WO2018041206A1 - 单孔腔镜手术*** - Google Patents

单孔腔镜手术*** Download PDF

Info

Publication number
WO2018041206A1
WO2018041206A1 PCT/CN2017/099857 CN2017099857W WO2018041206A1 WO 2018041206 A1 WO2018041206 A1 WO 2018041206A1 CN 2017099857 W CN2017099857 W CN 2017099857W WO 2018041206 A1 WO2018041206 A1 WO 2018041206A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical
proximal
surgical tool
tool
imaging
Prior art date
Application number
PCT/CN2017/099857
Other languages
English (en)
French (fr)
Inventor
徐凯
戴正晨
董天来
赵江然
阳志雄
朱志军
魏巍
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Publication of WO2018041206A1 publication Critical patent/WO2018041206A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope

Definitions

  • the invention relates to a medical device, in particular to a single-hole laparoscopic surgical system.
  • Manual perforated laparoscopic minimally invasive surgery can reduce postoperative pain, reduce the probability of complications, shorten recovery time and improve postoperative scars.
  • the doctor can assist the doctor to complete the porous laparoscopic minimally invasive surgery.
  • a single-hole laparoscopic surgical system characterized in that the system comprises a flexible surgical tool, an imaging tool and a catheter body; wherein the flexible surgical tool comprises a surgical actuator, a flexible arm body, a handle And a proximal end structure, the surgical actuator being associated with a distal end of the flexible arm body, the proximal end of the flexible arm body being associated with the handle by the proximal end body, the handle driving the flexibility
  • the arm body implements a bending motion
  • the imaging tool includes an imaging illumination module, a bending joint, and an imaging tool driving unit, the imaging lighting module is associated with a distal end of the bending joint, the bending joint is near Associated with the imaging tool drive unit, the imaging tool drive unit drives the bending joint to effect a bending motion
  • the catheter body is for positioning a surgical actuator located at a distal end of the flexible arm body
  • the imaging illumination module at the distal end of the curved joint guides to the same area and directs the portion located at the a bending motion
  • the flexible arm body includes more than one distal end section, each of the distal end sections including a distal fixation disk, a distal spacer disk, and a structural bone; a plurality of the distal spacer spacers Disposed in the distal end section, one end of the structural bone of the distal end section is fixed on the distal fixed disc, and the other end is sequentially fixed to the proximal end through each of the distal spacer discs In the structure.
  • the proximal structure includes a proximal spacer disk, a proximal fixation disk, and a proximal structural bone, and the plurality of proximal spacer disks are spaced apart in the proximal structure, and the plurality of One end of the proximal structural bone is fastened to the proximal fixation plate, and the other end is fastened to the structural bone of the distal joint in a one-to-one correspondence or is the same structural bone.
  • the handle is fastened to the proximal fixation disc in the proximal structure, and the handle is manually rotated laterally to control the proximal structure to bend in any direction, thereby driving the handle
  • the flexible arm body is bent in any direction.
  • the handle is provided with a push button switch
  • the control thread of the surgical actuator passes through the flexible arm body and the proximal structure body
  • the surgical actuator driving mechanism in the handle The fastening mechanism is configured to convert the up and down movement of the button switch into a push-pull motion of the control line of the surgical actuator, thereby implementing motion control of the surgical actuator.
  • the catheter body includes a multi-lumen tubular body, a support structure, and a guiding cannula; the multi-lumen tubular body is located at a distal end of the catheter body and is a rod-shaped linear structure in which a surgical tool channel is disposed
  • the surgical tool channel extends into the support structure and extends to a proximal end of the support structure; a proximal end of the support structure is fastened to a plurality of the guide sleeves, and the guide sleeve is
  • the hollow lumen is in communication with and communicates with the surgical tool channel at the proximal end of the support structure to enable insertion of the flexible surgical tool into the guiding cannula and the surgical tool channel.
  • the guiding sleeve is divergently distributed to guide a portion of the flexible surgical tool proximal end of the flexible surgical tool in different directions in space; the proximal end of the guiding sleeve is provided with a guiding sleeve An inlet, the guide sleeve inlet is a rigid cylindrical passage having a smooth inner wall, the flexible surgical tool having a feed guide tube slidably coupled to the guide sleeve, and the feed guide tube is capable of guiding Freely sliding and rotating in the sleeve, by manually pushing and pulling the handle to change the length of the flexible arm body protruding from the flexible surgical tool channel, thereby achieving the overall feeding freedom of the flexible surgical tool; The handle controls the overall rotation of the flexible arm body to achieve overall rotational freedom of the flexible surgical tool and adjustment of the surgical actuator roll angle.
  • the multi-lumen tube is further provided with an imaging tool channel extending from the multi-lumen tube to a proximal end of the support structure, the imaging tool being capable of inserting the In the imaging tool channel, and the imaging tool is free to slide and rotate in the imaging tool channel, the degree of freedom of its overall feeding and rotation is achieved by manually pushing and pulling the imaging tool.
  • the catheter body includes a distal plate, a proximal plate, a catheter, a multi-lumen tube, and a guiding cannula
  • the multi-lumen tube is provided with a surgical tool channel
  • the proximal end plate is fastened and integrated, the proximal end of the multi-lumen tubular body and the distal end of the catheter are fastened to the distal end plate, and the catheter and the multi-lumen tube body
  • the surgical tool channels are connected and communicated, the proximal end of the catheter is fastened to the proximal end plate, and is in communication with and connected to the guiding sleeve that is also fastened to the proximal end plate.
  • the flexible surgical tool can be inserted into the guiding cannula, the catheter, and the surgical tool channel.
  • the guiding sleeves are distributed in parallel and have a predetermined offset distance from one another, the proximal end of the guiding sleeve being provided with a guiding sleeve inlet, the guiding sleeve inlet being a smooth inner wall a cylindrical passage having a feed guide tube slidably coupled to the guide sleeve, the feed guide tube being free to slide and rotate in the guide sleeve, by manually pushing and pulling the handle
  • the overall length of freedom of the flexible surgical tool is achieved by changing the length of the flexible arm body protruding from the surgical tool channel; and the overall rotation of the flexible arm body is controlled by manually rotating the handle to realize The overall rotational freedom of the flexible surgical tool and the adjustment of the surgical actuator roll angle.
  • the multi-lumen tube is further provided with an imaging tool channel, the imaging tool channel passing through the distal plate and the proximal plate; the imaging tool can be inserted into the imaging tool channel, and The imaging tool is free to slide and rotate in the imaging tool channel, and the degree of freedom of its overall feeding and rotation is achieved by manually pushing and pulling the imaging tool.
  • the flexible arm body when the flexible arm body includes more than two distal end sections, the flexible arm body further includes a surgical tool drive unit, the proximal end of the flexible arm body being associated with the surgical tool drive unit
  • the surgical tool drive unit is associated with the handle through the proximal structure; a portion of the structural bone of the distal end section is fixed to the distal fixed disk, and the other end sequentially passes through each of the A distal spacer disk is affixed to the surgical tool drive unit to enable the surgical tool drive unit to drive the distal end section associated with the surgical tool drive unit to bend in a particular curved plane.
  • the surgical tool drive unit includes a base, a motor, a gear pair, a worm, a worm wheel, a drive shaft, a connecting rod, a guide rod, a slider, and a channel fixing plate;
  • An electric motor, an output shaft of the motor is coaxially fastened to one of the pair of gears, and the other of the pair of gears is coaxially fastened to the worm, the worm and the worm wheel Engaging, the worm wheel is sleeved on the transmission shaft, the transmission shaft is rotatably connected to the base, and the transmission shaft is fastened to the connecting rod;
  • the slider is two, respectively Located on both sides of the transmission shaft and slidably coupled to the guide rod, the guide rod is fastened to the channel fixing plate; two ends of the connecting rod are respectively connected with one of the sliders, and The structural bone of the distal end section associated with the surgical tool drive unit is fastened to the slider connection.
  • the handle is further provided with a toggle switch
  • the surgical tool driving unit is provided with a motor control board for controlling the rotational motion of the motor
  • the motor control board and the toggle switch are electrically Connecting, such that the toggle switch can control the motor to achieve forward rotation, maintain current position, and reverse, thereby driving the distal section associated with the surgical tool drive unit to achieve a particular turn Bend one side in the plane, keep the current posture and bend to the other side.
  • the structural bone is a rod-shaped or tubular structure.
  • each of the distal end sections is connected in series, that is, away from the
  • the structural bone of the distal end of the surgical tool drive unit passes through the distal fixation disc and the distal spacer disk proximate the distal end of the surgical tool drive unit; if approaching the distal end of the surgical tool drive unit
  • the structural bone of the end construct uses a tubular structure, and the structural bone remote from the distal end of the surgical tool drive unit passes through the structural bone proximate the distal end of the surgical tool drive unit.
  • the imaging tool further includes a rigid tubular body fastened to the distal end of the rigid tubular body, the proximal end of the rigid tubular body being tightly coupled to the imaging tool drive unit
  • the imaging tool further includes a control button located at a proximal end of the imaging tool drive unit, the imaging illumination module including a plurality of cameras and a plurality of illumination devices, the control buttons controlling any of the bending joints Bending and controlling the operating state of the camera and the illumination device.
  • the multi-lumen tube further includes more than one multi-functional lumen.
  • a single-hole laparoscopic surgical system comprising: a flexible surgical tool, an imaging tool and a catheter body, the catheter body comprising a support structure; a multi-lumen tube, the multi-lumen tube The proximal end of the body is securely coupled to the distal end of the support structure, and the multi-lumen tube is provided with a surgical tool channel and an imaging tool channel, the surgical tool channel configured to allow at least a portion of the flexible surgical tool Extending through, and a distalmost surgical actuator located at the flexible surgical tool extends out of the surgical tool channel; the imaging tool channel extending from the multi-lumen tubular body to a proximal end of the support structure, Configuring to allow at least a portion of the imaging tool to extend therethrough, and an imaging illumination module located at a distal end of the imaging tool extends out of the imaging tool channel; and a plurality of guiding cannulas, the plurality of guiding cannulas The respective distal ends are securely
  • the flexible surgical tool comprises: a surgical actuator; a flexible arm body, the flexible arm body being a flexible structure having a plurality of bending degrees of freedom, the distal end being tightly coupled to the surgical actuator; a proximal structure, the proximal structure being associated with a proximal end of the flexible arm; and a handle, the control wire of the surgical actuator passing through the flexible arm and the proximal structure, and a drive mechanism in the handle is fastened to enable the drive mechanism to pass through the proximal end
  • the structure implements a bending motion of the flexible arm body to control the surgical actuator; wherein the surgical actuator and the flexible arm body have a diameter smaller than an inner diameter of the surgical tool channel such that the surgery
  • the actuator and the flexible arm body are capable of passing through the surgical tool channel under the control of the handle, and at least a portion of the surgical actuator and the flexible arm body extend out of the surgical tool channel.
  • the imaging tool includes: an imaging illumination module; a bending joint, a distal end of the bending joint is associated with the imaging illumination module; and an imaging tool driving unit, the imaging tool driving unit Associated with the proximal end of the curved joint, configured to drive the curved joint to effect a bending motion.
  • the support structure is configured to arrange a plurality of guiding channels into a bundle at a converging end and divergently distributed at a diverging end; the multi-lumen tube is fastened to the a converging end of the support structure, such that the surgical tool channel is in contact with and communicates with the guiding channel in a one-to-one correspondence; the guiding sleeves are respectively tightly sleeved on the diverging end of the supporting structure, so that The guiding sleeves are in contact with and connected to the guiding channels in a one-to-one correspondence and are distributed in a divergent manner.
  • the support structure comprises: a distal plate, the distal plate is fastened to the multi-lumen tube; a proximal plate, the proximal plate is fastened to the guiding sleeve And being integrally connected to the distal plate by a support structure rod; and a catheter, the distal end of the catheter is fastened to the distal plate, and the proximal end is fastened to the proximal plate And the surgical tool channel in the multi-lumen tube body is in contact with and communicates with the guiding sleeve in one-to-one correspondence.
  • the present invention has the following advantages due to the above technical solutions: 1.
  • the present invention proposes a surgical system that satisfies the single-hole laparoscopic surgical application process, in which the flexible surgical tool and the imaging tool front end are both arbitrarily oriented.
  • the curved structure therefore, three flexible surgical tools and an imaging tool can enter the human body through the same multi-lumen tube and flexibly perform surgery.
  • the catheter body of the present invention employs a guiding lumen having a specific spatial curve configuration, and the catheter body can guide the flexible surgical tool and the imaging tool into the same multi-lumen tube, ensuring that multiple tools pass through a single surgical incision. Size limit.
  • the invention comprises a catheter body, an imaging tool, a flexible surgical tool, and a feasible single hole laparoscopic surgery installation and application process.
  • the catheter body of the present invention is a purely mechanical structure, and the flexible surgical tool and the imaging tool can be hermetically sealed, so that the surgical system can be integrally disinfected to ensure the feasibility of clinical surgery.
  • FIG. 1 is a schematic view showing the overall structure of a single-hole laparoscopic surgical system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing the structure of a flexible surgical tool according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the structure of a flexible arm body of a flexible surgical tool according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a driving unit of a flexible surgical tool according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing the structure of a proximal structure of a flexible surgical tool according to an embodiment of the present invention.
  • 6A and 6B are schematic diagrams showing the structure of an imaging tool according to an embodiment of the present invention.
  • FIG. 7A and 7B are schematic views showing the structure of a catheter body according to an embodiment of the present invention.
  • FIGS. 8A-8C are flow diagrams showing the installation of a single-hole laparoscopic surgical system in accordance with an embodiment of the present invention.
  • Figure 9 is a schematic view showing the structure of a catheter body according to another embodiment of the present invention.
  • Figure 10 is a schematic view showing the overall structure of a single-hole laparoscopic surgical system having the catheter body shown in Figure 9.
  • a single-hole laparoscopic surgical system can include a flexible surgical tool 10, an imaging tool 30, and a catheter body 40.
  • the distal end refers to the end of the component that is away from the surgical operator but close to the surgical part, and may also be referred to as the front end below; and the proximal end refers to the component that is close to the surgical operator, but Far from the end of the surgery, the following can also be called the back end.
  • the flexible surgical tool 10 can include a surgical actuator 101, a control wire 102, a flexible arm body 11, a surgical tool drive unit 20, a handle 21, and a proximal structure 16.
  • the surgical actuator 101 is fastened to the distal end of the flexible arm body 11.
  • the surgical actuator 101 can be a mechanical surgical actuator such as a surgical forceps, scissors, a hemostat, or the like, or an energy surgical actuator such as an electric knife or an electrocoagulation head.
  • the distal end of the control wire 102 is securely coupled to the surgical actuator 101, and the proximal end is passed through the flexible arm body 11, the surgical tool drive unit 20, and the proximal structural body 16, and is securedly coupled to the drive mechanism in the handle 21.
  • the flexible arm body 11 can be a flexible structure having a plurality of degrees of freedom of bending, the distal end of which is secured to the surgical actuator 101 and the proximal end is associated with the surgical tool drive unit 20.
  • the outer side of the flexible arm body 11 may be covered with a cover.
  • a portion of the flexible arm body 11 adjacent to the surgical actuator 101 is covered with a flexible cover 104 adjacent the portion of the surgical tool drive unit 20 that is covered with a rigid tubular structure of rigid tubular structure 105.
  • the surgical tool drive unit 20 can be associated with the handle 21 by a proximal structure 16. In this way, the surgical tool driving unit 20 and the handle 21 can jointly drive the flexible arm body 11 covered by the flexible cover 104 to achieve a bending motion, and the flexible arm body 11 covered by the rigid cover 105 can not achieve any bending motion. .
  • the flexible arm body 11 can include a first distal end section 12 and a second distal end section 13.
  • the first distal section 12 can include a first distal spacer 121, a first distal fixation disk 122, and a first structural bone 123.
  • a plurality of first distal spacer discs 121 are spaced apart in the first distal end section 12 to prevent the first articulated structural bone 123 from destabilizing when pushed and pulled.
  • One end of the first structural structure bone 123 is fixed to the first distal fixed disk 122, and the other end is fixed to the surgical tool driving unit 20 through the first distal spacer 121.
  • the surgical tool drive unit 20 can effect the bending of the first distal end section 12 in a particular bending plane by cooperatively pushing and pulling the first articulated structural bone 123.
  • the number of the first structural section bones 123 may be two or more.
  • the second distal section 13 can include a second distal spacer disk 131, a second distal fixation disk 132, and a second skeletal structure bone 133.
  • a plurality of second distal spacer discs 131 are spaced apart in the second distal end section 13 to prevent the second articulated structural bone 133 from destabilizing when pushed and pulled.
  • One end of the second structural structure bone 133 is fixed on the second distal fixed disk 132, and the other end is sequentially fixed through the second distal spacer disk 131, the first distal fixed disk 122 and the first distal spacer disk 121.
  • proximal structure 16 In the proximal structure 16 .
  • the proximal structure 16 can effect a second distal section 13 to bend in any direction by cooperatively pushing and pulling the second section structure bone 133. It should be noted that since the second distal end section 13 is to be bent in any direction, the number of the second structural section bones 133 may be three or more.
  • the flexible arm body 11 may include one or more number of sections.
  • the structural bone of each segment may be a rod or tubular structure.
  • the first distal end section 12 associated with the surgical tool drive unit 20 can be discarded.
  • the flexible arm body 11 can include only the second distal end section 13 associated with the proximal structural body 16.
  • the sections can be connected in series.
  • the second distal articulated bone 133 remote from the second distal section 13 of the surgical tool drive unit 20 can be from the first distal fixed disk 122 of the first distal end section 12 of the surgical tool drive unit 20 And passing through the first distal spacer 121.
  • the second section structure bone 133 away from the second distal end section 13 of the surgical tool drive unit 20 is also It can pass through within the first articulated bone 123 of the first distal section 12 of the surgical tool drive unit 20.
  • the surgical tool driving unit 20 may include a base 221, a motor 222, a gear pair 223, a worm 224, a worm wheel 225, a transmission shaft 226, a link 227, a slider 228, a guide rod 229, and a passage fixing plate 230.
  • the motor 222 is fastened to a base 221.
  • the output shaft of the motor 222 is coaxially fastened to one of the gear pairs 223, and the other of the gear pairs 223 is coaxially fastened to the worm 224.
  • the worm 224 meshes with the worm gear 225.
  • the worm gear 225 is sleeved on the drive shaft 226.
  • the drive shaft 226 is rotatably supported between the two bases 221, and the drive shaft 226 is fastened to the middle of the link 227.
  • the sliders 228 can be two, located on both sides of the transmission shaft 226 and slidably coupled to the guide bars 229, respectively.
  • the guide rod 229 is fastened and connected to the two passages Between the fixed plates 230 (only one is shown).
  • the chutes at both ends of the connecting rod 227 are respectively connected to a slider 228.
  • the two sliders 228 are fastened to the first articulated bone 123 as an output of the surgical tool drive unit 20.
  • the rotational power of the motor 222 can be transmitted to the drive shaft 226 through the gear pair 223, the worm 224, and the worm wheel 225, thereby driving the link 227 to rotate.
  • the rotation of the link 227 can be translated into a linear motion of the slider 228 along the guide bar 229, thereby forming a coordinated push-pull motion of the first articulated bone 123, driving the first distal section 12 to bend in a particular bending plane. .
  • the proximal structure 16 can include a proximal spacer disk 161, a proximal fixation disk 162, and a proximal structural bone 163.
  • a plurality of proximal spacer disks 161 are spaced apart in the proximal structure 16 to prevent the proximal structural bone 163 from destabilizing when pushed and pulled.
  • One end of the plurality of proximal structural bones 163 is fastened to the proximal fixation plate 162, and the other end is fastened or connected to the second structural bone 133 located on the second distal end section 13 in a one-to-one correspondence.
  • Structural bone may be noted that the outer side of the proximal structure 16 may also be covered with a cover. Further, the number of proximal structural bones 163 in the proximal structural body 16 may be three or more.
  • the handle 21 is fastened to the proximal fixation disk 162 in the proximal structure 16.
  • the manual lateral rotation handle 21 can control the proximal structure 16 to bend in any direction, thereby driving the second distal end.
  • the section 13 is bent in any direction.
  • a toggle switch 202 and a push button switch 201 may be disposed on the handle 21.
  • a motor control board (not shown) for controlling the rotational movement of the motor 222 may be disposed within the surgical tool drive unit 20.
  • the motor control board is electrically connected to the toggle switch 202.
  • the toggle switch 202 can be provided with three gear positions, for example for controlling the forward rotation of the motor 222, maintaining the current position, and inverting, respectively.
  • the toggle switch 202 on the left and right toggle handle 21 can drive the first distal end section 12 to bend to one side in a particular bending plane, to maintain the current posture and to bend to the other side.
  • the driving mechanism in the handle 21 can be controlled to convert the up and down motion of the push button switch 201 into the forward and backward push and pull motion of the control line 102, thereby realizing the action control of the surgical actuator 101.
  • the flexible arm body 11 is employed at the front end of the flexible surgical tool 10, arbitrarily turning can be achieved.
  • the flexible surgical tool 10 can also be hermetically sealed.
  • imaging tool 30 can include imaging illumination module 301, bending joint 302, rigid tubular body 303, imaging tool drive unit 304, and control button 305.
  • imaging illumination module 301 can be carried by the bending joint 302.
  • the bending joint 302 is fastened to the distal end of the rigid tubular body 303.
  • the proximal end of the rigid tubular body 303 is securely coupled to the imaging tool drive unit 304.
  • a control button 305 located at the proximal end of the imaging tool drive unit 304 can control the bending of the bending joint 302, as well as the operating state of the camera 306 and the illumination device 307.
  • the imaging tool 30 can achieve multiple degrees of freedom of movement of the whole feed, the overall rotation, and the bending joint 302 in any direction, thereby enabling the camera 306 to be operated on. Multi-angle monitoring during the process.
  • imaging tool driving unit 304 can be similar to the surgical tool driving unit 20, and therefore will not be described again.
  • the catheter body 40 can include a multi-lumen tubular body 401, a support structure 403, an imaging tool channel 405, and a guiding cannula 410.
  • the multi-lumen tubular body 401 is located at the distal end of the catheter body 40 and has a rod-like linear structure.
  • an imaging tool channel 405 and three surgical tool channels 404 are disposed in the multi-lumen tube 401.
  • Each surgical tool channel 404 extends into the support structure 403 and extends to the proximal end of the support structure 403, for example to the junction of the support structure 403 and the guide cannula 410.
  • the proximal end of the support structure 403 is securely coupled to the three guide sleeves 410.
  • the hollow lumen in the guiding cannula 410 is aligned with the surgical tool channel 404 at the proximal end of the support structure 403. In this manner, the flexible surgical tool 10 can be smoothly inserted into the guiding cannula 410 and the surgical tool channel 404 so that the surgical site can be reached.
  • the guiding cannula 410 can be in a divergent distribution such that portions of the flexible surgical tool 10 after the rigid cover 105 can be directed in different directions in space to avoid interference of the flexible surgical tools 10 with each other.
  • the proximal end of the guiding cannula 410 can be provided with a guiding cannula inlet 409.
  • the interior of the guide sleeve inlet 409 can be a rigid cylindrical passage with a smooth inner wall.
  • a feed guide tube 106 shown in FIG. 2) located at the front end of the flexible surgical tool 10 and securedly coupled to the surgical tool drive unit 20 is slidably coupled to the guide sleeve 410.
  • the feed guide tube 106 can freely slide and rotate in the guide sleeve 410, so that the length of the flexible arm body 11 extending beyond the surgical tool channel 404 can be changed by manually pushing and pulling the handle 21, so that the overall progress of the flexible surgical tool 10 can be achieved.
  • the overall rotation of the flexible arm body 11 and the orientation of the particular bending plane of the first distal end section 12 can be controlled by manually rotating the handle 21, thereby enabling overall rotational freedom of the flexible surgical tool 10 and rolling of the surgical actuator 101. Angle adjustment.
  • the imaging tool channel 405 can extend from the multi-lumen tube 401 to the rear end of the support structure 403 and can be a rigid, straight lumen. In this way, the imaging tool 30 can be smoothly inserted into the imaging tool channel 405 and reach the surgical site. Moreover, the rigid tube 303 of the imaging tool 30 can freely slide and rotate in the imaging tool channel 405, so that the degree of freedom of its overall feeding and rotation can be achieved by manually pushing and pulling the imaging tool 30.
  • FIGS. 8A-8C show an installation flow of a single-hole laparoscopic surgical system in accordance with an example of the present invention, which may generally include the following steps.
  • the catheter body 40 and the packaged imaging tool 30, flexible surgical tool 10 Prior to surgery, the catheter body 40 and the packaged imaging tool 30, flexible surgical tool 10 are immersed and sterilized. Wherein, since the catheter body 40 is a purely mechanical structure, the flexible surgical tool 10 and the imaging tool 30 can be hermetically sealed, so that the surgical system can be integrally sterilized, thereby ensuring the feasibility of clinical surgery.
  • the front end of the catheter body 40 is inserted into the human body through a sheath fixed to the surgical incision, and the sterilized imaging tool 30 is inserted into the catheter body 40 through the imaging tool channel 405 until the imaging illumination module 301 and
  • the bending joint 302 extends completely from the imaging tool channel 405 of the multi-lumen tube 401.
  • Maximum outer diameter and bending of the imaging lighting module 301 The maximum outer diameter of the joint 302 does not exceed the maximum outer diameter of the rigid tubular body 303 to ensure that the imaging illumination module 301 can smoothly pass through the imaging tool channel 405, and the rigid tubular body 303 can freely slide within the imaging tool channel 405.
  • the imaging angle of view can be adjusted by controlling the front and rear position of the imaging tool 30, the overall rotation angle, and the bending angle of the bending joint 302.
  • the sterilized flexible surgical tool 10 is inserted through the guiding cannula 410 into the surgical tool channel 404 in the catheter body 40 until the flexible arm body 11 is completely from the surgical tool channel 404 of the multi-lumen tubular body 401. Extend.
  • the flexible arm body 11 can smoothly pass through the surgical tool channel 404 and freely slide and rotate therein.
  • the relative position and configuration of the flexible surgical tool 10 and imaging tool 30 in the body portion can be as shown in Figure 8C.
  • the illumination device 307 in the imaging illumination module 301 at the front end of the imaging tool 30 can provide illumination for the surgical operation space.
  • the flexible arm body 11 and the surgical actuator 101 at the front end of the three flexible surgical tools are both in the field of view of the camera 306. Inside.
  • both the front end of the flexible surgical tool 10 and the imaging tool 30 are configured to achieve any bending, the three flexible surgical tools 10 and one imaging tool 30 can reach the surgical department through the same multi-lumen tube 401 and flexibly exert the flexibility. surgery.
  • the catheter body 40 adopts a guiding lumen having a specific spatial configuration, the flexible surgical tool 10 and the imaging tool 30 can be guided into the same multi-lumen tube 401, which can effectively ensure that a plurality of tools pass through a single surgical incision. Size limit.
  • Figure 9 illustrates a catheter body 50 provided in accordance with another embodiment of the present invention.
  • the catheter body 50 can include a distal endplate 501, a proximal endplate 502, a support structure stem 504, a catheter 505, an imaging tool channel 405, a multi-lumen tubing 401, and a guide cannula 410.
  • the distal end plate 501 and the proximal end plate 502 can be fastened and integrated by the support structure rod 504.
  • the proximal end of the multi-lumen tube 401 is fastened to the distal plate 501.
  • the distal end of the catheter 505 is securely attached to the distal endplate 501 and is in communication with and in communication with the surgical tool channel 404 in the multi-lumen tubular body 401.
  • the proximal end of the catheter 505 is securely coupled to the proximal end plate 502 and is in communication with and in communication with a guide cannula 410 that is also securely coupled to the proximal end plate 502.
  • Imaging tool channel 405 then passes through proximal plate 502 and distal plate 501 and extends into multi-lumen tube 401.
  • the main difference between the catheter body 50 of the present embodiment and the catheter body 40 of Figure 7A is the arrangement of the flexible surgical tool 10 in space.
  • the three flexible surgical tools 10 are radially arranged with a certain angle to each other.
  • the three flexible surgical tools 10 are distributed in parallel and have sufficient offset distance from each other. Both of these arrangements make the arrangement of the extracorporeal drive portion of the single-ported laparoscopic surgical system as compact as possible (as shown in Figures 1 and 10), as well as avoiding that the extracorporeal drive portion of the flexible surgical tool 10 occurs during operational movement. Interfere with each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种单孔腔镜手术***,包括柔性手术工具(10)、成像工具(30)和导管体(40,50);其中,柔性手术工具(10)包括手术执行器(101)、柔性臂体(11)、手柄(21)和近端结构体(16),手术执行器(101)与柔性臂体(11)远端关联,柔性臂体(11)近端通过近端结构体(16)与手柄(21)关联,手柄(21)驱动柔性臂体(11)实现弯转运动;成像工具(30)包括成像照明模组(301)、弯转关节(302)和成像工具驱动单元(304),成像照明模组(301)与弯转关节(302)远端关联,弯转关节(302)近端与成像工具驱动单元(304)关联,成像工具驱动单元(304)驱动弯转关节(302)实现弯转运动;导管体(40,50)用于将柔性臂体(11)远端的手术执行器(101)和弯转关节(302)远端的成像照明模组(301)引导到达同一区域,同时将位于柔性臂体(11)和弯转关节(302)近端以后的部分向空间不同方向引导。

Description

单孔腔镜手术***
相关申请的交叉引用
本专利申请要求于2016年8月31日提交的、申请号为201610795885.8、发明名称为“一种基于柔性手术工具的单孔腔镜手术***”的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本发明涉及一种医疗器械,具体涉及一种单孔腔镜手术***。
背景技术
手动多孔腹腔镜微创手术应用于临床,可降低病人的术后疼痛、减小发生并发症的概率、缩短康复时间并改善术后疤痕。为了方便医生操作以及实现更好的术后产出,例如由美国Intuitive Surgical公司(美国直觉外科公司)推出的达芬奇手术机器人***,可辅助医生完成多孔腹腔镜微创手术。
为了进一步减小手术创伤面积并缩短康复时间,研究者提出了单孔腹腔镜微创手术。相较于多孔腹腔镜微创手术需要多个体表切口,单孔腹腔镜微创手术中用到的所有手术工具均可由一个体表切口(通常是肚脐)进入腹腔,进一步减小了对患者的创伤。
发明内容
本发明采用以下技术方案:一种单孔腔镜手术***,其特征在于,该***包括柔性手术工具、成像工具和导管体;其中,所述柔性手术工具包括手术执行器、柔性臂体、手柄和近端结构体,所述手术执行器与所述柔性臂体的远端关联,所述柔性臂体的近端通过所述近端结构体与所述手柄关联,所述手柄驱动所述柔性臂体实现弯转运动;所述成像工具包括成像照明模组、弯转关节和成像工具驱动单元,所述成像照明模组与所述弯转关节的远端关联,所述弯转关节的近端与所述成像工具驱动单元关联,所述成像工具驱动单元驱动所述弯转关节实现弯转运动;所述导管体用于将位于所述柔性臂体远端的手术执行器和位于所述弯转关节远端的成像照明模组引导到达同一区域,并将位于所述柔性臂体和所述弯转关节近端以后的部分向空间不同方向引导。
在一个实施例中,所述柔性臂体包括一个以上远端构节,每一所述远端构节包括远端固定盘、远端间隔盘和结构骨;多个所述远端间隔盘间隔分布于所述远端构节中,所述远端构节的结构骨的一端固定于所述远端固定盘上,另一端依次穿过各所述远端间隔盘后固定于所述近端结构体中。
在一个实施例中,所述近端结构体包括近端间隔盘、近端固定盘和近端结构骨,多个所述近端间隔盘间隔分布于所述近端结构体中,多根所述近端结构骨的一端与所述近端固定盘紧固连接,另一端与所述远端构节的结构骨一一对应紧固连接或为同一根结构骨。
在一个实施例中,所述手柄与所述近端结构体中的近端固定盘紧固连接,手动侧向转动所述手柄以控制所述近端结构体向任意方向弯转,从而带动所述柔性臂体向任意方向弯转。
在一个实施例中,所述手柄上设置有按钮开关,所述手术执行器的控线从所述柔性臂体和所述近端结构体穿过后,与所述手柄中的手术执行器驱动机构紧固连接,所述手柄中的驱动机构能将所述按钮开关的上下运动转换为对所述手术执行器的控线的前后推拉运动,进而实现对所述手术执行器的动作控制。
在一个实施例中,所述导管体包括多腔管体、支撑结构和引导套管;所述多腔管***于所述导管体的远端且为杆状直线结构,其中设置有手术工具通道;所述手术工具通道伸入所述支撑结构中并延伸至所述支撑结构的近端;所述支撑结构的近端与多个所述引导套管紧固连接,且所述引导套管中的空心腔道与所述支撑结构近端的所述手术工具通道相接并连通,以使所述柔性手术工具能***所述引导套管和所述手术工具通道中。
在一个实施例中,所述引导套管呈发散分布,以将所述柔性手术工具的柔性臂体近端以后的部分向空间不同方向引导;所述引导套管的近端设置有引导套管入口,所述引导套管入口为内壁光滑的刚性圆柱形通道,所述柔性手术工具上具有与所述引导套管滑动连接的进给导向管,且所述进给导向管能在所述引导套管中自由滑动、转动,通过手动推拉所述手柄以改变所述柔性臂体伸出所述柔性手术工具通道的长度,从而实现所述柔性手术工具的整体进给自由度;通过手动旋转所述手柄以控制所述柔性臂体的整体旋转,进而实现所述柔性手术工具的整体旋转自由度和对所述手术执行器横滚角度的调节。
在一个实施例中,所述多腔管体内还设置有成像工具通道,所述成像工具通道从所述多腔管体一直延伸至所述支撑结构的近端,所述成像工具能***所述成像工具通道中,且所述成像工具能在所述成像工具通道中自由滑动、转动,通过手动推拉、转动所述成像工具实现其整体进给和旋转的自由度。
在一个实施例中,所述导管体包括远端板、近端板、导管、多腔管体和引导套管,且所述多腔管体中设置有手术工具通道;所述远端板与近端板紧固连接成一体,所述多腔管体的近端和所述导管的远端均紧固连接于所述远端板上,所述导管与所述多腔管体中的所述手术工具通道相接并连通,所述导管的近端紧固连接于所述近端板上,且与同样紧固连接于所述近端板上的所述引导套管相接并连通,以使所述柔性手术工具能***所述引导套管、所述导管和所述手术工具通道中。
在一个的实施例中,所述引导套管呈平行分布且互相拥有预定的偏移距离,所述引导套管的近端设置有引导套管入口,所述引导套管入口为内壁光滑的刚性圆柱形通道,所述柔性手术工具上具有与所述引导套管滑动连接的进给导向管,所述进给导向管能在所述引导套管中自由滑动、转动,通过手动推拉所述手柄以改变所述柔性臂体伸出所述手术工具通道的长度,从而实现所述柔性手术工具的整体进给自由度;通过手动旋转所述手柄以控制所述柔性臂体的整体旋转,进而实现所述柔性手术工具的整体旋转自由度和对所述手术执行器横滚角度的调节。
在一个实施例中,所述多腔管体内还设置有成像工具通道,所述成像工具通道穿过所述远端板和近端板;所述成像工具能***所述成像工具通道中,且所述成像工具能在所述成像工具通道中自由滑动、转动,通过手动推拉、转动所述成像工具实现其整体进给和旋转的自由度。
在一个实施例中,当所述柔性臂体包括两个以上远端构节时,所述柔性臂体还包括手术工具驱动单元,所述柔性臂体的近端与所述手术工具驱动单元关联,所述手术工具驱动单元通过所述近端结构体与所述手柄关联;部分所述远端构节的结构骨的一端固定于所述远端固定盘上,另一端依次穿过各所述远端间隔盘后固定于所述手术工具驱动单元中,以使得所述手术工具驱动单元能够驱动与所述手术工具驱动单元关联之所述远端构节在特定弯转平面内弯转。
在一个实施例中,所述手术工具驱动单元包括基座、电机、齿轮对、蜗杆、蜗轮、传动轴、连杆、导杆、滑块和通道固定板;所述基座上紧固连接所述电机,所述电机的输出轴与所述齿轮对中的一个齿轮同轴紧固连接,所述齿轮对中的另一个齿轮与所述蜗杆同轴紧固连接,所述蜗杆与所述蜗轮啮合,所述蜗轮紧固套接在所述传动轴上,所述传动轴与所述基座转动连接,所述传动轴与所述连杆紧固连接;所述滑块为两个,分别位于所述传动轴的两侧且滑动连接在所述导杆上,所述导杆紧固连接在所述通道固定板上;所述连杆的两端分别与一个所述滑块连接,与所述手术工具驱动单元关联之所述远端构节的结构骨与所述滑块紧固 连接。
在一个实施例中,所述手柄上还设置有拨动开关,所述手术工具驱动单元内设置有用于控制所述电机旋转运动的电机控制板,所述电机控制板与所述拨动开关电连接,以使所述拨动开关能控制所述电机实现正转、保持当前位置和反转中任一,进而驱动与所述手术工具驱动单元关联之所述远端构节实现在特定弯转平面内向一侧弯转、保持当前姿态和向另一侧弯转中任一。
在一个实施例中,所述结构骨为杆状或管状结构,当所述远端构节的数量多于两个时,各所述远端构节之间采用串联的方式连接,即远离所述手术工具驱动单元的远端构节之结构骨从接近所述手术工具驱动单元的远端构节之远端固定盘和远端间隔盘上穿过;若接近所述手术工具驱动单元的远端构节之结构骨采用管状结构,则远离所述手术工具驱动单元的远端构节之结构骨从接近所述手术工具驱动单元的远端构节之结构骨内穿过。
在一个实施例中,所述成像工具还包括刚性管体,所述弯转关节紧固连接在所述刚性管体的远端,所述刚性管体的近端与所述成像工具驱动单元紧固连接;所述成像工具还包括位于所述成像工具驱动单元近端的控制按钮,所述成像照明模组包括多个摄像头和多个照明器件,所述控制按钮控制所述弯转关节的任意向弯转,并控制所述摄像头和所述照明器件的工作状态。
在一个实施例中,所述多腔管体还包括一个以上多功能腔道。
本发明还采用以下技术方案:一种单孔腔镜手术***,其特征在于,包括柔性手术工具、成像工具和导管体,所述导管体包括支撑结构;多腔管体,所述多腔管体的近端与所述支撑结构的远端紧固连接,且所述多腔管体内设置有手术工具通道和成像工具通道,所述手术工具通道被配置为允许所述柔性手术工具的至少部分延伸通过,并且位于所述柔性手术工具的最远端的手术执行器伸出所述手术工具通道;所述成像工具通道从所述多腔管体一直延伸至所述支撑结构的近端,被配置为允许所述成像工具的至少部分延伸通过,并且位于所述成像工具的最远端的成像照明模组伸出所述成像工具通道;以及多个引导套管,所述多个引导套管各自的远端紧固连接于所述支撑结构的近端,且分别与所述手术工具通道相接并连通。
在一个实施例中,所述柔性手术工具包括:手术执行器;柔性臂体,所述柔性臂体为拥有多个弯转自由度的柔性结构,远端与所述手术执行器紧固连接;近端结构体,所述近端结构体与所述柔性臂体的近端关联;和手柄,所述手术执行器的控线穿过所述柔性臂体和所述近端结构体后,与所述手柄中的驱动机构紧固连接,以使得所述驱动机构能够经由所述近端 结构体实现所述柔性臂体的弯转运动,从而控制所述手术执行器;其中,所述手术执行器和所述柔性臂体的直径小于所述手术工具通道的内径,以使得所述手术执行器和所述柔性臂体能够在所述手柄的控制下穿过所述手术工具通道,并且所述手术执行器和所述柔性臂体的至少部分伸出所述手术工具通道。
在一个实施例中,所述成像工具包括:成像照明模组;弯转关节,所述弯转关节的远端与所述成像照明模组关联;和成像工具驱动单元,所述成像工具驱动单元与所述弯转关节的近端关联,被配置为驱动所述弯转关节实现弯转运动。
在一个实施例中,所述支撑结构为将多个引导腔道排布成在汇聚端汇聚为一束、并在发散端呈发散分布的结构;所述多腔管体紧固连接于所述支撑结构的汇聚端,以使得所述手术工具通道与所述引导腔道一一对应地相接并连通;所述引导套管均紧固套接于所述支撑结构的发散端,以使得所述引导套管与所述引导腔道一一对应地相接并连通,并且呈发散分布。
在一个实施例中,所述支撑结构包括:远端板,所述远端板与所述多腔管体紧固连接;近端板,所述近端板与所述引导套管紧固连接,并通过支撑结构杆与所述远端板紧固连接成一体;和导管,所述导管的远端紧固连接于所述远端板上,近端紧固连接于所述近端板上,以将所述多腔管体中的所述手术工具通道与所述引导套管一一对应地相接并连通。
本发明由于采取以上技术方案,其具有以下优点:1、本发明提出了一套满足单孔腔镜手术施展流程的手术***,该***中的柔性手术工具和成像工具前端均采用可实现任意向弯转的结构,因此,三个柔性手术工具和一个成像工具可通过同一多腔管体进入人体并灵活施展手术。2、本发明的导管体采用具有特定空间曲线构型的引导腔道,导管体可将柔性手术工具和成像工具引导进入同一多腔管体中,保证了多个工具通过单一手术切口时的尺寸限制。根据不同的柔性手术工具及成像工具的尺寸大小以及运动特征,可调整引导腔道的空间曲线构型,以实现紧凑的体外空间排布。3、本发明包含了导管体、成像工具、柔性手术工具,并提出了可行的单孔腔镜手术安装施展流程。4、本发明的导管体为纯机械结构,柔性手术工具和成像工具可进行密闭性封装,使得该手术***可进行整体消毒,保证临床手术的可实施性。
附图说明
图1是根据本发明一实施例的单孔腔镜手术***的整体结构示意图。
图2是根据本发明一实施例的柔性手术工具的结构示意图。
图3是根据本发明一实施例的柔性手术工具的柔性臂体的结构示意图。
图4是根据本发明一实施例的柔性手术工具的驱动单元的结构示意图。
图5是根据本发明一实施例的柔性手术工具的近端结构体的结构示意图。
图6A和6B是根据本发明一实施例的成像工具的结构示意图。
图7A和7B是根据本发明一实施例的导管体的结构示意图。
图8A-8C是根据本发明一实施例单孔腔镜手术***的安装流程图。
图9是根据本发明另一实施例的导管体的结构示意图。
图10是具有图9所示导管体的单孔腔镜手术***的整体结构示意图。
具体实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。
如图1所示,根据本发明一示例提供的单孔腔镜手术***可包括柔性手术工具10、成像工具30和导管体40。下文中,对于某部件来说,远端是指该部件的远离手术操作者、但靠近术部的端部,以下也可称为前端;而近端是指该部件的靠近手术操作者、但远离术部的端部,以下也可称为后端。
如图2、图3所示,柔性手术工具10可包括手术执行器101、控线102、柔性臂体11、手术工具驱动单元20、手柄21和近端结构体16。手术执行器101紧固连接在柔性臂体11的远端。手术执行器101可为机械式手术执行器,如手术钳、剪刀、止血钳等,亦可为能量式手术执行器,如电切刀、电凝头等。控线102的远端与手术执行器101紧固连接,近端穿过柔性臂体11、手术工具驱动单元20和近端结构体16后,与手柄21中的驱动机构紧固连接。柔性臂体11可为拥有多个弯转自由度的柔性结构,其远端与手术执行器101紧固连接,近端与手术工具驱动单元20关联。柔性臂体11的外侧可包覆有封皮。例如,柔性臂体11的靠近手术执行器101的部分包覆有柔性封皮104,靠近手术工具驱动单元20的部分包覆有刚性管状结构的刚性封皮105。手术工具驱动单元20可通过近端结构体16与手柄21关联。这样,手术工具驱动单元20和手柄21可共同驱动在柔性封皮104包覆下的柔性臂体11实现弯转运动,而在刚性封皮105包覆下的柔性臂体11则不能实现任何弯转运动。
如图3所示,柔性臂体11可包括第一远端构节12和第二远端构节13。
其中,第一远端构节12可包括第一远端间隔盘121、第一远端固定盘122和第一构节结构骨123。根据一个示例,多个第一远端间隔盘121间隔分布于第一远端构节12中,以防止第一构节结构骨123在受推拉时失稳。第一构节结构骨123的一端固定于第一远端固定盘122上,另一端穿过第一远端间隔盘121后固定于手术工具驱动单元20中。这样,手术工具驱动单元20可通过协同推拉第一构节结构骨123来实现第一远端构节12在特定弯转平面内的弯转。需要注意的是,由于第一远端构节12只是在特定弯转平面内弯转,第一构节结构骨123的数量可为两根或以上。
第二远端构节13可包括第二远端间隔盘131、第二远端固定盘132和第二构节结构骨133。根据一个示例,多个第二远端间隔盘131间隔分布于第二远端构节13中,作用是防止第二构节结构骨133在受推拉时失稳。第二构节结构骨133的一端固定于第二远端固定盘132上,另一端依次穿过第二远端间隔盘131、第一远端固定盘122和第一远端间隔盘121后固定于近端结构体16中。这样,近端结构体16通过协同推拉第二构节结构骨133可实现第二远端构节13向任意方向的弯转。需要注意的是,由于第二远端构节13要向任意方向弯转,第二构节结构骨133的数量可为三根或以上。
在一个实施例中,柔性臂体11包括的构节数可以是一个或者多个。各构节的结构骨可为杆状或管状结构。当构节数为一个时,可以舍弃与手术工具驱动单元20关联的第一远端构节12。此时,柔性臂体11可仅包括与近端结构体16关联的第二远端构节13。当构节数为多个时,各构节之间可采用串联的方式连接。例如,远离手术工具驱动单元20的第二远端构节13之第二远端构节结构骨133可从接近手术工具驱动单元20的第一远端构节12之第一远端固定盘122和第一远端间隔盘121上穿过。若接近手术工具驱动单元20的第一远端构节12之第一构节结构骨123采用管状结构,远离手术工具驱动单元20的第二远端构节13之第二构节结构骨133也可从接近手术工具驱动单元20的第一远端构节12之第一构节结构骨123内穿过。
如图4所示,手术工具驱动单元20可包括基座221、电机222、齿轮对223、蜗杆224、蜗轮225、传动轴226、连杆227、滑块228、导杆229和通道固定板230。
其中,基座221可为两个(图中仅示出一个)。在一个基座221上紧固连接电机222。电机222的输出轴与齿轮对223中的一个齿轮同轴紧固连接,齿轮对223中的另一个齿轮与蜗杆224同轴紧固连接。蜗杆224与蜗轮225啮合。蜗轮225紧固套设在传动轴226上。传动轴226转动支撑在两个基座221之间,传动轴226与连杆227的中部紧固连接。滑块228可为两个,位于传动轴226的两侧且分别滑动连接在导杆229上。导杆229紧固连接在两个通 道固定板230之间(图中仅示出一个)。连杆227两端的滑槽分别与一个滑块228连接。两个滑块228作为手术工具驱动单元20的输出端与第一构节结构骨123紧固连接。电机222的旋转动力可以通过齿轮对223、蜗杆224、蜗轮225传递给传动轴226,从而驱动连杆227转动。连杆227的转动可转化为滑块228沿导杆229的直线运动,进而形成对第一构节结构骨123的协同推拉运动,驱使第一远端构节12在特定弯转平面内弯转。
如图5所示,近端结构体16可包括近端间隔盘161、近端固定盘162和近端结构骨163。其中,根据一个示例,多个近端间隔盘161间隔分布于近端结构体16中,作用是防止近端结构骨163在受推拉时失稳。多根近端结构骨163的一端紧固连接在近端固定盘162上,另一端与位于第二远端构节13上的第二构节结构骨133一一对应紧固连接或为同一根结构骨。需要注意的是,近端结构体16的外侧也可包覆有封皮。此外,近端结构体16中的近端结构骨163的数量可为三根以上。
如图2所示,手柄21与近端结构体16中的近端固定盘162紧固连接,手动侧向转动手柄21可以控制近端结构体16向任意方向弯转,从而带动第二远端构节13向任意方向弯转。在手柄21上可设置有拨动开关202和按钮开关201。相应地,在手术工具驱动单元20内可设置有用于控制电机222旋转运动的电机控制板(图中未示出)。电机控制板与拨动开关202电连接。拨动开关202可设置有三个档位,例如分别用于控制电机222正转、保持当前位置和反转。这样,左右拨动手柄21上的拨动开关202,可以驱动第一远端构节12分别在特定弯转平面内向一侧弯转、保持当前姿态和向另一侧弯转。按动按钮开关201,可控制手柄21中的驱动机构将按钮开关201的上下运动转换为对控线102的前后推拉运动,进而实现对手术执行器101的动作控制。
基于上述介绍可知,由于柔性手术工具10的前端采用了柔性臂体11,可实现任意向的弯转。此外,所述柔性手术工具10还可进行密闭性封装。
如图6A所示,成像工具30可包括成像照明模组301、弯转关节302、刚性管体303、成像工具驱动单元304和控制按钮305。其中,如图6B所示,成像照明模组301中可集成了用于实现立体视觉的两个摄像头306和多个照明器件307。成像照明模组301可由弯转关节302携带。弯转关节302紧固连接在刚性管体303的远端。刚性管体303的近端与成像工具驱动单元304紧固连接。位于成像工具驱动单元304的近端的控制按钮305可以控制弯转关节302的弯转,也可控制摄像头306和照明器件307的工作状态。通过手动推拉、旋转成像工具30和按动控制按钮305,成像工具30可实现整体进给、整体旋转和弯转关节302任意方向弯转等的多个运动自由度,进而可实现摄像头306在手术过程中多角度的监控。
需要说明的是,成像工具驱动单元304的结构及驱动原理可以与手术工具驱动单元20相似,故不再赘述。
如图7A和7B所示,导管体40可包括多腔管体401、支撑结构403、成像工具通道405和引导套管410。其中,多腔管体401位于导管体40的远端且为杆状直线结构。如图7A所示,多腔管体401中设置有一个成像工具通道405和三个手术工具通道404。
各手术工具通道404伸入支撑结构403中,并延伸至支撑结构403的近端,例如延伸至支撑结构403与引导套管410的连接处。支撑结构403的近端与三个引导套管410紧固连接。引导套管410中的空心腔道与支撑结构403的近端处的手术工具通道404对齐。这样,柔性手术工具10可以平顺地***引导套管410和手术工具通道404,从而可到达术部。
引导套管410可呈发散分布,从而可将柔性手术工具10在刚性封皮105以后的部分向空间不同方向引导,以避免各柔性手术工具10相互干涉。引导套管410的近端可设置有引导套管入口409。引导套管入口409的内部可为内壁光滑的刚性圆柱形通道。位于柔性手术工具10的前端且与手术工具驱动单元20紧固连接的进给导向管106(如图2所示)可与引导套管410滑动连接。这样,进给导向管106可在引导套管410中自由滑动、转动,使得通过手动推拉手柄21可以改变柔性臂体11伸出手术工具通道404的长度,从而可实现柔性手术工具10的整体进给自由度。通过手动旋转手柄21可以控制柔性臂体11的整体旋转和第一远端构节12的特定弯转平面的指向,进而可实现柔性手术工具10的整体旋转自由度和对手术执行器101横滚角度的调节。
成像工具通道405可从多腔管体401一直延伸至支撑结构403的后端,可为一刚性笔直的腔道。这样,成像工具30可以平顺地***成像工具通道405并到达术部。并且,成像工具30的刚性管体303可在成像工具通道405中自由滑动、转动,使得可通过手动推拉、转动成像工具30来实现其整体进给和旋转的自由度。
图8A-8C展示根据本发明一示例的单孔腔镜手术***的安装流程,大致可包括以下步骤。
手术前,将导管体40和已进行封装的成像工具30、柔性手术工具10进行浸泡消毒。其中,由于导管体40为纯机械结构,柔性手术工具10和成像工具30均可进行密闭性封装,使得该手术***可进行整体消毒,从而可保证临床手术的可实施性。
接着,如图8A所示,将导管体40的前端经固定于手术切口的鞘套***人体,将消毒过的成像工具30经过成像工具通道405***导管体40中,直到成像照明模组301和弯转关节302完全从多腔管体401的成像工具通道405中伸出。成像照明模组301的最大外径和弯转 关节302的最大外径均不超过刚性管体303的最大外径,以保证成像照明模组301能够顺利穿过成像工具通道405,且刚性管体303可在成像工具通道405内自由滑动。通过控制成像工具30的前后位置、整体旋转角度和弯转关节302的弯转角度,可以调整成像视角。
如图8B所示,将消毒过的柔性手术工具10经过引导套管410***到导管体40中的手术工具通道404中,直到柔性臂体11完全从多腔管体401的手术工具通道404中伸出。柔性臂体11可顺利穿过手术工具通道404并在其中自由滑动、转动。
至此,柔性手术工具10和成像工具30在人体内部分的相对位置和构型可如图8C所示。其中,位于成像工具30前端的成像照明模组301中的照明器件307可为手术操作空间提供照明,三个柔性手术工具前端的柔性臂体11和手术执行器101均在摄像头306的视野范围之内。
这样,由于柔性手术工具10和成像工具30的前端均采用可实现任意向弯转的结构,三个柔性手术工具10和一个成像工具30可通过同一多腔管体401到达术部并灵活施展手术。此外,由于导管体40采用具有特定空间构型的引导腔道,可将柔性手术工具10和成像工具30引导进入同一多腔管体401中,可有效保证多个工具通过单个手术切口时的尺寸限制。
图9展示了根据本发明另一实施例提供的导管体50。如图9所示,该导管体50可包括远端板501、近端板502、支撑结构杆504、导管505、成像工具通道405、多腔管体401和引导套管410。其中,远端板501与近端板502可通过支撑结构杆504紧固连接成一体。多腔管体401的近端紧固连接在远端板501上。导管505的远端紧固连接在远端板501上,且与多腔管体401中的手术工具通道404相接并连通。导管505的近端紧固连接在近端板502上,且与同样紧固连接在近端板502上的引导套管410相接并连通。成像工具通道405则穿过近端板502和远端板501,并延伸至多腔管体401内。
本实施例中的导管体50与图7A所示导管体40的主要区别在于,柔性手术工具10在空间中的排布。在导管体40中,三个柔性手术工具10呈放射状排布且相互之间有一定的夹角。而在导管体50中,三个柔性手术工具10平行分布且互相拥有足够的偏移距离。这两种排布均可使得单孔腔镜手术***的体外驱动部分的排布尽量紧凑(如图1和图10所示),亦可以避免柔性手术工具10的体外驱动部分在操作运动时发生相互干涉。
本发明仅以上述实施例进行说明,各部件的结构、设置位置及其连接都是可以有所变化的。在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进或等同变换,均不应排除在本发明的保护范围之外。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者 操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (22)

  1. 一种单孔腔镜手术***,其特征在于,该***包括柔性手术工具、成像工具和导管体;
    其中,所述柔性手术工具包括手术执行器、柔性臂体、手柄和近端结构体,所述手术执行器与所述柔性臂体的远端关联,所述柔性臂体的近端通过所述近端结构体与所述手柄关联,所述手柄驱动所述柔性臂体实现弯转运动;
    所述成像工具包括成像照明模组、弯转关节和成像工具驱动单元,所述成像照明模组与所述弯转关节的远端关联,所述弯转关节的近端与所述成像工具驱动单元关联,所述成像工具驱动单元驱动所述弯转关节实现弯转运动;
    所述导管体用于将位于所述柔性臂体远端的手术执行器和位于所述弯转关节远端的成像照明模组引导到达同一区域,并将位于所述柔性臂体和所述弯转关节近端以后的部分向空间不同方向引导。
  2. 如权利要求1所述的单孔腔镜手术***,其特征在于,
    所述柔性臂体包括一个以上远端构节,
    每一所述远端构节包括远端固定盘、远端间隔盘和结构骨;
    多个所述远端间隔盘间隔分布于所述远端构节中,
    所述远端构节的结构骨的一端固定于所述远端固定盘上,另一端依次穿过各所述远端间隔盘后固定于所述近端结构体中。
  3. 如权利要求2所述的单孔腔镜手术***,其特征在于,
    所述近端结构体包括近端间隔盘、近端固定盘和近端结构骨,
    多个所述近端间隔盘间隔分布于所述近端结构体中,
    多根所述近端结构骨的一端与所述近端固定盘紧固连接,另一端与所述远端构节的结构骨一一对应紧固连接或为同一根结构骨。
  4. 如权利要求3所述的单孔腔镜手术***,其特征在于,
    所述手柄与所述近端结构体中的近端固定盘紧固连接,
    手动侧向转动所述手柄以控制所述近端结构体向任意方向弯转,从而带动所述柔性臂体向任意方向弯转。
  5. 如权利要求4所述的单孔腔镜手术***,其特征在于,
    所述手柄上设置有按钮开关,
    所述手术执行器的控线从所述柔性臂体和所述近端结构体穿过后,与所述手柄中的驱动 机构紧固连接,
    所述手柄中的驱动机构能将所述按钮开关的上下运动转换为对所述手术执行器的控线的前后推拉运动,进而实现对所述手术执行器的动作控制。
  6. 如权利要求1所述的单孔腔镜手术***,其特征在于,
    所述导管体包括多腔管体、支撑结构和引导套管;
    所述多腔管***于所述导管体的远端且为杆状直线结构,其中设置有手术工具通道;
    所述手术工具通道伸入所述支撑结构中并延伸至所述支撑结构的近端;
    所述支撑结构的近端与多个所述引导套管紧固连接,且所述引导套管中的空心腔道与所述支撑结构近端的所述手术工具通道相接并连通,以使所述柔性手术工具能***所述引导套管和所述手术工具通道中。
  7. 如权利要求6所述的单孔腔镜手术***,其特征在于,
    所述引导套管呈发散分布,以将所述柔性手术工具的柔性臂体近端以后的部分向空间不同方向引导;
    所述引导套管的近端设置有引导套管入口,所述引导套管入口为内壁光滑的刚性圆柱形通道,
    所述柔性手术工具上具有与所述引导套管滑动连接的进给导向管,且所述进给导向管能在所述引导套管中自由滑动、转动,
    通过手动推拉所述手柄以改变所述柔性臂体伸出所述手术工具通道的长度,从而实现所述柔性手术工具的整体进给自由度;
    通过手动旋转所述手柄以控制所述柔性臂体的整体旋转,进而实现所述柔性手术工具的整体旋转自由度和对所述手术执行器横滚角度的调节。
  8. 如权利要求6所述的单孔腔镜手术***,其特征在于,
    所述多腔管体内还设置有成像工具通道,
    所述成像工具通道从所述多腔管体一直延伸至所述支撑结构的近端,所述成像工具能***所述成像工具通道中,且
    所述成像工具能在所述成像工具通道中自由滑动、转动,通过手动推拉、转动所述成像工具实现其整体进给和旋转的自由度。
  9. 如权利要求1所述的单孔腔镜手术***,其特征在于,
    所述导管体包括远端板、近端板、导管、多腔管体和引导套管,且所述多腔管体中设置有手术工具通道;
    所述远端板与近端板紧固连接成一体,
    所述多腔管体的近端和所述导管的远端均紧固连接于所述远端板上,
    所述导管与所述多腔管体中的所述手术工具通道相接并连通,
    所述导管的近端紧固连接于所述近端板上,且与同样紧固连接于所述近端板上的所述引导套管相接并连通,以使所述柔性手术工具能***所述引导套管、所述导管和所述手术工具通道中。
  10. 如权利要求9所述的单孔腔镜手术***,其特征在于,
    所述引导套管呈平行分布且互相拥有预定的偏移距离,
    所述引导套管的近端设置有引导套管入口,所述引导套管入口为内壁光滑的刚性圆柱形通道,
    所述柔性手术工具上具有与所述引导套管滑动连接的进给导向管,所述进给导向管能在所述引导套管中自由滑动、转动,
    通过手动推拉所述手柄以改变所述柔性臂体伸出所述手术工具通道的长度,从而实现所述柔性手术工具的整体进给自由度;
    通过手动旋转所述手柄以控制所述柔性臂体的整体旋转,进而实现所述柔性手术工具的整体旋转自由度和对所述手术执行器横滚角度的调节。
  11. 如权利要求9所述的单孔腔镜手术***,其特征在于,
    所述多腔管体内还设置有成像工具通道,所述成像工具通道穿过所述远端板和近端板;
    所述成像工具能***所述成像工具通道中,且所述成像工具能在所述成像工具通道中自由滑动、转动,通过手动推拉、转动所述成像工具实现其整体进给和旋转的自由度。
  12. 如权利要求2所述的单孔腔镜手术***,其特征在于,当所述柔性臂体包括两个以上远端构节时,所述柔性臂体还包括手术工具驱动单元,
    所述柔性臂体的近端与所述手术工具驱动单元关联,所述手术工具驱动单元通过所述近端结构体与所述手柄关联;
    部分所述远端构节的结构骨的一端固定于所述远端固定盘上,另一端依次穿过各所述远端间隔盘后固定于所述手术工具驱动单元中,以使得所述手术工具驱动单元能够驱动与所述手术工具驱动单元关联之所述远端构节在特定弯转平面内弯转。
  13. 如权利要求12所述的单孔腔镜手术***,其特征在于,所述手术工具驱动单元包括基座、电机、齿轮对、蜗杆、蜗轮、传动轴、连杆、导杆、滑块和通道固定板;
    所述基座上紧固连接所述电机,
    所述电机的输出轴与所述齿轮对中的一个齿轮同轴紧固连接,
    所述齿轮对中的另一个齿轮与所述蜗杆同轴紧固连接,
    所述蜗杆与所述蜗轮啮合,
    所述蜗轮紧固套接在所述传动轴上,
    所述传动轴与所述基座转动连接,
    所述传动轴与所述连杆紧固连接;
    所述滑块为两个,分别位于所述传动轴的两侧且滑动连接在所述导杆上,
    所述导杆紧固连接在所述通道固定板上;
    所述连杆的两端分别与一个所述滑块连接,与所述手术工具驱动单元关联之所述远端构节的结构骨与所述滑块紧固连接。
  14. 如权利要求13所述的单孔腔镜手术***,其特征在于,所述手柄上还设置有拨动开关,
    所述手术工具驱动单元内设置有用于控制所述电机旋转运动的电机控制板,
    所述电机控制板与所述拨动开关电连接,以使所述拨动开关能控制所述电机实现正转、保持当前位置和反转中任一,进而驱动与所述手术工具驱动单元关联之所述远端构节实现在特定弯转平面内向一侧弯转、保持当前姿态和向另一侧弯转中任一。
  15. 如权利要求12所述的单孔腔镜手术***,其特征在于,
    所述结构骨为杆状或管状结构,
    当所述远端构节的数量多于两个时,各所述远端构节之间采用串联的方式连接,即远离所述手术工具驱动单元的远端构节之结构骨从接近所述手术工具驱动单元的远端构节之远端固定盘和远端间隔盘上穿过;
    若接近所述手术工具驱动单元的远端构节之结构骨采用管状结构,则远离所述手术工具驱动单元的远端构节之结构骨从接近所述手术工具驱动单元的远端构节之结构骨内穿过。
  16. 如权利要求1到15任一项所述的单孔腔镜手术***,其特征在于,
    所述成像工具还包括刚性管体,所述弯转关节紧固连接在所述刚性管体的远端,所述刚性管体的近端与所述成像工具驱动单元紧固连接;
    所述成像工具还包括位于所述成像工具驱动单元近端的控制按钮,
    所述成像照明模组包括多个摄像头和多个照明器件,
    所述控制按钮控制所述弯转关节的任意向弯转,并控制所述摄像头和所述照明器件的工作状态。
  17. 如权利要求8或11所述的单孔腔镜手术***,其特征在于,所述多腔管体还包括一个以上多功能腔道。
  18. 一种单孔腔镜手术***,其特征在于,包括:
    柔性手术工具;
    成像工具;和
    导管体,其包括:
    支撑结构;以及
    多腔管体,其近端与所述支撑结构的远端紧固连接,且其内设置有
    手术工具通道,其被配置为允许所述柔性手术工具的至少部分延伸通过,并且位于所述柔性手术工具的最远端的手术执行器伸出所述手术工具通道;以及
    成像工具通道,其从所述多腔管体一直延伸至所述支撑结构的近端,被配置为允许所述成像工具的至少部分延伸通过,并且位于所述成像工具的最远端的成像照明模组伸出所述成像工具通道;
    多个引导套管,其各自的远端紧固连接于所述支撑结构的近端,且分别与所述手术工具通道相接并连通。
  19. 如权利要求18所述的单孔腔镜手术***,其特征在于,所述柔性手术工具包括:
    手术执行器;
    柔性臂体,其为拥有多个弯转自由度的柔性结构,远端与所述手术执行器紧固连接;
    近端结构体,其与所述柔性臂体的近端关联;
    手柄,所述手术执行器的控线穿过所述柔性臂体和所述近端结构体后,与所述手柄中的驱动机构紧固连接,以使得所述驱动机构能够经由所述近端结构体实现所述柔性臂体的弯转运动,从而控制所述手术执行器;
    其中,所述手术执行器和所述柔性臂体的直径小于所述手术工具通道的内径,以使得所述手术执行器和所述柔性臂体能够在所述手柄的控制下穿过所述手术工具通道,并且所述手术执行器和所述柔性臂体的至少部分伸出所述手术工具通道。
  20. 如权利要求18所述的单孔腔镜手术***,其特征在于,所述成像工具包括:
    成像照明模组;
    弯转关节,其远端与所述成像照明模组关联;和
    成像工具驱动单元,其与所述弯转关节的近端关联,被配置为驱动所述弯转关节实现弯转运动。
  21. 如权利要求18所述的单孔腔镜手术***,其特征在于,所述支撑结构为将多个引导腔道排布成在汇聚端汇聚为一束、并在发散端呈发散分布的结构;
    所述多腔管体紧固连接于所述支撑结构的汇聚端,以使得所述手术工具通道与所述引导腔道一一对应地相接并连通;
    所述引导套管均紧固套接于所述支撑结构的发散端,以使得所述引导套管与所述引导腔道一一对应地相接并连通,并且呈发散分布。
  22. 如权利要求18所述的单孔腔镜手术***,其特征在于,所述支撑结构包括:
    远端板,其与所述多腔管体紧固连接;
    近端板,其与所述引导套管紧固连接,并通过支撑结构杆与所述远端板紧固连接成一体;和
    导管,其远端紧固连接于所述远端板上,近端紧固连接于所述近端板上,以将所述多腔管体中的所述手术工具通道与所述引导套管一一对应地相接并连通。
PCT/CN2017/099857 2016-08-31 2017-08-31 单孔腔镜手术*** WO2018041206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610795885.8A CN106175849B (zh) 2016-08-31 2016-08-31 一种基于柔性手术工具的单孔腔镜手术***
CN201610795885.8 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018041206A1 true WO2018041206A1 (zh) 2018-03-08

Family

ID=58085654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099857 WO2018041206A1 (zh) 2016-08-31 2017-08-31 单孔腔镜手术***

Country Status (2)

Country Link
CN (1) CN106175849B (zh)
WO (1) WO2018041206A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190336A (zh) * 2018-10-09 2021-01-08 北京术锐技术有限公司 一种柔性手术机器人***
CN113598949A (zh) * 2021-07-02 2021-11-05 北京理工大学 面向人体自然腔道的柔性手术机器人
CN113858261A (zh) * 2020-06-30 2021-12-31 北京术锐技术有限公司 一种可整体驱动的柔性连续体结构及柔性机械臂
CN113858260A (zh) * 2020-06-30 2021-12-31 北京术锐技术有限公司 一种可整体驱动的柔性连续体结构及柔性机械臂

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106175849B (zh) * 2016-08-31 2019-03-01 北京术锐技术有限公司 一种基于柔性手术工具的单孔腔镜手术***
CN108852515B (zh) * 2018-03-23 2022-06-24 深圳市精锋医疗科技股份有限公司 单切口手术的从操作设备及手术机器人
CN109431605A (zh) * 2018-10-09 2019-03-08 北京术锐技术有限公司 一种基于柔性手术臂的经皮穿刺机器人***及其使用方法
CN112842533B (zh) * 2018-10-09 2023-09-05 北京术锐机器人股份有限公司 柔性手术工具及血管介入手术机器人***
CN109567927B (zh) * 2018-11-22 2021-06-29 清华大学 一种腔内操作工具
CN111227939B (zh) * 2018-11-29 2021-08-31 中国科学院沈阳自动化研究所 一种模块化单孔腔镜手术驱动装置
WO2020133368A1 (zh) * 2018-12-29 2020-07-02 天津大学 柔性手术器械、操作臂***及微创手术机器人从手***
CN109700537B (zh) * 2018-12-29 2021-07-30 天津大学 柔性手术器械、操作臂***及微创手术机器人从手***
CN111714162B (zh) * 2019-05-10 2023-03-28 上海微创医疗机器人(集团)股份有限公司 手术装置及手术器械
CN111888012B (zh) * 2020-08-26 2021-11-05 上海微创医疗机器人(集团)股份有限公司 手术器械平台
CN114869359B (zh) * 2022-05-27 2023-08-22 四川大学华西医院 导管设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325303A (ja) * 1999-05-17 2000-11-28 Olympus Optical Co Ltd 内視鏡治療装置
CN201104909Y (zh) * 2007-09-26 2008-08-27 朱江帆 经脐入路手术用穿刺套管
CN102309363A (zh) * 2010-06-29 2012-01-11 王东 一种综合内窥镜手术平台
CN103948435A (zh) * 2014-05-15 2014-07-30 上海交通大学 单孔腹腔镜微创手术机器人***
WO2015142290A1 (en) * 2014-03-19 2015-09-24 Endomaster Pte Ltd Master – slave flexible robotic endoscopy system
CN106175851A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种基于柔性臂体的单孔腹腔镜手术***
CN106175849A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种基于柔性手术工具的单孔腔镜手术***

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103707322B (zh) * 2013-12-31 2016-04-20 汪雯 可弯转可伸缩的柔性连续体机械结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325303A (ja) * 1999-05-17 2000-11-28 Olympus Optical Co Ltd 内視鏡治療装置
CN201104909Y (zh) * 2007-09-26 2008-08-27 朱江帆 经脐入路手术用穿刺套管
CN102309363A (zh) * 2010-06-29 2012-01-11 王东 一种综合内窥镜手术平台
WO2015142290A1 (en) * 2014-03-19 2015-09-24 Endomaster Pte Ltd Master – slave flexible robotic endoscopy system
CN103948435A (zh) * 2014-05-15 2014-07-30 上海交通大学 单孔腹腔镜微创手术机器人***
CN106175851A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种基于柔性臂体的单孔腹腔镜手术***
CN106175849A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种基于柔性手术工具的单孔腔镜手术***

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112190336A (zh) * 2018-10-09 2021-01-08 北京术锐技术有限公司 一种柔性手术机器人***
CN112190336B (zh) * 2018-10-09 2023-12-05 北京术锐机器人股份有限公司 一种柔性手术机器人***
CN113858261A (zh) * 2020-06-30 2021-12-31 北京术锐技术有限公司 一种可整体驱动的柔性连续体结构及柔性机械臂
CN113858260A (zh) * 2020-06-30 2021-12-31 北京术锐技术有限公司 一种可整体驱动的柔性连续体结构及柔性机械臂
CN113858261B (zh) * 2020-06-30 2023-03-10 北京术锐技术有限公司 一种可整体驱动的柔性连续体结构及柔性机械臂
CN113858260B (zh) * 2020-06-30 2023-11-17 北京术锐机器人股份有限公司 一种可整体驱动的柔性连续体结构及柔性机械臂
CN113598949A (zh) * 2021-07-02 2021-11-05 北京理工大学 面向人体自然腔道的柔性手术机器人

Also Published As

Publication number Publication date
CN106175849A (zh) 2016-12-07
CN106175849B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018041206A1 (zh) 单孔腔镜手术***
US11116592B2 (en) Flexible surgical instrument system based on continuous body structure
US7297142B2 (en) Interchangeable surgical instrument
JP5139979B2 (ja) 外科用器具の案内装置
US7758569B2 (en) Interchangeable surgical instrument
US8303576B2 (en) Interchangeable surgical instrument
WO2018041202A1 (zh) 一种多自由度的柔性手术工具
WO2018041204A1 (zh) 一种柔性手术工具***
US8007432B2 (en) Endoscopic accessory control mechanism
US7901399B2 (en) Interchangeable surgical instrument
WO2018041161A1 (zh) 一种柔性手术工具***
WO2018041160A1 (zh) 一种柔性手术工具***
US20100241136A1 (en) Instrument positioning/holding devices
WO2018041218A1 (zh) 柔性手术工具***
JP7096393B2 (ja) 手術システムおよび支持装置
WO2018041211A1 (zh) 单孔腔镜手术***
US20200323420A1 (en) Endoscopic multi-tool
WO2018041205A1 (zh) 一种可消毒的柔性手术工具***
JP7210458B2 (ja) 最小侵襲処置のためのシステム
US11903571B2 (en) Flexible surgical instrument system with prepositioned drive input
CA3040092A1 (en) Endoscopic multi-tool
KR101684863B1 (ko) 복수 기능을 갖는 외과 수술용 장치의 인스트루먼트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17845508

Country of ref document: EP

Kind code of ref document: A1