WO2018040730A1 - Système de commande de surveillance de réseau de conduites et procédé de commande de surveillance obtenu à l'aide de ce système - Google Patents

Système de commande de surveillance de réseau de conduites et procédé de commande de surveillance obtenu à l'aide de ce système Download PDF

Info

Publication number
WO2018040730A1
WO2018040730A1 PCT/CN2017/091773 CN2017091773W WO2018040730A1 WO 2018040730 A1 WO2018040730 A1 WO 2018040730A1 CN 2017091773 W CN2017091773 W CN 2017091773W WO 2018040730 A1 WO2018040730 A1 WO 2018040730A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
alarm
pressure
server
control valve
Prior art date
Application number
PCT/CN2017/091773
Other languages
English (en)
Chinese (zh)
Inventor
崔崇民
逄士凯
Original Assignee
哈尔滨圣昌科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨圣昌科技开发有限公司 filed Critical 哈尔滨圣昌科技开发有限公司
Publication of WO2018040730A1 publication Critical patent/WO2018040730A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/04Preventing, monitoring, or locating loss by means of a signalling fluid enclosed in a double wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0482Interaction with lists of selectable items, e.g. menus

Definitions

  • the present invention relates to a pipe network monitoring and control system and a monitoring and control method implemented by the system. It belongs to the field of pipeline monitoring.
  • the present invention proposes a pipeline network monitoring and control system and a monitoring and control method implemented by the same.
  • a pipe network monitoring control system which includes a data collector, Flowmeters, remote control valves, pressure transmitters, solar panels, 24V DC solar cells, and host computers, [0007] flowmeters, remote control valves, and pressure transmitters are all placed on the pipe network.
  • the flow signal input/output end of the flow meter is connected to the flow signal output/input of the data collector
  • the power output end of the solar panel is connected to the power input end of the 24V DC solar battery.
  • the 24V DC power signal output end of the 24V DC solar battery is connected to the 24V DC power signal input end of the remote control valve.
  • Another 24V DC power supply signal output terminal is connected to the 24V DC power signal input end of the data collector.
  • the pressure signal output end of the pressure transmitter is connected to the pressure signal input end of the remote control valve
  • the data input/output terminal of the remote control valve is connected to the data output/input of the data collector
  • the data collector is connected to the server port of the upper computer by GPRS wirelessly.
  • the upper computer includes a server and a client, and the upper computer includes control software, and the control software control process is:
  • the server receives the collected data from the data collector, and stores the data in the database. Similarly, the client accesses the server in a network manner, and indirectly queries the data from the database, and the client can also give The server sends the actual read data or the control valve command and sends it to the data collector indirectly through the server.
  • the client comprises a menu unit, a device list unit, a monitoring unit and an alarm unit,
  • a menu unit configured to set a specific address accessed by the server, and set an instantaneous alarm value
  • a device list unit configured to select a location of the pipe network monitoring and control system to be monitored
  • an alarm unit configured to compare the collected data with an alarm threshold set in the menu unit, if the collected instantaneous flow data is greater than or equal to the alarm value of the device or the collected pressure data is less than or equal to the alarm value of the device. , by SMS alarm or warning light alarm;
  • the monitoring unit is configured to perform data display on the device monitored in the device list unit and control the corresponding remote control valve to be closed after receiving the alarm of the alarm unit.
  • a monitoring and control method implemented according to a pipe network monitoring system includes the following steps:
  • Step 1 Using a flow meter to collect instantaneous flow data in the pipe network pipeline and upload the data to the data collector through the data line.
  • Step 2 The data collector transmits the instantaneous traffic data and the pressure data to the server through the GPRS wireless method.
  • the server determines whether the collected instantaneous traffic data is greater than or equal to the set instantaneous traffic flow exceeding the warning value.
  • the client accesses the server in a network manner, and the client displays the three alarm results in the same manner, and if the above three alarms are displayed in the client alarm area, an alarm is issued, and step 3 is performed;
  • Step 3 The client processes the alarm, and selectively closes or adjusts the remote control valve of the corresponding pipeline.
  • a flow meter and a pressure transmitter are used as front-end data acquisition tools.
  • the Internet of Things platform built by wireless communication technology manages data and equipment.
  • the problem can be solved in the bud by using preset values to detect accidents or to identify accidents in advance.
  • the pipeline leaks, squibs and other conditions are alarmed, and the faulty pipeline is automatically or manually closed.
  • Virtualization, intelligentization, multi-functionalization and networking of devices such as on-site machines, batteries, instruments and actuators are realized. Peer-to-peer combines them with managers to achieve automatic and effective control and presentation of results.
  • the present invention has the following effects:
  • [0034] Really receive the pressure and flow information of the detection point of the pipe network, and perform dynamic display and abnormal warning prompts and voice warnings through the screen of the upper computer, and the system automatically records the monitoring information, the alarm information, the operation information, and analyzes the chart report. management.
  • the system can provide convenient query function for monitoring data, and can perform basic statistical analysis on the monitored data in the form of charts, reports, and the like.
  • the system is equipped with an independent server, all monitoring data is imported into an independent database system, and functions such as data exchange with other office sites through the public network can be realized.
  • FIG. 1 is a schematic diagram of a schematic diagram of a pipe network monitoring and control system according to a first embodiment
  • FIG. 2 is a schematic structural diagram of a pipe network monitoring and control system according to Embodiment 1;
  • Embodiment 3 is a flow chart of a pipe network monitoring and control method according to Embodiment 4 of the present invention.
  • a pipe network monitoring and control system includes a data collector 1, a flow meter 2, and a remote control valve 3.
  • Pressure transmitter 4 solar panel 5, 24V DC solar cell 6 and host computer 7,
  • the flow meter 2, the remote control valve 3 and the pressure transmitter 4 are all arranged on the pipe network pipe.
  • the flow signal input/output terminal of the flow meter 2 is connected to the flow signal output/input terminal of the data collector 1
  • the power output end of the solar panel 5 is connected to the power input end of the 24V DC solar battery 6
  • a 24V DC power signal output end of the 24V DC solar battery 6 is connected to the 24V DC power signal input end of the remote control valve 3, [0046] The other 24V DC power signal output end of the 24V DC solar battery 6 is connected to the 24V DC power signal input end of the data collector 1
  • the pressure signal output end of the pressure transmitter 4 is connected to the pressure signal input end of the remote control valve 3,
  • the data input/output terminal of the remote control valve 3 is connected to the data output/input of the data collector 1
  • the data collector 1 is connected to the server port of the host computer 7 in a GPRS wireless manner.
  • the pipeline is monitored by the upper computer and the abnormal condition is dynamically determined. If there is an abnormality, the administrator can notify the administrator through software alarm, warning light alarm, short message prompt, etc., management or The operator closes the valve and handles the abnormal situation to minimize the safety and loss and defects.
  • the data is statistically analyzed through the software platform to rationally adjust the pipeline flow to ensure safe and reliable operation of the pipeline network.
  • This embodiment mainly completes pipeline data monitoring; paves the way for water supply, heat supply, gas supply, oil supply company or group storage, statistics, analysis, and management of big data in the pipeline network, and can control the on-site pipeline to run a floor drain The situation; adjust the imbalance and so on. Finally, the city's Internet of Things management.
  • the data collector 1, the flow meter 2, the remote control valve 3, the pressure transmitter 4, the solar panel 5, and the 24V DC solar battery 6 are responsible for monitoring and executing the pipeline for controlling the pipe network, and the upper computer is responsible for Operations such as storage, statistics, analysis, judgment, and command control.
  • the remote control valve 3 due to the unique mechanical principle and PTFE drive technology, the power consumption of the valve is extremely low, so that the power supply can be used to select the DC24V power supply, which is the same as the standard valve on the market.
  • the terminal to be installed in the ground downhole select the micro-power self-powered measurement and control terminal, the protection level of the enclosure is above IP68, the immersion does not affect the normal operation of the equipment, and the working mode adopts the fixed-rate collection and reporting design.
  • the remote wireless control valve is powered by a safe voltage, and is subjected to remote ⁇ /OFF valve operation, and can also be adjusted and activated.
  • Embodiment 2 This embodiment is further described in a pipe network monitoring and control system according to the first embodiment.
  • the host computer 7 includes a server 7-1 and a client 7-2.
  • the upper computer 7 contains control software, and the control flow of the control software is:
  • the server 7-1 receives the collected data from the data collector 1 and stores the data in the database. Similarly, the client 7-2 accesses the server 7-1 in a network manner, and indirectly accesses the database. Query data, The client 7-2 can also send the actual read data or control valve command to the server 7-1 and send it to the data collector 1 through the server 11.
  • the database is mainly for storing data
  • the server is mainly for releasing the data port for the data collector.
  • the client and the database extract and exchange data, and the client mainly performs corresponding operations such as user defense, adding, deleting, modifying, prompting, querying, analyzing, and controlling.
  • Embodiment 3 This embodiment further describes a pipe network monitoring and control system according to Embodiment 2, in this embodiment,
  • the client 7-2 includes a menu unit, a device list unit, a monitoring unit, and an alarm unit.
  • a menu unit configured to set a specific address accessed by the server 11, set an instantaneous traffic surge alarm value, an outlet pressure alarm value, an instantaneous flow overrun alarm value, and a differential pressure alarm value, a permission setting, and Information inquiry
  • a device list unit configured to select a location of the pipe network monitoring and control system to be monitored
  • an alarm unit configured to compare the collected data with an alarm threshold set in the menu unit, if the collected instantaneous flow data is greater than or equal to the alarm value of the device or the collected pressure data is less than or equal to the alarm value of the device. , by SMS alarm or warning light alarm;
  • the monitoring unit is configured to perform data display on the device monitored in the device list unit and control the corresponding remote control valve 3 to be closed after receiving the alarm of the alarm unit.
  • the client can not only complete pipeline monitoring and control operations, but also perform authority assignment, historical data query, operator operation record query, basic information query, valve adjustment, and customs control for the operator. Operation and other functions. Help the network management personnel to complete intelligent management of the pipe network. Realize the Internet of Things and big data of urban underground pipelines, making the network monitoring and control system more controllable.
  • the client is a software platform for monitoring, managing, controlling and analyzing the urban pipe network by using the C/S architecture, and can collect, store, query, analyze and manage the underground pipe network information, and can complete Separate control of different pipes, setting alarm values, handling alarm devices, etc.
  • the main interface of the client is divided into a menu area, a device list, a monitoring area, and an alarm area.
  • the menu area includes system settings, basic information, alarm settings, permission settings, information query, and help.
  • the system setting menu includes communication settings and display settings.
  • the communication settings are settings for the specific address of the server access.
  • the display settings are set for the fields displayed in the monitoring area.
  • the basic information menu includes user information, collector information, and terminal information.
  • User information is the establishment of the pipe network organization structure.
  • the collector information is established for the basic information of the GPRS data collector.
  • the terminal information is an establishment of information about the pipeline node device, and includes the creation of information related to the instrument flow meter, the valve remote control valve, the pressure, and the associated collector.
  • the alarm information menu includes an alarm setting and a short message alarm setting.
  • the alarm setting is to disable the alarm function when the dispatch room installs the alarm.
  • the SMS alarm setting can add the mobile phone number of the main management personnel to the list of SMS alert prompts. If there is an alarm, the relevant alarm information is reported to the management personnel who have set the mobile phone number. This function is unattended in the dispatching test room. ⁇ , convenient to handle alarm situations
  • the processed alarm condition will also be sent as SMS to the administrator who has set the mobile number as feedback.
  • the rights setting menu includes personnel rights and password changes.
  • the administrator can be set.
  • the authority level is divided into administrator and operator.
  • the administrator has the highest operation authority, that is, all operations can be performed.
  • the operator's authority is limited to the basic viewing function. There is no permission to change user and device information, nor to operate the valve.
  • the information query menu includes an alarm setting query, an alarm information query, an operation record query, a historical data query, a basic information query, a collector query, and the like.
  • Alarm setting query You can query all device alarm setting information, or you can perform separate alarm setting for different node devices by double-clicking.
  • the setting contents include a flow rate increase alarm, an outlet pressure alarm, a differential pressure increase alarm, a flow rate over limit alarm, and a low voltage alarm.
  • Alarm information inquiry It is possible to query whether there are alarms in different time zones of different node devices, what are the specific alarm contents, the processing situation and the information of the operator.
  • Operation record inquiry It is possible to query the information and time of the operation of the specific management personnel in a period of time, which is convenient for the operator to trace back, so as to avoid the occurrence of liability accidents.
  • Historical data query According to the selected node device, the continuous flow or pressure data information in a period of time can be queried, and can be expressed in the form of a chart, and the data can be exported, which is convenient for human analysis. Network situation.
  • Basic information query You can query the basic information of all devices and export management.
  • Collector query You can query the online status of the collectors of each node device, which helps to manage each node. Equipment.
  • Alarm information and shut-off valve processing When there is an alarm message prompt, you need to manually enter the processing interface, judge the specific situation of the analysis site, if it is a normal alarm situation, then the artificial processing of the valve is critical, the site is processed After returning to the original state. In the monitoring interface, you can also double-click the device to enter the terminal control interface to complete the regulation valve operation.
  • the right button can select the actual meter reading or monitoring operation. After the meter reading, you can immediately collect the data information of the selected device. It helps to analyze the operation of the pipeline.
  • the monitoring and control method implemented by the pipe network monitoring and control system according to any one of the embodiments 1 to 3 includes the following steps:
  • Step 1 Using the flow meter 2 to collect the instantaneous flow data in the pipe network pipe and upload it to the data collector through the data line.
  • the pressure transmitter 4 is used to collect the pressure data in the pipe network pipe and store the data in the remote control valve 3 through the data line, and the data collector 1 collects the pressure data in the remote control valve 3;
  • Step 2 The data collector 1 transmits the instantaneous traffic data and the pressure data to the server 7-1 through the GPRS wireless method.
  • the server 7-1 determines whether the collected instantaneous traffic data is greater than or equal to the set instantaneous traffic overrun warning value, and if yes, confirms the traffic overrun alarm, if not, does not alarm,
  • the server 7-1 determines whether the collected instantaneous traffic data is greater than or equal to the set instantaneous instantaneous increase alarm value, and if yes, and the number of sudden increase alarms exceeds the set number of early warnings, the traffic is confirmed to increase sharply. Alarm, if no, no alarm,
  • the pressure overrun alarm is confirmed. If not, the alarm is not.
  • the client 7-2 accesses the server 7-1 in a network manner, and the client 7-2 displays the three alarm results in the same manner, and the client 7-2 alarm area issues an alarm if the above three alarms are displayed. , perform step three;
  • Step 3 The client 7-2 processes the alarm to selectively close or adjust the remote control valve 3 of the corresponding pipeline.
  • the selective adjustment refers to that the valve of the remote control valve is not fully activated, and the opening is about 50%.
  • the monitoring device on the pipe network pipeline has the functions of collecting pressure, flow rate and valve related data, and uploading the data to the server software through the data collector through GPRS wireless communication, and after software analysis, Store to the database.
  • the flow rate in the pipeline increases and the pressure drops to a certain value, it can be judged that the pipeline is leaking or bursting, and the concrete is treated.
  • Specific alarm and processing process If the instantaneous traffic data collected is greater than or equal to the instantaneous traffic delay warning value of the device, the client will prompt the traffic overrun alarm in the software, and display the specific pipeline, daytime, warning value.
  • the client will prompt the traffic to increase the alarm, and It shows the specific pipeline, daytime, warning value and alarm value, and waits for processing; if the collected outlet pressure data is less than or equal to the equipment's outlet pressure over-limit warning value, and exceeds the collected warning number, the client is on the software.
  • the outlet pressure over-limit alarm will be prompted, and the specific pipeline, daytime, warning value and alarm value will be displayed, and will be processed.
  • the software prompts the alarm as a way.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Alarm Systems (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Pipeline Systems (AREA)

Abstract

L'invention concerne un système de commande de surveillance de réseau de conduites, comprenant un collecteur (1) de données, un débitmètre (2), une vanne (3) de commande à distance, un émetteur (4) de pression, un panneau solaire (5), une cellule solaire (6) à courant continu 24V et un ordinateur (7) supérieur, le débitmètre (2), la vanne (3) de commande à distance et l'émetteur (4) de pression sont tous disposés sur une conduite de réseau de tuyaux; une extrémité d'entrée/sortie de signal d'écoulement du débitmètre (2) est connectée à une extrémité de sortie/entrée de signal d'écoulement du collecteur (1) de données; une extrémité de sortie d'alimentation électrique du panneau solaire (5) est connectée à une extrémité d'entrée d'alimentation électrique de la cellule solaire (6) à courant continu 24V; la cellule solaire (6) à courant continu 24V fournit de l'énergie à la vanne (3) de commande à distance et le collecteur (1) de données simultanément; une extrémité de sortie de signal de pression de l'émetteur (4) de pression (4) est connectée à une extrémité d'entrée de signal de pression de la vanne (3) de commande à distance; une extrémité d'entrée/sortie de données de la vanne (3) de commande à distance est connectée à une extrémité de sortie/entrée de données du collecteur (1) de données; et le collecteur (1) de données est connecté à un port du serveur de l'ordinateur (7) supérieur d'une manière sans fil GPRS. La présente invention est utilisée pour surveiller des pipelines souterrains en temps réel.
PCT/CN2017/091773 2016-08-31 2017-07-05 Système de commande de surveillance de réseau de conduites et procédé de commande de surveillance obtenu à l'aide de ce système WO2018040730A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610792767.1A CN106352247B (zh) 2016-08-31 2016-08-31 一种管网监测控制***及采用该***实现的监测控制方法
CN201610792767.1 2016-08-31

Publications (1)

Publication Number Publication Date
WO2018040730A1 true WO2018040730A1 (fr) 2018-03-08

Family

ID=57856563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091773 WO2018040730A1 (fr) 2016-08-31 2017-07-05 Système de commande de surveillance de réseau de conduites et procédé de commande de surveillance obtenu à l'aide de ce système

Country Status (2)

Country Link
CN (1) CN106352247B (fr)
WO (1) WO2018040730A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762393A (zh) * 2018-07-27 2020-02-07 航天海鹰安全技术工程有限公司 一种地下管线监控终端、***及供电控制方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352247B (zh) * 2016-08-31 2018-05-01 哈尔滨圣昌科技开发有限公司 一种管网监测控制***及采用该***实现的监测控制方法
CN106989283A (zh) * 2017-05-23 2017-07-28 天津亿利科能源科技发展股份有限公司 一种城市下水道淤塞监测***
CN107255988B (zh) * 2017-07-31 2023-03-10 江苏博阳智慧电气股份有限公司 一种智能城市供暖监控***
CN107942865A (zh) * 2017-11-29 2018-04-20 胜利阀门有限公司 一种用于阀门地下管网物联网智能控制***
CN108488629A (zh) * 2018-03-27 2018-09-04 广州合众生物科技有限公司 一种具有报警功能的气体减压***和方法
CN108628237A (zh) * 2018-07-02 2018-10-09 青岛华高物联网科技有限公司 一种地下综合管廊环境设备运行监控***
CN109186888B (zh) * 2018-08-30 2021-03-16 深圳奇迹智慧网络有限公司 一种自来水管漏水监测的方法、装置及终端设备
CN109185711B (zh) * 2018-09-09 2019-11-26 浙江纬脉科技有限公司 市政排水管道泄漏监测***施工方法以及监测方法
CN109242437A (zh) * 2018-09-13 2019-01-18 上海万朗水务科技有限公司 污水处理区域地理信息管理***
CN110879121B (zh) * 2019-10-09 2022-02-08 浙江倍世环境科技有限公司 基于流速的管路漏水监测装置及漏水判定方法
CN110953484A (zh) * 2019-12-26 2020-04-03 核工业理化工程研究院 基于LabVIEW的设备管道检测及控制***
CN112483905A (zh) * 2020-12-11 2021-03-12 马鞍山市博浪热能科技有限公司 一种基于物联网的水管破裂告警***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974862A (en) * 1997-05-06 1999-11-02 Flow Metrix, Inc. Method for detecting leaks in pipelines
CN1322914A (zh) * 2001-05-25 2001-11-21 中国石化胜利油田有限公司胜利采油厂 输油管线泄漏报警及漏点定位***
CN101761780A (zh) * 2010-01-11 2010-06-30 中国石油大学(华东) 输气管道泄漏检测定位装置及其检测定位方法
CN103438359A (zh) * 2013-08-06 2013-12-11 毛振刚 输油管道泄漏检测与定位***
CN204372557U (zh) * 2014-12-26 2015-06-03 陕西学前师范学院 一种基于智能通信分体式管网监测***
CN106352247A (zh) * 2016-08-31 2017-01-25 哈尔滨圣昌科技开发有限公司 一种管网监测控制***及采用该***实现的监测控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754155A (zh) * 2003-01-17 2006-03-29 泰斯特网络公司 使用分布式文件***进行存储式高速缓存的方法和***
CN202082629U (zh) * 2011-04-06 2011-12-21 黄定军 天然气管线泄漏监测***
CN203276496U (zh) * 2013-02-25 2013-11-06 吉林省宏联科技有限公司 一种监测燃气泄漏并自动报警智能***
CN103216732B (zh) * 2013-03-25 2015-01-21 武汉迈通科技有限公司 一种管网漏水实时监测定位***
CN103335216B (zh) * 2013-06-18 2015-09-23 东北大学 一种基于二型模糊逻辑的油气管网泄漏检测装置及方法
CN103423597A (zh) * 2013-08-23 2013-12-04 潘兴科 住宅燃气泄漏检测方法及防泄漏装置
CN204270117U (zh) * 2014-11-19 2015-04-15 天津港东疆建设开发有限公司 港区管网压力监控***
CN105757459B (zh) * 2016-03-02 2018-12-18 中国矿业大学 一种瓦斯抽采管网参数监测***及漏点精确定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5974862A (en) * 1997-05-06 1999-11-02 Flow Metrix, Inc. Method for detecting leaks in pipelines
CN1322914A (zh) * 2001-05-25 2001-11-21 中国石化胜利油田有限公司胜利采油厂 输油管线泄漏报警及漏点定位***
CN101761780A (zh) * 2010-01-11 2010-06-30 中国石油大学(华东) 输气管道泄漏检测定位装置及其检测定位方法
CN103438359A (zh) * 2013-08-06 2013-12-11 毛振刚 输油管道泄漏检测与定位***
CN204372557U (zh) * 2014-12-26 2015-06-03 陕西学前师范学院 一种基于智能通信分体式管网监测***
CN106352247A (zh) * 2016-08-31 2017-01-25 哈尔滨圣昌科技开发有限公司 一种管网监测控制***及采用该***实现的监测控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110762393A (zh) * 2018-07-27 2020-02-07 航天海鹰安全技术工程有限公司 一种地下管线监控终端、***及供电控制方法

Also Published As

Publication number Publication date
CN106352247B (zh) 2018-05-01
CN106352247A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2018040730A1 (fr) Système de commande de surveillance de réseau de conduites et procédé de commande de surveillance obtenu à l'aide de ce système
CN205028126U (zh) 一种基于gis的供水管网智能监控***
CN106569453A (zh) 一种污水处理厂智能管理***
CN110689957A (zh) 医院环境设施智慧运维管理平台
CN201043685Y (zh) 管道安全运行实时监控***
CN203849605U (zh) 一种智慧管网
CN202472377U (zh) 用户燃气安全隐患预警及处理***
CN104633455B (zh) 智慧安全城市管网实时监测***及方法
CN103399539A (zh) 基于异网通讯的城市内涝监控与信息服务***及监控方法
CN111121874A (zh) 一种水源地水质监测评估***及其评估方法
CN202166121U (zh) 采暖***网络智能控制装置
CN105987283A (zh) 基于scada***的天然气管道阴极保护远程监测装置
CN110689450A (zh) 一种基于三维可视化模式的智慧水务运营***
CN113465019A (zh) 一种供热管网异常失水监测***和监测方法
CN108507612A (zh) 一种综合管廊燃气管道置信度定量评估方法及评估***
CN201741234U (zh) 城市消防远程监控管理***
CN107146385A (zh) 基于Zigbee技术的智能楼宇燃气泄露监测***
CN103062835B (zh) 集中供热管网用户用热异常状态监控***及其监控方法
CN109899113A (zh) 一种基于手机app的地下矿井水文在线监测预警***
CN210743605U (zh) 医院环境设施智慧运维管理平台
CN209196566U (zh) 一种智能管道安全监控装置及***
CN207750746U (zh) 一种基于rf技术实现管道燃气安全监控的***
CN202267863U (zh) 基于云计算的绿色建筑设施设备管理控制***
CN203131973U (zh) 集中供热管网用户用热异常状态监控***
CN110593831A (zh) 一种油田注水***泄漏监控装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845033

Country of ref document: EP

Kind code of ref document: A1