16 has an elongated shape, has a longitudinal axis and comprises a longitudinal first end 23 which is connected to an electric generator and to an optical or light signal generator of the ship 12.
  • the ship 12 comprises a reel 24, actuated by a motor, for example supplied with electrical energy by a storage battery type power pack, which allows to unroll the umbilical 16 from the ship 12 deep in the ocean 15.
  • the reel 24 is also controlled by control means such as a console electrically connected to the engine.
  • the umbilicus 16 comprises a second longitudinal end 26, opposite the first 23 and to which is connected a longitudinal first end 28 of the connecting member 18. At a second longitudinal end 30 opposite the first end 28, the organ junction 16 is connected to a first longitudinal end 32 of the elongate connecting member 20.
  • the elongate connecting member 20 comprises a second longitudinal end 34, opposite the first end 32, to which the connector 22 is connected.
  • connections between the second longitudinal end 26 of the umbilical 16 and the first longitudinal end 28 of the connecting member 18, between the second longitudinal end 30 of the connecting member 18 and the first longitudinal end 32 of the elongate connecting member 20 and between the second longitudinal end 34 of the elongate connecting member 20 and the connector 22 are removable, for example by means of connectors comprising sealing means.
  • the umbilical 16 has sufficient weight, inertia and rigidity to maintain a relatively straight character despite the ocean currents.
  • the umbilicus 16 further comprises a steel frame 19 to resist the tension it undergoes.
  • the umbilical 16 thus has a negative buoyancy.
  • it has a capacity to hold sufficient traction to support the connecting member 18, connected to the second longitudinal end 26 of the umbilical 16.
  • the umbilical 16 comprises three electric cables 36 dedicated to the circulation of an alternating current. It furthermore optionally comprises two electric cables 38 dedicated to the circulation of a direct current.
  • the umbilical 16 includes, optionally, three optical fibers 40 able to allow the flow of light information.
  • the electrical cables 36, 38 and the optical fibers 40 travel the entire length of the umbilicus 16 from the first longitudinal end 23 to the second longitudinal end 26 and form an electro-optical inlet for the connecting member 18 as indicated below. below.
  • the electric current flowing in the umbilicus 16 preferably has a voltage of between 1500 and 5000 volts.
  • the joining member 18 is preferably of cylindrical shape. It comprises an electro-optical inlet 42 which is in the form of a communication channel which encloses the electric cables 36, 38 and the optical fibers 40 and which opens into the junction box 44.
  • the junction member 18 comprises oil in particular to electrically isolate the junction box 44 and the electro-optical inlet 42 of the ocean. As can be seen on the right-hand part of FIG.
  • the latter comprises an electrical transformer 46 capable in particular of transforming a high voltage current into a low voltage current and vice versa, an electrical output 48 and an optical output 50.
  • the electrical transformer 46 is connected to two electrical cables 38 dedicated to the flow of a direct current.
  • the electrical cables 36 dedicated to the circulation of an alternating current and the optical fibers 40 pass through the junction box 44 and the junction member 18 without their properties being modified.
  • the electrical transformer 46 is also or only connected to the electric cables 36 dedicated to the circulation of an alternating current.
  • the electrical transformer 46 is then preferably of the power transformer type, that is to say that it does not change the frequency of the alternating current that it transforms.
  • the electrical transformer 46 may also be able to modify a frequency of a direct current.
  • the electrical transformer 46 may also be able to convert an alternating current into direct current and vice versa.
  • the electrical cables 36, 38 and the optical fibers 40 are sealed.
  • the connecting member 18 comprises a ballast so that the umbilical 16 is taut and straight as illustrated in FIG.
  • the ballast may comprise a plurality of objects.
  • the ballast weight can be adjusted to the desired length of the umbilical 16 submerged.
  • the ballast can also be removed.
  • the cage 45 also performs the function of a ballast.
  • the elongate connecting member 20 has greater flexibility than that of the umbilical 16 so as not to hinder the movements of the connector 22.
  • it encloses a plurality of electrical cables dedicated to the circulation. direct current, dedicated to the circulation of an alternating current and a plurality of optical fibers dedicated to the propagation of a light signal.
  • it may comprise a protective sheath comprising poly (p-phenyleneterephthalamide) also known by the acronym PPD-T and its trade name Kevlar. This material makes it possible to give the elongated connection member 20 adequate strength and flexibility.
  • the electric current flowing in the elongate connecting member 20 preferably has a voltage of between 40 and 400 volts.
  • the connector 22 comprises an electro-optical inlet 53, connected to the elongate connecting member 20, an electrical module 54, connected to the electro-optical inlet 53, which comprises a compensator 56 and a plurality of optical fibers 58 and electrical cables 60, dedicated to the circulation of a direct and / or alternating current, and connected on the one hand to an output of the electrical module 54 and on the other hand to an electro-optical connection member 62.
  • This connection member Electro-optic 62 forms a means of connection to the underwater station 14. It is therefore generally complementary to an electro-optical connection member carried by the underwater station 14 as will be seen below.
  • the compensator 56 balances the external pressure of the marine environment with the internal pressure of the connector 22, maintaining a slight overpressure from the inside to the outside.
  • the compensator 56 comprises for this purpose a membrane and a spring associated with an insulating oil tank.
  • the connector 22 also comprises two propellers, for example, vector-type which are here in the form of propellers and which allow the connector 22 to move underwater.
  • the two thrusters therefore form propulsion means of the connector 22.
  • the two thrusters require a large power to ensure the displacement of the connector 22.
  • a portion of the electrical energy supplied by the vessel 12 is intended to supply the two thrusters.
  • the displacements of the connector 22 are limited in a ball which is centered on the second longitudinal end 30 of the connecting member 18 and for radius the length of the elongate connecting member 20.
  • the connector 22 is able to move in three directions. non-coplanar directions of space and is able to rotate in three angles around its center of gravity.
  • the connector comprises four horizontal thrusters and three vertical thrusters. These thrusters are sized so as to provide sufficient vertical thrust during the connection between the connector 22 and the underwater station 14.
  • the connector 22 comprises an automated positioning module 64, comprising at least one of the following navigation tools: a camera, possibly of the high-definition type (HD), a depth gauge, an altimeter, an instantaneous speed sensor, one or several gyroscopes, one or more accelerometers, one or more compasses.
  • a camera possibly of the high-definition type (HD)
  • HD high-definition type
  • a depth gauge possibly of the high-definition type (HD)
  • an altimeter possibly of the high-definition type (HD)
  • HD high-definition type
  • the positioning module 64 makes it possible to determine the position, according to six degrees of freedom, of the connector 22, in particular with respect to the underwater station 14.
  • the connector 22 and the underwater station 14 can be equipped with means acoustic positioning system comprising an USBL (Ultra Short Base Line) positioning module.
  • the positioning module USBL can for example be installed on the connector 22, while a transponder is installed on the underwater station 14.
  • the positioning module USBL is then configured to emit a signal to which the transponder.
  • the USBL module of the connector 22 determines the position of the underwater station 14.
  • acoustic data communication may be useful.
  • the connector 22 is able to automatically determine its position relative to the underwater station 14 and to move closer to it.
  • the connector is able to connect electro-optically to the underwater station 14 via the electro-optical connection member 62.
  • the underwater station 14 comprises a connection member electro-optical which is complementary to the electro-optical connection member 62 carried by the connector 22.
  • the connection member carried by the subsea station 14 is here a base 21 complementary to the connector 22.
  • the base comprises in particular one or more recognizable optical forms.
  • the connector 22 comprises automated means capable of disconnecting the connector 22 from the underwater station 14 in the event of detection of a bad connection between the connector 22 and the subsea station 14.
  • the connector 22 is able to disconnect from the underwater station 14 if for example, the connection between these two objects is not waterproof or if a foreign body exerts pressure on the connector 22 which may damage it.
  • the elongate connecting member 20 comprises a voltage sensor. If the measured voltage exceeds a predetermined threshold, for example because the ship 12 moves away from the underwater station 14, the connector 22 disconnects from the underwater station 14.
  • the umbilicus 16, the connecting member 18, the elongate connecting member 20 and the connector 22 form an electrical and optical communication channel between the ship 12 and the underwater station 14. It is therefore possible to exchange information between the ship 12 and the underwater station 14. For example, it is possible, from the ship 12, to collect information collected by the station under -marine 14. It is also possible to provide the submarine station 14 information on an area that ROVs or AUVS, hosted by the underwater station 14, must explore. In addition, it is possible to recharge the storage battery of the underwater station 14. The latter can therefore remain immersed longer or recharge in turn the storage battery of ROVs or AUVS hosted. It is also possible to update a software embedded in the underwater station 14 or to reprogram a mission, for example exploration or maintenance, for the ROVS or AUVS hosted by it.
  • the junction member 18 comprises an electrical transformer 46
  • the umbilical 16 is able to carry a current whose voltage is greater than a voltage of a current that the elongate connecting member 20 is able to transport.
  • the umbilical 16 may for example have a length of 3000 meters and the elongate connecting member 20 a length of one hundred meters.
  • the underwater station 14 is immersed, for example at a depth of about 3000 meters.
  • the vessel 12 is moved on the surface 17 of the 15.
  • the ship 12 is substantially on a portion of the surface 17 of the ocean 15 which is located on the same vertical direction as the subsea station 14, the first longitudinal end 23 of the umbilical 16 is connected. to an electrical or optical member of the ship 12 such as a generator or a computer able to collect data.
  • the ship 12 uses a location system of the DPS type, for Dynamic positioning System, which allows to position, with an accuracy of the order of a few centimeters, the vessel 12 through bow thrusters.
  • the reel 24 is actuated so as to unwind the umbilicus 16 in the ocean 15. Thanks to the weight of the junction member 18, the umbilical 16 unfolds rectilinearly in the water as shown in FIG. figure 1 . Since the connector 22 and its elongate connecting member 20 are in neutral buoyancy, or slightly positive, the connector 22 can actuate its vertical thrusters to prevent winding of the elongate member 20 connection around the umbilical 16 Then, when the connector 22 is sufficiently close to the underwater station 14 so that it can detect it and reach it, the connector 22 is actuated. With its automated positioning module 64 and its propulsion means, the connector 22 is positioned near the subsea station 14 and connects to the latter. Connector 22 has thus been connected to underwater station 14.
  • the lengths of the umbilicus 16 and the elongate connecting member 20 may be varied.
  • the connecting member 18 may also include any type of electrical and / or optical device.
  • the connector 22 may carry more than one electro-optical connection member 62.
  • the connector 22 may be able to connect to the underwater station 14 without being directly physically connected.
  • the connector 22 and the underwater station 14 can exchange data and energy by electromagnetic induction or by acoustic means.
  • the communication and transfer system 10 may also include the following features:
  • the elongate connecting member 20 has a length of between 20 meters and 30 meters. Thus, it is not necessary to have a reel to manage a deployment of the elongate connecting member, which reduces the size of the communication and transfer system 10;
  • the junction member 18 comprises a permanent isolation controller which makes it possible to detect an insulation fault in the junction member 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connector Housings Or Holding Contact Members (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

The system for communication and transfer (10) between an object on the surface (12) and a submerged object (14) in a marine or river environment (15) comprises: - an umbilical (16) including a first end (23) that is capable of being linked to the object on the surface (12) and a second end (26); - a joining member (18) comprising an electrical transformer (46) and linked to the second end (26) of the umbilical (16); - a slender connecting member (20) comprising a first end (32) that is linked to the joining member (18) and a second end (34); and - a connector (22) that is linked to the second end (34) of the slender connecting member (20), comprising means for connecting (62) to the submerged object (14), propulsion means and an automated positioning module for positioning with respect to the submerged object (14). The umbilical (16) the joining member (18), the slender connecting member (20) and the connector (22) form an electrical communication channel between the object on the surface (12) and the submerged object (14).

Description

Système de communication et de transfert entre un objet émergé et un objet immergé, ensemble comprenant un objet émergé, un objet immergé et procédé de mise en communication et transfert entre l'objet émergé et l'objet immergé  Communication and transfer system between an emergent object and an immersed object, comprising an emergent object, an immersed object and a method of communication and transfer between the emerged object and the submerged object
L'invention concerne les opérations sous-marines et notamment les systèmes de communication en milieu marin ou fluvial. Plus spécifiquement, l'invention concerne les systèmes de communication et de transfert de données et d'énergie entre un objet émergé et un objet immergé. The invention relates to subsea operations and in particular communication systems in marine or fluvial environment. More specifically, the invention relates to communication and data and energy transfer systems between an emergent object and a submerged object.
Les opérations sous-marines, par exemple à des fins d'exploration scientifique ou pour effectuer des inspections ou travaux sur un site industriel sous-marin, se font souvent au moyen de deux types de véhicules immergés : les véhicules sous-marins téléguidés et les robots sous-marins autonomes.  Submarine operations, for example for scientific exploration purposes or to perform inspections or work on an underwater industrial site, are often carried out using two types of submerged vehicles: unmanned underwater vehicles and autonomous underwater robots.
Un véhicule sous-marin téléguidé, également connu sous l'acronyme anglais ROV (Remotely operated vehicle), est relié, au moyen d'un ombilical, à un objet émergé, par exemple un navire flottant sur la surface de l'eau ou une plate-forme pétrolière. L'ombilical permet d'alimenter en énergie électrique le véhicule téléguidé et de le télécommander.  A remotely operated submarine vehicle, also known as ROV (Remotely operated vehicle), is connected, by means of an umbilical, to an emergent object, for example a ship floating on the surface of the water or a oil rig. The umbilical can supply electrical energy to the remote control vehicle and remotely control it.
Un robot sous-marin autonome, également connu sous l'acronyme anglais AUV (Autonomous underwater vehicle), comprend une batterie d'accumulateurs qui lui fournissent l'énergie électrique nécessaire à son fonctionnement. En outre, il comprend un microprocesseur qui commande son déplacement et accumule des données liées à sa mission sous-marine. Ainsi, lorsque le robot sous-marin autonome termine sa mission ou que sa batterie d'accumulateurs est proche d'être vide, il remonte vers l'objet émergé pour que les données accumulées puissent être récupérées et les batteries rechargées ou remplacées. Cela diminue l'autonomie sous l'eau du robot sous-marin autonome.  An autonomous underwater robot, also known by the acronym AUV (Autonomous underwater vehicle), includes an accumulator battery that provides it with the electrical energy necessary for its operation. In addition, it includes a microprocessor that controls its movement and accumulates data related to its underwater mission. Thus, when the autonomous submarine robot completes its mission or its accumulator battery is close to being empty, it goes back to the emerged object so that the accumulated data can be recovered and the batteries recharged or replaced. This decreases the underwater autonomy of the autonomous underwater robot.
Le contexte économique actuel des industries sous-marines est favorable à une réduction des coûts, notamment concernant la robotique sous-marine. A titre d'exemple, dans le cadre de l'industrie pétrolière et gazière offshore, la récente chute des cours du baril oblige les acteurs à réduire les coûts d'exploration, de construction et d'exploitation des sites s'ils veulent conserver un niveau de rentabilité suffisant. Par ailleurs, l'exploitation des ressources minières sous-marines par des véhicules sous-marins n'a pas encore prouvé sa viabilité économique malgré les concentrations importantes de certains métaux rares. Enfin, les océans renferment des ressources encore peu exploitées, comme des réserves de biomolécules, ou encore des énergies marines. Seulement 5% des océans ont à ce jour été explorés et la baisse des coûts des campagnes d'exploration sous-marine est essentielle à la multiplication des campagnes scientifiques. Les états souverains cherchent également à mettre en œuvre des technologies d'exploration et d'exploitation des ressources marines moins chères et plus efficaces. Sous l'eau, les ROVs sont le plus souvent déployés à partir d'une cage comprenant un système d'enroulage (connu sous l'acronyme anglais TMS pour tether management System). Ces cages se sont démocratisées depuis les années 1970 car elles permettent de lester l'ombilical et de descendre plus profondément à la verticale du navire. Un câble enroulé dans la cage et relié d'une part à la cage et d'autre part au ROV, permet à ce dernier d'en sortir et de se déplacer dans une boule d'un rayon égal à la longueur de ce câble. Le système comprenant l'ombilical, la cage, le câble et le ROV est lourd et nécessite la présence d'un navire d'une dimension importante en surface, ce qui augmente le coût de l'opération. The current economic context of the underwater industries is conducive to a reduction of costs, especially concerning underwater robotics. For example, in the offshore oil and gas industry, the recent drop in oil prices forces players to reduce exploration, construction and site operation costs if they want to maintain sufficient level of profitability. In addition, the exploitation of underwater mining resources by submarine vehicles has not yet proved its economic viability despite the high concentrations of certain rare metals. Finally, the oceans contain resources that are still little exploited, such as reserves of biomolecules, or even marine energies. Only 5% of the world's oceans have so far been explored, and lower costs for underwater exploration campaigns are essential to the multiplication of scientific campaigns. Sovereign states are also seeking to implement cheaper and more efficient technologies for exploring and exploiting marine resources. Underwater, ROVs are most often deployed from a cage including a winding system (known by the acronym TMS for tether management System). These cages have been democratized since the 1970s because they allow to ball the umbilical and go deeper to the vertical of the ship. A cable wound in the cage and connected on the one hand to the cage and on the other hand to the ROV, allows the latter to come out and move in a ball with a radius equal to the length of this cable. The system comprising the umbilical, the cage, the cable and the ROV is heavy and requires the presence of a large-sized vessel at the surface, which increases the cost of the operation.
A titre d'exemple, en 2015, le déploiement d'un ROV de travail (c'est-à-dire dont la puissance est supérieure à 100 chevaux) coûtait 80 000€ par jour, dont 60 000€ servaient à la location du navire, contre seulement 20 000€ celle du ROV et de ses équipes. Réduire le tonnage des navires qui opèrent les ROV constitue donc un élément économique essentiel.  For example, in 2015, the deployment of a working ROV (that is to say with a power of more than 100 horses) cost € 80,000 per day, of which € 60,000 was used to rent the car. ship, against only € 20,000 that of the ROV and its teams. Reducing the tonnage of vessels operating ROVs is therefore an essential economic element.
Par ailleurs, les AUVs ne sont pas câblés jusqu'à la surface et un navire relativement petit est capable de les mettre à l'eau et de les récupérer à la fin de leur mission. Toutefois, les remontées régulières en surface des AUVs, nécessaires au rechargement ou au remplacement des batteries, et à la récupération de données de la mission, sont un facteur de perte de temps, et donc d'augmentation du coût d'utilisation d'un AUV.  In addition, AUVs are not wired to the surface and a relatively small vessel is capable of launching them and recovering them at the end of their mission. However, the regular surface lifts of the AUVs, necessary for reloading or replacing the batteries, and for the recovery of mission data, are a factor in the loss of time, and therefore in the increase in the cost of using a battery. AUV.
Une équipe spécialisée (plongeur, technicien) doit également être sur place pour réceptionner l'AUV avant de le remettre à l'eau. La présence d'un navire est donc en permanence nécessaire sur site, alors même que ces robots AUV sont capables d'évoluer en autonomie dans le milieu marin.  A specialized team (diver, technician) must also be on site to receive the AUV before releasing it. The presence of a ship is therefore always necessary on site, even though these AUV robots are able to evolve autonomously in the marine environment.
Ainsi, la présence d'un navire est le principal facteur de coût de l'utilisation d'un robot, qu'il soit filoguidé (ROV) ou non (AUV).  Thus, the presence of a ship is the main cost factor for the use of a robot, whether wire-guided (ROV) or not (AUV).
Les AUV sont limités en puissance et ne peuvent pas réaliser des tâches de travaux ou de maintenance qui nécessite de manipuler un outillage lourd. Enfin, les AUV ne communiquent que très difficilement avec la surface. Il est par exemple pratiquement impossible d'échanger des données vidéo entre le navire et l'AUV au fond.  AUVs are limited in power and can not carry out work or maintenance tasks that require handling heavy equipment. Finally, AUVs communicate with the surface only with great difficulty. For example, it is almost impossible to exchange video data between the ship and the AUV at the bottom.
De récents développements techniques permettent d'envisager qu'un robot (AUV ou ROV) résident, c'est à dire qui reste sur une longue période sur le fond, puisse assister un site sur de longues périodes sans remonter en surface. Cela est permis par la présence d'un organe qui héberge le ROV tel qu'un garage, également appelé station d'accueil qui héberge le robot (ROV ou AUV) et est relié à la surface par l'intermédiaire d'un ombilical.  Recent technical developments make it possible to consider that a robot (AUV or ROV) resides, that is to say that stays for a long time on the bottom, can assist a site over long periods without going back to the surface. This is enabled by the presence of a body that houses the ROV such as a garage, also called a docking station that houses the robot (ROV or AUV) and is connected to the surface via an umbilical.
Dans une autre configuration, un élément d'un site industriel sous-marin, comme une tête du puits pétrolière, une unité mécanique, électrique, hydraulique ou encore électronique, ou simplement un système posé sur le fond de l'océan, peut nécessiter une connexion régulière ou non avec la surface, afin d'échanger électricité et/ou données.  In another configuration, an element of an underwater industrial site, such as an oil wellhead, a mechanical, electrical, hydraulic or electronic unit, or simply a system placed on the ocean floor, may require regular connection or not with the surface, to exchange electricity and / or data.
Ainsi, de manière générale, la communication et le transfert de données et d'énergie entre un objet émergé et un objet immergé est un enjeu majeur pour l'avenir. On connaît notamment d'après le document US-6 390 012 un dispositif qui permet de communiquer, depuis un objet émergé tel qu'un navire, avec un robot sous-marin autonome immergé en cours d'exploration. Le dispositif comprend un véhicule sous-marin téléguidé, relié à l'objet émergé et comprenant des moyens de liaison électrique au robot sous-marin autonome. Le véhicule sous-marin téléguidé est relié, au moyen d'un câble souple à un cadre intermédiaire, rigide, qui porte un dérouleur du câble souple. Le cadre intermédiaire est relié à l'objet émergé au moyen d'un ombilical. Ainsi, l'ombilical, le câble souple et le véhicule sous-marin téléguidé forment un canal de communication électrique entre l'objet émergé et le robot sous-marin autonome. Il est donc possible d'échanger des informations entre l'objet émergé et le robot sous-marin autonome et également de fournir au robot sous- marin autonome de l'énergie électrique. Thus, in general, the communication and the transfer of data and energy between an emerging object and an immersed object is a major stake for the future. Document US Pat. No. 6,390,012 in particular discloses a device that makes it possible to communicate, from an emergent object such as a ship, with an underwater autonomous submerged robot being explored. The device comprises a remote-controlled underwater vehicle connected to the emerged object and comprising electrical connection means to the autonomous underwater robot. The remote-controlled underwater vehicle is connected, by means of a flexible cable to a rigid intermediate frame, which carries a unwinder of the flexible cable. The intermediate frame is connected to the emerged object by means of an umbilical. Thus, the umbilical, the flexible cable and the unmanned underwater vehicle form an electrical communication channel between the emerged object and the autonomous underwater robot. It is therefore possible to exchange information between the emerged object and the autonomous underwater robot and also to provide the autonomous underwater robot with electrical energy.
Cependant, le dispositif ne fonctionne que pour certaines configurations spécifiques. En effet, le dispositif décrit ne s'applique qu'à un type particulier de robots sous-marins autonomes et à une gamme limitée de profondeurs.  However, the device only works for certain specific configurations. Indeed, the device described applies only to a particular type of autonomous underwater robots and a limited range of depths.
Par ailleurs, le dispositif ne décrit pas la méthode de connexion en pleine eau qui n'est pas réalisable à partir des informations données. En effet, le dispositif comprend un connecteur du type wet-mate qui demande une poussée de plusieurs dizaines de kilos entre le véhicule sous-marin téléguidé et le robot sous-marin autonome, ce qui repousserait ce dernier. Par ailleurs le dispositif décrit présente un poids important, ce qui empêche son déploiement à partir d'un navire léger. Il n'est pas fait mention non plus de la méthode utilisée pour localiser le robot sous-marin autonome immergé.  Moreover, the device does not describe the method of connection in open water that is not feasible from the given information. Indeed, the device comprises a wet-mate-type connector that requires a push of several tens of pounds between the remote-controlled underwater vehicle and the autonomous underwater robot, which would push the latter. Moreover, the device described has a significant weight, which prevents its deployment from a light vessel. There is no mention of the method used to locate the submerged submarine robot.
Un objectif de l'invention est de fournir un système de communication entre tout type d'objet émergé et d'objet immergé à une profondeur pouvant dépasser la centaine de mètres, dont la versatilité est améliorée et ce, afin de le démocratiser.  An object of the invention is to provide a communication system between any type of emerged object and submerged object to a depth of more than a hundred meters, whose versatility is improved and in order to democratize it.
Pour ce faire, on prévoit selon l'invention un système de communication et de transfert entre un objet émergé et un objet immergé dans un milieu marin ou fluvial, caractérisé en ce qu'il comprend :  To do this, the invention provides a communication and transfer system between an emergent object and an object immersed in a marine or fluvial environment, characterized in that it comprises:
- un ombilical comportant une première extrémité apte à être reliée à l'objet émergé et une seconde extrémité,  an umbilical having a first end adapted to be connected to the emerged object and a second end,
- un organe de jonction comprenant un transformateur électrique et relié à la seconde extrémité de l'ombilical,  a connecting member comprising an electrical transformer and connected to the second end of the umbilical,
- un organe longiligne de connexion comprenant une première extrémité reliée à l'organe de jonction et une seconde extrémité, et  an elongated connecting member comprising a first end connected to the connecting member and a second end, and
- un connecteur relié à la seconde extrémité de l'organe longiligne de connexion, comprenant des moyens de connexion à l'objet immergé, des moyens de propulsion et un module automatisé de positionnement par rapport à l'objet immergé,  a connector connected to the second end of the elongate connecting member, comprising means for connection to the immersed object, propulsion means and an automated positioning module with respect to the immersed object,
l'ombilical, l'organe de jonction, l'organe longiligne de connexion et le connecteur forment un canal de communication électrique entre l'objet émergé et l'objet immergé. Ainsi, l'organe de jonction est immergé à une profondeur intermédiaire entre la surface et celle de l'objet immergé. Il est donc possible de transporter un courant électrique à haute tension, par exemple entre 1000 et 5000 volts, voire à très haute tension, par exemple entre 5000 et 20000 volts, à l'aide de l'ombilical entre l'objet immergé et l'organe de jonction. L'intensité du courant transporté peut donc être moins importante, à puissance fournie égale, ce qui limite les pertes en ligne. Le transformateur permet de convertir cette haute tension en une tension plus faible, conforme à celle que l'objet immergé peut supporter. Cette tension pour l'objet immergé peut être comprise entre 30 et 400 volts. Il est donc possible de relier électriquement l'objet émergé et l'objet immergé même lorsque ce dernier est situé à une profondeur importante, par exemple 3000 mètres. Il est ainsi notamment possible de fournir à l'objet immergé une puissance importante, par exemple 200 kW. the umbilical, the connecting member, the elongate connection member and the connector form an electrical communication channel between the emerged object and the immersed object. Thus, the junction member is immersed at an intermediate depth between the surface and that of the immersed object. It is therefore possible to transport a high-voltage electrical current, for example between 1000 and 5000 volts, or even at very high voltage, for example between 5000 and 20000 volts, using the umbilical between the immersed object and the junction member. The intensity of the current transported can therefore be less important, with equal power output, which limits losses in line. The transformer makes it possible to convert this high voltage into a lower voltage, in accordance with that which the submerged object can withstand. This voltage for the immersed object can be between 30 and 400 volts. It is therefore possible to electrically connect the emerged object and the immersed object even when the latter is located at a significant depth, for example 3000 meters. It is thus possible in particular to provide the immersed object with a large power, for example 200 kW.
En outre, le transformateur électrique permet d'ajuster au plus près la puissance transmise au connecteur et à l'objet immergé. En effet, le système de connexion et de transfert selon l'invention permet de rendre des conducteurs électriques qui alimentent le connecteur et l'objet immergé totalement indépendants. La fiabilité du système est donc considérablement accrue.  In addition, the electrical transformer makes it possible to adjust as closely as possible the power transmitted to the connector and to the immersed object. Indeed, the connection and transfer system according to the invention makes it possible to make electrical conductors which supply the connector and the immersed object completely independent. The reliability of the system is therefore considerably increased.
De plus, l'organe de jonction a pour fonction de lester, du fait du poids du transformateur, l'ombilical de sorte qu'il est aligné avec le navire et ce, quels que soient les courants marins. Le connecteur peut ainsi avoir un poids minimum.  In addition, the function of the connecting member is to ballast, because of the weight of the transformer, the umbilical so that it is aligned with the ship and this, whatever the sea currents. The connector can thus have a minimum weight.
L'écart horizontal entre l'objet émergé et l'organe de jonction ne doit pas excéder la longueur de l'organe longiligne souple. Ainsi, le poids de l'organe de jonction est ajusté à l'aide d'une table de calcul hydrodynamique qui dépend notamment de la profondeur à laquelle doit descendre l'organe de jonction. On peut ainsi introduire des poids dans l'organe de jonction. Un avantage du transformateur est de limiter la quantité de poids à utiliser.  The horizontal distance between the emergent object and the junction member must not exceed the length of the flexible elongate member. Thus, the weight of the junction member is adjusted using a hydrodynamic calculation table which depends in particular on the depth to which the junction member must descend. It is thus possible to introduce weights into the junction member. An advantage of the transformer is to limit the amount of weight to use.
En outre, comme le connecteur comprend un module automatisé de positionnement et des moyens de propulsion, il s'approche de façon autonome de l'objet immergé pour se connecter à lui. Le connecteur améliore donc l'efficacité du système en diminuant les risques d'erreur de pilotage depuis la surface, notamment en cas de mauvaises conditions maritimes et météorologiques.  In addition, since the connector comprises an automated positioning module and propulsion means, it approaches autonomously the immersed object to connect to it. The connector thus improves the efficiency of the system by reducing the risk of pilot error from the surface, especially in case of bad weather and weather conditions.
Par ailleurs, de préférence, l'objet immergé comprend une embase complémentaire, capable de recevoir le connecteur du système de communication et de transfert. L'embase complémentaire comprend avantageusement une balise acoustique permettant une localisation précise de l'embase. Ainsi, la position selon trois dimensions de l'espace de l'embase et donc a fortiori de l'objet immergé est précisément connue.  Furthermore, preferably, the immersed object comprises a complementary base, capable of receiving the connector of the communication and transfer system. The complementary base advantageously comprises an acoustic beacon allowing a precise location of the base. Thus, the position in three dimensions of the space of the base and therefore a fortiori of the immersed object is precisely known.
En outre, l'embase peut avoir une forme reconnaissable afin qu'un ordinateur puisse réaliser un traitement numérique de l'image capturée par une éventuelle caméra portée par le connecteur, ce qui permet ainsi de positionner précisément le connecteur relativement à l'embase selon les 3 dimensions de l'espace. Par exemple, l'embase peut comprendre un organe de forme particulière, ou une pastille de couleur réfléchissante, ou encore plusieurs diodes électroluminescentes sous-marines réparties de telle sorte qu'une forme reconnaissable est distinguable. In addition, the base can have a recognizable shape so that a computer can perform a digital processing of the captured image by a possible camera carried by the connector, which thus allows to precisely position the connector relative to the base according to the 3 dimensions of space. For example, the base may comprise a particular shaped member, or a reflective color patch, or several submarine light-emitting diodes distributed so that a recognizable shape is distinguishable.
On peut aussi associer au moins deux de ces options afin de notamment permettre un guidage optique dans des eaux troubles, fortement réfléchissantes ou en faible visibilité.  At least two of these options can also be combined, in particular to allow optical guidance in murky, highly reflective waters or in low visibility.
De plus, l'embase peut avoir une forme creuse en entonnoir afin de guider l'approche finale du connecteur et permettre un alignement parfait entre des prises mâles et femelles. Le connecteur peut aussi comprendre un dispositif d'ailettes inégalement réparties sur le connecteur et complémentaires d'un réseau de fentes sur l'embase.  In addition, the base can have a hollow funnel shape to guide the final approach of the connector and allow a perfect alignment between male and female plugs. The connector may also comprise a fin device unequally distributed on the connector and complementary to a network of slots on the base.
En outre, le connecteur peut contenir un dispositif de reprise d'accroché capable de maintenir le connecteur dans son embase une fois le connecteur entré dans l'entonnoir. Cela peut par exemple prendre la forme de chiens mécaniques qui s'enclenchent au contact du connecteur dans son embase. Cela peut également prendre l'aspect d'un piston associé à un moteur contrôlé par l'ordinateur de bord et dont le mouvement horizontal permet, grâce à la forme du piston, de rapprocher le connecteur de l'embase et de maintenir la connexion. De préférence, les moyens suscités permettent une seule position d'accroché entre le connecteur et l'embase.  In addition, the connector may contain a hook-on recovery device capable of holding the connector in its socket after the connector enters the funnel. This can for example take the form of mechanical dogs that engage in contact with the connector in its base. It can also take the appearance of a piston associated with an engine controlled by the onboard computer and whose horizontal movement allows, thanks to the shape of the piston, to bring the connector of the base and maintain the connection. Preferably, the means evoked allow a single hooked position between the connector and the base.
Selon une variante, l'organe longiligne de connexion est plus souple que l'ombilical.  According to one variant, the elongate connecting member is more flexible than the umbilical.
Le déplacement du connecteur est donc facilité et l'approche autonome est plus fiable. En effet, l'ombilical est destiné à être plus long que l'organe longiligne de connexion et à être relativement rectiligne sous l'eau. Inversement, l'organe longiligne de connexion est destiné à suivre les mouvements du connecteur. L'ombilical doit donc être plus rigide et avoir une inertie plus importante pour ne pas que les courants marins entraînent l'organe de jonction et le connecteur à une distance trop importante de l'objet immergé.  The displacement of the connector is thus facilitated and the autonomous approach is more reliable. Indeed, the umbilical is intended to be longer than the elongate connecting member and to be relatively straight under water. Conversely, the longiligne connecting member is intended to follow the movements of the connector. The umbilical must therefore be more rigid and have greater inertia so that the marine currents cause the connecting member and the connector to a too great distance from the immersed object.
Selon une variante, l'organe longiligne de connexion présente une flottabilité neutre. Ainsi, il amortit de façon efficace les mouvements de l'organe de jonction et le connecteur ne subit donc pas les contraintes liées au mouvement de l'organe de jonction, mouvement qui peut par exemple être dû à des contraintes provenant de l'objet émergé en surface.  According to one variant, the elongate connecting member has a neutral buoyancy. Thus, it effectively damps the movements of the connecting member and the connector does not therefore undergo the constraints related to the movement of the junction member, a movement that may for example be due to constraints from the emerging object surface.
Selon un mode de réalisation, l'ombilical, l'organe de jonction, l'organe longiligne de connexion et le connecteur forment également un canal de communication optique entre l'objet émergé et l'objet immergé.  According to one embodiment, the umbilical, the connecting member, the elongate connection member and the connector also form an optical communication channel between the emerged object and the immersed object.
Il est donc possible d'échanger des informations ou de l'énergie sous forme de signal électrique mais également optique. Le signal optique permet également d'échanger des données à un débit important, par exemple plusieurs signaux vidéo en haute définition.  It is therefore possible to exchange information or energy in the form of an electrical signal but also an optical signal. The optical signal also makes it possible to exchange data at a high rate, for example several high definition video signals.
Selon une variante, l'ombilical et l'organe longiligne de connexion renferment au moins une fibre optique. La fibre optique est un moyen simple et efficace pour échanger des informations sous forme de signal optique. According to a variant, the umbilical and the elongate connection member contain at least one optical fiber. Optical fiber is a simple and effective way to exchange information in the form of an optical signal.
Selon un mode de réalisation, le connecteur comprend un récepteur apte à recevoir une commande de déplacement de l'objet émergé.  According to one embodiment, the connector comprises a receiver adapted to receive a movement control of the emerged object.
Ainsi, on peut aussi commander le déplacement du connecteur depuis l'objet émergé en cas par exemple de panne du module automatisé de positionnement. La fiabilité de système de communication est donc améliorée.  Thus, it is also possible to control the displacement of the connector from the emergent object in the event, for example, of failure of the automated positioning module. The reliability of communication system is therefore improved.
Selon une variante, l'organe de jonction comprend un convertisseur de courant continu en courant alternatif et vice versa.  According to a variant, the connecting member comprises a direct current converter AC and vice versa.
Selon un mode de réalisation, l'ombilical renferme un câble électrique apte à transporter un courant alternatif et/ou un courant continu.  According to one embodiment, the umbilical contains an electrical cable capable of carrying an alternating current and / or a direct current.
Selon une variante, l'organe longiligne de connexion renferme un câble électrique apte à transporter un courant alternatif et/ou un courant continu.  According to one variant, the elongate connecting member encloses an electric cable able to carry an alternating current and / or a direct current.
Selon un mode de réalisation, l'ombilical est apte à transporter un courant dont une tension est supérieure à une tension d'un courant que l'organe longiligne de connexion est apte à transporter.  According to one embodiment, the umbilical is able to carry a current whose voltage is greater than a voltage of a current that the elongate connecting member is able to carry.
Ainsi, on peut transporter un courant ayant des propriétés différentes de celles qui conviennent à l'objet immergé.  Thus, a current with properties different from those suitable for the immersed object can be transported.
Selon une variante, l'organe longiligne de connexion comprend une gaine de protection comprenant du poly(p-phénylènetéréphtalamide), également connu sous le nom commercial de Kevlar.  Alternatively, the elongate connecting member comprises a protective sheath comprising poly (p-phenylene terephthalamide), also known as Kevlar.
Ainsi, tout en étant souple, l'organe longiligne de connexion est solide. On notera notamment que le kevlar est incompressible jusqu'à une profondeur importante, à savoir jusqu'à environ 3000 mètres et permet en outre de conférer à l'organe longiligne de connexion une flottabilité neutre, voire légèrement positive, jusqu'à cette profondeur limite.  Thus, while being flexible, the elongate connecting member is solid. Note in particular that the Kevlar is incompressible to a significant depth, namely up to about 3000 meters and also allows to provide the connecting elongate member a neutral buoyancy, or slightly positive, to this limiting depth .
Selon une variante, des flotteurs répartis le long de l'organe longiligne de connexion permettent de lui conférer sa flottabilité neutre. Ces flotteurs peuvent par exemple être constitués de mousse incompressible et dont la flottabilité positive compense la flottabilité négative de l'organe longiligne de connexion.  According to one variant, floats distributed along the elongate connection member make it possible to give it neutral buoyancy. These floats may for example be made of incompressible foam and whose positive buoyancy compensates for the negative buoyancy of the elongate connecting member.
Selon un mode de réalisation, l'organe de jonction comprend au moins un lest.  According to one embodiment, the joining member comprises at least one ballast.
L'organe de jonction est donc positionné de façon stable sous l'eau.  The connecting member is therefore positioned stably under water.
Selon une variante, l'organe de jonction comprend de l'huile isolante électriquement. According to one variant, the joining member comprises electrically insulating oil.
En effet, l'organe de jonction se présente le plus souvent sous la forme d'un boîtier comprenant de l'huile afin d'isoler électriquement l'intérieur et l'extérieur de l'organe de jonction. L'organe de jonction comprend un compensateur permettant d'équilibrer la pression extérieure du milieu marin avec la pression intérieure de l'organe, en maintenant une légère surpression de l'intérieur vers l'extérieur. Ainsi, en cas de non étanchéité, l'huile isolante sortira du boîtier et empêchera l'infiltration de l'eau salée aux propriétés conductrices. Afin de conserver un niveau d'huile suffisant, un réservoir est associé au compensateur. Pour équilibrer les pressions, le compensateur abrite généralement une membrane associée à un ressort permettant la légère surpression. La fiabilité de cet organe de jonction est donc accrue. Indeed, the junction member is most often in the form of a housing comprising oil to electrically isolate the inside and outside of the junction member. The connecting member comprises a compensator for balancing the external pressure of the marine environment with the internal pressure of the body, maintaining a slight overpressure from the inside to the outside. Thus, in case of non-sealing, the insulating oil will leave the housing and prevent the infiltration of salt water conductive properties. In order to keep a sufficient oil level, a tank is associated with the compensator. To balance the pressures, the compensator generally houses a membrane associated with a spring allowing slight overpressure. The reliability of this connecting member is therefore increased.
Selon un mode de réalisation, l'organe de jonction est relié à la seconde extrémité de l'ombilical de façon amovible.  According to one embodiment, the connecting member is connected to the second end of the umbilical removably.
Cette connexion amovible peut en outre permettre de transmettre la tension verticale de l'ombilical vers l'organe de jonction afin de ne pas mettre les câbles internes à l'organe de jonction en tension.  This removable connection can also be used to transmit the vertical tension of the umbilical to the connecting member so as not to put the internal cables to the junction member in tension.
Selon une variante, le connecteur est relié à la seconde extrémité de l'organe longiligne de connexion de façon amovible.  According to a variant, the connector is connected to the second end of the elongate connecting member removably.
Selon un mode de réalisation, la première extrémité de l'organe longiligne de connexion est reliée à l'organe de jonction de façon amovible.  According to one embodiment, the first end of the elongate connecting member is connected to the connecting member removably.
On peut donc procéder à des opérations de maintenance du système de communication de façon simple.  It is therefore possible to carry out maintenance operations of the communication system in a simple manner.
Selon une variante, le module automatisé de positionnement du connecteur comprend au moins l'un des outils de navigation suivant : une caméra, de préférence une caméra du type haute définition (HD), un profondimètre, un capteur de vitesse instantanée, un gyroscope, une centrale inertielle et un compas. Optionnellement, le module automatisé de positionnement comprend un module acoustique et un hydrophone.  According to one variant, the automated positioning module of the connector comprises at least one of the following navigation tools: a camera, preferably a high definition type (HD) camera, a depth gauge, an instantaneous speed sensor, a gyroscope, an inertial unit and a compass. Optionally, the automated positioning module comprises an acoustic module and a hydrophone.
D'une part, le module automatisé de positionnement se déplace de façon automatisée de façon fiable et d'autre part, il peut envoyer vers l'objet émergé des données de navigation.  On the one hand, the automated positioning module moves reliably in an automated manner and, on the other hand, it can send navigational data to the emerging object.
Selon un mode de réalisation, les moyens de propulsion du connecteur comprennent au moins deux propulseurs, de préférence du type vectoriel.  According to one embodiment, the connector propulsion means comprise at least two thrusters, preferably of the vector type.
Un propulseur de type vectoriel est efficace pour un déplacement sous-marin. Il pourra par exemple s'agir d'un propulseur électronique ou hydraulique.  A vector-type thruster is effective for underwater travel. It may for example be an electronic or hydraulic thruster.
Selon une variante, le module automatisé de positionnement du connecteur comprend des moyens de positionnement acoustique.  According to one variant, the automated positioning module of the connector comprises acoustic positioning means.
Selon un mode de réalisation, le module automatisé de positionnement du connecteur comprend un modem de communication acoustique du type Short Base Line (SBL) ou Ultra Short Base Line (USBL).  According to one embodiment, the automated positioning module of the connector comprises an acoustic communication modem of the Short Base Line (SBL) or Ultra Short Base Line (USBL) type.
Le repérage de l'objet immergé est donc plus simple.  The tracking of the submerged object is therefore simpler.
Selon une variante, le connecteur comprend des moyens automatisés aptes à déconnecter le connecteur de l'objet immergé en cas de détection d'une mauvaise connexion entre le connecteur et l'objet immergé.  According to one variant, the connector comprises automated means capable of disconnecting the connector from the immersed object in the event of detection of a bad connection between the connector and the immersed object.
Ainsi, si l'intégrité du connecteur est menacée, par exemple car la connexion entre le connecteur et l'objet immergé n'est pas étanche, ce dernier se déconnecte automatiquement. De même, si la tension dans l'organe longiligne de connexion dépasse une valeur qui menacerait l'intégrité du connecteur, de l'organe longiligne de connexion ou de l'ombilical. Le connecteur réalise par exemple un mouvement contraire à celui décrit dans l'accroche afin d'éjecter le connecteur de l'entonnoir de l'embase. Plus généralement, le connecteur se déconnecte de l'objet immergé. Thus, if the integrity of the connector is threatened, for example because the connection between the connector and the immersed object is not sealed, the latter automatically disconnects. Similarly, if the voltage in the elongated connecting member exceeds a value that would threaten the integrity of the connector, the elongate connecting body or the umbilical. The connector performs for example a movement contrary to that described in the catch to eject the connector of the funnel of the base. More generally, the connector disconnects from the submerged object.
On prévoit également selon l'invention un ensemble comprenant un objet immergé dans un milieu marin ou fluvial et un système de communication tel que précédemment décrit, le connecteur du système de communication est relié à l'objet immergé.  Also provided according to the invention an assembly comprising an object immersed in a marine or fluvial environment and a communication system as previously described, the connector of the communication system is connected to the immersed object.
Selon une variante, l'ensemble comprend un objet émergé, la première extrémité de l'ombilical est reliée à l'objet émergé.  According to one variant, the assembly comprises an emergent object, the first end of the umbilical is connected to the emerged object.
Selon un mode de réalisation, l'objet émergé est un navire ou une plateforme d'extraction pétrolière ou minière ou un aéronef, de préférence, l'aéronef est un hélicoptère.  According to one embodiment, the emerging object is an oil or mining extraction vessel or platform or an aircraft, preferably the aircraft is a helicopter.
Selon une variante, l'objet immergé est un véhicule du type véhicule sous-marin téléguidé également connu sous le nom de Remotely operated vehicle (ROV) ou robot sous- marin autonome également sous le nom de Autonomous underwater vehicle (AUV), ou encore une station sous-marine autonome ou garage sous-marin posé sur le fond.  According to one variant, the immersed object is a vehicle of the remote-controlled underwater vehicle type also known as Remotely operated vehicle (ROV) or autonomous underwater robot also under the name Autonomous underwater vehicle (AUV), or an autonomous underwater station or underwater garage laid on the bottom.
On notera en effet que le système de communication peut être aussi bien utilisé avec un véhicule sous-marin téléguidé qu'un robot sous-marin autonome.  It should be noted that the communication system can be used both with a remote-controlled underwater vehicle and an autonomous underwater robot.
On prévoit aussi selon l'invention un procédé de mise en communication entre un objet émergé et un objet immergé dans un milieu marin ou fluvial au moyen d'un système de communication et de transfert tel que précédemment décrit, comprenant les étapes suivantes :  Also provided according to the invention a method of placing in communication between an emergent object and an object immersed in a marine or fluvial environment by means of a communication and transfer system as previously described, comprising the following steps:
- on relie la première extrémité de l'ombilical à l'objet émergé,  the first end of the umbilical is connected to the emerging object,
- on relie le connecteur à l'objet immergé.  - Connects the connector to the immersed object.
Selon une variante, l'objet émergé comprend un générateur électrique et l'objet immergé comprend au moins une batterie, on alimente la batterie en énergie électrique provenant du générateur au moyen du système de communication.  According to one variant, the emerged object comprises an electric generator and the immersed object comprises at least one battery, the battery is supplied with electrical energy from the generator by means of the communication system.
Ainsi, l'objet émergé peut rester sous l'eau plus longtemps et procéder à une mission d'exploration plus longue.  Thus, the emerged object can remain underwater longer and carry out a longer exploration mission.
Selon un mode de réalisation, le connecteur comprend un récepteur apte à recevoir une commande de déplacement du connecteur et l'objet immergé comprend un émetteur apte à émettre une commande de déplacement du connecteur, on commande depuis l'objet immergé le déplacement du connecteur.  According to one embodiment, the connector comprises a receiver adapted to receive a movement control of the connector and the immersed object comprises an emitter capable of transmitting a command to move the connector, the displacement of the connector is controlled from the immersed object.
Ainsi, en cas de défaillance du module automatisé de positionnement, il est toujours possible d'approcher le connecteur de l'objet immergé.  Thus, in case of failure of the automated positioning module, it is always possible to approach the connector of the submerged object.
On notera que de préférence, l'organe de jonction ne comporte pas d'enrouleur pour l'organe longiligne de connexion. En effet, l'organe longiligne de connexion présente en général une longueur relativement réduite, ce qui permet de se passer de l'enrouleur et donc d'alléger le système de communication et de transfert. On va maintenant décrire, à titre d'exemple non limitatif, un mode de réalisation de l'invention à l'aide des figures suivantes : It will be noted that, preferably, the connecting member does not include a reel for the elongate connecting member. Indeed, the elongate connecting member generally has a relatively short length, which makes it possible to dispense with the retractor and thus lighten the communication system and transfer. We will now describe, by way of non-limiting example, an embodiment of the invention with the aid of the following figures:
- la figure 1 est une vue de face d'un système de communication selon l'invention, d'un objet immergé et d'un objet émergé,  FIG. 1 is a front view of a communication system according to the invention, of an immersed object and of an emergent object,
- la figure 2 représente schématiquement un organe de jonction et un connecteur du système de télécommunication,  FIG. 2 diagrammatically represents a connecting member and a connector of the telecommunication system,
- la figure 3 illustre un ombilical du système de communication vu en coupe selon un plan transversal à un axe longitudinal de l'ombilical, et  FIG. 3 illustrates an umbilical of the communication system seen in section along a plane transverse to a longitudinal axis of the umbilical, and
- la figure 4 est une vue en perspective de l'organe de jonction.  - Figure 4 is a perspective view of the junction member.
On a représenté à la figure 1 un système de communication et de transfert 10 selon un exemple de réalisation de l'invention. Le système de communication 10 est destiné à permettre une communication entre un objet émergé et un objet immergé.  FIG. 1 shows a communication and transfer system 10 according to an exemplary embodiment of the invention. The communication system 10 is intended to allow communication between an emergent object and an immersed object.
Ici, l'objet émergé se présente sous la forme d'un navire 12. Plus généralement, l'objet émergé peut être tout type d'objet flottant, mais aussi un objet volant tel qu'un hélicoptère, de préférence en vol stationnaire. On notera en effet que le système de communication 10 peut être déployé à partir d'un objet émergé de faible masse. L'objet émergé peut aussi être monté sur des piliers reposant sur un fond marin tel qu'une plate-forme d'extraction pétrolière ou minière.  Here, the emerging object is in the form of a ship 12. More generally, the emerging object can be any type of floating object, but also a flying object such as a helicopter, preferably hovering. It will be noted that the communication system 10 can be deployed from an emerging object of low mass. The emerged object can also be mounted on pillars resting on a seabed such as an oil or mining extraction platform.
L'objet immergé se présente sous la forme d'une station sous-marine 14. The submerged object is in the form of an underwater station 14.
Alternativement, l'objet immergé peut être un robot sous-marin autonome connu sous l'acronyme anglais AUV (Autonomous underwater vehiclé) ou un véhicule sous-marin téléguidé, également connu sous l'acronyme anglais ROV (Remotely operated vehiclé).Alternatively, the submerged object may be an autonomous underwater robot known by the acronym AUV (Autonomous underwater vehiclé) or a remote controlled submarine vehicle, also known by the acronym ROV (Remotely operated vehicle).
L'objet immergé peut être une unité sous-marine de production d'électricité, du type hydrolienne ou pilier d'éolienne ou une unité sous-marine destinée à effectuer des mesures de nature scientifique. Plus généralement, l'objet immergé peut être tout type de véhicule ou d'objet apte à être immergé. The submerged object may be an underwater power generation unit, of the tidal turbine type or wind turbine pillar, or an underwater unit for performing measurements of a scientific nature. More generally, the immersed object can be any type of vehicle or object capable of being immersed.
La station sous-marine 14 a une position fixée. Elle est ici du type garage sous-marin destiné à héberger un ou plusieurs robots sous-marin autonome ou véhicules sous-marin téléguidé. Selon une variante, la station sous-marine 14 peut aussi par exemple être une tête d'un puits pétrolier ou gazier sous-marin.  The underwater station 14 has a fixed position. It is here of the underwater garage type intended to house one or more autonomous submarine robots or remote controlled submarine vehicles. Alternatively, the underwater station 14 may also for example be a head of an oil or gas well underwater.
La station sous-marine 14 est ici immergée dans un milieu marin, à savoir un océan 15, ayant une surface 17 sur laquelle flotte le navire 12. Il peut aussi être immergé dans une mer. Il peut également être immergé dans un milieu fluvial et plus généralement, dans tout type d'étendue d'eau suffisamment profonde. En outre, la station sous-marine 14 comprend une batterie d'accumulateurs qui lui fournit l'énergie nécessaire à son fonctionnement.  The underwater station 14 is here immersed in a marine environment, namely an ocean 15, having a surface 17 on which the vessel 12 floats. It can also be immersed in a sea. It can also be immersed in a fluvial environment and more generally, in any type of water that is deep enough. In addition, the underwater station 14 comprises a storage battery which provides it with the energy necessary for its operation.
Le système de communication 10 comprend un ombilical 16, un organe de jonction 18, un organe longiligne de connexion 20 et un connecteur 22. L'ombilical 16 a une forme longiligne, comporte un axe longitudinal et comprend une première extrémité longitudinale 23 qui est reliée à un générateur électrique et à un générateur de signal optique ou lumineux du navire 12. A cet effet, le navire 12 comprend un enrouleur 24, actionné par un moteur, par exemple alimenté en énergie électrique par une batterie d'accumulateurs du type power pack, qui permet de dérouler l'ombilical 16 depuis le navire 12 en profondeur dans l'océan 15. L'enrouleur 24 est aussi commandé par des moyens de pilotage tels qu'une console électriquement reliée au moteur. The communication system 10 comprises an umbilicus 16, a connecting member 18, an elongate connection member 20 and a connector 22. The umbilical 16 has an elongated shape, has a longitudinal axis and comprises a longitudinal first end 23 which is connected to an electric generator and to an optical or light signal generator of the ship 12. For this purpose, the ship 12 comprises a reel 24, actuated by a motor, for example supplied with electrical energy by a storage battery type power pack, which allows to unroll the umbilical 16 from the ship 12 deep in the ocean 15. The reel 24 is also controlled by control means such as a console electrically connected to the engine.
L'ombilical 16 comprend une seconde extrémité longitudinale 26, opposée à la première 23 et à laquelle est reliée une première extrémité longitudinale 28 de l'organe de jonction 18. A une seconde extrémité longitudinale 30 opposée à la première extrémité 28, l'organe de jonction 16 est relié à une première extrémité longitudinale 32 de l'organe longiligne de connexion 20. L'organe longiligne de connexion 20 comprend une seconde extrémité longitudinale 34, opposée à la première extrémité 32, à laquelle est relié le connecteur 22.  The umbilicus 16 comprises a second longitudinal end 26, opposite the first 23 and to which is connected a longitudinal first end 28 of the connecting member 18. At a second longitudinal end 30 opposite the first end 28, the organ junction 16 is connected to a first longitudinal end 32 of the elongate connecting member 20. The elongate connecting member 20 comprises a second longitudinal end 34, opposite the first end 32, to which the connector 22 is connected.
On notera par ailleurs que les liaisons entre la seconde extrémité longitudinale 26 de l'ombilical 16 et la première extrémité longitudinale 28 de l'organe de jonction 18, entre la seconde extrémité longitudinale 30 de l'organe de jonction 18 et la première extrémité longitudinale 32 de l'organe longiligne de connexion 20 et entre la seconde extrémité longitudinale 34 de l'organe longiligne de connexion 20 et le connecteur 22 sont amovibles, par exemple au moyen de connecteurs comprenant des moyens d'étanchéité. Ainsi, il est facile, de remplacer l'une des parties du système de communication 10, par exemple s'il faut procéder à des opérations de maintenance.  Note also that the connections between the second longitudinal end 26 of the umbilical 16 and the first longitudinal end 28 of the connecting member 18, between the second longitudinal end 30 of the connecting member 18 and the first longitudinal end 32 of the elongate connecting member 20 and between the second longitudinal end 34 of the elongate connecting member 20 and the connector 22 are removable, for example by means of connectors comprising sealing means. Thus, it is easy to replace one of the parts of the communication system 10, for example if it is necessary to carry out maintenance operations.
L'ombilical 16 possède un poids, une inertie et une rigidité suffisants pour conserver un caractère relativement rectiligne en dépit des courants marins. L'ombilical 16 comprend de plus une armature en acier 19 afin de résister à la tension qu'il subit. L'ombilical 16 a ainsi une flottabilité négative. En outre, il possède une capacité à tenir une traction suffisante pour supporter l'organe de jonction 18, relié à la seconde extrémité longitudinale 26 de l'ombilical 16. Comme on le voit sur la figure 3, selon une réalisation, l'ombilical 16 comprend trois câbles électriques 36 dédiés à la circulation d'un courant alternatif. Il comprend en outre optionnellement deux câbles électriques 38 dédiés à la circulation d'un courant continu. De plus, l'ombilical 16 comporte, toujours de façon optionnelle, trois fibres optiques 40 aptes à permettre la circulation d'une information lumineuse. Les câbles électriques 36, 38 et les fibres optiques 40 parcourent toute la longueur de l'ombilical 16 depuis la première extrémité longitudinale 23 à la seconde extrémité longitudinale 26 et forment une arrivée électro- optique pour l'organe de jonction 18 comme indiqué ci-dessous. Le courant électrique circulant dans l'ombilical 16 a de préférence une tension comprise entre 1500 et 5000 volts. En outre, on constate expérimentalement une baisse de tension entre les première 23 et seconde 26 extrémités longitudinales de l'ombilical 16 due aux pertes liées au transport du courant sous l'eau et sur une distance importante, par exemple de l'ordre de 3000 mètres. L'organe de jonction 18, notamment illustré aux figures 2 et 4, se présente sous la forme d'un organe renfermant une boîte de jonction 44 protégée par une cage 45 comprenant une pluralité de barreaux permettant de protéger la boîte de jonction 44 et de résister à la traction. Les barreaux sont de préférence en métal. L'organe de jonction 18 est de préférence de forme cylindrique. Il comprend une arrivée électro-optique 42 qui se présente sous la forme d'un canal de communication qui renferme les câbles électriques 36, 38 et les fibres optiques 40 et qui débouche dans la boîte de jonction 44. L'organe de jonction 18 comprend de l'huile afin notamment d'isoler électriquement la boîte de jonction 44 et l'arrivée électro-optique 42 de l'océan. Comme on le voit sur la partie droite de la figure 2 qui représente de façon schématique la boîte de jonction 44, ce dernier comprend un transformateur électrique 46, capable notamment de transformer un courant à haute tension en courant à basse tension et vice et versa, une sortie électrique 48 et une sortie optique 50. Le transformateur électrique 46 est relié aux deux câbles électriques 38 dédiés à la circulation d'un courant continu. Inversement, les câbles électriques 36 dédiés à la circulation d'un courant alternatif et les fibres optiques 40 traversent la boîte de jonction 44 et l'organe de jonction 18 sans que leurs propriétés soient modifiées. Selon des variantes du présent mode de réalisation, le transformateur électrique 46 est aussi ou uniquement relié aux câbles électriques 36 dédiés à la circulation d'un courant alternatif. Le transformateur électrique 46 est alors de préférence du type transformateur de puissance, c'est-à-dire qu'il ne modifie pas la fréquence du courant alternatif qu'il transforme. Mais le transformateur électrique 46 peut aussi être apte à modifier une fréquence d'un courant continu. En outre, le transformateur électrique 46 peut aussi être apte à transformer un courant alternatif en courant continu et vice versa. Ainsi, les câbles électriques 36, 38 et les fibres optiques 40 sont étanches. De plus, l'organe de jonction 18 comprend un lest afin que l'ombilical 16 soit tendu et rectiligne comme illustré en figure 1 . Le lest peut comprendre une pluralité d'objets. Ainsi, le poids du lest peut être ajusté à la longueur souhaitée de l'ombilical 16 immergé. Le lest peut également être retiré. En outre, la cage 45 remplit également la fonction d'un lest. The umbilical 16 has sufficient weight, inertia and rigidity to maintain a relatively straight character despite the ocean currents. The umbilicus 16 further comprises a steel frame 19 to resist the tension it undergoes. The umbilical 16 thus has a negative buoyancy. In addition, it has a capacity to hold sufficient traction to support the connecting member 18, connected to the second longitudinal end 26 of the umbilical 16. As seen in Figure 3, in one embodiment, the umbilical 16 comprises three electric cables 36 dedicated to the circulation of an alternating current. It furthermore optionally comprises two electric cables 38 dedicated to the circulation of a direct current. In addition, the umbilical 16 includes, optionally, three optical fibers 40 able to allow the flow of light information. The electrical cables 36, 38 and the optical fibers 40 travel the entire length of the umbilicus 16 from the first longitudinal end 23 to the second longitudinal end 26 and form an electro-optical inlet for the connecting member 18 as indicated below. below. The electric current flowing in the umbilicus 16 preferably has a voltage of between 1500 and 5000 volts. In addition, there is experimentally a voltage drop between the first 23 and second 26 longitudinal ends of the umbilical 16 due to the losses related to the transport of the current under water and over a significant distance, for example of the order of 3000 meters. The joining member 18, in particular illustrated in FIGS. 2 and 4, is in the form of a member enclosing a junction box 44 protected by a cage 45 comprising a plurality of bars making it possible to protect the junction box 44 and to resist traction. The bars are preferably made of metal. The joining member 18 is preferably of cylindrical shape. It comprises an electro-optical inlet 42 which is in the form of a communication channel which encloses the electric cables 36, 38 and the optical fibers 40 and which opens into the junction box 44. The junction member 18 comprises oil in particular to electrically isolate the junction box 44 and the electro-optical inlet 42 of the ocean. As can be seen on the right-hand part of FIG. 2, which schematically represents the junction box 44, the latter comprises an electrical transformer 46 capable in particular of transforming a high voltage current into a low voltage current and vice versa, an electrical output 48 and an optical output 50. The electrical transformer 46 is connected to two electrical cables 38 dedicated to the flow of a direct current. Conversely, the electrical cables 36 dedicated to the circulation of an alternating current and the optical fibers 40 pass through the junction box 44 and the junction member 18 without their properties being modified. According to variants of the present embodiment, the electrical transformer 46 is also or only connected to the electric cables 36 dedicated to the circulation of an alternating current. The electrical transformer 46 is then preferably of the power transformer type, that is to say that it does not change the frequency of the alternating current that it transforms. But the electrical transformer 46 may also be able to modify a frequency of a direct current. In addition, the electrical transformer 46 may also be able to convert an alternating current into direct current and vice versa. Thus, the electrical cables 36, 38 and the optical fibers 40 are sealed. In addition, the connecting member 18 comprises a ballast so that the umbilical 16 is taut and straight as illustrated in FIG. The ballast may comprise a plurality of objects. Thus, the ballast weight can be adjusted to the desired length of the umbilical 16 submerged. The ballast can also be removed. In addition, the cage 45 also performs the function of a ballast.
L'organe longiligne de connexion 20 présente une souplesse plus importante que celle de l'ombilical 16 afin de ne pas entraver les mouvements du connecteur 22. De façon similaire à l'ombilical 16, il renferme une pluralité de câbles électriques dédiés à la circulation d'un courant continu, dédiés à la circulation d'un courant alternatif et une pluralité de fibres optiques dédiées à la propagation d'un signal lumineux. En outre, il peut comprendre une gaine de protection comprenant du poly(p-phénylènetéréphtalamide) également connu sous l'acronyme PPD-T et son nom commercial Kevlar. Ce matériau permet de conférer à l'organe longiligne de connexion 20 une résistance et une souplesse adéquates. Le courant électrique circulant dans l'organe longiligne de connexion 20 a de préférence une tension comprise entre 40 et 400 volts. Le connecteur 22 comprend une arrivée électro-optique 53, reliée à l'organe longiligne de connexion 20, un module électrique 54, relié à l'arrivée électro-optique 53, qui comporte un compensateur 56 et une pluralité de fibres optiques 58 et de câbles électriques 60, dédiés à la circulation d'un courant continu et/ou alternatif, et reliés d'une part à une sortie du module électrique 54 et d'autre part à un organe de connexion électro-optique 62. Cet organe de connexion électro-optique 62 forme un moyen de connexion à la station sous-marine 14. Il est donc de façon générale complémentaire d'un organe de connexion électro-optique porté par la station sous-marine 14 comme on va le voir ci-dessous. Le compensateur 56 permet d'équilibrer la pression extérieure du milieu marin avec la pression intérieure du connecteur 22, en maintenant une légère surpression de l'intérieur vers l'extérieur. Le compensateur 56 comprend à cet effet une membrane et un ressort associés à un réservoir d'huile isolante. The elongate connecting member 20 has greater flexibility than that of the umbilical 16 so as not to hinder the movements of the connector 22. In a manner similar to the umbilicus 16, it encloses a plurality of electrical cables dedicated to the circulation. direct current, dedicated to the circulation of an alternating current and a plurality of optical fibers dedicated to the propagation of a light signal. In addition, it may comprise a protective sheath comprising poly (p-phenyleneterephthalamide) also known by the acronym PPD-T and its trade name Kevlar. This material makes it possible to give the elongated connection member 20 adequate strength and flexibility. The electric current flowing in the elongate connecting member 20 preferably has a voltage of between 40 and 400 volts. The connector 22 comprises an electro-optical inlet 53, connected to the elongate connecting member 20, an electrical module 54, connected to the electro-optical inlet 53, which comprises a compensator 56 and a plurality of optical fibers 58 and electrical cables 60, dedicated to the circulation of a direct and / or alternating current, and connected on the one hand to an output of the electrical module 54 and on the other hand to an electro-optical connection member 62. This connection member Electro-optic 62 forms a means of connection to the underwater station 14. It is therefore generally complementary to an electro-optical connection member carried by the underwater station 14 as will be seen below. The compensator 56 balances the external pressure of the marine environment with the internal pressure of the connector 22, maintaining a slight overpressure from the inside to the outside. The compensator 56 comprises for this purpose a membrane and a spring associated with an insulating oil tank.
Le connecteur 22 comprend également deux propulseurs, par exemple, de type vectoriel qui se présentent ici sous la forme d'hélices et qui permettent au connecteur 22 de se déplacer sous l'eau. Les deux propulseurs forment donc des moyens de propulsion du connecteur 22. Les deux propulseurs nécessitent une puissance importante pour assurer le déplacement du connecteur 22. Ainsi, une partie de l'énergie électrique fournie par le navire 12 est destinée à alimenter les deux propulseurs. Les déplacements du connecteur 22 sont limités dans une boule qui a pour centre la seconde extrémité longitudinale 30 de l'organe de jonction 18 et pour rayon la longueur de l'organe longiligne de connexion 20. Le connecteur 22 est capable de se déplacer dans trois directions non coplanaires de l'espace et est capable d'entrer en rotation selon trois angles autour de son centre de gravité.  The connector 22 also comprises two propellers, for example, vector-type which are here in the form of propellers and which allow the connector 22 to move underwater. The two thrusters therefore form propulsion means of the connector 22. The two thrusters require a large power to ensure the displacement of the connector 22. Thus, a portion of the electrical energy supplied by the vessel 12 is intended to supply the two thrusters. The displacements of the connector 22 are limited in a ball which is centered on the second longitudinal end 30 of the connecting member 18 and for radius the length of the elongate connecting member 20. The connector 22 is able to move in three directions. non-coplanar directions of space and is able to rotate in three angles around its center of gravity.
Ainsi, lors de la descente verticale du connecteur 22 sous l'eau, celui-ci vérifie sa position de façon à évider de torsader l'organe longiligne de connexion 20.  Thus, during the vertical descent of the connector 22 under water, it verifies its position so as to avoid twisting the elongate connecting member 20.
Par ailleurs, selon une variante avantageuse de ce mode de réalisation, le connecteur comprend quatre propulseurs horizontaux et trois propulseurs verticaux. Ces propulseurs sont dimensionnés de façon à pouvoir fournir une poussée verticale suffisante lors de la connexion entre le connecteur 22 et la station sous-marine 14.  Furthermore, according to an advantageous variant of this embodiment, the connector comprises four horizontal thrusters and three vertical thrusters. These thrusters are sized so as to provide sufficient vertical thrust during the connection between the connector 22 and the underwater station 14.
En outre, le connecteur 22 comprend un module automatisé de positionnement 64, comprenant au moins un des outils de navigation suivants: une caméra, éventuellement du type haute définition (HD), un profondimètre, un altimètre, un capteur de vitesse instantanée, un ou plusieurs gyroscopes, un ou plusieurs accéléromètres, un ou plusieurs compas.  In addition, the connector 22 comprises an automated positioning module 64, comprising at least one of the following navigation tools: a camera, possibly of the high-definition type (HD), a depth gauge, an altimeter, an instantaneous speed sensor, one or several gyroscopes, one or more accelerometers, one or more compasses.
Le module de positionnement 64 permet de déterminer la position, selon six degrés de liberté, du connecteur 22, notamment par rapport à la station sous-marine 14. De plus, le connecteur 22 et la station sous-marine 14 peuvent être équipés de moyens de positionnement acoustiques comportant un module de positionnement USBL (Ultra Short Base Line). Le module de positionnement USBL peut par exemple être installé sur le connecteur 22, tandis qu'un transpondeur est installé sur la station sous-marine 14. Le module de positionnement USBL est alors configuré pour émettre un signal auquel répond le transpondeur. En mesurant certaines propriétés acoustiques des signaux, comme par exemple le temps écoulé entre l'émission du signal et la réception du signal de réponse, les différences de phase du signal de réponse reçu mesuré en différent points du module USBL, le module USBL du connecteur 22 détermine la position de la station sous-marine 14. The positioning module 64 makes it possible to determine the position, according to six degrees of freedom, of the connector 22, in particular with respect to the underwater station 14. In addition, the connector 22 and the underwater station 14 can be equipped with means acoustic positioning system comprising an USBL (Ultra Short Base Line) positioning module. The positioning module USBL can for example be installed on the connector 22, while a transponder is installed on the underwater station 14. The positioning module USBL is then configured to emit a signal to which the transponder. By measuring certain acoustic properties of the signals, such as, for example, the time elapsed between the transmission of the signal and the reception of the response signal, the phase differences of the received response signal measured at different points of the USBL module, the USBL module of the connector 22 determines the position of the underwater station 14.
Selon le type de capteur de positionnent acoustique et la configuration retenue, la communication de données par voie acoustique pourra être utile.  Depending on the type of acoustic position sensor and the configuration chosen, acoustic data communication may be useful.
Ainsi, le connecteur 22 est apte à déterminer automatiquement sa position par rapport à la station sous-marine 14 et à se déplacer pour se rapprocher de celle-ci. En outre, le connecteur est apte à se relier de manière électro-optique à la station sous-marine 14 par l'intermédiaire de l'organe de connexion électro-optique 62. Ainsi, la station sous-marine 14 comprend un organe de connexion électro-optique qui est complémentaire de l'organe de connexion électro-optique 62 porté par le connecteur 22. L'organe de connexion porté par la station sous-marine 14 est ici une embase 21 complémentaire du connecteur 22. L'embase comprend notamment une ou plusieurs formes optiques reconnaissables. En outre, le connecteur 22 comprend des moyens automatisés aptes à déconnecter le connecteur 22 de la station sous-marine 14 en cas de détection d'une mauvaise connexion entre le connecteur 22 et la station sous-marine 14. Ainsi, le connecteur 22 est apte à se déconnecter de la station sous-marine 14 si par exemple, la connexion entre ces deux objets n'est pas étanche ou si un corps étranger exerce une pression sur le connecteur 22 qui risque de l'endommager. A cet effet, l'organe longiligne de connexion 20 comprend un capteur de tension. Si la tension mesurée dépasse un seuil prédéterminé, par exemple car le navire 12 s'éloigne de la station sous-marine 14, le connecteur 22 se déconnecte de la station sous- marine 14.  Thus, the connector 22 is able to automatically determine its position relative to the underwater station 14 and to move closer to it. In addition, the connector is able to connect electro-optically to the underwater station 14 via the electro-optical connection member 62. Thus, the underwater station 14 comprises a connection member electro-optical which is complementary to the electro-optical connection member 62 carried by the connector 22. The connection member carried by the subsea station 14 is here a base 21 complementary to the connector 22. The base comprises in particular one or more recognizable optical forms. In addition, the connector 22 comprises automated means capable of disconnecting the connector 22 from the underwater station 14 in the event of detection of a bad connection between the connector 22 and the subsea station 14. Thus, the connector 22 is able to disconnect from the underwater station 14 if for example, the connection between these two objects is not waterproof or if a foreign body exerts pressure on the connector 22 which may damage it. For this purpose, the elongate connecting member 20 comprises a voltage sensor. If the measured voltage exceeds a predetermined threshold, for example because the ship 12 moves away from the underwater station 14, the connector 22 disconnects from the underwater station 14.
Ainsi, lorsque le connecteur est relié à la station sous-marine 14, l'ombilical 16, l'organe de jonction 18, l'organe longiligne de connexion 20 et le connecteur 22 forment un canal de communication électrique et optique entre le navire 12 et la station sous-marine 14. Il est donc possible d'échanger des informations entre le navire 12 et la station sous-marine 14. Par exemple, il est possible, depuis le navire 12, de récolter des informations recueillies par la station sous-marine 14. Il est aussi possible de fournir à la station sous-marine 14 des informations relatives à une zone que des ROVs ou AUVS, hébergés par la station sous- marine 14, doivent explorer. En outre, il est possible de recharger la batterie d'accumulateurs de la station sous-marine 14. Cette dernière peut donc rester immergée plus longtemps ou recharger à son tour la batterie d'accumulateurs des ROVs ou AUVS hébergés. Il est également possible de mettre à jour un logiciel embarqué dans la station sous-marine 14 ou de reprogrammer une mission, par exemple d'exploration ou de maintenance, pour les ROVS ou AUVS hébergés par celle-ci.  Thus, when the connector is connected to the underwater station 14, the umbilicus 16, the connecting member 18, the elongate connecting member 20 and the connector 22 form an electrical and optical communication channel between the ship 12 and the underwater station 14. It is therefore possible to exchange information between the ship 12 and the underwater station 14. For example, it is possible, from the ship 12, to collect information collected by the station under -marine 14. It is also possible to provide the submarine station 14 information on an area that ROVs or AUVS, hosted by the underwater station 14, must explore. In addition, it is possible to recharge the storage battery of the underwater station 14. The latter can therefore remain immersed longer or recharge in turn the storage battery of ROVs or AUVS hosted. It is also possible to update a software embedded in the underwater station 14 or to reprogram a mission, for example exploration or maintenance, for the ROVS or AUVS hosted by it.
Comme l'organe de jonction 18 comprend un transformateur électrique 46, il est possible de transporter à haute tension, et donc de façon efficace en minimisant les pertes en ligne, le courant dans l'ombilical 16 sur une longue distance. Ensuite, il est possible de convertir le courant pour que ses propriétés soient adaptées pour être exploité par la station sous- marine 14. Notamment, la station sous-marine 14 a besoin d'un courant à basse tension pour recharger sa batterie d'accumulateurs. Ainsi, l'ombilical 16 est apte à transporter un courant dont une tension est supérieure à une tension d'un courant que l'organe longiligne de connexion 20 est apte à transporter. Ainsi, l'ombilical 16 peut par exemple avoir une longueur de 3000 mètres et l'organe longiligne de connexion 20 une longueur d'une centaine de mètres. Enfin, il est possible de recharger rapidement, par exemple en environ 20 minutes les batteries de la station sous-marines ou du système immergé. As the junction member 18 comprises an electrical transformer 46, it is possible to transport at high voltage, and thus effectively, while minimizing line losses. running in the umbilical 16 over a long distance. Then, it is possible to convert the current so that its properties are adapted to be exploited by the underwater station 14. In particular, the underwater station 14 needs a low-voltage current to recharge its storage battery . Thus, the umbilical 16 is able to carry a current whose voltage is greater than a voltage of a current that the elongate connecting member 20 is able to transport. Thus, the umbilical 16 may for example have a length of 3000 meters and the elongate connecting member 20 a length of one hundred meters. Finally, it is possible to recharge quickly, for example in about 20 minutes the batteries of the submarine station or the submerged system.
On va maintenant décrire le procédé d'utilisation du système de communication et de transfert 10.  The method of using the communication and transfer system 10 will now be described.
Au préalable, la station sous-marine 14 est immergée, par exemple à une profondeur de 3000 mètres environ.  Beforehand, the underwater station 14 is immersed, for example at a depth of about 3000 meters.
Puis, lorsqu'il est nécessaire par exemple de recharger la batterie d'accumulateurs de la station sous-marine 14 dans l'océan 15 ou de collecter des informations qu'elle a recueillies, on déplace le navire 12 sur la surface 17 de l'océan 15. Lorsque le navire 12 est sensiblement sur une portion de la surface 17 de l'océan 15 qui est située sur une même direction verticale que la station sous-marine 14, on relie la première extrémité longitudinale 23 de l'ombilical 16 à un organe électrique ou optique du navire 12 tel qu'un générateur ou un ordinateur apte collecter des données. Pour ce faire, le navire 12 utilise un système de localisation du type DPS, pour Dynamic positioning System, qui permet de positionner, avec une précision de l'ordre de quelques centimètres, le navire 12 grâce à des propulseurs d'étraves.  Then, when it is necessary, for example, to recharge the storage battery of the underwater station 14 in the ocean 15 or to collect information which it has collected, the vessel 12 is moved on the surface 17 of the 15. When the ship 12 is substantially on a portion of the surface 17 of the ocean 15 which is located on the same vertical direction as the subsea station 14, the first longitudinal end 23 of the umbilical 16 is connected. to an electrical or optical member of the ship 12 such as a generator or a computer able to collect data. To do this, the ship 12 uses a location system of the DPS type, for Dynamic positioning System, which allows to position, with an accuracy of the order of a few centimeters, the vessel 12 through bow thrusters.
Puis, on actionne l'enrouleur 24 de façon à dérouler l'ombilical 16 dans l'océan 15. Grâce au lest de l'organe de jonction 18, l'ombilical 16 se déroule de façon rectiligne dans l'eau comme le montre la figure 1 . Etant donné que le connecteur 22 et son organe longiligne de connexion 20 sont en flottabilité neutre, voire légèrement positive, le connecteur 22 pourra actionner ses propulseurs verticaux afin d'éviter un enroulement de l'organe longiligne 20 de connexion autour de l'ombilical 16. Puis, lorsque le connecteur 22 est suffisamment proche de la station sous-marine 14 pour qu'il puisse la détecter et l'atteindre, on actionne le connecteur 22. Grâce à son module automatisé de positionnement 64 et à ses moyens de propulsion, le connecteur 22 se positionne à proximité de la station sous-marine 14 et se relie à cette dernière. On a donc relié le connecteur 22 à la station sous-marine 14. On peut donc par exemple alimenter la batterie d'accumulateurs de la station sous-marine 14 en énergie électrique provenant par exemple du générateur du navire 12. Ainsi, la station sous- marine 14, et les ROVS et AUVs hébergés, peuvent rester sous l'eau pendant une durée importante, ce qui réduit le coût de l'exploration sous-marine. Bien entendu, on pourra apporter à l'invention de nombreuses modifications sans sortir du cadre de celle-ci. Then, the reel 24 is actuated so as to unwind the umbilicus 16 in the ocean 15. Thanks to the weight of the junction member 18, the umbilical 16 unfolds rectilinearly in the water as shown in FIG. figure 1 . Since the connector 22 and its elongate connecting member 20 are in neutral buoyancy, or slightly positive, the connector 22 can actuate its vertical thrusters to prevent winding of the elongate member 20 connection around the umbilical 16 Then, when the connector 22 is sufficiently close to the underwater station 14 so that it can detect it and reach it, the connector 22 is actuated. With its automated positioning module 64 and its propulsion means, the connector 22 is positioned near the subsea station 14 and connects to the latter. Connector 22 has thus been connected to underwater station 14. It is therefore possible, for example, to supply the storage battery of underwater station 14 with electrical energy coming for example from the generator of ship 12. Thus, the station under - Marine 14, and the ROVS and AUVs hosted, can remain under water for a long time, which reduces the cost of underwater exploration. Of course, we can bring to the invention many changes without departing from the scope thereof.
On pourra notamment varier les longueurs de l'ombilical 16 et de l'organe longiligne de connexion 20.  In particular, the lengths of the umbilicus 16 and the elongate connecting member 20 may be varied.
L'organe de jonction 18 pourra aussi comprendre tout type de dispositif électrique et/ou optique.  The connecting member 18 may also include any type of electrical and / or optical device.
On pourra aussi utiliser tout type de moyen de positionnement du connecteur 22 par rapport à la station sous-marine 14, et entre le connecteur 22 et le navire 12.  It is also possible to use any type of positioning means of the connector 22 with respect to the underwater station 14, and between the connector 22 and the ship 12.
Le connecteur 22 pourra porter plus d'un organe de connexion électro-optique 62.  The connector 22 may carry more than one electro-optical connection member 62.
En outre, le connecteur 22 pourra être capable de se connecter à la station sous-marine 14 sans y être directement physiquement relié. Par exemple, le connecteur 22 et la station sous-marine 14 pourront échanger des données et de l'énergie par induction électromagnétique ou par des moyens acoustiques.  In addition, the connector 22 may be able to connect to the underwater station 14 without being directly physically connected. For example, the connector 22 and the underwater station 14 can exchange data and energy by electromagnetic induction or by acoustic means.
Le système de communication et de transfert 10 pourra également comprendre les caractéristiques suivantes : The communication and transfer system 10 may also include the following features:
- l'organe longiligne de connexion 20 présente une longueur comprise entre 20 mètres et 30 mètres. Ainsi, il n'est pas nécessaire de disposer un enrouleur pour gérer un déploiement de l'organe longiligne de connexion, ce qui réduit l'encombrement du système de communication et de transfert 10 ;  - The elongate connecting member 20 has a length of between 20 meters and 30 meters. Thus, it is not necessary to have a reel to manage a deployment of the elongate connecting member, which reduces the size of the communication and transfer system 10;
- l'organe de jonction 18 comporte un contrôleur permanent d'isolement qui permet de détecter un défaut d'isolement dans l'organe de jonction 18.  - The junction member 18 comprises a permanent isolation controller which makes it possible to detect an insulation fault in the junction member 18.

Claims

Revendications claims
1 . Système de communication et de transfert (10) entre un objet émergé (12) et un objet immergé (14) dans un milieu marin (15) ou fluvial, caractérisé en ce qu'il comprend :1. A communication and transfer system (10) between an emergent object (12) and a submerged object (14) in a marine (15) or fluvial environment, characterized in that it comprises:
- un ombilical (16) comportant une première extrémité (23) apte à être reliée à l'objet émergé (12) et une seconde extrémité (26), an umbilical (16) having a first end (23) adapted to be connected to the emerging object (12) and a second end (26),
- un organe de jonction (18) comprenant un transformateur électrique (46) et relié à la seconde extrémité (26) de l'ombilical (16),  a junction member (18) comprising an electrical transformer (46) and connected to the second end (26) of the umbilicus (16),
un organe longiligne de connexion (20) comprenant une première extrémité (32) reliée à l'organe de jonction (18) et une seconde extrémité (34), et  an elongated connecting member (20) including a first end (32) connected to the connecting member (18) and a second end (34), and
- un connecteur (22) relié à la seconde extrémité (34) de l'organe longiligne de connexion (20), comprenant des moyens de connexion (62) à l'objet immergé (14), des moyens de propulsion et un module automatisé de positionnement par rapport à l'objet immergé (14),  - a connector (22) connected to the second end (34) of the elongate connecting member (20), comprising connection means (62) to the submerged object (14), propulsion means and an automated module positioning with respect to the immersed object (14),
l'ombilical (16), l'organe de jonction (18), l'organe longiligne de connexion (20) et le connecteur (22) forment un canal de communication électrique entre l'objet émergé (12) et l'objet immergé (14).  the umbilical (16), the connecting member (18), the elongate connecting member (20) and the connector (22) form an electrical communication channel between the emerging object (12) and the submerged object (14).
2. Système (10) selon la revendication précédente, dans lequel l'organe longiligne de connexion (20) est plus souple que l'ombilical (16). 2. System (10) according to the preceding claim, wherein the elongate connecting member (20) is more flexible than the umbilical (16).
3. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'ombilical (16), l'organe de jonction (18), l'organe longiligne de connexion (20) et le connecteur (22) forment également un canal de communication optique entre l'objet émergé (12) et l'objet immergé (14). 3. System (10) according to any one of the preceding claims, wherein the umbilical (16), the connecting member (18), the elongate connecting member (20) and the connector (22) also form an optical communication channel between the emerged object (12) and the submerged object (14).
4. Système (10) selon la revendication précédente, dans lequel l'ombilical (16) et l'organe longiligne de connexion (20) renferment au moins une fibre optique (40). 4. System (10) according to the preceding claim, wherein the umbilical (16) and the elongate connecting member (20) contain at least one optical fiber (40).
5. Système (10) selon l'une quelconque des revendications précédentes, le connecteur (22) comprend un récepteur apte à recevoir une commande de déplacement de l'objet émergé (12). 5. System (10) according to any one of the preceding claims, the connector (22) comprises a receiver adapted to receive a movement control of the emerging object (12).
6. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe de jonction (18) comprend un convertisseur de courant continu en courant alternatif et vice versa. 6. System (10) according to any one of the preceding claims, wherein the connecting member (18) comprises a DC converter AC and vice versa.
7. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'ombilical (16) renferme un câble électrique (36, 38) apte à transporter un courant alternatif et/ou un courant continu. 7. System (10) according to any one of the preceding claims, wherein the umbilical (16) encloses an electric cable (36, 38) adapted to carry an alternating current and / or a direct current.
8. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe longiligne de connexion (20) renferme un câble électrique apte à transporter un courant alternatif et/ou courant continu. 8. System (10) according to any one of the preceding claims, wherein the elongate connecting member (20) contains an electrical cable adapted to carry an alternating current and / or direct current.
9. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'ombilical (16) est apte à transporter un courant dont une tension est supérieure à une tension d'un courant que l'organe longiligne de connexion (20) est apte à transporter. 9. System (10) according to any one of the preceding claims, wherein the umbilical (16) is able to carry a current whose voltage is greater than a voltage of a current that the elongate connecting member (20). ) is fit to carry.
10. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe longiligne de connexion (20) comprend une gaine de protection comprenant du poly(p-phénylènetéréphtalamide), de préférence, l'organe longiligne de connexion présente une flottabilité neutre. 10. System (10) according to any one of the preceding claims, wherein the elongate connecting member (20) comprises a protective sheath comprising poly (p-phenyleneterephthalamide), preferably the elongate connecting member present neutral buoyancy.
1 1 . Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe de jonction (18) comprend au moins un lest. 1 1. System (10) according to any of the preceding claims, wherein the joining member (18) comprises at least one ballast.
12. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe de jonction (18) comprend de l'huile isolante électriquement. The system (10) of any one of the preceding claims, wherein the joining member (18) comprises electrically insulating oil.
13. Système (10) selon l'une quelconque des revendications précédentes, dans lequel l'organe de jonction (18) est relié à la seconde extrémité (26) de l'ombilical (16) de façon amovible. The system (10) of any preceding claim, wherein the junction member (18) is connected to the second end (26) of the umbilicus (16) removably.
14. Système (10) selon l'une quelconque des revendications précédentes, dans lequel le connecteur (22) est relié à la seconde extrémité (34) de l'organe longiligne de connexion (20) de façon amovible. The system (10) of any preceding claim, wherein the connector (22) is connected to the second end (34) of the elongate connecting member (20) removably.
15. Système (10) selon l'une quelconque des revendications précédentes, dans lequel la première extrémité (32) de l'organe longiligne de connexion (20) est reliée à l'organe de jonction (18) de façon amovible. 15. System (10) according to any one of the preceding claims, wherein the first end (32) of the elongate connecting member (20) is connected to the connecting member (18) removably.
16. Système (10) selon l'une quelconque des revendications précédentes, dans lequel le module automatisé (64) de positionnement du connecteur (22) comprend au moins l'un des outils de navigation suivant : une caméra, de préférence une caméra du type haute définition (HD), un profondimètre, un capteur de vitesse instantanée, un gyroscope, une centrale inertielle et un compas. The system (10) of any of the preceding claims, wherein the automated module (64) for positioning the connector (22) comprises at least one of the following navigation tools: a camera, preferably a high definition type (HD) camera, a depth gauge, an instantaneous speed sensor, a gyroscope, an inertial unit and a compass.
17. Système (10) selon l'une quelconque des revendications précédentes, dans lequel les moyens de propulsion du connecteur (22) comprennent au moins deux propulseurs, de préférence du type vectoriel. 17. System (10) according to any one of the preceding claims, wherein the propulsion means of the connector (22) comprise at least two thrusters, preferably of the vector type.
18. Système (10) selon l'une quelconque des revendications précédentes, dans lequel le module automatisé de positionnement (64) du connecteur (22) comprend des moyens de positionnement acoustique. The system (10) of any preceding claim, wherein the automated positioning module (64) of the connector (22) comprises acoustic positioning means.
19. Système (10) selon la revendication précédente, dans lequel le module automatisé de positionnement (64) du connecteur (22) comprend un modem de communication acoustique du type Short Base Line (SBL) ou Ultra Short Base Line (USBL). 19. System (10) according to the preceding claim, wherein the automated positioning module (64) of the connector (22) comprises an acoustic communication modem Short Base Line type (SBL) or Ultra Short Base Line (USBL).
20. Système (10) selon l'une quelconque des revendications précédentes, dans lequel le connecteur (22) comprend des moyens automatisés aptes à déconnecter le connecteur (22) de l'objet immergé (14) en cas de détection d'une mauvaise connexion entre le connecteur (22) et l'objet immergé (14). 20. System (10) according to any one of the preceding claims, wherein the connector (22) comprises automated means able to disconnect the connector (22) of the immersed object (14) in case of detection of a bad connection between the connector (22) and the submerged object (14).
21 . Ensemble comprenant un objet immergé (14) dans un milieu marin (15) ou fluvial et un système de communication et de transfert (10) selon l'une quelconque des revendications précédentes, le connecteur (22) du système de communication (10) est relié à l'objet immergé (14). 21. An assembly comprising a submerged object (14) in a marine (15) or fluvial environment and a communication and transfer system (10) according to any one of the preceding claims, the connector (22) of the communication system (10) is connected to the submerged object (14).
22. Ensemble selon la revendication précédente, comprenant un objet émergé (12), la première extrémité (23) de l'ombilical (16) est reliée à l'objet émergé (12). 22. Assembly according to the preceding claim, comprising an emergent object (12), the first end (23) of the umbilical (16) is connected to the emerging object (12).
23. Ensemble selon la revendication précédente, dans lequel l'objet émergé (12) est un navire ou une plateforme d'extraction minière ou pétrolière ou un aéronef de préférence, l'aéronef est un hélicoptère. 23. An assembly according to the preceding claim, wherein the emerging object (12) is a ship or a mining or oil extraction platform or an aircraft preferably, the aircraft is a helicopter.
24. Ensemble selon l'une quelconque des revendications 21 à 23, dans lequel l'objet immergé (14) est un véhicule du type véhicule sous-marin téléguidé également connu sous le nom de Remotely operated vehicle (ROV) ou un robot sous-marin autonome également sous le nom de Autonomous underwater vehicle (AUV) ou une station sous-marine autonome ou un garage sous-marin posé sur un fond. 24. An assembly according to any one of claims 21 to 23, wherein the submerged object (14) is a vehicle of the remote-controlled underwater vehicle type also known as Remotely operated vehicle (ROV) or a sub-robot. autonomous sailor also under the name of Autonomous underwater vehicle (AUV) or an autonomous underwater station or an underwater garage placed on a bottom.
25. Procédé de mise en communication entre un objet émergé (12) et un objet immergé (14) dans un milieu marin (15) ou fluvial au moyen d'un système de communication et de transfert (10) selon l'une quelconque des revendications 1 à 20, comprenant les étapes suivantes : 25. A method of communicating between an emerging object (12) and a submerged object (14) in a marine (15) or fluvial environment by means of a communication and transfer system (10) according to any one of the Claims 1 to 20, comprising the steps of:
- on relie la première extrémité (23) de l'ombilical (16) à l'objet émergé (12), the first end (23) of the umbilicus (16) is connected to the emerging object (12),
- on relie le connecteur (22) à l'objet immergé (14). the connector (22) is connected to the immersed object (14).
26. Procédé selon la revendication précédente, dans lequel l'objet émergé (12) comprend un générateur électrique et l'objet immergé (14) comprend au moins une batterie, on alimente la batterie en énergie électrique provenant du générateur au moyen du système de communication (10). 26. Method according to the preceding claim, wherein the emergent object (12) comprises an electric generator and the immersed object (14) comprises at least one battery, the battery is supplied with electrical energy from the generator by means of the battery system. communication (10).
27. Procédé selon l'une quelconque des revendications 24 et 25, dans lequel le système de communication (10) est selon la revendication 5, l'objet émergé (12) comprend un émetteur apte à émettre une commande de déplacement du connecteur (22), on commande depuis l'objet émergé (12) le déplacement du connecteur (22). 27. A method according to any one of claims 24 and 25, wherein the communication system (10) is according to claim 5, the emerging object (12) comprises a transmitter adapted to emit a control of displacement of the connector (22). ), the movement of the connector (22) is controlled from the emergent object (12).
PCT/FR2017/052334 2016-09-05 2017-09-04 System for communication and transfer between an object on the surface and a submerged object, assembly comprising an object on the surface, a submerged object and method for setting up communication and transfer between the object on the surface and the submerged object WO2018042140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1658248A FR3055607B1 (en) 2016-09-05 2016-09-05 COMMUNICATION AND TRANSFER SYSTEM BETWEEN AN EMERGING OBJECT AND AN IMMERSE OBJECT, AN ASSEMBLY COMPRISING AN EMERGING OBJECT, AN IMMERSE OBJECT AND METHOD OF COMMUNICATION AND TRANSFER BETWEEN THE OBJECT
FR1658248 2016-09-05

Publications (1)

Publication Number Publication Date
WO2018042140A1 true WO2018042140A1 (en) 2018-03-08

Family

ID=57906697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/052334 WO2018042140A1 (en) 2016-09-05 2017-09-04 System for communication and transfer between an object on the surface and a submerged object, assembly comprising an object on the surface, a submerged object and method for setting up communication and transfer between the object on the surface and the submerged object

Country Status (2)

Country Link
FR (1) FR3055607B1 (en)
WO (1) WO2018042140A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109664306A (en) * 2018-11-26 2019-04-23 西北工业大学 The electromagnetism interference design method of underwater multi-function operation machine people's electric power supply control system
FR3087748A1 (en) * 2018-10-25 2020-05-01 Forssea Robotics DEPLOYMENT AND LIFTING OF LOADS USING AN UNDERWATER VEHICLE
CN112849370A (en) * 2021-02-20 2021-05-28 上海市东方海事工程技术有限公司 Multifunctional floating platform

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167831B1 (en) * 1999-09-20 2001-01-02 Coflexip S.A. Underwater vehicle
WO2001021478A1 (en) * 1999-09-20 2001-03-29 Coflexip, S.A. Underwater latch and power supply
US6390012B1 (en) 1999-09-20 2002-05-21 Coflexip, S.A. Apparatus and method for deploying, recovering, servicing, and operating an autonomous underwater vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167831B1 (en) * 1999-09-20 2001-01-02 Coflexip S.A. Underwater vehicle
WO2001021478A1 (en) * 1999-09-20 2001-03-29 Coflexip, S.A. Underwater latch and power supply
US6390012B1 (en) 1999-09-20 2002-05-21 Coflexip, S.A. Apparatus and method for deploying, recovering, servicing, and operating an autonomous underwater vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3087748A1 (en) * 2018-10-25 2020-05-01 Forssea Robotics DEPLOYMENT AND LIFTING OF LOADS USING AN UNDERWATER VEHICLE
CN109664306A (en) * 2018-11-26 2019-04-23 西北工业大学 The electromagnetism interference design method of underwater multi-function operation machine people's electric power supply control system
CN112849370A (en) * 2021-02-20 2021-05-28 上海市东方海事工程技术有限公司 Multifunctional floating platform

Also Published As

Publication number Publication date
FR3055607A1 (en) 2018-03-09
FR3055607B1 (en) 2018-08-31

Similar Documents

Publication Publication Date Title
US6390012B1 (en) Apparatus and method for deploying, recovering, servicing, and operating an autonomous underwater vehicle
Kaminski et al. 12 days under ice–an historic AUV deployment in the Canadian High Arctic
RU2566880C2 (en) Work module for underwater borehole works
US6257162B1 (en) Underwater latch and power supply
US8109223B2 (en) Apparatus and method for operating autonomous underwater vehicles
EP1394822A2 (en) Method of transferring power and/or data streams to an underwater vehicle
US20110240303A1 (en) Subsea well intervention module
CA2591969C (en) Method and device for the identification and neutralisation of a submarine mine
NO317224B1 (en) Underwater relay ± for power and data
Kyo et al. The sea trial of" KAIKO", the full ocean depth research ROV
WO2018042140A1 (en) System for communication and transfer between an object on the surface and a submerged object, assembly comprising an object on the surface, a submerged object and method for setting up communication and transfer between the object on the surface and the submerged object
CN109790697A (en) For installing the component and method of seabed cable
EP2802092A1 (en) System and method for seafloor exploration
Choi et al. ROV-based automated cable-laying system: Application to DONET2 installation
US20220145756A1 (en) Seafloor Harvesting With Autonomous Drone Swarms
JP2009543147A (en) Deep sea network and deployment equipment
Crees et al. UNCLOS under ice survey-An historic AUV deployment in the Canadian high arctic
Hardy et al. Hadal landers: the DEEPSEA CHALLENGE ocean trench free vehicles
Jakuba et al. Teleoperation and robotics under ice: Implications for planetary exploration
US11292563B2 (en) Methods for subsea vehicles supervised control
Raugel et al. Operational and scientific capabilities of Ariane, Ifremer’s hybrid ROV
EP0788969B1 (en) Semi-submergible, self-propelled and radio controlled underwater vehicle
FR3087748A1 (en) DEPLOYMENT AND LIFTING OF LOADS USING AN UNDERWATER VEHICLE
EP2621796B1 (en) System comprising an underwater vehicle and a base situated at the surface
KR20100129511A (en) Unmanned mooring system for underwater vehicle and operating method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17780462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17780462

Country of ref document: EP

Kind code of ref document: A1