WO2018041146A1 - 智能割草机、自移动设备及其识别障碍物的方法 - Google Patents

智能割草机、自移动设备及其识别障碍物的方法 Download PDF

Info

Publication number
WO2018041146A1
WO2018041146A1 PCT/CN2017/099698 CN2017099698W WO2018041146A1 WO 2018041146 A1 WO2018041146 A1 WO 2018041146A1 CN 2017099698 W CN2017099698 W CN 2017099698W WO 2018041146 A1 WO2018041146 A1 WO 2018041146A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic sensor
ultrasonic
obstacle
lawn mower
area
Prior art date
Application number
PCT/CN2017/099698
Other languages
English (en)
French (fr)
Inventor
盛晓初
冉沅忠
庞艳军
杜江
李兴红
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP17845448.4A priority Critical patent/EP3508048B1/en
Priority to CN201780025404.8A priority patent/CN109310049B/zh
Priority to CN202211002828.1A priority patent/CN116027337A/zh
Publication of WO2018041146A1 publication Critical patent/WO2018041146A1/zh
Priority to US16/287,309 priority patent/US11256267B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • A01D75/185Avoiding collisions with obstacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details

Definitions

  • the invention relates to a self-mobile device, in particular to a non-contact obstacle avoidance self-moving device and a method thereof for identifying an obstacle.
  • the self-mobile robot needs to have the function of recognizing obstacles, and then automatically avoids or automatically avoids obstacles when encountering obstacles.
  • the self-mobile robot employs a contact avoidance means.
  • a collision sensor is arranged on the body of the mobile robot.
  • the collision sensor When the mobile robot collides with an obstacle, the collision sensor generates a collision signal, and the control module of the mobile robot receives the collision signal, and determines the self-mobile robot.
  • the contact-type obstacle avoidance mode the obstacle is recognized when the self-moving robot needs to collide with an obstacle. This method not only requires a high collision strength from the body of the mobile robot, but also increases the cost of the self-mobile robot, and it cannot adapt to some conditions that are not suitable for collision.
  • the invention provides a self-mobile device capable of implementing non-contact obstacle avoidance.
  • the present invention also provides a self-moving device capable of improving the accessibility of a machine and capable of discriminating an obstacle orientation, realizing a targeted obstacle avoidance measure, and a method of identifying the obstacle.
  • An intelligent lawn mower comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module for controlling the intelligent lawn mower
  • An ultrasonic sensor assembly for identifying an obstacle in a forward direction of the intelligent lawn mower is disposed on the housing, the ultrasonic sensor assembly includes a first ultrasonic sensor, and the first ultrasonic sensor receives and transmits ultrasonic waves in the first transceiving region,
  • the control module controls the intelligent lawn mower to perform a preset obstacle avoidance measure when the distance detected by the ultrasonic sensor assembly is less than the preset distance from the smart lawn mower.
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors including a first ultrasonic sensor and a second ultrasonic sensor, the first ultrasonic sensor receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor being Receiving and transmitting ultrasonic waves in the second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other on the housing such that the first transceiving area and the second transceiving area portion Overlapping, thereby forming three detection regions, wherein a portion where the first transmission and reception region and the second transmission and reception region overlap each other is a third detection region, and a portion other than the overlap in the first transmission and reception region is a first detection region, and the second transmission and reception region The portion other than the middle overlap is the second detection area.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the first axis and the second axis form an angle ranging from 60° to 110°.
  • the first axis and the second axis form an angle ranging from 70° to 90°.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the housing has a housing axis, the first axis and/or the second axis and the housing axis The angle ranges from 10° to 80°.
  • the angle between the first axis and/or the second axis and the axis of the housing ranges from 25° to 55°.
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors including a first ultrasonic sensor and a second ultrasonic sensor, the first ultrasonic sensor receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor being Receiving and transmitting ultrasonic waves in the second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being arranged on the housing in parallel with each other in the width direction of the smart mower, and causing the first transceiving area and The second transmitting and receiving areas are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and a portion other than the overlap in the first transmitting and receiving area is the first The detection area, the portion other than the overlap in the second transmission and reception area is the second detection area.
  • the third detection area covers at least a part of the first ranging blind zone in the first transceiver area and a part of the second ranging blind zone in the second transceiver area at the same time.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor to alternately emit ultrasonic waves in time.
  • the control module controls the first ultrasonic sensor to emit ultrasonic waves in a first time period, and the first ultrasonic sensor and the second ultrasonic sensor receive an obstacle echo in a first time period,
  • the control module controls the second ultrasonic sensor to emit ultrasonic waves during a second time period after the first time period, the first ultrasonic sensor and the second ultrasonic sensor receiving an obstacle echo in a second time period.
  • control module determines the orientation of the obstacle according to a combination of the first ultrasonic sensor and the second ultrasonic sensor in the ultrasonic sensor assembly for transmitting and receiving an obstacle echo.
  • the control module determines that an obstacle is located in the first detection area; Only the second ultrasonic sensor transmits ultrasonic waves in the sensor assembly, and when only the second ultrasonic sensor receives the obstacle echo, the control module determines that the obstacle is located in the second detection area; when the first ultrasonic sensor is in the ultrasonic sensor assembly When the transmitting ultrasonic wave, the first ultrasonic sensor and the second ultrasonic sensor receive the obstacle echo, the control module determines that the obstacle is located in the third detecting area; and when the second ultrasonic sensor transmits the ultrasonic wave in the ultrasonic sensor component, the first When the ultrasonic sensor and the second ultrasonic sensor receive the obstacle echo, the control module determines that the obstacle is located in the third detection area; when the ultrasonic sensor component transmits the ultrasonic wave, the second ultrasonic sensor receives the obstacle In the wave time, the control
  • control module calculates the distance of the obstacle from the intelligent lawn mower according to the time difference between the transmitted ultrasonic wave of the ultrasonic sensor component and the echo of the received obstacle.
  • the control module does not analyze the received ultrasonic echo.
  • the control module does not analyze the received ultrasonic echo.
  • the control module does not analyze the received ultrasonic echo.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis, the first axis being coplanar with the second axis in a vertical direction.
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors including a first ultrasonic sensor and a second ultrasonic sensor, the first ultrasonic sensor receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor being Receiving and transmitting ultrasonic waves in the second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being arranged parallel to each other in the width direction of the smart mower and adjacent to each other on the housing, and causing the first The transceiver area and the second transceiver area do not overlap.
  • the ultrasonic sensor assembly includes a third ultrasonic sensor and a fourth ultrasonic sensor disposed on the housing, the third ultrasonic sensor receiving ultrasonic waves in a third receiving area, and the fourth ultrasonic sensor receiving in a fourth Receiving ultrasonic waves in the region, the third ultrasonic sensor being located on the other side of the first ultrasonic sensor not adjacent to the second ultrasonic sensor, the third ultrasonic sensor being disposed at an angle to the first ultrasonic sensor on the housing Having the first transceiving area and the third receiving area partially overlap, the fourth ultrasonic sensor being located on the other side of the second ultrasonic sensor not adjacent to the first ultrasonic sensor, the fourth ultrasonic sensor and the Two ultrasonic sensors are disposed at an angle to each other on the housing such that the second transceiver area and the fourth receiving area partially overlap, and the four ultrasonic sensors form four detection areas, wherein the first transceiver The portion where the region and the third transceiver area overlap each other is a third detection area, and
  • the third detection area covers at least a part of the first ranging blind area in the first transceiving area
  • the fourth detection area covers at least a part of the second ranging dead area in the second transceiving area.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor to alternately emit ultrasonic waves in time.
  • the control module controls the first ultrasonic sensor to emit ultrasonic waves in a first time period, and the first ultrasonic sensor and the third ultrasonic sensor receive ultrasonic waves in a first time period, and the control module controls The second ultrasonic sensor emits ultrasonic waves during a second period of time after the first period of time, and the second ultrasonic sensor and the fourth ultrasonic sensor receive ultrasonic waves for a second period of time.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor to simultaneously emit ultrasonic waves in time.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor
  • the ultrasonic waves are emitted during the first period of time, and the first ultrasonic sensor, the second ultrasonic sensor, the third ultrasonic sensor, and the fourth ultrasonic sensor receive the ultrasonic waves for the first period of time.
  • control module determines the orientation of the obstacle according to the combination of the ultrasonic waves emitted by the first ultrasonic sensor, the second ultrasonic sensor, the third ultrasonic sensor and the fourth ultrasonic sensor in the ultrasonic sensor assembly.
  • the control module determines that an obstacle is located in the first detection area; when the ultrasonic sensor assembly Only when the second ultrasonic sensor emits ultrasonic waves, and only the second ultrasonic sensor receives the ultrasonic waves, the control module determines that the obstacle is located in the second detection area; when the first ultrasonic sensor of the ultrasonic sensor assembly emits ultrasonic waves, the first ultrasonic wave When the sensor and the third ultrasonic sensor receive the ultrasonic wave, the control module determines that the obstacle is located in the third detection area; and when the second ultrasonic sensor transmits the ultrasonic wave, the second ultrasonic sensor and the fourth ultrasonic sensor receive the ultrasonic wave in the ultrasonic sensor assembly The control module determines that an obstacle is located in the fourth detection area.
  • the third ultrasonic sensor has a third axis
  • the first ultrasonic sensor has a first axis
  • an angle between the third axis and the first axis ranges from 10° to 80°.
  • the angle between the third axis and the first axis ranges from 25° to 55°.
  • the fourth ultrasonic sensor has a fourth axis
  • the second ultrasonic sensor has a second axis
  • an angle between the fourth axis and the second axis ranges from 10° to 80°.
  • the angle between the fourth axis and the second axis ranges from 25° to 55°.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the third ultrasonic sensor has a third axis
  • the fourth ultrasonic sensor has a fourth axis
  • the The one axis, the second axis, the third axis, and the fourth axis are coplanar in the vertical direction.
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors including a first ultrasonic sensor and a second ultrasonic sensor, the first ultrasonic sensor receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor being Receiving ultrasonic waves in the second receiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other on the housing such that the first transceiving area and the second receiving area partially overlap, The portion where the first transmitting and receiving area and the second receiving area overlap each other is the third detecting area, and the portion other than the overlap in the first transmitting and receiving area is the first detecting area.
  • the third detection area covers at least part of the first ranging in the first transceiver area Blind zone.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 10° to 80°.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 25° to 55°.
  • the ultrasonic sensors in which the plurality of ultrasonic ultrasonic wave transmission ranges overlap have a mode in which the ultrasonic waves are alternately transmitted, and one of the ultrasonic wave transmission ranges overlaps, and one of the ultrasonic sensors transmits the ultrasonic waves.
  • the remaining ultrasonic sensors receive the ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that have no overlapping ultrasonic transmission range of the transmitted ultrasonic waves adopt a mode in which ultrasonic waves are simultaneously transmitted, and one of the ultrasonic wave sensors and the sound wave transmission are overlapped in the sound wave transmission range.
  • the remaining ultrasonic sensors receive ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that transmit a plurality of ultrasonic ultrasonic wave transmission ranges have a mode of transmitting ultrasonic waves in turn, and one of the ultrasonic wave transmitting ranges has overlapping ultrasonic waves when transmitting ultrasonic waves.
  • the remaining ultrasonic sensors receive ultrasonic waves, and the ultrasonic sensors that transmit the ultrasonic wave transmission range do not overlap, and the remaining ultrasonic sensors receive the ultrasonic waves.
  • the first ultrasonic sensor is disposed at a distance D from the front end of the intelligent lawn mower.
  • the D distance is located in the first half of the length direction of the intelligent mower.
  • the ultrasonic beam template for identifying the obstacle in the forward direction of the intelligent mower is non-circular, and a cut surface is formed perpendicular to the axis of the ultrasonic beam template to obtain a wave surface having a long axis direction and a short axis
  • the direction, the long axis direction is mounted substantially parallel to the bottom surface of the smart lawn mower, the short axis direction being mounted substantially perpendicular to the bottom surface of the smart lawn mower.
  • the wave surface is elliptical.
  • the ultrasonic beam template of the first ultrasonic sensor itself is non-circular, and a non-circular wave surface is obtained by making a cut surface perpendicular to the axis of the ultrasonic sensor.
  • the ultrasonic beam template of the first ultrasonic sensor itself is circular, and one end of the first ultrasonic sensor transmitting the ultrasonic wave is provided with beam adjustment for adjusting the shape of the ultrasonic beam template of the ultrasonic wave emitted by the first ultrasonic sensor.
  • the ultrasonic beam template obtained after the beam adjuster is adjusted is non-circular, and a non-circular waveform surface is obtained by making a slice perpendicular to an axis of the ultrasonic beam template.
  • the ultrasonic sensor assembly includes an ultrasonic sensor for transmitting and receiving ultrasonic waves, a PCB board, and a protective case for fixing the PCB board and the ultrasonic sensor, the ultrasonic sensor having an outward sounding surface, the protective shell having an end surface The sound emitting surface is flush with the end surface or is recessed in the protective shell in the opposite end surface.
  • the intelligent lawn mower has a reflected wave threshold threshold, and the intelligent lawn mower recognizes that the echo intensity value of the obstacle is greater than the reflected wave threshold threshold.
  • the ultrasonic sensor assembly includes a fifth ultrasonic sensor, an output end of the fifth ultrasonic sensor is connected to an input end of the control module, and the fifth ultrasonic sensor is used to detect the smart lawn mower in real time. Whether there is a slope in the forward direction, the control module is configured to control whether the intelligent lawn mower is uphill according to the slope information detected by the fifth ultrasonic sensor.
  • the fifth ultrasonic sensor is mounted on the housing at an angle relative to the bottom surface of the housing, and the axis of the fifth ultrasonic sensor is perpendicular to the slope surface.
  • the preset distance is positively related to at least one of a moving speed of the intelligent lawn mower, an acceleration, a quality of the intelligent lawn mower, a setting position of the moving module shaft, and a mass distribution of the intelligent lawn mower.
  • the preset distance is less than or equal to 25 cm.
  • the preset distance is less than or equal to 15 cm.
  • the preset distance is less than or equal to 10 cm.
  • the preset distance is less than or equal to 40% of the length of the housing.
  • the preset distance is less than or equal to 24% of the length of the housing.
  • the preset distance is less than or equal to 15% of the length of the housing.
  • the preset distance is less than or equal to 60% of the width of the housing.
  • the preset distance is less than or equal to 35% of the width of the housing.
  • the preset distance is less than or equal to 25% of the width of the housing.
  • the mounting height of the first ultrasonic sensor and/or the second ultrasonic sensor relative to the ground ranges from 19 cm to 20 cm.
  • the distance from the axis of the sensor to the decision section, ⁇ is half of the field of view determined by the sensor performance, and ⁇ is the offset angle of the center line of the ultrasonic sensor relative to the bottom surface of the housing.
  • the first ultrasonic sensor has an acoustic beam axis, and the acoustic beam axis is horizontally arranged.
  • the first transceiver area has a first boundary line adjacent to a front end of the housing, the housing There is an adjacent wall adjacent to the first transceiving area, and an upper surface of the abutting wall is lower than the first boundary line.
  • the first ultrasonic sensor has a first axis
  • the abutting wall has a tangent
  • the tangent line has an angle ⁇ with the first axis
  • the preset obstacle avoidance measure is that the control module controls the smart lawn mower to stop moving, or retreat, or turn, or move and turn, or retreat and turn, the intelligent lawn mower and the obstacle The distance between them is greater than zero.
  • the housing is provided with a longitudinal axis, the housing having an E zone closest to the housing, an H zone farthest from the housing, and between the E zone and the H zone in front of the direction of travel of the smart mower
  • the turning zone has a F-zone and a G-zone respectively on both sides of the longitudinal axis with the third longitudinal axis as a boundary line, and the detection range of the ultrasonic sensor component covers at least the E zone, the F zone and the G zone.
  • the intelligent lawn mower in the E zone advances or bends to cause an impact collision with the obstacle.
  • the right turn of the intelligent lawn mower in the F zone does not cause damage collision with the obstacle.
  • the left turn of the intelligent lawn mower in the G zone does not cause damage collision with the obstacle.
  • the intelligent lawn mower in the H zone advances or turns without causing damage collision with the obstacle.
  • control module controls the intelligent lawn mower to perform the obstacle avoidance measure of the backward movement.
  • control module controls the intelligent lawn mower to perform the obstacle avoidance measure of the backward movement.
  • control module controls the smart mower to perform obstacle avoidance measures of right turn or retreat.
  • control module controls the smart lawn mower to perform obstacle avoidance measures of turning left or backward.
  • control module controls the intelligent lawn mower to perform an obstacle avoidance measure of advancing or retreating or turning.
  • control module controls the intelligent lawn mower to perform obstacle avoidance measures of advancing or retreating or turning.
  • the intelligent lawn mower further includes an anti-crosstalk structure for preventing ultrasonic waves transmitted by one of the first ultrasonic sensor and the second ultrasonic sensor from being reflected by the obstacle by the other of the two Receive directly.
  • the anti-crosstalk structure is disposed between the first ultrasonic sensor and the second ultrasonic sensor.
  • the anti-crosstalk structure comprises a stop wall disposed at an angle to the axis of the ultrasonic sensor.
  • the anti-crosstalk structure extends toward the front side of the housing without contacting the ultrasonic sensor axis.
  • the anti-crosstalk structure extends toward the front side of the housing no more than the intersection of the projections of the first ultrasonic sensor axis and the second ultrasonic sensor axis.
  • the anti-crosstalk structure is located on a front side of the first ultrasonic sensor acoustic wave emission point and the second ultrasonic sensor acoustic wave emission point and extends toward the front side of the casing.
  • the stop wall comprises a first gear wall and a second gear wall, the first gear wall has a top end, the second gear wall has an upper connecting end, and the upper connecting end is low in a vertical direction At the top.
  • the second wall extends from the upper connecting end toward the front side of the housing, and the height in the vertical direction gradually decreases.
  • the anti-crosstalk structure further includes a mounting hole corresponding to the sound emitting surface of the ultrasonic sensor, a top surface, and a front end surface substantially perpendicularly connected to the top surface, the mounting hole having a hole center, the second partition wall A lower connecting end remote from the first gear wall and lower than the upper connecting end in the vertical direction and a connecting face connecting the upper connecting end and the lower connecting end.
  • the distance L between the center of the hole and the front end face is greater than 5 mm.
  • the distance L2 between the upper connecting end and the front end surface is less than 10 mm.
  • the distance L1 between the lower connecting end and the front end surface is less than 20 mm.
  • the distance ⁇ between the upper connecting end and the center of the hole in the vertical direction is less than 16 mm.
  • the angle ⁇ between the connecting surface and the top surface ranges from 35° to 55°.
  • the stop wall is disposed obliquely with respect to the top surface, and an angle ⁇ between the stop wall and the top surface is not equal to 90°.
  • the control module comprises an amplifying circuit module, an analog-to-digital conversion module, a filtering module, a data buffering module, a microcontroller, a data processing module, a main controller and a pulse circuit module
  • the microcontroller transmits the pulse circuit module Instructing, the pulse circuit module transmits an instruction to transmit an ultrasonic wave to the ultrasonic sensor, the ultrasonic sensor receives an instruction to transmit an ultrasonic wave, and the ultrasonic sensor receives an obstacle echo, and performs amplification processing through the amplification circuit module, and passes through the analog-to-digital conversion module.
  • Performing analog-to-digital conversion processing, filtering processing by the filtering module, and the processed data enters a data buffering module, and the sensor microcontroller transmits data in the data buffering module to the data processing module for data analysis, and the analysis result is fed back Execute to the main controller.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • the portion other than the overlap in the area is the first detection area, and the portion outside the overlap in the second transceiving area is the second detection area, and the control module controls the movement module to move along the preset path to maintain the space between the housing and the obstacle The spacing is always greater than zero.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • a portion other than the overlap in the area is the first detection area, and a portion other than the overlap in the second transceiving area is the second detection area, and the control module controls the movement module to move along a path different
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • the portion other than the overlap in the area is the first detection area
  • the portion other than the overlap in the second transceiving area is the second detection area
  • the control module controls the movement module to move in a direction away from
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • the portion other than the overlap in the region is the first detection region, and the portion outside the overlap in the second transceiving region is the second detection region, and the distance between the obstacle on the side of the control module that recognizes the direction of travel of the housing and the housing is less than The set distance controls the movement module to move along the other side of the direction of travel.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • An ultrasonic component for identifying an obstacle in a forward direction from the mobile device is disposed on the housing, the ultrasonic component includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, the first ultrasonic sensor and the The second ultrasonic sensor has an overlapping detection area that covers a partial ranging dead zone of the ultrasonic sensor that transmits the ultrasonic wave, and the partial measuring dead zone is in the transmitting and receiving area of another ultrasonic sensor that receives the ultrasonic wave.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives and transmits ultrasonic waves in a second transceiving area
  • the first ultrasonic sensor and the second ultrasonic sensor Arranging on the housing at an angle to each other such that the first transceiving area and the second transceiving area partially overlap, thereby forming three detection areas, wherein the first transceiving area and the second transceiving area overlap each other
  • the portion is a third detection area, and the portion other than the overlap in the first transmission and reception area is the first detection area, and the portion other than the overlap in the second transmission and reception area is the second detection area.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the first axis and the second axis form an angle ranging from 60° to 110°.
  • the first axis and the second axis form an angle ranging from 70° to 90°.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the housing has a housing axis, the first axis and/or the second axis and the housing axis The angle ranges from 10° to 80°.
  • the angle between the first axis and/or the second axis and the axis of the housing ranges from 25° to 55°.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives and transmits ultrasonic waves in a second transceiving area
  • the first ultrasonic sensor and the second ultrasonic sensor Arranging on the housing in parallel with each other from the width direction of the mobile device, and partially overlapping the first transceiver area and the second transceiver area, thereby forming three detection areas, wherein the first transceiver area and the first The portion where the two transceiving regions overlap each other is the third detecting region, and the portion other than the overlap in the first transceiving region is the first detecting region, and the portion other than the overlap in the second transceiving region is the second detecting region.
  • the third detection area covers at least a part of the first ranging blind zone in the first transceiver area and a part of the second ranging blind zone in the second transceiver area at the same time.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor to alternately emit ultrasonic waves in time.
  • the control module controls the first ultrasonic sensor to emit ultrasonic waves in a first time period, and the first ultrasonic sensor and the second ultrasonic sensor receive an obstacle echo in a first time period,
  • the control module controls the second ultrasonic sensor to emit ultrasonic waves during a second time period after the first time period, the first ultrasonic sensor and the second ultrasonic sensor receiving an obstacle echo in a second time period.
  • control module determines the orientation of the obstacle according to a combination of the first ultrasonic sensor and the second ultrasonic sensor in the ultrasonic sensor assembly for transmitting and receiving an obstacle echo.
  • the control module determines that an obstacle is located in the first detection area; Only the second ultrasonic sensor transmits ultrasonic waves in the sensor assembly, and when only the second ultrasonic sensor receives the obstacle echo, the control module determines that the obstacle is located in the second detection area; when the first ultrasonic sensor is in the ultrasonic sensor assembly When the transmitting ultrasonic wave, the first ultrasonic sensor and the second ultrasonic sensor receive the obstacle echo, the control module determines that the obstacle is located in the third detecting area; and when the second ultrasonic sensor transmits the ultrasonic wave in the ultrasonic sensor component, the first When the ultrasonic sensor and the second ultrasonic sensor receive the obstacle echo, the control module determines that the obstacle is located in the third detection area; when the ultrasonic sensor component transmits the ultrasonic wave, the second ultrasonic sensor receives the obstacle In the wave time, the control
  • control module calculates the distance of the obstacle from the mobile device according to the time difference between the transmitted ultrasonic wave of the ultrasonic sensor component and the echo of the received obstacle.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis, the first axis being coplanar with the second axis in a vertical direction.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives ultrasonic waves in a second receiving area
  • the first ultrasonic sensor and the second ultrasonic sensor form a mutual An angulation is disposed on the housing such that the first transceiver area and the second receiving area partially overlap, and a portion where the first transceiver area and the second receiving area overlap each other is a third detection area, and the first transceiver area
  • the portion other than the middle overlap is a first detection area
  • the third detection area covers at least a part of the first ranging dead area in the first transceiving area.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 10° to 80°.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 25° to 55°.
  • the ultrasonic sensors in which the plurality of ultrasonic ultrasonic wave transmission ranges overlap have a mode in which the ultrasonic waves are alternately transmitted, and one of the ultrasonic wave transmission ranges overlaps, and one of the ultrasonic sensors transmits the ultrasonic waves.
  • the remaining ultrasonic sensors receive the ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that have no overlapping ultrasonic transmission range of the transmitted ultrasonic waves adopt a mode in which ultrasonic waves are simultaneously transmitted, and one of the ultrasonic wave sensors and the sound wave transmission are overlapped in the sound wave transmission range.
  • the remaining ultrasonic sensors receive ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that transmit a plurality of ultrasonic ultrasonic wave transmission ranges have a mode of transmitting ultrasonic waves in turn, and one of the ultrasonic wave transmitting ranges has overlapping ultrasonic waves when transmitting ultrasonic waves.
  • the remaining ultrasonic sensors receive ultrasonic waves, and the ultrasonic sensors that transmit the ultrasonic wave transmission range do not overlap, and the remaining ultrasonic sensors receive the ultrasonic waves.
  • the first ultrasonic sensor is disposed at a distance from the front end D of the mobile device.
  • the D distance is located in the first half of the length direction of the mobile device.
  • the ultrasonic beam template identifying the obstacle in the forward direction of the mobile device is non-circular, and a cut surface is formed perpendicular to an axis of the ultrasonic beam template to obtain a waveform surface, the waveform surface having a long axis direction and a short axis direction
  • the long axis direction is mounted substantially parallel to a bottom surface of the mobile device, the short axis direction being mounted substantially perpendicular to a bottom surface of the mobile device.
  • the wave surface is elliptical.
  • the ultrasonic beam template of the first ultrasonic sensor itself is non-circular, and a non-circular wave surface is obtained by making a cut surface perpendicular to the axis of the ultrasonic sensor.
  • the ultrasonic beam template of the first ultrasonic sensor itself is circular, and one end of the first ultrasonic sensor transmitting the ultrasonic wave is provided with beam adjustment for adjusting the shape of the ultrasonic beam template of the ultrasonic wave emitted by the first ultrasonic sensor.
  • the ultrasonic beam template obtained after the beam adjuster is adjusted is non-circular, and a non-circular waveform surface is obtained by making a slice perpendicular to an axis of the ultrasonic beam template.
  • the ultrasonic sensor assembly includes ultrasonic sensing for transmitting and receiving ultrasonic waves And a protective cover for fixing the PCB board and the ultrasonic sensor, the ultrasonic sensor having an outward sounding surface, the protective shell having an end surface, the sound emitting surface being flush with the end surface or recessed in the opposite end surface Inside the shell.
  • the self-mobile device has a reflected wave threshold threshold, and the self-mobile device recognizes that the echo intensity value of the obstacle is greater than the reflected wave threshold threshold.
  • the control module controls the preset obstacle avoidance measure from the mobile device.
  • the preset distance is less than or equal to 25 cm.
  • the preset distance is less than or equal to 15 cm.
  • the preset distance is less than or equal to 10 cm.
  • the preset distance is less than or equal to 40% of the length of the housing.
  • the preset distance is less than or equal to 24% of the length of the housing.
  • the preset distance is less than or equal to 15% of the length of the housing.
  • the preset distance is less than or equal to 60% of the width of the housing.
  • the preset distance is less than or equal to 35% of the width of the housing.
  • the preset distance is less than or equal to 25% of the width of the housing.
  • the mounting height of the first ultrasonic sensor and/or the second ultrasonic sensor relative to the ground ranges from 19 cm to 20 cm.
  • the distance from the axis of the sensor to the decision section, ⁇ is half of the field of view determined by the sensor performance, and ⁇ is the offset angle of the center line of the ultrasonic sensor relative to the bottom surface of the housing.
  • the first ultrasonic sensor has an acoustic beam axis, and the acoustic beam axis is horizontally arranged.
  • the first transceiving area has a first boundary line adjacent to a front end of the housing, and the housing has an adjacent wall adjacent to the first transceiving area, and an upper surface of the abutting wall is lower than the first borderline.
  • the first ultrasonic sensor has a first axis
  • the abutting wall has a tangent
  • the tangent line has an angle ⁇ with the first axis
  • the intelligent lawn mower further includes an anti-crosstalk structure for preventing ultrasonic waves transmitted by one of the first ultrasonic sensor and the second ultrasonic sensor from being reflected by the obstacle by the other of the two Receive directly.
  • the anti-crosstalk structure is disposed between the first ultrasonic sensor and the second ultrasonic sensor.
  • the anti-crosstalk structure comprises a stop wall disposed at an angle to the axis of the ultrasonic sensor.
  • the anti-crosstalk structure extends toward the front side of the housing without contacting the ultrasonic sensor axis.
  • the anti-crosstalk structure extends toward the front side of the housing no more than the intersection of the projections of the first ultrasonic sensor axis and the second ultrasonic sensor axis.
  • the anti-crosstalk structure is located on a front side of the first ultrasonic sensor acoustic wave emission point and the second ultrasonic sensor acoustic wave emission point and extends toward the front side of the casing.
  • the stop wall comprises a first gear wall and a second gear wall, the first gear wall has a top end, the second gear wall has an upper connecting end, and the upper connecting end is low in a vertical direction At the top.
  • the second wall extends from the upper connecting end toward the front side of the housing, and the height in the vertical direction gradually decreases.
  • the anti-crosstalk structure further includes a mounting hole corresponding to the sound emitting surface of the ultrasonic sensor, a top surface, and a front end surface substantially perpendicularly connected to the top surface, the mounting hole having a hole center, the second partition wall A lower connecting end remote from the first gear wall and lower than the upper connecting end in the vertical direction and a connecting face connecting the upper connecting end and the lower connecting end.
  • the distance L between the center of the hole and the front end face is greater than 5 mm.
  • the distance L2 between the upper connecting end and the front end surface is less than 10 mm.
  • the distance L1 between the lower connecting end and the front end surface is less than 20 mm.
  • the distance ⁇ between the upper connecting end and the center of the hole in the vertical direction is less than 16 mm.
  • the angle ⁇ between the connecting surface and the top surface ranges from 35° to 55°.
  • the stop wall is disposed obliquely with respect to the top surface, and an angle ⁇ between the stop wall and the top surface is not equal to 90°.
  • the control module comprises an amplifying circuit module, an analog-to-digital conversion module, a filtering module, a data buffering module, a microcontroller, a data processing module, a main controller and a pulse circuit module
  • the microcontroller transmits the pulse circuit module Instructing, the pulse circuit module transmits an instruction to transmit an ultrasonic wave to the ultrasonic sensor, the ultrasonic sensor receives an instruction to transmit an ultrasonic wave, and the ultrasonic sensor receives an obstacle echo, and performs amplification processing through the amplification circuit module, and passes through the analog-to-digital conversion module.
  • Performing analog-to-digital conversion processing, filtering processing by the filtering module, and the processed data enters a data buffering module, and the sensor microcontroller transmits data in the data buffering module to the data processing module for data analysis, and the analysis result is fed back Execute to the main controller.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • An ultrasonic component for identifying an obstacle in a forward direction from the mobile device is disposed on the housing, the ultrasonic component includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is in the first Receiving and transmitting ultrasonic waves in a transmitting and receiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in the second transmitting and receiving area, the first transmitting and receiving area and the second transmitting and receiving area partially overlapping to form an overlapping detecting area, the overlapping detecting The area at least simultaneously covers a portion of the first ranging dead zone in the first transceiving area and a portion of the second ranging dead zone in the second transceiving area
  • the first ultrasonic sensor and the second ultrasonic sensor are disposed at an angle to each other on the housing such that the first transceiving area and the second transceiving area partially overlap, thereby forming three detections a region, wherein a portion where the first transmitting and receiving region and the second transmitting and receiving region overlap each other is a third detecting region, and a portion other than the overlap in the first transmitting and receiving region is a first detecting region, and a portion other than the overlapping portion in the second transmitting and receiving region is The second detection area.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the first axis and the second axis form an angle ranging from 60° to 110°.
  • the first axis and the second axis form an angle ranging from 70° to 90°.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the housing has a housing axis, the first axis and/or the second axis and the housing axis The angle ranges from 10° to 80°.
  • the angle between the first axis and/or the second axis and the axis of the housing ranges from 25° to 55°.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives and transmits ultrasonic waves in a second transceiving area
  • the first ultrasonic sensor and the second ultrasonic sensor Arranging on the housing in parallel with each other from the width direction of the mobile device, and partially overlapping the first transceiver area and the second transceiver area, thereby forming three detection areas, wherein the first transceiver area and the first The portion where the two transceiving regions overlap each other is the third detecting region, and the portion other than the overlap in the first transceiving region is the first detecting region, and the portion other than the overlap in the second transceiving region is the second detecting region.
  • the third detection area covers at least a part of the first ranging blind zone in the first transceiver area and a part of the second ranging blind zone in the second transceiver area at the same time.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor to alternately emit ultrasonic waves in time.
  • the control module controls the first ultrasonic sensor to emit ultrasonic waves in a first time period, and the first ultrasonic sensor and the second ultrasonic sensor receive an obstacle echo in a first time period,
  • the control module controls the second ultrasonic sensor to emit ultrasonic waves during a second time period after the first time period, the first ultrasonic sensor and the second ultrasonic sensor receiving an obstacle echo in a second time period.
  • control module determines the orientation of the obstacle according to a combination of the first ultrasonic sensor and the second ultrasonic sensor in the ultrasonic sensor assembly for transmitting and receiving an obstacle echo.
  • the control module determines that an obstacle is located in the first detection area; Only the second ultrasonic sensor transmits ultrasonic waves in the sensor assembly, and when only the second ultrasonic sensor receives the obstacle echo, the control module determines that the obstacle is located in the second detection area; when the first ultrasonic sensor is in the ultrasonic sensor assembly When the transmitting ultrasonic wave, the first ultrasonic sensor and the second ultrasonic sensor receive the obstacle echo, the control module determines that the obstacle is located in the third detecting area; and when the second ultrasonic sensor transmits the ultrasonic wave in the ultrasonic sensor component, the first When the ultrasonic sensor and the second ultrasonic sensor receive the obstacle echo, the control module determines that the obstacle is located in the third detection area; when the ultrasonic sensor component transmits the ultrasonic wave, the second ultrasonic sensor receives the obstacle In the wave time, the control
  • control module calculates the distance of the obstacle from the mobile device according to the time difference between the transmitted ultrasonic wave of the ultrasonic sensor component and the echo of the received obstacle.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis, the first axis being coplanar with the second axis in a vertical direction.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives ultrasonic waves in a second receiving area
  • the first ultrasonic sensor and the second ultrasonic sensor form a mutual Arranged angularly on the housing such that the first transceiving area and the second receiving area partially overlap, and the first transceiving area and the second receiving area overlap each other
  • a portion other than the overlap in the first transceiving area is a first detection area
  • the third detection area covers at least a part of the first ranging blind area in the first transceiving area.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 10° to 80°.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 25° to 55°.
  • the ultrasonic sensors in which the plurality of ultrasonic ultrasonic wave transmission ranges overlap have a mode in which the ultrasonic waves are alternately transmitted, and one of the ultrasonic wave transmission ranges overlaps, and one of the ultrasonic sensors transmits the ultrasonic waves.
  • the remaining ultrasonic sensors receive the ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that have no overlapping ultrasonic transmission range of the transmitted ultrasonic waves adopt a mode in which ultrasonic waves are simultaneously transmitted, and one of the ultrasonic wave sensors and the sound wave transmission are overlapped in the sound wave transmission range.
  • the remaining ultrasonic sensors receive ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that transmit a plurality of ultrasonic ultrasonic wave transmission ranges have a mode of transmitting ultrasonic waves in turn, and one of the ultrasonic wave transmitting ranges has overlapping ultrasonic waves when transmitting ultrasonic waves.
  • the remaining ultrasonic sensors receive ultrasonic waves, and the ultrasonic sensors that transmit the ultrasonic wave transmission range do not overlap, and the remaining ultrasonic sensors receive the ultrasonic waves.
  • the first ultrasonic sensor is disposed at a distance from the front end D of the mobile device.
  • the D distance is located in the first half of the length direction of the mobile device.
  • the ultrasonic beam template identifying the obstacle in the forward direction of the mobile device is non-circular, and a cut surface is formed perpendicular to an axis of the ultrasonic beam template to obtain a waveform surface, the waveform surface having a long axis direction and a short axis direction
  • the long axis direction is mounted substantially parallel to a bottom surface of the mobile device, the short axis direction being mounted substantially perpendicular to a bottom surface of the mobile device.
  • the wave surface is elliptical.
  • the ultrasonic beam template of the first ultrasonic sensor itself is non-circular, and a non-circular wave surface is obtained by making a cut surface perpendicular to the axis of the ultrasonic sensor.
  • the ultrasonic beam template of the first ultrasonic sensor itself is circular, and one end of the first ultrasonic sensor transmitting the ultrasonic wave is provided with beam adjustment for adjusting the shape of the ultrasonic beam template of the ultrasonic wave emitted by the first ultrasonic sensor.
  • the ultrasonic beam template obtained after the beam adjuster is adjusted is non-circular, and a slice is formed perpendicular to the axis of the ultrasonic beam template. A non-circular wave surface.
  • the ultrasonic sensor assembly includes an ultrasonic sensor for transmitting and receiving ultrasonic waves, a PCB board, and a protective case for fixing the PCB board and the ultrasonic sensor, the ultrasonic sensor having an outward sounding surface, the protective shell having an end surface The sound emitting surface is flush with the end surface or is recessed in the protective shell in the opposite end surface.
  • the self-mobile device has a reflected wave threshold threshold, and the self-mobile device recognizes that the echo intensity value of the obstacle is greater than the reflected wave threshold threshold.
  • the control module controls the preset obstacle avoidance measure from the mobile device.
  • the preset distance is less than or equal to 25 cm.
  • the preset distance is less than or equal to 15 cm.
  • the preset distance is less than or equal to 10 cm.
  • the preset distance is less than or equal to 40% of the length of the housing.
  • the preset distance is less than or equal to 24% of the length of the housing.
  • the preset distance is less than or equal to 15% of the length of the housing.
  • the preset distance is less than or equal to 60% of the width of the housing.
  • the preset distance is less than or equal to 35% of the width of the housing.
  • the preset distance is less than or equal to 25% of the width of the housing.
  • the mounting height of the first ultrasonic sensor and/or the second ultrasonic sensor relative to the ground ranges from 19 cm to 20 cm.
  • the distance from the axis of the sensor to the decision section, ⁇ is half of the field of view determined by the sensor performance, and ⁇ is the offset angle of the center line of the ultrasonic sensor relative to the bottom surface of the housing.
  • the first ultrasonic sensor has an acoustic beam axis, and the acoustic beam axis is horizontally arranged.
  • the first transceiving area has a first boundary line adjacent to a front end of the housing, and the housing has an adjacent wall adjacent to the first transceiving area, and an upper surface of the abutting wall is lower than the first borderline.
  • the first ultrasonic sensor has a first axis
  • the abutting wall has a tangent
  • the tangent line has an angle ⁇ with the first axis
  • the intelligent lawn mower further includes an anti-crosstalk structure for preventing ultrasonic waves transmitted by one of the first ultrasonic sensor and the second ultrasonic sensor from being directly received by the other of the two without obstacle reflection.
  • the anti-crosstalk structure is disposed between the first ultrasonic sensor and the second ultrasonic sensor.
  • the anti-crosstalk structure comprises a stop wall disposed at an angle to the axis of the ultrasonic sensor.
  • the anti-crosstalk structure extends toward the front side of the housing without contacting the ultrasonic sensor axis.
  • the anti-crosstalk structure extends toward the front side of the housing no more than the intersection of the projections of the first ultrasonic sensor axis and the second ultrasonic sensor axis.
  • the anti-crosstalk structure is located on a front side of the first ultrasonic sensor acoustic wave emission point and the second ultrasonic sensor acoustic wave emission point and extends toward the front side of the casing.
  • the stop wall comprises a first gear wall and a second gear wall, the first gear wall has a top end, the second gear wall has an upper connecting end, and the upper connecting end is low in a vertical direction At the top.
  • the second wall extends from the upper connecting end toward the front side of the housing, and the height in the vertical direction gradually decreases.
  • the anti-crosstalk structure further includes a mounting hole corresponding to the sound emitting surface of the ultrasonic sensor, a top surface, and a front end surface substantially perpendicularly connected to the top surface, the mounting hole having a hole center, the second partition wall A lower connecting end remote from the first gear wall and lower than the upper connecting end in the vertical direction and a connecting face connecting the upper connecting end and the lower connecting end.
  • the distance L between the center of the hole and the front end face is greater than 5 mm.
  • the distance L2 between the upper connecting end and the front end surface is less than 10 mm.
  • the distance L1 between the lower connecting end and the front end surface is less than 20 mm.
  • the distance ⁇ between the upper connecting end and the center of the hole in the vertical direction is less than 16 mm.
  • the angle ⁇ between the connecting surface and the top surface ranges from 35° to 55°.
  • the stop wall is disposed obliquely with respect to the top surface, and an angle ⁇ between the stop wall and the top surface is not equal to 90°.
  • the control module comprises an amplifying circuit module, an analog-to-digital conversion module, a filtering module, a data buffering module, a microcontroller, a data processing module, a main controller and a pulse circuit module
  • the microcontroller transmits the pulse circuit module Instructing, the pulse circuit module transmits an instruction to transmit an ultrasonic wave to the ultrasonic sensor, the ultrasonic sensor receives an instruction to transmit an ultrasonic wave, and the ultrasonic sensor receives an obstacle echo, and performs amplification processing through the amplification circuit module, and passes through the analog-to-digital conversion module.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • An ultrasonic component for identifying an obstacle in a forward direction from the mobile device is disposed on the housing, the ultrasonic component includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, the first ultrasonic sensor and the The second ultrasonic sensor has an overlapping detection area covering a partial ranging dead zone of the ultrasonic sensor that transmits the ultrasonic wave, and the partial measuring dead zone is in the transmitting and receiving area of another ultrasonic sensor that receives the ultrasonic wave, when the ultrasonic sensor
  • the control module controls the preset obstacle avoidance measure from the mobile device when the distance detected by the component is less than the preset distance and the received obstacle echo intensity is greater than the reflected wave threshold threshold.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives and transmits ultrasonic waves in a second transceiving area
  • the first ultrasonic sensor and the second ultrasonic sensor Arranging on the housing at an angle to each other such that the first transceiving area and the second transceiving area partially overlap, thereby forming three detection areas, wherein the first transceiving area and the second transceiving area overlap each other
  • the portion is a third detection area, and the portion other than the overlap in the first transmission and reception area is the first detection area, and the portion other than the overlap in the second transmission and reception area is the second detection area.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the first axis and the second axis form an angle ranging from 60° to 110°.
  • the first axis and the second axis form an angle ranging from 70° to 90°.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis
  • the housing has a housing axis, the first axis and/or the second axis and the housing axis The angle ranges from 10° to 80°.
  • the angle between the first axis and/or the second axis and the axis of the housing ranges from 25° to 55°.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives and transmits ultrasonic waves in a second transceiving area
  • the first ultrasonic sensor and the second ultrasonic sensor Arranged in parallel with each other in parallel with the width direction of the mobile device
  • the first detection area and the second transmission and reception area are partially overlapped to form three detection areas, wherein a portion where the first transmission and reception area and the second transmission and reception area overlap each other is a third detection area, A portion other than the overlap in the transmitting and receiving area is the first detecting area, and a portion other than the overlapping in the second transmitting and receiving area is the second detecting area.
  • the third detection area covers at least a part of the first ranging blind zone in the first transceiver area and a part of the second ranging blind zone in the second transceiver area at the same time.
  • control module controls the first ultrasonic sensor and the second ultrasonic sensor to alternately emit ultrasonic waves in time.
  • the control module controls the first ultrasonic sensor to emit ultrasonic waves in a first time period, and the first ultrasonic sensor and the second ultrasonic sensor receive an obstacle echo in a first time period,
  • the control module controls the second ultrasonic sensor to emit ultrasonic waves during a second time period after the first time period, the first ultrasonic sensor and the second ultrasonic sensor receiving an obstacle echo in a second time period.
  • control module calculates the distance of the obstacle from the mobile device according to the time difference between the transmitted ultrasonic wave of the ultrasonic sensor component and the echo of the received obstacle.
  • the first ultrasonic sensor has a first axis
  • the second ultrasonic sensor has a second axis, the first axis being coplanar with the second axis in a vertical direction.
  • the first ultrasonic sensor receives and transmits ultrasonic waves in a first transceiving area
  • the second ultrasonic sensor receives ultrasonic waves in a second receiving area
  • the first ultrasonic sensor and the second ultrasonic sensor form a mutual An angulation is disposed on the housing such that the first transceiver area and the second receiving area partially overlap, and a portion where the first transceiver area and the second receiving area overlap each other is a third detection area, and the first transceiver area
  • the portion other than the middle overlap is a first detection area
  • the third detection area covers at least a part of the first ranging dead area in the first transceiving area.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 10° to 80°.
  • the first ultrasonic sensor and the second ultrasonic sensor form an angle ranging from 25° to 55°.
  • the ultrasonic sensors in which the plurality of ultrasonic ultrasonic wave transmission ranges overlap have a mode in which the ultrasonic waves are alternately transmitted, and one of the ultrasonic wave transmission ranges overlaps, and one of the ultrasonic sensors transmits the ultrasonic waves.
  • the remaining ultrasonic sensors receive the ultrasonic waves.
  • the ultrasonic sensors working in cooperation are three or more, a plurality of transmitted ultrasounds
  • the ultrasonic sensor with no overlapping sound wave transmission mode adopts a mode in which ultrasonic waves are simultaneously transmitted, and one of the ultrasonic wave sensors and the ultrasonic wave sensor whose ultrasonic wave transmission range does not overlap simultaneously emits ultrasonic waves, and the remaining ultrasonic sensors receive ultrasonic waves.
  • the ultrasonic sensors that work in cooperation are three or more
  • the ultrasonic sensors that transmit a plurality of ultrasonic ultrasonic wave transmission ranges have a mode of transmitting ultrasonic waves in turn, and one of the ultrasonic wave transmitting ranges has overlapping ultrasonic waves when transmitting ultrasonic waves.
  • the remaining ultrasonic sensors receive ultrasonic waves, and the ultrasonic sensors that transmit the ultrasonic wave transmission range do not overlap, and the remaining ultrasonic sensors receive the ultrasonic waves.
  • the first ultrasonic sensor is disposed at a distance from the front end D of the mobile device.
  • the D distance is located in the first half of the length direction of the mobile device.
  • the ultrasonic beam template identifying the obstacle in the forward direction of the mobile device is non-circular, and a cut surface is formed perpendicular to an axis of the ultrasonic beam template to obtain a waveform surface, the waveform surface having a long axis direction and a short axis direction
  • the long axis direction is mounted substantially parallel to a bottom surface of the mobile device, the short axis direction being mounted substantially perpendicular to a bottom surface of the mobile device.
  • the wave surface is elliptical.
  • the ultrasonic beam template of the first ultrasonic sensor itself is non-circular, and a non-circular wave surface is obtained by making a cut surface perpendicular to the axis of the ultrasonic sensor.
  • the ultrasonic beam template of the first ultrasonic sensor itself is circular, and one end of the first ultrasonic sensor transmitting the ultrasonic wave is provided with beam adjustment for adjusting the shape of the ultrasonic beam template of the ultrasonic wave emitted by the first ultrasonic sensor.
  • the ultrasonic beam template obtained after the beam adjuster is adjusted is non-circular, and a non-circular waveform surface is obtained by making a slice perpendicular to an axis of the ultrasonic beam template.
  • the ultrasonic sensor assembly includes an ultrasonic sensor for transmitting and receiving ultrasonic waves, a PCB board, and a protective case for fixing the PCB board and the ultrasonic sensor, the ultrasonic sensor having an outward sounding surface, the protective shell having an end surface The sound emitting surface is flush with the end surface or is recessed in the protective shell in the opposite end surface.
  • the preset distance is less than or equal to 25 cm.
  • the preset distance is less than or equal to 15 cm.
  • the preset distance is less than or equal to 10 cm.
  • the preset distance is less than or equal to 40% of the length of the housing.
  • the preset distance is less than or equal to 24% of the length of the housing.
  • the preset distance is less than or equal to 15% of the length of the housing.
  • the preset distance is less than or equal to 60% of the width of the housing.
  • the preset distance is less than or equal to 35% of the width of the housing.
  • the preset distance is less than or equal to 25% of the width of the housing.
  • the mounting height of the first ultrasonic sensor and/or the second ultrasonic sensor relative to the ground ranges from 19 cm to 20 cm.
  • the distance from the axis of the sensor to the decision section, ⁇ is half of the field of view determined by the sensor performance, and ⁇ is the offset angle of the center line of the ultrasonic sensor relative to the bottom surface of the housing.
  • the first ultrasonic sensor has an acoustic beam axis, and the acoustic beam axis is horizontally arranged.
  • the first transceiving area has a first boundary line adjacent to a front end of the housing, and the housing has an adjacent wall adjacent to the first transceiving area, and an upper surface of the abutting wall is lower than the first borderline.
  • the first ultrasonic sensor has a first axis
  • the abutting wall has a tangent
  • the tangent line has an angle ⁇ with the first axis
  • the intelligent lawn mower further includes an anti-crosstalk structure for preventing ultrasonic waves transmitted by one of the first ultrasonic sensor and the second ultrasonic sensor from being directly received by the other of the two without obstacle reflection.
  • the anti-crosstalk structure is disposed between the first ultrasonic sensor and the second ultrasonic sensor.
  • the anti-crosstalk structure comprises a stop wall disposed at an angle to the axis of the ultrasonic sensor.
  • the anti-crosstalk structure extends toward the front side of the housing without contacting the ultrasonic sensor axis.
  • the anti-crosstalk structure extends toward the front side of the housing no more than the intersection of the projections of the first ultrasonic sensor axis and the second ultrasonic sensor axis.
  • the anti-crosstalk structure is located on a front side of the first ultrasonic sensor acoustic wave emission point and the second ultrasonic sensor acoustic wave emission point and extends toward the front side of the casing.
  • the stop wall comprises a first gear wall and a second gear wall, the first gear wall has a top end, the second gear wall has an upper connecting end, and the upper connecting end is low in a vertical direction At the top.
  • the second wall extends from the upper connecting end toward the front side of the housing, and the height in the vertical direction gradually decreases.
  • the anti-crosstalk structure further includes a mounting hole corresponding to the sound emitting surface of the ultrasonic sensor, a top surface and a front end surface substantially perpendicularly connected to the top surface, the mounting hole having a hole center, the second barrier wall having a lower connection end remote from the first barrier wall and lower than the upper connection end in the vertical direction and the connection The connection surface of the connection end and the lower connection end.
  • the distance L between the center of the hole and the front end face is greater than 5 mm.
  • the distance L2 between the upper connecting end and the front end surface is less than 10 mm.
  • the distance L1 between the lower connecting end and the front end surface is less than 20 mm.
  • the distance ⁇ between the upper connecting end and the center of the hole in the vertical direction is less than 16 mm.
  • the angle ⁇ between the connecting surface and the top surface ranges from 35° to 55°.
  • the stop wall is disposed obliquely with respect to the top surface, and an angle ⁇ between the stop wall and the top surface is not equal to 90°.
  • the control module comprises an amplifying circuit module, an analog-to-digital conversion module, a filtering module, a data buffering module, a microcontroller, a data processing module, a main controller and a pulse circuit module
  • the microcontroller transmits the pulse circuit module Instructing, the pulse circuit module transmits an instruction to transmit an ultrasonic wave to the ultrasonic sensor, the ultrasonic sensor receives an instruction to transmit an ultrasonic wave, and the ultrasonic sensor receives an obstacle echo, and performs amplification processing through the amplification circuit module, and passes through the analog-to-digital conversion module.
  • Performing analog-to-digital conversion processing, filtering processing by the filtering module, and the processed data enters a data buffering module, and the sensor microcontroller transmits data in the data buffering module to the data processing module for data analysis, and the analysis result is fed back Execute to the main controller.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module configured to control the self-mobile device
  • An ultrasonic component for identifying an obstacle in a forward direction from the mobile device is disposed on the housing, the ultrasonic component includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is in the first Receiving and transmitting ultrasonic waves in a transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other on the housing
  • the self-mobile device further includes an anti-crosstalk structure for preventing ultrasonic waves transmitted by one of the first ultrasonic sensor and the second ultrasonic sensor from being directly received by the other of the two without obstacle reflection.
  • the anti-crosstalk structure is disposed between the first ultrasonic sensor and the second ultrasonic sensor.
  • the anti-crosstalk structure comprises a stop wall disposed at an angle to the axis of the ultrasonic sensor.
  • the anti-crosstalk structure extends toward the front side of the housing without contacting the ultrasonic sensor axis.
  • the anti-crosstalk structure extends toward the front side of the housing no more than the intersection of the projections of the first ultrasonic sensor axis and the second ultrasonic sensor axis.
  • the anti-crosstalk structure is located on a front side of the first ultrasonic sensor acoustic wave emission point and the second ultrasonic sensor acoustic wave emission point and extends toward the front side of the casing.
  • the stop wall comprises a first gear wall and a second gear wall, the first gear wall has a top end, the second gear wall has an upper connecting end, and the upper connecting end is low in a vertical direction At the top.
  • the second wall extends from the upper connecting end toward the front side of the housing, and the height in the vertical direction gradually decreases.
  • the anti-crosstalk structure further includes a mounting hole corresponding to the sound emitting surface of the ultrasonic sensor, a top surface, and a front end surface substantially perpendicularly connected to the top surface, the mounting hole having a hole center, the second partition wall A lower connecting end remote from the first gear wall and lower than the upper connecting end in the vertical direction and a connecting face connecting the upper connecting end and the lower connecting end.
  • the distance L between the center of the hole and the front end face is greater than 5 mm.
  • the distance L2 between the upper connecting end and the front end surface is less than 10 mm.
  • the distance L1 between the lower connecting end and the front end surface is less than 20 mm.
  • the distance ⁇ between the upper connecting end and the center of the hole in the vertical direction is less than 16 mm.
  • the angle ⁇ between the connecting surface and the top surface ranges from 35° to 55°.
  • the stop wall is disposed obliquely with respect to the top surface, and an angle ⁇ between the stop wall and the top surface is not equal to 90°.
  • a method for identifying an obstacle from a mobile device comprising an ultrasonic sensor, the method for identifying an obstacle from the mobile device comprising the steps of:
  • the ultrasonic sensor transmits the ultrasonic wave and receives the obstacle echo
  • the self-moving device includes a first ultrasonic sensor and the second ultrasonic sensor, and the first ultrasonic sensor and the second ultrasonic sensor alternately emit ultrasonic waves, the self-moving
  • the method for the device to identify an obstacle includes the steps of:
  • S113 The other of the first ultrasonic sensor and the second ultrasonic sensor emits ultrasonic waves in a ti+1 time period after the ti period, the first ultrasonic sensor and the second ultrasonic sensor are at ti+ Receiving an obstacle echo in a period of time, obtaining an echo of the i+1th obstacle;
  • the method for determining an obstacle condition by comparing the obstacle distance and the preset distance and comparing the echo intensity and the reflected wave threshold threshold in steps S14 and S115 is: when the distance value obtained by the analysis is greater than a set threshold, Judging that there are no obstacles.
  • the method for determining the obstacle condition by comparing the obstacle distance and the preset distance and comparing the echo intensity and the reflected wave threshold threshold in steps S14 and S115 is that when the distance value obtained by the analysis is less than the set threshold, When the echo intensity value obtained by the analysis is less than the emission threshold threshold, it is judged that there is no obstacle.
  • the method for determining the obstacle condition by comparing the obstacle distance and the preset distance and comparing the echo intensity and the reflected wave threshold threshold in steps S14 and S115 is that when the distance value obtained by the analysis is less than the set threshold, However, when the echo intensity value obtained by the analysis is greater than the emission threshold threshold, it is judged that there is an obstacle.
  • the processing of the obstacle echo includes:
  • the invention realizes the non-contact obstacle avoidance of the intelligent lawn mower by using the ultrasonic sensor and the setting of the preset distance of the intelligent lawn mower, and the setting of the ultrasonic sensor component is adopted.
  • the arrangement avoids the influence of the blind spot on the intelligent mower under different working conditions, improves the accessibility of the intelligent mower, and at the same time sets the stop wall, so that the first ultrasonic sensor and the second ultrasonic wave
  • the ultrasonic wave emitted by the first ultrasonic sensor can be prevented from being directly received by the second ultrasonic sensor through the obstacle reflection wall, thereby ensuring the accuracy of the short-distance obstacle recognition
  • the anti-crosstalk structure utilizes the same
  • the free internal structure can also constrain the field of view emission range of the ultrasonic wave when the ultrasonic wave is emitted, further preventing the ultrasonic wave from directly contacting the casing to generate ultrasonic echo, thereby ensuring the accuracy of the obstacle detection.
  • FIG. 1 is a schematic block diagram of a smart lawn mower of the present invention.
  • FIG 2 is a top plan view of a smart lawn mower 100 according to a first embodiment of the present invention.
  • FIG 3 is a schematic diagram of a first arrangement of an ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the relationship between the axes of the ultrasonic sensor assemblies of the ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the relationship between the ultrasonic sensor assembly and the axis of the housing of the ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a detection range of a first arrangement of a triangular beam template of the ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a detection range of a second arrangement of a triangular beam template of the ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the detection range of the first arrangement of the elliptical beam template of the ultrasonic mower assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the detection range of the second arrangement of the elliptical beam template of the ultrasonic mower assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • Fig. 10 is a schematic view showing the arrangement of three ultrasonic ultrasonic sensors of the ultrasonic mower assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • Fig. 11 is a schematic view showing the arrangement of four ultrasonic ultrasonic sensors of the ultrasonic mower assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • FIG. 12 is a schematic diagram showing the axial relationship of the ultrasonic sensor assembly of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • Figure 13 is a schematic view showing the detection range of the first arrangement of the ultrasonic sensor assembly of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • Figure 14 is a schematic view showing the detection range of the second arrangement of the ultrasonic sensor assembly of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • Figure 15 is a schematic view showing the arrangement of three ultrasonic ultrasonic sensors of the ultrasonic mower assembly of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • Figure 16 is a schematic view showing the arrangement of four ultrasonic ultrasonic sensors of the ultrasonic mower assembly of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • Figure 17 is a schematic diagram showing the axial relationship of the ultrasonic sensor assembly of the intelligent lawn mower 300 according to the third embodiment of the present invention.
  • Figure 18 is a schematic view showing the detection range of the first arrangement of the ultrasonic sensor assembly of the intelligent lawn mower 300 according to the third embodiment of the present invention.
  • Figure 19 is a schematic view showing the detection range of the second arrangement of the ultrasonic sensor assembly of the intelligent lawn mower 300 according to the third embodiment of the present invention.
  • 20 is a schematic view showing another detection range of the ultrasonic sensor assembly of the intelligent lawn mower 300 according to the third embodiment of the present invention.
  • Figure 21 is a schematic view showing the relationship between the ultrasonic sensor assemblies of the intelligent lawn mower 400 and the two ultrasonic sensor assemblies of the fourth embodiment of the present invention.
  • FIG. 22 is a schematic diagram showing the axial relationship of the ultrasonic sensor assembly of the intelligent lawn mower 400 according to the fourth embodiment of the present invention including three ultrasonic sensor assemblies.
  • 23 is a schematic view showing the detection range of the first arrangement of the ultrasonic sensor assembly of the intelligent lawn mower 400 of the fourth embodiment of the present invention.
  • Figure 24 is a diagram showing the detection range of the second arrangement of the ultrasonic sensor assembly of the intelligent lawn mower 400 of the fourth embodiment of the present invention.
  • Figure 25 is a flow diagram of control module 30 controlling the transmission and reception of ultrasonic sensor assemblies.
  • FIG. 26 is a schematic diagram showing the state of receiving signals of the ultrasonic sensor component corresponding to different obstacle conditions in the effective detection range of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • Figure 27 is a schematic illustration of an elliptical beam of an ultrasonic sensor of the present invention.
  • Figure 28 is a cross-sectional view of the elliptical beam of Figure 27.
  • Figure 29 is a schematic illustration of the ultrasonic beam template of the ultrasonic sensor itself being non-circular.
  • FIG. 30 is a schematic diagram showing that the ultrasonic sensor beam template is circular and the beam is adjusted to an elliptical shape after the beam adjuster 90 is set.
  • Figure 31 is a schematic view showing the ultrasonic sensor not offset in the intelligent lawn mower of the present invention.
  • Figure 32 is a schematic illustration of the ultrasonic sensor being shifted downward by a beta angle in the intelligent lawn mower of the present invention.
  • Figure 33 is a schematic illustration of the ultrasonic sensor in the intelligent lawn mower of the present invention shifted upward by a beta angle.
  • Figure 34 is a schematic view showing the wall of the intelligent lawn mower of the present invention adjacent to the field of view of the ultrasonic sensor as a slope.
  • Figure 35 is a schematic view showing the wall of the intelligent lawn mower of the present invention adjacent to the field of view of the ultrasonic sensor as a curved surface.
  • Figure 36 is a schematic view showing the fifth ultrasonic sensor for identifying the slope of the intelligent lawn mower of the present invention.
  • Figure 37 is a schematic view showing the distance between the axis of the ultrasonic sensor and the slope of the intelligent lawn mower of the present invention in the working condition of the slope just below the slope.
  • Figure 38 is a schematic view of the intelligent lawn mower of the present invention just beginning to rise in the condition of encountering a slope.
  • 39 is a schematic view showing the angle between the axis of the ultrasonic sensor and the slope surface when the intelligent lawn mower of the present invention is just under the slope of the slope in the working condition of the slope.
  • FIG 40 is a schematic view showing the angle between the axis of the ultrasonic sensor and the slope surface when the intelligent lawn mower of the present invention first starts to climb up in the working condition of the slope.
  • Figure 41 is a schematic view showing the ultrasonic sensor axis parallel to the slope surface when the intelligent lawn mower of the present invention is completely uphill in the working condition of the slope.
  • Figure 42 is a schematic view of the blind spot of the ultrasonic sensor of the intelligent lawn mower of the present invention.
  • 43 is a schematic diagram showing the comparison between the distance between the ultrasonic sensor and the obstacle of the intelligent lawn mower of the present invention, and the distance between the ultrasonic sensor and the obstacle that does not solve the blind zone problem.
  • Figure 44 is a schematic diagram showing the comparison of the intelligent lawn mower of the present invention for detecting the common obstacles at the same position as the intelligent lawn mower of the same structure in the prior art.
  • Fig. 45 is a schematic view showing the ultrasonic sensor assembly detecting wall of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • Fig. 46 is a view showing the ultrasonic sensor assembly detecting wall of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • Figure 47 is a schematic view of the ultrasonic sensor assembly of the intelligent lawn mower 100 of the first embodiment of the present invention passing through a narrow passage.
  • Figure 48 is a schematic view showing the obstacle avoidance of the intelligent lawn mower of the present invention.
  • Figure 49 is a schematic view showing the obstacle avoidance of the intelligent lawn mower of the present invention.
  • Figure 50 is a trajectory diagram of the intelligent lawn mower of the present invention avoiding obstacles.
  • Figure 51 is a structural view showing an ultrasonic sensor of the intelligent lawn mower of the present invention.
  • Figure 52 is a structural view showing another angle of the ultrasonic sensor of the intelligent lawn mower of the present invention.
  • FIG. 53 is a schematic structural diagram of the crosstalk structure of the intelligent lawn mower according to the present invention, which has the same structure as the intelligent lawn mower of the prior art without the crosstalk prevention structure.
  • Figure 54 is a perspective view showing an anti-crosstalk structure of the intelligent lawn mower of the present invention.
  • Figure 55 is a side elevational view of the crosstalk prevention structure of Figure 54.
  • Figure 56 is a top plan view of the crosstalk prevention structure of Figure 54.
  • Figure 57 is a cross-sectional view taken along line A-A of Figure 56.
  • Figure 58 is a front elevational view showing the anti-crosstalk structure of the intelligent lawn mower of the present invention.
  • Fig. 59 is a schematic diagram showing the circuit unit of the control module for controlling the ultrasonic component of the first embodiment.
  • Fig. 60 is a schematic diagram showing the circuit unit of the control module for controlling the ultrasonic component of the second embodiment.
  • Figure 61 is a schematic diagram of another embodiment of a circuit unit of the control module controlling the ultrasonic component of the second embodiment.
  • Figure 62 is a schematic view showing the positional relationship between another anti-crosstalk structure and an ultrasonic sensor of the intelligent lawn mower of the present invention.
  • Figure 63 is a schematic illustration of another angle of Figure 62.
  • FIG. 64 is a schematic diagram of a method for detecting a signal transmitted and received by an ultrasonic sensor of an intelligent lawn mower according to the present invention.
  • Figure 65 is a control block diagram of the present invention.
  • Figure 66 is a flow chart of the method for identifying an obstacle by the intelligent lawn mower of the present invention.
  • the invention discloses an intelligent lawn mower capable of realizing non-contact obstacle avoidance, and the intelligent lawn mower in each embodiment adopts an ultrasonic sensor to identify an obstacle. Moreover, the overlapping detection area is formed by the arrangement of the ultrasonic sensors, the accessibility of the intelligent lawn mower is improved, and the non-contact type obstacle avoidance at a short distance can be realized.
  • front represents the direction of ultrasonic wave transmission transmitted by the ultrasonic sensor, defining “front” as the traveling direction of the machine, “rear” representing the opposite direction to “front”, and “left” representing the traveling direction. On the left side, “right” represents the right side in the direction of travel opposite to “left”, and “up” represents work. In the direction away from the working face of the machine, “lower” represents the direction of the machine working face opposite to “upper”.
  • the term “transceiving area” refers to the area in which an integrated ultrasonic transducer transmits ultrasonic waves and is capable of receiving an ultrasonic echo.
  • Transport and integrated means that the ultrasonic sensor simultaneously undertakes the work of transmitting ultrasonic waves, and also undertakes the work of receiving obstacle echoes.
  • the “transmission area” refers to the area that ultrasonic waves can transmit from ultrasonic waves.
  • the “receiving area” refers to the area where the ultrasonic sensor can receive the obstacle of the obstacle echo.
  • Field of view refers to the range in which an ultrasonic sensor transmits an ultrasonic wave and can receive an ultrasonic echo.
  • the “field of view” refers to the area in which the transmitting sensor is capable of receiving an obstacle with an obstacle echo if the receiving sensor can transmit a signal.
  • the “sound wave transmission range” refers to the area where the ultrasonic wave transmitted by the ultrasonic sensor can reach.
  • the “beam template” refers to a cross-sectional shape of a field of view formed by ultrasonic waves after the ultrasonic sensor transmits ultrasonic waves.
  • the “sounding surface” refers to the surface on which the ultrasonic sensor emits ultrasonic waves from which ultrasonic waves are emitted.
  • “Overlapping detection zone” refers to the place where the beams from two ultrasonic sensors can overlap.
  • “Decision section” refers to a section selected on the field of view that is a beam template.
  • “Aviation beam axis” refers to the direction of the beam's strongest radiation.
  • FIG. 1 is a schematic diagram of a module of a non-contact obstacle avoidance self-moving device 1 of the present invention.
  • the intelligent lawn mower comprises a housing 10, an ultrasonic sensor assembly 20 on the housing 10, a movement module 84 at the bottom of the housing 10, and a working module 86 for performing work for controlling the automatic operation and movement of the intelligent lawn mower.
  • Control module 30, and an energy module 88 that provides energy to the intelligent lawn mower.
  • the specific physical form of control module 30 is a control circuit board that is arranged with one or more processors, memories, other related components, and corresponding peripheral circuitry.
  • the control module 30 has a built-in control program to execute predetermined commands to control the intelligent mower to automatically move and perform work in the work area.
  • the self-mobile device according to the present invention may be a smart lawn mower or a smart sweeping robot. Therefore, the description of the components of Fig. 1 also applies to the description of the intelligent lawn mower or the self-moving device of the following embodiments of the present invention.
  • the ultrasonic sensor assembly 20 of the non-contact obstacle avoidance self-moving device 1 of the present invention includes at least one ultrasonic sensor.
  • the ultrasonic sensor assembly 20 is located at the front end of the housing 10 for detecting whether there is an obstacle in the forward direction of the smart mower 100 and the distance of the obstacle from the mobile device 1.
  • the ultrasonic sensor assembly 20 includes at least one transceiving ultrasonic sensor or includes at least one ultrasonic transmitting sensor and an ultrasonic receiving sensor that intersects the field of view of the ultrasonic transmitting sensor.
  • Ultrasonic transmitter with multiple sets of transceiving functions. For ultrasonic transmitters with separate transmission and reception functions, At least one of them transmits an ultrasonic wave, and the other receives an obstacle echo.
  • the ultrasonic sensor assembly 20 of the non-contact obstacle avoidance self-moving device 1 of the present invention includes an ultrasonic sensor 201, a PCB board 202, a capacitor 204 mounted on the PCB board, and a positioning PCB board 202.
  • the ultrasonic sensor 201 has an outward sounding surface 2011.
  • the protective shell 205 has an end surface 2051.
  • the sound emitting surface 2011 is flush with the end surface 2051 or is recessed in the protective shell 205 in the opposite end surface 2051.
  • a transformer 203 is further disposed on the PCB.
  • the angle between the two ultrasonic sensors on each of the two ultrasonic sensors refers to the angle between the axes of the two ultrasonic sensors.
  • the parallel of the two ultrasonic sensors refers to the parallel of the axes of the two ultrasonic sensors.
  • the axis of the housing 10 refers to the axis in the front-rear direction of the housing 10, and the angle between the ultrasonic sensor and the housing axis refers to the angle between the axis of the ultrasonic sensor and the axis of the housing, with respect to the ultrasonic sensor and the housing.
  • Parallel between the axes means that the axis of the ultrasonic sensor is parallel to the axis of the housing.
  • the distance between the ultrasonic sensor and the obstacle refers to the distance from the axis of the sounding surface 2011 to the obstacle.
  • the distance between the housing 10 and the obstacle refers to the distance between the front end of the housing and the obstacle.
  • the distance between the intelligent mower and the obstacle refers to the distance between the front end of the casing and the obstacle.
  • the width of the fuselage ranges from the width of the housing 10 to the width of the moving module 84.
  • the effective detection range of the ultrasonic sensor assembly 20 covers at least the width of the body.
  • the ultrasonic sensor assembly 20 has the above-described effective detection range, so that the ultrasonic sensor assembly 20 can detect an obstacle directly in front of the movement of the intelligent lawn mower, and prevent the intelligent lawn mower from colliding with an obstacle during the movement.
  • the non-contact obstacle-avoiding intelligent lawn mower disclosed by the invention performs obstacle recognition by an ultrasonic sensor, and the ultrasonic sensor emits ultrasonic waves, and the ultrasonic wave receives reflection when the front obstacle is hit, and the ultrasonic sensor receives the reflected ultrasonic echo,
  • the intelligent lawn mower determines the distance between the ultrasonic sensor and the obstacle by transmitting the ultrasonic wave and the time difference of receiving the obstacle echo; and then setting the preset distance through the control module 30 to perform the motion limitation of the intelligent lawn mower, in the ultrasonic sensor and the obstacle
  • the control module 30 of the intelligent lawn mower determines that there is an obstacle that needs to be avoided in front, and the control module 30 controls the intelligent lawn mower to take obstacle avoidance measures, thereby finally achieving non-contact obstacle avoidance.
  • the present invention relates to an arrangement of the ultrasonic sensor assembly 20 having a plurality of embodiments, thereby forming a non-contact obstacle-free intelligent lawn mower of the plurality of embodiments, and the following non-contact obstacle-free intelligent lawn mower for different embodiments Carry out a detailed description.
  • FIG. 2 is a schematic top view of the intelligent lawn mower 100 according to the first embodiment of the present invention.
  • the length direction of the intelligent lawn mower 100 is the front-rear direction.
  • the travel arrow 510 represents the forward direction of the smart mower.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 21 and a second ultrasonic sensor 23.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are disposed at an angle to each other.
  • the first ultrasonic sensor 21 has a first axis 211
  • the second ultrasonic sensor 23 has a second axis 231
  • the smart mower 100 has a housing axis 210 extending forward and backward.
  • the first axis 211 and the second axis 231 intersect at an angle to each other.
  • the first axis 211 and the second axis 231 intersect in front of the housing 10, and the intersecting projection intersections may be located at any position directly in front of the housing 10.
  • the angle ⁇ 1 between the first ultrasonic sensor 21 and the second ultrasonic sensor 23 is in the range of 60° to 110°.
  • the cross angle ⁇ 1 of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 ranges from 70° to 90°.
  • the intersection of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 in the range of 70°-90° ensures that the overlapping detection area is obtained while also allowing the overlapping detection area to be closer to the front of the intelligent lawn mower 100, and avoiding
  • the ultrasonic wave emitted by one ultrasonic sensor is directly received by the other ultrasonic sensor without being reflected by the obstacle, and the signal crosstalk between the first ultrasonic sensor 21 and the second ultrasonic sensor 23 is reduced, and the accuracy of the obstacle recognition is improved.
  • the angle at which the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are mutually formed refers to an angle at which the first axis 211 and the second axis 231 are mutually formed.
  • the angle between the first axis 211 and the second axis 231 is smaller and smaller along the direction of advancement of the smart mower.
  • the angle ⁇ 1 between the first axis 211 and the housing axis 210 is in the range of 10°-80° with respect to the housing axis 210, in the smart mower 100 of the first embodiment.
  • the angle ⁇ 1 between the first axis 211 and the housing axis 210 ranges from 25° to 55°.
  • the angle ⁇ 2 between the second axis 231 and the housing axis 210 ranges from 10° to 80°.
  • the second axis 231 and the housing axis The angle ⁇ 2 between 210 ranges from 25° to 55°.
  • the overlapping detection areas can be brought closer to the front of the smart mower 100, and the ultrasonic waves emitted by one of the ultrasonic sensors are prevented from being directly reflected by the obstacles without being reflected by the obstacles.
  • the ultrasonic sensor receives, reduces signal crosstalk between the first ultrasonic sensor 21 and the second ultrasonic sensor 23, and improves the accuracy of obstacle recognition.
  • the first super The acoustic wave sensor 21 and the second ultrasonic sensor 23 are both ultrasonic sensors that are integrated and transmitted, that is, an ultrasonic sensor capable of carrying out two functions of transmitting ultrasonic waves and receiving obstacle echoes.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 may also be a combination of two independent ultrasonic sensors, one of which is responsible for transmitting ultrasonic waves, and the other of the two is responsible for receiving ultrasonic waves. The function.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 may also be a combination of a plurality of independent ultrasonic sensors, and the first ultrasonic sensor 21 is an ultrasonic sensor with a separate transmitting and receiving function, and the plurality of independent ultrasonic sensors are At least one transmits ultrasonic waves, and the plurality of independent ultrasonic sensors receive echoes of the obstacles.
  • FIG. 6 and FIG. 8 are schematic diagrams showing the detection range of the ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention in the first arrangement, and the difference between the two figures is The beam template is different.
  • the beam template of the ultrasonic sensor assembly shown in FIG. 6 is triangular or nearly triangular.
  • the beam template of the ultrasonic sensor assembly in FIG. 8 is elliptical or nearly elliptical.
  • the hardware parameters of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are identical.
  • the first ultrasonic sensor 21 has a first transceiving area A.
  • the second ultrasonic sensor 23 has a second transceiving area B.
  • the first transceiving area A and the second transceiving area B are formed with overlapping detection areas directly in front of the intelligent lawn mower 100.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 in the overlap detection area may receive ultrasonic echoes, that is, if the first ultrasonic sensor 21 transmits ultrasonic waves in the overlap detection area, the first ultrasonic sensor 21 and the second The ultrasonic sensor 23 can receive the ultrasonic echo; if the second ultrasonic sensor 23 transmits the ultrasonic wave, both the first ultrasonic sensor 21 and the second ultrasonic sensor 23 can receive the ultrasonic echo.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are disposed at an angle to each other.
  • the first transceiving area A of the first ultrasonic sensor 21 and the second transceiving area B of the second ultrasonic sensor 23 partially overlap.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor assembly 20
  • the non-overlapping portion of the second transceiving area B is the second detecting area 12 of the sensor unit 20, the first transceiving area A and the second transceiving area
  • the portion where B overlaps is the third detection area 13 of the sensor assembly 20.
  • FIG. 7 and FIG. 9 are schematic diagrams showing the detection range of the ultrasonic sensor assembly of the intelligent lawn mower 100 according to the first embodiment of the present invention in the second arrangement.
  • This second arrangement of the ultrasonic sensor assembly differs from the first arrangement in that the ultrasonic sensor assembly 20 is mounted at a distance D from the front end of the housing.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 21 and a second ultrasonic transmission. Sensor 23.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are disposed at an angle to each other at a front end with respect to the front end of the casing 10 and at a distance D from the front end of the casing.
  • the first ultrasonic sensor 21 has a first transceiving area A.
  • the second ultrasonic sensor 23 has a second transceiving area B.
  • the first transceiving area A of the first ultrasonic sensor 21 and the second transceiving area B of the second ultrasonic sensor 23 still partially overlap, still forming three detection areas of the ultrasonic sensor assembly 20.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 in the overlap detection area can receive the ultrasonic echo, that is, if the first ultrasonic sensor 21 transmits the ultrasonic wave, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 can both The ultrasonic echo is received; if the second ultrasonic sensor 23 transmits the ultrasonic wave, both the first ultrasonic sensor 21 and the second ultrasonic sensor 23 can receive the ultrasonic echo.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor assembly 20, and the non-overlapping portion of the second transceiving area B is the second detecting area 12 of the sensor unit 20, the first transceiving area A and the second transceiving area
  • the portion where B overlaps is the third detection area 13 of the sensor assembly 20.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 may be disposed in the housing 10 in principle. Any position in the longitudinal direction, if the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are disposed on the casing 10 closer to the rear end, in order to ensure that the ultrasonic sensor transmits ultrasonic waves and the receiving obstacle echo is not affected, Improve the shape of the housing or set the ultrasonic sensor higher.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are disposed in the front half of the longitudinal direction of the casing 10 in consideration of the transmission and reception of the ultrasonic waves and the small space occupation, and the distance D is equal to or less than
  • the half of the length of the housing 10 is so arranged that it is more convenient to adapt to the range of the field of view by improving the structure of the front end of the housing to avoid blocking the ultrasonic waves.
  • the control module 30 controls the first ultrasonic sensor 21 and the second ultrasonic sensor 23 to alternately emit ultrasonic waves in time.
  • the control module 30 controls the first ultrasonic sensor 21 to emit ultrasonic waves in a first period of time, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive an obstacle echo in a first period of time, and the control module 30 controls the second ultrasonic sensor 23
  • the ultrasonic waves are emitted during the second period of time after the first period of time, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive the obstacle echoes for the second period of time.
  • the control module 30 generates and receives an obstacle echo based on the first ultrasonic sensor 21 and the second ultrasonic sensor 23 in the ultrasonic sensor assembly 20. , to determine the orientation of the obstacle. Specifically, when only the first ultrasonic sensor 21 of the ultrasonic sensor assembly 20 emits ultrasonic waves, and only the first ultrasonic wave The sensor 21 receives an obstacle echo, and the control module 30 determines that the obstacle is located in the first detection area. When only the second ultrasonic sensor 23 of the ultrasonic sensor assembly 20 emits ultrasonic waves, and only the second ultrasonic sensor 23 receives the obstacle echo, the control module 30 determines that the obstacle is located in the second detection area.
  • the control module 30 determines that an obstacle is located in the third detection area.
  • the control module 30 determines that an obstacle is located in the third detection area.
  • the control module 30 determines that an obstacle is located in the third detection area.
  • the control module 30 determines that an obstacle is located in the third detection area.
  • control module 30 calculates the distance of the obstacle from the intelligent lawn mower based on the time difference between the transmitted ultrasonic wave of the ultrasonic sensor assembly 20 and the echo of the received obstacle.
  • the first ultrasonic sensor 21 has a first axis
  • the second ultrasonic sensor 23 has a second axis, the first axis and the second axis being vertical
  • the co-planar surface is arranged in the straight direction, so that the intelligent lawn mower can obtain the largest range of overlap detection area, and since the selected ultrasonic sensors are the same, the axis coplanarity can facilitate the arrangement of the ultrasonic sensor structure and the mounting structure of the housing 10. the design of.
  • the ultrasonic sensor assembly 20 in order to ensure that the intelligent lawn mower 100 of the first embodiment can recognize the obstacle in the forward direction, the ultrasonic sensor assembly 20 must be effectively detected.
  • the range covers the area directly in front of the fuselage of the intelligent mower 100.
  • the effective detection range of the ultrasonic sensor assembly 20 is the sum of the first detection area, the second detection area, and the third detection area.
  • the left and right direction of the intelligent lawn mower 100 is the width direction
  • the effective detection width of the ultrasonic sensor assembly 20 covers the width range of the body.
  • the ultrasonic sensor assembly 20 used includes more than two ultrasonic sensors, that is, the ultrasonic sensor assembly 20 may include three or more ultrasonic sensors when ultrasonic waves
  • the ultrasonic waves transmitted to the ultrasonic sensor have different requirements in different arrangements.
  • the wave sensor alternately transmits ultrasonic waves in time.
  • the ultrasonic waves may be simultaneously transmitted with other ultrasonic sensors, or the ultrasonic waves may be alternately transmitted in time with other ultrasonic sensors. .
  • the arrangement of more than two ultrasonic sensors and the transmission of ultrasonic waves will be described below with reference to specific drawings and embodiments.
  • FIG. 10 is an embodiment of a smart lawn mower 100 including three ultrasonic sensors according to a first embodiment of the present invention.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 21 and a second ultrasonic sensor 23. And a third ultrasonic sensor 25.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are arranged in an angularly intersecting manner, and a field-of-view overlapping detection region is formed directly in front of the casing 10, and the third ultrasonic sensor 25 is parallel to the casing axis.
  • the third ultrasonic sensor 25 does not form a field of view overlap detection area directly in front of the casing 10 with any of the first ultrasonic sensor 21 and the second ultrasonic sensor 23, and the third ultrasonic sensor 25 has a fourth detection. region.
  • the third ultrasonic sensor 25 does not form a field of view overlap detection area directly in front of the casing 10 with any of the first ultrasonic sensor 21 and the second ultrasonic sensor 23, and the third ultrasonic sensor 25 can select and the first ultrasonic sensor 21 or
  • the second ultrasonic sensor 23 simultaneously transmits ultrasonic waves, and may alternatively and alternately transmit ultrasonic waves in time with the first ultrasonic sensor 21 and the second ultrasonic sensor 23.
  • the control module 30 controls the first ultrasonic sensor 21 and the third ultrasonic sensor 25 within the first time period.
  • the ultrasonic wave is transmitted, the first ultrasonic sensor 21, the second ultrasonic sensor 23, and the third ultrasonic sensor 25 receive an obstacle echo in a first period of time, and the control module 30 controls the third ultrasonic sensor 25 and the second ultrasonic sensor 23 to be at the first
  • the ultrasonic waves are emitted during the second period of time after the time period, and the first ultrasonic sensor 21, the second ultrasonic sensor 23, and the third ultrasonic sensor 25 receive the obstacle echo in the second period of time.
  • the control module 30 controls the first ultrasonic sensor 21 to emit ultrasonic waves in a first period of time, the first ultrasonic wave
  • the sensor 21, the second ultrasonic sensor 23, and the third ultrasonic sensor 25 receive an obstacle echo in a first period of time
  • the control module 30 controls the second ultrasonic sensor 23 to emit an ultrasonic wave in a second period of time after the first period of time
  • the first ultrasonic sensor 21, the second ultrasonic sensor 23, and the third ultrasonic sensor 25 receive the obstacle echo in the second period of time
  • the control module 30 controls the third ultrasonic sensor 25 to be in the third period after the second period of time. Transmitting ultrasonic waves, first ultrasonic sensor 21, second ultrasonic sensor 23, and third ultrasonic transmission
  • the sensor 25 receives an obstacle echo during a third time period.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are disposed at an angle to each other at the housing.
  • the front end of 10 is such that the first transmitting and receiving area A of the first ultrasonic sensor 21 and the second transmitting and receiving area B of the second ultrasonic sensor 23 partially overlap.
  • the third transceiving area C of the third ultrasonic sensor 25 does not overlap with the first transceiving area A of the first ultrasonic sensor 21 and the second transceiving area B of the second ultrasonic sensor 23.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor assembly 20, and the non-overlapping portion of the second transceiving area B is the second detecting area 12 of the sensor unit 20, the first transceiving area A and the second transceiving area
  • the portion where B overlaps is the third detection area 13 of the sensor assembly 20.
  • the third transceiving area C is the fourth detecting area 14.
  • the control module 30 can still determine the obstacle according to the combination of the first ultrasonic sensor 21, the second ultrasonic sensor 23, and the third ultrasonic sensor 25 in the ultrasonic sensor assembly 20 to transmit and receive obstacle echoes.
  • the orientation is specifically described as that when only the first ultrasonic sensor 21 of the ultrasonic sensor assembly 20 emits ultrasonic waves, and only the first ultrasonic sensor 21 receives the obstacle echo, the control module 30 determines that the obstacle is located in the first detection region 11.
  • the control module 30 determines that the obstacle is located in the second detection region 12.
  • the control module 30 determines that an obstacle is located in the third detection area 13.
  • the control module 30 determines that the obstacle is located in the third detection area 13.
  • the control module 30 determines that an obstacle is located in the third detection area 13.
  • the control module 30 determines that an obstacle is located in the third detection area 13.
  • the control module 30 determines that the obstacle is located in the fourth detection region 14.
  • FIG. 11 is an embodiment in which the ultrasonic sensor assembly 20 includes four ultrasonic sensors, and the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 21, a second ultrasonic sensor 23, a third ultrasonic sensor 25, and a fourth ultrasonic sensor 27.
  • the first ultrasonic sensor 21 has a first transmission and reception area A
  • the second ultrasonic sensor 23 has a second transmission and reception area B.
  • First ultrasonic sensor The 21 and second ultrasonic sensors 23 are arranged at an angle to each other and form a field of view overlap detection area, that is, a third detection area, directly in front of the casing 10.
  • the third ultrasonic sensor 25 has a third transceiving area C
  • the fourth ultrasonic sensor 27 has a fourth transceiving area D.
  • the third ultrasonic sensor 25 does not form an overlap detection area with the first ultrasonic sensor 21 and the second ultrasonic sensor 23 directly in front of the casing 10
  • the fourth ultrasonic sensor 27 and the first ultrasonic sensor 21 and the second ultrasonic sensor Any one of 23 forms an overlap detecting area directly in front of the casing 10. Since the fourth ultrasonic sensor 27 intersects with the first ultrasonic sensor 21 and the second ultrasonic sensor 23, a new overlap detection area is formed. As shown in FIG.
  • the third ultrasonic sensor 25 and the fourth ultrasonic sensor 27 are parallel to each other, the third ultrasonic sensor 25 and the fourth ultrasonic sensor 27 are both parallel to the axis of the casing, and the fourth ultrasonic sensor 27 is located at the first ultrasonic sensor. 21 between the second ultrasonic sensor 23. In other embodiments, only the fourth ultrasonic sensor 27 and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are required to form an overlapping detection area, and the third ultrasonic sensor 25 does not form an overlapping detection area with any other sensor, and is not limited. Their axis is set.
  • the third ultrasonic sensor 25 does not form an overlap detection area directly in front of the casing 10 with any of the first ultrasonic sensor 21 and the second ultrasonic sensor 23, and the third ultrasonic sensor 25 can be selected.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 simultaneously transmit ultrasonic waves, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 may alternately transmit ultrasonic waves alternately in time.
  • the fourth ultrasonic sensor 27 and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 form an overlap detection area directly in front of the casing 10, so the fourth ultrasonic sensor 27 needs to be combined with the first ultrasonic sensor 21 and the second ultrasonic sensor.
  • 23 turns alternately transmit ultrasonic waves in time, avoiding multiple ultrasonic sensors transmitting ultrasonic waves together to cause crosstalk caused by obstacle recognition.
  • the control module 30 controls the first ultrasonic sensor 21 and the third ultrasonic sensor 25.
  • the ultrasonic waves are transmitted during the first time period, and the first ultrasonic sensor 21, the second ultrasonic sensor 23, the third ultrasonic sensor 25, and the fourth ultrasonic sensor 27 receive the obstacle echo in the first time period, and the control module 30 controls the third.
  • the ultrasonic sensor 25 and the second ultrasonic sensor 23 emit ultrasonic waves in a second period of time after the first period of time, and the first ultrasonic sensor 21, the second ultrasonic sensor 23, the third ultrasonic sensor 25, and the fourth ultrasonic sensor 27 are in the second Receiving the obstacle echo in the time period, the control module 30 controls the third ultrasonic sensor 25 and the fourth ultrasonic sensor 27 to emit ultrasonic waves in a third time period after the second time period, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 , the third ultrasonic sensor 25 and the fourth super
  • the acoustic wave sensor 27 receives an obstacle echo in a third period of time.
  • the control module 30 controls the first ultrasonic sensor 21 to emit ultrasonic waves in the first time period, the first ultrasonic wave
  • the sensor 21, the second ultrasonic sensor 23, the third ultrasonic sensor 25, and the fourth ultrasonic sensor 27 receive an obstacle echo in a first period of time, and the control module 30 controls the second ultrasonic sensor 23 to be second after the first period of time.
  • the ultrasonic waves are emitted during the time period, and the first ultrasonic sensor 21, the second ultrasonic sensor 23, the third ultrasonic sensor 25, and the fourth ultrasonic sensor 27 receive the obstacle echo in the second period, and the control module 30 controls the third ultrasonic sensor 25.
  • the ultrasonic waves are emitted during the third period of time after the second period of time, and the first ultrasonic sensor 21, the second ultrasonic sensor 23, the third ultrasonic sensor 25, and the fourth ultrasonic sensor 27 receive the obstacle echo in the third period of time,
  • the control module 30 controls the fourth ultrasonic sensor 27 within a fourth time period after the third time period Emitting ultrasonic waves, a first ultrasonic sensor 21, the second ultrasonic sensor 23, the third 25 and the fourth ultrasonic sensor receives the ultrasonic sensor 27 in the fourth period of time an obstacle echo.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor unit 20.
  • the non-overlapping portion of the second transceiving region B is the second detecting region 12 of the sensor assembly 20, and the third transceiving region C is the fourth detecting region 13.
  • the non-overlapping portion of the fourth transceiving region D is the fourth detecting region 14 of the sensor assembly 20, and the portion where the first transceiving region A, the second transceiving region B, and the fourth transceiving region D overlap is the fifth detecting region 15 of the sensor assembly 20. .
  • the remaining portion of the portion where the first transmitting and receiving area A and the fourth transmitting and receiving area D overlap with the second transmitting and receiving area B is the seventh detecting area 17, and the overlapping portion of the second transmitting and receiving area B and the fourth transmitting and receiving area D does not The remaining portion where the first transceiving area A overlaps is the sixth detecting area 16.
  • the control module 30 can still transmit and receive an obstacle echo combination according to the first ultrasonic sensor 21, the second ultrasonic sensor 23, the third ultrasonic sensor 25, and the fourth ultrasonic sensor 27 in the ultrasonic sensor assembly 20.
  • Situation determine the orientation of the obstacle. Specifically, when only the first ultrasonic sensor 21 of the ultrasonic sensor assembly 20 emits ultrasonic waves, and only the first ultrasonic sensor 21 receives the obstacle echo, the control module 30 determines that the obstacle is located in the first detection area 11. When only the second ultrasonic sensor 23 of the ultrasonic sensor assembly 20 emits ultrasonic waves, and only the second ultrasonic sensor 23 receives the obstacle echo, the control module 30 determines that the obstacle is located in the second detection region 12.
  • the control module 30 determines A broken obstacle is located in the third detection area 13.
  • the control module 30 determines that the obstacle is located in the fourth detection region 14.
  • the first ultrasonic sensor 21 or the second ultrasonic sensor 23 or the fourth ultrasonic sensor 27 of the ultrasonic sensor assembly 20 emits ultrasonic waves
  • the first ultrasonic sensor 21, the second ultrasonic sensor 23, and the fourth ultrasonic sensor 27 both receive an obstacle echo.
  • the control module 30 determines that the obstacle is located in the fifth detection area 15.
  • the control module 30 determines that the obstacle is located in the fifth detection region 15.
  • the control module 30 determines that the obstacle is located in the fifth detection region 15.
  • the control module 30 determines that the obstacle is located in the fifth detection region 15.
  • the control module 30 determines that the obstacle is located at the sixth Detection area 16.
  • the control module 30 determines that the obstacle is located at the sixth detection area 16.
  • the control module 30 determines that the obstacle is located at the sixth detection area 16.
  • the control module 30 determines that the obstacle is located at the seventh Detection area 17.
  • the control module 30 determines that the obstacle is located at the seventh detection area 17.
  • the control module 30 determines that the obstacle is located at the seventh detection area 17.
  • the intelligent lawn mower 100 of the first embodiment of the present invention detects an obstacle by using an ultrasonic sensor.
  • the intelligent lawn mower 100 has a preset distance.
  • the intelligence is The mower avoids obstacles without continuing to move toward obstacles and achieves a non-contact obstacle avoidance of the intelligent mower.
  • preset distance values when the distance is relatively small, relatively close-range non-contact obstacle avoidance can be realized, and when the distance is relatively large, relatively close-range non-contact obstacle avoidance can be realized. Long-distance non-contact obstacle avoidance.
  • the intelligent lawn mower 100 adopts targeted obstacle avoidance measures, such as turning left when the obstacle is on the right side and satisfying the left turn condition.
  • the control module 30 determines the orientation of the obstacle according to the different conditions of the ultrasonic waves received by the ultrasonic sensor assembly 20, thereby controlling the forward direction of the intelligent lawn mower, specifically avoiding obstacles, and improving the efficiency of obstacle avoidance.
  • the control module 30 controls the intelligent lawn mower to retreat, or stops, or turns to the left, or Turn right, or reverse to the left, or backward to the right; when the obstacle appears in the first detection area, the control module 30 controls the intelligent mower to retreat, or stop, or turn to the left, or back to the left;
  • the control module 30 controls the intelligent mower to retreat, or to stop, or to turn to the right, or to retreat to the right.
  • the control module 30 makes a reasonable selection according to the distance between the obstacle and the intelligent lawn mower 100.
  • FIG. 12 is a schematic top plan view of a smart lawn mower 200 according to a second embodiment of the present invention.
  • FIG. 13 is a schematic diagram showing an arrangement and a detection range of an ultrasonic sensor assembly of the intelligent lawn mower 200 according to the second embodiment of the present invention.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 41 and a second ultrasonic sensor 43.
  • the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are disposed in parallel with each other with the ultrasonic wave transmitting direction facing the front side of the casing 10.
  • the first ultrasonic sensor 41 has a first axis 411
  • the second ultrasonic sensor 43 has a second axis 431
  • the housing 10 There is a housing axis 210.
  • the first axis 411 and the second axis 431 are parallel to each other, and the first axis 411, the second axis 431, and the housing axis 210 are all parallel to each other. In other embodiments, as long as the first axis 411 and the second axis 431 are parallel to each other, whether the first axis 411 and the second axis 431 are parallel to the housing axis 210 is not limited.
  • the hardware parameters of the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are identical.
  • the first ultrasonic sensor 41 has a first transceiving area A.
  • the second ultrasonic sensor 43 has a second transceiving area B.
  • the first transceiving area A and the second transceiving area B are formed with overlapping detection areas directly in front of the intelligent lawn mower 1.
  • the first ultrasonic sensor 41 and the second ultrasonic wave in the overlapping detection area The wave sensor 43 can receive the ultrasonic echo, that is, if the first ultrasonic sensor 41 transmits the ultrasonic wave, both the first ultrasonic sensor 41 and the second ultrasonic sensor 43 can receive the ultrasonic echo; if it is the second ultrasonic sensor 43 Ultrasonic waves, both the first ultrasonic sensor 41 and the second ultrasonic sensor 43 can receive ultrasonic echoes.
  • the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are in the left-right direction. Parallel to the front end of the housing 10. Thereby, the first transmitting and receiving area A of the first ultrasonic sensor 41 and the second transmitting and receiving area B of the second ultrasonic sensor 43 partially overlap.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor assembly 20, and the non-overlapping portion of the second transceiving area B is the second detecting area 12 of the sensor unit 20, the first transceiving area A and the second transceiving area
  • the portion where B overlaps is the third detection area 13 of the sensor assembly 20.
  • Fig. 14 is a view showing the detection range of the ultrasonic sensor unit 20 of the intelligent lawn mower 200 according to the second embodiment of the present invention in the second arrangement.
  • This second arrangement of the ultrasonic sensor assembly 20 differs from the first arrangement in that the ultrasonic sensor assembly 20 is mounted at a distance D from the front end of the housing.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 41 and a second ultrasonic sensor 43.
  • the hardware parameters of the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are identical.
  • the first ultrasonic sensor 41 has a first transceiving area A.
  • the second ultrasonic sensor 43 has a second transceiving area B.
  • the first transceiving area A and the second transceiving area B are formed with overlapping detection areas directly in front of the intelligent lawn mower 1.
  • the first ultrasonic sensor 41 and the second ultrasonic sensor 43 in the overlap detection area may receive ultrasonic echoes, that is, if the first ultrasonic sensor 41 transmits ultrasonic waves, the first ultrasonic sensor 41 and the second ultrasonic sensor 43 may both The ultrasonic echo is received; if the second ultrasonic sensor 43 transmits the ultrasonic wave, both the first ultrasonic sensor 41 and the second ultrasonic sensor 43 can receive the ultrasonic echo.
  • the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are disposed in parallel in the left-right direction in the casing. Front end of body 10.
  • the first transmitting and receiving area A of the first ultrasonic sensor 41 and the second transmitting and receiving area B of the second ultrasonic sensor 43 partially overlap.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor assembly 20
  • the non-overlapping portion of the second transceiving area B is the second detecting area 12 of the sensor unit 20, the first transceiving area A and the second transceiving area
  • the portion where B overlaps is the third detection area 13 of the sensor assembly 20.
  • the first ultrasonic sensor 41 and the second ultrasonic sensor 43 may be disposed in the housing 10 in principle. Any position in the longitudinal direction, if the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are disposed on the casing 10 closer to the rear end, in order to ensure that the ultrasonic sensor transmits ultrasonic waves and the receiving obstacle echo is not affected, Improve the shape of the housing or set the ultrasonic sensor higher.
  • the first ultrasonic sensor 41 and the second ultrasonic sensor 43 are disposed in the front half of the longitudinal direction of the casing 10 in consideration of the transmission and reception of the ultrasonic waves and the small space occupation, and the distance D is equal to or less than
  • the half of the length of the housing 10 is so arranged that it is more convenient to adapt to the range of the field of view by improving the structure of the front end of the housing to avoid blocking the ultrasonic waves.
  • the control module 30 controls the first ultrasonic sensor 41 and the second ultrasonic sensor 43 to alternately emit ultrasonic waves in time.
  • the control module 30 controls the first ultrasonic sensor 41 to emit ultrasonic waves in a first period of time, the first ultrasonic sensor 41 and the second ultrasonic sensor 43 receive an obstacle echo in a first period of time, and the control module 30 controls the second ultrasonic sensor 43.
  • the ultrasonic waves are emitted during the second period of time after the first period of time, and the first ultrasonic sensor 41 and the second ultrasonic sensor 43 receive the obstacle echo in the second period of time.
  • the control module 30 transmits and receives an obstacle echo combination according to the first ultrasonic sensor 41 and the second ultrasonic sensor 43 in the ultrasonic sensor assembly 20. Situation, determine the orientation of the obstacle.
  • the control module 30 determines that the obstacle is located in the first detection area 11.
  • the control module 30 determines that the obstacle is located in the second detection region 12.
  • the control module 30 determines that an obstacle is located in the third detection area 13.
  • the control module 30 determines that an obstacle is located in the third detection area 13.
  • the control module 30 determines that an obstacle is located in the third detection area 13.
  • control module 30 calculates an obstacle based on the time difference between the ultrasonic wave transmitted by the ultrasonic sensor assembly 20 and the echo of the received obstacle. The distance from the intelligent lawn mower.
  • the first axis 411 and the second axis 431 are coplanar in the vertical direction, so that the intelligent lawn mower can obtain the maximum range.
  • the area of the detection area is overlapped, and since the selected ultrasonic sensors are the same, the coplanarity of the axes can facilitate the arrangement of the ultrasonic sensor structure and the design of the mounting structure of the housing 10.
  • the effective detection range of the ultrasonic sensor assembly 20 is covered.
  • Intelligent mower 200 is the area directly in front of the fuselage.
  • the effective detection range of the ultrasonic sensor assembly 20 is the sum of the first detection area, the second detection area, and the third detection area.
  • the ultrasonic sensor assembly 20 is used when more than two ultrasonic sensors are used, i.e., to obtain a larger area overlap in front of the intelligent lawn mower 200.
  • the detection area and the position information of the obstacle, the ultrasonic sensor assembly 20 may include three or more ultrasonic sensors.
  • the ultrasonic sensor exceeds two, the ultrasonic waves transmitted to the ultrasonic sensor have different requirements in different arrangements.
  • the larger the area of the overlapping detection area of the plurality of ultrasonic sensors the wider the detection range of the obstacles, and the more accurate the position information of the obstacles is obtained.
  • the cooperative work of the plurality of ultrasonic sensors can increase the obstacles in front of the intelligent lawn mower 200.
  • the accuracy of the object detection is a method for a portable device.
  • Fig. 15 shows an embodiment in which the intelligent lawn mower 200 according to the second embodiment of the present invention includes three ultrasonic sensors, the axes of which are parallel to each other.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 41, a second ultrasonic sensor 43, and a third ultrasonic sensor 45.
  • the first ultrasonic sensor 41 has a first transceiving area A.
  • the second ultrasonic sensor 43 has a second transceiving area B.
  • the third ultrasonic sensor 45 has a third transceiving area C.
  • the three ultrasonic sensors are all parallel to each other, wherein the first ultrasonic sensor 41 and the second ultrasonic sensor 43 form a field of view overlap detection area directly in front of the casing 10, and the third ultrasonic sensor 45 and the second ultrasonic sensor 43 are in the casing 10.
  • the field of view overlap detection region is formed in front of the casing, but the third ultrasonic sensor 45 and the first ultrasonic sensor 41 do not form a field of view overlap detection region directly in front of the casing 10.
  • the third ultrasonic sensor 45 and the second ultrasonic sensor 43 form a field of view overlap detection area directly in front of the casing 10, and the first ultrasonic sensor 41 does not form a field of view overlap detection area directly in front of the casing 10, so
  • the three ultrasonic sensors 45 may transmit ultrasonic waves simultaneously with the first ultrasonic sensor 41, or may alternately transmit ultrasonic waves with the first ultrasonic sensor 41, and the third ultrasonic sensors 45 and the second ultrasonic sensors 43 may alternately transmit ultrasonic waves.
  • the control module 30 controls the first ultrasonic sensor 41 and the third ultrasonic sensor 45 to emit ultrasonic waves in a first period of time, the first ultrasonic wave
  • the sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 receive an obstacle echo in a first period of time
  • the control module 30 controls the second ultrasonic sensor 43 to emit an ultrasonic wave in a second period of time after the first period of time,
  • the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 receive an obstacle echo in a second period of time.
  • the control module 30 controls the first ultrasonic sensor 41 to emit ultrasonic waves in the first time period, the first ultrasonic wave
  • the sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 receive an obstacle echo in a first period of time
  • the control module 30 controls the second ultrasonic sensor 43 to emit an ultrasonic wave in a second period of time after the first period of time
  • the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 receive the obstacle echo in the second period of time
  • the control module 30 controls the third ultrasonic sensor 45 to be in the third period after the second period of time.
  • the ultrasonic waves are transmitted, and the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 receive an obstacle echo in a third period of time.
  • the non-overlapping portion of the first transceiving area A is the first detecting area 11 of the sensor assembly 20, and the non-overlapping portion of the second transceiving area B is the second detecting area 12 of the sensor unit 20, and the third transceiving area
  • the non-overlapping portion of C is the third detection area 13 of the sensor assembly 20, and the portion where the first transmission and reception area A and the second transmission and reception area B overlap is the fourth detection area 14 of the sensor assembly 20, and the second transmission and reception area B and the third transmission and reception area
  • the portion where the area C overlaps is the fifth detection area 15 of the sensor assembly 20.
  • the control module 30 can still determine the obstacle according to the combination of the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 in the ultrasonic sensor assembly 20 to transmit and receive obstacle echoes.
  • the orientation, regarding the specific determination method, the obstacle determination in the transmission/reception area of the first ultrasonic sensor 41 and the second ultrasonic sensor 43 can be referred to the aforementioned determination method.
  • the obstacle position determination manner is the same as that of the first ultrasonic sensor 41 and the second ultrasonic sensor 43, There is no repeated description.
  • Fig. 16 shows an embodiment in which the intelligent lawn mower 200 according to the second embodiment of the present invention includes four ultrasonic sensors, the axes of which are parallel to each other.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 41, a second ultrasonic sensor 43, and a third ultrasonic wave.
  • the four ultrasonic sensors are all parallel to each other, wherein the first ultrasonic sensor 41 and the second ultrasonic sensor 43 form a field of view overlap detection area directly in front of the casing 10, and the third ultrasonic sensor 45 and the second ultrasonic sensor 43 are in the casing 10.
  • the field of view overlap detection region is formed in front of the casing, but the third ultrasonic sensor 45 and the first ultrasonic sensor 41 do not form a field of view overlap detection region directly in front of the casing 10.
  • the fourth ultrasonic sensor 47 does not have any of the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 to form a field of view overlap detection area directly in front of the casing 10.
  • the third ultrasonic sensor 45 and the second ultrasonic sensor 43 form a field of view overlap detection area directly in front of the casing 10, and the first ultrasonic sensor 41 does not form a field of view overlap detection area directly in front of the casing 10, so
  • the three ultrasonic sensors 45 may transmit ultrasonic waves simultaneously with the first ultrasonic sensor 41, or may alternately transmit ultrasonic waves with the first ultrasonic sensor 41, and the third ultrasonic sensors 45 and the second ultrasonic sensors 43 alternately transmit ultrasonic waves.
  • the fourth ultrasonic sensor 47 does not form a field of view overlap detection area directly in front of the casing 10 with any of the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45, and the fourth ultrasonic sensor 47 may
  • the ultrasonic waves are selectively transmitted simultaneously with the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45, and the first ultrasonic sensor 41, the second ultrasonic sensor 43, and the third ultrasonic sensor 45 may be alternately transmitted alternately in time. Ultrasound.
  • the control module 30 controls the first ultrasonic sensor 41 and the fourth ultrasonic sensor 47.
  • the ultrasonic wave is emitted during the first time period, and the first ultrasonic sensor 41, the second ultrasonic sensor 43, the third ultrasonic sensor 45, and the fourth ultrasonic sensor 47 receive the obstacle echo in the first time period, and the control module 30 controls the fourth.
  • the ultrasonic sensor 47 and the second ultrasonic sensor 43 emit ultrasonic waves in a second period of time after the first period of time, and the first ultrasonic sensor 41, the second ultrasonic sensor 43, the third ultrasonic sensor 45, and the fourth ultrasonic sensor 47 are in the second Receiving the obstacle echo in the time period, the control module 30 controls the fourth ultrasonic sensor 47 and the third ultrasonic sensor 45 to emit ultrasonic waves in a third time period after the second time period, the first ultrasonic sensor 41 and the second ultrasonic sensor 43 The third ultrasonic sensor 45 and the fourth ultrasonic sensor 47 are in the third time period Receive obstacle echoes.
  • the control module 30 controls the first ultrasonic sensor 41 within the first time period.
  • the ultrasonic wave is transmitted, and the first ultrasonic sensor 41, the second ultrasonic sensor 43, the third ultrasonic sensor 45, and the fourth ultrasonic sensor 47 are in the first period of time.
  • the control module 30 controls the second ultrasonic sensor 43 to emit ultrasonic waves in a second time period after the first time period, the first ultrasonic sensor 41, the second ultrasonic sensor 43, the third ultrasonic sensor 45, and the fourth
  • the ultrasonic sensor 47 receives the obstacle echo in the second time period
  • the control module 30 controls the third ultrasonic sensor 45 to emit ultrasonic waves in the third time period after the second time period, the first ultrasonic sensor 41 and the second ultrasonic sensor 43.
  • the third ultrasonic sensor 45 and the fourth ultrasonic sensor 47 receive the obstacle echo in the third time period, and the control module 30 controls the fourth ultrasonic sensor 47 to emit the ultrasonic wave in the fourth time period after the third time period, first The ultrasonic sensor 41, the second ultrasonic sensor 43, the third ultrasonic sensor 45, and the fourth ultrasonic sensor 47 receive an obstacle echo in the fourth period of time.
  • the third ultrasonic sensor 45 and the first ultrasonic sensor 41 do not overlap the detection area, the third ultrasonic sensor 45 may transmit a signal simultaneously with the first ultrasonic sensor 41, or may be rotated with the first ultrasonic sensor 41, so that there may be More types of signal transmission combinations are not described here.
  • the control module 30 can still transmit and receive an obstacle echo combination according to the first ultrasonic sensor 41, the second ultrasonic sensor 43, the third ultrasonic sensor 45, and the fourth ultrasonic sensor 47 in the ultrasonic sensor assembly 20.
  • the determination of the obstacle in the transmission/reception area of the first ultrasonic sensor 41 and the second ultrasonic sensor 43 can be referred to the above-described determination method with respect to the specific determination method.
  • the determination of the obstacle in the transmission/reception area of the second ultrasonic sensor 43 and the third ultrasonic sensor 45 can be determined by referring to the first ultrasonic sensor 41 and the second ultrasonic sensor 43, and the method is the same.
  • the fourth ultrasonic sensor 27 transmits the ultrasonic wave, only when the fourth ultrasonic sensor 27 receives the obstacle echo, the control module determines that the obstacle is located in the detection area where the fourth ultrasonic sensor 27 is located.
  • the intelligent lawn mower 200 of the second embodiment of the present invention detects an obstacle by using an ultrasonic sensor.
  • the intelligent lawn mower 200 has a preset distance. When the distance between the intelligent lawn mower 200 and the obstacle is less than or equal to a preset distance, the smart The mower avoids obstacles without continuing to move toward obstacles and achieves a non-contact obstacle avoidance of the intelligent mower.
  • the preset distance values when the distance is relatively small, the relative short-distance non-contact obstacle avoidance can be realized.
  • the distance is relatively large, the long-distance non-contact avoidance of the relatively close-range non-contact obstacle avoidance can be realized. barrier.
  • the position of the obstacle can be known, the accuracy of the obstacle positioning is improved, and the intelligent lawn mower 200 is adapted to different working conditions, and at the same time, after knowing the direction It is convenient for the intelligent lawn mower 200 to take targeted obstacle avoidance measures, for example, if the obstacle is on the right side, the left turn is performed on the premise that the left turn condition is satisfied.
  • FIG. 17 is a plan view of a smart lawn mower 300 according to a third embodiment of the present invention.
  • schematic diagram. 18 is a schematic view showing an arrangement and a detection range of the ultrasonic sensor assembly of the intelligent lawn mower 300 of the third embodiment shown in FIG.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 61 and a second ultrasonic sensor 63.
  • the first ultrasonic sensor 61 receives and transmits ultrasonic waves in the first transceiving area, and the second ultrasonic wave
  • the sensor 63 receives and transmits ultrasonic waves in the second transceiving area.
  • the first ultrasonic sensor 61 and the second ultrasonic sensor 63 are arranged parallel to each other in the width direction of the smart mower and adjacently disposed on the casing 10 such that the first transceiving area and the second transceiving area do not overlap.
  • This embodiment detects the obstacle by the first ultrasonic sensor 61 and the second ultrasonic sensor 63, and realizes the non-contact obstacle avoidance by the limitation of the preset distance.
  • the ultrasonic sensor assembly 20 further includes a third ultrasonic sensor 65 and a fourth ultrasonic sensor 67.
  • the third ultrasonic sensor 65 receives and transmits ultrasonic waves in the third transceiving area.
  • the fourth ultrasonic sensor 67 receives and transmits ultrasonic waves in the fourth transceiving area.
  • the third ultrasonic sensor 65 is located on the other side of the first ultrasonic sensor 61 that is not adjacent to the second ultrasonic sensor 63, and the third ultrasonic sensor 65 and the first ultrasonic sensor 61 are disposed at an angle to each other on the housing 10 such that the first A transceiver area and the third receiving area partially overlap.
  • the fourth ultrasonic sensor 67 is located on the other side of the second ultrasonic sensor 63 that is not adjacent to the first ultrasonic sensor 61, and the fourth ultrasonic sensor 67 and the second ultrasonic sensor 63 are disposed at an angle to each other on the housing 10 such that the first The second transmitting and receiving area and the fourth receiving area are partially overlapped, and the four ultrasonic sensors form four detecting areas, wherein a portion where the first transmitting and receiving area and the third transmitting and receiving area overlap each other is a third detecting area 13 The portion other than the overlap in the first transmitting and receiving area is the first detecting area 11, and the portion where the second transmitting and receiving area and the fourth transmitting and receiving area overlap each other is the fourth detecting area 14, and the second transmitting and receiving area overlaps The portion is the second detection area 12.
  • the first ultrasonic sensor 61 and the third ultrasonic sensor 65 in the overlapped third detection area 13 can receive ultrasonic echoes, that is, if the first ultrasonic sensor 61 transmits ultrasonic waves, the first ultrasonic wave Both the sensor 61 and the third ultrasonic sensor 65 can receive the ultrasonic echo; if the third ultrasonic sensor 65 transmits the ultrasonic wave, both the first ultrasonic sensor 61 and the third ultrasonic sensor 65 can receive the ultrasonic echo.
  • the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 in the overlapped fourth detection area 14 can receive ultrasonic echoes, that is, if the second ultrasonic sensor 63 transmits ultrasonic waves, the second ultrasonic sensor 63 and The fourth ultrasonic sensor 67 can receive the ultrasonic echo; if the fourth ultrasonic sensor 67 transmits the ultrasonic wave, both the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 can receive the ultrasonic echo.
  • the first ultrasonic sensor 61 and the second ultrasonic sensor 63 may be divided
  • the third ultrasonic sensor 65 and the fourth ultrasonic sensor 67 are disposed between the first ultrasonic sensor 61 and the second ultrasonic sensor 63, and the axes of the first ultrasonic sensor 61 and the third ultrasonic sensor 65 are formed.
  • the layout can be combined differently according to your needs.
  • Fig. 19 is a view showing the detection range of the ultrasonic sensor unit of the intelligent lawn mower 300 according to the third embodiment of the present invention in the second arrangement.
  • This second arrangement of the ultrasonic sensor assembly differs from the first arrangement in that the ultrasonic sensor assembly 20 is mounted at a distance D from the front end of the housing.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 61, a second ultrasonic sensor 63, a third ultrasonic sensor 65, and a fourth ultrasonic sensor 67.
  • the first ultrasonic sensor 61 receives and transmits ultrasonic waves in the first transceiving area
  • the second ultrasonic sensor 63 receives and transmits ultrasonic waves in the second transceiving area
  • the third ultrasonic sensor 65 receives and transmits ultrasonic waves in the third transceiving area
  • the fourth ultrasonic sensor 67 receives and transmits ultrasonic waves in the fourth transceiving area.
  • the first ultrasonic sensor 61 and the second ultrasonic sensor 63 are arranged parallel to each other in the width direction of the smart mower and adjacently disposed on the casing 10 such that the first transceiving area and the second transceiving area do not overlap.
  • the third ultrasonic sensor 65 is located on the other side of the first ultrasonic sensor 61 that is not adjacent to the second ultrasonic sensor 63, and the third ultrasonic sensor 65 and the first ultrasonic sensor 61 are disposed at an angle to each other on the housing 10 such that the first A transceiver area and the third receiving area partially overlap.
  • the fourth ultrasonic sensor 67 is located on the other side of the second ultrasonic sensor 63 that is not adjacent to the first ultrasonic sensor 61, and the fourth ultrasonic sensor 67 and the second ultrasonic sensor 63 are disposed at an angle to each other on the housing 10 such that the first The two transmitting and receiving areas and the fourth receiving area partially overlap, and the four ultrasonic sensors form four detecting areas, and the four detecting areas are the same as the first type of arrangement.
  • the labels of the areas are the same as those of FIG. .
  • 67 can be disposed at any position in the longitudinal direction of the casing 10 if the first ultrasonic sensor 61, the second ultrasonic sensor 63, the third ultrasonic sensor 65, and the fourth ultrasonic sensor 67 are disposed on the casing 10 closer to the rear end.
  • the shape of the housing can be improved or the ultrasonic sensor can be set higher.
  • the first ultrasonic sensor 61, the second ultrasonic sensor 63, the third ultrasonic sensor 65, and the fourth ultrasonic sensor 67 are disposed in the case in consideration of the transmission and reception of the ultrasonic waves and the small space occupation.
  • the front half of the longitudinal direction of the body 10, the distance D is less than or equal to half the length of the housing 10, so that it can be more conveniently passed.
  • the structure of the front end of the housing is modified to suit the field of view and to avoid blocking the ultrasonic waves.
  • the intelligent lawn mower 300 of the third embodiment has a housing axis 210 in the front-rear direction, and the axis of the third ultrasonic sensor 65 and the axis of the fourth ultrasonic sensor 67 are at an angle to the housing axis.
  • the axes of the first ultrasonic sensor 61 and the second ultrasonic sensor 63 are parallel to each other.
  • the acoustic wave emitting ends of the third ultrasonic sensor 65 and the fourth ultrasonic sensor 67 are offset toward the housing axis such that the first ultrasonic sensor 61 and the third ultrasonic sensor 65 are disposed at an angle to each other, and the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 are disposed at an angle to each other.
  • the angle ⁇ 1 between the first ultrasonic sensor 61 and the third ultrasonic sensor 65 is in the range of 10° to 80°.
  • the intersection angle ⁇ 1 of the first ultrasonic sensor 61 and the third ultrasonic sensor 65 ranges from 25° to 55°.
  • the intersection of the first ultrasonic sensor 61 and the third ultrasonic sensor 65 in the range of 25°-55° ensures that the overlap detection area is brought closer to the front of the smart mower 300 while the need to overlap the detection area is obtained.
  • the angle ⁇ 2 between the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 is in the range of 10° to 80°.
  • the intersection angle ⁇ 2 of the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 ranges from 25° to 55°.
  • the intersection of the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 in the range of 25 to 55 degrees ensures that the overlap detection area is brought closer to the front of the intelligent lawn mower 300 while the need to overlap the detection area is obtained.
  • the first ultrasonic sensor 61 and the second ultrasonic sensor 63 can send signals alternately with each other, or can send signals at the same time.
  • the control module 30 controls the first ultrasonic sensor 61 and the second ultrasonic sensor 63 to alternately transmit ultrasonic waves in time
  • the control module 30 controls the first ultrasonic sensor 61 to emit ultrasonic waves in the first time period
  • the first ultrasonic sensor 61, the second The ultrasonic sensor 63, the third ultrasonic sensor 65, and the fourth ultrasonic sensor 67 receive the obstacle echo in the first period of time
  • the control module 30 controls the second ultrasonic sensor 63 to emit the ultrasonic wave in the second period after the first period of time.
  • the first ultrasonic sensor 61, the second ultrasonic sensor 63, the third ultrasonic sensor 65, and the fourth ultrasonic sensor 67 receive the obstacle echo in the second period of time.
  • the control module 30 controls the first ultrasonic sensor 61 and the second ultrasonic sensor 63 to simultaneously emit ultrasonic waves in time
  • the control module 30 controls the first ultrasonic sensor 61 and the second ultrasonic sensor 63 to emit ultrasonic waves in a first period of time
  • first The ultrasonic sensor 61, the second ultrasonic sensor 63, the third ultrasonic sensor 65, and the fourth ultrasonic sensor 67 receive an obstacle echo in the first period of time.
  • the control module 30 According to the first ultrasonic sensor 61 and the second ultrasonic sensor 63 in the ultrasonic sensor assembly 20, and the first ultrasonic sensor 61, the second ultrasonic sensor 63, the third ultrasonic sensor 65, and the fourth ultrasonic sensor 67 receive the obstacle echo. Combine the situation and determine the orientation of the obstacle. When only the first ultrasonic sensor 61 of the ultrasonic sensor assembly 20 emits ultrasonic waves, and only the first ultrasonic sensor 61 receives the obstacle echo, the control module 30 determines that the obstacle is located in the first detection area.
  • the control module 30 determines that the obstacle is located in the second detection area.
  • the control module 30 determines that an obstacle is located in the third detection area.
  • the control module 30 determines that an obstacle is located in the fourth detection area.
  • control module 30 calculates the distance of the obstacle from the intelligent lawn mower based on the time difference between the transmitted ultrasonic wave of the ultrasonic sensor assembly 20 and the echo of the received obstacle. .
  • the first ultrasonic sensor 61 has a first axis 611
  • the second ultrasonic sensor 63 has a second axis 631
  • a third The ultrasonic sensor 65 has a third axis 651
  • the fourth ultrasonic sensor 67 has a fourth axis 671
  • the first axis 611, the second axis 631, the third axis 651, and the fourth axis 671 are coplanar in the vertical direction
  • the setting allows the intelligent lawn mower to obtain the largest range of overlapping detection area, and since the selected ultrasonic sensors are the same, the axial coplanarity can facilitate the arrangement of the ultrasonic sensor structure and the design of the housing 10 mounting structure.
  • the third ultrasonic sensor 65 and the The transmitting and receiving area of the fourth ultrasonic sensor 67 is wider, that is, the transmitting and receiving area of the third ultrasonic sensor 65 is simultaneously overlapped with the first ultrasonic sensor 61 and the second ultrasonic sensor 63, and the transmitting and receiving area of the fourth ultrasonic sensor 67 is simultaneously with the first ultrasonic sensor 61 and The second ultrasonic sensors 63 overlap.
  • the first ultrasonic sensor 61 receives and transmits ultrasonic waves in the first transceiving area
  • the second ultrasonic sensor 63 receives and transmits ultrasonic waves in the second transceiving area
  • the third ultrasonic sensor 65 receives and transmits ultrasonic waves in the third transceiving area
  • the fourth ultrasonic sensor 67 receives and transmits ultrasonic waves in the fourth transceiving area.
  • the non-overlapping portion of the first transceiving area is the first detecting area 11 of the sensor assembly 20, and the non-overlapping portion of the second transceiving area is the second detecting area 12 of the sensor unit 20, the first transceiving area,
  • the portion where the third transceiving area and the fourth transceiving area overlap is the third detecting area 13 of the sensor assembly 20, and the portion where the first transceiving area and the fourth transceiving area overlap and does not overlap with the third detecting area is the fourth of the sensor assembly 20.
  • the detection area 14 the portion where the first transmission and reception area and the third transmission and reception area overlap and does not overlap with the fourth detection area is the fifth detection area 15 of the sensor component 20 , and the second transmission and reception area, the third transmission and reception area, and the fourth transmission and reception area overlap.
  • the portion is the sixth detection area 16 of the sensor assembly 20, and the portion where the second transmission and reception area and the third transmission and reception area overlap and does not overlap with the sixth detection area is the seventh detection area 17 of the sensor assembly 20, and the second transmission and reception area and the The portion where the four transceiving regions overlap and does not overlap the sixth detecting region is the eighth detecting region 18 of the sensor assembly 20.
  • the control module 30 transmits ultrasonic waves according to the first ultrasonic sensor 61 and the second ultrasonic sensor 63 in the ultrasonic sensor assembly 20, and the first ultrasonic sensor 61, the second ultrasonic sensor 63, the third ultrasonic sensor 65, and the The four ultrasonic sensors 67 receive the combination of the obstacle echoes and determine the orientation of the obstacle.
  • the control module 30 determines that the obstacle is located in the first detection area 11.
  • the control module 30 determines that the obstacle is located in the second detection region 12.
  • the control module 30 determines that the obstacle is located in the third Detection area 13.
  • the control module 30 determines that the obstacle is located in the fourth detection region 14.
  • the control module 30 determines that the obstacle is located in the fifth detection region 15.
  • the control module 30 determines that the obstacle is located at the sixth Detection area 16.
  • the control module 30 determines that the obstacle is located at the eighth detection area 18.
  • the control module 30 determines that the obstacle is located at the seventh detection region 17.
  • the control module 30 relies on the ultrasonic waves emitted by the ultrasonic sensor assembly 20 and receives obstacles back. The time difference of the wave, calculate the distance of the obstacle from the intelligent mower.
  • the intelligent lawn mower 300 detects an obstacle by using an ultrasonic sensor.
  • the intelligent lawn mower 300 has a preset distance. When the distance between the intelligent lawn mower 300 and the obstacle is less than or equal to a preset distance, the smart The mower avoids obstacles without continuing to move toward obstacles and achieves a non-contact obstacle avoidance of the intelligent mower.
  • the preset distance values when the distance is relatively small, the relative short-distance non-contact obstacle avoidance can be realized.
  • the distance is relatively large, the long-distance non-contact avoidance of the relatively close-range non-contact obstacle avoidance can be realized. barrier.
  • the angular arrangement of the ultrasonic sensors the position of the obstacle can be known, the accuracy of the obstacle positioning can be improved, and the intelligent lawn mower 300 can be adapted to different working conditions, and at the same time, the intelligent cutting can be facilitated after knowing the direction.
  • the grass machine 300 takes targeted obstacle avoidance measures, for example, if the obstacle is on the right side, the left turn is performed on the premise that the left turn condition is satisfied.
  • FIG. 21 is a schematic diagram showing the arrangement and the axial relationship of an ultrasonic sensor including two ultrasonic sensors in the intelligent lawn mower 400 according to the fourth embodiment of the present invention.
  • the ultrasonic sensor assembly 20 includes two ultrasonic sensors including a first ultrasonic sensor 81 and a second ultrasonic sensor 83.
  • the first ultrasonic sensor 81 receives and transmits ultrasonic waves in a first transceiving area, and the second ultrasonic sensor 83 is in a second receiving area.
  • the first ultrasonic sensor and the second ultrasonic sensor are disposed at an angle to each other on the housing 10 such that the first transceiving area and the second receiving area partially overlap, the first transceiving area
  • the portion overlapping the second receiving area is a third detecting area, and the portion other than the overlap in the first transmitting and receiving area is the first detecting area.
  • the first ultrasonic sensor 81 has a first axis 811
  • the second ultrasonic sensor 83 has a second axis 831.
  • the angle ⁇ 1 between the first axis 811 and the second axis 831 ranges from 10° to 80°. In a preferred embodiment of this embodiment of the invention, the angle ⁇ 1 between the first axis 811 and the second axis 831 ranges from 25° to 55°.
  • the first ultrasonic sensor 81 may only be responsible for transmitting ultrasonic waves in the first receiving area
  • the second ultrasonic sensor 83 is responsible for receiving ultrasonic waves in the second receiving area
  • the structure is still capable of detecting obstacles, as The difference in the position of the overlapping area of the first ultrasonic sensor 81 and the second ultrasonic sensor 83 can realize the distance of the obstacle detecting distance.
  • the intelligent mower 400 has a preset distance, When the distance between the intelligent lawn mower 100 and the obstacle is less than or equal to the preset distance, the intelligent lawn mower performs obstacle avoidance without continuing to advance toward the obstacle and realizing the non-contact obstacle avoidance of the intelligent lawn mower.
  • the relative short-distance non-contact obstacle avoidance can be realized.
  • the long-distance non-contact avoidance of the relatively close-range non-contact obstacle avoidance can be realized. barrier.
  • FIG. 22 is a schematic diagram showing the detection range of the first arrangement of the ultrasonic sensor assembly including the three ultrasonic sensors of the intelligent lawn mower 400 according to the fourth embodiment of the present invention.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 81, a second ultrasonic sensor 83, and a third ultrasonic sensor 85.
  • the first ultrasonic sensor 81 represents an ultrasonic sensor capable of performing two functions of transmitting an ultrasonic wave and receiving an obstacle echo
  • the second ultrasonic sensor 83 and the third ultrasonic sensor 85 do not transmit ultrasonic waves for the receiving sensor.
  • the second ultrasonic sensor 83 and the third ultrasonic sensor 85 are respectively located on both sides of the first ultrasonic sensor 81 and are disposed at an angle crossing with the first ultrasonic sensor 81.
  • the angle of intersection may be such that the overlap detection area is as close as possible to the close detection area of the front section of the machine.
  • This method can detect obstacles at close range and can know the direction of the obstacle.
  • the first ultrasonic sensor 81 can only transmit ultrasonic waves, that is, the first ultrasonic sensor 81 is a single ultrasonic transmitting sensor, and the second ultrasonic sensor 83 and the third ultrasonic sensor 85 are still receiving sensors.
  • the second ultrasonic sensor 83 and the third ultrasonic sensor 85 and the first ultrasonic sensor 81 may form an overlap detection area at different positions, thereby increasing the range in which the obstacle is recognized.
  • the first ultrasonic sensor 81 has a first axis 811
  • the second ultrasonic sensor 83 has a second axis 831
  • the third ultrasonic sensor 85 has a third axis 851.
  • the second axis 831 and the third axis 851 intersect with the first axis 811, respectively, in the embodiment of Figure 22 of the present invention, the angle of intersection between the second axis 831 and the first axis 811 and the third axis 851 and the first The angle of intersection between the axes 811 is the same. In other embodiments, the angle of intersection between the second axis 831 and the first axis 811 may be different than the angle of intersection between the third axis 851 and the first axis 811.
  • the angle ⁇ 3 between the first axis 811 and the second axis 831 ranges from 10° to 80°. In a preferred embodiment of this embodiment of the invention, the angle ⁇ 3 between the first axis 811 and the second axis 831 ranges from 25° to 55°.
  • the angle ⁇ 2 between the first axis 811 and the third axis 851 ranges from 10° to 80°. In a preferred embodiment of this embodiment of the invention, the angle ⁇ 2 between the first axis 811 and the third axis 851 ranges from 25° to 55°.
  • the first axis 811, the second axis 831 and the third axis 851 are coplanar in the vertical direction, so that the smart mowing can be performed.
  • the machine 400 obtains the largest range of overlapping detection area areas, and since the selected ultrasonic sensors are the same, the axis coplanarity may facilitate the arrangement of the ultrasonic sensor structure and the design of the housing 10 mounting structure.
  • Fig. 23 is a view showing the detection range of the ultrasonic sensor unit of the intelligent lawn mower 400 according to the fourth embodiment of the present invention in the first arrangement.
  • the first ultrasonic sensor 81 has a first transceiving area.
  • the second ultrasonic sensor 83 has a second receiving area.
  • the third ultrasonic sensor 85 has a third receiving area.
  • the first transceiving area, the second receiving area, and the third receiving area are formed with an overlap detecting area directly in front of the smart mower 400.
  • the first ultrasonic sensor 81, the second ultrasonic sensor 83, and the third ultrasonic sensor 85 in the overlap detection area may receive ultrasonic echoes, that is, if the first ultrasonic sensor 81 transmits ultrasonic waves, the first ultrasonic sensor 81 and the second Both the ultrasonic sensor 83 and the third ultrasonic sensor 85 can receive ultrasonic echoes.
  • the non-overlapping portion of the first transceiving region is the first detecting region 11 of the sensor assembly 20, and the portion where the first transceiving region, the second receiving region, and the third receiving region overlap is the second of the sensor assembly 20.
  • Detection area 12 The portion of the first transceiving area overlapping the second receiving area that is removed from the second detecting area is the fourth detecting area 14 of the sensor assembly 20.
  • the portion of the first transceiving area overlapping the third receiving area that is removed from the second detecting area is the third detecting area 13 of the sensor assembly 20.
  • FIG. 24 is a schematic diagram showing the detection range of the second arrangement of the ultrasonic sensor assembly including the three ultrasonic sensors of the intelligent lawn mower 400 according to the fourth embodiment of the present invention.
  • This second arrangement of the ultrasonic sensor assembly differs from the first arrangement in that the ultrasonic sensor assembly 20 is mounted at a distance D from the front end of the housing.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 81, a second ultrasonic sensor 83, and a third ultrasonic sensor 85.
  • the second ultrasonic sensor 83 and the third ultrasonic sensor 85 are respectively located on both sides of the first ultrasonic sensor 81 and with the first ultrasonic sensor 81 Angled cross setting.
  • the angle of intersection may be such that the overlap detection area is as close as possible to the close detection area of the front section of the machine. This method can detect obstacles at close range and can know the direction of the obstacle.
  • the first ultrasonic sensor 81 has a first transceiving area.
  • the second ultrasonic sensor 83 has a second receiving area.
  • the third ultrasonic sensor 85 has a third receiving area.
  • the first transceiving area, the second receiving area, and the third receiving area are formed with an overlap detecting area directly in front of the smart mower 400.
  • the first ultrasonic sensor 81, the second ultrasonic sensor 83, and the third ultrasonic sensor 85 in the overlap detection area may receive ultrasonic echoes, that is, if the first ultrasonic sensor 81 transmits ultrasonic waves, the first ultrasonic sensor 81 and the second Both the ultrasonic sensor 83 and the third ultrasonic sensor 85 can receive ultrasonic echoes.
  • the non-overlapping portion of the first transceiving area is the first detecting area 11 of the sensor assembly 20, and the portion where the first transceiving area, the second receiving area, and the third receiving area overlap is the second detecting area 12 of the sensor assembly 20.
  • the portion of the first transceiving area overlapping the second receiving area that is removed from the second detecting area is the fourth detecting area 14 of the sensor assembly 20.
  • the portion of the first transceiving area overlapping the third receiving area that is removed from the second detecting area is the third detecting area 13 of the sensor assembly 20.
  • the first ultrasonic sensor 81, the second ultrasonic sensor 83, and the third ultrasonic sensor 85 may be disposed in principle. Any position in the longitudinal direction of the casing 10, if the first ultrasonic sensor 81, the second ultrasonic sensor 83, and the third ultrasonic sensor 85 are disposed on the casing 10 closer to the rear end, in order to ensure that the ultrasonic sensor transmits ultrasonic waves and receives The obstacle echo is unaffected and the shape of the housing can be improved or the ultrasonic sensor can be set higher.
  • the first ultrasonic sensor 81, the second ultrasonic sensor 83, and the third ultrasonic sensor 85 are disposed in the first half of the longitudinal direction of the casing 10 in consideration of the transmission and reception of ultrasonic waves and the small space occupation.
  • the distance D is less than or equal to half the length of the casing 10. In this way, it is more convenient to adapt the structure of the front end of the casing to the range of the field of view to avoid blocking the ultrasonic waves.
  • the control module 30 generates ultrasonic waves according to the first ultrasonic sensor 81 in the ultrasonic sensor assembly 20, the first ultrasonic sensor 81, the second ultrasonic sensor 83, and The third ultrasonic sensor 85 receives the combination of the obstacle echoes and determines the orientation of the obstacle.
  • the control module 30 determines that the obstacle is located in the first detection area 11.
  • the control module 30 determines that the obstacle is located in the second Detection area 12.
  • the control module 30 determines that the obstacle is located in the third detection region 13.
  • the control module 30 determines that the obstacle is located in the fourth detection region 14.
  • control module 30 calculates the distance of the obstacle from the intelligent lawn mower based on the time difference between the transmitted ultrasonic wave of the ultrasonic sensor assembly 20 and the echo of the received obstacle. .
  • the embodiments of the intelligent lawn mower of the foregoing four embodiments of the present invention are equally applicable to other self-mobile devices, such as smart sweeping robots, and the description of the embodiment of the smart sweeping robot or more self-moving devices is not repeated here, and the others
  • the embodiment of the mobile device is the same as the smart lawn mower 100, 200, 300, 400 of the four embodiments described above.
  • the ultrasonic sensor assembly 20 to which all of the embodiments of the present invention are applied is exemplified below by the ultrasonic sensor in the intelligent lawn mower 100 of the first embodiment.
  • the control module 30 controls the first ultrasonic sensor 21 and the second ultrasonic sensor 23 to emit ultrasonic waves at intervals on the time axis, and the specific steps are as follows:
  • Step S11 the first ultrasonic sensor 21 emits ultrasonic waves at a first time
  • Step S12 the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive ultrasonic waves
  • Step S13 the second ultrasonic sensor 23 emits ultrasonic waves at a second time
  • Step S14 The first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive the ultrasonic waves.
  • the control module 30 controls the ultrasonic sensor assembly 20 to cyclically perform obstacle detection in accordance with the procedure shown in FIG. If there is an obstacle in the effective detection range, the transmitted ultrasonic waves will be reflected by the obstacle to form an echo.
  • the ultrasonic sensor assembly 20 receives the echo, and the control module 30 analyzes and determines the orientation and distance of the obstacle based on the echo information. If there is no obstacle in the effective detection range, the ultrasonic sensor component of step S12 and step S14 does not receive the ultrasonic echo, and then analyzes and judges the intelligent mowing There is no obstacle in the forward direction of the machine 100.
  • the time difference T at which the first ultrasonic sensor 21 and the second ultrasonic sensor 23 emit ultrasonic waves is referred to as an effective reception period.
  • the specific time of the effective reception period T varies depending on the strength of the driving signal generated by the driving circuit and the hardware parameters of the ultrasonic sensor.
  • the step of alternately transmitting the ultrasonic waves is equally applicable to the above-described intelligent lawn mowers 200, 300 of the present invention.
  • FIG. 26 is a schematic diagram of the ultrasonic sensor component receiving signals corresponding to different obstacle conditions in the effective detection range of the intelligent lawn mower, and FIG. 26 is exemplified by the ultrasonic sensor in the intelligent lawn mower 100 of the first embodiment.
  • the waveform diagram is only used to indicate the waveform received by the ultrasonic sensor assembly when the obstacle is in different orientations, and does not represent the received signal waveform of the real sensor component.
  • taking the ultrasonic wave emitted by the first ultrasonic sensor 21 as an example, a schematic diagram of the signals received by the first ultrasonic sensor 21 and the second ultrasonic sensor 23 when the obstacle appears in different orientations is illustrated. In the received signal waveform of Fig.
  • a waveform R similar to a rectangle represents a self-excited oscillation after the ultrasonic sensor transmits the ultrasonic wave
  • a waveform N similar to the diamond represents the reflected ultrasonic wave received by the ultrasonic sensor. Since the first ultrasonic sensor 21 emits ultrasonic waves in this embodiment, the received signal schematic of the first ultrasonic sensor 21 always has a waveform a similar to a rectangle. The case of transmitting and receiving signals is also applicable to the above-described intelligent lawn mowers 200, 300 of the present invention.
  • the first ultrasonic sensor 21 emits ultrasonic waves at time t0. In the period from t0 to t1, neither the first ultrasonic sensor 21 nor the second ultrasonic sensor 23 receives the reflected ultrasonic waves.
  • the control module 30 determines that there is no obstacle within the effective detection range of the smart mower 100.
  • the period from t0 to t1 is the effective reception period T described above.
  • the first ultrasonic sensor 21 emits ultrasonic waves at time t0. During the period from t0 to t1, the first ultrasonic sensor 21 receives the transmitted wave and the second ultrasonic sensor 23 does not receive the reflected ultrasonic wave.
  • the control module 30 determines that there is an obstacle in the first detection area of the smart mower 100.
  • the first ultrasonic sensor 21 emits ultrasonic waves at time t0. During the period from t0 to t1, the first ultrasonic sensor 21 does not receive the transmitted wave and the second ultrasonic sensor 23 receives the reflected ultrasonic wave.
  • the control module 30 determines that there is an obstacle in the second detection area of the smart mower 100.
  • the first ultrasonic sensor 21 emits ultrasonic waves at time t0. In the period from t0 to t1, neither the first ultrasonic sensor 21 nor the second ultrasonic sensor 23 receives the super reflection Sound waves.
  • the control module 30 determines that there is an obstacle in the third detection area of the smart mower 100.
  • the ultrasonic sensor involved in the transmission forms an ultrasonic field of view for detecting an obstacle
  • the intelligent lawn mower only needs to detect in the height direction.
  • An obstacle in a certain height range in the advancing direction but it is necessary to detect an obstacle in the width range of the smart mower directly in front of it, so in order to obtain a wider obstacle detection range, the preferred field of view of the present invention is non-circular.
  • the housing 10 having a bottom surface and mounting the long axis direction as It is substantially parallel to the bottom surface of the housing 10, and is mounted in a short axis direction substantially perpendicular to the bottom surface of the housing 10.
  • the basic meaning here includes two layers, the first layer means that the major axis direction is completely parallel to the bottom surface of the casing 10, the short axis direction is completely perpendicular to the bottom surface of the casing 10; the second layer means the long axis direction and the casing 10
  • the bottom surface is approximately parallel (not absolutely parallel) and the minor axis direction is approximately perpendicular (not absolutely perpendicular) to the bottom surface of the housing 10.
  • the waveform surface is elliptical.
  • the description of the ultrasonic beam template in this embodiment is equally applicable to the intelligent lawn mowers 100, 200, 300, 400 of the foregoing four embodiments of the present invention.
  • the ultrasonic beam template of the ultrasonic sensor itself can be directly selected to be non-circular, and the field of view 98 is non-circular.
  • the shape is perpendicular to the axis of the ultrasonic sensor to make a facet to obtain the wave face.
  • the description of the ultrasonic beam template for the ultrasonic sensor itself in this embodiment is equally applicable to the intelligent lawn mowers 100, 200, 300, 400 of the aforementioned four embodiments of the present invention.
  • the ultrasonic beam template of the ultrasonic sensor 20' itself may be circular, and the field of view 98' is non- Circularly, a beam adjuster 90 for adjusting an ultrasonic beam template shape of the ultrasonic wave emitted by the ultrasonic sensor may be disposed at one end of the ultrasonic wave emitted by the ultrasonic sensor, and the ultrasonic beam template obtained after the beam adjuster 90 is adjusted is the non-circular shape
  • the field of view 98 of the ultrasonic sensor assembly 20 is non-circular, and a tangential surface is formed perpendicular to the axis of the ultrasonic beam template to obtain the undulating surface. Description of the ultrasonic beam template of the ultrasonic sensor itself in this embodiment
  • the arrangement of the beam adjuster 90 is equally applicable to the intelligent lawn mowers 100, 200, 300, 400 of the aforementioned four embodiments of
  • an acoustic waveguide tube can be disposed on the ultrasonic sensor, and in order to obtain a larger area of the overlapping detection area, the acoustic emission range can be increased to the tube through the acoustic waveguide.
  • the control module 30 controls the intelligent lawn mower to perform preset obstacle avoidance measures.
  • the preset distance is positively related to at least one of a moving speed, an acceleration, and an inertia of the intelligent lawn mower.
  • the inertia is related to the quality of the intelligent mower and the setting position of the moving module shaft, that is, it is related to the mass distribution of the intelligent mower, because the position of the moving module shaft will affect the mass distribution of the intelligent mower, and thus affect inertia.
  • the preset distance is less than or equal to 25 cm.
  • the preset distance is less than or equal to 15 cm.
  • the preset distance is less than or equal to 10 cm.
  • the preset distance is less than or equal to 40% of the length of the casing.
  • the preset distance is less than or equal to 24% of the length of the casing.
  • the preset distance is less than or equal to 15% of the length of the casing. Taking the width dimension of the intelligent lawn mower of the present invention as a reference value, the preset distance is less than or equal to 60% of the width of the casing. When the intelligent lawn mower of the present invention needs to realize close-range non-contact obstacle avoidance, the preset distance is less than or equal to 35% of the width of the casing. When the working lawn of the intelligent lawn mower of the present invention has a slope or a narrow passage, the predetermined distance is less than or equal to 25% of the width of the casing.
  • the setting of the preset distance is related to the length and width of the casing, because the intelligent lawn mower is not only related to the preset distance but also related to the preset distance when selecting different obstacle avoidance logics.
  • the length and width of the housing are related.
  • the above description regarding the preset distance is also applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the control module 30 only limits the scope of analysis.
  • the ultrasonic echoes received within the analysis are analyzed.
  • the defined analysis range is related to the length of the housing 10.
  • the defined analysis range is preferably 200 cm or less, which refers to the front end of the casing 10 to 200 cm in front of the casing 10.
  • the range of defined analytical ranges is preferably less than or equal to 90 cm, which refers to the front end of the housing 10 to 90 cm in front of the housing 10.
  • 90 cm refers to the front end of the housing 10 to 90 cm in front of the housing 10.
  • the above description regarding the limited analysis range is equally applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the intelligent lawn mower needs to detect obstacles in the forward direction, and only detects obstacles that meet a certain height range, and obstacles beyond the height range may not be detected. For example, obstacles beyond the height of 5 cm of the intelligent mower 1 itself may not be detected. Since the detected obstacle has a high range of requirements, the premise of determining whether the obstacle is detected is that the obstacle falls within the field of view of the ultrasonic sensor, so that the ultrasonic field of view emitted by the ultrasonic sensor can detect the ultrasonic wave generated by the obstacle. The mounting height and pitch angle of the ultrasonic sensor are different, which determines the direction of the field of view.
  • the installation height of the ultrasonic sensor is H1
  • the height limit of the obstacle to be identified is H2 (for the intelligent lawn mower, H2 is generally set to the height of the grass to be cut), that is, higher than H2 is recognized as an obstacle, and lower than H2 is not considered as an obstacle.
  • H1 H2+L*sin( ⁇ )
  • L is the distance from the axis of the ultrasonic sensor to the determination section
  • is determined by the performance of the sensor.
  • is the offset angle of the center line of the ultrasonic sensor with respect to the bottom surface of the housing, if the ultrasonic sensor is tilted upward by - ⁇ , if the ultrasonic sensor is tilted downward by + ⁇ .
  • the field of view 98 of the ultrasonic sensor can satisfy coverage to a range larger than H2, and can recognize an object higher than the height of H2 and perform obstacle recognition.
  • the setting of the height H1 of the ultrasonic sensor in the present embodiment is also applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the intelligent lawn mower has a substantially determined range of mowing heights that need to be cut, so an object larger than the height of the grass to be cut is recognized as an obstacle, and at the same time, in order to complete the determination.
  • the height of the grass can be cut off, and the field of view of the ultrasonic sensor is not required to identify the grass that needs to be cut as an obstacle, because the ultrasonic sensor's own performance determines the values of ⁇ and ⁇ , and the distance of the L after determining the section is also determined.
  • the setting of the height H1 of the ultrasonic sensor in the present embodiment is also applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the height of the mowing height H2 is selected in order to be able to cut off most of the grass, for a part of the height is high.
  • the tall grass at the mowing height H2 is still to be cut, but since the height of the high grass is greater than the value of H2, the high grass will be identified as an obstacle for obstacle avoidance, which will result in High grass cannot be cut.
  • the intelligent lawn mower of the present invention is pre-set with a threshold threshold of reflected wave, because for the high grass entering the field of view of the ultrasonic sensor, the top end of the grass enters the field of view of the ultrasonic sensor, and the echo signals generated at the top of the grass are compared.
  • Weak by setting the threshold threshold of the reflected wave threshold, the ultrasonic echo smaller than the threshold threshold of the reflected wave threshold is determined to be generated by the high grass, and the intelligent lawn mower continues to advance to cut it, and the echo signal larger than the threshold threshold of the reflected wave threshold is determined.
  • intelligent lawn mowers need to take obstacle avoidance measures.
  • the circuit can be improved, the magnification adjustment can be set, and the signal gap between the high grass echo and the obstacle echo can be opened by the magnification adjustment, and then the threshold of the reflected threshold can be set by the reasonable reflection threshold. Distinguish between tall grass and obstacles.
  • the aforementioned reflected wave threshold threshold value of the present invention may be a reflected signal intensity value.
  • the housing 10 in order to further improve the accuracy of the obstacle recognition of the ultrasonic sensor, the housing 10 is adjacent to the adjacent wall 91 adjacent to the field of view of the ultrasonic sensor.
  • the surface (the upper surface being the surface adjacent to the field of view) needs to be lower than the outermost side of the field of view of the ultrasonic sensor (the virtual side of the field of view) in the vertical direction, so that the housing 10 can be prevented from blocking the transmission of ultrasonic waves.
  • the housing 10 is prevented from reflecting ultrasonic waves, and the reflected ultrasonic echo is prevented from being applied to the sensor.
  • the transmitted ultrasonic waves have an effect, on the other hand, avoid blocking the ultrasonic waves, because the ultrasonic waves identifying the obstacles less affect the accuracy of the obstacle recognition.
  • the level of the acoustic beam axis can be ensured, and the sensor has an acoustic beam axis.
  • the acoustic beam axis is required to be horizontal, and the vertical direction is lower than the outermost edge of the ultrasonic sensor field by the adjacent wall 91. Ensuring that the housing structure does not block the field of view, thereby not changing the position of the acoustic beam axis, ensuring that the acoustic beam axis is horizontal.
  • the shape of the upper surface of the abutting wall 91 adjacent to the field of view of the ultrasonic sensor is not limited.
  • the field of view of the ultrasonic sensor has a boundary line 97 adjacent to the housing 10, and the upper surface of the abutment wall 91 on the housing 10 adjacent to the boundary line 97 is lower than the boundary line 97.
  • the boundary line 97 has a minimum distance ⁇ 1 greater than 0 from the upper surface of the abutting wall 91.
  • the related description regarding the abutting wall 91 of the casing 10 in the present embodiment is also applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the upper surface of the abutting wall 91 may be a curved surface, a beveled surface, or other irregular surface.
  • the abutting wall 91 is a beveled surface.
  • the inclined surface is lower than the boundary line 97, and the relationship between the adjacent wall 91 and the boundary line 97 can be achieved by the design of the housing 10, such as slotting along the field of view of the ultrasonic sensor on the housing to facilitate the unobstructed emission of the ultrasonic wave. Go out.
  • the relationship between the abutting wall 91 and the boundary line 97 can also be achieved by adjusting the mounting position and the pitch angle of the ultrasonic sensor with respect to the front end of the intelligent mower, where the mounting position of the ultrasonic sensor includes the mounting position of the ultrasonic sensor in the front-rear direction of the casing 10. Also included is the mounting height of the ultrasonic sensor, including whether the ultrasonic sensor is embedded in the housing 10 or mounted outside the housing 10. Although adjusting the position and pitch angle of the ultrasonic sensor affects the detection field of view of the ultrasonic sensor, The acoustic wave transmission direction of the ultrasonic sensor can still be adjusted by other auxiliary structures.
  • the tangent and the slope are one face.
  • the abutting wall 91 is a curved surface, and the abutting wall 91 is lower than the boundary line 97, and the relationship between the curved surface and the outermost side of the boundary line 97 may be This is achieved by the arc design of the curved surface on the housing 10.
  • the relationship between the inclined surface and the outermost side of the boundary line 97 can also be achieved by adjusting the mounting position and the elevation angle of the ultrasonic sensor with respect to the front end of the intelligent lawn mower.
  • the abutting wall 91 may be an irregular shape other than a slope or a curved surface, such as a wave shape, a step shape, or the like.
  • the above description of the angular relationship between the tangent to the adjacent wall 91 and the ultrasonic sensor of the present invention is equally applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the intelligent lawn mower may further include a fifth ultrasonic sensor 92, and an output end of the fifth ultrasonic sensor 92 is connected to an input end of the control module 30.
  • the fifth ultrasonic sensor 92 is configured to detect whether there is a slope in the forward direction of the intelligent lawn mower in real time, and the control module 30 is configured to control whether the intelligent lawn mower is uphill according to the slope information detected by the fifth ultrasonic sensor 92.
  • the fifth ultrasonic sensor 92 is mounted on the housing 10 at an angle relative to the bottom surface of the housing 10.
  • the fifth ultrasonic sensor 92 When the intelligent lawn mower is mowing the ground, the fifth ultrasonic sensor 92 does not recognize the obstacle, and the intelligent lawn mower When there is a slope in front, the fifth ultrasonic sensor 92 receives the ultrasonic echo reflected from the slope and recognizes that the obstacle is a slope.
  • the mounting angle of the axis of the fifth ultrasonic sensor 92 with respect to the bottom surface of the housing 10 depends mainly on the inclination angle of the slope in the working area. When the machine is initially set, the approximate parameters of the slope angle of the slope can be input into the intelligent lawn mower according to the working environment.
  • the arrangement and description of the fifth ultrasonic sensor 92 of this embodiment are equally applicable to the intelligent lawn mowers 100, 200, 300, 400 of the above-described four embodiments of the present invention.
  • the fifth ultrasonic sensor 92 can be installed at the front end of the casing; when the casing height is low, the slope surface
  • the distance to the axis of the ultrasonic sensor may also be in the blind spot range, and in order to avoid the blind spot of the fifth ultrasonic sensor 92, the fifth ultrasonic sensor 92 may be disposed higher than the housing.
  • the intelligent lawn mower of the present invention when the intelligent lawn mower reaches the preset distance, performs preset obstacle avoidance measures in order to prevent the collision obstacle from continuing to advance toward the obstacle, and the preset obstacle avoidance measure is control
  • the module controls the smart mower to stop moving, or to retreat, or to steer, or to move and turn, or to retreat and turn.
  • the distance between the intelligent mower and the obstacle is greater than zero.
  • the preset distance can be infinitely close to 0 cm, but not equal to 0, for example, when intelligent cutting
  • the braking effect of the grass machine 10 is good enough to achieve the effect of infinitely close to the obstacle but no collision when the brake is applied or retracted.
  • improve the cutting Grass efficiency often requires lawn mowers to perform preset motion logic to continue work rather than downtime.
  • the intelligent lawn mower can select the obstacle avoidance logic according to the virtual three detection areas formed by the control module, and can also use the preset. Distance L is used for virtual partition avoidance.
  • FIG. 48 and FIG. 49 are schematic diagrams of the obstacle avoidance of the intelligent lawn mower.
  • the housing 10 has a housing axis 210 extending in the front-rear direction, and the control module 30 is provided with a virtual front of the housing 10.
  • the F zone and the G zone are bounded by the axis and respectively located on both sides of the housing axis 210, and the detection range of the ultrasonic sensor assembly 20 covers at least the E zone, the F zone and the G zone.
  • the advance or turning of the intelligent lawn mower in the E zone may cause damage collision with the obstacle.
  • the right turn of the intelligent lawn mower in the F zone does not cause damage collision with the obstacle.
  • the left turn of the intelligent lawn mower in the G area does not cause damage collision with the obstacle.
  • the intelligent lawn mower in the H zone does not cause damage collision with the obstacle when it advances or turns.
  • the control module controls the intelligent lawn mower to perform the obstacle avoidance measure of the backward movement.
  • the control module controls the intelligent lawn mower to perform the obstacle avoidance measure of the backward movement.
  • the control module controls the smart mower to perform obstacle avoidance measures of right turn or retreat.
  • the control module controls the smart mower to perform obstacle avoidance measures of turning left or backward.
  • the control module controls the intelligent lawn mower to perform obstacle avoidance measures of advancing or retreating or turning when an obstacle is detected in the H zone.
  • the control module controls the intelligent mower to perform obstacle avoidance measures of advancing or retreating or turning when an obstacle is detected in the H zone.
  • the area of the floating area is mainly related to the speed of the intelligent lawn mower and the width of the machine, and the control module 30 is based on the distance of the obstacle, the speed of the intelligent lawn mower, the structural parameters of the airframe, and The turning radius can be calculated according to an algorithm to determine which obstacle avoidance logic can be used without collision obstacles.
  • the virtual setting can be performed according to the preset distance.
  • the setting requirement of the E zone is that, within the scope of the E zone, the intelligent mower can only take the obstacle avoidance measures of retreating.
  • Software control due to machine size information (such as length, width, front end side The chamfering curvature of the surface, etc.) and the performance parameters of the machine (such as braking capacity, signal transmission speed, etc.) are set in the machine, and the machine automatically distinguishes the range of the E zone with the preset distance and the current moving speed.
  • the sum of L1+L2 in the E zone is an equivalent
  • the sum of L1'+L2' is an equivalent
  • L1 is the first.
  • the distance from the axis of the ultrasonic sensor to the obstacle and L2 is the distance from the axis of the second ultrasonic sensor to the obstacle.
  • the sum of L3+L4 in the same F zone and G zone is an equivalent value
  • the sum of L3'+L4' is an equivalent value
  • L3 is the distance from the axis of the first ultrasonic sensor to the obstacle
  • L4 is the distance from the axis of the second ultrasonic sensor to the obstacle.
  • FIG. 50 is a logic diagram of the intelligent lawn mower of the present invention for avoiding obstacles.
  • the intelligent lawn mower of the present invention always maintains a certain distance from the obstacle 99 when the obstacle is avoided, and the distance H1 or H2 is greater than 0.
  • the intelligent lawn mower of the invention can realize non-contact obstacle avoidance.
  • the circle in the figure represents the hypothetical obstacle 99.
  • the general ultrasonic sensor 21 for transmitting and receiving is required to simultaneously carry out the operation of transmitting ultrasonic waves and receiving obstacle echoes, so that there is a problem of blind spots.
  • the principle of forming the blind zone is: ultrasonic wave emission by a high voltage pulse. After the pulse is over, the ultrasonic sensor will have a longer aftershock. During the period of this aftershock, the reflected wave signal of the acoustic wave is indistinguishable from the transmitted wave signal, thereby forming a blind spot of the ultrasonic sensor.
  • the time of aftershocks is different, and the blind areas of ranging are also different.
  • the blind spot radius of the measuring area of the ultrasonic sensor is greater than 30 cm.
  • FIG. 43(a) is a preset distance S1 of the ultrasonic sensor in which the blind spot exists
  • FIG. 43(b) is a preset distance S2, S2 ⁇ S1 of the ultrasonic sensor in which the partial dead zone is solved. If the blind spot problem is completely solved, S2 will be smaller, so if the blind zone problem is not solved, the self-moving device using the ultrasonic sensor as the non-contact obstacle avoidance method cannot judge the obstacle within 30 cm from the ultrasonic sensor. Therefore, in order to avoid collision obstacles, the distance from the mobile device to take a reaction action must be greater than the radius of the blind zone, that is, the preset distance (distance required to avoid obstacles) must be greater than the blind zone radius.
  • the self-moving device of the fifth embodiment of the present invention is the same as the structure and control of the intelligent lawn mower 100 of the first embodiment, and the repeated description and the repetition of the drawings are not provided herein. Description will be made directly using the drawings of the intelligent lawn mower 100 of the first embodiment.
  • the self-moving device of the fifth embodiment of the present invention is different from the intelligent lawn mower 100 of the first embodiment in the first arrangement of the self-moving device of the fifth embodiment (
  • the first arrangement is the same as the first arrangement of the intelligent lawn mower 100 of the first embodiment), wherein the third detection area covers at least the measurement dead zone of the first ultrasonic sensor 21 and a part of the second ultrasonic sensor 23 distance measurement blind zone.
  • the self-mobile device according to the fifth embodiment of the present invention is different from the intelligent lawn mower 100 of the first embodiment in the second arrangement of the self-mobile device in the fifth embodiment (
  • the second arrangement is the same as the second arrangement of the intelligent lawn mower 100 of the first embodiment), wherein the position of the ultrasonic sensor assembly 20 is moved backward relative to the front end of the housing 10, and for an ultrasonic sensor having a dead zone, The blind spot of the ultrasonic sensor partially or completely falls on the casing 10. Therefore, the third detection area does not need to cover the measurement dead zone of all the first ultrasonic sensors 21 and the measurement dead zone of the second ultrasonic sensor 23.
  • the third detecting area only needs to cover the blind spot at the front end of the housing 10 at the same time (the blind spot of the first ultrasonic sensor and the blind spot of the second ultrasonic sensor) ) Just fine. Therefore, the specific values of the mutual angles of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 need only be such that the third detection area simultaneously covers the blind spot located at the front end of the casing 10.
  • the angle ⁇ 1 between the first ultrasonic sensor 21 and the second ultrasonic sensor 23 is 60 to 110.
  • the intersection angle ⁇ 1 of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 ranges from 70° to 90°.
  • the intersection of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 in the range of 70°-90° can ensure that the overlap detection area covers the blind spot, and can also prevent the ultrasonic wave emitted by one of the ultrasonic sensors from being directly reflected by the obstacle without being reflected by the obstacle.
  • An ultrasonic sensor receives, reducing both the first ultrasonic sensor 21 and the second ultrasonic sensor 23 Signal crosstalk between them improves the accuracy of obstacle recognition.
  • the angle at which the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are mutually formed refers to an angle at which the first axis 211 and the second axis 231 are mutually formed.
  • the angle ⁇ 1 between the first axis 211 and the housing axis 210 is in the range of 10°-80° with respect to the housing axis 210.
  • the angle ⁇ 2 between the second axis 231 and the housing axis 210 ranges from 25° to 55°. In the range of angles, it is possible to ensure that the overlapping detection area covers the blind spot, and it is also possible to prevent the ultrasonic wave emitted by one of the ultrasonic sensors from being directly received by the other ultrasonic sensor without being reflected by the obstacle, reducing the first ultrasonic sensor 21 and the second ultrasonic sensor 23
  • the signal crosstalk between the two improves the accuracy of obstacle recognition.
  • the specific values of the mutual angle between the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are based on the spacing between the first ultrasonic sensor 21 and the second ultrasonic sensor 23 and the ultrasonic sensor.
  • the hardware parameters such as the beam divergence angle may vary.
  • the arrangement of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 only needs to reach a third detection area capable of forming an overlap, and the third detection area can cover at least a portion of the measurement dead zone of the first ultrasonic sensor 21 at the same time.
  • the measurement dead zone of the partial second ultrasonic sensor 23 is sufficient.
  • the first ultrasonic sensor 21 transmits the ultrasonic wave as an example, when there is an overlap detection area.
  • the first ultrasonic sensor 21 cannot distinguish between the ultrasonic echo of the obstacle or the ultrasonic wave itself.
  • the second ultrasonic sensor 23 in the overlap detection area can also receive the ultrasonic echo, and for the second ultrasonic sensor 23, the position of the obstacle is not within the blind spot of the second ultrasonic sensor 23, or even The position of the obstacle is in the blind zone of the second ultrasonic sensor 23, and since the second ultrasonic sensor 23 is not responsible for receiving the echo of the obstacle at this time, the second ultrasonic sensor 23 can be distinguished from the crosstalk by the obstacle.
  • the device 21 and the second ultrasonic sensor 23 are arranged at an angle to each other, which can shorten or even eliminate the blind spot of the self-moving device, improve the accessibility of the self-mobile device, improve the accessibility of the mobile device, and facilitate self-moving.
  • the equipment adapts to different working conditions.
  • the preset distance can be set smaller, and the obstacle detection at a short distance can be realized under the premise of achieving non-contact obstacle avoidance. For mobile devices, close range allows the mower to cut more The grass is conducive to the improvement of work efficiency.
  • the problem of the blind zone can be solved simultaneously by only two ultrasonic sensor crossover designs, the effect of accessibility is achieved, and the purpose of obstructing the obstacle direction is achieved, and the different work can be simultaneously considered.
  • the problem (such as uphill, narrow passage, side wall) is solved.
  • the description of different working conditions is as follows.
  • the self-moving device according to the fifth embodiment of the present invention uses fewer parts, has convenient parts layout, solves many problems, and saves the use cost.
  • three or more ultrasonic sensors may be disposed as in the intelligent lawn mower 100 of the first embodiment, and the blind area coverage is ensured by increasing the area of the overlapping area in turn.
  • the arrangement of three or more ultrasonic sensors and the definition of signal transmission and reception and the position determination of the obstacle are the same as those in the intelligent lawn mower 100 of the first embodiment.
  • the self-moving device of the sixth embodiment of the present invention is the same as the structure and control of the intelligent lawn mower 200 of the second embodiment, and the repeated description and the repetition of the drawings are not provided herein. Description will be made directly using the drawings of the intelligent lawn mower 200 of the second embodiment.
  • the difference between the self-moving device of the sixth embodiment of the present invention and the intelligent lawn mower 200 of the second embodiment is the first arrangement of the self-moving device of the sixth embodiment (the first type)
  • the arrangement is the same as the first arrangement of the intelligent lawn mower 200 of the second embodiment.
  • the third detection area covers at least the measurement blind zone of the first ultrasonic sensor 41 and the measurement of the partial second ultrasonic sensor 43 at least at the same time. From the blind spot.
  • the difference between the self-mobile device of the sixth embodiment of the present invention and the intelligent lawn mower 200 of the second embodiment is that the second arrangement of the self-mobile device of the sixth embodiment (the second type)
  • the arrangement is the same as the second arrangement of the intelligent lawn mower 200 of the second embodiment)
  • the position of the ultrasonic sensor assembly 20 is moved backward relative to the front end of the housing 10, and for the ultrasonic sensor having the dead zone, the ultrasonic sensor Some or all of the dead zone falls on the housing 10. Therefore, the third detection area does not need to cover the ranging dead zone of all the first ultrasonic sensors 41 and the ranging dead zone of the second ultrasonic sensor 43.
  • the third detecting area only needs to cover the blind spot at the front end of the housing 10 (the blind spot of the first ultrasonic sensor and the blind spot of the second ultrasonic sensor) ) Just fine.
  • the self-mobile device of the sixth embodiment of the present invention since obstacles in the overlap detection area are available
  • the ultrasonic echo is received by more than one ultrasonic sensor, and the first ultrasonic sensor 41 transmits the ultrasonic wave as an example.
  • the first ultrasonic wave The blind spot of the sensor 41 itself still exists.
  • the first ultrasonic sensor 41 cannot distinguish between the ultrasonic echo of the obstacle or the aftershock after transmitting the ultrasonic wave by itself, but since the second ultrasonic sensor 43 in the overlapping detection area can also receive the ultrasonic echo, And for the second ultrasonic sensor 43, the position of the obstacle is not within the blind spot of the second ultrasonic sensor 43, or even if the position of the obstacle is within the blind spot of the second ultrasonic sensor 43, due to the second ultrasonic sensor 43 When the ultrasonic wave is not emitted, it is only responsible for receiving the obstacle echo, so that the second ultrasonic sensor 43 can be distinguished from the crosstalk by the ultrasonic echo of the obstacle. Based on this principle, the first ultrasonic sensor 41 and the second ultrasonic sensor 43 cross each other.
  • Angled arrangement that shortens or even eliminates self-moving Blind region equipment to improve the accessibility from the mobile device, from the mobile device to improve accessibility, help from the mobile device to adapt to different operating conditions. Moreover, since the test blind zone of the ultrasonic sensor itself is shortened or eliminated, the preset distance can be set smaller, and the obstacle detection at a short distance can be realized under the premise of achieving non-contact obstacle avoidance. For mobile devices, close-ups allow the mower to cut more grass, which is beneficial to work efficiency.
  • the self-moving device of the sixth embodiment of the present invention only two ultrasonic sensors are arranged in parallel, so that the detection areas of the ultrasonic sensors overlap, and the problem of accessibility and the problem of obstructing the obstacle can be solved simultaneously, and the different work can be simultaneously considered.
  • the self-moving device of the sixth embodiment of the present invention uses fewer parts, has convenient parts layout, solves many problems, and saves the use cost.
  • three or more ultrasonic sensors may be disposed as in the intelligent lawn mower 200 of the second embodiment, and the blind area coverage is ensured by increasing the area of the overlapping area in turn.
  • the arrangement of the three or more ultrasonic sensors and the definition of the signal transmission and reception and the position determination of the obstacle are the same as those in the intelligent lawn mower 200 of the second embodiment.
  • the self-moving device of the seventh embodiment of the present invention is the same as the structure and control of the intelligent lawn mower 300 of the third embodiment, and the repeated description and the repetition of the drawings are not provided herein. Description will be made directly using the drawings of the intelligent lawn mower 300 of the third embodiment.
  • the difference between the self-moving device of the seventh embodiment of the present invention and the intelligent lawn mower 300 of the third embodiment is the first arrangement of the self-mobile device of the seventh embodiment (the first type) Arrange
  • the overlapping area formed by the intersection of the third ultrasonic sensor 65 and the first ultrasonic sensor 61 covers the blind spot of the first ultrasonic sensor 61
  • the overlapping area formed by the intersection of the ultrasonic sensor 63 and the fourth ultrasonic sensor 67 covers the blind spot of the second ultrasonic sensor 63.
  • the third ultrasonic sensor 65 can accurately receive the ultrasonic echo of the obstacle within the blind spot of the first ultrasonic sensor 61.
  • the fourth ultrasonic sensor 67 can Accurate reception of ultrasonic echoes of obstacles can achieve the purpose of reducing or eliminating blind spots.
  • the difference between the self-mobile device of the seventh embodiment of the present invention and the intelligent lawn mower 300 of the third embodiment is that the second arrangement of the self-mobile device of the seventh embodiment (the second type)
  • the arrangement is the same as the first arrangement of the intelligent lawn mower 300 of the third embodiment
  • the position of the ultrasonic sensor assembly 20 is moved backward relative to the front end of the housing 10, and for the ultrasonic sensor having the dead zone, the ultrasonic sensor Some or all of the dead zone falls on the housing 10. Therefore, the third detection area and the fourth detection area do not need to cover the measurement dead zone of all the first ultrasonic sensors 61 and the measurement dead zone of the second ultrasonic sensor 63.
  • the third detection area and the fourth detection area only need to cover the blind area at the front end of the housing 10 (the blind area of the first ultrasonic sensor). And the blind spot of the second ultrasonic sensor).
  • the arrangement of the third ultrasonic sensor 65 and the fourth ultrasonic sensor 67 only needs to reach the third detection area and the fourth detection area capable of forming an overlap, and the third detection area is at least The measurement dead zone of the partial first ultrasonic sensor 61 can be covered, and the fourth detection area can cover at least part of the measurement dead zone of the second ultrasonic sensor 63.
  • the first ultrasonic sensor 61 since the obstacles in the overlap detection area can receive the ultrasonic echo by more than one ultrasonic sensor, the first ultrasonic sensor 61 transmits In the case of the ultrasonic wave, when there is an obstacle in the overlapping detection area and the obstacle is located in the blind spot of the first ultrasonic sensor 61, since the blind spot of the first ultrasonic sensor 61 itself still exists, the first ultrasonic sensor 61 cannot distinguish itself as an obstacle.
  • the ultrasonic echo of the object is also the aftershock after transmitting the ultrasonic wave by itself, but since the third ultrasonic sensor 65 in the overlap detection area can also receive the ultrasonic echo, and since the third ultrasonic sensor 65 does not emit the ultrasonic wave, it is only responsible for receiving the obstacle echo. Therefore, the third ultrasonic sensor 65 can be distinguished from the crosstalk by the ultrasonic echo of the obstacle. Based on this principle, the first ultrasonic sensor 61 and the third ultrasonic sensor 65 are arranged at an angle to each other.
  • the angular arrangement of the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 at the intersection of each other can shorten or even eliminate the blind spot of the self-moving device of the seventh embodiment, improving the accessibility from the mobile device, and the accessibility from the mobile device The improvement helps the self-mobile device of the seventh embodiment to adapt to different working conditions. Moreover, since the test blind zone of the ultrasonic sensor itself is shortened or eliminated, the preset distance can be set smaller, and the obstacle detection at a short distance can be realized under the premise of achieving non-contact obstacle avoidance. For lawn mowers, close-ups allow the mower to cut more grass, which is beneficial to work efficiency.
  • the overlapping area formed by the intersection of the first ultrasonic sensor 61 and the third ultrasonic sensor 65 covers the blind spot of the first ultrasonic sensor 61, and the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67
  • the angle ⁇ 1 between the first ultrasonic sensor 61 and the third ultrasonic sensor 65 is in the range of 10° to 80°.
  • the angle of intersection ⁇ 1 of the first ultrasonic sensor 61 and the third ultrasonic sensor 65 ranges from 25° to 55°.
  • the 25°-55° value range ensures that the overlap detection area covers the dead zone.
  • the angle between the first ultrasonic sensor 61 and the third ultrasonic sensor 65 is an angle formed by the first axis 611 and the third axis 651.
  • the angle ⁇ 2 between the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 ranges from 10° to 80°. In a preferred embodiment of the self-moving device of the seventh embodiment, the intersection angle ⁇ 2 of the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 ranges from 25° to 55°. The 25°-55° value range ensures that the overlap detection area covers the dead zone.
  • the angle between the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 described above refers to the angle between the second axis 631 and the fourth axis 671.
  • the self-moving device of the eighth embodiment of the present invention is the same as the structure and control of the intelligent lawn mower 400 of the fourth embodiment, and the repeated description and the repetition of the drawings are not provided herein. Description will be made directly using the drawings of the intelligent lawn mower 400 of the first embodiment.
  • the self-moving device of the eighth embodiment of the present invention is different from the intelligent lawn mower 400 of the fourth embodiment (including only two ultrasonic sensors) in that the second ultrasonic sensor 83 and the first ultrasonic sensor 81 are different.
  • the overlap detection area formed by the intersection covers at least a portion of the measurement dead zone of the first ultrasonic sensor 81.
  • the first arrangement of the mobile device according to the eighth embodiment of the present invention (the first arrangement is the same as the first arrangement of the intelligent lawn mower 400 of the fourth embodiment), Two super The third detecting area of the overlapping of the acoustic wave sensor 83 and the third ultrasonic sensor 85 and the first ultrasonic sensor 81 are arranged at an angle to each other, and at least simultaneously cover a part of the first ranging dead zone in the first transmitting and receiving area through the third detecting area That is, the purpose of reducing or eliminating the blind spot can be achieved.
  • the difference between the self-mobile device of the eighth embodiment of the present invention and the intelligent lawn mower 400 of the fourth embodiment is that the second arrangement of the self-mobile device of the eighth embodiment (the second type)
  • the arrangement is the same as the second arrangement of the intelligent lawn mower 400 of the fourth embodiment)
  • the position of the ultrasonic sensor assembly 20 is moved backward relative to the front end of the housing 10, and for the ultrasonic sensor having the dead zone, the ultrasonic sensor Some or all of the dead zone falls on the housing 10.
  • the overlapping regions of the second ultrasonic sensor 83 and the third ultrasonic sensor 85 and the first ultrasonic sensor 81 are not required to cover the blind spot of all the first ultrasonic sensors 81, and the third detecting region only needs to cover the first ultrasonic sensor 81.
  • a blind spot at the front end of the casing 10 is sufficient.
  • the angle ⁇ 2 between the second ultrasonic sensor 83 and the first ultrasonic sensor 81 is in the range of 10° to 80°.
  • the angle of intersection ⁇ 2 of the second ultrasonic sensor 83 with the first ultrasonic sensor 81 ranges from 25° to 55°.
  • the intersection of the second ultrasonic sensor 83 and the first ultrasonic sensor 81 in the range of 25° to 55° ensures that the overlap detection area covers the blind spot.
  • the angle between the second ultrasonic sensor 83 and the first ultrasonic sensor 81 is an angle formed by the second axis 831 and the first axis 811.
  • the angle ⁇ 3 between the third ultrasonic sensor 85 and the first ultrasonic sensor 81 ranges from 10° to 80°. In a preferred embodiment of the self-moving device of the eighth embodiment, the angle of intersection ⁇ 3 of the third ultrasonic sensor 85 with the first ultrasonic sensor 81 ranges from 25° to 55°. The intersection of the third ultrasonic sensor 85 in the range of 25°-55° with the first ultrasonic sensor 81 ensures that the overlap detection area covers the blind spot.
  • the angle between the third ultrasonic sensor 85 and the first ultrasonic sensor 81 is an angle formed by the third axis 851 and the first axis 811.
  • only two ultrasonic sensors may be included, which are a second ultrasonic sensor 83 and a first ultrasonic sensor 81, and the second ultrasonic sensor 83 and the first The ultrasonic sensors 81 intersect to form an overlap region, and the second ultrasonic sensor 83 in the ranging dead zone of the first ultrasonic sensor 81 can receive an obstacle echo.
  • Second ultrasonic sensor The angle ⁇ 1 between the 83 and the first ultrasonic sensor 81 is in the range of 10° to 80°. In a preferred embodiment of the self-moving device of the eighth embodiment, the angle of intersection ⁇ 1 of the second ultrasonic sensor 83 with the first ultrasonic sensor 81 ranges from 25° to 55°.
  • the ultrasonic sensor responsible for receiving the obstacle echo can be distinguished from the crosstalk. It is an ultrasonic echo of an obstacle.
  • the blind spot of the self-mobile device of the eighth embodiment can be shortened or even eliminated, and the accessibility of the mobile device is improved, and the accessibility of the mobile device is improved, which is helpful.
  • the preset distance can be set smaller, and the obstacle detection at a short distance can be realized under the premise of achieving non-contact obstacle avoidance. For mobile devices, close-ups allow the mower to cut more grass, which is beneficial to work efficiency.
  • FIG. 37 to FIG. 41 are schematic diagrams of working conditions of a mobile device from encountering a slope.
  • the angle of the sensor axis to the slope is ⁇ 1
  • the angle of the sensor axis and the slope in Fig. 40 is ⁇ 2.
  • the ultrasonic waves emitted by the ultrasonic sensor assembly 20 are blocked by the slope and reflected to the ultrasonic sensor assembly 20.
  • the control module 30 analyzes and calculates the distance S between the position point at which the reflected wave is generated and the self-moving device based on the time difference between the reflected wave and the transmitted wave received by the ultrasonic sensor unit 20.
  • the distance S is the distance detected by the ultrasonic sensor assembly; when the sensor assembly 20 is disposed at a distance D from the front end of the housing 10, the distance S is an ultrasonic wave. The distance detected by the sensor assembly is subtracted from the distance D of the ultrasonic sensor from the front end of the housing 10.
  • the control module 30 can only determine the distance S based on the time difference between the transmission and reception of the ultrasonic wave, and cannot determine the specific object to block the ultrasonic wave.
  • the control module 30 compares the value of the distance S with a preset preset distance L. When S is less than or equal to L, the control module 30 controls whether the self-moving device needs to take obstacle avoidance measures.
  • the preset distance L is related to the accessibility of the mobile device.
  • the preset distance L specifically refers to the minimum distance from the front end of the housing 10 of the mobile device that is preset from the mobile device, which is equivalent to the accessibility distance of the airframe.
  • the design requirement of the specific preset distance L is as described above.
  • the value of the preset distance L is relatively large, and is generally greater than the value of S, thus causing the self-mobile device not to approach the slope. I avoided it.
  • the preset distance L must be greater than the radius r of the ranging dead zone.
  • the self-moving device has not moved to the slope foot position of the slope, and the distance S is less than or equal to the preset distance L, and the control module 30 controls the obstacle avoidance measure from the mobile device, resulting in Since the mobile device is not close to the slope, it is avoided.
  • the grass in the slope area is never cut.
  • the self-moving device of the embodiment of the invention can realize obstacle detection at a short distance, and can directly climb the slope without recognizing the slope, that is, the self-moving device of the present invention does not recognize the slope as an obstacle that needs to be avoided.
  • Fig. 44 shows the obstacle ranging result corresponding to the slope of the ordinary obstacle and the condition of the obstacle echo signal.
  • Figure 44a(1) shows that the mobile device encounters the slope and obtains the distance S3
  • Figure 44b(1) shows that the normal obstacle 73 is encountered from the mobile device and the distance S4 is obtained
  • Figure 44b(2) is the received from the mobile device.
  • the echo intensity value of the ultrasonic wave is higher than the reflected wave threshold threshold 709, so the control module analyzes the received ultrasonic echo to obtain the obstacle 73 at the position.
  • the same distance S4 corresponds to the first position 71 on the slope, but although the field of view from the mobile device may cover the first position 71 and can receive the ultrasonic echo emitted by the first position 71, from Fig. 44a(2) It can be seen that the echo intensity value of the ultrasonic wave reflected by the first position 71 is lower than the reflected wave threshold threshold 709. Therefore, although the ultrasonic echo can be received, the actual control module does not consider the first position 71 to be an obstacle to be avoided. As can be seen from FIG.
  • the point of the obstacle detected by the mobile device is actually at the second position 72, and the distance between the second position 72 and the ultrasonic sensor of the self-mobile device is S3, S3>S4, That is, the distance actually measured by the mobile device is large, and since the self-mobile device of the present invention improves the accessibility, the value of the preset distance L is relatively small, so even when the mobile device walks to the foot of the slope, the measurement is performed. The distance value obtained is still greater than the preset distance L, so the mobile device will continue to move forward and go uphill.
  • Embodiments for solving the problem of uphill will be described below in conjunction with specific embodiments.
  • the self-mobile device of the ninth embodiment of the present invention is identical to the self-mobile device of the fifth embodiment, and the repeated description and the repetition of the drawings are not provided herein.
  • the self-moving device of the ninth embodiment of the present invention covers the blind zone by the field-of-view overlapping detection area formed by the two ultrasonic sensors formed at different angles, and can shorten or eliminate the blind spot zone of the self-moving device, and the preset distance L does not need to be greater than or equal to the blind zone.
  • the radius r, the preset distance L can be a small value, such as about 5 cm.
  • the ultrasonic sensor assembly 20 also has the same slope angle as the housing 10, and the ultrasonic waves emitted by the ultrasonic sensor assembly 20 are no longer blocked by the slope and reflected. Therefore, the probability of judging the slope as an obstacle from the mobile device in the embodiment of the present invention is greatly reduced, thereby preventing the work from being performed without the mobile device entering the slope area.
  • the self-mobile device of the tenth embodiment of the present invention is identical to the self-mobile device of the sixth embodiment, and the repeated description and the repetition of the drawings are not provided herein.
  • the self-moving device of the tenth embodiment of the present invention is arranged in parallel by only two ultrasonic sensors, so that the detection areas of the ultrasonic sensors overlap, and the overlapping detection areas cover the blind areas, which can shorten or eliminate the blind area of the self-moving device, and the preset distance L is not It is required to be greater than or equal to the blind zone radius r, and the preset distance L may be a small value, such as about 5 centimeters.
  • the ultrasonic sensor assembly 20 When the mobile device moves to the slope of the slope, the distance S from the front end of the casing of the mobile device from the slope is greater than the preset distance L, and the mobile device still advances in the original direction and climbs up the slope from the slope. After the mobile device climbs up the slope, the ultrasonic sensor assembly 20 also has the same slope angle as the housing 10, and the ultrasonic waves emitted by the ultrasonic sensor assembly 20 are no longer blocked by the slope and reflected. Therefore, the probability of judging the slope as an obstacle from the mobile device in the embodiment of the present invention is greatly reduced, thereby preventing the work from being performed without the mobile device entering the slope area.
  • the self-mobile device of the eleventh embodiment of the present invention is identical to the self-mobile device of the seventh embodiment, and the repeated description and the repetition of the drawings are not provided herein.
  • the overlapping region formed by the intersection of the third ultrasonic sensor 65 and the first ultrasonic sensor 61 covers the blind spot of the first ultrasonic sensor 61, and the second ultrasonic sensor 63 and the fourth ultrasonic sensor 67 The overlapping region formed by the intersection covers the blind spot of the second ultrasonic sensor 63.
  • the third ultrasonic sensor 65 can accurately receive the ultrasonic echo of the obstacle within the blind spot of the first ultrasonic sensor 61.
  • the fourth ultrasonic sensor 67 can Accurate receiving of the ultrasonic echo of the obstacle can achieve the purpose of reducing or eliminating the blind spot, and improving the accessibility of the self-moving device of the eleventh embodiment. Since the self-moving device of the eleventh embodiment of the present invention has good accessibility, the preset distance L is small, and the distance between the detected distance from the mobile device detected by the mobile device according to the eleventh embodiment of the present invention is greater than the preset distance. L, so the self-mobile device of the eleventh embodiment of the present invention is straight Connect uphill.
  • the self-mobile device of the twelfth embodiment of the present invention is identical to the self-mobile device of the eighth embodiment, and the description of the repeated description and the repetition of the drawings are not repeated here.
  • the self-moving device of the twelfth embodiment of the present invention since an ultrasonic wave is received by an independent ultrasonic sensor in an obstacle in the overlapping detection area, the ultrasonic sensor responsible for receiving the obstacle echo can be distinguished from the crosstalk. Based on this principle, the ultrasonic echo of the obstacle can shorten or even eliminate the blind spot of the self-mobile device of the twelfth embodiment, improving the accessibility of the mobile device.
  • the preset distance L is small, and the distance between the detected distance from the mobile device detected by the mobile device according to the twelfth embodiment of the present invention is greater than the preset distance. L, so the self-mobile device of the eleventh embodiment of the present invention directly achieves an uphill slope.
  • FIG. 45 and FIG. 46 are schematic diagrams showing the working condition of the wall from the oblique side of the mobile device.
  • Fig. 45 when the ultrasonic sensor is installed horizontally forward, the ultrasonic wave it transmits is forwardly transmitted, and the wall of the oblique device cannot be accurately recognized from the mobile device because the ultrasonic sensor may not receive the ultrasonic wave after the ultrasonic wave of the ultrasonic sensor is emitted. Echo, because ultrasonic echoes may be reflected directly from the wall.
  • the intelligent lawn mower 100 structure of the first embodiment of the present invention can solve the problem of the side wall, that is, at least two ultrasonic sensors are designed at an angle to each other, due to two The fields of view of the ultrasonic sensors intersect each other such that regardless of the angle of inclination between the mobile device and the wall, there is always one of the ultrasonic sensors capable of transmitting ultrasonic waves and receiving ultrasonic echoes, thereby identifying the wall as an obstacle, Will be converted from the direction of travel of the mobile device, so reciprocating until both ultrasonic sensors receive no ultrasound echo.
  • the ultrasonic device When there is a narrow passage in the working area, if the width between the narrow passages is small, since the distance from the mobile device to take the reaction action must be greater than the radius of the blind zone, the ultrasonic device receives the ultrasonic wave from left to right or right. The signal is reflected, so that the control module judges that it is always in the obstacle, so that the mobile device cannot pass through the narrow passage, and it is easy to cause the area near the sides of the passage to be unable to perform mowing or cleaning.
  • FIG. 47 is a schematic diagram of a working condition in which a narrow passage is encountered from a mobile device.
  • the ultrasonic sensor arrangement in the intelligent lawn mower 100 of the first embodiment of the present invention is adopted, at least two The ultrasonic sensors are designed at an angle to each other. Since the fields of view of the two ultrasonic sensors cross each other, the preset distance L is small, so that the self-moving device can be closer to the boundary of both sides of the narrow channel.
  • the distance between the two sides of the narrow channel detected by the ultrasonic sensor and the mobile robot is still greater than the preset distance L, so the mobile robot can smoothly enter the narrow channel, and when the mobile robot enters the narrow channel, passes through two
  • the ultrasonic sensors are angled to each other to adjust the forward direction of the mobile robot at all times to avoid collision between the mobile robot and the side walls of the narrow passage. Therefore, the probability that the mobile device cannot pass due to the narrow width of the narrow channel is reduced, and the width distance of the unworked work near the boundary of both sides is also reduced.
  • the self-moving device of the thirteenth embodiment of the present invention is identical to the intelligent lawn mower 100 of the first embodiment, and the description of the repeated description and the repetition of the drawings are not provided herein.
  • the self-moving device of the thirteenth embodiment of the present invention is different from the intelligent lawn mower 100 of the first embodiment in that the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are provided between the self-moving devices of the thirteenth embodiment.
  • the physical isolation of the anti-crosstalk structure, the anti-crosstalk structure may be an independent physical structure between the first ultrasonic sensor 21 and the second ultrasonic sensor 23, or at least two of the first ultrasonic sensor 21 and the second The physical structure of the ultrasonic sensor 23 external or between.
  • the self-moving device further includes an anti-crosstalk structure 80, 89 for preventing the ultrasonic wave transmitted by one of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 from being unobstructed.
  • the object reflection is directly received by the other of the two.
  • the crosstalk prevention structures 80, 89 are provided between the first ultrasonic sensor 21 and the second ultrasonic sensor 23.
  • the crosstalk prevention structures 80, 89 extend toward the front side of the housing 10 without coming into contact with the ultrasonic sensor axis.
  • the crosstalk prevention structure 80, 89 extends to the front side of the housing 10 no more than the intersection of the projections of the first ultrasonic sensor axis and the second ultrasonic sensor axis.
  • the crosstalk prevention structure 80, 89 is located on the front side of the line connecting the acoustic wave emitting point of the first ultrasonic sensor 21 and the acoustic wave emitting point of the second ultrasonic sensor 23 and extends toward the front side of the casing.
  • the crosstalk prevention structure 80, 89 includes a stop wall 801 disposed at an angle to the axis of the ultrasonic sensor.
  • Anti-crosstalk structure 89 includes two stops a stop wall, wherein one of the stop walls (ie, the first cross-interference surface 893 described below) faces the first transceiving area and partially extends into the first transceiving area, and the other stop wall (ie, the second anti-crosstalk surface described below) 894) facing the second transceiving area and partially extending into the second transceiving area.
  • the first ultrasonic sensor 21 has a first axis 211 and the second ultrasonic sensor 23 has a second axis 231.
  • the anti-crosstalk structure 89 has a first anti-crosstalk surface 893 opposite the first ultrasonic sensor 21 and a second anti-crosstalk surface 894 opposite the second ultrasonic sensor 23, the anti-crosstalk structure 89 not exceeding the first axis 211 and the second axis 231 .
  • the crosstalk prevention structure 89 has a first side 891 closest to the first axis 211 and a second side 892 near the second axis 231. The first side 891 does not exceed the first axis 211 and the second side 892 does not exceed the second axis 231.
  • the first side 891 is one side of the first anti-crosstalk surface 893 and the second side 892 is one side of the second anti-crosstalk surface 894.
  • the first anti-crosstalk surface 893 extends partially into the first transceiving area
  • the second anti-crosstalk surface 894 extends partially into the second transceiving area.
  • the crosstalk prevention structure 89 can block the transmission and reception areas of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 at adjacent positions, thereby preventing the first ultrasonic sensor 21 and the second ultrasonic sensor 23 from generating signal crosstalk between each other.
  • each of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 has an anti-crosstalk structure 80, and each anti-crosstalk structure 80 has a stopper wall 801.
  • the two stop walls 801 extend partially into the first transceiving area and the second transceiving area, respectively.
  • the stopper walls 801 of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 correspond to the first anti-crosstalk surface 893 and the second anti-crosstalk surface 894 of the first embodiment.
  • the crosstalk prevention structure 89 can block the transmission and reception areas of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 at adjacent positions, thereby preventing the first ultrasonic sensor 21 and the second ultrasonic sensor 23 from generating signal crosstalk between each other.
  • the two anti-crosstalk structures 80 are symmetrically disposed along the housing axis 210.
  • Fig. 53 shows the difference between the setting of the stopper wall 801 and the absence of the stopper wall 801. From Fig. 53 (a), it can be seen that the ultrasonic wave emitted from one of the ultrasonic sensors, that is, the field of view 98 directly covers the adjacent another ultrasonic wave. The sensor, since the axes of the two ultrasonic sensors are arranged at an angle, a part of the ultrasonic waves emitted by one of the ultrasonic sensors is directly received by the adjacent ultrasonic sensor, and the adjacent ultrasonic sensor is emitted. The ultrasonic waves cause crosstalk. It can be seen from FIG.
  • the field of view 98 formed by the ultrasonic waves emitted by one of the ultrasonic sensors does not cover the adjacent ultrasonic sensor, so that mutual mutual avoidance is avoided.
  • Signal crosstalk
  • the anti-crosstalk structure 80 further includes a mounting hole 802 corresponding to the sound emitting surface of the ultrasonic sensor, a top surface 803, and a virtual parallel surface 804 parallel to the top surface 803.
  • the sounding surface of the ultrasonic sensor is oriented.
  • the stop wall 801 includes a first stop wall 8011 and a second stop wall 8012.
  • the first speed wall 8011 and the second speed wall 8012 may be a unitary structure or a separate structure. When the first speed wall 8011 and the second speed wall 8012 are separated structures, the stop is realized by the superposition of the two structures.
  • the first barrier wall has a top end, which in the embodiment of the invention is the top surface 803.
  • the second speed wall has an upper connection end 805 and the upper connection end 805 is lower than the top end in the vertical direction.
  • the second speed wall 8012 extends from the upper connection end 805 toward the front side of the housing 10, and the height in the vertical direction gradually decreases.
  • the width of the first speed wall 8011 is L3, and most of the ultrasonic waves emitted by the ultrasonic sensor causing mutual crosstalk are blocked by the first speed wall 8011, and the remaining less interference ultrasonic waves only need to be blocked by the second speed wall 8012.
  • the second barrier wall 8012 gradually decreases toward the direction of travel from the mobile device.
  • the second speed wall 8012 has an upper connection end 805 connected to the first speed wall 8011 and lower than the top surface 803, a lower connection end 806 away from the first speed limit wall 8011 and lower than the upper connection end 805 in the vertical direction, and a connection The connection face 809 of the upper connection end 805 and the lower connection end 806.
  • the crosstalk prevention structure 80 has a front end face 808 that is substantially perpendicularly coupled to the top face 803, where substantially perpendicularly refers to a state that is either completely vertical or substantially vertical.
  • the invention provides a first gear wall 8011 and a second gear wall 8012 structure, the first gear wall 8011 can block most of the crosstalk ultrasonic waves, and the second gear wall 8012 has a lower structure than the first gear wall 8011 can block the remaining anti-crosstalk.
  • the wave and is approximately triangular in structure, has a feature that gradually decreases in area toward the traveling direction of the mobile device, and the second barrier wall 8012 extends from the upper connecting end 805 toward the front side of the housing 10, and the height in the vertical direction
  • the shape of the second wall 8012 is uniquely designed, and the height of the height in the vertical direction is gradually reduced.
  • the mounting hole 802 has a hole center 807.
  • the distance L between the hole center 807 and the front end face 808 is greater than 5 mm, the distance L2 between the upper connection end 805 and the front end face 808 is less than 10 mm, and the distance L1 between the lower connection end 806 and the front end face 808 is less than 20 mm.
  • the distance ⁇ between the upper connecting end 805 and the hole center 807 in the vertical direction is less than 16 mm, and the angle between the connecting surface 809 and the virtual parallel surface 804
  • the degree ⁇ ranges from 35° to 55°.
  • the invention can ensure that the ultrasonic waves emitted by the first ultrasonic sensor 21 are not directly received by the second ultrasonic sensor 23 without passing through the obstacle, thereby ensuring the accuracy of the short-distance obstacle recognition, and ensuring the first
  • the ultrasonic sensor 23 transmits the stability of the ultrasonic signal.
  • the stop wall 801 is disposed obliquely with respect to the top surface 803, that is, the angle between the stop wall 801 and the top surface 80 is not equal to 90°, since the virtual parallel plane 804 is parallel to the top surface 803, and the virtual parallel plane
  • the angle ⁇ between the 804 and the stop wall 801 is greater than 0°, and the angle ⁇ is less than 90°, and the angle ⁇ is not equal to 90°.
  • the anti-crosstalk structure 80 of the present invention is configured by tilting the stopper wall 801, taking the first ultrasonic sensor 21 as an example. When the first ultrasonic sensor 21 emits ultrasonic waves, since the stop wall 801 is tilted, part of the ultrasonic waves will directly follow the stop.
  • the wall 801 is emitted and is not reflected back to the first ultrasonic sensor 21, so that the ultrasonic wave directly reflected back to the first ultrasonic sensor 21 can be reduced, and since the ultrasonic wave directly emitted back by the stopper wall 801 becomes small, even the first
  • the ultrasonic sensor 21 receives the ultrasonic echo reflected by the partial stop wall 801, but since the echo intensity values are weak and do not reach the reflected wave threshold threshold of the obstacle determination, the first ultrasonic sensor 21 does not make a close distance. Obstacle judgment improves the accuracy of the judgment of close obstacles.
  • the present invention provides a stop wall adjacent to the first ultrasonic sensor 21 and the second ultrasonic sensor 23, and is disposed such that when the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are angularly intersected, the stop wall can be avoided.
  • the ultrasonic wave emitted by an ultrasonic sensor 21 is directly received by the second ultrasonic sensor 23 through the obstacle reflection, thereby ensuring the accuracy of the short-distance obstacle recognition.
  • the anti-crosstalk structure 80 can restrain the field of view of the ultrasonic wave when the ultrasonic wave is emitted, and further prevent the ultrasonic wave from directly contacting the casing 10 to generate ultrasonic echo, thereby ensuring accurate detection of the obstacle. Sex.
  • the embodiment of the above-described anti-crosstalk structure of the present invention is applicable to the scheme of the cross layout of two ultrasonic sensors of the present invention, that is, the scheme of projection intersection of two sensor axes.
  • the embodiments of the present invention implement at least four forms of obstacle avoidance, that is, the control module controls the movement module to move along a preset path. Maintaining that the spacing between the housing and the obstacle is always greater than zero; the control module controls the movement module to move along a path different from the current forward direction; the control module controls the movement module to move in a direction away from the obstacle; the control module The distance between the obstacle on the side that recognizes the direction of travel of the housing and the housing is small At a preset distance, the control module controls movement of the mobile module along the other side of the direction of travel.
  • the four forms of non-contact obstacle avoidance implementation are as follows:
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module for controlling the intelligent lawn mower
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • the portion other than the overlap in the area is the first detection area, and the portion outside the overlap in the second transceiving area is the second detection area, and the control module controls the movement module to move along the preset path to maintain the space between the housing and the obstacle The spacing is always greater than zero.
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module for controlling the intelligent lawn mower
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • a portion other than the overlap in the area is the first detection area, and a portion other than the overlap in the second transceiving area is the second detection area, and the control module controls the movement module to move along a path different
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module for controlling the intelligent lawn mower
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • the portion other than the overlap in the area is the first detection area
  • the portion other than the overlap in the second transceiving area is the second detection area
  • the control module controls the movement module to move in a direction away from
  • a self-mobile device comprising:
  • a moving module disposed under the housing for driving the housing to move
  • a driving module configured to drive the mobile module to move
  • control module for controlling the intelligent lawn mower
  • the ultrasonic sensor assembly includes at least two ultrasonic sensors, including a first ultrasonic sensor and a second ultrasonic sensor, wherein the first ultrasonic sensor is Receiving and transmitting ultrasonic waves in a first transceiving area, the second ultrasonic sensor receiving and transmitting ultrasonic waves in a second transceiving area, the first ultrasonic sensor and the second ultrasonic sensor being disposed at an angle to each other in the housing
  • the first transmitting and receiving area and the second transmitting and receiving area are partially overlapped to form three detecting areas, wherein a portion where the first transmitting and receiving area and the second transmitting and receiving area overlap each other is a third detecting area, and the first transmitting and receiving is performed.
  • the portion other than the overlap in the region is the first detection region, and the portion outside the overlap in the second transceiving region is the second detection region, and the distance between the obstacle on the side of the control module that recognizes the direction of travel of the housing and the housing is less than The set distance controls the movement module to move along the other side of the direction of travel.
  • the definition of the structure or the transceiving signal of the ultrasonic sensor in the above four modes is the same as that of the intelligent mower 100 of the first embodiment, and the anti-crosstalk structure is defined as the crosstalk structure in the self-mobile device of the thirteenth embodiment described above. , the description will not be repeated here.
  • FIG. 59 is a schematic diagram of a circuit unit of a control module for controlling an ultrasonic sensor assembly.
  • the smart lawn mower 100 of the first embodiment will be described as an example.
  • the self-mobile devices of other embodiments are the same or can be obtained by the same method.
  • the ultrasonic sensor assembly 20 includes a first ultrasonic sensor 21 and a second ultrasonic sensor 23.
  • Each ultrasonic sensor has a respective ultrasonic emission processing circuit and ultrasonic reception processing circuit.
  • the ultrasonic wave transmitting processing circuit of the first ultrasonic sensor 21 includes a drive circuit 31a and a transformer 32a.
  • One end of the driving circuit 31a is connected to the MCU in the control module 30, and receives an activation signal of the MCU, thereby generating a driving signal of a preset frequency.
  • the drive signal is converted by a voltage of the transformer 32a into an electrical signal suitable for the parameters of the first ultrasonic sensor 21.
  • the electrical signal drives the first ultrasonic sensor 21 to emit ultrasonic waves of a predetermined frequency.
  • the specific mode of the driving circuit 31a may be a single-ended burst mode or a double-ended push-pull mode, preferably a double-ended push-pull mode.
  • the preset frequency of the drive signal is generally designed according to the hardware parameters of the sensor used.
  • the predetermined frequency range is greater than 25 kHz, preferably 57 kHz to 60 kHz, such as 58.5 kHz.
  • the ultrasonic wave transmitting processing circuit of the second ultrasonic sensor 23 is the same as the ultrasonic wave transmitting processing circuit of the first ultrasonic sensor 21, and will not be described herein.
  • FIG. 59 is a circuit unit of a control module for controlling an ultrasonic sensor assembly according to an embodiment of the present invention.
  • the ultrasonic wave receiving processing circuit of the first ultrasonic sensor 21 includes an analog-to-digital conversion unit 35a and a data processing unit 37a.
  • the first ultrasonic sensor 21 receives the ultrasonic waves reflected by the obstacle, and converts the ultrasonic waves into electrical signals and supplies them to the analog-digital conversion unit 35a.
  • the analog-to-digital conversion unit 35a converts the analog signal into a digital signal and outputs it to the data processing unit 37a.
  • the data processing unit 37a performs serial processing on the digital signal to obtain the signal 1DC, and transmits 1DC to the control module 30.
  • Control module 30 receives 1 DC and learns the distance of the obstacle based on the analysis of 1DC.
  • the data processing unit 37 mainly includes operations such as filtering, rectifying, sampling, or extracting to achieve a function of shielding the crosstalk signal and/or causing the signal form of the 1DC to conform to the analysis form of the control module 30.
  • the ultrasonic wave receiving processing circuit of the second ultrasonic sensor 23 is the same as the ultrasonic wave receiving processing circuit of the first ultrasonic sensor 21, and will not be described herein.
  • the MCU has a synchronization signal, and when the first ultrasonic sensor 21 transmits the ultrasonic wave, the MCU transmits the synchronization signal to the receiving portion of the second ultrasonic sensor 23.
  • the first ultrasonic sensor 21 starts transmitting ultrasonic waves
  • the second ultrasonic sensor 23 starts receiving ultrasonic waves.
  • the MCU transmits a synchronization signal to the reception of the first ultrasonic sensor 21. section.
  • the second ultrasonic sensor 23 starts transmitting ultrasonic waves
  • the first ultrasonic sensor 21 starts receiving ultrasonic waves.
  • FIG. 60 is a circuit unit of a control module for controlling an ultrasonic sensor assembly according to a second embodiment of the present invention.
  • the intelligent lawn mower 100 of the first embodiment will be described as an example.
  • the first ultrasonic wave receiving processing circuit 21a of the first ultrasonic sensor 21 includes a first MCU and a first transformer, and the first MCU transmits the ultrasonic wave reflected by the first ultrasonic sensor 21 through the obstacle to the third MCU through the serial port, and the second
  • the second ultrasonic receiving processing circuit 23a of the ultrasonic sensor 23 includes a second MCU and a second transformer.
  • the second MCU transmits the ultrasonic wave reflected by the second ultrasonic sensor 23 through the serial port to the third MCU through the serial port, and the third MCU will The reflected ultrasonic waves transmitted by the first MCU and the second MCU are analyzed to obtain the distance and position information of the obstacle, and finally the processing result is output to the main board, and the main board selects to perform related logic control.
  • the first ultrasonic receiving processing circuit 21a and the second ultrasonic receiving processing circuit 23a may further include a data processing unit, and the data processing unit mainly includes operations of filtering, rectifying, sampling, or extracting to achieve a shielded crosstalk signal and/or a signal form that is acquired. Compliant with the functions of the third MCU analysis form.
  • a connection line 96 is provided between the first ultrasonic wave receiving processing circuit 21a and the second ultrasonic wave receiving processing circuit 23a, and the connection line 96 is used to realize the transmission of the synchronization signal.
  • the connection line 96 transmits a synchronization signal to the receiving portion of the second ultrasonic sensor 23.
  • the connection line 96 transmits a synchronization signal to the receiving portion of the first ultrasonic sensor 21.
  • the first ultrasonic sensor 21 starts receiving ultrasonic waves.
  • the first ultrasonic wave receiving processing circuit 21a of the first ultrasonic sensor 21 may not include a transformer, and a transformer may not be required at a low voltage.
  • the ultrasonic sensor is coupled to a processing circuit board having an operational amplifier circuit that implements the function of the amplification module and an AD conversion circuit that implements the AD conversion function.
  • the circuit board has a chip capable of realizing the function of the data buffer storage module and a relatively small MCU having the function of realizing the data extraction module, and the control module has another relatively large MCU for realizing the function of the data analysis module, the relatively large MCU.
  • the data can be analyzed to generate distance information and position information, and the relatively large MCU has software capable of completing the distance value and setting between the obstacle and the ultrasonic sensor. Set the alignment between the distances.
  • the comparison of the preset distances can also achieve distance comparison by hardware, such as FPGA, DSP, and the like.
  • the large MCU can be placed on the motherboard or it can be set separately on a single board.
  • the comprehensive analysis module can collect dust on the main board, and it can not collect dust on the main board, but collect dust on a circuit board with a relatively large MCU.
  • the main controller is set on the main board, and the main controller is used to control the movement of the self-moving device according to the results of the existing analysis.
  • the analysis result can be transmitted to the main controller through hardware, or can be transmitted to the main controller through an electrical signal, such as high frequency indication or low frequency indication or communication to the main controller.
  • a large MCU may be employed to implement the functionality of the relatively small MCU and relatively large MCU of the present invention.
  • no setting may be made between the first ultrasonic wave receiving processing circuit 21a and the second ultrasonic wave receiving processing circuit 23a.
  • the connection circuit directly sets a synchronization signal in the second MCU.
  • the second MCU transmits the synchronization signal to the receiving portion of the second ultrasonic sensor 23.
  • the first ultrasonic sensor 21 starts transmitting ultrasonic waves
  • the second ultrasonic sensor 23 starts receiving ultrasonic waves.
  • the second MCU transmits a synchronization signal to the receiving portion of the first ultrasonic sensor 21.
  • the first ultrasonic sensor 21 starts receiving ultrasonic waves.
  • the first MCU can directly transmit the collected data to the third MCU for analysis processing, and the first MCU can also be internally set.
  • the data analysis unit preprocesses the collected data and transmits it to the second MCU for analysis and processing.
  • the third MCU may send commands to the first ultrasonic sensor 21 and the second ultrasonic sensor 23, such as a pulse number request, a magnification requirement, an ultrasonic transmission command, an ultrasonic echo receiving command, and the like.
  • circuit unit for controlling the ultrasonic sensor assembly by the control module of the second embodiment described above in combination with the first ultrasonic sensor 21 and the second ultrasonic sensor 23 of the intelligent lawn mower 100 of the first embodiment, transmit and receive signals to the first The packet processing of the three MCU processing is described.
  • the third MCU When the first ultrasonic sensor 21 transmits the ultrasonic wave, the third MCU will obtain the echo signal received by the first ultrasonic sensor 21 and the echo signal received by the second ultrasonic sensor 23, which is referred to herein as the first path signal; When the ultrasonic sensor 23 transmits the ultrasonic wave, the third MCU obtains the echo signal received by the second ultrasonic sensor 23 and the echo signal received by the first ultrasonic sensor 21, which is referred to herein as a second signal.
  • the first signal and the second signal collectively comprise four sets of ultrasonic echoes, and the third MCU obtains information of the obstacles by analyzing the four sets of ultrasonic echoes.
  • the third MCU When the first ultrasonic sensor 21 continues to transmit the ultrasonic wave, the third MCU will obtain the echo signal received by the first ultrasonic sensor 21 and the echo signal received by the second ultrasonic sensor 23, which is referred to herein as a third path signal.
  • the two signals and the third signal collectively comprise four sets of ultrasonic echoes, and the third MCU obtains information of the obstacles by analyzing the four sets of ultrasonic echoes.
  • the third MCU always performs obstacle analysis for the four sets of ultrasonic echoes obtained after the first ultrasonic sensor 21 and the second ultrasonic sensor 23 respectively transmit ultrasonic waves.
  • circuit unit is equally applicable to the self-mobile device of the thirteenth embodiment of the present invention.
  • 60 and 61 are examples of two ultrasonic difference sensors. If there are multiple, there are multiple circuits connected to the third MCU. For the instruction to transmit ultrasonic waves, the third MCU gives corresponding instructions for multiple ultrasonic waves.
  • the self-mobile device of the embodiment of the present invention can know the transmission and reception of the signal of the ultrasonic sensor component through the test method, and the smart lawn mower 100 of the first embodiment is taken as an example for specific test.
  • the method is: connecting the first ultrasonic sensor 21 from the mobile device with the receiving device 87 capable of receiving the ultrasonic signal, connecting the second ultrasonic sensor 23 with another receiving device 87 capable of receiving the ultrasonic signal, and then connecting the two receiving devices 87 Connected to the oscilloscope, the electrical signal transmitted by the receiving device 87 to the oscilloscope is displayed on the oscilloscope.
  • the two receiving means 87 receives the ultrasonic signal, it can be determined whether it is determined whether the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are alternately emitted in time. It is also possible to block the ultrasonic wave emitted by the first ultrasonic sensor 21 with an object to observe whether the signal received by the second ultrasonic sensor 23 is affected, that is, whether the signal output result of the second ultrasonic sensor 23 is affected, and if there is an influence, the second ultrasonic wave is proved.
  • the first ultrasonic sensor 21 When the sensor 23 receives the ultrasonic echo of the ultrasonic wave emitted by the first ultrasonic sensor 21, it can be proved that the first ultrasonic sensor 21 simultaneously receives the ultrasonic wave emitted by the first ultrasonic sensor 21 when transmitting the ultrasonic wave. Ultrasound echo.
  • the test method of the second ultrasonic sensor 23 is the same as that of the first ultrasonic sensor 21, and the description thereof will not be repeated.
  • the first ultrasonic sensor 21 and the second ultrasonic sensor 23 can receive the echo signal, if in some areas the first ultrasonic sensor 21 and the second ultrasonic sensor 23 can Receiving the ultrasonic echo, which proves that the fields of view of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 overlap. That is, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 have overlap detection areas, and the obstacle is in the overlap detection area.
  • the field of view of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 can also be known by using the ultrasonic echo method.
  • the blind spot of the ultrasonic sensor can also be known by the waveform display on the oscilloscope. position.
  • FIG. 65 is a control block diagram of the self-mobile device of the present invention.
  • the sensor microcontroller 705 sends an instruction to the pulse circuit module 708.
  • the pulse circuit module 708 transmits an instruction to the ultrasonic sensor 21 to transmit the ultrasonic wave, the ultrasonic sensor receives the command to transmit the ultrasonic wave, and the ultrasonic sensor receives the obstacle echo and performs the amplification circuit module 701.
  • the amplification process is performed by the analog-to-digital conversion module 702, and the filtering process is performed by the filtering module 703.
  • the processed data enters the data buffering module 704, and the sensor microcontroller 705 transfers the data in the data buffering module 704 to the data processing.
  • the module 706 performs data analysis, and the analysis result is fed back to the main controller 707 for execution.
  • the broken line in Fig. 65 indicates that the portion is a control module involved in the ultrasonic component.
  • the control block diagram for the self-mobile device is applicable to the description of the intelligent lawn mower or self-mobile device of the above-described thirteenth embodiment of the present invention.
  • the control module controls the movement module to move along a preset path, and the distance between the housing and the obstacle is always greater than zero; the control module controls the movement module along the a path movement different from a current forward direction; the control module controls the movement module to move in a direction away from the obstacle; the control module recognizes that the distance between the obstacle on one side of the housing traveling direction and the housing is less than a preset distance, The control module controls the movement of the mobile module in the other direction of the traveling direction.
  • FIG. 68 is a flowchart of a method for identifying an obstacle from the control module 30 of the mobile device according to the present invention.
  • the smart mower 100 of the first embodiment is described.
  • the self-moving device of other embodiments replaces the corresponding method according to the number of ultrasonic sensors and the ultrasonic transmission mode (alternate emission or simultaneous transmission).
  • the method for identifying an obstacle from a mobile device includes a control module and a first ultrasonic sensor, and the control method includes the following steps:
  • the ultrasonic sensor transmits the ultrasonic wave and receives the obstacle echo
  • the method of receiving an obstacle echo includes the steps of:
  • one of the first ultrasonic sensor 21 and the second ultrasonic sensor 23 transmits ultrasonic waves during a ti period, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive an obstacle during a ti period Echo echo, obtain the i-th obstacle echo;
  • control method includes the steps of:
  • the control module controls the first ultrasonic sensor 21 to transmit ultrasonic waves in a first time period, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive an obstacle echo in a first time period to obtain a first a set of obstacle echoes;
  • the control module controls the second ultrasonic sensor 23 to emit ultrasonic waves in a second time period after the first time period, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are in the second time period Receiving an obstacle echo to obtain a second set of obstacle echoes;
  • the control module performs distance analysis and echo intensity analysis by combining the first set of obstacle echoes and the second set of obstacle echoes, and compares the obtained distance value with the preset distance, and obtains the analyzed back.
  • the wave intensity value is compared with the emission threshold threshold to obtain obstacle information.
  • control method includes the steps of:
  • the control module controls the first ultrasonic sensor 21 to transmit ultrasonic waves in a first time period, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive an obstacle echo in a first time period to obtain a first a set of obstacle echoes;
  • the control module controls the second ultrasonic sensor 23 to emit ultrasonic waves in a second time period after the first time period, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are in the second time period Receiving an obstacle echo to obtain a second set of obstacle echoes;
  • the control module performs distance analysis and echo intensity analysis by combining the first set of obstacle echoes and the second set of obstacle echoes, and compares the obtained distance value with the preset distance, and obtains the analyzed back.
  • the wave intensity value is compared with the emission threshold threshold to obtain obstacle information;
  • the control module controls the first ultrasonic sensor 21 to transmit ultrasonic waves in a third time period, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive obstacle echoes in a third time period to obtain the first Three sets of obstacle echoes;
  • the control module combines the third set of obstacle echoes with the second set of obstacle echoes to perform distance analysis and echo intensity analysis, and compares the obtained distance value with the preset distance, and obtains the analyzed back.
  • the wave intensity value is compared with the emission threshold threshold to obtain obstacle information.
  • control method includes the steps of:
  • the control module controls the first ultrasonic sensor 21 to transmit ultrasonic waves in a first time period, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive an obstacle echo in a first time period to obtain a first a set of obstacle echoes;
  • the control module controls the second ultrasonic sensor 23 to emit ultrasonic waves in a second time period after the first time period, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are in the second time period Receiving an obstacle echo to obtain a second set of obstacle echoes;
  • the control module performs distance analysis and echo intensity analysis by combining the first set of obstacle echoes and the second set of obstacle echoes, and compares the obtained distance value with the preset distance, and obtains the analyzed back.
  • the wave intensity value is compared with the emission threshold threshold to obtain obstacle information;
  • the control module controls the first ultrasonic sensor 21 to transmit ultrasonic waves in a third time period, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 receive obstacle echoes in a third time period to obtain the first Three sets of obstacle echoes;
  • the control module combines the third set of obstacle echoes with the second set of obstacle echoes to perform distance analysis and echo intensity analysis, and compares the obtained distance value with the preset distance, and obtains the analyzed back.
  • the wave intensity value is compared with the emission threshold threshold to obtain obstacle information;
  • the control module controls the second ultrasonic sensor 23 to emit ultrasonic waves in a fourth time period after the third time period, the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are in the fourth time period Receiving an obstacle echo to obtain a fourth set of obstacle echoes;
  • the control module combines the fourth set of obstacle echoes with the third set of obstacle echoes to perform distance analysis and echo intensity analysis, and compares the obtained distance values with the preset distances, and obtains the analyzed back The wave intensity value is compared with the emission threshold threshold to obtain obstacle information.
  • the control module performs distance analysis on the ith group of obstacle echoes obtained in the ti+1 time period and the ti group obstacle echoes obtained in the previous ti time period. And the echo intensity analysis, and the distance value obtained by the analysis is compared with the preset distance, and the echo intensity value obtained by the analysis is compared with the threshold threshold of the emission wave to obtain the obstacle information.
  • the ti period and the ti-1 period are time periods in which the first ultrasonic sensor 21 and the second ultrasonic sensor 23 emit signals, respectively, and the first ultrasonic sensor 21 and the second ultrasonic sensor 23 are advanced with time. The ultrasonic waves are transmitted in turn.
  • the method for determining the obstacle situation by comparing the obstacle distance and the preset distance and comparing the echo intensity and the reflected wave threshold threshold in the above steps S14 and S115 is: when the distance value obtained by the analysis is greater than the set threshold, it is judged that there is no obstacle Things.
  • the method for determining the obstacle condition by comparing the obstacle distance and the preset distance and comparing the echo intensity and the reflected wave threshold threshold in the above steps S14 and S115 is: when the distance value obtained by the analysis is less than the set threshold, and the analysis is obtained When the echo intensity value is less than the emission threshold threshold, it is judged that there is no obstacle.
  • the method for determining the obstacle situation by comparing the obstacle distance and the preset distance and the comparison echo intensity and the reflected wave threshold threshold in the above steps S14 and S115 is that when the distance value obtained by the analysis is less than the set threshold, the analysis is obtained. When the echo intensity value is greater than the emission threshold threshold, it is judged that there is an obstacle.
  • the processing of the obstacle echo includes:
  • the voltage and the number of pulses have a certain relationship with the field of view of the ultrasonic sensor.
  • the limit value of the voltage is the sensor energy determined by the characteristics of the sensor. The maximum voltage value that can be withstood. Number of pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

一种非接触式避障智能割草机(100,200,300,400),包括壳体(10)、移动模块(84)、驱动模块、控制模块(30),壳体(10)上设置超声波传感器组件(20);其中,超声波传感器组件(20)至少包括第一超声波传感器(21,41,61,81,91)和第二超声波传感器(23,43,63,83,93),当超声波传感器组件(20)检测到的障碍物离智能割草机(100,200,300,400)的距离小于预设距离时,控制模块(30)控制智能割草机(100,200,300,400)执行预设的避障措施。与现有技术相比,通过使用超声波传感器组件(20)实现障碍物的检测,并通过设置预设距离,避免了智能割草机(100,200,300,400)碰撞障碍物,实现了智能割草机(100,200,300,400)的非接触式避障。

Description

智能割草机、自移动设备及其识别障碍物的方法 技术领域
本发明涉及一种自移动设备,尤其一种非接触式避障的自移动设备及其识别障碍物的方法。
背景技术
随着计算机技术和人工智能技术的不断进步,类似于智能设备的自移动机器人已经开始慢慢的走进人们的生活。三星、伊莱克斯等公司均开发了全自动吸尘器并已经投入市场。这种全自动吸尘器通常体积小巧,集成有环境传感器、自驱***、吸尘***、电池和充电***,能够无需人工操控,自行在工作区域内自动巡航和吸尘,在能量低时自动返回充电站,对接并充电,然后继续巡航和吸尘。同时,哈斯科瓦纳等公司开发了类似的智能割草机,其能够自动在用户的草坪中割草、充电,无需用户干涉。由于这种自移动机器人在一次设置之后就无需再投入精力管理,将用户从清洁、草坪维护等枯燥且费时费力的家务工作中解放出来,因此受到极大欢迎。
工作区域内通常存在阻碍自移动机器人移动的障碍物,自移动机器人需要具备识别障碍物的功能,进而在遇到障碍物时自动避开或者遇到障碍物前自动避开。
在常规技术中,自移动机器人采用接触式避障手段。在该技术中,自移动机器人的机身上设有碰撞传感器,当自移动机器人与障碍物发生碰撞时,碰撞传感器产生碰撞信号,自移动机器人的控制模块接收到碰撞信号,判断自移动机器人的前进方向上存在障碍物,进而控制自移动机器人转向或后退,进行避障。在接触式避障方式下,自移动机器人需要碰撞到障碍物时,才能识别出障碍物。这种方式不仅需要自移动机器人的机身具备较高的碰撞强度,增加了自移动机器人的成本,而且还不能适应一些不适宜发生碰撞的工况。
发明内容
本发明提供一种能实现非接触式避障的自移动设备。本发明还提供一种能够提高机器的可接近性,并可以判别障碍物方位,实现针对性避障措施的自移动设备及其识别障碍物的方法。
为实现上述目的,本发明的技术方案是:
一种智能割草机,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述智能割草机;
所述壳体上设置用以识别智能割草机前进方向障碍物的超声波传感器组件,所述超声波传感器组件包括第一超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,当所述超声波传感器组件检测到的障碍物离智能割草机的距离小于所述预设距离时,所述控制模块控制智能割草机执行预设的避障措施。
优选的,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述第一轴线与第二轴线互成的角度范围为60°-110°。
优选的,所述第一轴线与第二轴线互成的角度范围为70°-90°。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述壳体具有壳体轴线,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为10°-80°。
优选的,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为25°-55°。
优选的,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器沿智能割草机宽度方向相互平行地布置在所述壳体上,并使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第三检测区域至少同时覆盖所述第一收发区域内的部分第一测距盲区和所述第二收发区域内的部分第二测距盲区。
优选的,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上交替发射超声波。
优选的,所述控制模块控制所述第一超声波传感器在第一时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第一时间段内接收障碍物回波,所述控制模块控制所述第二超声波传感器在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第二时间段内接收障碍物回波。
优选的,所述控制模块依据所述超声波传感器组件中第一超声波传感器和第二超声波传感器所发射和接收障碍物回波的组合情况,判断障碍物的方位。
优选的,当所述超声波传感器组件中只有第一超声波传感器发射超声波,并且只有第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第一检测区域;当所述超声波传感器组件中只有第二超声波传感器发射超声波,并且只有第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第二检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域。
优选的,所述控制模块依据所述超声波传感器组件的发射超声波和接收障碍物回波的时间差,计算障碍物离智能割草机的距离。
优选的,当所述障碍物离智能割草机的距离大于200厘米时,控制模块不对接收到的超声回波进行分析。
优选的,当所述障碍物离智能割草机的距离大于90厘米时,控制模块不对接收到的超声回波进行分析。
优选的,当所述障碍物离智能割草机的距离大于60厘米时,控制模块不对接收到的超声回波进行分析。
优选的,所述第一超声波传感器具有第一轴线,所述第二超声波传感器具有第二轴线,所述第一轴线与第二轴线在竖直方向上共面。
优选的,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器沿智能割草机宽度方向相互平行且相邻地布置在所述壳体上,并使得所述第一收发区域和所述第二收发区域不重叠。
优选的,所述超声波传感器组件包括布置在壳体上的第三超声波传感器和第四超声波传感器,所述第三超声波传感器在第三接收区域内接收超声波,所述第四超声波传感器在第四接收区域内接收超声波,所述第三超声波传感器位于第一超声波传感器不与第二超声波传感器相邻的另一侧,所述第三超声波传感器与第一超声波传感器互成角度布置在所述壳体上,使得所述第一收发区域和所述第三接收区域部分重叠,所述第四超声波传感器位于第二超声波传感器不与第一超声波传感器相邻的另一侧,所述第四超声波传感器与第二超声波传感器互成角度布置在所述壳体上,使得所述第二收发区域和所述第四接收区域部分重叠,四个所述超声波传感器形成四个检测区域,其中,所述第一收发区域和第三收发区域相互重叠的部分为第三检测区域,所述第一收发区域中重叠之外的部分为第一检测区域,所述第二收发区域和第四收发区域相互重叠的部分为第四检测区域,所述第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第三检测区域至少覆盖所述第一收发区域内的部分第一测距盲区,所述第四检测区域至少覆盖所述第二收发区域内的部分第二测距盲区。
优选的,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上交替发射超声波。
优选的,所述控制模块控制所述第一超声波传感器在第一时间段内发射超声波,所述第一超声波传感器和所述第三超声波传感器在第一时间段内接收超声波,所述控制模块控制所述第二超声波传感器在第一时间段之后的第二时间段内发射超声波,所述第二超声波传感器和所述第四超声波传感器在第二时间段内接收超声波。
优选的,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上同时发射超声波。
优选的,所述控制模块控制所述第一超声波传感器和第二超声波传感器在 第一时间段内发射超声波,所述第一超声波传感器、第二超声波传感器、第三超声波传感器和第四超声波传感器在第一时间段内接收超声波。
优选的,所述控制模块依据所述超声波传感器组件中第一超声波传感器、第二超声波传感器、第三超声波传感器和第四超声波传感器所发射和接收超声波的组合情况,判断障碍物的方位。
优选的,当所述超声波传感器组件中只有第一超声波传感器发射超声波,并且只有第一超声波传感器接收超声波时,所述控制模块判断障碍物位于所述第一检测区域;当所述超声波传感器组件中只有第二超声波传感器发射超声波,并且只有第二超声波传感器接收超声波时,所述控制模块判断障碍物位于所述第二检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第一超声波传感器和第三超声波传感器接收超声波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第二超声波传感器和第四超声波传感器接收超声波时,所述控制模块判断障碍物位于所述第四检测区域。
优选的,所述第三超声波传感器具有第三轴线,所述第一超声波传感器具有第一轴线,所述第三轴线与所述第一轴线之间的角度范围为10°-80°。
优选的,所述第三轴线与第一轴线之间的角度范围为25°-55°。
优选的,所述第四超声波传感器具有第四轴线,所述第二超声波传感器具有第二轴线,所述第四轴线与所述第二轴线之间的角度范围为10°-80°。
优选的,所述第四轴线与所述第二轴线之间的角度范围为25°-55°。
优选的,所述第一超声波传感器具有第一轴线,所述第二超声波传感器具有第二轴线,所述第三超声波传感器具有第三轴线,所述第四超声波传感器具有第四轴线,所述第一轴线、第二轴线、第三轴线和第四轴线在竖直方向上共面。
优选的,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二接收区域内接收超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二接收区域部分重叠,第一收发区域和第二接收区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域。
优选的,所述第三检测区域至少覆盖所述第一收发区域内的部分第一测距 盲区。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为10°-80°。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为25°-55°。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围有重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用同时发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器与声波传输范围无重叠的超声波传感器同时发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波,声波传输范围无重叠的超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,所述第一超声波传感器设于距离智能割草机前端D距离处。
优选的,所述D距离位于智能割草机长度方向的前半部分。
优选的,识别智能割草机前进方向障碍物的超声波波束模板是非圆形的,垂直于所述超声波波束模板的轴线做一个切面得到波形面,所述波形面具有一个长轴方向和一个短轴方向,所述长轴方向安装为和智能割草机的底面基本平行,所述短轴方向安装为和智能割草机的底面基本垂直。
优选的,所述波形面呈椭圆形。
优选的,所述第一超声波传感器本身的超声波波束模板是非圆形,垂直于超声波传感器的轴线做一个切面得到所述非圆形的波形面。
优选的,所述第一超声波传感器本身的超声波波束模板是圆形,所述第一超声波传感器发射超声波的一端设有用以调整所述第一超声波传感器发射出的超声波的超声波波束模板形状的波束调整器,所述波束调整器调整后获得的超声波波束模板是非圆形,垂直于所述超声波波束模板的轴线做一个切面得到所述非圆形的波形面。
优选的,所述超声波传感器组件包括用以发射和接收超声波的超声波传感器、PCB板以及将PCB板及超声波传感器固定的保护壳,所述超声波传感器具有向外的发声面,所述保护壳具有端面,所述发声面与端面相平或相对端面内凹设于保护壳内。
优选的,所述智能割草机具有反射波门限阈值,所述智能割草机识别为障碍物的回波强度值大于反射波门限阈值。
优选的,所述超声波传感器组件包括第五超声波传感器,所述第五超声波传感器的输出端与所述控制模块的输入端相连接,所述第五超声波传感器用于实时检测所述智能割草机前进方向上是否存在坡面,所述控制模块用于根据所述第五超声波传感器检测到的坡面信息控制智能割草机是否上坡。
优选的,所述第五超声波传感器相对于壳体底面呈角度安装设置于壳体上,所述第五超声波传感器的轴线与坡面垂直。
优选的,所述预设距离与所述智能割草机的移动速度、加速度、智能割草机的质量、移动模块轴的设置位置、智能割草机的质量分布中的至少一个成正向关系。
优选的,所述预设距离小于等于25厘米。
优选的,所述预设距离小于等于15厘米。
优选的,所述预设距离小于等于10厘米。
优选的,所述预设距离小于等于壳体长度的40%。
优选的,所述预设距离小于等于壳体长度的24%。
优选的,所述预设距离小于等于壳体长度的15%。
优选的,所述预设距离小于等于壳体宽度的60%。
优选的,所述预设距离小于等于壳体宽度的35%。
优选的,所述预设距离小于等于壳体宽度的25%。
优选的,所述第一超声波传感器和/或所述第二超声波传感器相对于地面的安装高度范围为19厘米到20厘米。
优选的,当智能割草机待割除的草的高度为H2,所述超声波传感器组件的安装高度H1与H2的关系式为H1=H2+L*sin(φ±σ),其中,L为超声波传感器的轴心到判定截面的距离,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,第一超声波传感器具有声波束轴,所述声波束轴呈水平布置。
优选的,所述第一收发区域具有与壳体前端临近的第一边界线,所述壳体 上具有与第一收发区域邻近的邻接壁,所述邻接壁的上表面低于所述第一边界线。
优选的,所述第一超声传感器具有第一轴线,所述邻接壁具有切线,所述切线与第一轴线之间具有角度为θ,所述角度θ≥φ±σ,其中,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,所述预设的避障措施为控制模块控制所述智能割草机停止移动、或后退、或转向、或移动且转向、或后退且转向,所述智能割草机与障碍物之间的距离大于0。
优选的,所述壳体设有纵轴线,所述壳体沿智能割草机行进方向的前方具有最靠近壳体的E区、最远离壳体的H区以及位于E区和H区之间的拐弯区,所述拐弯区以第三纵轴线为分界线包括分别位于纵轴线两侧的F区和G区,所述超声波传感器组件的探测范围至少覆盖到E区、F区和G区。
优选的,所述E区内智能割草机前进或拐弯会与障碍物之间产生损伤碰撞。
优选的,所述F区内智能割草机右拐弯不会与障碍物之间产生损伤碰撞。
优选的,所述G区内智能割草机左拐弯不会与障碍物之间产生损伤碰撞。
优选的,所述H区内智能割草机前进或拐弯均不会与障碍物之间产生损伤碰撞。
优选的,当在E区检测到障碍物时,所述控制模块控制所述智能割草机执行后退的避障措施。
优选的,当在F区和G区均检测到障碍物时,所述控制模块控制所述智能割草机执行后退的避障措施。
优选的,当仅在F区检测到障碍物时,所述控制模块控制所述智能割草机执行右拐或后退的避障措施。
优选的,当仅在G区检测到障碍物时,所述控制模块控制所述智能割草机执行左拐或后退的避障措施。
优选的,当在H区检测到障碍物时,所述控制模块控制所述智能割草机执行前进或后退或拐弯的避障措施。
优选的,当在E区、F区和G区均未检测到障碍物时,所述控制模块控制所述智能割草机执行前进或后退或拐弯的避障措施。
优选的,所述智能割草机还包括防串扰结构,用于阻止第一超声波传感器和第二超声波传感器两者之一发送的超声波未经障碍物反射被两者中的另一个 直接接收。
优选的,所述防串扰结构设于第一超声波传感器和第二超声波传感器之间。
优选的,所述防串扰结构包括与超声波传感器轴线成角度设置的止档壁。
优选的,所述防串扰结构向壳体前侧延伸不与超声波传感器轴线接触。
优选的,所述防串扰结构向壳体前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。
优选的,所述防串扰结构位于第一超声波传感器声波发射点和第二超声波传感器声波发射点连线的前侧并向壳体前侧延伸。
优选的,所述止档壁包括第一档壁和第二档壁,所述第一档壁具有顶端,所述第二档壁具有上连接端,所述上连接端在竖直方向上低于顶端。
优选的,所述第二档壁自上连接端向壳体前侧延伸,且竖直方向上的高度逐渐降低。
优选的,所述防串扰结构还包括用以与超声波传感器发声面对应的安装孔、顶面及与顶面基本垂直连接的前端面,所述安装孔具有孔中心,所述第二档壁具有远离第一档壁并在竖直方向上低于上连接端的下连接端以及连接上连接端和下连接端的连接面。
优选的,所述孔中心与前端面之间的距离L大于5mm。
优选的,所述上连接端与前端面之间的距离L2小于10mm。
优选的,所述下连接端与前端面之间的距离L1小于20mm。
优选的,所述上连接端与孔中心在竖直方向上的距离Δ小于16mm。
优选的,所述连接面与顶面之间的角度τ的范围是35°-55°。
优选的,所述止档壁相对于顶面倾斜设置,所述止档壁与顶面之间的角度μ不等于90°。
优选的,所述控制模块包括放大电路模块、模数转换模块、滤波模块、数据缓存模块、微控制器、数据处理模块、主控制器及脉冲电路模块,所述微控制器给脉冲电路模块传达指令,所述脉冲电路模块给超声波传感器传达发送超声波的指令,所述超声波传感器收到指令发送超声波,所述超声波传感器接收障碍物回波,并通过放大电路模块进行放大处理,经过模数转换模块进行模数转换处理,经过滤波模块进行滤波处理,处理后的数据进入数据缓存模块,所述传感器微控制器把数据缓存模块里面的数据传递给数据处理模块进行数据分析,所述分析结果再反馈给主控制器进行执行。
为实现上述目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿预设路径移动,保持壳体与障碍物之间的间距始终大于零。
为实现上述目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿不同于当前前进方向的路径移动。
为实现上述目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿远离障碍物的方向移动。
为实现上述目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块识别壳体行进方向的一侧障碍物与壳体的距离小于预设的距离,所述控制模块控制移动模块沿行进方向的另一侧移动。
为实现本发明近距离障碍物检测的目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器和所述第二超声波传感器具有重叠检测区,所述重叠检测区覆盖发射超声波的超声波传感器的部分测距盲区,该部分测距盲区处于另一接收超声波的超声波传感器的收发区域内。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述第一轴线与第二轴线互成的角度范围为60°-110°。
优选的,所述第一轴线与第二轴线互成的角度范围为70°-90°。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述壳体具有壳体轴线,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为10°-80°。
优选的,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为25°-55°。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器沿自移动设备宽度方向相互平行地布置在所述壳体上,并使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第三检测区域至少同时覆盖所述第一收发区域内的部分第一测距盲区和所述第二收发区域内的部分第二测距盲区。
优选的,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上交替发射超声波。
优选的,所述控制模块控制所述第一超声波传感器在第一时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第一时间段内接收障碍物回波,所述控制模块控制所述第二超声波传感器在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第二时间段内接收障碍物回波。
优选的,所述控制模块依据所述超声波传感器组件中第一超声波传感器和第二超声波传感器所发射和接收障碍物回波的组合情况,判断障碍物的方位。
优选的,当所述超声波传感器组件中只有第一超声波传感器发射超声波,并且只有第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第一检测区域;当所述超声波传感器组件中只有第二超声波传感器发射超声波,并且只有第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第二检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域。
优选的,所述控制模块依据所述超声波传感器组件的发射超声波和接收障碍物回波的时间差,计算障碍物离自移动设备的距离。
优选的,所述第一超声波传感器具有第一轴线,所述第二超声波传感器具有第二轴线,所述第一轴线与第二轴线在竖直方向上共面。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二接收区域内接收超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二接收区域部分重叠,第一收发区域和第二接收区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,所述第三检测区域至少覆盖所述第一收发区域内的部分第一测距盲区。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为10°-80°。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为25°-55°。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围有重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用同时发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器与声波传输范围无重叠的超声波传感器同时发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波,声波传输范围无重叠的超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,所述第一超声波传感器设于距离自移动设备前端D距离处。
优选的,所述D距离位于自移动设备长度方向的前半部分。
优选的,识别自移动设备前进方向障碍物的超声波波束模板是非圆形的,垂直于所述超声波波束模板的轴线做一个切面得到波形面,所述波形面具有一个长轴方向和一个短轴方向,所述长轴方向安装为和自移动设备的底面基本平行,所述短轴方向安装为和自移动设备的底面基本垂直。
优选的,所述波形面呈椭圆形。
优选的,所述第一超声波传感器本身的超声波波束模板是非圆形,垂直于超声波传感器的轴线做一个切面得到所述非圆形的波形面。
优选的,所述第一超声波传感器本身的超声波波束模板是圆形,所述第一超声波传感器发射超声波的一端设有用以调整所述第一超声波传感器发射出的超声波的超声波波束模板形状的波束调整器,所述波束调整器调整后获得的超声波波束模板是非圆形,垂直于所述超声波波束模板的轴线做一个切面得到所述非圆形的波形面。
优选的,所述超声波传感器组件包括用以发射和接收超声波的超声波传感 器、PCB板以及将PCB板及超声波传感器固定的保护壳,所述超声波传感器具有向外的发声面,所述保护壳具有端面,所述发声面与端面相平或相对端面内凹设于保护壳内。
优选的,所述自移动设备具有反射波门限阈值,所述自移动设备识别为障碍物的回波强度值大于反射波门限阈值。
优选的,当超声波组件检测到的障碍物离自移动设备的距离小于所述预设距离时,控制模块控制自移动设备执行预设的避障措施。
优选的,所述预设距离小于等于25厘米。
优选的,所述预设距离小于等于15厘米。
优选的,所述预设距离小于等于10厘米。
优选的,所述预设距离小于等于壳体长度的40%。
优选的,所述预设距离小于等于壳体长度的24%。
优选的,所述预设距离小于等于壳体长度的15%。
优选的,所述预设距离小于等于壳体宽度的60%。
优选的,所述预设距离小于等于壳体宽度的35%。
优选的,所述预设距离小于等于壳体宽度的25%。
优选的,所述第一超声波传感器和/或所述第二超声波传感器相对于地面的安装高度范围为19厘米到20厘米。
优选的,当智能割草机待割除的草的高度为H2,所述超声波传感器组件的安装高度H1与H2的关系式为H1=H2+L*sin(φ±σ),其中,L为超声波传感器的轴心到判定截面的距离,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,第一超声波传感器具有声波束轴,所述声波束轴呈水平布置。
优选的,所述第一收发区域具有与壳体前端临近的第一边界线,所述壳体上具有与第一收发区域邻近的邻接壁,所述邻接壁的上表面低于所述第一边界线。
优选的,所述第一超声传感器具有第一轴线,所述邻接壁具有切线,所述切线与第一轴线之间具有角度为θ,所述角度θ≥φ±σ,其中,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,所述智能割草机还包括防串扰结构,用于阻止第一超声波传感器和第二超声波传感器两者之一发送的超声波未经障碍物反射被两者中的另一个 直接接收。
优选的,所述防串扰结构设于第一超声波传感器和第二超声波传感器之间。
优选的,所述防串扰结构包括与超声波传感器轴线成角度设置的止档壁。
优选的,所述防串扰结构向壳体前侧延伸不与超声波传感器轴线接触。
优选的,所述防串扰结构向壳体前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。
优选的,所述防串扰结构位于第一超声波传感器声波发射点和第二超声波传感器声波发射点连线的前侧并向壳体前侧延伸。
优选的,所述止档壁包括第一档壁和第二档壁,所述第一档壁具有顶端,所述第二档壁具有上连接端,所述上连接端在竖直方向上低于顶端。
优选的,所述第二档壁自上连接端向壳体前侧延伸,且竖直方向上的高度逐渐降低。
优选的,所述防串扰结构还包括用以与超声波传感器发声面对应的安装孔、顶面及与顶面基本垂直连接的前端面,所述安装孔具有孔中心,所述第二档壁具有远离第一档壁并在竖直方向上低于上连接端的下连接端以及连接上连接端和下连接端的连接面。
优选的,所述孔中心与前端面之间的距离L大于5mm。
优选的,所述上连接端与前端面之间的距离L2小于10mm。
优选的,所述下连接端与前端面之间的距离L1小于20mm。
优选的,所述上连接端与孔中心在竖直方向上的距离Δ小于16mm。
优选的,所述连接面与顶面之间的角度τ的范围是35°-55°。
优选的,所述止档壁相对于顶面倾斜设置,所述止档壁与顶面之间的角度μ不等于90°。
优选的,所述控制模块包括放大电路模块、模数转换模块、滤波模块、数据缓存模块、微控制器、数据处理模块、主控制器及脉冲电路模块,所述微控制器给脉冲电路模块传达指令,所述脉冲电路模块给超声波传感器传达发送超声波的指令,所述超声波传感器收到指令发送超声波,所述超声波传感器接收障碍物回波,并通过放大电路模块进行放大处理,经过模数转换模块进行模数转换处理,经过滤波模块进行滤波处理,处理后的数据进入数据缓存模块,所述传感器微控制器把数据缓存模块里面的数据传递给数据处理模块进行数据分析,所述分析结果再反馈给主控制器进行执行。
为实现本发明近距离障碍物检测的目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一收发区域和所述第二收发区域部分重叠形成重叠检测区,所述重叠检测区至少同时覆盖所述第一收发区域内的部分第一测距盲区和所述第二收发区域内的部分第二测距盲区
优选的,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述第一轴线与第二轴线互成的角度范围为60°-110°。
优选的,所述第一轴线与第二轴线互成的角度范围为70°-90°。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述壳体具有壳体轴线,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为10°-80°。
优选的,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为25°-55°。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器沿自移动设备宽度方向相互平行地布置在所述壳体上,并使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第三检测区域至少同时覆盖所述第一收发区域内的部分第一测距盲区和所述第二收发区域内的部分第二测距盲区。
优选的,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上交替发射超声波。
优选的,所述控制模块控制所述第一超声波传感器在第一时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第一时间段内接收障碍物回波,所述控制模块控制所述第二超声波传感器在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第二时间段内接收障碍物回波。
优选的,所述控制模块依据所述超声波传感器组件中第一超声波传感器和第二超声波传感器所发射和接收障碍物回波的组合情况,判断障碍物的方位。
优选的,当所述超声波传感器组件中只有第一超声波传感器发射超声波,并且只有第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第一检测区域;当所述超声波传感器组件中只有第二超声波传感器发射超声波,并且只有第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第二检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域。
优选的,所述控制模块依据所述超声波传感器组件的发射超声波和接收障碍物回波的时间差,计算障碍物离自移动设备的距离。
优选的,所述第一超声波传感器具有第一轴线,所述第二超声波传感器具有第二轴线,所述第一轴线与第二轴线在竖直方向上共面。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二接收区域内接收超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二接收区域部分重叠,第一收发区域和第二接收区域相互重叠的部分 为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,所述第三检测区域至少覆盖所述第一收发区域内的部分第一测距盲区。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为10°-80°。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为25°-55°。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围有重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用同时发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器与声波传输范围无重叠的超声波传感器同时发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波,声波传输范围无重叠的超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,所述第一超声波传感器设于距离自移动设备前端D距离处。
优选的,所述D距离位于自移动设备长度方向的前半部分。
优选的,识别自移动设备前进方向障碍物的超声波波束模板是非圆形的,垂直于所述超声波波束模板的轴线做一个切面得到波形面,所述波形面具有一个长轴方向和一个短轴方向,所述长轴方向安装为和自移动设备的底面基本平行,所述短轴方向安装为和自移动设备的底面基本垂直。
优选的,所述波形面呈椭圆形。
优选的,所述第一超声波传感器本身的超声波波束模板是非圆形,垂直于超声波传感器的轴线做一个切面得到所述非圆形的波形面。
优选的,所述第一超声波传感器本身的超声波波束模板是圆形,所述第一超声波传感器发射超声波的一端设有用以调整所述第一超声波传感器发射出的超声波的超声波波束模板形状的波束调整器,所述波束调整器调整后获得的超声波波束模板是非圆形,垂直于所述超声波波束模板的轴线做一个切面得到所 述非圆形的波形面。
优选的,所述超声波传感器组件包括用以发射和接收超声波的超声波传感器、PCB板以及将PCB板及超声波传感器固定的保护壳,所述超声波传感器具有向外的发声面,所述保护壳具有端面,所述发声面与端面相平或相对端面内凹设于保护壳内。
优选的,所述自移动设备具有反射波门限阈值,所述自移动设备识别为障碍物的回波强度值大于反射波门限阈值。
优选的,当超声波组件检测到的障碍物离自移动设备的距离小于所述预设距离时,控制模块控制自移动设备执行预设的避障措施。
优选的,所述预设距离小于等于25厘米。
优选的,所述预设距离小于等于15厘米。
优选的,所述预设距离小于等于10厘米。
优选的,所述预设距离小于等于壳体长度的40%。
优选的,所述预设距离小于等于壳体长度的24%。
优选的,所述预设距离小于等于壳体长度的15%。
优选的,所述预设距离小于等于壳体宽度的60%。
优选的,所述预设距离小于等于壳体宽度的35%。
优选的,所述预设距离小于等于壳体宽度的25%。
优选的,所述第一超声波传感器和/或所述第二超声波传感器相对于地面的安装高度范围为19厘米到20厘米。
优选的,当智能割草机待割除的草的高度为H2,所述超声波传感器组件的安装高度H1与H2的关系式为H1=H2+L*sin(φ±σ),其中,L为超声波传感器的轴心到判定截面的距离,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,第一超声波传感器具有声波束轴,所述声波束轴呈水平布置。
优选的,所述第一收发区域具有与壳体前端临近的第一边界线,所述壳体上具有与第一收发区域邻近的邻接壁,所述邻接壁的上表面低于所述第一边界线。
优选的,所述第一超声传感器具有第一轴线,所述邻接壁具有切线,所述切线与第一轴线之间具有角度为θ,所述角度θ≥φ±σ,其中,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,所述智能割草机还包括防串扰结构,用于阻止第一超声波传感器和第二超声波传感器两者之一发送的超声波未经障碍物反射被两者中的另一个直接接收。
优选的,所述防串扰结构设于第一超声波传感器和第二超声波传感器之间。
优选的,所述防串扰结构包括与超声波传感器轴线成角度设置的止档壁。
优选的,所述防串扰结构向壳体前侧延伸不与超声波传感器轴线接触。
优选的,所述防串扰结构向壳体前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。
优选的,所述防串扰结构位于第一超声波传感器声波发射点和第二超声波传感器声波发射点连线的前侧并向壳体前侧延伸。
优选的,所述止档壁包括第一档壁和第二档壁,所述第一档壁具有顶端,所述第二档壁具有上连接端,所述上连接端在竖直方向上低于顶端。
优选的,所述第二档壁自上连接端向壳体前侧延伸,且竖直方向上的高度逐渐降低。
优选的,所述防串扰结构还包括用以与超声波传感器发声面对应的安装孔、顶面及与顶面基本垂直连接的前端面,所述安装孔具有孔中心,所述第二档壁具有远离第一档壁并在竖直方向上低于上连接端的下连接端以及连接上连接端和下连接端的连接面。
优选的,所述孔中心与前端面之间的距离L大于5mm。
优选的,所述上连接端与前端面之间的距离L2小于10mm。
优选的,所述下连接端与前端面之间的距离L1小于20mm。
优选的,所述上连接端与孔中心在竖直方向上的距离Δ小于16mm。
优选的,所述连接面与顶面之间的角度τ的范围是35°-55°。
优选的,所述止档壁相对于顶面倾斜设置,所述止档壁与顶面之间的角度μ不等于90°。
优选的,所述控制模块包括放大电路模块、模数转换模块、滤波模块、数据缓存模块、微控制器、数据处理模块、主控制器及脉冲电路模块,所述微控制器给脉冲电路模块传达指令,所述脉冲电路模块给超声波传感器传达发送超声波的指令,所述超声波传感器收到指令发送超声波,所述超声波传感器接收障碍物回波,并通过放大电路模块进行放大处理,经过模数转换模块进行模数转换处理,经过滤波模块进行滤波处理,处理后的数据进入数据缓存模块,所述传感器微控制器把数据缓存模块里面的数据传递给数据处理模块进行数据分 析,所述分析结果再反馈给主控制器进行执行。
为实现本发明上坡的目的,本发明的技术方案是:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器和所述第二超声波传感器具有重叠检测区,所述重叠检测区覆盖发射超声波的超声波传感器的部分测距盲区,该部分测距盲区处于另一接收超声波的超声波传感器的收发区域内,当所述超声波传感器组件检测到的障碍物离自移动设备的距离小于所述预设距离时且收到的障碍物回波强度大于反射波门限阈值时,所述控制模块控制自移动设备执行预设的避障措施。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述第一轴线与第二轴线互成的角度范围为60°-110°。
优选的,所述第一轴线与第二轴线互成的角度范围为70°-90°。
优选的,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述壳体具有壳体轴线,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为10°-80°。
优选的,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为25°-55°。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器沿自移动设备宽度方向相互平行地布置在所述壳 体上,并使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
优选的,所述第三检测区域至少同时覆盖所述第一收发区域内的部分第一测距盲区和所述第二收发区域内的部分第二测距盲区。
优选的,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上交替发射超声波。
优选的,所述控制模块控制所述第一超声波传感器在第一时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第一时间段内接收障碍物回波,所述控制模块控制所述第二超声波传感器在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第二时间段内接收障碍物回波。
优选的,所述控制模块依据所述超声波传感器组件的发射超声波和接收障碍物回波的时间差,计算障碍物离自移动设备的距离。
优选的,其特征在于,所述第一超声波传感器具有第一轴线,所述第二超声波传感器具有第二轴线,所述第一轴线与第二轴线在竖直方向上共面。
优选的,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二接收区域内接收超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二接收区域部分重叠,第一收发区域和第二接收区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,所述第三检测区域至少覆盖所述第一收发区域内的部分第一测距盲区。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为10°-80°。
优选的,所述第一超声波传感器和所述第二超声波传感器互成的角度范围为25°-55°。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围有重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声 声波传输范围无重叠的超声波传感器采用同时发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器与声波传输范围无重叠的超声波传感器同时发射超声波时,其余超声波传感器接收超声波。
优选的,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波,声波传输范围无重叠的超声波传感器发射超声波时,其余超声波传感器接收超声波。
优选的,所述第一超声波传感器设于距离自移动设备前端D距离处。
优选的,所述D距离位于自移动设备长度方向的前半部分。
优选的,识别自移动设备前进方向障碍物的超声波波束模板是非圆形的,垂直于所述超声波波束模板的轴线做一个切面得到波形面,所述波形面具有一个长轴方向和一个短轴方向,所述长轴方向安装为和自移动设备的底面基本平行,所述短轴方向安装为和自移动设备的底面基本垂直。
优选的,所述波形面呈椭圆形。
优选的,所述第一超声波传感器本身的超声波波束模板是非圆形,垂直于超声波传感器的轴线做一个切面得到所述非圆形的波形面。
优选的,所述第一超声波传感器本身的超声波波束模板是圆形,所述第一超声波传感器发射超声波的一端设有用以调整所述第一超声波传感器发射出的超声波的超声波波束模板形状的波束调整器,所述波束调整器调整后获得的超声波波束模板是非圆形,垂直于所述超声波波束模板的轴线做一个切面得到所述非圆形的波形面。
优选的,所述超声波传感器组件包括用以发射和接收超声波的超声波传感器、PCB板以及将PCB板及超声波传感器固定的保护壳,所述超声波传感器具有向外的发声面,所述保护壳具有端面,所述发声面与端面相平或相对端面内凹设于保护壳内。
优选的,所述预设距离小于等于25厘米。
优选的,所述预设距离小于等于15厘米。
优选的,所述预设距离小于等于10厘米。
优选的,所述预设距离小于等于壳体长度的40%。
优选的,所述预设距离小于等于壳体长度的24%。
优选的,所述预设距离小于等于壳体长度的15%。
优选的,所述预设距离小于等于壳体宽度的60%。
优选的,所述预设距离小于等于壳体宽度的35%。
优选的,所述预设距离小于等于壳体宽度的25%。
优选的,所述第一超声波传感器和/或所述第二超声波传感器相对于地面的安装高度范围为19厘米到20厘米。
优选的,当智能割草机待割除的草的高度为H2,所述超声波传感器组件的安装高度H1与H2的关系式为H1=H2+L*sin(φ±σ),其中,L为超声波传感器的轴心到判定截面的距离,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,第一超声波传感器具有声波束轴,所述声波束轴呈水平布置。
优选的,所述第一收发区域具有与壳体前端临近的第一边界线,所述壳体上具有与第一收发区域邻近的邻接壁,所述邻接壁的上表面低于所述第一边界线。
优选的,所述第一超声传感器具有第一轴线,所述邻接壁具有切线,所述切线与第一轴线之间具有角度为θ,所述角度θ≥φ±σ,其中,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
优选的,所述智能割草机还包括防串扰结构,用于阻止第一超声波传感器和第二超声波传感器两者之一发送的超声波未经障碍物反射被两者中的另一个直接接收。
优选的,所述防串扰结构设于第一超声波传感器和第二超声波传感器之间。
优选的,所述防串扰结构包括与超声波传感器轴线成角度设置的止档壁。
优选的,所述防串扰结构向壳体前侧延伸不与超声波传感器轴线接触。
优选的,所述防串扰结构向壳体前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。
优选的,所述防串扰结构位于第一超声波传感器声波发射点和第二超声波传感器声波发射点连线的前侧并向壳体前侧延伸。
优选的,所述止档壁包括第一档壁和第二档壁,所述第一档壁具有顶端,所述第二档壁具有上连接端,所述上连接端在竖直方向上低于顶端。
优选的,所述第二档壁自上连接端向壳体前侧延伸,且竖直方向上的高度逐渐降低。
优选的,所述防串扰结构还包括用以与超声波传感器发声面对应的安装孔、 顶面及与顶面基本垂直连接的前端面,所述安装孔具有孔中心,所述第二档壁具有远离第一档壁并在竖直方向上低于上连接端的下连接端以及连接上连接端和下连接端的连接面。
优选的,所述孔中心与前端面之间的距离L大于5mm。
优选的,所述上连接端与前端面之间的距离L2小于10mm。
优选的,所述下连接端与前端面之间的距离L1小于20mm。
优选的,所述上连接端与孔中心在竖直方向上的距离Δ小于16mm。
优选的,所述连接面与顶面之间的角度τ的范围是35°-55°。
优选的,所述止档壁相对于顶面倾斜设置,所述止档壁与顶面之间的角度μ不等于90°。
优选的,所述控制模块包括放大电路模块、模数转换模块、滤波模块、数据缓存模块、微控制器、数据处理模块、主控制器及脉冲电路模块,所述微控制器给脉冲电路模块传达指令,所述脉冲电路模块给超声波传感器传达发送超声波的指令,所述超声波传感器收到指令发送超声波,所述超声波传感器接收障碍物回波,并通过放大电路模块进行放大处理,经过模数转换模块进行模数转换处理,经过滤波模块进行滤波处理,处理后的数据进入数据缓存模块,所述传感器微控制器把数据缓存模块里面的数据传递给数据处理模块进行数据分析,所述分析结果再反馈给主控制器进行执行。
为实现本发明防串扰的目的,本发明的技术方案是:。
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述自移动设备;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,所述自移动设备还包括防串扰结构,用于阻止第一超声波传感器和第二超声波传感器两者之一发送的超声波未经障碍物反射被两者中的另一个直接接收。
优选的,所述防串扰结构设于第一超声波传感器和第二超声波传感器之间。
优选的,所述防串扰结构包括与超声波传感器轴线成角度设置的止档壁。
优选的,所述防串扰结构向壳体前侧延伸不与超声波传感器轴线接触。
优选的,所述防串扰结构向壳体前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。
优选的,所述防串扰结构位于第一超声波传感器声波发射点和第二超声波传感器声波发射点连线的前侧并向壳体前侧延伸。
优选的,所述止档壁包括第一档壁和第二档壁,所述第一档壁具有顶端,所述第二档壁具有上连接端,所述上连接端在竖直方向上低于顶端。
优选的,所述第二档壁自上连接端向壳体前侧延伸,且竖直方向上的高度逐渐降低。
优选的,所述防串扰结构还包括用以与超声波传感器发声面对应的安装孔、顶面及与顶面基本垂直连接的前端面,所述安装孔具有孔中心,所述第二档壁具有远离第一档壁并在竖直方向上低于上连接端的下连接端以及连接上连接端和下连接端的连接面。
优选的,所述孔中心与前端面之间的距离L大于5mm。
优选的,所述上连接端与前端面之间的距离L2小于10mm。
优选的,所述下连接端与前端面之间的距离L1小于20mm。
优选的,所述上连接端与孔中心在竖直方向上的距离Δ小于16mm。
优选的,所述连接面与顶面之间的角度τ的范围是35°-55°。
优选的,所述止档壁相对于顶面倾斜设置,所述止档壁与顶面之间的角度μ不等于90°。
为实现本发明障碍物识别的目的,本发明的技术方案是:
一种自移动设备识别障碍物的方法,所述自移动设备包括超声波传感器,所述自移动设备识别障碍物的方法包括步骤:
S11:启动数据采集;
S12:超声波传感器发送超声波并接收障碍物回波;
S13:根据障碍物回波分析获得障碍物距离及回波强度;
S14:比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况。
优选的,所述自移动设备包括第一超声波传感器和所述第二超声波传感器且第一超声波传感器和所述第二超声波传感器交替发射超声波时,所述自移动 设备识别障碍物的方法包括步骤:
S111:启动数据采集;
S112:所述第一超声波传感器和所述第二超声波传感器中的一个在ti时间段内发送超声波,所述第一超声波传感器和所述第二超声波传感器在ti时间段内接收障碍物回波,获得第i组障碍物回波;
S113:所述第一超声波传感器和所述第二超声波传感器中的另一个在ti时间段之后的ti+1时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在ti+1时间段内接收障碍物回波,获得第i+1组障碍物回波;
S114:对第i+1组障碍物回波和第i组障碍物回波进行分析获得障碍物距离及回波强度;
S115:比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况。
优选的,上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值大于设定阈值时,判断没有障碍物。
优选的,上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值小于设定阈值时,且分析获得的回波强度值小于发射波门限阈值时,判断没有障碍物。
优选的,上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值小于设定阈值时,但分析获得的回波强度值大于发射波门限阈值时,判断有障碍物。
优选的,在上述步骤S13和S114中,障碍物回波的处理包括:
对超声回波模拟信号进行放大倍数调节;
对放大倍数调节后的信号进行模数转换;
对模数转换后的信号进行数字滤波。
与现有技术相比,本发明通过使用超声波传感器以及智能割草机预设距离的设定,实现了智能割草机的非接触式避障,并且通过超声波传感器组件的设 置,避免了测距盲区对智能割草机在不同工况下的影响,提高了智能割草机的可接近性,同时通过设置止档壁,如此设置,当第一超声波传感器及第二超声波传感器成角度交叉时,可以通过止档壁避免第一超声波传感器发射的超声波为经过障碍物反射直接被第二超声波传感器接收,保证了近距离障碍物识别的准确性,而且,防串扰结构利用其自由的内部结构还能在超声波刚发出时约束超声波的视场发射范围,进一步防止超声波与壳体直接产生接触而产生超声回波,保证了障碍物检测的准确性。
附图说明
下面结合附图和实施方式对本发明作进一步说明。
图1为本发明智能割草机的模块示意图。
图2为本发明第一实施例的智能割草机100的俯视示意图。
图3为本发明第一实施例的智能割草机100的超声波传感器组件的第一种布置方式的示意图。
图4为本发明第一实施例的智能割草机100的超声波传感器组件的超声波传感器组件之间轴线的夹角关系示意图。
图5为本发明第一实施例的智能割草机100的超声波传感器组件的超声波传感器组件与壳体轴线之间的夹角关系示意图。
图6为本发明第一实施例的智能割草机100的超声波传感器组件为三角形波束模板的第一种布置方式的检测范围示意图。
图7为本发明第一实施例的智能割草机100的超声波传感器组件为三角形波束模板的第二种布置方式的检测范围示意图。
图8为本发明第一实施例的智能割草机100的超声波传感器组件为椭圆形波束模板的第一种布置方式的检测范围示意图。
图9为本发明第一实施例的智能割草机100的超声波传感器组件为椭圆形波束模板的第二种布置方式的检测范围示意图。
图10为本发明第一实施例的智能割草机100的超声波传感器组件包括三个超声波超声波传感器的排布示意图。
图11为本发明第一实施例的智能割草机100的超声波传感器组件包括四个超声波超声波传感器的排布示意图。
图12为本发明第二实施例的智能割草机200的超声波传感器组件的轴线关系示意图。
图13为本发明第二实施例的智能割草机200的超声波传感器组件的第一种布置方式的检测范围示意图。
图14为本发明第二实施例的智能割草机200的超声波传感器组件的第二种布置方式的检测范围示意图。
图15为本发明第二实施例的智能割草机200的超声波传感器组件包括三个超声波超声波传感器的排布示意图。
图16为本发明第二实施例的智能割草机200的超声波传感器组件包括四个超声波超声波传感器的排布示意图。
图17为本发明第三实施例的智能割草机300的超声波传感器组件的轴线关系示意图。
图18为本发明第三实施例的智能割草机300的超声波传感器组件的第一种布置方式的检测范围示意图。
图19为本发明第三实施例的智能割草机300的超声波传感器组件的第二种布置方式的检测范围示意图。
图20为本发明第三实施例的智能割草机300的超声波传感器组件的另一种检测范围的示意图。
图21为本发明第四实施例的智能割草机400的超声波传感器组件包括两个的超声波传感器组件的轴线关系示意图。
图22为本发明第四实施例的智能割草机400的超声波传感器组件包括三个的超声波传感器组件的轴线关系示意图。
图23为图22中本发明第四实施例的智能割草机400的超声波传感器组件的第一种布置方式的检测范围示意图。
图24为图22中本发明第四实施例的智能割草机400的超声波传感器组件的第二种布置方式的检测范围示意图。
图25为控制模块30控制超声波传感器组件发射和接收的流程图。
图26为本发明第一实施例的智能割草机100的有效检测范围内障碍物情况不同所对应的超声波传感器组件接收信号情况示意图。
图27为本发明超声波传感器的椭圆形波束的示意图。
图28为图27中椭圆形波束的剖视图。
图29为超声波传感器本身的超声波波束模板是非圆形的示意图。
图30为超声波传感器波束模板是圆形和设置波束调整器90后将波束调整为椭圆形的示意图。
图31为本发明的智能割草机中超声波传感器未偏移的示意图。
图32为本发明的智能割草机中超声波传感器向下偏移β角的示意图。
图33为本发明的智能割草机中超声波传感器向上偏移β角的的示意图。
图34为本发明的智能割草机中壳体上与超声波传感器视场临近的壁为斜面的示意图。
图35为本发明的智能割草机中壳体上与超声波传感器视场临近的壁为弧面的示意图。
图36为本发明智能割草机设置识别坡的第五超声波传感器的示意图。
图37为本发明的智能割草机在遇到坡的工况中刚到坡脚下超声波传感器轴心与坡距离是S的示意图。
图38为本发明的智能割草机在遇到坡的工况中刚开始上坡的示意图。
图39为本发明的智能割草机在遇到坡的工况中刚到坡脚下时超声波传感器轴线与坡面的夹角的示意图。
图40为本发明的智能割草机在遇到坡的工况中刚开始上坡时超声波传感器轴线与坡面的夹角的示意图
图41为本发明的智能割草机在遇到坡的工况中完全上坡时超声波传感器轴线与坡面平行的示意图。
图42为本发明的智能割草机的超声波传感器盲区的示意图。
图43为本发明的智能割草机的超声波传感器与障碍物之间距离与现有技术中相同结构的智能割草机没有解决盲区问题的超声波传感器与障碍物之间距离的对比示意图。
图44为本发明的智能割草机检测坡与现有技术中相同结构的智能割草机检测相同位置的普通障碍物的比对示意图。
图45为采用本发明第一实施例的智能割草机100的超声波传感器组件检测墙的示意图。
图46为采用本发明第二实施例的智能割草机200的超声波传感器组件检测墙的示意图。
图47为采用本发明第一实施例的智能割草机100的超声波传感器组件通过狭窄通道的示意图。
图48为本发明的智能割草机分区避障的示意图。
图49为本发明的智能割草机分区避障的示意图。
图50为本发明的智能割草机避开障碍物的轨迹图。
图51为本发明的智能割草机的超声波传感器的结构图。
图52为本发明的智能割草机的超声波传感器另一角度的结构图。
图53为本发明的智能割草机设防串扰结构与现有技术中智能割草机相同结构不设防串扰结构的视场串扰的结构示意图。
图54为本发明的智能割草机中一种防串扰结构的立体示意图。
图55为图54中防串扰结构的侧视示意图。
图56为图54中防串扰结构的俯视示意图。
图57为图56中A-A线的剖视图。
图58为本发明的智能割草机中防串扰结构的主视示意图。
图59为第一实施例的控制模块控制超声波组件的电路单元示意图。
图60为第二实施例的控制模块控制超声波组件的电路单元示意图。
图61为第二实施例的控制模块控制超声波组件的电路单元的另一实施例的示意图。
图62为本发明的智能割草机的另一种防串扰结构与超声波传感器位置关系的示意图。
图63为图62另一角度的示意图。
图64为本发明智能割草机超声传感器收发信号检测方法的示意图。
图65为本发明的控制框图。
图66为本发明智能割草机识别障碍物方法的流程图。
其中,
1、100、200、300、400、10壳体              84移动模块
智能割草机
86工作模块             88能量模块          20超声波传感器组件
21、41、61、81第一     23、43、63、83第二  30控制模块
超声波传感器           超声波传感器
A第一收发区域          B第二收发区域       C第三收发区域
D第四收发区域          11第一检测区域      12第二检测区域
13第三检测区域         14第四检测区域      15第五检测区域
16第六检测区域         17第七检测区域      18第八检测区域
31a,31b驱动电路        33a,33b变压器       35a,35b ADC
37a,37b数据处理单元    25、45、65、85第三  27、47、67第四超声
                       超声波传感器        波传感器
92第五超声波传感器  211、411、611第一轴 231、431、631第二轴
                    线                  线
210壳体轴线         651第三轴线         671第四轴线
80、89防串扰结构    801止档壁           90波束调整器
91邻接壁            97边界线            98视场
99障碍物            201超声波传感器     2011发声面
202PCB板            203变压器           204电容
205保护壳           2051端面            802安装孔
803、顶面           804平行面           805上连接端
806下连接端         807孔中心           808前端面
809连接面           8011第一档壁        8012第二档壁
71第一位置          72第二位置          73第三位置
891第一边           892第二边           96连接线路
21a第一超声波接收   23a第二超声波接收   893第一防串扰面
处理电路            处理电路
894第二防串扰面     87接收装置          510行进箭头
705传感器微控制器   708脉冲电路模块     701放大电路模块
702模数转换模块     703滤波模块         704数据缓存模块
706数据处理模块     707主控制器         709反射波门限阈值
具体实施方式
本发明公开了能实现非接触式避障的智能割草机,各实施例中的智能割草机均采用超声波传感器进行障碍物的识别。并且,通过超声波传感器的排布形成重叠检测区域,提高了智能割草机的可接近性,可以实现近距离的非接触式避障。
在详细说明本发明的实施例前,应该注意到的是,在本发明的描述中,诸如左和右,上和下,前和后,第一和第二之类的关系术语仅仅用来区分一个实体或动作与另一个实体或动作,而不一定要求或暗示这种实体或动作之间的任何实际的这种关系或顺序。术语“包括”、“包含”或任何其他变体旨在涵盖非排他性的包含,由此使得包括一系列要素的过程、方法、物品或者设备不仅包含这些要素,而且还包含没有明确列出的其他要素,或者为这种过程、方法、物品或者设备所固有的要素。
在本发明的描述中,“前”代表超声波传感器发送的超声波传播的方向,定义“前”为机器的行进方向,“后”代表与“前”相反的方向,“左”代表行进方向上的左侧,“右”代表与“左”相对的行进方向上的右侧,“上”代表工作 中远离机器工作面的方向,“下”代表与“上”相反的接近机器工作面的方向。
出于本发明公开的目的,术语“收发区域”是指收发一体的超声波传感器发送超声波且能接收到超声回波的障碍物所在的区域。“收发一体”是指超声波传感器同时承担发送超声波的工作,还承担接收障碍物回波的工作。“发送区域”是指超声波传感器发出的超声波所能到达的区域。“接收区域”是指超声波传感器能接收到障碍物回波的障碍物所在的区域。“视场”是指超声波传感器发送超声波且能接收到超声回波的障碍物所在的范围。对于只负责接收障碍物回波的超声波传感器而言,“视场”指的是若该接收传感器能发射信号,该发射传感器能够收到障碍物回波的障碍物所在的区域。“声波传输范围”是指超声波传感器发送的超声波能到达的区域。“波束模板”是指超声波传感器发送超声波后超声波形成的视场的截面形状。“发声面”是指超声波传感器发射超声波的面,超声波从该面发射出去。“重叠检测区”指两个超声波传感器发出的波束能够交叉重叠的地方。“判定截面”指在视场上选定的截面,该截面形状为波束模板。“声波束轴”指波束最强辐射方向。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,图1为本发明非接触式避障的自移动设备1的模块示意图。智能割草机包括壳体10,位于壳体10上的超声波传感器组件20,位于壳体10底部的移动模块84,用于执行工作的工作模块86,用于控制智能割草机自动工作和移动的控制模块30,以及为智能割草机提供能量的能量模块88。控制模块30的具体物理形式为布置有一个或多个处理器、存储器、其他相关元器件以及相应***电路的控制电路板。控制模块30内置有控制程序,以执行预定的指令,控制智能割草机在工作区域自动移动和执行工作。本发明所述的自移动设备可以为智能割草机或者智能扫地机器人。所以关于图1的元件描述同样适用本发明下述各实施例的关于智能割草机或者自移动设备的描述。
本发明非接触式避障的自移动设备1中超声波传感器组件20包括至少一个超声波传感器。超声波传感器组件20位于壳体10的前端,用于检测智能割草机100前进方向是否存在障碍物以及障碍物离自移动设备1的距离。超声波传感器组件20包括至少一个收发一体的超声波传感器,或者包括至少一个超声波发送传感器和一个与超声波发送传感器视场交叉的超声波接收传感器。
多组收发功能分离的超声波变送器。对于收发功能分离的超声波变送器, 其中至少一个发送超声波,其余接收障碍物回波。
如图51及图52所示,本发明非接触式避障的自移动设备1中的超声波传感器组件20包括超声波传感器201、PCB板202、安装于PCB板上的电容204以及定位PCB板202及超声波传感器201的保护壳205。超声波传感器201具有向外的发声面2011,保护壳205具有端面2051,发声面2011与端面2051相平或相对端面2051内凹设于保护壳205内。如图52所示,在本发明其他实施例中,当超声波传感器需要高压发送超声波时,PCB板上还设置变压器203。
在本发明的描述中,所有关于超声波传感器的轴线的描述指的是贯穿发声面2011的轴线。所有智能割草机关于两个超声波传感器相互之间互成角度均指的是两个超声波传感器轴线之间互成的角度,关于两个超声波传感器平行均指的是两个超声波传感器轴线平行。壳体10的轴线指壳体10前后方向上的轴线,关于超声波传感器与壳体轴线之间互成角度指的是超声波传感器的轴线与壳体轴线之间的夹角,关于超声波传感器与壳体轴线之间平行指的是超声波传感器的轴线与壳体轴线相互平行。在本发明的描述中,超声波传感器与障碍物之间的距离指的都是发声面2011的轴心到障碍物的距离。壳体10与障碍物之间的距离指的都是壳体最前端与障碍物之间的距离。智能割草机与障碍物之间的距离指的也是壳体最前端与障碍物之间的距离。
在本发明的描述中,机身的宽度范围为壳体10的宽度和移动模块84的宽度。超声波传感器组件20的有效检测范围至少覆盖机身的宽度范围。超声波传感器组件20具有上述有效检测范围,使得超声波传感器组件20能够检测到智能割草机移动过程中正前方的障碍物,避免智能割草机在移动过程中碰撞到障碍物。
本发明公开的非接触式避障的智能割草机通过超声波传感器进行障碍物识别,所述超声波传感器发射超声波,超声波碰到前方障碍物时会发生反射,超声波传感器接收反射回来的超声回波,智能割草机通过发射超声波及接收障碍物回波的时间差来判断超声波传感器与障碍物之间的距离;再通过控制模块30设置预设距离进行智能割草机的运动限制,在超声波传感器与障碍物之间的距离小于预设距离时,智能割草机的控制模块30判断前方具有需要避开的障碍物,控制模块30控制智能割草机采取避障措施,最终实现非接触式避障。
本发明关于超声波传感器组件20的布置具有多个实施例,进而形成了多个实施例的非接触式避障的智能割草机,下面针对不同实施例的非接触式避障的智能割草机进行详细的叙述。
第一实施例:
如图2所示,图2为本发明第一实施例的智能割草机100的俯视示意图。该智能割草机100的长度方向为前后方向。行进箭头510表示智能割草机的前进方向。
如图3及图4所示,在该第一实施例的智能割草机100中,超声波传感器组件20包括第一超声波传感器21和第二超声波传感器23。第一超声波传感器21和第二超声波传感器23互成角度设置。第一超声波传感器21具有第一轴线211,第二超声波传感器23具有第二轴线231,智能割草机100具有前后延伸的壳体轴线210。第一轴线211和第二轴线231互成角度交叉,从俯视角度,第一轴线211和第二轴线231在壳体10的前方交叉,交叉的投影交点可以位于壳体10正前方的任意位置。第一超声波传感器21和第二超声波传感器23互成的夹角σ1的范围为60°-110°。在该第一实施例的智能割草机100的优选实施例中,第一超声波传感器21和第二超声波传感器23的交叉夹角σ1的范围为70°-90°。该70°-90°数值范围的第一超声波传感器21和第二超声波传感器23的交叉,确保获得重叠检测区域的同时,还能让重叠检测区域更加靠近智能割草机100的前方,而且避免其中一个超声波传感器发射的超声波未经过障碍物反射而直接被另一个超声波传感器接收,减少第一超声波传感器21和第二超声波传感器23两者之间的信号串扰,提高了障碍物识别的准确性。上述的第一超声波传感器21和第二超声波传感器23互成的角度即是指第一轴线211和第二轴线231互成的角度。第一轴线211和第二轴线231互成的角度沿智能割草机前进方向越来越小。
如图5所示,相对于壳体轴线210,第一轴线211与壳体轴线210之间的夹角ω1的范围是10°-80°,在该第一实施例的智能割草机100的优选实施例中,第一轴线211与壳体轴线210之间的夹角ω1的范围是25°-55°。第二轴线231与壳体轴线210之间的夹角ω2的范围是10°-80°,在该第一实施例的智能割草机100的优选实施例中,第二轴线231与壳体轴线210之间的夹角ω2的范围是25°-55°。在该角度范围内,在确保获得重叠检测区域的同时,还能让重叠检测区域更加靠近智能割草机100的前方,而且避免其中一个超声波传感器发射的超声波未经过障碍物反射而直接被另一个超声波传感器接收,减少第一超声波传感器21和第二超声波传感器23两者之间的信号串扰,提高了障碍物识别的准确性。
如图3及图4所示,在本发明该第一实施例的智能割草机100中,第一超 声波传感器21和第二超声波传感器23均为收发一体的超声波传感器,即一个超声波传感器能够承担发送超声波和接收障碍物回波两个功能的超声波传感器。在其他实施例中,第一超声波传感器21和第二超声波传感器23也可以是两个独立超声波传感器的组合,该两个中的一个承担发送超声波的功能,该两个中的另一个承担接收超声波的功能。在其他实施例中,第一超声波传感器21和第二超声波传感器23也可以是多个独立超声波传感器的组合,既第一超声波传感器21是收发功能分离的超声波传感器,该多个独立的超声波传感器其中至少一个发送超声波,该多个独立的超声波传感器其余的接收障碍物回波。
如图6及图8所示,图6及图8显示了本发明第一实施例的智能割草机100的超声波传感器组件在第一种布置方式下的检测范围示意图,两个图的差异在于波束模板不同,图6中显示的超声波传感器组件的波束模板为三角形或者接近三角形,图8中超声波传感器组件的波束模板为椭圆形或者接近椭圆形。在该第一种布置方式的实施例中,第一超声波传感器21和第二超声波传感器23的硬件参数一致。第一超声波传感器21具有第一收发区域A。第二超声波传感器23具有第二收发区域B。第一收发区域A和第二收发区域B在智能割草机100的正前方形成有重叠检测区域。所述重叠检测区域内第一超声波传感器21和第二超声波传感器23均可收到超声回波,即在重叠检测区域内如果是第一超声波传感器21发送超声波,则第一超声波传感器21和第二超声波传感器23均可收到超声回波;如果是第二超声波传感器23发送超声波,则第一超声波传感器21和第二超声波传感器23均可收到超声回波。
如图6及图8所示,在本发明第一实施例的智能割草机100的该第一种布置方式的实施例中,第一超声波传感器21和第二超声波传感器23互成角度地设置在壳体10的前端,从而第一超声波传感器21的第一收发区域A和第二超声波传感器23的第二收发区域B部分重叠。第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第一收发区域A和第二收发区域B重叠的部分为传感器组件20的第三检测区域13。
如图7及图9所示,图7及图9显示了本发明第一实施例的智能割草机100的超声波传感器组件在第二种布置方式下的检测范围示意图。超声波传感器组件的该第二种布置方式与第一种布置方式的区别在于,超声波传感器组件20安装于距离壳体前端呈一段距离D的位置。具体描述为,在该第二种布置方式的实施例中,超声波传感器组件20包括第一超声波传感器21和第二超声波传 感器23。第一超声波传感器21和第二超声波传感器23互成角度地设置在相对壳体10的前端且与壳体前端呈一段距离D的位置。第一超声波传感器21具有第一收发区域A。第二超声波传感器23具有第二收发区域B。第一超声波传感器21的第一收发区域A和第二超声波传感器23的第二收发区域B仍然部分重叠,仍然形成超声波传感器组件20的三个检测区域。所述重叠检测区域内第一超声波传感器21和第二超声波传感器23均可收到超声回波,即如果是第一超声波传感器21发送超声波,那么第一超声波传感器21和第二超声波传感器23均可收到超声回波;如果是第二超声波传感器23发送超声波,那么第一超声波传感器21和第二超声波传感器23均可收到超声回波。第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第一收发区域A和第二收发区域B重叠的部分为传感器组件20的第三检测区域13。
如图7及图9所示,在本发明第一实施例的智能割草机100的该第二种布置方式中,第一超声波传感器21和第二超声波传感器23原则上可以设置在壳体10长度方向上的任何位置,如果第一超声波传感器21和第二超声波传感器23设置在壳体10上更加靠近后端的地方,那么为了能够保证超声波传感器发送超声波和接收障碍物回波不受影响,可以改进壳体的形状或者将超声波传感器设置的更高。在本发明的优选实施例中,同时考虑到超声波的发送和接收以及占用空间小的因素,第一超声波传感器21和第二超声波传感器23设置在壳体10长度方向的前半部分,距离D小于等于壳体10长度的一半,如此设置,可以更加方便的通过对壳体前端的结构改进来适合视场的范围,避免对超声波产生阻挡。
在本发明第一实施例的智能割草机100的一个优选方案中,控制模块30控制第一超声波传感器21和第二超声波传感器23在时间上交替发射超声波。控制模块30控制第一超声波传感器21在第一时间段内发射超声波,第一超声波传感器21和第二超声波传感器23在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,第一超声波传感器21和第二超声波传感器23在第二时间段内接收障碍物回波。
在本发明第一实施例的智能割草机100的一个优选方案中,控制模块30依据超声波传感器组件20中第一超声波传感器21和第二超声波传感器23所发射和接收障碍物回波的组合情况,判断障碍物的方位。具体描述为,当超声波传感器组件20中只有第一超声波传感器21发射超声波时,且只有第一超声波 传感器21接收到障碍物回波,控制模块30判断障碍物位于第一检测区域。当超声波传感器组件20中只有第二超声波传感器23发射超声波时,且只有第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域。当超声波传感器组件20中第一超声波传感器21发射超声波、第一超声波传感器21和第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域。当超声波传感器组件20中第二超声波传感器23发射超声波、第一超声波传感器21和第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域。当超声波传感器组件20中第一超声波传感器21发射超声波、第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域。当超声波传感器组件20中第二超声波传感器23发射超声波、第一超声波传感器21接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域。
在本发明第一实施例的智能割草机100的优选方案中,控制模块30依据超声波传感器组件20的发射超声波和接收障碍物回波的时间差,计算障碍物离智能割草机的距离。
在本发明第一实施例的智能割草机100的一个优选方案中,第一超声波传感器21具有第一轴线,第二超声波传感器23具有第二轴线,所述第一轴线与第二轴线在竖直方向上共面,如此设置,可以让智能割草机获得最大范围的重叠检测区域面积,并且,由于选择的超声波传感器相同,轴线共面可以有利于超声波传感器结构的布置及壳体10安装结构的设计。
在本发明第一实施例的智能割草机100的一个优选实施例中,为保障第一实施例的智能割草机100能识别前进方向上的障碍物,必须使超声波传感器组件20的有效检测范围覆盖智能割草机100机身正前方的区域。在本发明第一实施例的智能割草机100的一个优选实施例中,超声波传感器组件20的有效检测范围为第一检测区域、第二检测区域和第三检测区域的总和。具体的,以智能割草机100的左右方向为宽度方向,超声波传感器组件20的有效检测宽度覆盖机身的宽度范围。
在本发明第一实施例的智能割草机100的其他优选实施例中,使用的超声波传感器组件20包括不止两个超声波传感器,即超声波传感器组件20可以包括三个及以上的超声波传感器,当超声波传感器超过两个时,对超声波传感器的发送超声波在不同的布置情况下有不同的要求。原则上,超过两个的超声波传感器与其他传感器有重叠检测区域时,需要与存在重叠检测区域的其他超声 波传感器轮流在时间上交替发送超声波,超过两个的超声波传感器与其他超声波传感器没有重叠检测区域时,可以选择与其他超声波传感器同时发送超声波,也可以选择与其他超声波传感器轮流在时间上交替发送超声波。下面将结合具体的附图与实施例对超过两个超声波传感器的布置及超声波的发送情况进行描述。
如图10所示,图10为本发明第一实施例的智能割草机100包括三个超声波传感器的实施例,具体描述为,超声波传感器组件20包括第一超声波传感器21、第二超声波传感器23和第三超声波传感器25。其中,第一超声波传感器21和第二超声波传感器23保持成角度交叉的布置方式,并在壳体10的正前方形成视场重叠检测区域,第三超声波传感器25与壳体轴线平行。如第一种布置方式,第三超声波传感器25不与第一超声波传感器21和第二超声波传感器23任何一个在壳体10的正前方形成视场重叠检测区域,第三超声波传感器25具有第四检测区域。基于第三超声波传感器25并不与第一超声波传感器21和第二超声波传感器23任何一个在壳体10的正前方形成视场重叠检测区,第三超声波传感器25可以选择和第一超声波传感器21或第二超声波传感器23同时发送超声波,也可以选择和第一超声波传感器21和第二超声波传感器23轮流在时间上交替发送超声波。
如图10所示,当第三超声波传感器25与第一超声波传感器21或第二超声波传感器23同时发送超声波时,控制模块30控制第一超声波传感器21和第三超声波传感器25在第一时间段内发射超声波,第一超声波传感器21、第二超声波传感器23和第三超声波传感器25在第一时间段内接收障碍物回波,控制模块30控制第三超声波传感器25和第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,第一超声波传感器21、第二超声波传感器23和第三超声波传感器25在第二时间段内接收障碍物回波。
如图10所示,当第三超声波传感器25与第一超声波传感器21和第二超声波传感器23轮流发送超声波时,控制模块30控制第一超声波传感器21在第一时间段内发射超声波,第一超声波传感器21、第二超声波传感器23和第三超声波传感器25在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,第一超声波传感器21、第二超声波传感器23和第三超声波传感器25在第二时间段内接收障碍物回波,控制模块30控制第三超声波传感器25在第二时间段之后的第三时间段内发射超声波,第一超声波传感器21、第二超声波传感器23和第三超声波传 感器25在第三时间段内接收障碍物回波。
如图10所示,在本发明第一实施例的智能割草机100的该包括三个超声波传感器的实施例中,第一超声波传感器21和第二超声波传感器23互成角度地设置在壳体10的前端,从而第一超声波传感器21的第一收发区域A和第二超声波传感器23的第二收发区域B部分重叠。第三超声波传感器25的第三收发区域C不与第一超声波传感器21的第一收发区域A和第二超声波传感器23的第二收发区域B重叠。第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第一收发区域A和第二收发区域B重叠的部分为传感器组件20的第三检测区域13。第三收发区域C为第四检测区域14。
如图10所示,控制模块30仍旧可以依据超声波传感器组件20中第一超声波传感器21、第二超声波传感器23和第三超声波传感器25所发射和接收障碍物回波的组合情况,判断障碍物的方位,具体描述为,当超声波传感器组件20中只有第一超声波传感器21发射超声波时,且只有第一超声波传感器21接收障碍物回波时,控制模块30判断障碍物位于第一检测区域11。当超声波传感器组件20中只有第二超声波传感器23发射超声波时,且只有第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域12。当超声波传感器组件20中第一超声波传感器21发射超声波、第一超声波传感器21和第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第二超声波传感器23发射超声波、第一超声波传感器21和第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第一超声波传感器21发射超声波、第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第二超声波传感器23发射超声波、第一超声波传感器21接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第三超声波传感器25发射超声波,且只有第三超声波传感器25接收障碍物回波时,控制模块30判断障碍物位于所述第四检测区域14。
如图11所示,图11为超声波传感器组件20包括四个超声波传感器的实施例,超声波传感器组件20包括第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27。第一超声波传感器21具有第一收发区域A、第二超声波传感器23具有第二收发区域B。第一超声波传感器 21和第二超声波传感器23保持互成角度的布置方式并在壳体10的正前方形成视场重叠检测区域,即第三检测区域。第三超声波传感器25具有第三收发区域C,第四超声波传感器27具有第四收发区域D。其中,第三超声波传感器25不与第一超声波传感器21和第二超声波传感器23任何一个在壳体10的正前方形成重叠检测区域,第四超声波传感器27与第一超声波传感器21和第二超声波传感器23任何一个在壳体10的正前方形成重叠检测区域。第四超声波传感器27由于与第一超声波传感器21和第二超声波传感器23有交叉,会形成新的重叠检测区域。如图11所示,第三超声波传感器25和第四超声波传感器27相互平行,第三超声波传感器25和第四超声波传感器27均与壳体的轴线平行,且第四超声波传感器27位于第一超声波传感器21和第二超声波传感器23之间。在其他实施例中,只需要第四超声波传感器27与第一超声波传感器21和第二超声波传感器23形成重叠检测区,第三超声波传感器25不与任何其他传感器形成重叠检测区即可,并不限制他们的轴线设置方式。
继续如图11所示,基于第三超声波传感器25并不与第一超声波传感器21和第二超声波传感器23任何一个在壳体10的正前方形成重叠检测区域,所述第三超声波传感器25可以选择和第一超声波传感器21及第二超声波传感器23同时发送超声波,也可以选择和第一超声波传感器21和第二超声波传感器23轮流在时间上交替发送超声波。基于第四超声波传感器27与第一超声波传感器21和第二超声波传感器23任何一个在壳体10的正前方形成重叠检测区域,所以第四超声波传感器27需要与第一超声波传感器21和第二超声波传感器23轮流在时间上交替发送超声波,避免多个超声波传感器一起发送超声波给障碍物识别造成串扰。
如图11所示,当第三超声波传感器25与第一超声波传感器21或第二超声波传感器23或第四超声波传感器27同时发送超声波时,控制模块30控制第一超声波传感器21和第三超声波传感器25在第一时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27在第一时间段内接收障碍物回波,控制模块30控制第三超声波传感器25和第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27在第二时间段内接收障碍物回波,控制模块30控制第三超声波传感器25和第四超声波传感器27在第二时间段之后的第三时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超 声波传感器27在第三时间段内接收障碍物回波。
如图11所示,当第三超声波传感器25与第一超声波传感器21和第二超声波传感器23轮流发送超声波时,控制模块30控制第一超声波传感器21在第一时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27在第二时间段内接收障碍物回波,控制模块30控制第三超声波传感器25在第二时间段之后的第三时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27在第三时间段内接收障碍物回波,控制模块30控制第四超声波传感器27在第三时间段之后的第四时间段内发射超声波,第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27在第四时间段内接收障碍物回波。
如图11所示,在本发明第一实施例的智能割草机100的该包括四个超声波传感器的实施例中,第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第三收发区域C为第四检测区域13。第四收发区域D的未重叠部分为传感器组件20的第四检测区域14,第一收发区域A、第二收发区域B和第四收发区域D重叠的部分为传感器组件20的第五检测区域15。第一收发区域A和第四收发区域D重叠的部分中不与第二收发区域B重叠的剩余部分为第七检测区域17,第二收发区域B和第四收发区域D重叠的部分中不与第一收发区域A重叠的剩余部分为第六检测区域16。
如图11所示,控制模块30仍旧可以依据超声波传感器组件20中第一超声波传感器21、第二超声波传感器23、第三超声波传感器25和第四超声波传感器27所发射和接收障碍物回波的组合情况,判断障碍物的方位。具体描述为,当超声波传感器组件20中只有第一超声波传感器21发射超声波,并且只有第一超声波传感器21接收障碍物回波时,控制模块30判断障碍物位于第一检测区域11。当超声波传感器组件20中只有第二超声波传感器23发射超声波时,且只有第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域12。当超声波传感器组件20中只有第三超声波传感器25发射超声波时,且只有第三超声波传感器25接收障碍物回波时,控制模块30判 断障碍物位于所述第三检测区域13。当超声波传感器组件20中只有第四超声波传感器27发射超声波时,且只有第四超声波传感器27接收障碍物回波时,控制模块30判断障碍物位于所述第四检测区域14。当超声波传感器组件20中第一超声波传感器21或第二超声波传感器23或第四超声波传感器27发射超声波,第一超声波传感器21、第二超声波传感器23和第四超声波传感器27均接收障碍物回波时,控制模块30判断障碍物位于所述第五检测区域15。当超声波传感器组件20中第一超声波传感器21发射超声波,第二超声波传感器23和第四超声波传感器27均接收障碍物回波时,控制模块30判断障碍物位于所述第五检测区域15。当超声波传感器组件20中第二超声波传感器23发射超声波,第一超声波传感器21和第四超声波传感器27均接收障碍物回波时,控制模块30判断障碍物位于所述第五检测区域15。当超声波传感器组件20中第四超声波传感器27发射超声波,第一超声波传感器21和第二超声波传感器23均接收障碍物回波时,控制模块30判断障碍物位于所述第五检测区域15。当超声波传感器组件20中第二超声波传感器23或第四超声波传感器27发射超声波,第二超声波传感器23和第四超声波传感器27均接收障碍物回波时,控制模块30判断障碍物位于所述第六检测区域16。当超声波传感器组件20中第二超声波传感器23发射超声波,第四超声波传感器27接收障碍物回波时,控制模块30判断障碍物位于所述第六检测区域16。当超声波传感器组件20中第四超声波传感器27发射超声波,第二超声波传感器23接收障碍物回波时,控制模块30判断障碍物位于所述第六检测区域16。当超声波传感器组件20中第一超声波传感器21或第四超声波传感器27发射超声波,第一超声波传感器21和第四超声波传感器27均接收障碍物回波时,控制模块30判断障碍物位于所述第七检测区域17。当超声波传感器组件20中第一超声波传感器21发射超声波,第四超声波传感器27接收障碍物回波时,控制模块30判断障碍物位于所述第七检测区域17。当超声波传感器组件20中第四超声波传感器27发射超声波,第一超声波传感器21接收障碍物回波时,控制模块30判断障碍物位于所述第七检测区域17。
本发明第一实施例的智能割草机100通过超声波传感器检测障碍物,智能割草机100具有预设距离,当智能割草机100与障碍物之间的距离小于等于预设距离时,智能割草机进行避障而不继续朝障碍物前进并实现智能割草机的非接触式避障。通过预设距离值的不同,当距离相对较小时,可以实现相对的近距离非接触式避障,当距离相对较大时,可以实现相对近距离非接触式避障的 远距离非接触式避障。另外,通过超声波传感器成角度交叉布置,可以获知障碍物所在的位置及方向,提高了障碍物定位的准确性,而且有助于智能割草机100适应不同工况,同时,知道方向后还方便智能割草机100采取针对性的避障措施,比如若障碍物在右侧时,在满足左拐条件的前提下进行左拐。
控制模块30根据超声波传感器组件20所接收超声波的不同情况,判断出障碍物出现的方位,进而控制智能割草机前进方向,有针对性地规避障碍物,提高了避障的效率。具体如,针对本发明第一实施例的智能割草机100而言,当障碍物出现在第三检测区域时,控制模块30控制智能割草机后退,或者停机,或者向左转向,或者向右转向,或者后退向左转向,或者后退向右转向;当障碍物出现在第一检测区域时,控制模块30控制智能割草机后退,或者停机,或者向左转向,或者后退向左转向;当障碍物出现在第二检测区域时,控制模块30控制智能割草机后退,或者停机,或者向右转向,或者后退向右转向。具体的避障措施,控制模块30根据障碍物与智能割草机100之间的距离进行合理的选择。
第二实施例:
如图12及图13所示,图12为本发明第二实施例的智能割草机200的俯视示意图。图13为本发明第二实施例的智能割草机200的超声波传感器组件的一种排布及检测范围示意图。在该第二实施例的智能割草机200中,超声波传感器组件20包括第一超声波传感器41和第二超声波传感器43。第一超声波传感器41和第二超声波传感器43相互平行设置且超声波发送方向朝向壳体10的正前方。
如图12所示,在本发明第二实施例的智能割草机200的该优选实施例中第一超声波传感器41具有第一轴线411,第二超声波传感器43具有第二轴线431,壳体10具有壳体轴线210。第一轴线411和第二轴线431相互平行,且第一轴线411、第二轴线431和壳体轴线210均相互平行。在其他实施例中,只要保证第一轴线411和第二轴线431相互平行即可,第一轴线411和第二轴线431与壳体轴线210之间是否平行不做限定。
继续如图13所示,第一超声波传感器41和第二超声波传感器43的硬件参数一致。第一超声波传感器41具有第一收发区域A。第二超声波传感器43具有第二收发区域B。第一收发区域A和第二收发区域B在智能割草机1的正前方形成有重叠检测区域。所述重叠检测区域内第一超声波传感器41和第二超声 波传感器43均可收到超声回波,即如果是第一超声波传感器41发送超声波,则第一超声波传感器41和第二超声波传感器43均可收到超声回波;如果是第二超声波传感器43发送超声波,则第一超声波传感器41和第二超声波传感器43均可收到超声回波。
继续如图13所示,在本发明第二实施例的智能割草机200的该第一种布置方式的实施例中,如上所述,第一超声波传感器41和第二超声波传感器43沿左右方向平行设置在壳体10前端。从而第一超声波传感器41的第一收发区域A和第二超声波传感器43的第二收发区域B部分重叠。第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第一收发区域A和第二收发区域B重叠的部分为传感器组件20的第三检测区域13。
如图14所示,图14显示了本发明第二实施例的智能割草机200的超声波传感器组件20在第二种布置方式下的检测范围示意图。超声波传感器组件20的该第二种布置方式与第一种布置方式的区别在于,超声波传感器组件20安装于距离壳体前端呈一段距离D的位置。具体描述为,超声波传感器组件20包括第一超声波传感器41和第二超声波传感器43。第一超声波传感器41和第二超声波传感器43的硬件参数一致。第一超声波传感器41具有第一收发区域A。第二超声波传感器43具有第二收发区域B。第一收发区域A和第二收发区域B在智能割草机1的正前方形成有重叠检测区域。所述重叠检测区域内第一超声波传感器41和第二超声波传感器43均可收到超声回波,即如果是第一超声波传感器41发送超声波,则第一超声波传感器41和第二超声波传感器43均可收到超声回波;如果是第二超声波传感器43发送超声波,则第一超声波传感器41和第二超声波传感器43均可收到超声回波。
继续如图14所示,在本发明第二实施例的智能割草机200的该第二种布置方式的实施例中,第一超声波传感器41和第二超声波传感器43沿左右方向平行设置在壳体10前端。从而第一超声波传感器41的第一收发区域A和第二超声波传感器43的第二收发区域B部分重叠。第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第一收发区域A和第二收发区域B重叠的部分为传感器组件20的第三检测区域13。
如图14所示,在本发明第二实施例的智能割草机200的该第二种布置方式中,第一超声波传感器41和第二超声波传感器43原则上可以设置在壳体10 长度方向上的任何位置,如果第一超声波传感器41和第二超声波传感器43设置在壳体10上更加靠近后端的地方,那么为了能够保证超声波传感器发送超声波和接收障碍物回波不受影响,可以改进壳体的形状或者将超声波传感器设置的更高。在本发明的优选实施例中,同时考虑到超声波的发送和接收以及占用空间小的因素,第一超声波传感器41和第二超声波传感器43设置在壳体10长度方向的前半部分,距离D小于等于壳体10长度的一半,如此设置,可以更加方便的通过对壳体前端的结构改进来适合视场的范围,避免对超声波产生阻挡。
在本发明第二实施例的智能割草机200的一个优选实施例中,控制模块30控制第一超声波传感器41和第二超声波传感器43在时间上交替发射超声波。控制模块30控制第一超声波传感器41在第一时间段内发射超声波,第一超声波传感器41和第二超声波传感器43在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器43在第一时间段之后的第二时间段内发射超声波,第一超声波传感器41和第二超声波传感器43在第二时间段内接收障碍物回波。
在本发明第二实施例的智能割草机200的一个优选实施例中,控制模块30依据超声波传感器组件20中第一超声波传感器41和第二超声波传感器43所发射和接收障碍物回波的组合情况,判断障碍物的方位。当超声波传感器组件20中只有第一超声波传感器41发射超声波,并且只有第一超声波传感器41接收障碍物回波时,控制模块30判断障碍物位于第一检测区域11。当超声波传感器组件20中只有第二超声波传感器43发射超声波,并且只有第二超声波传感器43接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域12。当超声波传感器组件20中第一超声波传感器41发射超声波、第一超声波传感器41和第二超声波传感器43接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第二超声波传感器43发射超声波、第一超声波传感器41和第二超声波传感器43接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第一超声波传感器41发射超声波、第二超声波传感器43接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第二超声波传感器43发射超声波、第一超声波传感器41接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。
在本发明第二实施例的智能割草机200的一个优选实施例中,控制模块30依据超声波传感器组件20的发射超声波和接收障碍物回波的时间差,计算障碍 物离智能割草机的距离。
在本发明第二实施例的智能割草机200的一个优选实施例中,第一轴线411与第二轴线431在竖直方向上共面,如此设置,可以让智能割草机获得最大范围的重叠检测区域面积,并且,由于选择的超声波传感器相同,轴线共面可以有利于超声波传感器结构的布置及壳体10安装结构的设计。
在本发明第二实施例的智能割草机200的一个优选实施例中,为保障第二实施例的智能割草机200能识别前进方向上的障碍物,超声波传感器组件20的有效检测范围覆盖智能割草机200机身正前方的区域。在本发明第二实施例的智能割草机200中,超声波传感器组件20的有效检测范围为第一检测区域、第二检测区域和第三检测区域的总和。
在本发明第二实施例的智能割草机200的其他优选实施例中,当使用的超声波传感器组件20包括不止两个超声波传感器,即,为了在智能割草机200前方获得更大面积的重叠检测区域及障碍物的位置信息,超声波传感器组件20可以包括三个及以上的超声波传感器,当超声波传感器超过两个时,对超声波传感器的发送超声波在不同的布置情况下有不同的要求。多个超声波传感器的重叠检测区域面积越大,障碍物的检测范围越广,获得障碍物的位置信息越准确,如此,通过多个超声波传感器的协同工作,可以增加智能割草机200正前方障碍物检测的准确性。
如图15所示,图15为本发明第二实施例的智能割草机200包括三个超声波传感器的实施例,三个超声波传感器的轴线相互平行。具体描述为,超声波传感器组件20包括第一超声波传感器41、第二超声波传感器43和第三超声波传感器45。第一超声波传感器41具有第一收发区域A。第二超声波传感器43具有第二收发区域B。第三超声波传感器45具有第三收发区域C。三个超声波传感器均相互平行,其中,第一超声波传感器41和第二超声波传感器43在壳体10的正前方形成视场重叠检测区域,第三超声波传感器45与第二超声波传感器43在壳体10的正前方形成视场重叠检测区域,但第三超声波传感器45与第一超声波传感器41在壳体10的正前方没有形成视场重叠检测区域。基于第三超声波传感器45与第二超声波传感器43在壳体10的正前方形成视场重叠检测区域,而与第一超声波传感器41在壳体10的正前方没有形成视场重叠检测区域,所以第三超声波传感器45可以和第一超声波传感器41同时发送超声波,也可以和第一超声波传感器41轮流发送超声波,而第三超声波传感器45和第二超声波传感器43需轮流发送超声波。
如图15所示,当第三超声波传感器45与第一超声波传感器41同时发送超声波时,控制模块30控制第一超声波传感器41和第三超声波传感器45在第一时间段内发射超声波,第一超声波传感器41、第二超声波传感器43和第三超声波传感器45在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器43在第一时间段之后的第二时间段内发射超声波,第一超声波传感器41、第二超声波传感器43和第三超声波传感器45在第二时间段内接收障碍物回波。
如图15所示,当第三超声波传感器45与第一超声波传感器41和第二超声波传感器43轮流发送超声波时,控制模块30控制第一超声波传感器41在第一时间段内发射超声波,第一超声波传感器41、第二超声波传感器43和第三超声波传感器45在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器43在第一时间段之后的第二时间段内发射超声波,第一超声波传感器41、第二超声波传感器43和第三超声波传感器45在第二时间段内接收障碍物回波,控制模块30控制第三超声波传感器45在第二时间段之后的第三时间段内发射超声波,第一超声波传感器41、第二超声波传感器43和第三超声波传感器45在第三时间段内接收障碍物回波。
如图15所示,第一收发区域A的未重叠部分为传感器组件20的第一检测区域11,第二收发区域B的未重叠部分为传感器组件20的第二检测区域12,第三收发区域C的未重叠部分为传感器组件20的第三检测区域13,第一收发区域A和第二收发区域B重叠的部分为传感器组件20的第四检测区域14,第二收发区域B与第三收发区域C重叠的部分为传感器组件20的第五检测区域15。
如图15所示,控制模块30仍旧可以依据超声波传感器组件20中第一超声波传感器41、第二超声波传感器43和第三超声波传感器45所发射和接收障碍物回波的组合情况,判断障碍物的方位,关于具体的判断方式,第一超声波传感器41和第二超声波传感器43收发区域内的障碍物判断可以参照前述的判断方式。当第三超声波传感器45与第二超声波传感器43由于重叠方式和第一超声波传感器41和第二超声波传感器43相似,所以障碍物位置判断方式与第一超声波传感器41和第二超声波传感器43相同,此处不进行重复叙述。
如图16所示,图16为本发明第二实施例的智能割草机200包括四个超声波传感器的实施例,四个超声波传感器的轴线相互平行。具体描述为,超声波传感器组件20包括第一超声波传感器41、第二超声波传感器43、第三超声波 传感器45和第四超声波传感器47。四个超声波传感器均相互平行,其中,第一超声波传感器41和第二超声波传感器43在壳体10的正前方形成视场重叠检测区域,第三超声波传感器45与第二超声波传感器43在壳体10的正前方形成视场重叠检测区域,但第三超声波传感器45与第一超声波传感器41在壳体10的正前方没有形成视场重叠检测区域。第四超声波传感器47没有第一超声波传感器41、第二超声波传感器43和第三超声波传感器45任何一个在壳体10的正前方形成视场重叠检测区域。基于第三超声波传感器45与第二超声波传感器43在壳体10的正前方形成视场重叠检测区域,而与第一超声波传感器41在壳体10的正前方没有形成视场重叠检测区域,所以第三超声波传感器45可以和第一超声波传感器41同时发送超声波,也可以和第一超声波传感器41轮流发送超声波,第三超声波传感器45和第二超声波传感器43轮流发送超声波。基于第四超声波传感器47并不与第一超声波传感器41、第二超声波传感器43和第三超声波传感器45任何一个在壳体10的正前方形成视场重叠检测区域,所述第四超声波传感器47可以选择和第一超声波传感器41、第二超声波传感器43和第三超声波传感器45同时发送超声波,也可以选择和第一超声波传感器41、第二超声波传感器43和第三超声波传感器45轮流在时间上交替发送超声波。
如图16所示,当第四超声波传感器47与第一超声波传感器41或第二超声波传感器43或第三超声波传感器45同时发送超声波时,控制模块30控制第一超声波传感器41和第四超声波传感器47在第一时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第一时间段内接收障碍物回波,控制模块30控制第四超声波传感器47和第二超声波传感器43在第一时间段之后的第二时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第二时间段内接收障碍物回波,控制模块30控制第四超声波传感器47和第三超声波传感器45在第二时间段之后的第三时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第三时间段内接收障碍物回波。
如图16所示,当第四超声波传感器47与第一超声波传感器41、第二超声波传感器43和第三超声波传感器45轮流发送超声波时,控制模块30控制第一超声波传感器41在第一时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第一时间段内 接收障碍物回波,控制模块30控制第二超声波传感器43在第一时间段之后的第二时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第二时间段内接收障碍物回波,控制模块30控制第三超声波传感器45在第二时间段之后的第三时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第三时间段内接收障碍物回波,控制模块30控制第四超声波传感器47在第三时间段之后的第四时间段内发射超声波,第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47在第四时间段内接收障碍物回波。当然,由于第三超声波传感器45与第一超声波传感器41没有重叠检测区域,第三超声波传感器45可以与第一超声波传感器41同时发送信号,也可以与第一超声波传感器41轮流发,所以还可以有更多种的信号发送组合方式,在此不再进行展开描述。
如图16所示,控制模块30仍旧可以依据超声波传感器组件20中第一超声波传感器41、第二超声波传感器43、第三超声波传感器45和第四超声波传感器47所发射和接收障碍物回波的组合情况,判断障碍物的方位,关于具体的判断方式,第一超声波传感器41和第二超声波传感器43收发区域内的障碍物判断可以参照前述的判断方式。第二超声波传感器43与第三超声波传感器45收发区域内的障碍物判断可以参照第一超声波传感器41和第二超声波传感器43进行判断,方法相同。当第四超声波传感器27发射超声波时,仅仅第四超声波传感器27接收障碍物回波时,所述控制模块判断障碍物位于第四超声波传感器27所在的检测区域。
本发明第二实施例的智能割草机200通过超声波传感器检测障碍物,智能割草机200具有预设距离,当智能割草机200与障碍物之间的距离小于等于预设距离时,智能割草机进行避障而不继续朝障碍物前进并实现智能割草机的非接触式避障。通过预设距离值的不同,当距离相对较小时,可以实现相对的近距离非接触式避障,当距离相对较大时,可以实现相对近距离非接触式避障的远距离非接触式避障。另外,通过超声波传感器平行设置且形成重叠检测区域,可以获知障碍物所在的位置,提高了障碍物定位的准确性,而且有助于智能割草机200适应不同工况,同时,知道方向后还方便智能割草机200采取针对性的避障措施,比如若障碍物在右侧时,在满足左拐条件的前提下进行左拐。
第三实施例:
如图17及图18所示,图17为本发明第三实施例的智能割草机300的俯视 示意图。图18为图17所述第三实施例的智能割草机300的超声波传感器组件的一种排布及检测范围示意图。在该第三实施例的智能割草机300中,超声波传感器组件20包括第一超声波传感器61、第二超声波传感器63,第一超声波传感器61在第一收发区域内接收和发射超声波,第二超声波传感器63在第二收发区域内接收和发射超声波。第一超声波传感器61和第二超声波传感器63沿智能割草机宽度方向相互平行且相邻地布置在壳体10上,并使得所述第一收发区域和所述第二收发区域不重叠。该实施例通过第一超声波传感器61和第二超声波传感器63检测障碍物,并通过预设距离的限制实现非接触式避障。
如图17及图18所示,在本发明第三实施例的智能割草机300的优选实施例中,所述超声波传感器组件20还包括第三超声波传感器65和第四超声波传感器67。第三超声波传感器65在第三收发区域内接收和发射超声波。第四超声波传感器67在第四收发区域内接收和发射超声波。第三超声波传感器65位于第一超声波传感器61不与第二超声波传感器63相邻的另一侧,第三超声波传感器65与第一超声波传感器61互成角度布置在壳体10上,使得所述第一收发区域和所述第三接收区域部分重叠。第四超声波传感器67位于第二超声波传感器63不与第一超声波传感器61相邻的另一侧,第四超声波传感器67与第二超声波传感器63互成角度布置在壳体10上,使得所述第二收发区域和所述第四接收区域部分重叠,四个所述超声波传感器形成四个检测区域,其中,所述第一收发区域和第三收发区域相互重叠的部分为第三检测区域13,所述第一收发区域中重叠之外的部分为第一检测区域11,所述第二收发区域和第四收发区域相互重叠的部分为第四检测区域14,所述第二收发区域中重叠之外的部分为第二检测区域12。
如图18所示,所述重叠的第三检测区域13内第一超声波传感器61和第三超声波传感器65均可收到超声回波,即如果是第一超声波传感器61发送超声波,则第一超声波传感器61和第三超声波传感器65均可收到超声回波;如果是第三超声波传感器65发送超声波,则第一超声波传感器61和第三超声波传感器65均可收到超声回波。同理,所述重叠的第四检测区域14内第二超声波传感器63与第四超声波传感器67均可收到超声回波,即如果是第二超声波传感器63发送超声波,则第二超声波传感器63与第四超声波传感器67均可收到超声回波;如果是第四超声波传感器67发送超声波,则第二超声波传感器63与第四超声波传感器67均可收到超声回波。
在其他实施例中,可以将第一超声波传感器61和第二超声波传感器63分 别设置于两侧,而将第三超声波传感器65和第四超声波传感器67设置于第一超声波传感器61和第二超声波传感器63之间,且第一超声波传感器61和第三超声波传感器65的轴线成角度交叉,第二超声波传感器63与第四超声波传感器67成角度交叉。布局方式可以根据需求进行不同的组合。
如图19所示,图19显示了本发明第三实施例的智能割草机300的超声波传感器组件在第二种布置方式下的检测范围示意图。超声波传感器组件的该第二种布置方式与第一种布置方式的区别在于,超声波传感器组件20安装于距离壳体前端呈一段距离D的位置。具体描述为,在该第二种布置方式的实施例中,超声波传感器组件20包括第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67。第一超声波传感器61在第一收发区域内接收和发射超声波,第二超声波传感器63在第二收发区域内接收和发射超声波。第三超声波传感器65在第三收发区域内接收和发射超声波。第四超声波传感器67在第四收发区域内接收和发射超声波。第一超声波传感器61和第二超声波传感器63沿智能割草机宽度方向相互平行且相邻地布置在壳体10上,并使得所述第一收发区域和所述第二收发区域不重叠。第三超声波传感器65位于第一超声波传感器61不与第二超声波传感器63相邻的另一侧,第三超声波传感器65与第一超声波传感器61互成角度布置在壳体10上,使得所述第一收发区域和所述第三接收区域部分重叠。第四超声波传感器67位于第二超声波传感器63不与第一超声波传感器61相邻的另一侧,第四超声波传感器67与第二超声波传感器63互成角度布置在壳体10上,使得所述第二收发区域和所述第四接收区域部分重叠,四个所述超声波传感器形成四个检测区域,四个检测区域与第一种布置方式相同,该些区域的标号参照图17,与图17相同。
如图18所示,在本发明第三实施例的智能割草机300的该第二种布置方式中,第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67原则上可以设置在壳体10长度方向上的任何位置,如果第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67设置在壳体10上更加靠近后端的地方,那么为了能够保证超声波传感器发送超声波和接收障碍物回波不受影响,可以改进壳体的形状或者将超声波传感器设置的更高。在本发明的优选实施例中,同时考虑到超声波的发送和接收以及占用空间小的因素,第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67设置在壳体10长度方向的前半部分,距离D小于等于壳体10长度的一半,如此设置,可以更加方便的通过对 壳体前端的结构改进来适合视场的范围,避免对超声波产生阻挡。
如图17所示,该第三实施例的智能割草机300具有前后方向的壳体轴线210,第三超声波传感器65的轴线和第四超声波传感器67的轴线与壳体轴线互成角度。第一超声波传感器61和第二超声波传感器63的轴线相互平行。第三超声波传感器65和第四超声波传感器67的声波发射端朝向壳体轴线偏移而使得第一超声波传感器61和第三超声波传感器65互成角度设置,第二超声波传感器63和第四超声波传感器67互成角度设置。第一超声波传感器61和第三超声波传感器65互成的角度γ1的范围为10°-80°。在该第一实施例的智能割草机100的优选实施例中,第一超声波传感器61和第三超声波传感器65的交叉角度γ1的范围为25°-55°。该25°-55°数值范围的第一超声波传感器61和第三超声波传感器65的交叉,确保获得重叠检测区域的需求的同时,还能让重叠检测区域更加靠近智能割草机300的前方。第二超声波传感器63和第四超声波传感器67互成的角度γ2的范围为10°-80°。在该第一实施例的智能割草机300的优选实施例中,第二超声波传感器63和第四超声波传感器67的交叉角度γ2的范围为25°-55°。该25°-55°数值范围的第二超声波传感器63和第四超声波传感器67的交叉,确保获得重叠检测区域的需求的同时,还能让重叠检测区域更加靠近智能割草机300的前方。
在本发明第三实施例的智能割草机300的一个优选实施例中,由于第一超声波传感器61和第二超声波传感器63的收发区域并不重叠,所以第一超声波传感器61和第二超声波传感器63相互之间即可以交替发送信号,也可以同时发送信号。当控制模块30控制第一超声波传感器61和第二超声波传感器63在时间上交替发射超声波时,控制模块30控制第一超声波传感器61在第一时间段内发射超声波,第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67在第一时间段内接收障碍物回波,控制模块30控制第二超声波传感器63在第一时间段之后的第二时间段内发射超声波,第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67在第二时间段内接收障碍物回波。当控制模块30控制第一超声波传感器61和第二超声波传感器63在时间上同时发射超声波时,控制模块30控制第一超声波传感器61和第二超声波传感器63在第一时间段内发射超声波,第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67在第一时间段内接收障碍物回波。
在本发明第三实施例的智能割草机300的一个优选实施例中,控制模块30 依据超声波传感器组件20中第一超声波传感器61和第二超声波传感器63所发射,以及第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67接收障碍物回波的组合情况,判断障碍物的方位。当超声波传感器组件20中只有第一超声波传感器61发射超声波,并且只有第一超声波传感器61接收障碍物回波时,控制模块30判断障碍物位于第一检测区域。当超声波传感器组件20中只有第二超声波传感器63发射超声波,并且只有第二超声波传感器63接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域。当超声波传感器组件20中第一超声波传感器61发射超声波、第一超声波传感器61和第三超声波传感器65接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域。当超声波传感器组件20中第二超声波传感器63发射超声波、第二超声波传感器63和第四超声波传感器67接收障碍物回波时,控制模块30判断障碍物位于所述第四检测区域。
在本发明第三实施例的智能割草机300的一个优选实施例中,控制模块30依据超声波传感器组件20的发射超声波和接收障碍物回波的时间差,计算障碍物离智能割草机的距离。
如图17所示,在本发明第三实施例的智能割草机300的一个优选实施例中,第一超声波传感器61具有第一轴线611,第二超声波传感器63具有第二轴线631,第三超声波传感器65具有第三轴线651,第四超声波传感器67具有第四轴线671,所述第一轴线611、第二轴线631、第三轴线651和第四轴线671在竖直方向上共面,如此设置,可以让智能割草机获得最大范围的重叠检测区域面积,并且,由于选择的超声波传感器相同,轴线共面可以有利于超声波传感器结构的布置及壳体10安装结构的设计。
如图20所示,图20为本发明第三实施例的智能割草机300的超声波传感器组件的另一种实施例的检测范围的示意图,在该实施例中,第三超声波传感器65和第四超声波传感器67的收发区域较广,即第三超声波传感器65的收发区域同时与第一超声波传感器61和第二超声波传感器63重叠,第四超声波传感器67的收发区域同时与第一超声波传感器61和第二超声波传感器63重叠。第一超声波传感器61在第一收发区域内接收和发射超声波,第二超声波传感器63在第二收发区域内接收和发射超声波。第三超声波传感器65在第三收发区域内接收和发射超声波。第四超声波传感器67在第四收发区域内接收和发射超声波。第一收发区域的未重叠部分为传感器组件20的第一检测区域11,第二收发区域的未重叠部分为传感器组件20的第二检测区域12,第一收发区域、 第三收发区域和第四收发区域重叠的部分为传感器组件20的第三检测区域13,第一收发区域和第四收发区域重叠且不与第三检测区域重叠的部分为传感器组件20的第四检测区域14,第一收发区域和第三收发区域重叠且不与第四检测区域重叠的部分为传感器组件20的第五检测区域15,第二收发区域、第三收发区域和第四收发区域重叠的部分为传感器组件20的第六检测区域16,第二收发区域和第三收发区域重叠且不与第六检测区域重叠的部分为传感器组件20的第七检测区域17,第二收发区域和第四收发区域重叠且不与第六检测区域重叠的部分为传感器组件20的第八检测区域18。
如图20所示,控制模块30依据超声波传感器组件20中第一超声波传感器61和第二超声波传感器63所发射超声波,和第一超声波传感器61、第二超声波传感器63、第三超声波传感器65和第四超声波传感器67接收障碍物回波的组合情况,判断障碍物的方位。当超声波传感器组件20中只有第一超声波传感器61发射超声波,并且只有第一超声波传感器61接收障碍物回波时,控制模块30判断障碍物位于第一检测区域11。当超声波传感器组件20中只有第二超声波传感器63发射超声波,并且只有第二超声波传感器63接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域12。当超声波传感器组件20中第一超声波传感器21发射超声波,第一超声波传感器61、第三超声波传感器65和第四超声波传感器67均接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第一超声波传感器21发射超声波,仅第一超声波传感器61和第四超声波传感器67接收障碍物回波时,控制模块30判断障碍物位于所述第四检测区域14。当超声波传感器组件20中第一超声波传感器21发射超声波,仅第一超声波传感器61和第三超声波传感器65接收障碍物回波时,控制模块30判断障碍物位于所述第五检测区域15。当超声波传感器组件20中第二超声波传感器63发射超声波,第二超声波传感器63、第三超声波传感器65和第四超声波传感器67均接收障碍物回波时,控制模块30判断障碍物位于所述第六检测区域16。当超声波传感器组件20中第二超声波传感器63发射超声波,仅第二超声波传感器63和第四超声波传感器67接收障碍物回波时,控制模块30判断障碍物位于所述第八检测区域18。当超声波传感器组件20中第二超声波传感器63发射超声波,仅第二超声波传感器63和第三超声波传感器65接收障碍物回波时,控制模块30判断障碍物位于所述第七检测区域17。在本发明第三实施例的智能割草机300的该方式的优选实施例中,控制模块30依据超声波传感器组件20的发射超声波和接收障碍物回 波的时间差,计算障碍物离智能割草机的距离。
本发明第三实施例的智能割草机300通过超声波传感器检测障碍物,智能割草机300具有预设距离,当智能割草机300与障碍物之间的距离小于等于预设距离时,智能割草机进行避障而不继续朝障碍物前进并实现智能割草机的非接触式避障。通过预设距离值的不同,当距离相对较小时,可以实现相对的近距离非接触式避障,当距离相对较大时,可以实现相对近距离非接触式避障的远距离非接触式避障。另外,通过超声波传感器成角度交叉布置,可以获知障碍物所在的位置,提高了障碍物定位的准确性,而且有助于智能割草机300适应不同工况,同时,知道方向后还方便智能割草机300采取针对性的避障措施,比如若障碍物在右侧时,在满足左拐条件的前提下进行左拐。
第四实施例:
如图21所示,图21为本发明第四实施例的智能割草机400中包括两个超声波传感器的超声波传感器的排布及轴线关系示意图。超声波传感器组件20包括两个超声波传感器,包括第一超声波传感器81和第二超声波传感器83,第一超声波传感器81在第一收发区域内接收和发射超声波,第二超声波传感器83在第二接收区域内接收超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体10上,使得所述第一收发区域和所述第二接收区域部分重叠,第一收发区域和第二接收区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域。
如图21所示,第一超声波传感器81具有第一轴线811,第二超声波传感器83具有第二轴线831。第一轴线811和第二轴线831之间的角度ε1的范围为10°-80°。在本发明该实施例的优选方案中,第一轴线811和第二轴线831之间的角度ε1的范围为25°-55°。通过设置第二超声波传感器93单独负责接收障碍物回波,所以在第一超声波传感器91的盲区范围内仍旧能够确切的收到超声回波,实现了近距离的障碍物检测,进而实现近距离非接触避障。在其他实施例中,第一超声波传感器81可以只负责在第一接收区域内发送超声波,第二超声波传感器83负责在第二接收区域内接收超声波,此结构仍旧能够实现障碍物的检测,随着第一超声波传感器81和第二超声波传感器83重叠区位置的不同,可以实现障碍物检测距离的远近。智能割草机400具有预设距离, 当智能割草机100与障碍物之间的距离小于等于预设距离时,智能割草机进行避障而不继续朝障碍物前进并实现智能割草机的非接触式避障。通过预设距离值的不同,当距离相对较小时,可以实现相对的近距离非接触式避障,当距离相对较大时,可以实现相对近距离非接触式避障的远距离非接触式避障。
如图22所示,图22为本发明第四实施例的智能割草机400的超声波传感器组件包括三个超声波传感器的第一种布置方式的检测范围示意图。超声波传感器组件20包括第一超声波传感器81、第二超声波传感器83及第三超声波传感器85。第一超声波传感器81代表的是能够承担发送超声波和接收障碍物回波两个功能的超声波传感器,第二超声波传感器83及第三超声波传感器85为接收传感器不发送超声波。第二超声波传感器83及第三超声波传感器85分别位于第一超声波传感器81的两侧且与第一超声波传感器81成角度交叉设置。交叉的角度只要能够使得重叠检测区域尽可能的靠近机器前段的近距离检测区域即可。该种方式可以实现近距离检测障碍物,且能够知道障碍物的方向。在该实施例的其他实施方式中,第一超声波传感器81可以仅仅承担发送超声波,即第一超声波传感器81为单一的超声波发送传感器,第二超声波传感器83及第三超声波传感器85仍旧为接收传感器,第二超声波传感器83及第三超声波传感器85与第一超声波传感器81可以在不同位置形成重叠检测区,以此增加识别障碍物的范围。
如图22所示,第一超声波传感器81具有第一轴线811,第二超声波传感器83具有第二轴线831,第三超声波传感器85具有第三轴线851。第二轴线831和第三轴线851分别与第一轴线811交叉,在本发明附图22的实施例中,第二轴线831与第一轴线811之间的交叉角度和第三轴线851与第一轴线811之间的交叉角度相同。在其他实施例中,第二轴线831与第一轴线811之间的交叉角度可以和第三轴线851与第一轴线811之间的交叉角度可以不相同。第一轴线811和第二轴线831之间的角度ε3的范围为10°-80°。在本发明该实施例的优选方案中,第一轴线811和第二轴线831之间的角度ε3的范围为25°-55°。第一轴线811和第三轴线851之间的角度ε2的范围为10°-80°。在本发明该实施例的优选方案中,第一轴线811和第三轴线851之间的角度ε2的范围为25°-55°。通过设置第二超声波传感器93单独负责接收障碍物回波,所 以在第一超声波传感器91的盲区范围内仍旧能够确切的收到超声回波,实现了近距离的障碍物检测,进而实现近距离非接触避障。
在本发明第四实施例的智能割草机400的一个优选实施例中,第一轴线811、第二轴线831与第三轴线851在竖直方向上共面,如此设置,可以让智能割草机400获得最大范围的重叠检测区域面积,并且,由于选择的超声波传感器相同,轴线共面可以有利于超声波传感器结构的布置及壳体10安装结构的设计。
如图23所示,图23显示了本发明第四实施例的智能割草机400的超声波传感器组件在第一种布置方式下的检测范围示意图。在该第一种布置方式的实施例中,第一超声波传感器81具有第一收发区域。第二超声波传感器83具有第二接收区域。第三超声波传感器85具有第三接收区域。第一收发区域、第二接收区域和第三接收区域在智能割草机400的正前方形成有重叠检测区域。所述重叠检测区域内第一超声波传感器81、第二超声波传感器83和第三超声波传感器85均可收到超声回波,即如果第一超声波传感器81发送超声波,则第一超声波传感器81、第二超声波传感器83和第三超声波传感器85均可收到超声回波。
继续如图23所示,第一收发区域的未重叠部分为传感器组件20的第一检测区域11,第一收发区域、第二接收区域和第三接收区域重叠的部分为传感器组件20的第二检测区域12。第一收发区域与第二接收区域重叠的部分除去第二检测区域的部分为传感器组件20的第四检测区域14。第一收发区域与第三接收区域重叠的部分除去第二检测区域的部分为传感器组件20的第三检测区域13。
如图24所示,图24为本发明第四实施例的智能割草机400的超声波传感器组件包括三个超声波传感器的第二种布置方式的检测范围示意图。超声波传感器组件的该第二种布置方式与第一种布置方式的区别在于,超声波传感器组件20安装于距离壳体前端呈一段距离D的位置。具体描述为,在该第二种布置方式的实施例中,超声波传感器组件20包括包括第一超声波传感器81、第二超声波传感器83及第三超声波传感器85。第二超声波传感器83及第三超声波传感器85分别位于第一超声波传感器81的两侧且与第一超声波传感器81 成角度交叉设置。交叉的角度只要能够使得重叠检测区域尽可能的靠近机器前段的近距离检测区域即可。该种方式可以实现近距离检测障碍物,且能够知道障碍物的方向。
如图24所示,在该第二种布置方式的实施例中,第一超声波传感器81具有第一收发区域。第二超声波传感器83具有第二接收区域。第三超声波传感器85具有第三接收区域。第一收发区域、第二接收区域和第三接收区域在智能割草机400的正前方形成有重叠检测区域。所述重叠检测区域内第一超声波传感器81、第二超声波传感器83和第三超声波传感器85均可收到超声回波,即如果第一超声波传感器81发送超声波,则第一超声波传感器81、第二超声波传感器83和第三超声波传感器85均可收到超声回波。第一收发区域的未重叠部分为传感器组件20的第一检测区域11,第一收发区域、第二接收区域和第三接收区域重叠的部分为传感器组件20的第二检测区域12。第一收发区域与第二接收区域重叠的部分除去第二检测区域的部分为传感器组件20的第四检测区域14。第一收发区域与第三接收区域重叠的部分除去第二检测区域的部分为传感器组件20的第三检测区域13。
如图24所示,在本发明第四实施例的智能割草机400的该第二种布置方式中,第一超声波传感器81、第二超声波传感器83及第三超声波传感器85原则上可以设置在壳体10长度方向上的任何位置,如果第一超声波传感器81、第二超声波传感器83及第三超声波传感器85设置在壳体10上更加靠近后端的地方,那么为了能够保证超声波传感器发送超声波和接收障碍物回波不受影响,可以改进壳体的形状或者将超声波传感器设置的更高。在本发明的优选实施例中,同时考虑到超声波的发送和接收以及占用空间小的因素,第一超声波传感器81、第二超声波传感器83及第三超声波传感器85设置在壳体10长度方向的前半部分,距离D小于等于壳体10长度的一半,如此设置,可以更加方便的通过对壳体前端的结构改进来适合视场的范围,避免对超声波产生阻挡。
在本发明第四实施例的智能割草机400的一个优选实施例中,控制模块30依据超声波传感器组件20中第一超声波传感器81所发射超声波,第一超声波传感器81、第二超声波传感器83及第三超声波传感器85接收障碍物回波的组合情况,判断障碍物的方位。当超声波传感器组件20中只有第一超声波传感器 81发射超声波,并且只有第一超声波传感器81接收障碍物回波时,控制模块30判断障碍物位于第一检测区域11。当超声波传感器组件20中第一超声波传感器81发射超声波,第一超声波传感器81、第二超声波传感器83及第三超声波传感器85均接收障碍物回波时,控制模块30判断障碍物位于所述第二检测区域12。当超声波传感器组件20中第一超声波传感器81发射超声波,仅第一超声波传感器81和第二超声波传感器83接收障碍物回波时,控制模块30判断障碍物位于所述第三检测区域13。当超声波传感器组件20中第一超声波传感器81发射超声波,仅第一超声波传感器81和第三超声波传感器85接收障碍物回波时,控制模块30判断障碍物位于所述第四检测区域14。
在本发明第四实施例的智能割草机400的一个优选实施例中,控制模块30依据超声波传感器组件20的发射超声波和接收障碍物回波的时间差,计算障碍物离智能割草机的距离。
本发明前述四个实施例的智能割草机的实施例同样适用于其他自移动设备,比如智能扫地机器人,关于智能扫地机器人或者更多的自移动设备的实施例描述在此不重复进行,其他自移动设备的实施例方案与前述四个实施例的智能割草机100、200、300、400相同。
图25为控制模块30控制超声波传感器组件20发射和接收的流程图。适用本发明所有实施例的超声波传感器组件20,下面以第一实施例的智能割草机100中的超声波传感器进行举例描述。控制模块30控制第一超声波传感器21和第二超声波传感器23在时间轴上间隔发射超声波,具体步骤依次为:
步骤S11:第一超声波传感器21在一第一时间发出超声波;
步骤S12:第一超声波传感器21和第二超声波传感器23接收超声波;
步骤S13:第二超声波传感器23在一第二时间发出超声波;
步骤S14:第一超声波传感器21和第二超声波传感器23接收超声波。
控制模块30控制超声波传感器组件20按照图25所示的步骤,循环地进行障碍物检测。如果有效检测范围内存在障碍物,发射的超声波会被障碍物反射形成回波。超声波传感器组件20接收到回波,控制模块30根据回波信息,分析判断出障碍物的方位及距离。如果有效检测范围内不存在障碍物,则步骤S12和步骤S14的超声波传感器组件接收不到超声波回波,进而分析判断智能割草 机100的前进方向上不存在障碍物。第一超声波传感器21和第二超声波传感器23发射超声波的时间差T,称为有效接收时段。有效接收时段T的具体时间,根据驱动电路所产生驱动信号的强弱及超声波传感器的硬件参数而有所不同。该超声波交替发射的步骤同样适用于本发明上述的智能割草机200、300。
图26为智能割草机的有效检测范围内障碍物情况不同所对应的超声波传感器组件接收信号情况示意图,图26以第一实施例的智能割草机100中的超声波传感器进行举例描述。该波形示意图仅用来表示障碍物在不同方位时,超声波传感器组件所接收的波形示意,并不代表真实传感器组件的接收信号波形。在本实施例中,以第一超声波传感器21发射超声波为例,阐述障碍物出现在不同方位时,第一超声波传感器21和第二超声波传感器23所接收信号的情况示意图。在图17的接收信号波形中,类似矩形的波形M表示超声波传感器发射超声波后的自激振荡,类似菱形的波形N表示超声波传感器所接收到的反射的超声波。由于在该实施例中,第一超声波传感器21发射超声波,因此,第一超声波传感器21的接收信号示意图始终存在类似矩形的波形a。该收发信号的情况同样适用于本发明上述的智能割草机200、300。
如图26(a)所示,第一超声波传感器21在t0时刻发射超声波。在t0至t1时间段内,第一超声波传感器21和第二超声波传感器23都未接收到反射的超声波。控制模块30判断,智能割草机100的有效检测范围内不存在障碍物。t0至t1时间段为上述所述的有效接收时段T。
如图26(b)所示,第一超声波传感器21在t0时刻发射超声波。在t0至t1时间段内,第一超声波传感器21接收到发射波而第二超声波传感器23未接收到反射的超声波。控制模块30判断,智能割草机100的第一检测区域内存在障碍物。
如图26(c)所示,第一超声波传感器21在t0时刻发射超声波。在t0至t1时间段内,第一超声波传感器21未接收到发射波而第二超声波传感器23接收到反射的超声波。控制模块30判断,智能割草机100的第二检测区域内存在障碍物。
如图26(d)所示,第一超声波传感器21在t0时刻发射超声波。在t0至t1时间段内,第一超声波传感器21和第二超声波传感器23都未接收到反射的超 声波。控制模块30判断,智能割草机100的第三检测区域内存在障碍物。
如图27及28所示,本发明的一个优选实施例的智能割草机中,涉及的超声波传感器发送超声波后形成检测障碍物的超声波视场,由于在高度方向,智能割草机只需要检测其前进方向上一定高度范围内的障碍物,但需要检测到其正前方智能割草机宽度范围内的障碍物,所以为了能够获得更宽的障碍物检测范围,本发明优选视场为非圆形,比如椭圆形视场,垂直于视场的轴线做一个切面,波形面呈类似椭圆形,有一个长轴方向2a和一个短轴方向2b,壳体10具有底面,将长轴方向安装为和壳体10的底面基本平行,将短轴方向安装为和壳体10的底面基本垂直。此处基本的意思包括两层,第一层意思是长轴方向完全和壳体10的底面平行,短轴方向完全和壳体10的底面垂直;第二层意思是长轴方向和壳体10的底面大约呈平行(并不是绝对平行),短轴方向和壳体10的底面大约呈垂直(并不是绝对垂直)。如此的界定,可以灵活的进行超声波传感器的安装设置,使得超声波视场满足长轴大于短轴,即宽度视场值大于高度视场值即可,可以确保在壳体宽度方向检测障碍物的超声波较多,确保壳体正前方障碍物检测的准确度。当超声波波束模板为椭圆形时,所述波形面为椭圆形。该实施例中关于超声波波束模板的描述同样适用于本发明前述的四个实施例的智能割草机100、200、300、400。
如图29所示,本发明一个优选实施例的超声波传感器组件20中,为了获得非圆形的超声波波束模板,可以直接选择超声波传感器本身的超声波波束模板是非圆形的,视场98为非圆形,垂直于超声波传感器的轴线做一个切面得到所述波形面。该实施例中关于超声波传感器本身的超声波波束模板的描述同样适用于本发明前述的四个实施例的智能割草机100、200、300、400。
如图30所示,本发明一个优选实施例的超声波传感器组件20中,为了获得非圆形的超声波波束模板,超声波传感器20′本身的超声波波束模板可以选择圆形的,视场98′为非圆形,可以在超声波传感器发射超声波的一端设置用以调整超声波传感器发射出的超声波的超声波波束模板形状的波束调整器90,所述波束调整器90调整后获得的超声波波束模板是所述非圆形的,超声波传感器组件20的视场98为非圆形,垂直于所述超声波波束模板的轴线做一个切面得到所述波形面。该实施例中关于超声波传感器本身的超声波波束模板的描述 及波束调整器90的设置同样适用于本发明前述的四个实施例的智能割草机100、200、300、400。
本发明一个优选实施例的超声波传感器组件20中,可以在超声波传感器上设置声波导向管,为了获得更大的重叠检测区域面积,可以通过声波导向管增加声波发射范围。
本发明一个优选实施例的智能割草机中,当所述障碍物和智能割草机之间的距离小于所述预设距离时,控制模块30控制智能割草机执行预设的避障措施。所述预设距离与所述智能割草机的移动速度、加速度、惯性中的至少一个成正向关系。惯性为与智能割草机的质量有关,以及移动模块轴的设置位置有关,即与智能割草机的质量分布有关,因为移动模块轴的位置不同会影响智能割草机的质量分布,进而影响惯性。所述预设距离小于等于25厘米。当本发明的智能割草机需要实现近距离非接触式避障时,所述预设距离小于等于15厘米。当本发明的智能割草机的工作环境中有坡或者狭窄通道时,所述预设距离小于等于10厘米。以本发明智能割草机的长度尺寸作为参考值,所述预设距离小于等于壳体长度的40%。当本发明的智能割草机需要实现近距离非接触式避障时,所述预设距离小于等于壳体长度的24%。当本发明的智能割草机的工作环境中有坡或者狭窄通道时,所述预设距离小于等于壳体长度的15%。以本发明智能割草机的宽度尺寸作为参考值,所述预设距离小于等于壳体宽度的60%。当本发明的智能割草机需要实现近距离非接触式避障时,所述预设距离小于等于壳体宽度的35%。当本发明的智能割草机的工作环境中有坡或者狭窄通道时,所述预设距离小于等于壳体宽度的25%。如前述将预设距离的设定与壳体的长度及宽度关联,是因为智能割草机在选择不同的避障逻辑时,为了实现非接触式避障,不但跟预设距离有关,还和壳体长度及宽度有关。上述关于预设距离的描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
本发明一个优选实施例的智能割草机中,由于超声波传感器信号发出后,在前方超声波的传输范围内所有的障碍物都会有回波返回,且很多的超声回波会被超声波传感器接收到,但是对于一些较远的障碍物,对智能割草机是没有影响的,智能割草机主要是需要对较近的障碍物进行辨识,然后达成非接触式避障的目的。所以为了减少不必要的数据分析,控制模块30仅对限定分析范围 内接收到的超声回波进行分析。所述限定分析范围与壳体10的长度有关。所述限定分析范围最好是小于等于200厘米,该范围是指壳体10最前端至壳体10前方200厘米。在本发明的优选实施例中,所述限定分析范围的范围最佳为小于等于90厘米,该范围是指壳体10最前端至壳体10前方90厘米。上述关于限定分析范围的描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
本发明一个优选实施例的智能割草机中,智能割草机需要检测其前进方向上的障碍物,且仅仅检测符合一定高度范围的障碍物,超过该高度范围外的障碍物可以不用检测,比如超过智能割草机1本身高度5cm以外的障碍物可以不用检测。由于检测的障碍物有高度范围的要求,决定是否检测到障碍物的前提是障碍物落入超声波传感器的视场范围内,使得超声波传感器发出的超声波视场能够检测到障碍物产生超声回波,而超声波传感器的安装高度及俯仰角不同,决定了视场的方向不同。
本发明一个优选实施例的智能割草机中,如图31至图33所示,超声波传感器的安装高度为H1,待识别的障碍物的高度界限值为H2(对于智能割草机而言,H2一般设定的待割除的草的高度),即高于H2被识别为障碍物,低于H2的不认为是障碍物。超声波传感器安装高度H1与待割除的草的高度H2的关系,H1=H2+L*sin(φ±σ),其中,L为超声波传感器的轴心到判定截面的距离,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度,如果超声波传感器向上倾斜-σ,如果超声波传感器向下倾斜+σ。基于该安装高度H1,超声波传感器的视场98可以满足覆盖到大于H2范围,可以识别高于H2高度的物体并进行障碍物识别。关于本实施例中的超声传感器的高度H1的设置同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
本发明一个优选实施例的智能割草机中,智能割草机有大致确定的需要割除的割草高度范围,所以大于待割除的草的高度的物体会被识别为障碍物,同时为了完成确定高度的草可以被割掉,需要超声波传感器的视场并不将需要割掉的草识别为障碍物,因为超声波传感器的自身性能决定了φ、σ的值,判定截面选定后L的距离也是可以确定的,所以只要确定好需要割草的高度H2,通 过公式H1=H2+L*sin(φ±σ),即可以换算出超声波传感器的安装高度H1。由于不同的草坪割草高度H2的值可能会不同,设定一个初始的割草高度H2后,还可以通过内部软件控制H2数值的弹性变动,比如传感器视场内传感器轴线附近的检测信号强度是大于远离传感器轴线的外侧视场的,可以通过识别信号强度的选择改变H2的高度,达成不同割草高度的微调节。关于本实施例中的超声传感器的高度H1的设置同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
本发明一个优选实施例的智能割草机中,由于草坪上的草的高度并不都是一样的,所以割草高度H2的高度的选择是为了能够将大部分的草割除,对于部分高度高于割草高度H2的高草仍旧是需要割掉的,但是,由于该部分高草的高度值大于H2的值,所以该部分高草会被识别为障碍物做避障处理,而这会导致高草无法割除。所以本发明智能割草机内预设有反射波门限阈值,由于对于进入超声波传感器视场内的高草,其是草的顶端进入超声波传感器的视场,该草的顶端产生的回波信号比较弱,可以通过设置反射波门限阈值,将小于反射波门限阈值的超声回波认定为是高草产生的,智能割草机继续前进对其进行割除,将大于反射波门限阈值的回波信号认定为是障碍物产生的,智能割草机需要采取避障措施。在实际的应用中,有时也会出现高草产生的回波信号与障碍物产生的回波信号强度相差比较小,此时反射波门限阈值的设置会比较高,而且为了避免造成碰撞障碍物,某些高草的回波信号仍旧会高于反射波门限阈值,那么会导致把高草认为是障碍物使得高草没有被割掉。对于这种情形,可以对电路进行改进,设置放大倍数调节,通过放大倍数调节,拉开高草回波与障碍物回波的信号差距,再通过合理的反射波门限阈值的设定,可以明显区分高草与障碍物。本发明前述的反射波门限阈值,可以是反射信号强度值。关于本实施例中的超声传感器反射波门限阈值设定的相关描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
如图34及图35所示,本发明一个优选实施例的智能割草机中,为了进一步提高超声波传感器识别障碍物的准确度,壳体10上与超声波传感器视场临近的邻接壁91的上表面(该上表面为与视场相邻的面)需要在竖直方向上低于超声波传感器视场的最外边(视场的虚拟边),如此设置,可以避免壳体10阻挡超声波的传输,一方面避免壳体10反射超声波,避免反射的超声回波对传感器 发射的超声波产生影响,另一方面避免阻挡超声波,因为识别障碍物的超声波较少会影响障碍物识别的准确性。并且,可以保证声波束轴的水平,传感器具有声波束轴,优选实施方式中,需要所述声波束轴呈水平状态,通过邻接壁91在竖直方向上低于超声波传感器视场的最外边,确保壳体结构不会阻挡视场,进而不会改变声波束轴的位置,确保所述声波束轴呈水平状态。对于该与超声波传感器视场临近的邻接壁91的上表面的形状不做限定。超声波传感器的视场具有与壳体10临近的边界线97,壳体10上与边界线97邻近位置的邻接壁91的上表面低于边界线97。边界线97与邻接壁91的上表面之间具有最小距离δ1大于0。关于本实施例中的壳体10的邻接壁91的相关描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
如图34所示,邻接壁91的上表面可以是弧面,也可以是斜面,也可以是其他不规则的面,本发明一个优选实施例的智能割草机中,该邻接壁91是斜面,所述斜面低于边界线97,邻接壁91与边界线97的关系可以通过壳体10的设计达成,比如在壳体上沿着超声波传感器的视场开槽,便于超声波不受阻挡的发射出去。邻接壁91与边界线97的关系也可以通过调整超声波传感器相对智能割草机前端的安装位置及俯仰角达成,此处超声波传感器的安装位置即包括超声波传感器沿壳体10前后方向上的安装位置,也包括超声波传感器的安装高度,也包括超声波传感器是内嵌在壳体10中,还是安装在壳体10外部,虽然调整超声波传感器的位置及俯仰角会影响到超声波传感器的检测视场,但是仍旧可以通过其他辅助结构调整超声波传感器的声波传输方向。超声传感器具有轴线,该斜面相较于轴线倾斜角度为θ1,该倾斜角度θ1的要求为θ1≥φ±σ(如果超声波传感器水平安装σ=0,如果超声波传感器向上倾斜-σ,如果超声波传感器向下倾斜+σ),该角度的界定确保超声波传感器发射的超声波不会碰到壳体10产生超声回波。该实施例中,由于已经是斜面,所以切线与斜面是一个面。
如图35所示,本发明一个优选实施例的智能割草机中,该邻接壁91是弧面,邻接壁91低于边界线97,所述弧面与边界线97的最外边的关系可以通过壳体10上弧面的弧度设计达成。所述斜面与边界线97的最外边的关系也可以通过调整超声波传感器相对智能割草机前端的安装位置及俯仰角达成。超声传感器具有轴线,该弧面具有切线,该切线相较于轴线倾斜角度为θ2,该倾斜角度θ2的要求为θ2≥φ±σ(如果超声波传感器水平安装σ=0,如果超声波传感器向上倾斜-σ,如果超声波传感器向下倾斜+σ),该角度的界定确保超声波传感器发射的超声波不会碰到壳体10产生超声回波。总结如图34及图35的公式 θ≥φ±σ(如果超声波传感器水平安装σ=0,如果超声波传感器向上倾斜-σ,如果超声波传感器向下倾斜+σ)。
本发明其他优选实施例的智能割草机中,该邻接壁91可以是斜面或弧面以外的不规则的形状,比如波浪形状、阶梯形状等等。本发明上述关于邻接壁91的切线与超声波传感器角度关系的描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
如图36所示,本发明一个优选实施例的智能割草机中,智能割草机还可以包括第五超声波传感器92,第五超声波传感器92的输出端与控制模块30的输入端相连接,第五超声波传感器92用于实时检测所述智能割草机前进方向上是否存在坡面,控制模块30用于根据第五超声波传感器92检测到的坡面信息控制智能割草机是否上坡。第五超声波传感器92相对于壳体10底面呈角度安装设置于壳体10上,所述智能割草机在平地上割草时,第五超声波传感器92识别不到障碍物,当智能割草机前方有坡时,第五超声波传感器92会收到坡面反射的超声回波并识别障碍物为坡。对于第五超声波传感器92的轴线相对于壳体10底面的安装角度,主要取决于工作区域内坡的倾斜角度。在机器做初始设置时,可以根据工作环境将坡的倾斜角度的大致参数输入智能割草机。该实施例的第五超声波传感器92的设置及描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。在实际应用中,当壳体高度较高时,坡面到超声波传感器轴心的距离大于盲区范围,所以第五超声波传感器92可以安装在壳体的前端;当壳体高度较低时,坡面到超声波传感器轴心的距离可能还会位于盲区范围,为了规避第五超声波传感器92的盲区,可以将第五超声波传感器92设置的高于壳体。
本发明的智能割草机,当智能割草机到达预设距离时,为了避免碰撞障碍物会不继续朝障碍物前进而执行预设的避障措施,所述预设的避障措施为控制模块控制所述智能割草机停止移动、或后退、或转向、或移动且转向、或后退且转向。智能割草机与障碍物之间的距离大于0。
本发明一个优选实施例的智能割草机中,只要保证智能割草机100能够快速的停止或后退,所述预设距离可以无限小接近于0厘米,但是不等于0,比如,当智能割草机10的制动效果足够好,可以实现即时刹车或后退时,可以达到无限接近障碍物但不碰撞的效果。但是为了优化智能割草机的运动,提高割 草效率,往往希望割草机能够执行预设的运动逻辑继续工作而非停机。
如图48及图49所示,本发明一个优选实施例的智能割草机中,智能割草机可以根据控制模块形成的虚拟的三个检测区进行避障逻辑的选择,还可以借助预设距离L进行虚拟分区避障。如图48及图49所示,图48及图49为智能割草机分区避障的示意图,壳体10具有沿前后方向延伸的壳体轴线210,控制模块30在壳体10前方设有虚拟的最靠近壳体的E区、位于E区前方的F区和G区及位于F区和G区前方的H区。所述F区和G区以轴线为分界线且分别位于壳体轴线210的两侧,超声波传感器组件20的探测范围至少覆盖到E区、F区和G区。所述E区内智能割草机前进或拐弯会与障碍物之间产生损伤碰撞。所述F区内智能割草机右拐弯不会与障碍物之间产生损伤碰撞。所述G区内智能割草机左拐弯不会与障碍物之间产生损伤碰撞。所述H区内智能割草机前进或拐弯均不会与障碍物之间产生损伤碰撞。当在E区检测到障碍物时,所述控制模块控制所述智能割草机执行后退的避障措施。当在F区和G区均检测到障碍物时,所述控制模块控制所述智能割草机执行后退的避障措施。当仅在F区检测到障碍物时,所述控制模块控制所述智能割草机执行右拐或后退的避障措施。当仅在G区检测到障碍物时,所述控制模块控制所述智能割草机执行左拐或后退的避障措施。当在H区检测到障碍物时,所述控制模块控制所述智能割草机执行前进或后退或拐弯的避障措施。当在E区、F区和G区均未检测到障碍物时,所述控制模块控制所述智能割草机执行前进或后退或拐弯的避障措施
如图48所示,针对F区和G区中位于壳体轴线210附近的区域,属于避障浮动区域,该区域中有时智能割草机并不能左拐或者右拐,所以针对该区域,可以直接采用后退的避障措施,针对该浮动区域的面积主要跟智能割草机的速度以及机器的宽度有关,控制模块30根据障碍物的距离、智能割草机的速度、机身的结构参数以及转弯半径可以根据算法计算得出采用哪种避障逻辑可以不碰撞障碍物。关于E区的划分,可以根据预设距离进行虚拟设定,这个可以根据软件方式进行设定,而且随着智能割草机的移动速度不一样,虚拟的E区的范围会不同,如此是为了尽可能大限度的实现近距离非接触避障,提高智能割草机的可接近性。E区的设定要求是,在E区范围内,智能割草机只能采取后退的避障措施。软件控制时,由于机器的尺寸信息(比如长度、宽度、前端侧 面的倒角弧度等)以及机器的性能参数(比如制动能力、信号传递速度等)都设置在机器内,机器会结合预设距离和当前运动速度自动区分出E区的范围。
如图48所示,以第一实施例的智能割草机100为例,E区范围内L1+L2的和是一个等值,L1′+L2′的和是一个等值,L1为第一超声波传感器轴心到障碍物的距离,L2为第二超声波传感器轴心到障碍物的距离。如图49所示,同样的F区和G区范围内L3+L4的和是一个等值,L3′+L4′的和是一个等值,L3为第一超声波传感器轴心到障碍物的距离,L4为第二超声波传感器轴心到障碍物的距离。本发明图48及图49所述实施例的避障描述同样适用于本发明上述的四个实施例的智能割草机100、200、300、400。
如图50所示,图50为本发明智能割草机进行避障的逻辑图,本发明智能割草机在避障时一直与障碍物99保持一定的距离,距离H1或H2均大于0,本发明智能割草机能够实现非接触式避障。图中圆圈表示的是假设的障碍物99。
解决近距离非接触式避障问题的实施例。
如图42所示,一般的收发一体的超声波传感器21由于需要同时承担发射超声波和接收障碍物回波的工作,所以都存在盲区的问题,关于盲区的形成原理是:由一个高压脉冲进行超声波发射,在脉冲结束后,超声波传感器会有一个比较长时间的余震。在这个余震的时间段内,声波的反射波信号是没有办法跟发射波信号区分的,从而形成超声波传感器的测距盲区。余震的时间不同,测距盲区也相应不同。一般超声波传感器的测距盲区的盲区半径大于30厘米。因此,如图43所示,图43(a)是存在盲区的超声波传感器的预设距离S1,图43(b)是解决了部分盲区的超声波传感器的预设距离S2,S2<S1。如果完全解决了盲区问题,S2会更加小,所以说如果不解决盲区的问题,采用超声波传感器作为非接触式避障手段的自移动设备将无法判断距离超声波传感器30厘米以内的障碍物。所以为了避免碰撞障碍物,自移动设备采取反应动作的距离必须要大于盲区半径,即预设距离(需要避障的距离)必须要大于盲区半径。这样会影响自移动设备的机身可接近性。关于盲区问题,现有技术中可以通过硬件改进来减小或消除盲区,也可以通过软件算法减小或消除盲区,但是不管是硬件改进还是软件算法的应用的,均需要做额外的结构设置或算法处理。本发 明实施例的自移动设备不需要对硬件做改进,也不需要增加软件算法即能实现减小或者消除盲区的目的。下面将结合具体实施例对解决近距离非接触式避障问题的实施例进行描述。
第五实施例:
本发明第五实施例的自移动设备与第一实施例的智能割草机100结构及控制相同,此处不进行重复描述及重复附图的提供。直接利用第一实施例的智能割草机100的附图进行描述。
如图6及图8所示,本发明第五实施例的自移动设备与第一实施例的智能割草机100的差异在于,在第五实施例的自移动设备的第一种布置方式(第一种布置方式与第一实施例的智能割草机100的第一种布置方式相同)中,第三检测区域至少同时覆盖了部分第一超声波传感器21的测距盲区和部分第二超声波传感器23的测距盲区。
如图7及图9所示,本发明第五实施例的自移动设备与第一实施例的智能割草机100的差异在于,在第五实施例的自移动设备的第二种布置方式(第二种布置方式与第一实施例的智能割草机100的第二种布置方式相同)中,超声波传感器组件20的位置相对壳体10的前端后移,对于存在盲区的超声波传感器而言,超声波传感器的盲区有部分或者全部落在壳体10上。因此,第三检测区域不需要覆盖全部第一超声波传感器21的测距盲区和第二超声波传感器23的测距盲区。在该第五实施例的自移动设备的第二种布置方式的实施例中,第三检测区域只需要同时覆盖位于壳体10前端的盲区(第一超声波传感器的盲区和第二超声波传感器的盲区)即可。因此,第一超声波传感器21和第二超声波传感器23的互成角度的具体数值只需使得第三检测区域同时覆盖位于壳体10前端的盲区即可。
如图3及图4所示,在本发明第五实施例的自移动设备中,第一超声波传感器21和第二超声波传感器23互成的夹角σ1的范围为60°-110°。在该第五实施例的自移动设备的优选实施例中,第一超声波传感器21和第二超声波传感器23的交叉角度σ1范围为70°-90°。该70°-90°数值范围的第一超声波传感器21和第二超声波传感器23的交叉,能够确保重叠检测区域覆盖盲区,还能避免其中一个超声波传感器发射的超声波未经过障碍物反射而直接被另一个超声波传感器接收,减少第一超声波传感器21和第二超声波传感器23两者之 间的信号串扰,提高了障碍物识别的准确性。上述的第一超声波传感器21和第二超声波传感器23互成的角度即是指第一轴线211和第二轴线231互成的角度。
如图5所示,在本发明第五实施例的自移动设备中,相对于壳体轴线210,第一轴线211与壳体轴线210之间的夹角ω1的范围是10°-80°,第二轴线231与壳体轴线210之间的夹角ω2的范围是25°-55°。在该角度范围内,能够确保重叠检测区域覆盖盲区,还能避免其中一个超声波传感器发射的超声波未经过障碍物反射而直接被另一个超声波传感器接收,减少第一超声波传感器21和第二超声波传感器23两者之间的信号串扰,提高了障碍物识别的准确性。
在本发明第五实施例的自移动设备中,第一超声波传感器21和第二超声波传感器23的互成角度的具体数值,根据第一超声波传感器21和第二超声波传感器23之间间距以及超声波传感器的波束发散角等硬件参数不同而会有所变化。在实际应用时,第一超声波传感器21和第二超声波传感器23的布置只需达到能够形成重叠的第三检测区域,且第三检测区域至少能够同时覆盖部分第一超声波传感器21的测距盲区和部分第二超声波传感器23的测距盲区即可。
在本发明第五实施例的自移动设备中,由于在重叠检测区域内的障碍物可以不止一个超声波传感器收到超声回波,以第一超声波传感器21发送超声波为例,当在重叠检测区域存在障碍物且该障碍物位于第一超声波传感器21的盲区范围内时,由于第一超声波传感器21自身盲区仍旧实际存在,第一超声波传感器21自身无法区分是障碍物的超声回波还是自身发送超声波后的余震,但是由于重叠检测区域内第二超声波传感器23也能够收到超声回波,且对于第二超声波传感器23而言,障碍物所在位置并不是第二超声波传感器23的盲区范围内,或者即使障碍物所在位置在第二超声波传感器23的盲区范围内,由于第二超声波传感器23此时不发出超声波只负责接收障碍物回波,所以第二超声波传感器23能不受串扰的区分是障碍物的超声回波,基于这个原理,第一超声波传感器21和第二超声波传感器23相互交叉呈角度布置,能够缩短甚至消除自移动设备的测距盲区,提高了自移动设备的可接近性,自移动设备的可接近性提高,有助于自移动设备适应不同工况。且由于缩短了或消除了超声波传感器本身的测试盲区,预设距离可以设置的更加小,可以在实现非接触式避障的前提下,实现近距离的障碍物检测。对于自移动设备而言,近距离可以让割草机割更多 的草,有利于工作效率的提高。
本发明第五实施例的自移动设备中仅仅通过两个超声波传感器交叉设计即可同时解决盲区的问题,达到可接近性的效果,并达到了知障碍物方向的目的,还能同时兼顾不同工况(比如上坡、狭窄通道、侧面墙)问题的解决,不同工况的描述见下述。本发明明第五实施例的自移动设备中使用零件少,零件布置方便,解决的问题多,节约了使用成本。
本发明第五实施例的自移动设备的其他实施方式中,可以参照第一实施例的智能割草机100中一样,设置三个及以上的超声波传感器,依次通过增加重叠区的面积确保盲区覆盖的全面性。三个及以上的超声波传感器的排布方式及信号收发界定及障碍物的位置判断与第一实施例的智能割草机100中一样。
第六实施例:
本发明第六实施例的自移动设备与第二实施例的智能割草机200结构及控制相同,此处不进行重复描述及重复附图的提供。直接利用第二实施例的智能割草机200的附图进行描述。
如图13所示,本发明第六实施例的自移动设备与第二实施例的智能割草机200的差异在于,在第六实施例的自移动设备的第一种布置方式(第一种布置方式与第二实施例的智能割草机200的第一种布置方式相同)中,第三检测区域至少同时覆盖了部分第一超声波传感器41的测距盲区和部分第二超声波传感器43的测距盲区。
如图14所示,本发明第六实施例的自移动设备与第二实施例的智能割草机200的差异在于,在第六实施例的自移动设备的第二种布置方式(第二种布置方式与第二实施例的智能割草机200的第二种布置方式相同)中,超声波传感器组件20的位置相对壳体10的前端后移,对于存在盲区的超声波传感器而言,超声波传感器的盲区有部分或者全部落在壳体10上。因此,第三检测区域不需要覆盖全部第一超声波传感器41的测距盲区和第二超声波传感器43的测距盲区。在该第六实施例的自移动设备的第二种布置方式的实施例中,第三检测区域只需要同时覆盖位于壳体10前端的盲区(第一超声波传感器的盲区和第二超声波传感器的盲区)即可。
在本发明第六实施例的自移动设备中,由于在重叠检测区域内的障碍物可 以不止一个超声波传感器收到超声回波,以第一超声波传感器41发送超声波为例,当在重叠检测区域存在障碍物且该障碍物位于第一超声波传感器41的盲区范围内时,由于第一超声波传感器41自身盲区仍旧实际存在,第一超声波传感器41自身无法区分是障碍物的超声回波还是自身发送超声波后的余震,但是由于重叠检测区域内第二超声波传感器43也能够收到超声回波,且对于第二超声波传感器43而言,障碍物所在位置并不是第二超声波传感器43的盲区范围内,或者即使障碍物所在位置在第二超声波传感器43的盲区范围内,由于第二超声波传感器43此时不发出超声波只负责接收障碍物回波,所以第二超声波传感器43能不受串扰的区分是障碍物的超声回波,基于这个原理,第一超声波传感器41和第二超声波传感器43相互交叉呈角度布置,能够缩短甚至消除自移动设备的测距盲区,提高了自移动设备的可接近性,自移动设备的可接近性提高,有助于自移动设备适应不同工况。且由于缩短了或消除了超声波传感器本身的测试盲区,预设距离可以设置的更加小,可以在实现非接触式避障的前提下,实现近距离的障碍物检测。对于自移动设备而言,近距离可以让割草机割更多的草,有利于工作效率的提高。
本发明第六实施例的自移动设备中仅仅通过两个超声波传感器平行设置,使得超声波传感器的检测区域重叠即可同时解决可接近性的问题及知障碍物方向的问题,还能同时兼顾不同工况(比如上坡)问题的解决,本发明第六实施例的自移动设备使用零件少,零件布置方便,解决的问题多,节约了使用成本。
本发明第六实施例的自移动设备的其他实施方式中,可以参照第二实施例的智能割草机200中一样,设置三个及以上的超声波传感器,依次通过增加重叠区的面积确保盲区覆盖的全面性。三个及以上的超声波传感器的排布方式及信号收发界定及障碍物的位置判断与第二实施例的智能割草机200中一样。
第七实施例:
本发明第七实施例的自移动设备与第三实施例的智能割草机300结构及控制相同,此处不进行重复描述及重复附图的提供。直接利用第三实施例的智能割草机300的附图进行描述。
如图18所示,本发明第七实施例的自移动设备与第三实施例的智能割草机300的差异在于,在第七实施例的自移动设备的第一种布置方式(第一种布置 方式与第三实施例的智能割草机300的第一种布置方式相同)中,第三超声波传感器65与第一超声波传感器61交叉形成的重叠区覆盖第一超声波传感器61的测距盲区,第二超声波传感器63与第四超声波传感器67交叉形成的重叠区覆盖第二超声波传感器63的测距盲区。此实施例中,在第一超声波传感器61的盲区范围内,第三超声波传感器65可以准确的接收到障碍物的超声回波,在第二超声波传感器63的盲区范围内,第四超声波传感器67可以准确的接收到障碍物的超声回波,可以达到减小或消除盲区的目的。
如图19所示,本发明第七实施例的自移动设备与第三实施例的智能割草机300的差异在于,在第七实施例的自移动设备的第二种布置方式(第二种布置方式与第三实施例的智能割草机300的第一种布置方式相同)中,超声波传感器组件20的位置相对壳体10的前端后移,对于存在盲区的超声波传感器而言,超声波传感器的盲区有部分或者全部落在壳体10上。因此,第三检测区域和第四检测区域不需要覆盖全部第一超声波传感器61的测距盲区和第二超声波传感器63的测距盲区。在该第七实施例的智能割草机300的第二种布置方式的实施例中,第三检测区域及第四检测区域只需要分别覆盖位于壳体10前端的盲区(第一超声波传感器的盲区和第二超声波传感器的盲区)即可。
如图18及图19所示,在实际应用时,第三超声波传感器65和第四超声波传感器67的布置只需达到能够形成重叠的第三检测区域及第四检测区域,且第三检测区域至少能够覆盖部分第一超声波传感器61的测距盲区,第四检测区域至少能够覆盖部分第二超声波传感器63的测距盲区即可。
在本发明第七实施例的自移动设备的该第一种布置方式的实施例中,由于在重叠检测区域内的障碍物可以不止一个超声波传感器收到超声回波,以第一超声波传感器61发送超声波为例,当在重叠检测区域存在障碍物且该障碍物位于第一超声波传感器61的盲区范围内时,由于第一超声波传感器61自身盲区仍旧实际存在,第一超声波传感器61自身无法区分是障碍物的超声回波还是自身发送超声波后的余震,但是由于重叠检测区域内第三超声波传感器65也能够收到超声回波,且由于第三超声波传感器65不发出超声波只负责接收障碍物回波,所以第三超声波传感器65能不受串扰的区分是障碍物的超声回波,基于这个原理,第一超声波传感器61和第三超声波传感器65相互交叉呈角度布置, 第二超声波传感器63和第四超声波传感器67相互交叉呈角度布置能够缩短甚至消除第七实施例的自移动设备的测距盲区,提高了自移动设备的可接近性,自移动设备的可接近性提高,有助于第七实施例的自移动设备适应不同工况。且由于缩短了或消除了超声波传感器本身的测试盲区,预设距离可以设置的更加小,可以在实现非接触式避障的前提下,实现近距离的障碍物检测。对于割草机而言,近距离可以让割草机割更多的草,有利于工作效率的提高。第一超声波传感器61与第三超声波传感器65交叉形成的重叠区覆盖第一超声波传感器61的测距盲区,第二超声波传感器63与第四超声波传感器67
如图17所示,在本发明第七实施例的自移动设备中,第一超声波传感器61与第三超声波传感器65互成的夹角γ1的范围为10°-80°。在该第七实施例的自移动设备的优选实施例中,第一超声波传感器61与第三超声波传感器65的交叉角度γ1范围为25°-55°。该25°-55°数值范围能够确保重叠检测区域覆盖盲区。上述的第一超声波传感器61与第三超声波传感器65互成的角度即是指第一轴线611和第三轴线651互成的角度。第二超声波传感器63与第四超声波传感器67的夹角γ2的范围为10°-80°。在该第七实施例的自移动设备的优选实施例中,第二超声波传感器63与第四超声波传感器67的交叉角度γ2范围为25°-55°。该25°-55°数值范围能够确保重叠检测区域覆盖盲区。上述的第二超声波传感器63与第四超声波传感器67互成的角度即是指第二轴线631和第四轴线671互成的角度。
第八实施例:
本发明第八实施例的自移动设备与第四实施例的智能割草机400结构及控制相同,此处不进行重复描述及重复附图的提供。直接利用第一实施例的智能割草机400的附图进行描述。
如图23所示,本发明第八实施例的自移动设备与第四实施例的智能割草机400(只包括两个超声波传感器)的差异在于,第二超声波传感器83与第一超声波传感器81交叉形成的重叠检测区至少覆盖部分第一超声波传感器81的测距盲区。
如图22所示,本发明第八实施例的自移动设备的第一种布置方式(第一种布置方式与第四实施例的智能割草机400的第一种布置方式相同)中,第二超 声波传感器83和第三超声波传感器85与第一超声波传感器81互成角度布置形成的重叠的所述第三检测区域,通过第三检测区域至少同时覆盖第一收发区域内的部分第一测距盲区即可以达到减小或消除盲区的目的。
如图24所示,本发明第八实施例的自移动设备与第四实施例的智能割草机400的差异在于,在第八实施例的自移动设备的第二种布置方式(第二种布置方式与第四实施例的智能割草机400的第二种布置方式相同)中,超声波传感器组件20的位置相对壳体10的前端后移,对于存在盲区的超声波传感器而言,超声波传感器的盲区有部分或者全部落在壳体10上。第二超声波传感器83和第三超声波传感器85与第一超声波传感器81互成角度的重叠区不需要覆盖全部第一超声波传感器81的测距盲区,第三检测区域只需要覆盖第一超声波传感器81位于壳体10前端的盲区即可。第二超声波传感器83和第三超声波传感器85与第一超声波传感器81
如图21及图22所示,在本发明第八实施例的自移动设备中,第二超声波传感器83与第一超声波传感器81互成的夹角ε2的范围为10°-80°。在该第八实施例的自移动设备的优选实施例中,第二超声波传感器83与第一超声波传感器81的交叉角度ε2范围为25°-55°。该25°-55°数值范围的第二超声波传感器83和第一超声波传感器81的交叉,能够确保重叠检测区域覆盖盲区。上述的第二超声波传感器83与第一超声波传感器81互成的角度即是指第二轴线831和第一轴线811互成的角度。第三超声波传感器85与第一超声波传感器81互成的夹角ε3的范围为10°-80°。在该第八实施例的自移动设备的优选实施例中,第三超声波传感器85与第一超声波传感器81的交叉角度ε3范围为25°-55°。该25°-55°数值范围的第三超声波传感器85与第一超声波传感器81的交叉,能够确保重叠检测区域覆盖盲区。上述的第三超声波传感器85与第一超声波传感器81互成的角度即是指第三轴线851和第一轴线811互成的角度。
如图21所示,在本发明第八实施例的自移动设备中,可以只包括两个超声波传感器,分别为第二超声波传感器83与第一超声波传感器81,该第二超声波传感器83与第一超声波传感器81交叉形成重叠区,第一超声波传感器81的测距盲区内第二超声波传感器83可以收到障碍物回波。第二超声波传感器 83与第一超声波传感器81互成的夹角ε1的范围为10°-80°。在该第八实施例的自移动设备的优选实施例中,第二超声波传感器83与第一超声波传感器81的交叉角度ε1范围为25°-55°。
在本发明第八实施例的自移动设备中,由于在重叠检测区域内的障碍物可以有独立的一个超声波传感器收到超声回波,负责接收障碍物回波的超声波传感器能不受串扰的区分是障碍物的超声回波,基于这个原理,能够缩短甚至消除第八实施例的自移动设备的测距盲区,提高了自移动设备的可接近性,自移动设备的可接近性提高,有助于自移动设备适应不同工况。且由于缩短了或消除了超声波传感器本身的测试盲区,预设距离可以设置的更加小,可以在实现非接触式避障的前提下,实现近距离的障碍物检测。对于自移动设备而言,近距离可以让割草机割更多的草,有利于工作效率的提高。
解决上坡问题的实施例。
如图37至图41所示,图37至图41为自移动设备在遇到坡的工况示意图。图39中传感器轴线与坡的角度为β1,图40中传感器轴线与坡的角度为β2。自移动设备的前进方向上存在一坡度角为α的坡。如图37所示,超声波传感器组件20发射的超声波会受到坡面的阻挡,从而反射至超声波传感器组件20。控制模块30根据超声波传感器组件20所接收的反射波与发射波的时间差,分析计算出产生反射波的位置点与自移动设备的距离S。当传感器组件20设置在自移动设备的壳体10前端时,距离S就是超声波传感器组件所检测到的距离;当传感器组件20设置在离壳体10前端一段距离D的位置时,距离S是超声波传感器组件所检测到的距离减去超声波传感器离壳体10前端的一段距离D。控制模块30根据超声波的发射和接收的时间差,只能判断出距离S,无法判断出具体由何物阻挡超声波。控制模块30将距离S的值与预设的预设距离L进行比较,当S小于等于L时,控制模块30控制自移动设备是否需要采取避障措施。预设距离L和自移动设备的可接近性有关。预设距离L具体是指控制模块30内预设自移动设备的壳体10前端离障碍物最小距离,相当于机身的可接近性距离,具体预设距离L的设计要求参照前述。
在现有技术中,由于自移动设备并不能实现近距离检测,所以预设距离L的值是相对比较大的,一般都大于S的值,这样就导致,自移动设备未接近坡 面就回避了。
另一方面讲,在现有技术中,由于超声波传感器普遍存在测距盲区,因此预设距离L必须大于测距盲区半径r。当测距盲区半径r较大或者坡度α较大时,自移动设备尚未移动至坡的坡脚位置,距离S已经小于等于预设距离L,控制模块30控制自移动设备执行避障措施,导致自移动设备未接近坡面就回避了。对于割草机而言,坡面区域内的草就始终得不到割刈。本发明实施例的自移动设备能够实现近距离的障碍物检测,能够不用识别坡直接上坡,即本发明的自移动设备不会将坡识别为需要避开的障碍物。
如图44所示,图44显示了普通障碍物与坡对应的障碍物测距结果以及障碍物回波信号的情况。图44a(1)为自移动设备遇到坡并获得距离S3,图44b(1)为自移动设备遇到普通障碍物73并获得距离S4,图44b(2)是该自移动设备收到的障碍物73的超声回波情况,该超声波的回波强度值高于反射波门限阈值709,所以控制模块对收到的超声回波进行分析得到该位置存在障碍物73。相同距离S4对应到坡上是第一位置71,但是虽然自移动设备的视场可能能覆盖到第一位置71并能收到第一位置71发射的超声回波,但是从图44a(2)可知,第一位置71反射的超声波的回波强度值低于反射波门限阈值709,所以虽然能收到超声回波,但是实际控制模块并不认为第一位置71是需要避开的障碍物。而从图44b(1)可知,自移动设备检测到的障碍物的点实际是在第二位置72,而第二位置72与自移动设备的超声波传感器之间的距离是S3,S3〉S4,即自移动设备实际测得的距离较大,而由于本发明的自移动设备提高了可接近性,预设距离L的值相对较小,所以即使当自移动设备走到坡的脚下时,测得的距离值仍旧大于预设距离L,所以自移动设备仍旧会继续前进,进而上坡。
下面将结合具体实施例对解决上坡的问题的实施例进行描述。
第九实施例:
本发明第九实施例的自移动设备与第五实施例的自移动设备完全相同,此处不进行重复描述及重复附图的提供。本发明第九实施例的自移动设备通过互成角度的两个超声波传感器形成的视场重叠检测区域覆盖盲区,可以缩短或消除自移动设备的测距盲区,预设距离L不需要大于等于盲区半径r,预设距离L可以为很小的数值,如5厘米左右。当自移动设备移动至坡的坡脚时,自移动 设备的壳体前端离坡面的距离S大于预设距离L,自移动设备仍然按原始方向前进,从坡脚爬上坡面。自移动设备爬上坡面后,超声波传感器组件20也随着壳体10具有相同的坡度角,超声波传感器组件20所发射的超声波不会再受坡面阻挡而反射。因此,本发明的实施例中的自移动设备出现将坡面判断成障碍物的概率会大幅下降,从而避免自移动设备不进入坡面区域执行工作。
第十实施例:
本发明第十实施例的自移动设备与第六实施例的自移动设备完全相同,此处不进行重复描述及重复附图的提供。本发明第十实施例的自移动设备仅仅通过两个超声波传感器平行设置,使得超声波传感器的检测区域重叠,重叠检测区域覆盖盲区,可以缩短或消除自移动设备的测距盲区,预设距离L不需要大于等于盲区半径r,预设距离L可以为很小的数值,如5厘米左右。当自移动设备移动至坡的坡脚时,自移动设备的壳体前端离坡面的距离S大于预设距离L,自移动设备仍然按原始方向前进,从坡脚爬上坡面。自移动设备爬上坡面后,超声波传感器组件20也随着壳体10具有相同的坡度角,超声波传感器组件20所发射的超声波不会再受坡面阻挡而反射。因此,本发明的实施例中的自移动设备出现将坡面判断成障碍物的概率会大幅下降,从而避免自移动设备不进入坡面区域执行工作。
第十一实施例:
本发明第十一实施例的自移动设备与第七实施例的自移动设备完全相同,此处不进行重复描述及重复附图的提供。本发明第十一实施例的自移动设备中第三超声波传感器65与第一超声波传感器61交叉形成的重叠区覆盖第一超声波传感器61的测距盲区,第二超声波传感器63与第四超声波传感器67交叉形成的重叠区覆盖第二超声波传感器63的测距盲区。此实施例中,在第一超声波传感器61的盲区范围内,第三超声波传感器65可以准确的接收到障碍物的超声回波,在第二超声波传感器63的盲区范围内,第四超声波传感器67可以准确的接收到障碍物的超声回波,可以达到减小或消除盲区的目的,提高了第十一实施例的自移动设备的可接近性。由于本发明第十一实施例的自移动设备可接近性好,所以预设距离L较小,本发明第十一实施例的自移动设备检测到的与坡之间的距离值大于预设距离L,所以本发明第十一实施例的自移动设备直 接实现上坡。
第十二实施例:
本发明第十二实施例的自移动设备与第八实施例的自移动设备完全相同,此处不进行重复描述及重复附图的提供。本发明第十二实施例的自移动设备中由于在重叠检测区域内的障碍物可以有独立的一个超声波传感器收到超声回波,负责接收障碍物回波的超声波传感器能不受串扰的区分是障碍物的超声回波,基于这个原理,能够缩短甚至消除第十二实施例的自移动设备的测距盲区,提高了自移动设备的可接近性。由于本发明第十二实施例的自移动设备可接近性好,所以预设距离L较小,本发明第十二实施例的自移动设备检测到的与坡之间的距离值大于预设距离L,所以本发明第十一实施例的自移动设备直接实现上坡。
解决侧面墙的问题的实施例。
如图45及图46所示,图45及图46为自移动设备斜侧面遇到墙的工况示意图。如图45所示,当超声波传感器水平向前安装,其发送的超声波向前传输,自移动设备针对斜侧面的墙无法准确的识别,因为超声波传感器的超声波发出后超声波传感器可能并不能接收到超声回波,因为超声回波可能直接被墙反射出去。
针对该种特殊的情况,如图46所示,采用本发明第一实施例的智能割草机100结构可以解决侧面墙的问题,即至少两个超声波传感器互成角度设计的方案,由于两个超声波传感器的视场相互交叉,使得不管自移动设备与墙之间是成什么角度的倾斜状态,总是存在其中一个超声波传感器能够发送超声波并接收到超声回波,进而识别到墙为障碍物,会转换自移动设备的行进方向,如此往复,直到两个超声波传感器均接收不到超声回波为止。
解决狭窄通道的问题的实施例。
当工作区域内存在狭窄通道时,在狭窄通道之间的宽度较小的情况下,由于自移动设备采取反应动作的距离必须大于盲区半径,自移动设备无论左转或右转都接收到超声波的反射信号,从而控制模块判断其始终处于障碍物之中,从而自移动设备无法通过狭窄通道,容易造成通道两侧内附近的区域无法被执行割草或清洁等功能。
如图47所示,图47为自移动设备遇到狭窄通道的工况示意图,相对现有技术,如果采用本发明第一实施例的智能割草机100中的超声波传感器布置方式,即至少两个超声波传感器互成角度设计的方案,由于两个超声波传感器的视场相互交叉,使得预设距离L较小,这样自移动设备可以更接近狭窄通道的两侧边界。当自移动设备到达狭窄通道时,超声波传感器检测到的狭窄通道两侧与移动机器人的距离仍旧大于预设距离L,所以移动机器人可以顺利进入狭窄通道,当移动机器人进入狭窄通道后,通过两个超声波传感器互成角度设计可以时刻调整移动机器人的前进方向,避免移动机器人与狭窄通道的侧壁碰撞。因此,自移动设备由于狭窄通道宽度太窄而无法通过的概率会降低,两侧边界附近未被执行工作的宽度距离也会减少。
解决防串扰问题的实施例。
本发明第十三实施例的自移动设备与第一实施例的智能割草机100完全相同,此处不进行重复描述及重复附图的提供。本发明第十三实施例的自移动设备与第一实施例的智能割草机100的区别在于:第十三实施例的自移动设备中第一超声波传感器21及第二超声波传感器23之间具有物理隔离的防串扰结构,防串扰结构可以是一个独立的位于第一超声波传感器21及第二超声波传感器23之间的物理结构,也可以是至少两个分别设在第一超声波传感器21及第二超声波传感器23外部或之间的物理结构。
如图62、63、53至58所示,所述自移动设备还包括防串扰结构80、89,用于阻止第一超声波传感器21和第二超声波传感器23两者之一发送的超声波未经障碍物反射被两者中的另一个直接接收。防串扰结构80、89设于第一超声波传感器21和第二超声波传感器23之间。防串扰结构80、89向壳体10前侧延伸不与超声波传感器轴线接触。防串扰结构80、89向壳体10前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。防串扰结构80、89位于第一超声波传感器21声波发射点和第二超声波传感器23声波发射点连线的前侧并向壳体前侧延伸。防串扰结构80、89包括与超声波传感器轴线成角度设置的止档壁801。
如图62及图63所示,防串扰结构80的第一实施例中,第一超声波传感器21及第二超声波传感器23之间具有防串扰结构89。防串扰结构89包括两个止 档壁,其中一个止档壁(即下述的第一防串扰面893)对着第一收发区域并部分延伸入第一收发区域,另一个止档壁(即下述的第二防串扰面894)对着第二收发区域并部分延伸入第二收发区域。第一超声波传感器21具有第一轴线211,第二超声波传感器23具有第二轴线231。防串扰结构89具有对着第一超声波传感器21的第一防串扰面893以及对着第二超声波传感器23的第二防串扰面894,防串扰结构89不超过第一轴线211和第二轴线231。防串扰结构89具有最靠近第一轴线211的第一边891以及靠近第二轴线231的第二边892。第一边891不超过第一轴线211,第二边892不超过第二轴线231。在本发明的该实施例中,第一边891为第一防串扰面893的一个边,第二边892为第二防串扰面894的一个边。第一防串扰面893部分延伸入第一收发区域,第二防串扰面894部分延伸入第二收发区域。如此设置,防串扰结构89可以阻挡第一超声波传感器21及第二超声波传感器23相邻位置的收发区域,避免第一超声波传感器21及第二超声波传感器23相互之间产生信号串扰。
如图53所示,防串扰结构的第二实施例中,第一超声波传感器21及第二超声波传感器23***均具有防串扰结构80,每一防串扰结构80具有止档壁801。两个止档壁801分别部分延伸入第一收发区域和第二收发区域。第一超声波传感器21及第二超声波传感器23的止档壁801对应第一实施例的第一防串扰面893和第二防串扰面894。如此设置,防串扰结构89可以阻挡第一超声波传感器21及第二超声波传感器23相邻位置的收发区域,避免第一超声波传感器21及第二超声波传感器23相互之间产生信号串扰。如图2所示,两个防串扰结构80沿壳体轴线210对称设置。
图53表示出了设置止档壁801与未设置止档壁801的区别,从图53(a)可以看出其中一个超声波传感器发出来的超声波,即视场98直接覆盖到了相邻另一个超声波传感器,由于两个超声波传感器的轴线是成角度交叉设置,所以其中一个超声波传感器发出来的部分超声波会直接被相邻的另一个超声波传感器所接收,会对该相邻的另一个超声波传感器发射出来的超声波造成串扰。从图53(b)可以看出设置本发明的止档壁801后,其中一个超声波传感器发出来的超声波形成的视场98不会覆盖到相邻的另一个超声波传感器,所以避免了相互之间的信号串扰。
如图54至图58所示,防串扰结构80还包括用以与超声波传感器发声面对应的安装孔802、顶面803、与顶面803平行的虚拟平行面804,超声波传感器的发声面朝向安装孔802。止档壁801包括第一档壁8011和第二档壁8012。第一档壁8011和第二档壁8012可以是一体结构,也可以是分体结构,当第一档壁8011和第二档壁8012为分体结构时,通过两个结构的叠加实现止档壁801的作用。所述第一档壁具有顶端,在本发明的实施例中,该顶端即顶面803。第二档壁具有上连接端805,上连接端805在竖直方向上低于顶端。第二档壁8012自上连接端805向壳体10前侧延伸,且竖直方向上的高度逐渐降低。第一档壁8011的宽度为L3,超声波传感器发射的会引起相互串扰的超声波大部分会被的第一档壁8011阻挡,剩余的较少的干扰超声波只需要第二档壁8012阻挡即可。
如图54至图58所示,第二档壁8012朝向自移动设备的行进方向面积逐渐减小。第二档壁8012具有与第一档壁8011连接且低于顶面803的上连接端805、远离第一档壁8011并在竖直方向上低于上连接端805的下连接端806以及连接上连接端805和下连接端806的连接面809。防串扰结构80具有与顶面803基本垂直连接的前端面808,此处基本垂直指的是可以使完全垂直,也可以是大概呈垂直的状态。
发明通过设置第一档壁8011和第二档壁8012结构,第一档壁8011可以挡住大部分的串扰超声波,第二档壁8012的结构低于第一档壁8011可以档住剩余的防串扰波,并且结构上呈近似三角形,具有朝向自移动设备的行进方向面积逐渐减小的特征,且第二档壁8012自上连接端805向壳体10前侧延伸,且竖直方向上的高度逐渐降低,该第二档壁8012的形状设计独特,高度在竖直方向上的高度逐渐降低,通过一个阶梯形状逐渐过渡的防串扰,可以避免档过多的超声波,在不影响障碍物检测的同时,还能防串扰,保证近距离障碍物检测的准确度。
如图57所示,安装孔802具有孔中心807。孔中心807与前端面808之间的距离L大于5mm,上连接端805与前端面808之间的距离L2小于10mm,下连接端806与前端面808之间的距离L1小于20mm。上连接端805与孔中心807在竖直方向上的距离Δ小于16mm,连接面809与虚拟平行面804之间的角 度τ的范围是35°-55°。本发明通过不同的参数设计,可以确保第一超声波传感器21发出的超声波不会直接未经过障碍物直接被第二超声波传感器23收到,保证了近距离障碍物识别的准确性,同时保证了第二超声波传感器23发送超声波信号的稳定性。
如图58所示,止档壁801相对于顶面803倾斜设置,即止档壁801与顶面80之间的角度不等于90°,由于虚拟平行面804与顶面803平行,虚拟平行面804与止档壁801之间的角度μ大于0°,且角度μ小于90°,角度μ不等于90°。本发明的防串扰结构80通过将止档壁801倾斜设置,以第一超声波传感器21为例,当第一超声波传感器21发射超声波时,由于止档壁801倾斜设置,部分超声波会直接从止档壁801发射出去,而不会再被反射回第一超声波传感器21,进而可以减少直接反射回第一超声波传感器21的超声波,由于直接被止档壁801发射回去的超声波变少,所以即使第一超声波传感器21收到了部分止档壁801反射的超声波回波,但是由于该些回波强度值较弱,没有到达障碍物判断的反射波门限阈值,所以第一超声波传感器21不会做近距离的障碍物判断,提升了近距离障碍物判断的准确度。
本发明通过在第一超声波传感器21及第二超声波传感器23相邻处设置止档壁,如此设置,当第一超声波传感器21及第二超声波传感器23成角度交叉时,可以通过止档壁避免第一超声波传感器21发射的超声波为经过障碍物反射直接被第二超声波传感器23接收,保证了近距离障碍物识别的准确性。同时,防串扰结构80利用其自由的内部结构还能在超声波刚发出时约束超声波的视场发射范围,进一步防止超声波与壳体10直接产生接触而产生超声回波,保证了障碍物检测的准确性。
本发明上述防串扰结构的实施方案适用于本发明两个超声波传感器交叉布局的方案,即两个传感器轴线的投影交叉的方案。
对于本发明前述的非接触避障的智能割草机或者自移动设备而言,本发明各实施例实现了至少四种形式的避障,即所述控制模块控制移动模块沿预设路径移动,保持壳体与障碍物之间的间距始终大于零;所述控制模块控制移动模块沿不同于当前前进方向的路径移动;所述控制模块控制移动模块沿远离障碍物的方向移动;所述控制模块识别壳体行进方向的一侧障碍物与壳体的距离小 于预设的距离,所述控制模块控制移动模块沿行进方向的另一侧移动。关于这四种形式的非接触避障实施例如下:
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述智能割草机;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿预设路径移动,保持壳体与障碍物之间的间距始终大于零。
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述智能割草机;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿不同于当前前进方向的路径移动。
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述智能割草机;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿远离障碍物的方向移动。
一种自移动设备,其包括:
壳体;
移动模块,设置于所述壳体下方,用于带动所述壳体移动;
驱动模块,用于驱动所述移动模块移动;
控制模块,用于控制所述智能割草机;
所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块识别壳体行进方向的一侧障碍物与壳体的距离小于预设的距离,所述控制模块控制移动模块沿行进方向的另一侧移动。
上述四种方式中关于超声波传感器的结构或者收发信号的界定与第一实施例的智能割草机100相同,防串扰结构的界定如上述第十三实施例的自移动设备中的放串扰结构相同,在此不再重复描述。
图59为控制模块控制超声波传感器组件的一种电路单元示意图。以第一实施例的智能割草机100为例进行说明,其他实施例的自移动设备与之相同或者采用相同方法可以获得。超声波传感器组件20包括第一超声波传感器21和第二超声波传感器23。每个超声波传感器具有各自的超声波发射处理电路和超声波接收处理电路。如图44所示,第一超声波传感器21的超声波发射处理电路包括驱动电路31a和变压器32a。驱动电路31a的一端连接控制模块30中的MCU,接收MCU的启动信号,从而产生预设频率的驱动信号。驱动信号经过变压器32a的电压变换,转换成适于第一超声波传感器21参数的电信号。电信号驱使第一超声波传感器21发射预定频率的超声波。驱动电路31a的具体模式可以为单端爆发模式或者双端推拉模式,优选的为双端推拉模式。驱动信号的预设频率一般根据所采用的传感器的硬件参数而设计。在该实施例中,预设频率范围大于25KHZ,优选为57KHZ—60KHZ,具体如58.5KHZ。在该实施例中,第二超声波传感器23的超声波发射处理电路和第一超声波传感器21的超声波发射处理电路一样,此处不再赘述。
如图59所示,图59为本发明一种实施例的控制模块控制超声波传感器组件的电路单元。第一超声波传感器21的超声波接收处理电路包括模数转换单元35a和数据处理单元37a。第一超声波传感器21接收到经过障碍物反射回来的超声波,并将超声波转换成电信号输给模数转换单元35a。模数转换单元35a将模拟信号转换为数字信号,输出给数据处理单元37a。数据处理单元37a对数字信号进行系列处理获得信号1DC,并且将1DC传输给控制模块30。控制模块30接收1DC,并且根据对1DC的分析获知障碍物的距离。数据处理单元37主要包括滤波、整流、采样或提取等操作,达到屏蔽串扰信号和/或使得1DC的信号形式符合控制模块30分析形式的功能。在该实施例中,第二超声波传感器23的超声波接收处理电路和第一超声波传感器21的超声波接收处理电路一样,此处不再赘述。
优选的,MCU内有同步信号,在第一超声波传感器21发射超声波时,MCU将同步信号发送给第二超声波传感器23的接收部分。第一超声波传感器21启动发射超声波时,第二超声波传感器23启动接收超声波。同理,在第二超声波传感器23发射超声波时,MCU将同步信号发送给第一超声波传感器21的接收 部分。第二超声波传感器23启动发射超声波时,第一超声波传感器21启动接收超声波。
如图60所示,图60为本发明第二种实施例的控制模块控制超声波传感器组件的电路单元。以第一实施例的智能割草机100为例进行说明。第一超声波传感器21的第一超声波接收处理电路21a包括第一MCU和第一变压器,第一MCU将第一超声波传感器21接收到经过障碍物反射回来的超声波通过串口传输给第三MCU,第二超声波传感器23的第二超声波接收处理电路23a包括第二MCU和第二变压器,第二MCU将第二超声波传感器23接收到经过障碍物反射回来的超声波通过串口传输给第三MCU,第三MCU会对第一MCU和第二MCU传输的反射的超声波进行分析获知障碍物的距离及位置信息,最后将处理结果输出给主板,主板会选择进行相关的逻辑控制。第一超声波接收处理电路21a和第二超声波接收处理电路23a内还可以包括数据处理单元,数据处理单元主要包括滤波、整流、采样或提取等操作,达到屏蔽串扰信号和/或使得采集的信号形式符合第三MCU分析形式的功能。在该实施例中,第一超声波接收处理电路21a和第二超声波接收处理电路23a之间设有连接线路96,该连接线路96用以实现同步信号的传输。在第一超声波传感器21发射超声波时,连接线路96将同步信号发送给第二超声波传感器23的接收部分。第一超声波传感器21启动发射超声波时,第二超声波传感器23启动接收超声波。同理,在第二超声波传感器23发射超声波时,连接线路96将同步信号发送给第一超声波传感器21的接收部分。第二超声波传感器23启动发射超声波时,第一超声波传感器21启动接收超声波。在第二种实施例的控制模块控制超声波传感器组件的电路单元的另一个实施例中,第一超声波传感器21的第一超声波接收处理电路21a可以不包括变压器,低电压时可以不需要设置变压器。
在本发明的实施例中,超声波传感器与一处理电路板相连,该处理电路板上具有实现放大模块功能的运放电路、实现AD转换功能的AD转换电路。电路板上具有能实现数据缓冲存储模块功能的芯片及具有实现数据提取模块功能的相对小的MCU,控制模块内具有另一个相对大的MCU用以实现数据分析模块的功能,该相对大的MCU能够实现数据的分析生成距离信息及位置信息,该相对大的MCU内具有软件能够完成障碍物与超声波传感器之间的距离值与设定的预 设距离之间的比对。在其他实施例中,预设距离的比对也可以通过硬件的方式实现距离的比对,比如FPGA、DSP等等。该大的MCU可以设置在主板上,也可以单独设置在一个电路板上。综合分析模块可以集尘在主板上,可以不集尘在主板上,而是和相对大的MCU集尘在一个电路板上。主控制器设置在主板上,主控制器用以根据现有分析的结果控制自移动设备的运动。该分析结果可以通过硬件传递给主控制器,也可以通过电信号的方式传递给主控制器,比如高电频指示或低电频指示或通信的方式传递给主控制器。在其他实施例中,可以采用一个大的MCU来实现本发明相对较小MCU和相对较大MCU的功能。
如图61所示,在第二种实施例的控制模块控制超声波传感器组件的电路单元的另一个实施例中,在第一超声波接收处理电路21a和第二超声波接收处理电路23a之间可以不设置连接电路,直接在第二MCU内设同步信号,在第一超声波传感器21发射超声波时,第二MCU将同步信号发送给第二超声波传感器23的接收部分。第一超声波传感器21启动发射超声波时,第二超声波传感器23启动接收超声波。同理,在第二超声波传感器23发射超声波时,第二MCU将同步信号发送给第一超声波传感器21的接收部分。第二超声波传感器23启动发射超声波时,第一超声波传感器21启动接收超声波。
在上述第二种实施例的控制模块控制超声波传感器组件的电路单元的两种实施例中,第一MCU可以直接将采集到的数据传输给第三MCU进行分析处理,第一MCU也可以内部设置数据分析单元,对采集到的数据进行预处理后再传输给第二MCU进行再次分析处理。第三MCU可以给第一超声波传感器21和第二超声波传感器23发送指令,比如脉冲数要求、放大倍数要求、超声波发送指令、超声回波接收指令等等。
针对上述第二种实施例的控制模块控制超声波传感器组件的电路单元的两种实施例,结合第一实施例的智能割草机100中第一超声波传感器21和第二超声波传感器23收发信号对第三MCU处理的数据包处理进行描述。当第一超声波传感器21发送超声波时,第三MCU将获得第一超声波传感器21接收到的回波信号及第二超声波传感器23接收到的回波信号,此处称为第一路信号;当第二超声波传感器23发送超声波时,第三MCU将获得第二超声波传感器23接收到的回波信号及第一超声波传感器21接收到的回波信号,此处称为第二路信号, 第一路信号和第二路信号共计包括四组超声回波,第三MCU通过对该四组超声回波进行分析获得障碍物的信息。当继续第一超声波传感器21发送超声波时,第三MCU将获得第一超声波传感器21接收到的回波信号及第二超声波传感器23接收到的回波信号,此处称为第三路信号,第二路信号和第三路信号共计包括四组超声回波,第三MCU通过对该四组超声回波进行分析获得障碍物的信息。如此循环,第三MCU一直针对第一超声波传感器21和第二超声波传感器23分别发送超声波后获得的四组超声回波进行障碍物分析。
上述电路单元的介绍同样适用于本发明前述的十三个实施例的自移动设备。图60和61中是两个超声波差传感器的例子,如果是多个则有多路连接到第三MCU的电路,关于发送超声波的指令,由第三MCU给出相应的指令,关于多个超声波传感器的收发信号遵循的原则,比如有重叠检测区的轮流在时间上交替发送,此处不再重复说明。
如图64所示,本发明实施例的自移动设备,可以通过测试的方法知道超声波传感器组件信号的发射及接收情况,以第一实施例的智能割草机100为例进行说明,具体的测试方法为:将自移动设备的第一超声波传感器21与能够接收超声波信号的接收装置87连接,将第二超声波传感器23与另一个能够接收超声波信号的接收装置87连接,然后将两个接收装置87连接到示波器上,接收装置87给示波器传递的电信号会显示在示波器上。通过两个接收装置87接收超声波信号的时间,可以确定确定第一超声波传感器21和第二超声波传感器23是否是轮流在时间上交替发射。还可以用物体挡住第一超声波传感器21发射的超声波,观察是否对第二超声波传感器23接收的信号造成影响,即是否影响到第二超声波传感器23的信号输出结果,如果有影响,证明第二超声波传感器23在接收第一超声波传感器21发出的超声波的超声回波,即可证明第一超声波传感器21在发送超声波时,第二超声波传感器23同时会接收第一超声波传感器21发出的超声波所反射回来的超声回波。第二超声波传感器23的测试方法同第一超声波传感器21,不再重复赘述。还可以用一个障碍物在机器正前方做运动,观察第一超声波传感器21和第二超声波传感器23接收回波信号的情况,如果在某些区域第一超声波传感器21和第二超声波传感器23均能收到超声回波,证明第一超声波传感器21和第二超声波传感器23的视场具有重叠, 即第一超声波传感器21和第二超声波传感器23存在重叠检测区,障碍物正处于重叠检测区内。利用该种超声回波的方法还可以知道第一超声波传感器21和第二超声波传感器23的视场范围,当障碍物非常靠近自移动设备前端时,通过示波器上波形显示还可以知道超声波传感器的盲区位置。
如图65所示,图65为本发明自移动设备的控制框图。以第一实施例的智能割草机100中的第一超声波传感器21为例,其他实施例的超声波传感器的控制与之相同。传感器微控制器705给脉冲电路模块708传达指令,脉冲电路模块708给超声波传感器21传达发送超声波的指令,超声波传感器收到指令发送超声波,超声波传感器接收障碍物回波,并通过放大电路模块701进行放大处理,经过模数转换模块702进行模数转换处理,经过滤波模块703进行滤波处理,处理后的数据进入数据缓存模块704,传感器微控制器705把数据缓存模块704里面的数据传递给数据处理模块706进行数据分析,分析结果再反馈给主控制器707进行执行。图65中的虚线表示该部分是超声波组件涉及的控制模块。关于该自移动设备的控制框图适用于本发明上述十三个实施例的智能割草机或者自移动设备的描述。同样适用于前述四种形式的避障的实施例,即所述控制模块控制移动模块沿预设路径移动,保持壳体与障碍物之间的间距始终大于零;所述控制模块控制移动模块沿不同于当前前进方向的路径移动;所述控制模块控制移动模块沿远离障碍物的方向移动;所述控制模块识别壳体行进方向的一侧障碍物与壳体的距离小于预设的距离,所述控制模块控制移动模块沿行进方向的另一侧移动。
如图66所示,图68为本发明自移动设备的控制模块30识别障碍物的方法流程图。以第一实施例的智能割草机100进行叙述,其他实施例的自移动设备根据超声波传感器数量及超声波发送方式(交替发射或同时发射)的不同进行相应的方法替换。
如图66所示,所述自移动设备识别障碍物的方法,所述自移动设备包括控制模块及第一超声波传感器,所述控制方法包括步骤:
S11:启动数据采集;
S12:超声波传感器发送超声波并接收障碍物回波;
S13:根据障碍物回波分析获得障碍物距离及回波强度;
S14:比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况。
当自移动设备包括第一超声波传感器21和所述第二超声波传感器23时,接收障碍物回波的方法包括步骤:
S111:启动数据采集;
S112:所述第一超声波传感器21和所述第二超声波传感器23中的一个在ti时间段内发送超声波,所述第一超声波传感器21和所述第二超声波传感器23在ti时间段内接收障碍物回波,获得第i组障碍物回波;
S113:所述第一超声波传感器21和所述第二超声波传感器23中的另一个在ti时间段之后的ti+1时间段内发射超声波,所述第一超声波传感器21和所述第二超声波传感器23在ti+1时间段内接收障碍物回波,获得第i+1组障碍物回波;
S114:对第i+1组障碍物回波和第i组障碍物回波进行分析获得障碍物距离及回波强度;
S115:比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况。
当i=1时,所述控制方法包括步骤:
S11:启动数据采集;
S12:所述控制模块控制第一超声波传感器21在第一时间段内发送超声波,所述第一超声波传感器21和所述第二超声波传感器23在第一时间段内接收障碍物回波,获得第一组障碍物回波;
S13:所述控制模块控制所述第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器21和所述第二超声波传感器23在第二时间段内接收障碍物回波,获得第二组障碍物回波;
S14:所述控制模块结合第一组障碍物回波和第二组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息。
当在时间上轮流i=2时,所述控制方法包括步骤:
S11:启动数据采集;
S12:所述控制模块控制第一超声波传感器21在第一时间段内发送超声波,所述第一超声波传感器21和所述第二超声波传感器23在第一时间段内接收障碍物回波,获得第一组障碍物回波;
S13:所述控制模块控制所述第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器21和所述第二超声波传感器23在第二时间段内接收障碍物回波,获得第二组障碍物回波;
S14:所述控制模块结合第一组障碍物回波和第二组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息;
S15:所述控制模块控制第一超声波传感器21在第三时间段内发送超声波,所述第一超声波传感器21和所述第二超声波传感器23在第三时间段内接收障碍物回波,获得第三组障碍物回波;
S16:所述控制模块结合第三组障碍物回波和第二组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息。
当在时间上轮流i=3时,所述控制方法包括步骤:
S11:启动数据采集;
S12:所述控制模块控制第一超声波传感器21在第一时间段内发送超声波,所述第一超声波传感器21和所述第二超声波传感器23在第一时间段内接收障碍物回波,获得第一组障碍物回波;
S13:所述控制模块控制所述第二超声波传感器23在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器21和所述第二超声波传感器23在第二时间段内接收障碍物回波,获得第二组障碍物回波;
S14:所述控制模块结合第一组障碍物回波和第二组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息;
S15:所述控制模块控制第一超声波传感器21在第三时间段内发送超声波,所述第一超声波传感器21和所述第二超声波传感器23在第三时间段内接收障碍物回波,获得第三组障碍物回波;
S16:所述控制模块结合第三组障碍物回波和第二组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息;
S17:所述控制模块控制所述第二超声波传感器23在第三时间段之后的第四时间段内发射超声波,所述第一超声波传感器21和所述第二超声波传感器23在第四时间段内接收障碍物回波,获得第四组障碍物回波;
S18:所述控制模块结合第四组障碍物回波和第三组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息。
从以上举例可以类推,所述控制模块每次对在ti+1时间段内获得的第i+1组障碍物回波与前一ti时间段内获得的第ti组障碍物回波进行距离分析及回波强度分析,并将分析获得的距离值与预设距离进行比较,将分析获得的回波强度值与发射波门限阈值进行比较,获得障碍物信息。ti时间段和ti-1时间段分别是第一超声波传感器21和所述第二超声波传感器23发射信号且的时间段并随着时间段的推进第一超声波传感器21和所述第二超声波传感器23进行轮流发送超声波。
上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值大于设定阈值时,判断没有障碍物。
上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值小于设定阈值时,且分析获得的回波强度值小于发射波门限阈值时,判断没有障碍物。
上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值小于设定阈值时,但分析获得的回波强度值大于发射波门限阈值时,判断有障碍物。
在上述步骤S13中,障碍物回波的处理包括:
对超声回波模拟信号进行放大倍数调节;
对放大倍数调节后的信号进行模数转换;
对模数转换后的信号进行数字滤波。
电压、脉冲数与超声波传感器的视场有一定的关系,电压越大,脉冲数越多,视场的范围越广,但是电压有极限值,电压的极限值即是传感器特性所决定的传感器能承受的最大电压值。脉冲数
尽管本说明书中仅描述和图示了本发明的几个实施例,但是本领域技术人员应该容易预见用于执行这里描述的功能/或者获得这里描述的结构的其它手段或结构,每个这样的变化或者修改都视为在本发明的范围内。

Claims (51)

  1. 一种智能割草机,其包括:
    壳体;
    移动模块,设置于所述壳体下方,用于带动所述壳体移动;
    驱动模块,用于驱动所述移动模块移动;
    控制模块,用于控制所述智能割草机;
    其特征在于,所述壳体上设置用以识别智能割草机前进方向障碍物的超声波传感器组件,所述超声波传感器组件包括第一超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,当所述超声波传感器组件检测到的障碍物离智能割草机的距离小于预设距离时,所述控制模块控制智能割草机执行预设的避障措施。
  2. 根据权利要求1所述的智能割草机,其特征在于,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域。
  3. 根据权利要求2所述的智能割草机,其特征在于,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述第一轴线与第二轴线互成的角度范围为60°-110°。
  4. 根据权利要求3所述的智能割草机,其特征在于,所述第一轴线与第二轴线互成的角度范围为70°-90°。
  5. 根据权利要求2所述的智能割草机,其特征在于,所述第一超声波传感器具有第一轴线,第二超声波传感器具有第二轴线,所述壳体具有壳体轴线,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为10°-80°。
  6. 根据权利要求5所述的智能割草机,其特征在于,所述第一轴线和/或第二轴线与壳体轴线之间的角度范围为25°-55°。
  7. 根据权利要求2所述的智能割草机,其特征在于,所述第三检测区域至少同时覆盖所述第一收发区域内的部分第一测距盲区和所述第二收发区域内的部分第二测距盲区。
  8. 根据权利要求2所述的智能割草机,其特征在于,所述控制模块控制所述第一超声波传感器和所述第二超声波传感器在时间上交替发射超声波。
  9. 根据权利要求8所述的智能割草机,其特征在于,所述控制模块控制所述第一超声波传感器在第一时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第一时间段内接收障碍物回波,所述控制模块控制所述第二超声波传感器在第一时间段之后的第二时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在第二时间段内接收障碍物回波。
  10. 根据权利要求9所述的一种智能割草机,其特征在于,所述控制模块依据所述超声波传感器组件中第一超声波传感器和第二超声波传感器所发射和接收障碍物回波的组合情况,判断障碍物的方位。
  11. 根据权利要求10所述的一种智能割草机,其特征在于,当所述超声波传感器组件中只有第一超声波传感器发射超声波,并且只有第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第一检测区域;当所述超声波传感器组件中只有第二超声波传感器发射超声波,并且只有第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第二检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器和第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第一超声波传感器发射超声波、第二超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域;当所述超声波传感器组件中第二超声波传感器发射超声波、第一超声波传感器接收障碍物回波时,所述控制模块判断障碍物位于所述第三检测区域。
  12. 根据权利要求9所述的智能割草机,其特征在于,所述控制模块依据所述超声波传感器组件的发射超声波和接收障碍物回波的时间差,计算障碍物离智能割草机的距离。
  13. 根据权利要求2所述的智能割草机,其特征在于,所述第一超声波传感器具有第一轴线,所述第二超声波传感器具有第二轴线,所述第一轴线与第二轴线在竖直方向上共面。
  14. 根据权利要求1所述的智能割草机,其特征在于,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采 用同时发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器与声波传输范围无重叠的超声波传感器同时发射超声波时,其余超声波传感器接收超声波。
  15. 根据权利要求1所述的智能割草机,其特征在于,当协同工作的所述超声波传感器为3个或以上时,多个发射超声声波传输范围无重叠的超声波传感器采用轮流发射超声波的模式,声波传输范围有重叠的其中一个超声波传感器发射超声波时,其余超声波传感器接收超声波,声波传输范围无重叠的超声波传感器发射超声波时,其余超声波传感器接收超声波。
  16. 根据权利要求1所述的智能割草机,其特征在于,所述第一超声波传感器设于距离智能割草机前端D距离处。
  17. 根据权利要求17所述的智能割草机,其特征在于,所述D距离位于智能割草机长度方向的前半部分。
  18. 根据权利要求1所述的智能割草机,其特征在于,识别智能割草机前进方向障碍物的超声波波束模板是非圆形的,垂直于所述超声波波束模板的轴线做一个切面得到波形面,所述波形面具有一个长轴方向和一个短轴方向,所述长轴方向安装为和智能割草机的底面基本平行,所述短轴方向安装为和智能割草机的底面基本垂直。
  19. 根据权利要求18所述的智能割草机,其特征在于,所述波形面呈椭圆形。
  20. 根据权利要求18所述的智能割草机,其特征在于,所述第一超声波传感器本身的超声波波束模板是非圆形,垂直于超声波传感器的轴线做一个切面得到所述非圆形的波形面。
  21. 根据权利要求18所述的智能割草机,其特征在于,所述第一超声波传感器本身的超声波波束模板是圆形,所述第一超声波传感器发射超声波的一端设有用以调整所述第一超声波传感器发射出的超声波的超声波波束模板形状的波束调整器,所述波束调整器调整后获得的超声波波束模板是非圆形,垂直于所述超声波波束模板的轴线做一个切面得到所述非圆形的波形面。
  22. 根据权利要求1所述的智能割草机,其特征在于,所述超声波传感器组件包括用以发射和接收超声波的超声波传感器、PCB板以及将PCB板及超声波传感器固定的保护壳,所述超声波传感器具有向外的发声面,所述保护壳具有端面,所述发声面与端面相平或相对端面内凹设于保护壳内。
  23. 根据权利要求1所述的智能割草机,其特征在于,当智能割草机待割除的草的高度为H2,所述超声波传感器组件的安装高度H1与H2的关系式为 H1=H2+L*sin(φ±σ),其中,L为超声波传感器的轴心到判定截面的距离,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
  24. 根据权利要求1所述的智能割草机,其特征在于,第一超声波传感器具有声波束轴,所述声波束轴呈水平布置。
  25. 根据权利要求1或24任一所述的智能割草机,其特征在于,所述第一收发区域具有与壳体前端临近的第一边界线,所述壳体上具有与第一收发区域邻近的邻接壁,所述邻接壁的上表面低于所述第一边界线。
  26. 根据权利要求25所述的智能割草机,其特征在于,所述第一超声传感器具有第一轴线,所述邻接壁具有切线,所述切线与第一轴线之间具有角度为θ,所述角度θ≥φ±σ,其中,φ为传感器性能决定的视场角度的一半,σ为超声波传感器的中心线相对于壳体底面的偏移角度。
  27. 根据权利要求2所述的智能割草机,其特征在于,所述智能割草机还包括防串扰结构,用于阻止第一超声波传感器和第二超声波传感器两者之一发送的超声波未经障碍物反射被两者中的另一个直接接收。
  28. 根据权利要求27所述的智能割草机,其特征在于,所述防串扰结构设于第一超声波传感器和第二超声波传感器之间。
  29. 根据权利要求27所述的智能割草机,其特征在于,所述防串扰结构向壳体前侧延伸不与超声波传感器轴线接触。
  30. 根据权利要求27所述的智能割草机,其特征在于,所述防串扰结构向壳体前侧延伸不超过第一超声波传感器轴线和第二超声波传感器轴线的投影的交叉点。
  31. 根据权利要求27所述的智能割草机,其特征在于,所述防串扰结构位于第一超声波传感器声波发射点和第二超声波传感器声波发射点连线的前侧并向壳体前侧延伸。
  32. 根据权利要求27所述的智能割草机,其特征在于,所述防串扰结构包括与超声波传感器轴线成角度设置的止档壁。
  33. 根据权利要求32所述的智能割草机,其特征在于,所述止档壁包括第一档壁和第二档壁,所述第一档壁具有顶端,所述第二档壁具有上连接端,所述上连接端在竖直方向上低于顶端。
  34. 根据权利要求33所述的智能割草机,其特征在于,所述第二档壁自上连接端向壳体前侧延伸,且竖直方向上的高度逐渐降低。
  35. 根据权利要求34所述的智能割草机,其特征在于,所述防串扰结构还包括用以与超声波传感器发声面对应的安装孔、顶面及与顶面基本垂直连接的前端面,所述安装孔具有孔中心,所述第二档壁具有远离第一档壁并在竖直方向上低于上连接端的下连接端以及连接上连接端和下连接端的连接面。
  36. 根据权利要求35所述的智能割草机,其特征在于,所述孔中心与前端面之间的距离L大于5mm。
  37. 根据权利要求35所述的智能割草机,其特征在于,所述上连接端与前端面之间的距离L2小于10mm。
  38. 根据权利要求35所述的智能割草机,其特征在于,所述下连接端与前端面之间的距离L1小于20mm。
  39. 根据权利要求35所述的智能割草机,其特征在于,所述上连接端与孔中心在竖直方向上的距离Δ小于16mm。
  40. 根据权利要求35所述的智能割草机,其特征在于,所述连接面与顶面之间的角度τ的范围是35°-55°。
  41. 根据权利要求35所述的智能割草机,其特征在于,所述止档壁相对于顶面倾斜设置,所述止档壁与顶面之间的角度μ不等于90°。
  42. 根据权利要求1所述的智能割草机,其特征在于,所述控制模块包括放大电路模块、模数转换模块、滤波模块、数据缓存模块、微控制器、数据处理模块、主控制器及脉冲电路模块,所述微控制器给脉冲电路模块传达指令,所述脉冲电路模块给超声波传感器传达发送超声波的指令,所述超声波传感器收到指令发送超声波,所述超声波传感器接收障碍物回波,并通过放大电路模块进行放大处理,经过模数转换模块进行模数转换处理,经过滤波模块进行滤波处理,处理后的数据进入数据缓存模块,所述传感器微控制器把数据缓存模块里面的数据传递给数据处理模块进行数据分析,所述分析结果再反馈给主控制器进行执行。
  43. 根据权利要求1所述的智能割草机,其特征在于,所述智能割草机还包括第二超声波传感器,所述第一超声波传感器和所述第二超声波传感器相互交叉形成重叠检测区,所述重叠检测区覆盖第一超声波传感器和所述第二超声波传感器两者之一发射超声波的超声波传感器的部分测距盲区,该部分测距盲区处于第一超声波传感器和所述第二超声波传感器两者中的另一接收超声波的超声波传感器的收发区域内。
  44. 一种自移动设备,其包括:
    壳体;
    移动模块,设置于所述壳体下方,用于带动所述壳体移动;
    驱动模块,用于驱动所述移动模块移动;
    控制模块,用于控制所述自移动设备;
    其特征在于,所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿预设路径移动,保持壳体与障碍物之间的间距始终大于零。
  45. 一种自移动设备,其包括:
    壳体;
    移动模块,设置于所述壳体下方,用于带动所述壳体移动;
    驱动模块,用于驱动所述移动模块移动;
    控制模块,用于控制所述自移动设备;
    其特征在于,所述壳体上设置用以识别自移动设备前进方向障碍物的超声波组件,所述超声波传感器组件包括至少两个超声波传感器,包括第一超声波传感器和第二超声波传感器,所述第一超声波传感器在第一收发区域内接收和发射超声波,所述第二超声波传感器在第二收发区域内接收和发射超声波,所述第一超声波传感器和所述第二超声波传感器互成角度地布置在所述壳体上,使得所述第一收发区域和所述第二收发区域部分重叠,从而形成三个检测区域,其中,第一收发区域和第二收发区域相互重叠的部分为第三检测区域,第一收发区域中重叠之外的部分为第一检测区域,第二收发区域中重叠之外的部分为第二检测区域,所述控制模块控制移动模块沿不同于当前前进方向的路径移动。
  46. 一种自移动设备识别障碍物的方法,所述自移动设备包括超声波传感器,所述自移动设备识别障碍物的方法包括步骤:
    S11:启动数据采集;
    S12:超声波传感器发送超声波并接收障碍物回波;
    S13:根据障碍物回波分析获得障碍物距离及回波强度;
    S14:比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况。
  47. 根据权利要求46所述的自移动设备识别障碍物的方法,其特征在于,所述自移动设备包括第一超声波传感器和所述第二超声波传感器且第一超声波传感器和所述第二超声波传感器交替发射超声波时,所述自移动设备识别障碍物的方法包括步骤:
    S111:启动数据采集;
    S112:所述第一超声波传感器和所述第二超声波传感器中的一个在ti时间段内发送超声波,所述第一超声波传感器和所述第二超声波传感器在ti时间段内接收障碍物回波,获得第i组障碍物回波;
    S113:所述第一超声波传感器和所述第二超声波传感器中的另一个在ti时间段之后的ti+1时间段内发射超声波,所述第一超声波传感器和所述第二超声波传感器在ti+1时间段内接收障碍物回波,获得第i+1组障碍物回波;
    S114:对第i+1组障碍物回波和第i组障碍物回波进行分析获得障碍物距离及回波强度;
    S115:比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况。
  48. 根据权利要求46或47任一所述的自移动设备识别障碍物的方法,其特征在于,上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值大于设定阈值时,判断没有障碍物。
  49. 根据权利要求46或47任一所述的自移动设备识别障碍物的方法,其特征在于,上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值小于设定阈值时,且分析获得的回波强度值小于发射波门限阈值时,判断没有障碍物。
  50. 根据权利要求46或47任一所述的自移动设备识别障碍物的方法,其特征在于,上述步骤S14和S115中所述的比较障碍物距离与预设距离以及比较回波强度与反射波门限阈值判断障碍物情况的方法为,当分析获得的距离值小于设定阈值时,但分析获得的回波强度值大于发射波门限阈值时,判断有障碍物。
  51. 根据权利要求46或47任一所述的自移动设备识别障碍物的方法,其特征在于,在上述步骤S13和S114中,障碍物回波的处理包括:
    对超声回波模拟信号进行放大倍数调节;
    对放大倍数调节后的信号进行模数转换;
    对模数转换后的信号进行数字滤波。
PCT/CN2017/099698 2016-08-31 2017-08-30 智能割草机、自移动设备及其识别障碍物的方法 WO2018041146A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17845448.4A EP3508048B1 (en) 2016-08-31 2017-08-30 Autonomous lawn-mower and method of recognizing an obstacle by an autonomous lawn mower
CN201780025404.8A CN109310049B (zh) 2016-08-31 2017-08-30 智能割草机、自移动设备及其识别障碍物的方法
CN202211002828.1A CN116027337A (zh) 2016-08-31 2017-08-30 智能割草机、自移动设备及其识别障碍物的方法
US16/287,309 US11256267B2 (en) 2016-08-31 2019-02-27 Autonomous lawn mower, self-moving device, and method for recognizing obstacle by same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610789844.8 2016-08-31
CN201610789844 2016-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/287,309 Continuation US11256267B2 (en) 2016-08-31 2019-02-27 Autonomous lawn mower, self-moving device, and method for recognizing obstacle by same

Publications (1)

Publication Number Publication Date
WO2018041146A1 true WO2018041146A1 (zh) 2018-03-08

Family

ID=61301360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099698 WO2018041146A1 (zh) 2016-08-31 2017-08-30 智能割草机、自移动设备及其识别障碍物的方法

Country Status (4)

Country Link
US (1) US11256267B2 (zh)
EP (1) EP3508048B1 (zh)
CN (2) CN116027337A (zh)
WO (1) WO2018041146A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109417893A (zh) * 2017-08-30 2019-03-05 苏州宝时得电动工具有限公司 自移动设备
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
US11172605B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
CN114265416A (zh) * 2022-02-28 2022-04-01 季华实验室 一种agv小车控制方法、装置、电子设备及存储介质
EP3920002A4 (en) * 2019-02-03 2022-10-26 Positec Power Tools (Suzhou) Co., Ltd SELF-MOVING DEVICE, OBSTACLE DETECTION METHOD AND OBSTACLE DETECTION MODULE THEREOF
WO2023072303A1 (zh) * 2021-11-01 2023-05-04 苏州宝时得电动工具有限公司 自动割草机

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019042345A1 (zh) * 2017-08-30 2019-03-07 苏州宝时得电动工具有限公司 自移动设备及其移动路径的控制方法
US11014921B2 (en) * 2018-06-20 2021-05-25 Regents Of The University Of Minnesota Therapeutic compounds and methods of use thereof
CN110653810B (zh) * 2018-06-28 2021-03-02 深圳市优必选科技有限公司 机器人距离测量方法、装置及终端设备
CN110100508A (zh) * 2019-04-23 2019-08-09 丰疆智能科技股份有限公司 耕地设备及其犁具保护***和保护方法
US11483968B2 (en) * 2019-08-05 2022-11-01 Firefly Automatix, Inc. Dynamically adjusting the cutting height of a mower deck based on a mower's location
KR20190108530A (ko) * 2019-09-04 2019-09-24 엘지전자 주식회사 이동 로봇 및 그의 구동 방법
CN111103886B (zh) * 2020-01-02 2024-05-03 深圳拓邦股份有限公司 通行窄道的识别方法、装置、设备及计算机可读存储介质
SE544561C2 (en) * 2020-05-08 2022-07-19 Husqvarna Ab An outdoor robotic work tool comprising an environmental detection system
CN111722234A (zh) * 2020-05-13 2020-09-29 浙江华消科技有限公司 基于超声波雷达的障碍物定位方法、装置和计算机设备
CN114680100B (zh) * 2020-12-31 2023-07-28 广东美的制冷设备有限公司 超声波驱蚊器、超声波驱蚊模块及电器设备
CN112782706B (zh) * 2021-01-11 2022-05-10 山东新一代信息产业技术研究院有限公司 机器人超声波传感器障碍物检测方法及***
CN112954868A (zh) * 2021-02-02 2021-06-11 微山县微山湖微电子产业研究院有限公司 一种基于双超声波模块的灯控装置
EP4082318A1 (de) * 2021-04-29 2022-11-02 Andreas Stihl AG & Co. KG Outdoorbearbeitungssystem
USD997997S1 (en) * 2021-07-29 2023-09-05 Andreas Stihl Ag & Co. Kg Robotic lawnmower
SE2250230A1 (en) * 2022-02-21 2023-08-22 Husqvarna Ab An outdoor robotic work tool comprising an environmental detection system adapted to detect obstacles
SE546203C2 (en) 2022-06-03 2024-07-02 Husqvarna Ab Method for controlling a robotic lawnmower in dependence of analysis of information acquired by means of a radar transceiver and a control unit therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204814A (en) * 1990-11-13 1993-04-20 Mobot, Inc. Autonomous lawn mower
US6173233B1 (en) 1998-12-11 2001-01-09 Eaton Corporation Back-up proximity sensor for a vehicle employing dual sonic transducers
CN101091428A (zh) * 2006-10-20 2007-12-26 大连理工大学 一种自动割草机器人
CN202026599U (zh) * 2011-03-09 2011-11-09 台州天宸智能电器有限公司 超声波避障智能割草机
CN102759924A (zh) * 2011-04-28 2012-10-31 苏州宝时得电动工具有限公司 自动工作***、自动行走设备及其转向方法
US20140330496A1 (en) * 2013-02-28 2014-11-06 Austin Crouse Trainable robotic apparatus, system and method
WO2015064780A1 (ko) * 2013-10-30 2015-05-07 주식회사 드림씨엔지 지능형 무인 제초 로봇
CN104737698A (zh) * 2013-12-27 2015-07-01 苏州宝时得电动工具有限公司 自动割草机

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927282A (ja) * 1982-08-06 1984-02-13 Honda Motor Co Ltd 走行車両の後方警戒装置
JPS62220890A (ja) * 1986-03-20 1987-09-29 Matsushita Electric Works Ltd 車両用障害物検知装置
US4809178A (en) * 1986-05-22 1989-02-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle data processing system for unmanned vehicle
US8788092B2 (en) * 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
GB2398394B (en) * 2003-02-14 2006-05-17 Dyson Ltd An autonomous machine
US7706917B1 (en) * 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US10705533B1 (en) * 2005-05-31 2020-07-07 Richard Anthony Bishel Autonomous lawnmower
US9002511B1 (en) 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
JP2009174968A (ja) * 2008-01-23 2009-08-06 Panasonic Electric Works Co Ltd 障害物検知装置
CN201590167U (zh) * 2009-09-16 2010-09-22 北京国人正方科技有限公司 一种超声波车位检测装置
CN102039595B (zh) * 2009-10-09 2013-02-27 泰怡凯电器(苏州)有限公司 自移动地面处理机器人及其贴边地面处理的控制方法
US9310806B2 (en) * 2010-01-06 2016-04-12 Irobot Corporation System for localization and obstacle detection using a common receiver
JPWO2011129001A1 (ja) * 2010-04-15 2013-07-11 パナソニック株式会社 障害物検出システム
US9043129B2 (en) * 2010-10-05 2015-05-26 Deere & Company Method for governing a speed of an autonomous vehicle
JP2012105557A (ja) * 2010-11-15 2012-06-07 Original Soft:Kk 自動芝刈り機
CN202548101U (zh) * 2012-02-14 2012-11-21 袁英民 一种超声波传感器
CN105404298B (zh) 2012-09-21 2018-10-16 艾罗伯特公司 移动机器人上的接近度感测
GB201306437D0 (en) * 2013-04-09 2013-05-22 F Robotics Acquisitions Ltd Domestic robotic system and robot therfor
JP2014206850A (ja) * 2013-04-12 2014-10-30 シャープ株式会社 電子機器および自走式掃除機
DE102013212605A1 (de) * 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zu einer Arbeitsbereichserfassung zumindest eines Arbeitsbereichs eines autonomen Serviceroboters
US9395723B2 (en) * 2013-09-30 2016-07-19 Five Elements Robotics, Inc. Self-propelled robot assistant
CN103884402B (zh) * 2014-04-03 2017-01-18 常州麦吉尔测试***技术有限公司 防强光干扰液位检测装置
KR101622693B1 (ko) * 2014-04-30 2016-05-19 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US9579790B2 (en) * 2014-09-17 2017-02-28 Brain Corporation Apparatus and methods for removal of learned behaviors in robots
US9849588B2 (en) * 2014-09-17 2017-12-26 Brain Corporation Apparatus and methods for remotely controlling robotic devices
KR20160086183A (ko) * 2015-01-09 2016-07-19 엘지전자 주식회사 와치형 단말기 및 그의 제어방법
CN104374743B (zh) * 2014-11-17 2017-01-25 南京信息工程大学 浊度传感器及浊度测量装置
WO2016103066A1 (en) * 2014-12-23 2016-06-30 Husqvarna Ab Zone control system for a robotic vehicle
KR102312095B1 (ko) * 2014-12-26 2021-10-13 엘지전자 주식회사 자율 이동 청소기 및 이의 제어 방법
JP6706882B2 (ja) * 2015-01-20 2020-06-10 シャープ株式会社 自走式掃除機
CN205176290U (zh) * 2015-11-28 2016-04-20 宁波市德霖机械有限公司 智能割草机障碍物检测机构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204814A (en) * 1990-11-13 1993-04-20 Mobot, Inc. Autonomous lawn mower
US6173233B1 (en) 1998-12-11 2001-01-09 Eaton Corporation Back-up proximity sensor for a vehicle employing dual sonic transducers
CN101091428A (zh) * 2006-10-20 2007-12-26 大连理工大学 一种自动割草机器人
CN202026599U (zh) * 2011-03-09 2011-11-09 台州天宸智能电器有限公司 超声波避障智能割草机
CN102759924A (zh) * 2011-04-28 2012-10-31 苏州宝时得电动工具有限公司 自动工作***、自动行走设备及其转向方法
US20140330496A1 (en) * 2013-02-28 2014-11-06 Austin Crouse Trainable robotic apparatus, system and method
WO2015064780A1 (ko) * 2013-10-30 2015-05-07 주식회사 드림씨엔지 지능형 무인 제초 로봇
CN104737698A (zh) * 2013-12-27 2015-07-01 苏州宝时得电动工具有限公司 自动割草机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172608B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
US11172605B2 (en) 2016-06-30 2021-11-16 Tti (Macao Commercial Offshore) Limited Autonomous lawn mower and a system for navigating thereof
US11832552B2 (en) 2016-06-30 2023-12-05 Techtronic Outdoor Products Technology Limited Autonomous lawn mower and a system for navigating thereof
CN109417893A (zh) * 2017-08-30 2019-03-05 苏州宝时得电动工具有限公司 自移动设备
EP3920002A4 (en) * 2019-02-03 2022-10-26 Positec Power Tools (Suzhou) Co., Ltd SELF-MOVING DEVICE, OBSTACLE DETECTION METHOD AND OBSTACLE DETECTION MODULE THEREOF
EP4365697A3 (en) * 2019-02-03 2024-05-29 Positec Power Tools (Suzhou) Co., Ltd. Self-moving device and associated obstacle detection method
WO2023072303A1 (zh) * 2021-11-01 2023-05-04 苏州宝时得电动工具有限公司 自动割草机
CN114265416A (zh) * 2022-02-28 2022-04-01 季华实验室 一种agv小车控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN109310049A (zh) 2019-02-05
US11256267B2 (en) 2022-02-22
EP3508048A4 (en) 2020-04-01
CN116027337A (zh) 2023-04-28
EP3508048B1 (en) 2023-10-18
EP3508048A1 (en) 2019-07-10
CN109310049B (zh) 2022-08-12
US20190265724A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2018041146A1 (zh) 智能割草机、自移动设备及其识别障碍物的方法
WO2019042345A1 (zh) 自移动设备及其移动路径的控制方法
CN109426264A (zh) 自移动设备及其移动路径的控制方法
CN209417595U (zh) 自移动设备
JP3856839B2 (ja) 自己方向決定装置用のシステムと装置
US8680816B2 (en) Battery charger for mobile robotic vacuum cleaner
US7047132B2 (en) Mobile vehicle sensor array
SE502834C2 (sv) Förfarande och anordning för avkänning av hinder vid självgående anordning
CN109567678B (zh) 扫地机器人的清扫控制方法及其装置和扫地机器人
WO2018192578A1 (zh) 自动移动设备及其超声避障方法
CN109426265A (zh) 自移动设备
CN209417594U (zh) 自移动设备
US11755030B2 (en) Mapping and tracking system for robots
CN109426268B (zh) 自移动设备
CN207415379U (zh) 自移动机器人
JP5148353B2 (ja) 水中航走体および障害物探知装置
CN201673255U (zh) 水下测距跟踪用接近觉传感器
CN209770256U (zh) 一种扫地机器人
WO2018014879A1 (zh) 自动识别前方物体的自移动设备及其识别方法
CN219644569U (zh) 自动割草机
CN211348629U (zh) 用于自移动行走设备的超声波前置平台及自移动行走设备
EP4060447A1 (en) Self-moving device and distance measurement method for said device
CN216133349U (zh) 移动机器人
CN109719736B (zh) 自移动机器人及其控制方法
US20230152434A1 (en) Ultrasonic cliff detection and depth estimation using tilted sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017845448

Country of ref document: EP

Effective date: 20190401