WO2018040564A1 - 高效晶体硅太阳能电池背场浆料及其制备方法 - Google Patents

高效晶体硅太阳能电池背场浆料及其制备方法 Download PDF

Info

Publication number
WO2018040564A1
WO2018040564A1 PCT/CN2017/080015 CN2017080015W WO2018040564A1 WO 2018040564 A1 WO2018040564 A1 WO 2018040564A1 CN 2017080015 W CN2017080015 W CN 2017080015W WO 2018040564 A1 WO2018040564 A1 WO 2018040564A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
aluminum
resin
paste
inorganic binder
Prior art date
Application number
PCT/CN2017/080015
Other languages
English (en)
French (fr)
Inventor
朱鹏
Original Assignee
南通天盛新能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通天盛新能源股份有限公司 filed Critical 南通天盛新能源股份有限公司
Priority to US15/571,402 priority Critical patent/US10497819B2/en
Publication of WO2018040564A1 publication Critical patent/WO2018040564A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of aluminum paste for crystalline silicon solar cells, and particularly relates to a high-efficiency crystalline silicon solar cell back field slurry and a preparation method thereof.
  • a solar cell is a device that responds to light and converts light energy into electricity.
  • a solar cell also known as a photovoltaic cell, is a semiconductor device with energy conversion function based on semiconductor materials and is the core device of solar photovoltaic power generation.
  • the sun shines on the interface layer of the semiconductor PN junction, which will excite a new hole-electron pair. Under the action of the PN junction electric field, the hole flows from the N region to the P region in the PN junction, and the electron flows from the P region to the N region.
  • a current is formed.
  • solar cells are also called “photovoltaic cells”.
  • Another object of the present invention is to provide a method for preparing a highly efficient conventional back field slurry.
  • the main features of the high-efficiency crystalline silicon solar cell back-field slurry mentioned in the above scheme are as follows: by adjusting the formulation of the back-field aluminum paste on the basis of not changing the existing production process as much as possible, the back-field aluminum paste is used in solar energy.
  • the dual role of the battery is more obvious, effectively improving the photoelectric conversion efficiency of the crystalline silicon battery.
  • the object of the present invention can be achieved by the following technical solution: a high efficiency crystalline silicon solar cell back field slurry, the aluminum paste comprising: slurry A and slurry B;
  • the slurry A comprises: 50-60% aluminum powder, 2-6% inorganic binder, 10-20% organic binder, 16-26% Organic solvent, 2-8% auxiliary agent, and the sum of mass percentages of each component is 100%;
  • the slurry B comprises: 85-95% aluminum powder, 0.1-1.0% inorganic binder, 1-5% organic binder, 2-8% organic solvent, 1-3% auxiliary, and each component The sum of the mass percentages is 100%.
  • the aluminum powder used in the slurry A is a spherical aluminum powder, the average particle diameter is 0.1-1 ⁇ m, the purity is greater than 99.999%, and the span is 0.2-0.6; the aluminum powder used in the slurry B is spherical aluminum.
  • the powder has an average particle diameter of 10-15 ⁇ m, a purity of more than 99.99%, and a span of 1.5-3.0.
  • the auxiliary agent is a polymer copolymer solution, which has strong dispersion, wetting and leveling action.
  • the slurry A is a highly active back field slurry
  • the inorganic binder used is a low softening point, a highly active lead, a lanthanide mixture having a softening point of 250-400 ° C
  • the slurry B is a low-activity, good passivation back-field aluminum paste.
  • the inorganic binder used is a high-softening point, low-activity zinc-based, vanadium-based mixture having a softening point of 450-650 °C.
  • the inorganic binder in the slurry A has a particle diameter D50 of 1.0-2.0 um, a particle diameter span of 0.7-1.5, and a high activity; and the inorganic binder particle diameter D50 in the slurry B is 3.0-5.0 um, particle size span of 2.0-3.0, low activity.
  • the organic binder is mainly mixed by a resin and an organic solvent in a mass percentage of 1:5 to 1:20;
  • the resin is a phenol resin, a phenolic resin, a polyvinyl chloride resin, a polyamide resin, One or more of epoxy resin and ethyl cellulose resin; wherein the resin used in the slurry A is mainly selected in the direction of thixotropic; the resin used in the slurry B is mainly selected to be easily decomposed.
  • the printing paste A when screen printing the electrode, the printing paste A, using a 325 mesh back-field screen printing screen on a 156 mm ⁇ 156 mm polycrystalline silicon wafer (already printed back electrode) to form a high-activity aluminum back, into the muffle furnace Drying at 160 ° C for 4 min, the printing weight is controlled at 0.35-0.45 g;
  • Printing paste B using 280 mesh back-field screen printing, the 156 mm ⁇ 156 mm polycrystalline after the above-mentioned printing A slurry is dried.
  • the aluminum back surface of the silicon wafer is formed with a passivation effect number, and is dried in a muffle furnace at 240 ° C for 2 min, and is controlled at 0.85-1.00 g using a printing basis weight.
  • inorganic binder In the preparation of inorganic binder in slurry A, the raw materials constituting the inorganic binder in slurry A are mainly mixed, poured into porcelain crucible, and melted in a high-temperature furnace. After water quenching, drying, then ball milling to D50 below 2um, drying to obtain inorganic binder; preparation of inorganic binder in slurry B, mainly mixing the raw materials constituting the inorganic binder in slurry B Pour into a porcelain crucible, melt it in a high-temperature furnace, dry it after water quenching, then ball mill until D50 is below 5um, and dry to obtain an inorganic binder;
  • the resin and the organic solvent are mixed according to a mass percentage of 1:5 to 1:20; then, the mixture is poured into a high-speed stirring disperser for 30 to 60 minutes, and dispersed and dissolved to obtain a transparent and uniform organic bond.
  • the resin wherein the resin is one or more of a phenolic resin, a phenolic modified resin, a polyvinyl chloride resin, a polyamide resin, an epoxy resin, and an ethyl cellulose resin; wherein the resin used in the slurry A is mainly selected
  • the direction is good for thixotropic; the resin used in the slurry B is mainly selected for easy decomposition;
  • the preparation method of slurry A is: weigh 50-60% aluminum powder, 2-6% inorganic binder, 10-20% organic binder, 16-26 % organic solvent and 2-8% auxiliary agent are uniformly mixed by dispersing machine;
  • the preparation method of slurry B is: weigh 85-95% aluminum powder, 0.1-1.0% inorganic binder, 1- in total aluminum paste content 5% organic binder, 2-8% organic solvent and 1-3% auxiliary agent are uniformly mixed by a dispersing machine;
  • the mixed aluminum pastes A and B are respectively ground to 0.5 to 16 um by a three-roll mill to obtain an aluminum back-field aluminum paste; the viscosity of the aluminum pastes A and B is adjusted and controlled by an organic solvent.
  • the viscosity of the slurry A is controlled at 14-21 Pa.s, the fineness is controlled at 0.1-1.5 um, the viscosity of the slurry B is controlled at 27-34 Pa.s, and the fineness is controlled at 8-16 um.
  • the auxiliary agent used in the present invention can reduce the surface energy of aluminum in the slurry, eliminate the charge and surface attraction of the aluminum surface, and increase the adhesion of aluminum to other media. This prevents the aluminum powder from deactivating in the air due to deterioration; improving the dispersibility of the aluminum particles and reducing the probability of agglomeration.
  • the invention Compared with the traditional solar cell sheet production process, the invention has a set of the same screen printing equipment and drying equipment in the original screen printing traditional aluminum paste and drying traditional aluminum paste.
  • the aluminum paste prepared by the invention is applied to a conventional aluminum back field single crystal silicon solar cell, and the thickness of the BSF layer is increased by increasing the activity of the slurry; and the passivation effect of the aluminum film is improved, and the back surface composite is more effectively reduced.
  • the rate increases the collection rate of minority carriers, thereby increasing the open circuit voltage and increasing the anti-reflection effect, and finally making the average conversion efficiency ⁇ 20.5%.
  • the slurry A in the aluminum paste comprises: 50-60% aluminum powder, 2-6% inorganic binder, 10-20% organic binder a mixture, 16-26% organic solvent, 2-8% auxiliary agent, and the sum of the mass percentages of the components is 100%;
  • the slurry B comprises 85-95% aluminum powder, 0.1-1.0% inorganic binder, 1-5% organic binder, 2-8% organic solvent, 1-3% auxiliary, and the sum of the mass percentages of the components is 100%.
  • the aluminum powder used in the slurry A is a spherical aluminum powder, the average particle diameter is 0.1-1 ⁇ m, the purity is greater than 99.999%, and the span is 0.2-0.6;
  • the aluminum powder used in the slurry B is spherical aluminum powder, and the average The particle size is 10-15 ⁇ m, the purity is greater than 99.99%, and the span is 1.5-3.0;
  • the auxiliary agent is a polymer interpolymer solution, which has strong dispersion, wetting and leveling action.
  • the slurry A is a highly active back field slurry, and the inorganic binder used is a low softening point, a highly active lead, a lanthanide mixture having a softening point of about 250-400 ° C; the slurry B is low in activity.
  • Good passivation effect The backside aluminum paste is an inorganic binder which is a high softening point, a low activity zinc-based, vanadium-based mixture, and has a softening point of about 450-650 °C.
  • the inorganic binder described in the slurry A has a particle diameter D50 of 1.0-2.0 um, a particle size span of 0.7-1.5, and a high activity; and the inorganic binder particle diameter D50 of the slurry B is 3.0. -5.0 um, particle size span of 2.0-3.0, low activity.
  • the organic binder is mainly mixed by a resin and an organic solvent in a mass percentage of 1:5 to 1:20.
  • the resin is one or more of a phenol resin, a phenolic modified resin, a polyvinyl chloride resin, a polyamide resin, an epoxy resin, and an ethyl cellulose resin.
  • the resin used in the middle slurry A is mainly selected in the direction of thixotropic; the resin used in the slurry B is mainly selected in a direction that is easily decomposed.
  • Preparation of inorganic binder preparation of inorganic binder in slurry A, mainly mixing the raw materials constituting the inorganic binder in slurry A, pouring into porcelain crucible, melting in high temperature furnace, water quenching After drying, then ball milling until D50 is below 2um, drying to obtain inorganic binder; preparation of inorganic binder in slurry B, mainly mixing the raw materials constituting the inorganic binder in slurry B, and then pouring In the porcelain crucible, it is melted in a high-temperature furnace, dried by water quenching, and then ball-milled until the D50 is below 5 ⁇ m, and dried to obtain an inorganic binder.
  • slurry A is mixed with 17% ethyl cellulose resin and 83% organic solvent in total mass binder content, and dispersed at 1800 r/min on a dispersing machine. 45min, disperse and dissolve, to obtain a transparent, uniform organic binder; slurry B is weighed by 10% by weight of the total organic binder and 90% of the organic solvent, and then 1800r/distributed on the disperser. The rotation speed of min was dispersed for 30 min, and dispersed and dissolved to obtain a transparent and uniform organic binder.
  • Slurry A Weigh 58% aluminum powder, 2.8% inorganic binder, 16% organic binder, 20% organic solvent, 3.2% auxiliary agent according to the mass ratio of aluminum paste. After mixing with a disperser, use three rolls. The mill was ground to 0.1-1.5 um to obtain an aluminum back field slurry.
  • the slurry A prepared above was screen-printed on a 156 mm ⁇ 156 mm polycrystalline silicon wafer (having a printed back electrode) through a 325 mesh back-field screen to form a highly active aluminum back surface, and dried in a muffle furnace at 160 ° C for 4 minutes.
  • Slurry B Weigh 88% aluminum powder, 0.8% inorganic binder, 3.2% organic binder, 6.2% organic solvent, 1.8% auxiliary agent according to the mass ratio of aluminum paste. After mixing with a dispersing machine, use three rolls. The grinder was ground to 8-16 um to obtain an aluminum back field slurry.
  • the slurry B prepared above was screen-printed through a 280 mesh back-field screen on the polycrystalline silicon wafer of the specification 156 mm ⁇ 156 mm after the printing of the A slurry, and the aluminum back surface of the passivation effect number was formed into the muffle furnace 240. Dry at °C for 2 min.
  • the back side of the aluminum does not fall off, and then the silver paste is printed on the front side of the cell sheet, and is sintered in an infrared fast-fired mesh belt furnace.
  • the peak temperature is 790-810 ° C, and the prepared slurry performance test meets the requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种高效晶体硅太阳能电池背场浆料及其制备方法,所述铝浆包括:浆料A和浆料B;所述浆料A包含:50-60%铝粉、2-6%无机粘结剂、10-20%有机粘结剂、16-26%有机溶剂、2-8%助剂,且各组份的质量百分比之和为100%;所述浆料B包含:85-95%铝粉、0.1-1.0%无机粘结剂、1-5%有机粘结剂、2-8%有机溶剂、1-3%助剂,且各组份的质量百分比之和为100%。所制备的铝浆应用于传统的铝背场单晶硅太阳能电池上,通过提高浆料的活性来增加BSF层的厚度;并且提高铝膜的钝化作用,更加有效的降低背表面复合速率,提高少数载流子的收集率,从而提高开路电压、减反射作用增强。

Description

高效晶体硅太阳能电池背场浆料及其制备方法 技术领域
本发明属于晶体硅太阳能电池用铝浆领域,具体涉及一种高效晶体硅太阳能电池背场浆料及其制备方法。
背景技术
太阳电池是一种对光有响应并能将光能转换成电力的器件。
太阳能电池,又叫光生伏特电池,它是以半导体材料为基础的一种具有能量转换功能的半导体器件,是太阳能光伏发电的最核心的器件。太阳光照在半导体P-N结界面层上,会激发出新的空穴-电子对,在P-N结电场的作用下,在P-N结内部空穴由N区流向P区,电子由P区流向N区,接通电路后就形成电流。我们把这种效应叫做“光生伏特效应”,也就是太阳能电池的工作原理,因此,太阳电池又称为“光伏电池”。
在现阶段,随着光伏行业的发展,效率越来越成为人们的关注点。所以开发高效传统铝浆,将效率再提升一个档次是十分必要的。
发明内容
发明目的:本发明的目的在于提供一种高效的传统背场浆料。
本发明的另一目的在于提供一种高效传统背场浆料的制备方法。针对上述方案中提到的高效晶体硅太阳能电池背场浆料主要特点为:在尽可能不改变现有生产工艺的基础上,通过调整背场铝浆的配方,从而将背场铝浆在太阳能电池中的双重作用体现更加明显,有效的提高晶体硅电池的光电转换效率。
本发明的目的可通过下述技术方案来实现:一种高效晶体硅太阳能电池背场浆料,所述铝浆包括:浆料A和浆料B;
所述浆料A包含:50-60%铝粉、2-6%无机粘结剂、10-20%有机粘结剂、16-26% 有机溶剂、2-8%助剂,且各组份的质量百分比之和为100%;
所述浆料B包含:85-95%铝粉、0.1-1.0%无机粘结剂、1-5%有机粘结剂、2-8%有机溶剂、1-3%助剂,且各组份的质量百分比之和为100%。
作为优化:所述浆料A中使用的铝粉为球形铝粉,平均粒径在0.1-1μm,纯度大于99.999%,跨度为0.2-0.6;所述浆料B中使用的铝粉为球形铝粉,平均粒径在10-15μm,纯度大于99.99%,跨度为1.5-3.0。
作为优化:所述助剂为高分子共聚体溶液,有极强的分散、润湿、流平作用。
作为优化:所述浆料A为高活性背场浆料,所使用的无机粘结剂为低软化点、高活性的铅、铋系混合物,其软化点在250-400℃;所述浆料B为低活性、钝化效果好的背场铝浆,所使用的无机粘结剂为高软化点、低活性的锌系、钒系混合物,其软化点在450-650℃。
作为优化:所述浆料A中的无机粘结剂粒径D50为1.0-2.0um,粒径跨度为0.7-1.5,活性较高;所述浆料B中的无机粘结剂粒径D50为3.0-5.0um,粒径跨度为2.0-3.0,活性较低。
作为优化:所述的有机粘结剂主要由树脂及有机溶剂按照1:5—1:20的质量百分比混合;所述树脂为酚醛树脂、酚醛改性树脂、聚氯乙烯树脂、聚酰胺树脂、环氧树脂、乙基纤维素树脂中的一种或几种;其中,浆料A所使用的树脂主要选择方向为触变性好的;浆料B所使用的树脂主要选择方向为易分解的。
作为优化:在丝网印刷电极时,印刷浆料A,使用325目背场网版丝网印刷在规格156mm×156mm的多晶硅片(已经印刷背电极)上形成高活性铝背面,进马弗炉160℃烘干4min,印刷克重控制在0.35-0.45g;印刷浆料B,使用280目背场网版丝网印刷在上述印刷完A浆料烘干后的规格156mm×156mm的多晶 硅片上形成钝化效果号的铝背面,进马弗炉240℃烘干2min,使用印刷克重控制在0.85-1.00g。
一种根据所述的高效晶体硅太阳能电池背场浆料的制备方法,包括以下步骤:
(1)无机粘结剂的制备:浆料A中无机粘结剂的制备,主要将组成浆料A中无机粘结剂的原料混合均匀后,倒入瓷坩埚中,放入高温炉中熔融,水淬后烘干,然后球磨至D50在2um以下,烘干得到无机粘结剂;浆料B中无机粘结剂的制备,主要将组成浆料B中无机粘结剂的原料混合均匀后,倒入瓷坩埚中,放入高温炉中熔融,水淬后烘干,然后球磨至D50在5um以下,烘干得到无机粘结剂;
(2)有机粘结剂的制备:将树脂及有机溶剂按照1:5—1:20的质量百分比混合;然后倒入高速搅拌分散机上分散30~60min,分散溶解后得到透明均一的有机粘结剂,其中树脂为酚醛树脂、酚醛改性树脂、聚氯乙烯树脂、聚酰胺树脂、环氧树脂、乙基纤维素树脂中的一种或几种;其中,浆料A所使用的树脂主要选择方向为触变性好的;浆料B所使用的树脂主要选择方向为易分解的;
(3)铝浆配制:浆料A的制备方法为:称取占总铝浆含量50-60%铝粉、2-6%无机粘结剂、10-20%有机粘结剂、16-26%有机溶剂及2-8%助剂用分散机进行均匀混合;浆料B的制备方法为:称取占总铝浆含量85-95%铝粉、0.1-1.0%无机粘结剂、1-5%有机粘结剂、2-8%有机溶剂及1-3%助剂用分散机进行均匀混合;
(4)成品制备:将混合后的铝浆A、B分别通过三辊研磨机进行研磨至0.5~16um得到全铝背场铝浆;通过有机溶剂对铝浆A、B的粘度进行调节、控制,使得浆料A的粘度控制在14-21Pa.s、细度控制在0.1-1.5um,浆料B的粘度控制在27-34Pa.s、细度控制在8-16um。
有益效果:本发明所使用的助剂,能够降低浆料中铝的表面能,消除铝表面的电荷和表面引力,增加铝与其它介质粘结力。这样可以防止铝粉在空气中因变质而失去活性;改善铝粒子的分散性,减少团聚几率。
本发明相对于传统的太阳能电池片生产工艺,在原来丝网印刷传统铝浆、烘干传统铝浆处多了一套相同的丝网印刷设备和烘干设备。
本发明所制备的铝浆应用于传统的铝背场单晶硅太阳能电池上,通过提高浆料的活性来增加BSF层的厚度;并且提高铝膜的钝化作用,更加有效的降低背表面复合速率,提高少数载流子的收集率,从而提高开路电压、减反射作用增强,最终使得平均转换效率≥20.5%。
具体实施方式
下面结合实施例,对本发明的内容作进一步描述。
本发明所述的一种高效晶体硅太阳能电池背场浆料,所述铝浆中的浆料A包含:50-60%铝粉、2-6%无机粘结剂、10-20%有机粘结剂、16-26%有机溶剂、2-8%助剂,且各组份的质量百分比之和为100%;浆料B包含85-95%铝粉、0.1-1.0%无机粘结剂、1-5%有机粘结剂、2-8%有机溶剂、1-3%助剂、且各组份的质量百分比之和为100%。
其中,所述浆料A所使用的铝粉为球形铝粉,平均粒径在0.1-1μm,纯度大于99.999%,跨度为0.2-0.6;浆料B所使用的铝粉为球形铝粉,平均粒径在10-15μm,纯度大于99.99%,跨度为1.5-3.0;
所述助剂为高分子共聚体溶液,有极强的分散、润湿、流平作用。
其纯度大于99%。
所述浆料A为高活性背场浆料,所使用的无机粘结剂为低软化点、高活性的铅、铋系混合物,其软化点大概在250-400℃;浆料B为低活性、钝化效果好 的背场铝浆,所使用的无机粘结剂为高软化点、低活性的锌系、钒系混合物,其软化点大概在450-650℃。
所述浆料A中所述的无机粘结剂粒径D50为1.0-2.0um,粒径跨度为0.7-1.5,活性较高;浆料B中所述的无机粘结剂粒径D50为3.0-5.0um,粒径跨度为2.0-3.0,活性较低。
所述的有机粘结剂主要由树脂及有机溶剂按照1:5—1:20的质量百分比混合。所述树脂为酚醛树脂、酚醛改性树脂、聚氯乙烯树脂、聚酰胺树脂、环氧树脂、乙基纤维素树脂中的一种或几种。中浆料A所使用的树脂主要选择方向为触变性好的;浆料B所使用的树脂主要选择方向为易分解的。
下面以几个具体的实施例对本发明的铝浆的制备方法进行具体阐述:
实施例1
1、无机粘结剂的制备
无机粘结剂的制备:浆料A中无机粘结剂的制备,主要将组成浆料A中无机粘结剂的原料混合均匀后,倒入瓷坩埚中,放入高温炉中熔融,水淬后烘干,然后球磨至D50在2um以下,烘干得到无机粘结剂;浆料B中无机粘结剂的制备,主要将组成浆料B中无机粘结剂的原料混合均匀后,倒入瓷坩埚中,放入高温炉中熔融,水淬后烘干,然后球磨至D50在5um以下,烘干得到无机粘结剂。
2、有机粘结剂的制备:浆料A为按质量份称取占总有机粘结剂含量17%乙基纤维素树脂和83%有机溶剂混合后,在分散机上以1800r/min的转速分散45min,分散溶解,得到透明、均一的有机粘结剂;浆料B为按质量份称取占总有机粘结剂含量10%环氧树脂和90%有机溶剂混合后,在分散机上以1800r/min的转速分散30min,分散溶解,得到透明、均一的有机粘结剂。
3、制备电池全铝背场铝浆:
浆料A:按铝浆质量比称取58%铝粉、2.8%无机粘结剂、16%有机粘结剂、20%有机溶剂、3.2%助剂,使用分散机混合均匀后,用三辊研磨机研磨至0.1-1.5um,得到铝背场浆料。
将上述制备的浆料A,通过325目背场网版丝网印刷在规格156mm×156mm的多晶硅片(已经印刷背电极)上形成高活性铝背面,进马弗炉160℃烘干4min。
浆料B:按铝浆质量比称取88%铝粉、0.8%无机粘结剂、3.2%有机粘结剂、6.2%有机溶剂、1.8%助剂,使用分散机混合均匀后,用三辊研磨机研磨至8-16um,得到铝背场浆料。
将上述制备的浆料B,通过280目背场网版丝网印刷在上述印刷完A浆料烘干后的规格156mm×156mm的多晶硅片上形成钝化效果号的铝背面,进马弗炉240℃烘干2min。
烘干以后铝背面无脱落,然后在电池片正面印刷银浆,进红外快烧网带炉烧结,峰值温度790-810℃,制备的浆料性能检测符合要求。
将上述实施例得到的产品进行电性能测试,结果如表1所示:
表1:产品电性能测试表
Figure PCTCN2017080015-appb-000001
本发明不局限于上述最佳实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是具有与本申请相同或相近似的技术方案,均落在本发明的保护范围之内。

Claims (8)

  1. 一种高效晶体硅太阳能电池背场浆料,其特征在于:所述铝浆包括:浆料A和浆料B;
    所述浆料A包含:50-60%铝粉、2-6%无机粘结剂、10-20%有机粘结剂、16-26%有机溶剂、2-8%助剂,且各组份的质量百分比之和为100%;
    所述浆料B包含:85-95%铝粉、0.1-1.0%无机粘结剂、1-5%有机粘结剂、2-8%有机溶剂、1-3%助剂,且各组份的质量百分比之和为100%。
  2. 根据权利要求1所述的高效晶体硅太阳能电池背场浆料,其特征在于:所述浆料A中使用的铝粉为球形铝粉,平均粒径在0.1-1μm,纯度大于99.999%,跨度为0.2-0.6;所述浆料B中使用的铝粉为球形铝粉,平均粒径在10-15μm,纯度大于99.99%,跨度为1.5-3.0。
  3. 根据权利要求1所述的高效晶体硅太阳能电池背场浆料,其特征在于:所述助剂为高分子共聚体溶液,有极强的分散、润湿、流平作用。
  4. 根据权利要求1所述的高效晶体硅太阳能电池背场浆料,其特征在于:所述浆料A为高活性背场浆料,所使用的无机粘结剂为低软化点、高活性的铅、铋系混合物,其软化点在250-400℃;所述浆料B为低活性、钝化效果好的背场铝浆,所使用的无机粘结剂为高软化点、低活性的锌系、钒系混合物,其软化点在450-650℃。
  5. 根据权利要求4所述的高效晶体硅太阳能电池背场浆料,其特征在于:所述浆料A中的无机粘结剂粒径D50为1.0-2.0um,粒径跨度为0.7-1.5,活性较高;所述浆料B中的无机粘结剂粒径D50为3.0-5.0um,粒径跨度为2.0-3.0,活性较低。
  6. 根据权利要求1所述的高效晶体硅太阳能电池背场浆料,其特征在于:所述的有机粘结剂主要由树脂及有机溶剂按照1:5—1:20的质量百分比混合;所述树 脂为酚醛树脂、酚醛改性树脂、聚氯乙烯树脂、聚酰胺树脂、环氧树脂、乙基纤维素树脂中的一种或几种;其中,浆料A所使用的树脂主要选择方向为触变性好的;浆料B所使用的树脂主要选择方向为易分解的。
  7. 根据权利要求1所述的高效晶体硅太阳能电池背场浆料,其特征在于:在丝网印刷电极时,印刷浆料A,使用325目背场网版丝网印刷在规格156mm×156mm的多晶硅片(已经印刷背电极)上形成高活性铝背面,进马弗炉160℃烘干4min,印刷克重控制在0.35-0.45g;印刷浆料B,使用280目背场网版丝网印刷在上述印刷完A浆料烘干后的规格156mm×156mm的多晶硅片上形成钝化效果号的铝背面,进马弗炉240℃烘干2min,使用印刷克重控制在0.85-1.00g。
  8. 一种根据权利要求1所述的高效晶体硅太阳能电池背场浆料的制备方法,其特征在于:包括以下步骤:
    (2)无机粘结剂的制备:浆料A中无机粘结剂的制备,主要将组成浆料A中无机粘结剂的原料混合均匀后,倒入瓷坩埚中,放入高温炉中熔融,水淬后烘干,然后球磨至D50在2um以下,烘干得到无机粘结剂;浆料B中无机粘结剂的制备,主要将组成浆料B中无机粘结剂的原料混合均匀后,倒入瓷坩埚中,放入高温炉中熔融,水淬后烘干,然后球磨至D50在5um以下,烘干得到无机粘结剂;
    (2)有机粘结剂的制备:将树脂及有机溶剂按照1:5—1:20的质量百分比混合;然后倒入高速搅拌分散机上分散30~60min,分散溶解后得到透明均一的有机粘结剂,其中树脂为酚醛树脂、酚醛改性树脂、聚氯乙烯树脂、聚酰胺树脂、环氧树脂、乙基纤维素树脂中的一种或几种;其中,浆料A所使用的树脂主要选择方向为触变性好的;浆料B所使用的树脂主要选择方向为易分解的;
    (3)铝浆配制:浆料A的制备方法为:称取占总铝浆含量50-60%铝粉、2-6% 无机粘结剂、10-20%有机粘结剂、16-26%有机溶剂及2-8%助剂用分散机进行均匀混合;浆料B的制备方法为:称取占总铝浆含量85-95%铝粉、0.1-1.0%无机粘结剂、1-5%有机粘结剂、2-8%有机溶剂及1-3%助剂用分散机进行均匀混合;
    (4)成品制备:将混合后的铝浆A、B分别通过三辊研磨机进行研磨至0.5~16um得到全铝背场铝浆;通过有机溶剂对铝浆A、B的粘度进行调节、控制,使得浆料A的粘度控制在14-21Pa.s、细度控制在0.1-1.5um,浆料B的粘度控制在27-34Pa.s、细度控制在8-16um。
PCT/CN2017/080015 2016-08-30 2017-04-11 高效晶体硅太阳能电池背场浆料及其制备方法 WO2018040564A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/571,402 US10497819B2 (en) 2016-08-30 2017-04-11 Efficient back surface field paste for crystalline silicon solar cells and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610756143.4A CN106098149B (zh) 2016-08-30 2016-08-30 高效晶体硅太阳能电池背场浆料及其制备方法
CN201610756143.4 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018040564A1 true WO2018040564A1 (zh) 2018-03-08

Family

ID=57224013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080015 WO2018040564A1 (zh) 2016-08-30 2017-04-11 高效晶体硅太阳能电池背场浆料及其制备方法

Country Status (3)

Country Link
US (1) US10497819B2 (zh)
CN (1) CN106098149B (zh)
WO (1) WO2018040564A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493992A (zh) * 2018-10-15 2019-03-19 海宁市瑞银科技有限公司 高附着力perc晶体硅太阳能电池用铝浆及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098149B (zh) * 2016-08-30 2018-06-26 南通天盛新能源股份有限公司 高效晶体硅太阳能电池背场浆料及其制备方法
CN111128437B (zh) * 2019-07-12 2022-07-26 杭州正银电子材料有限公司 一种晶硅太阳能perc双面电池用无铅铝导电浆料及其制备方法
CN112582095A (zh) * 2019-09-30 2021-03-30 苏州晶银新材料股份有限公司 一种导电浆料及含有其的太阳能电池
CN111153701A (zh) * 2020-01-06 2020-05-15 哈尔滨理工大学 一种ZrB2-SiC复合涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737751A (zh) * 2011-04-08 2012-10-17 上海新天和电子材料有限公司 用于制备硅太阳能电池的背场铝导电浆料及其制造方法
JP2014241348A (ja) * 2013-06-12 2014-12-25 株式会社ノリタケカンパニーリミテド 太陽電池の裏面ファイヤースルー用ペースト組成物、太陽電池の製造方法、および太陽電池
CN104637568A (zh) * 2015-02-02 2015-05-20 南通天盛新能源科技有限公司 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
JP2015191971A (ja) * 2014-03-27 2015-11-02 株式会社ノリタケカンパニーリミテド ファイヤースルー用アルミニウムペーストおよび太陽電池素子
CN106098149A (zh) * 2016-08-30 2016-11-09 南通天盛新能源股份有限公司 高效晶体硅太阳能电池背场浆料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090229665A1 (en) * 2008-03-13 2009-09-17 E. I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of silicon solar cells
US9082901B2 (en) * 2012-04-11 2015-07-14 E I Du Pont De Nemours And Company Solar cell and manufacturing method of the same
US20140190560A1 (en) * 2013-01-09 2014-07-10 E I Du Pont De Nemours And Company Back-side electrode of p-type solar cell
US9112069B2 (en) * 2013-04-01 2015-08-18 E I Du Pont De Nemours And Company Solar cell comprising a p-doped silicon wafer and an aluminum electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102737751A (zh) * 2011-04-08 2012-10-17 上海新天和电子材料有限公司 用于制备硅太阳能电池的背场铝导电浆料及其制造方法
JP2014241348A (ja) * 2013-06-12 2014-12-25 株式会社ノリタケカンパニーリミテド 太陽電池の裏面ファイヤースルー用ペースト組成物、太陽電池の製造方法、および太陽電池
JP2015191971A (ja) * 2014-03-27 2015-11-02 株式会社ノリタケカンパニーリミテド ファイヤースルー用アルミニウムペーストおよび太陽電池素子
CN104637568A (zh) * 2015-02-02 2015-05-20 南通天盛新能源科技有限公司 一种全铝背场晶体硅太阳能电池用铝浆及其制备方法
CN106098149A (zh) * 2016-08-30 2016-11-09 南通天盛新能源股份有限公司 高效晶体硅太阳能电池背场浆料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493992A (zh) * 2018-10-15 2019-03-19 海宁市瑞银科技有限公司 高附着力perc晶体硅太阳能电池用铝浆及其制备方法

Also Published As

Publication number Publication date
US10497819B2 (en) 2019-12-03
CN106098149A (zh) 2016-11-09
CN106098149B (zh) 2018-06-26
US20190157476A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2018040564A1 (zh) 高效晶体硅太阳能电池背场浆料及其制备方法
CN106887273B (zh) Perc晶体硅太阳能电池用背银浆料及其制备方法
WO2017198006A1 (zh) 掺杂改性石墨烯的太阳能电池正面银浆及其制备方法
CN106477897A (zh) 玻璃粉及应用该玻璃粉制得的正电极银浆、太阳能电池
CN102426874B (zh) 一种硅太阳能电池正银浆料及其制备方法
WO2015014032A1 (zh) 一种局部铝背场晶体硅太阳电池专用铝浆及其制备方法
CN106782753B (zh) 一种晶体硅太阳能电池印刷用银浆及其制备方法
CN108695011A (zh) 背钝化晶体硅太阳能电池用正面银浆及其制备方法和应用
CN106024095B (zh) 一种太阳能电池无氧玻璃导电浆料
CN106887271B (zh) 一种石墨烯改性无铅银浆料及其制备方法
CN111302638B (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
TWI711594B (zh) 太陽能電池電極用導電漿料及利用之太陽能電池
WO2020252829A1 (zh) 一种全铝背场晶体硅太阳能电池用低温烧结型背面银浆
CN110364286A (zh) 一种单晶双面perc电池背面电极银浆及其制备方法
CN105321594A (zh) 一种硅太阳能电池正面银浆及其制备方法
CN104387714A (zh) 一种硅太阳能电池铝浆用有机粘合剂的制备方法
CN102543252B (zh) 一种宽高温烧结窗口硅太阳能电池正银浆料
WO2020118781A1 (zh) 一种玻璃粉组合物及含有其的导电银浆和太阳能电池
CN104681123A (zh) 太阳能电池背银浆料及其制备方法、太阳能电池及其制备方法
WO2018040570A1 (zh) 两面受光的高效晶体硅太阳能电池局域接触背场铝浆及其制备方法
CN106448807A (zh) 一种钝化发射极和背面的太阳能电池用铝浆及制备方法
CN110504045A (zh) 一种高拉力的晶硅太阳能电池perc铝浆及其制备方法
CN114283960A (zh) 一种TOPCon电池主栅银浆及其制备方法
CN109616240A (zh) 一种太阳能hit电池细栅用低温导电银浆及其制备方法
CN108039224A (zh) 用于金刚线切割硅片太阳能电池正面银浆料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17844872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17844872

Country of ref document: EP

Kind code of ref document: A1