WO2018037610A1 - Temperature varying device and temperature varying method - Google Patents

Temperature varying device and temperature varying method Download PDF

Info

Publication number
WO2018037610A1
WO2018037610A1 PCT/JP2017/013016 JP2017013016W WO2018037610A1 WO 2018037610 A1 WO2018037610 A1 WO 2018037610A1 JP 2017013016 W JP2017013016 W JP 2017013016W WO 2018037610 A1 WO2018037610 A1 WO 2018037610A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature control
processing
control mechanism
gas
Prior art date
Application number
PCT/JP2017/013016
Other languages
French (fr)
Japanese (ja)
Inventor
乙松 李
敬二 上川
Original Assignee
株式会社九州日昌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社九州日昌 filed Critical 株式会社九州日昌
Publication of WO2018037610A1 publication Critical patent/WO2018037610A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention relates to a temperature change processing apparatus and a temperature change processing method suitable for use in a temperature cycle test or the like in which a temperature load is repeatedly applied to an object to be processed such as an electronic circuit board or a semiconductor wafer.
  • a temperature cycle test apparatus for a semiconductor device or an electronic circuit board includes, for example, a test tank, a high temperature tank and a heater, a low temperature tank and a cooler, and a damper. Then, has advance accumulate gas (gas such as air or N 2) in advance to a high temperature in a high temperature bath, leave accumulate gas having a low temperature in a low temperature bath, and they are introduced into the test chamber by the damper arrangement .
  • gas gas such as air or N 2
  • the object under test is exposed to high or low temperature due to the high or low temperature gas introduced into the test chamber, but it does not reach the desired temperature just by changing the gas, so the heater or cooler heats the air in the test chamber. Or it cools (for example, refer patent document 1, 2).
  • the temperature cycle test apparatus as described above is exposed to a high temperature or a low temperature using a heated or cooled atmosphere, and there are problems such as temperature unevenness of the atmosphere and adhesion of particles.
  • a cycle in which the test object is heated to + 150 ° C. and then cooled to a low temperature of ⁇ 40 ° C. is set as one cycle, and this cycle is repeated five times. It is not suitable for a temperature cycle test with a large temperature change and a short cycle time, such as a time within 180 seconds.
  • the temperature change treatment apparatus of the present invention is a temperature change treatment apparatus for giving a temperature change to a processing object, A housing that defines a closed space that is blocked from outside air; A first and a second temperature control mechanism provided in the closed space, The first temperature adjustment mechanism has a first temperature adjustment surface exposed to the closed space, and adjusts the temperature so that the first temperature adjustment surface is maintained at a first target temperature, The second temperature control mechanism has a second temperature control surface exposed to the closed space, and the second temperature control surface has a second target temperature lower than the first target temperature. Adjust the temperature so that it is maintained, A first processing position where the processing object contacts or opposes the first temperature control surface of the first temperature control mechanism; and the processing target is a second target of the second temperature control mechanism. It further has a moving mechanism for moving the processing object to and from the second processing position that contacts or faces the temperature control surface.
  • the housing has a supply port for supplying a gas composed of inert gas, dry air, or special gas to the region side where the second temperature control mechanism is provided,
  • An exhaust port that exhausts the gas so as to flow from the region side where the second temperature control mechanism is provided to the region side where the first temperature control mechanism is provided is adopted. It is also possible.
  • the temperature change treatment method of the present invention is a temperature change treatment method for giving a temperature change to a processing object
  • the first and second temperature control surfaces exposed to the closed space of the first and second temperature control mechanisms provided in the closed space blocked from outside air are respectively set to the first target temperature and the first temperature control surface. Adjust the temperature so that it is maintained at a second target temperature lower than the target temperature, A first processing position where the processing object contacts or opposes the first temperature control surface of the first temperature control mechanism; and the processing target is a second target of the second temperature control mechanism.
  • a temperature change is given to the said process target object by moving the said process target object between the 2nd process positions which contact or oppose a temperature control surface, It is characterized by the above-mentioned.
  • the object to be processed is simply moved within the closed space between the first and second temperature control surfaces of the first and second temperature adjustment mechanisms provided in the housing. Since the temperature change can be given to the object, the cycle time can be greatly shortened. Since heating and cooling are performed as a result of heat application and heat absorption between the first and second temperature control surfaces and the object to be processed, the processing can be executed in a clean environment. Since the first and second temperature-controlled surfaces are maintained at the target temperature, it is possible to ensure the uniformity of the temperature distribution for the object to be processed. By flowing a gas composed of inert gas or dry air from the second temperature adjustment mechanism side to the first temperature adjustment mechanism side in the closed space, dew condensation is prevented on and around the second temperature-controlled surface having a low temperature.
  • a special gas such as hydrogen gas or formic acid gas can be supplied into the closed space instead of or in addition to the inert gas or dry air.
  • a special gas such as hydrogen gas or formic acid gas
  • oxidation of the object to be treated can be prevented.
  • reflow soldering process by supplying hydrogen gas or formic acid gas, reflow soldering can be performed stably and with high quality without flux by formic acid reduction or hydrogen reduction.
  • a reduced-pressure atmosphere or a high-vacuum atmosphere it is possible to prevent condensation and suppress the movement of heat from the second temperature adjustment mechanism side to the first temperature adjustment mechanism side.
  • FIG. 1 is an external perspective view of a temperature cycle test apparatus according to an embodiment of a temperature change treatment apparatus of the present invention. It is a figure which shows the internal structure of the apparatus of FIG. 1, Comprising: It is sectional drawing which removed the front wall of the housing
  • FIG. 1 to 4 show the structure of a temperature cycle test apparatus (hereinafter referred to as an apparatus) according to an embodiment of a temperature change treatment apparatus of the present invention.
  • the apparatus 1 has a main component of the apparatus housed in a box-shaped housing 10, and performs a temperature cycle test of a specimen (processing object). It is unitized so that it can each be implemented within 10.
  • a plurality of apparatuses 1 can be used as shown in FIG.
  • the apparatus 1 may be directly stacked in the vertical direction, or may be stored in a rack or the like and stacked in the vertical direction.
  • An automatic opening / closing passage 100 is provided on the front wall of the casing 10 of each device 1. A specimen is introduced through the automatic opening / closing passage 100, a temperature cycle test is performed inside each apparatus 1, and the specimen is carried out from the apparatus 1 after the test is completed. A new specimen is put into the apparatus 1 from which the specimen has been unloaded.
  • the automatic opening / closing passage 100 of the apparatus 1 is carried into the casing 10 by a transfer robot or the like while the posture of the test body is maintained in a substantially horizontal state, and the test is performed from within the casing 10. It is formed so that the body can be carried out.
  • the automatic opening / closing passage 100 is a mechanism that automatically opens and closes the passage only when the specimen is carried into and out of the housing 10, and the atmosphere in the housing 10 is affected by the external atmosphere. It is provided to suppress as much as possible.
  • the passage that the automatic opening / closing passage 100 opens and closes also has the minimum cross-sectional area necessary for loading and unloading the specimen.
  • the housing 10 of the apparatus 1 includes a metal frame 11, a bottom wall 12A made of heat insulating material, an upper wall 12B, a right side wall 12C, a left side wall 12D, a front wall 12E, By embedding the back wall 12F, a closed space 10a for blocking outside air is defined.
  • casing 10 is comprised with the heat insulating material, The inside is interrupted
  • the housing 10 may be formed in an airtight manner, but as will be described later, an intrusion of outside air is prevented by supplying an inert gas such as nitrogen gas or a gas made of dry air into the housing 10. So it doesn't have to be completely airtight.
  • the frame 11 can be made of other materials besides metal, depending on the situation.
  • the configuration of the casing can be variously selected as long as the casing is for stabilizing the environment for the temperature treatment of the processing object, It is not limited to the forms and dimensions disclosed in this specification.
  • a high temperature stage 30 as a first temperature adjustment mechanism is installed on one side via a support member 35 on the bottom wall 12 ⁇ / b> A of the housing 10, and on the other side. Is provided with a low-temperature stage 40 as a second temperature control mechanism via a support member 45.
  • the high-temperature stage 30 has a temperature-controlled surface 31 that is exposed to the closed space 10a and should be temperature-adjusted.
  • the high-temperature stage 30 controls, for example, a metal block such as an aluminum alloy having a heat capacity, an electric heater built in the block, a temperature sensor for detecting the temperature distribution of the temperature control surface 31, and power supplied to the electric heater.
  • a control circuit that controls the power supplied to the electric heater so that the temperature of the temperature-controlled surface 31 becomes the target temperature.
  • the temperature control surface 31 may be formed of a metal block, or may be configured of other metal, a ceramic plate, or the like. In order to obtain the uniformity of the temperature distribution of the temperature control surface 31, a special winding is used for the electric heater.
  • the temperature control surface 31 of the high temperature stage 30 is temperature-controlled so that it is always maintained at a target temperature (for example, 150 ° C.) in a temperature range from room temperature to about 200 ° C., for example.
  • the high temperature stage 30 is not limited to this configuration, and may be any mechanism that can maintain the temperature of the temperature-controlled surface 31 at the target temperature against disturbance.
  • the low temperature stage 40 has, on its upper surface, a temperature control surface 41 that is exposed to the closed space 10 a and to be temperature adjusted, and the temperature control surface 41 is lower in temperature than the temperature control surface 31 of the high temperature stage 30. The temperature is adjusted.
  • the low-temperature stage 40 includes, for example, a Peltier element unit in which a large number of Peltier elements are built in between two ceramic plates, a water-cooled jacket that is provided on the bottom side of the Peltier element unit and cools the Peltier element unit, and a temperature-controlled surface 41 has a temperature sensor that detects the temperature distribution of 41, and a control circuit that controls the power supplied to the Peltier element. A minus temperature cold water chiller is supplied to the water cooling jacket.
  • the temperature adjustment surface 41 of the low temperature stage 40 is adjusted so as to be constantly maintained at a target temperature (eg, minus 40 ° C.) in a temperature range of about ⁇ 50 to 130 ° C., for example.
  • the low-temperature stage 40 is not limited to this configuration, and any mechanism that can maintain the temperature of the temperature-controlled surface 41 at the target temperature against disturbance can be used. It is also possible to adopt a configuration in which the temperature of the low temperature stage 40 is not controlled by a Peltier element but using an electric heater in the same manner as the high temperature stage 30 described above.
  • the temperature adjustment surface 31 is set to the temperature adjustment surface 31 or close to the temperature of the temperature adjustment surface 31 in a state in which the test object is in direct contact with the temperature adjustment surface 31 or in a state of being opposed to each other with a space. So that the temperature rises.
  • the temperature-controlled surface 41 is configured such that the temperature of the test body is set to the temperature-controlled surface 41 in a state in which the test body is in direct contact with the temperature-controlled surface 41 or in a state of being opposed to each other with a space. Lower the temperature to be close to it. For this reason, as a form of the test body for changing the temperature on the temperature-controlled surfaces 31 and 41, a plate-like thing or a sheet-like thing having a constant thickness such as a substrate or a wafer is suitable.
  • the left side wall 12D of the housing 10, i.e., the gas G in the side wall of the provided region R2 side of the low temperature stage 40, consisting of an inert gas or dry air nitrogen gas N 2 and the like Is provided with a supply port 15.
  • the supply port 15 is connected to a gas supply decrease (not shown) for supplying a positive pressure gas G.
  • the atmosphere of the gas G can be set in the closed space 10 a.
  • condensation is formed at the low temperature stage 40 and its surroundings.
  • the generation of condensation is reliably prevented. it can.
  • An exhaust port 16 for exhausting the gas G supplied to the low temperature stage 40 side in the closed space 10a is provided on the right side wall 12C of the housing 10, that is, the side wall on the region R1 side where the high temperature stage 30 is provided. It has been.
  • an exhaust pipe (not shown) is connected to the exhaust port 16 and is discharged to the outside through the exhaust pipe.
  • the discharged gas G can be reused and supplied again from the supply port 15 into the closed space 10a.
  • the gas G traveling from the low temperature stage 40 side to the high temperature stage 30 side acts to prevent heat from moving from the high temperature stage 30 side having a relatively high temperature toward the low temperature stage 40 side having a relatively low temperature. To do. As a result, the low temperature stage 40 side and the high temperature stage 30 side can be thermally separated.
  • the gas G composed of an inert gas or dry air is allowed to flow from the low-temperature stage 40 side to the high-temperature stage 30 side in the closed space 10a, so that dew condensation occurs on the temperature-controlled surface 41 of the low-temperature stage 40 having a low temperature and its surroundings.
  • the movement of heat from the high temperature stage 30 side having a high temperature to the low temperature stage 40 side can be suppressed, and a thermal stable state in the apparatus can be easily obtained.
  • a heat insulating wall 20 including a lower heat insulating wall 20A and an upper heat insulating wall 20B is provided between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30.
  • the heat insulating wall 20 extends from the front wall 12E toward the back wall 12F, and acts to suppress heat transfer between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30.
  • a passage GP for moving the test body is formed in the lower heat insulating wall 20A and the upper heat insulating wall 20B. Through this passage GP, the gas G on the low temperature stage 40 side flows toward the high temperature stage 30 side.
  • the heat insulating wall 20 is provided to prevent heat transfer between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30, but it is not limited to this. .
  • the moving mechanism 50 includes a drive unit 51 provided on the back wall 12 ⁇ / b> F, a movable unit 53, and two arms 52 coupled to the movable unit 53.
  • the drive unit 51 incorporates an actuator such as a motor and a mechanism for converting the movement of the actuator into the horizontal direction A1, A2 shown in FIG. 3 and the vertical direction B1, B2 shown in FIG. Since it is a well-known technique, detailed description is abbreviate
  • the two arms 52 extend in parallel to each other and in the horizontal direction.
  • the tip side portions of the two arms 52 are moved in a vertically downward direction B2 from predetermined positions on the high temperature stage 30 and the low temperature stage 40, the two receiving grooves 32 and the low temperature stage 40 formed in the high temperature stage 30 are moved. It fits in the formed accommodation groove 42.
  • the temperature control surface 31 of the high temperature stage 30 and the temperature control surface 41 of the low temperature stage 40 are arranged at a height (substantially the same height) aligned with each other, and the moving mechanism 50 includes a holding arm.
  • the specimen is moved between the high temperature stage 30 and the low temperature stage 40 by moving 52 in the horizontal directions A1, A2 and the vertical directions B1, B2.
  • the specimen can be moved by the linear movement of the holding arm 52 in the horizontal directions A1 and A2 (direction along the temperature-controlled surfaces 31 and 41) and the movement of a slight distance in the vertical directions B1 and B2.
  • the time required is very short.
  • the holding arm 52 is configured to hold the test body from the bottom surface side, the present invention is not limited to this, and the test body can be sucked and held from the upper surface side by a suction chuck or the like. Any known method can be used to hold the specimen by the holding arm.
  • the arrangement of the two holding arms may be arranged outside the high temperature stage 30 and the low temperature stage 40, and the arrangement is appropriately selected according to the form of the test body or a holding body such as a tray for holding the test body. can do.
  • a glass / epoxy resin substrate on which an electronic circuit is mounted is placed in the temperature apparatus 1, then the temperature is raised to 150 ° C. on the high temperature stage 30, and then lowered to ⁇ 40 ° C. on the low temperature stage 40. .
  • the temperature cycle for raising the temperature of the substrate to 150 ° C. and lowering it to ⁇ 40 ° C. is one cycle.
  • One cycle is executed within 180 seconds, and after five cycles, the substrate is unloaded from the apparatus 1. Then, it is determined whether the substrate after the temperature cycle test is a non-defective product or a defective product.
  • the temperature adjustment surface 31 of the high temperature stage 30 is set to about 155 ° C.
  • the temperature adjustment surface 41 of the low temperature stage 40 is adjusted to about ⁇ 45 ° C.
  • the temperature of the high temperature stage 30 and the low temperature stage 40 is set slightly higher or lower than the temperature rise or temperature drop of the substrate to be tested in consideration of heat dissipation and the like.
  • the gas G is exhausted from the region R1 side while continuously supplying the gas G to the region R2 side of the housing 10, and a flow of the gas G from the region R2 to the region R1 is formed in the housing 10.
  • the supply flow rate and the exhaust flow rate of the gas G are such that the flow of the gas G from the region R2 to the region R1 overcomes the natural convection of the gas G generated in the housing 10, so The flow from the region R2 to the region R1 does not impair the thermal stability in the housing 10.
  • a substrate W as a test body is advanced in the horizontal direction while being held in a substantially horizontal state using a transfer robot (not shown), and the inside of the housing 10 is passed through the automatic opening / closing passage 100 that is automatically opened. Carry in. After loading the substrate W, the automatic opening / closing passage 100 is automatically closed.
  • the substrate W is transferred to the arm 52, and the arm 52 is accommodated in the accommodating groove 32 of the high temperature stage 30, so that the substrate W contacts the temperature-controlled surface 31 of the high temperature stage 30, as shown in FIG. It will be in the state.
  • the position where the substrate W is disposed is the first processing position of the present invention. Note that, as described above, the substrate W may be disposed to be opposed to the temperature-controlled surface 31 with a space therebetween, and can be appropriately changed according to the state of the back surface of the substrate W and the like.
  • the substrate W In the first processing position shown in FIG. 6, when the temperature of the substrate W measured by a temperature sensor (not shown) reaches 150 ° C., the substrate W is vertically moved by the arm 52 so as to be positioned above the temperature control surface 31. As shown in FIG. 7, it is then moved up to the installation region R2 of the low temperature stage 40 through the passage GP while being held in a substantially horizontal state, and as shown in FIG. It reaches above the temperature control surface 41. Since the arm 52 is accommodated in the accommodating groove 42 of the low temperature stage 40 from this state, the substrate W comes into contact with the temperature control surface 41 of the low temperature stage 40 as shown in FIG. The position where the substrate W is disposed is the second processing position of the present invention.
  • the substrate W may be disposed facing the space-adjusted surface 41 without being in contact with the temperature-controlled surface 41.
  • a temperature sensor (not shown) reaches ⁇ 40 ° C.
  • the substrate W is vertically upward by the arm 52 so as to be positioned above the temperature control surface 41. Lifted to B1. Thereby, one cycle of the temperature cycle test is completed.
  • a temperature sensor is used to control the temperature of the temperature-controlled surfaces 31 and 41 to a target temperature, but power is forcibly supplied to an electric heater or Peltier element by timer control. Any known method can be adopted as the temperature control method for the temperature control surfaces 31 and 41, such as maintaining the temperature of the temperature control surfaces 31 and 41 at the target temperature.
  • the substrate W is repeatedly moved between the high-temperature stage 30 and the low-temperature stage 40, and after a five-cycle temperature cycle test is performed, the substrate W is unloaded by the transfer robot (not shown) through the automatic opening / closing passage 100. .
  • the graph (1) shown in FIG. 10 is obtained by monitoring the temperature on the substrate W when the temperature cycle test of the substrate W is performed by the apparatus 1.
  • a temperature difference of about 190 ° C. can be repeatedly applied to the substrate W in a short time within 180 seconds.
  • the test body W is simply moved in the closed space 10 a between the temperature controlled surfaces 31 and 41 of the high temperature stage 30 and the low temperature stage 40 provided in the housing 10.
  • a temperature change of, for example, 190 ° C. can be given to the specimen W
  • a wide temperature change range can be obtained in a short cycle time.
  • heating and cooling are performed as a result of heat application and heat absorption between the heated surfaces 31 and 41 of the high temperature stage 30 and the low temperature stage 40 and the test body W, so that the atmosphere is heated and cooled.
  • the process can be executed in a cleaner environment. Since the temperature-controlled surfaces 31 and 41 are always maintained at the target temperature, the uniformity of the temperature distribution with respect to the specimen W can be ensured.
  • the automatic opening / closing passage 100 is provided on the high temperature stage 30 side, but it may be provided on the low temperature stage 40 side instead. However, from the viewpoint of thermal stability, it is preferably provided on the high temperature stage 30 side. Since the high temperature stage 30 side is heated to a temperature higher than the normal temperature, even if it is subjected to a disturbance, the high temperature stage 30 side can be returned to a stable state thermally, but the low temperature stage 40 is cooled to a temperature lower than the normal temperature. On the other hand, when a disturbance is applied, it takes a longer time to return to a thermally stable state.
  • the high temperature stage 30 and the low temperature stage 40 are provided on the bottom wall 12A of the housing 10, but these may be provided on the upper wall 12B and the temperature-controlled surfaces 31 and 41 may be directed downward.
  • the specimen W may be brought into contact with or opposed to the temperature-controlled surfaces 31 and 41 while being held by the moving mechanism.
  • the automatic opening / closing passage 100 is used for loading / unloading the specimen, but the present invention is not limited to this.
  • a spare room for carrying in / out may be provided, and various modifications are possible.
  • the temperature of the high temperature stage 30 is set higher than the normal temperature and the low temperature stage 40 is set to a temperature below zero.
  • the present invention is not limited to this.
  • both the high temperature stage 30 and the low temperature stage 40 may be set to a temperature of 0 ° C. or higher. It is also possible to set both stages 40 to temperatures below zero.
  • an electric heater and a Peltier element are used for temperature adjustment, but the present invention is not limited to this, and any temperature control element capable of temperature adjustment can be used.
  • an electric heater may be used for both the high temperature stage 30 and the low temperature stage 40, or a Peltier element may be used for both.
  • FIG. 11 shows the structure of a temperature cycle test apparatus 1A according to the second embodiment of the temperature change treatment apparatus of the present invention.
  • the housing 10A has a completely sealed structure and is formed airtight.
  • a gate valve 300 is provided at a position facing the high temperature stage 30 on the front side of the housing 10A, and a vacuum pump 200 is provided at a position facing the low temperature stage 40 side.
  • a turbo molecular vacuum pump can be used as the vacuum pump 200.
  • a test specimen is carried in and out through the gate valve 300, and the inside of the housing 10A is set to a reduced pressure atmosphere or a high vacuum atmosphere during the test.
  • the inside of the housing 10A is in a high vacuum atmosphere, the problem of condensation at the low temperature stage 40 and its surroundings is solved, and in addition, the high temperature stage 30 and the low temperature stage 40 can be thermally separated. In addition, since the fluid does not move, the inside of the housing 10A is extremely stabilized thermally.
  • the housing 10A When the inside of the housing 10A is depressurized to a pressure higher than the high vacuum state, if the air in the housing 10A contains water vapor, a problem of dew condensation may occur.
  • the housing 10A may be filled with an inert gas such as dry air or nitrogen gas in advance, and the inside of the housing 10A may be decompressed by the vacuum pump 200 from this state.
  • an inert gas such as dry air or nitrogen gas
  • the present invention can be applied to a manufacturing process that requires a manufacturing process in which an object to be processed is melted at a high temperature and quickly cooled and solidified.
  • paste or cream-like solder is applied or printed on the required part of the printed circuit board, then the surface mount component is placed on the board by a chip mounter, and finally the entire board is heated to a high temperature.
  • So-called “reflow soldering” is known, in which a component and a substrate are soldered by melting the solder.
  • a special gas such as hydrogen gas or formic acid gas can be supplied into the closed space in addition to or instead of the inert gas or dry air.
  • the special gas it is possible to prevent condensation and suppress heat transfer, and to add other functions.
  • the reflow soldering process by supplying hydrogen gas or formic acid gas, fluxless and stable high quality reflow soldering can be performed by formic acid reduction or hydrogen reduction.
  • a void is generated in the solder by performing a reflow soldering process using a high temperature stage and a low temperature stage while supplying hydrogen gas or formic acid gas into a closed space under a reduced pressure atmosphere inside the housing. Can be prevented.
  • a plurality of gas supply paths may be provided to supply a purge gas such as nitrogen gas.
  • the maximum temperature reached by the high temperature stage can be set to about 500 ° C., for example.
  • the flow rate of various gases can be controlled using a mass flow controller.
  • the molten solder is cooled at a low temperature stage, and the cooling rate can be optimized by controlling the temperature of the low temperature stage. With such a configuration, it is possible to prevent the occurrence of defective parts that are vulnerable to thermal shock.
  • the composition of solder can be made favorable by controlling the cooling rate. That is, the apparatus and method of the present invention can also be applied as a manufacturing apparatus and manufacturing method for products such as electronic circuit boards, electric circuit boards, and semiconductor devices.
  • the present invention is not limited to this, and the temperature control surfaces of the high temperature stage and the low temperature stage are illustrated. Can also be placed downwards.
  • the processing object may be brought into contact with or opposed to the temperature-controlled surface while being held by a holding arm or the like.
  • the temperature control surfaces of the high temperature stage and the low temperature stage may be arranged in opposite directions. In this case, the thermal separation between the high temperature stage and the low temperature stage is more reliable. It is also possible to arrange the high temperature stage on the upper side and the low temperature stage on the lower side while arranging the temperature control surface in the direction along the vertical direction.
  • this arrangement can contribute to thermal separation. Furthermore, it is possible to position the processing object at a predetermined position and move the high temperature stage and the low temperature stage by a moving mechanism to give a temperature change to the processing object.
  • the thermal shock is applied by moving the substrate or the semiconductor between the high temperature and the low temperature
  • the present invention is not limited to this, and the energization mechanism for energizing the semiconductor, the electronic / electrical circuit is provided. It is also possible to carry out a thermal shock test in a state where they are built in the body and are energized.
  • the moving mechanism is configured to move in the vertical direction or the horizontal direction.
  • the present invention is not limited to this, and the object to be processed is swung by the arm at a predetermined radial position to be positioned. It is also possible to move the processing object manually from the outside. It is also possible to reciprocate the processing object between the high temperature stage and the low temperature stage using a moving stage that moves linearly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

This temperature varying device has exceptional temperature distribution uniformity and cleanliness stability and is suitable for temperature cycling. The temperature varying device has a housing (10) that demarcates a closed space (10a) that is cut off from outside air and a high-temperature stage (30) and low-temperature stage (40) provided in the closed space (10a). The high-temperature stage (30) carries out temperature adjustment such that a temperature-adjusted surface (31) is kept at a first target temperature, and the low-temperature stage (40) carries out temperature adjustment such that a temperature-adjusted surface (41) is kept at a second target temperature lower than the first target temperature. The temperature varying device is further provided with a movement mechanism (50) for moving an object under test between a processing position at which the object under test is in contact with or opposes the temperature-adjusted surface of the high-temperature stage (30) and a processing position at which the object under test is in contact with or opposes the temperature-adjusted surface (41) of the low-temperature stage (40).

Description

変温処理装置および変温処理方法Temperature change processing apparatus and temperature change processing method
 本発明は、電子回路基板、半導体ウエハ等の処理対象物に温度負荷を繰り返し加える温度サイクル試験等に用いるのに好適な変温処理装置および変温処理方法に関する。 The present invention relates to a temperature change processing apparatus and a temperature change processing method suitable for use in a temperature cycle test or the like in which a temperature load is repeatedly applied to an object to be processed such as an electronic circuit board or a semiconductor wafer.
 半導体デバイスや電子回路基板に対する温度サイクル試験装置は、例えば、試験槽、高温槽およびヒータ、低温槽および冷却機および、ダンパーで構成される。そして、高温槽にあらかじめ高温にした気体(空気あるいはN等のガス)を貯めておき、低温槽に低温にした気体を貯めておき、それらをダンパーにより試験槽に導入する構成となっている。試験槽に導入された高温または低温の気体により被試験物が高温または低温に曝されるが、気体の入れ替えだけで所望の温度に到達しないため、ヒータ又は冷却機により試験槽内の空気を加熱あるいは冷却する(例えば、特許文献1,2参照)。 A temperature cycle test apparatus for a semiconductor device or an electronic circuit board includes, for example, a test tank, a high temperature tank and a heater, a low temperature tank and a cooler, and a damper. Then, has advance accumulate gas (gas such as air or N 2) in advance to a high temperature in a high temperature bath, leave accumulate gas having a low temperature in a low temperature bath, and they are introduced into the test chamber by the damper arrangement . The object under test is exposed to high or low temperature due to the high or low temperature gas introduced into the test chamber, but it does not reach the desired temperature just by changing the gas, so the heater or cooler heats the air in the test chamber. Or it cools (for example, refer patent document 1, 2).
特開平5-267418号公報JP-A-5-267418 特許2786688号公報Japanese Patent No. 2786688
 上記のような温度サイクル試験装置では、加熱又は冷却した雰囲気を用いて高温又は低温にさらすので、雰囲気の温度ムラ、パーティクルの付着等の問題がある。
 また、上記のような温度サイクル試験装置では、試験対象物を、例えば、+150℃に加熱したのち-40℃の低温に冷却するサイクルを1サイクルとして、このサイクルを5サイクル繰り返し行い、かつ、サイクルタイムを180秒以内とするような、温度変化が大きく、かつ、サイクルタイムの短い温度サイクル試験には適さない。
The temperature cycle test apparatus as described above is exposed to a high temperature or a low temperature using a heated or cooled atmosphere, and there are problems such as temperature unevenness of the atmosphere and adhesion of particles.
In the temperature cycle test apparatus as described above, for example, a cycle in which the test object is heated to + 150 ° C. and then cooled to a low temperature of −40 ° C. is set as one cycle, and this cycle is repeated five times. It is not suitable for a temperature cycle test with a large temperature change and a short cycle time, such as a time within 180 seconds.
 本発明の一の目的は、温度分布の均一性及びクリーン度の安定性に優れ、温度サイクル試験に適した変温処理装置および変温処理方法を提供することにある。
 本発明の他の目的は、温度変化が大きく、サイクルタイムの短い温度サイクル試験に適した変温処理装置および変温処理方法を提供することにある。
An object of the present invention is to provide a temperature change treatment apparatus and a temperature change treatment method that are excellent in uniformity of temperature distribution and stability of cleanliness and are suitable for a temperature cycle test.
Another object of the present invention is to provide a temperature change treatment apparatus and a temperature change treatment method suitable for a temperature cycle test having a large temperature change and a short cycle time.
 本発明の変温処理装置は、処理対象物に温度変化を与えるための変温処理装置であって、
 外気と遮断された閉空間を画定する筐体と、
 前記閉空間内に設けられた第1および第2の温調機構と、を有し、
 前記第1の温調機構は、前記閉空間に露出する第1の被温調面を有し、当該第1の被温調面が第1の目標温度に維持されるように温調し、
 前記第2の温調機構は、前記閉空間に露出する第2の被温調面を有し、当該第2の被温調面が前記第1の目標温度よりも低い第2の目標温度に維持されるように温調し、
 前記処理対象物が前記第1の温調機構の第1の被温調面に接触し又は対向する第1の処理位置と、前記処理対象物が前記第2の温調機構の第2の被温調面に接触し又は対向する第2の処理位置との間で当該処理対象物を移動させる移動機構をさらに有する、ことを特徴とする。
The temperature change treatment apparatus of the present invention is a temperature change treatment apparatus for giving a temperature change to a processing object,
A housing that defines a closed space that is blocked from outside air;
A first and a second temperature control mechanism provided in the closed space,
The first temperature adjustment mechanism has a first temperature adjustment surface exposed to the closed space, and adjusts the temperature so that the first temperature adjustment surface is maintained at a first target temperature,
The second temperature control mechanism has a second temperature control surface exposed to the closed space, and the second temperature control surface has a second target temperature lower than the first target temperature. Adjust the temperature so that it is maintained,
A first processing position where the processing object contacts or opposes the first temperature control surface of the first temperature control mechanism; and the processing target is a second target of the second temperature control mechanism. It further has a moving mechanism for moving the processing object to and from the second processing position that contacts or faces the temperature control surface.
 前記筐体は、前記第2の温調機構の設けられた領域側に不活性ガス、ドライエア又は特殊ガスからなるガスを供給するための供給口と、
 前記第2の温調機構の設けられた領域側から前記第1の温調機構の設けられた領域側へ前記ガスが流動するように当該ガスを排気する排気口と、を有する構成を採用することも可能である。
The housing has a supply port for supplying a gas composed of inert gas, dry air, or special gas to the region side where the second temperature control mechanism is provided,
An exhaust port that exhausts the gas so as to flow from the region side where the second temperature control mechanism is provided to the region side where the first temperature control mechanism is provided is adopted. It is also possible.
 前記筐体は、前記閉空間を減圧または高真空状態にすることが可能に形成されている、構成を採用することも可能である。 It is also possible to adopt a configuration in which the casing is formed so that the closed space can be in a reduced pressure or high vacuum state.
 本発明の変温処理方法は、処理対象物に温度変化を与えるための変温処理方法であって、
 外気と遮断された閉空間内に設けられた第1および第2の温調機構の当該閉空間に露出する第1および第2の被温調面をそれぞれ第1の目標温度と当該第1の目標温度よりも低い第2の目標温度に維持されるように温調し、
 前記処理対象物が前記第1の温調機構の第1の被温調面に接触し又は対向する第1の処理位置と、前記処理対象物が前記第2の温調機構の第2の被温調面に接触し又は対向する第2の処理位置との間で当該処理対象物を移動させることにより、当該処理対象物に温度変化を与える、ことを特徴とする。
The temperature change treatment method of the present invention is a temperature change treatment method for giving a temperature change to a processing object,
The first and second temperature control surfaces exposed to the closed space of the first and second temperature control mechanisms provided in the closed space blocked from outside air are respectively set to the first target temperature and the first temperature control surface. Adjust the temperature so that it is maintained at a second target temperature lower than the target temperature,
A first processing position where the processing object contacts or opposes the first temperature control surface of the first temperature control mechanism; and the processing target is a second target of the second temperature control mechanism. A temperature change is given to the said process target object by moving the said process target object between the 2nd process positions which contact or oppose a temperature control surface, It is characterized by the above-mentioned.
 本発明によれば、筐体内に設けられた第1および第2の温調機構の第1および第2の被温調面の間で処理対象物を閉空間内で移動させるだけで、処理対象物に温度変化を与えられるので、サイクルタイムを大幅に短縮できる。
 第1および第2の被温調面と処理対象物との間で熱の付与および熱の吸収の結果として、加熱、冷却が行われるので、クリーンな環境で処理を実行できる。
 第1および第2の被温調面は、目標温度に維持されているので、処理対象物に対する温度分布の均一性も確保できる。
 不活性ガス又はドライエアからなるガスを閉空間内で第2の温調機構側から第1の温調機構側へ流すことで、温度の低い第2の被温調面およびその周囲で結露を防ぐことができるとともに、温度の高い第1の温調機構側から温度の低い第2の温調機構側への熱の移動を抑制できる。
 代替的に、不活性ガス又はドライエアに代えて、又は、これに加えて水素ガスやギ酸ガス等の特殊ガスを閉空間内に供給することも可能である。特殊ガスを供給することにより、結露の防止や熱の移動を抑制できるとともに、さらに他の機能を付加できる。結露の防止や熱の移動を抑制する以外に、例えば、水素ガスを供給することで、処理対象物の酸化防止をすることができる。リフローはんだ付け処理を実施する場合には、水素ガスやギ酸ガスを供給することで、ギ酸還元もしくは水素還元により、フラックスレスでリフローはんだ付けを安定的に高い品質で実施可能となる。
 代替的には、減圧雰囲気又は高真空雰囲気下で、変温処理を行うことにより、結露の防止および第2の温調機構側から第1の温調機構側への熱の移動を抑制できる。
According to the present invention, the object to be processed is simply moved within the closed space between the first and second temperature control surfaces of the first and second temperature adjustment mechanisms provided in the housing. Since the temperature change can be given to the object, the cycle time can be greatly shortened.
Since heating and cooling are performed as a result of heat application and heat absorption between the first and second temperature control surfaces and the object to be processed, the processing can be executed in a clean environment.
Since the first and second temperature-controlled surfaces are maintained at the target temperature, it is possible to ensure the uniformity of the temperature distribution for the object to be processed.
By flowing a gas composed of inert gas or dry air from the second temperature adjustment mechanism side to the first temperature adjustment mechanism side in the closed space, dew condensation is prevented on and around the second temperature-controlled surface having a low temperature. In addition, it is possible to suppress the movement of heat from the first temperature adjustment mechanism having a high temperature to the second temperature adjustment mechanism having a low temperature.
Alternatively, a special gas such as hydrogen gas or formic acid gas can be supplied into the closed space instead of or in addition to the inert gas or dry air. By supplying the special gas, it is possible to prevent condensation and suppress heat transfer, and to add other functions. In addition to preventing condensation and suppressing heat transfer, for example, by supplying hydrogen gas, oxidation of the object to be treated can be prevented. When performing the reflow soldering process, by supplying hydrogen gas or formic acid gas, reflow soldering can be performed stably and with high quality without flux by formic acid reduction or hydrogen reduction.
Alternatively, by performing the temperature change treatment in a reduced-pressure atmosphere or a high-vacuum atmosphere, it is possible to prevent condensation and suppress the movement of heat from the second temperature adjustment mechanism side to the first temperature adjustment mechanism side.
本発明の変温処理装置の一実施形態に係る温度サイクル試験装置の外観斜視図。1 is an external perspective view of a temperature cycle test apparatus according to an embodiment of a temperature change treatment apparatus of the present invention. 図1の装置の内部構造を示す図であって、筐体の前面壁を取り除いた断面図。It is a figure which shows the internal structure of the apparatus of FIG. 1, Comprising: It is sectional drawing which removed the front wall of the housing | casing. 図1の装置の内部構造を示す図であって、筐体の上部壁を取り除いた断面図。It is a figure which shows the internal structure of the apparatus of FIG. 1, Comprising: Sectional drawing which removed the upper wall of the housing | casing. 図1の装置の内部構造を示す図であって、筐体の右側壁を取り除いた断面図。It is a figure which shows the internal structure of the apparatus of FIG. 1, Comprising: Sectional drawing which removed the right side wall of the housing | casing. 温度試験サイクルの手順を示す図。The figure which shows the procedure of a temperature test cycle. 図5に続く手順を示す図であって、試験体が所定の処理位置(第1の処理位置)に位置決めされた状態を示す図。It is a figure which shows the procedure following FIG. 5, Comprising: The figure which shows the state by which the test body was positioned by the predetermined process position (1st process position). 図6に続く手順を示す図。The figure which shows the procedure following FIG. 図7に続く手順を示す図。The figure which shows the procedure following FIG. 図8に続く手順を示す図であって、試験体が所定の処理位置(第2の処理位置)に位置決めされた状態を示す図。It is a figure which shows the procedure following FIG. 8, Comprising: The figure which shows the state by which the test body was positioned by the predetermined process position (2nd process position). 温度サイクル試験の一例を示すグラフ。The graph which shows an example of a temperature cycle test. 本発明の変温処理装置の他の実施形態に係る温度サイクル試験装置の構成を示す透視図。The perspective view which shows the structure of the temperature cycle test apparatus which concerns on other embodiment of the temperature change processing apparatus of this invention.
 以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 図1~図4は、本発明の変温処理装置の一実施形態に係る温度サイクル試験装置(以下、装置という)の構造を示す。
 図1に示すように、装置1は、後述するように、ボックス状の筐体10内に装置の主要な構成要素が収容されており、試験体(処理対象物)の温度サイクル試験を筐体10内でそれぞれ実施できるようにユニット化されている。大量の試験体の温度サイクル試験を実施するには、図1に示すように、複数の装置1を用いることができる。設置スペースの集約化のために、複数の装置1を上下方向に重ねて配置することができる。なお、装置1を直接的に上下方向に重ねてもよいし、ラック等に収容して上下方向に重ねることもできる。各装置1の筐体10の前面壁には自動開閉通路100が設けられている。この自動開閉通路100を通じて試験体が投入され、各装置1の内部で温度サイクル試験が実施され、試験が終了した装置1から試験体が搬出される。試験体の搬出された装置1には、新たな試験体が投入される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
1 to 4 show the structure of a temperature cycle test apparatus (hereinafter referred to as an apparatus) according to an embodiment of a temperature change treatment apparatus of the present invention.
As shown in FIG. 1, as will be described later, the apparatus 1 has a main component of the apparatus housed in a box-shaped housing 10, and performs a temperature cycle test of a specimen (processing object). It is unitized so that it can each be implemented within 10. In order to carry out a temperature cycle test of a large number of specimens, a plurality of apparatuses 1 can be used as shown in FIG. In order to consolidate the installation space, it is possible to arrange a plurality of devices 1 so as to overlap in the vertical direction. The apparatus 1 may be directly stacked in the vertical direction, or may be stored in a rack or the like and stacked in the vertical direction. An automatic opening / closing passage 100 is provided on the front wall of the casing 10 of each device 1. A specimen is introduced through the automatic opening / closing passage 100, a temperature cycle test is performed inside each apparatus 1, and the specimen is carried out from the apparatus 1 after the test is completed. A new specimen is put into the apparatus 1 from which the specimen has been unloaded.
 装置1の自動開閉通路100は、詳細説明は省略するが、搬送ロボット等により、試験体の姿勢を略水平状態に保った状態で筐体10内に搬入し、かつ、筐体10内から試験体を搬出可能に形成されている。自動開閉通路100は、試験体の筐体10への搬入時および筐体10からの搬出時にのみ、通路を自動開閉する機構であり、筐体10内の雰囲気が外部雰囲気により影響を受けるのを可能な限り抑制するために設けられている。また、自動開閉通路100が開閉する通路も、試験体を搬入・搬出するのに必要最小限の断面積となっている。 Although the detailed description of the automatic opening / closing passage 100 of the apparatus 1 is omitted, it is carried into the casing 10 by a transfer robot or the like while the posture of the test body is maintained in a substantially horizontal state, and the test is performed from within the casing 10. It is formed so that the body can be carried out. The automatic opening / closing passage 100 is a mechanism that automatically opens and closes the passage only when the specimen is carried into and out of the housing 10, and the atmosphere in the housing 10 is affected by the external atmosphere. It is provided to suppress as much as possible. The passage that the automatic opening / closing passage 100 opens and closes also has the minimum cross-sectional area necessary for loading and unloading the specimen.
 図2~図4に示すように、装置1の筐体10は、金属製のフレーム11に、断熱材製の底部壁12A、上部壁12B、右側壁12C、左側壁12D、前部壁12E、背部壁12Fが埋め込まれることにより、外気を遮断する閉空間を10a画定している。また、筐体10は断熱材で構成されることで、その内部は熱的にも外部と遮断されている。筐体10は、気密に形成されていてもよいが、後述するように、窒素ガス等の不活性ガス又はドライエアからなるガスが筐体10内に供給されることにより、外気の侵入が阻止されるので、完全に気密である必要はない。
 フレーム11は、金属製以外にも状況に応じて他の材料を選択できる。また、筐体をフレームと断熱壁とで構成する以外にも、筐体の構成は種々選択できる筐体は処理対象物の温度処理のための環境を安定化させるためのものであればよく、本明細書に開示される形態や寸法に限定されるものではない。
As shown in FIG. 2 to FIG. 4, the housing 10 of the apparatus 1 includes a metal frame 11, a bottom wall 12A made of heat insulating material, an upper wall 12B, a right side wall 12C, a left side wall 12D, a front wall 12E, By embedding the back wall 12F, a closed space 10a for blocking outside air is defined. Moreover, the housing | casing 10 is comprised with the heat insulating material, The inside is interrupted | blocked from the exterior also thermally. The housing 10 may be formed in an airtight manner, but as will be described later, an intrusion of outside air is prevented by supplying an inert gas such as nitrogen gas or a gas made of dry air into the housing 10. So it doesn't have to be completely airtight.
The frame 11 can be made of other materials besides metal, depending on the situation. In addition to configuring the casing with a frame and a heat insulating wall, the configuration of the casing can be variously selected as long as the casing is for stabilizing the environment for the temperature treatment of the processing object, It is not limited to the forms and dimensions disclosed in this specification.
 筐体10の底部壁12A上には、図2および図3から明らかなように、一方側に、支持部材35を介して第1の温調機構としての高温ステージ30が設置され、他方側には、支持部材45を介して第2の温調機構としての低温ステージ40が設置されている。 As is clear from FIGS. 2 and 3, a high temperature stage 30 as a first temperature adjustment mechanism is installed on one side via a support member 35 on the bottom wall 12 </ b> A of the housing 10, and on the other side. Is provided with a low-temperature stage 40 as a second temperature control mechanism via a support member 45.
 高温ステージ30は、その上面に、閉空間10aに露出している温度調整すべき被温調面31を有する。高温ステージ30は、例えば、熱容量を持ったアルミニウム合金等の金属製ブロックと、これに内蔵された電熱ヒータ、被温調面31の温度分布を検出する温度センサ、電熱ヒータへの供給電力を制御する制御回路を有し、被温調面31の温度が目標温度になるように電熱ヒータへの供給電力を制御する。被温調面31は、金属製のブロックで形成されていてもよいし、他の金属やセラミック板等で構成されていてもよい。被温調面31の温度分布の均一性を得るために、電熱ヒータは特殊巻き線のものが使用される。これにより、高温ステージ30の被温調面31は、例えば、常温から200℃程度までの温度範囲で、目標温度(例えば、150℃)に常に維持されるように調温される。なお、高温ステージ30はこの構成に限定されるわけではなく、外乱に抗して被温調面31の温度を目標温度に維持できる機構であればよい。また、高温ステージ30を電熱ヒータではなく、後述する低温ステージ40と同様にペルチェ素子を用いて温調する構成を採用することも可能である。 The high-temperature stage 30 has a temperature-controlled surface 31 that is exposed to the closed space 10a and should be temperature-adjusted. The high-temperature stage 30 controls, for example, a metal block such as an aluminum alloy having a heat capacity, an electric heater built in the block, a temperature sensor for detecting the temperature distribution of the temperature control surface 31, and power supplied to the electric heater. A control circuit that controls the power supplied to the electric heater so that the temperature of the temperature-controlled surface 31 becomes the target temperature. The temperature control surface 31 may be formed of a metal block, or may be configured of other metal, a ceramic plate, or the like. In order to obtain the uniformity of the temperature distribution of the temperature control surface 31, a special winding is used for the electric heater. Thereby, the temperature control surface 31 of the high temperature stage 30 is temperature-controlled so that it is always maintained at a target temperature (for example, 150 ° C.) in a temperature range from room temperature to about 200 ° C., for example. The high temperature stage 30 is not limited to this configuration, and may be any mechanism that can maintain the temperature of the temperature-controlled surface 31 at the target temperature against disturbance. Moreover, it is also possible to employ a configuration in which the temperature of the high-temperature stage 30 is controlled using a Peltier element in the same manner as the low-temperature stage 40 described later instead of the electric heater.
 低温ステージ40は、その上面に、閉空間10aに露出している温度調整すべき被温調面41を有し、被温調面41は、高温ステージ30の被温調面31よりも低温に温調される。低温ステージ40は、例えば、2枚のセラミック板の間に多数のペルチェ素子を内蔵させたペルチェ素子ユニット、このペルチェ素子ユニットの底面側に設けられて当該ペルチェ素子ユニットを冷却する水冷ジャケット、被温調面41の温度分布を検出する温度センサ、ペルチェ素子への供給電力を制御する制御回路を有する。水冷ジャケットには、マイナス温度冷水チラーが供給される。これにより、低温ステージ40の温調面41は、例えば、-50~130℃程度の温度範囲で目標温度(例えば、マイナス40℃)に常に維持されるように調温される。なお、低温ステージ40はこの構成に限定されるわけではなく、外乱に抗して被温調面41の温度を目標温度に維持できる機構であればよい。なお、低温ステージ40をペルチェ素子ではなく、上記した高温ステージ30と同様に電熱ヒータを用いて温調する構成を採用することも可能である。 The low temperature stage 40 has, on its upper surface, a temperature control surface 41 that is exposed to the closed space 10 a and to be temperature adjusted, and the temperature control surface 41 is lower in temperature than the temperature control surface 31 of the high temperature stage 30. The temperature is adjusted. The low-temperature stage 40 includes, for example, a Peltier element unit in which a large number of Peltier elements are built in between two ceramic plates, a water-cooled jacket that is provided on the bottom side of the Peltier element unit and cools the Peltier element unit, and a temperature-controlled surface 41 has a temperature sensor that detects the temperature distribution of 41, and a control circuit that controls the power supplied to the Peltier element. A minus temperature cold water chiller is supplied to the water cooling jacket. As a result, the temperature adjustment surface 41 of the low temperature stage 40 is adjusted so as to be constantly maintained at a target temperature (eg, minus 40 ° C.) in a temperature range of about −50 to 130 ° C., for example. The low-temperature stage 40 is not limited to this configuration, and any mechanism that can maintain the temperature of the temperature-controlled surface 41 at the target temperature against disturbance can be used. It is also possible to adopt a configuration in which the temperature of the low temperature stage 40 is not controlled by a Peltier element but using an electric heater in the same manner as the high temperature stage 30 described above.
 被温調面31は、試験体が当該被温調面31に直接接触した状態またはスペースを置いて対向配置された状態で当該試験体の温度を被温調面31の設定温度又はそれに近くなるように昇温する。
 同様に、被温調面41は、試験体が当該被温調面41に直接接触した状態またはスペースを置いて対向配置された状態で当該試験体の温度を被温調面41の設定温度又はそれに近くなるように降温する。
 このため、被温調面31,41上で温度を変化させる試験体の形態としては、基板やウエハ等の厚さが一定のプレート状のものやシート状のものが適している。
The temperature adjustment surface 31 is set to the temperature adjustment surface 31 or close to the temperature of the temperature adjustment surface 31 in a state in which the test object is in direct contact with the temperature adjustment surface 31 or in a state of being opposed to each other with a space. So that the temperature rises.
Similarly, the temperature-controlled surface 41 is configured such that the temperature of the test body is set to the temperature-controlled surface 41 in a state in which the test body is in direct contact with the temperature-controlled surface 41 or in a state of being opposed to each other with a space. Lower the temperature to be close to it.
For this reason, as a form of the test body for changing the temperature on the temperature-controlled surfaces 31 and 41, a plate-like thing or a sheet-like thing having a constant thickness such as a substrate or a wafer is suitable.
 図2および図3に示すように、筐体10の左側壁12D、すなわち、低温ステージ40の設けられた領域R2側の側壁には、窒素ガスN等の不活性ガス又はドライエアからなるガスGを供給するための供給口15が設けられている。供給口15には、図示しない、正圧のガスGを供給するガス供給減が接続される。供給口15から閉空間10a内にガスGを供給することで、閉空間10a内をガスGの雰囲気とすることができる。閉空間10a内の雰囲気が水蒸気を含む空気の場合には、低温ステージ40およびその周辺で結露が形成されるが、閉空間10a内をガスGの雰囲気とすることで結露の発生を確実に防止できる。 As shown in FIGS. 2 and 3, the left side wall 12D of the housing 10, i.e., the gas G in the side wall of the provided region R2 side of the low temperature stage 40, consisting of an inert gas or dry air nitrogen gas N 2 and the like Is provided with a supply port 15. The supply port 15 is connected to a gas supply decrease (not shown) for supplying a positive pressure gas G. By supplying the gas G into the closed space 10 a from the supply port 15, the atmosphere of the gas G can be set in the closed space 10 a. In the case where the atmosphere in the closed space 10a is air containing water vapor, condensation is formed at the low temperature stage 40 and its surroundings. However, by forming the gas G atmosphere in the closed space 10a, the generation of condensation is reliably prevented. it can.
 筐体10の右側壁12C、すなわち、高温ステージ30の設けられた領域R1側の側壁には、閉空間内10aの低温ステージ40側に供給されたガスGを排気するための排気口16が設けられている。排気口16には、例えば、図示しない排気管が接続され、この排気管を通じて外部に排出される。排出されたガスGは再利用して再び供給口15から閉空間10a内に供給することができる。
 このように、正圧のガスGを低温ステージ40側に供給しつつ、高温ステージ30側に設けた排気口16から排気することで、図2に示すように、低温ステージ40側から高温ステージ30側に向かうガスGの流れが形成される。
 低温ステージ40側から高温ステージ30側に向かうガスGは、相対的に温度の高い高温ステージ30側から相対的に温度の低い低温ステージ40側に向かおうとする熱の移動を阻止するように作用する。この結果、低温ステージ40側と高温ステージ30側とを熱的に分離することができる。
An exhaust port 16 for exhausting the gas G supplied to the low temperature stage 40 side in the closed space 10a is provided on the right side wall 12C of the housing 10, that is, the side wall on the region R1 side where the high temperature stage 30 is provided. It has been. For example, an exhaust pipe (not shown) is connected to the exhaust port 16 and is discharged to the outside through the exhaust pipe. The discharged gas G can be reused and supplied again from the supply port 15 into the closed space 10a.
Thus, by supplying the positive pressure gas G to the low temperature stage 40 side and exhausting from the exhaust port 16 provided on the high temperature stage 30 side, as shown in FIG. A flow of gas G toward the side is formed.
The gas G traveling from the low temperature stage 40 side to the high temperature stage 30 side acts to prevent heat from moving from the high temperature stage 30 side having a relatively high temperature toward the low temperature stage 40 side having a relatively low temperature. To do. As a result, the low temperature stage 40 side and the high temperature stage 30 side can be thermally separated.
 このように、不活性ガス又はドライエアからなるガスGを閉空間10a内で低温ステージ40側から高温ステージ30側へ流すことで、温度の低い低温ステージ40の被温調面41およびその周囲で結露を防ぐことができると同時に、温度の高い高温ステージ30側から低温ステージ40側への熱の移動を抑制でき、装置内の熱的安定状態を容易に得ることができる。 As described above, the gas G composed of an inert gas or dry air is allowed to flow from the low-temperature stage 40 side to the high-temperature stage 30 side in the closed space 10a, so that dew condensation occurs on the temperature-controlled surface 41 of the low-temperature stage 40 having a low temperature and its surroundings. At the same time, the movement of heat from the high temperature stage 30 side having a high temperature to the low temperature stage 40 side can be suppressed, and a thermal stable state in the apparatus can be easily obtained.
 図2からわかるように、低温ステージ40の設置領域R2と高温ステージ30の設置領域R1との間には、下部側断熱壁20Aと上部側断熱壁20Bとからなる断熱壁20が設けられている。断熱壁20は、前部壁12Eから背部壁12Fに向けて延在しており、低温ステージ40の設置領域R2と高温ステージ30の設置領域R1との間の熱の移動を抑制するように作用する。下部側断熱壁20Aと上部側断熱壁20Bには、試験体が移動するための通路GPが形成されている。この通路GPを通じて低温ステージ40側のガスGが高温ステージ30側に向かって流れる。すなわち、低温ステージ40の設置領域R2と高温ステージ30の設置領域R1との間は、断熱壁20により熱の移動が抑制されているのに加えて、低温ステージ40側から高温ステージ側30に向かうガスGによりさらに熱の移動がしにくくなっている。これにより、低温ステージ40の設置領域R2と高温ステージ30の設置領域R1との間の熱的な分離がより確実になる。 As can be seen from FIG. 2, between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30, a heat insulating wall 20 including a lower heat insulating wall 20A and an upper heat insulating wall 20B is provided. . The heat insulating wall 20 extends from the front wall 12E toward the back wall 12F, and acts to suppress heat transfer between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30. To do. A passage GP for moving the test body is formed in the lower heat insulating wall 20A and the upper heat insulating wall 20B. Through this passage GP, the gas G on the low temperature stage 40 side flows toward the high temperature stage 30 side. That is, between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30, heat transfer is suppressed by the heat insulation wall 20, and the low temperature stage 40 side is directed to the high temperature stage side 30. The gas G further makes it difficult for heat to move. Thereby, the thermal separation between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30 becomes more reliable.
 なお、本実施形態では、断熱壁20を設けて低温ステージ40の設置領域R2と高温ステージ30の設置領域R1との間の熱の移動を阻止しているが、これに限定されるわけではない。
 例えば、低温ステージ40の設置領域R2と高温ステージ30の設置領域R1との間で、上下方向にガスGのガス流の幕を形成するカーテン機構を設けることも可能である。
In the present embodiment, the heat insulating wall 20 is provided to prevent heat transfer between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30, but it is not limited to this. .
For example, it is possible to provide a curtain mechanism that forms a gas flow curtain of the gas G in the vertical direction between the installation region R2 of the low temperature stage 40 and the installation region R1 of the high temperature stage 30.
 図3および図4に示すように、移動機構50は、背部壁12Fに設けられた駆動部51、可動部53、可動部53に連結された2本のアーム52を有する。
 駆動部51は、モータ等のアクチュエータと、アクチュエータの運動を、可動部53を図3に示す水平方向A1,A2と図4に示す垂直方向B1,B2の運動に変換する機構を内蔵するが、周知の技術なので詳細説明は省略する。
 2本のアーム52は、互いに平行に、かつ、水平方向に延びている。2本のアーム52の先端側部分は、高温ステージ30および低温ステージ40上の所定位置から垂直下方向B2に移動させると、高温ステージ30に形成された2本の収容溝32および低温ステージ40に形成された収容溝42に収まるようになっている。
 上記した高温ステージ30の被温調面31と低温ステージ40の被温調面41とは、互いに整合する高さ(実質的に同じ高さ)に配置されており、移動機構50は、保持アーム52を水平方向A1,A2および垂直方向B1,B2に移動させることで、試験体を高温ステージ30と低温ステージ40の間を移動させる。保持アーム52の水平方向A1,A2の直線移動(被温調面31,41に沿った方向)および垂直方向B1,B2のわずかな距離の移動により試験体を移動できるので、試験体の移動に要する時間は非常に短い。
 なお、保持アーム52は試験体を底面側から保持する構成としたが、本発明はこれに限定されるわけではなく、上面側から吸引チャック等で試験体を吸引保持することもできる。保持アームによる、試験体の保持方法は周知のあらゆる方法を採用できる。
 また、2本の保持アームの配置は、高温ステージ30、低温ステージ40の外側に配置されていてもよく、試験体又は試験体を保持するトレー等の保持体の形態に応じて配置は適宜選択することができる。
As shown in FIGS. 3 and 4, the moving mechanism 50 includes a drive unit 51 provided on the back wall 12 </ b> F, a movable unit 53, and two arms 52 coupled to the movable unit 53.
The drive unit 51 incorporates an actuator such as a motor and a mechanism for converting the movement of the actuator into the horizontal direction A1, A2 shown in FIG. 3 and the vertical direction B1, B2 shown in FIG. Since it is a well-known technique, detailed description is abbreviate | omitted.
The two arms 52 extend in parallel to each other and in the horizontal direction. When the tip side portions of the two arms 52 are moved in a vertically downward direction B2 from predetermined positions on the high temperature stage 30 and the low temperature stage 40, the two receiving grooves 32 and the low temperature stage 40 formed in the high temperature stage 30 are moved. It fits in the formed accommodation groove 42.
The temperature control surface 31 of the high temperature stage 30 and the temperature control surface 41 of the low temperature stage 40 are arranged at a height (substantially the same height) aligned with each other, and the moving mechanism 50 includes a holding arm. The specimen is moved between the high temperature stage 30 and the low temperature stage 40 by moving 52 in the horizontal directions A1, A2 and the vertical directions B1, B2. The specimen can be moved by the linear movement of the holding arm 52 in the horizontal directions A1 and A2 (direction along the temperature-controlled surfaces 31 and 41) and the movement of a slight distance in the vertical directions B1 and B2. The time required is very short.
Although the holding arm 52 is configured to hold the test body from the bottom surface side, the present invention is not limited to this, and the test body can be sucked and held from the upper surface side by a suction chuck or the like. Any known method can be used to hold the specimen by the holding arm.
Also, the arrangement of the two holding arms may be arranged outside the high temperature stage 30 and the low temperature stage 40, and the arrangement is appropriately selected according to the form of the test body or a holding body such as a tray for holding the test body. can do.
 次に、上記の装置1を用いた温度サイクル試験の一例について、図5~図10を参照して説明する。
 本実施形態では、電子回路を搭載したガラス・エポキシ樹脂製の基板を温度装置1に投入後、高温ステージ30上で150℃に昇温し、その後、低温ステージ40上で-40℃まで降温する。基板を150℃に昇温し-40℃まで降温する温度サイクルを1サイクルとし、1サイクルを180秒以内に実行するとともに5サイクル繰り返したのち、装置1から搬出する。そして、温度サイクル試験後の基板が良品・不良品かを判定する。
Next, an example of a temperature cycle test using the above apparatus 1 will be described with reference to FIGS.
In the present embodiment, a glass / epoxy resin substrate on which an electronic circuit is mounted is placed in the temperature apparatus 1, then the temperature is raised to 150 ° C. on the high temperature stage 30, and then lowered to −40 ° C. on the low temperature stage 40. . The temperature cycle for raising the temperature of the substrate to 150 ° C. and lowering it to −40 ° C. is one cycle. One cycle is executed within 180 seconds, and after five cycles, the substrate is unloaded from the apparatus 1. Then, it is determined whether the substrate after the temperature cycle test is a non-defective product or a defective product.
 まず、試験開始前に、高温ステージ30の被温調面31を155℃程度に設定し、低温ステージ40の被温調面41を-45℃程度に温調する。高温ステージ30および低温ステージ40の温度は、熱の放散等を考慮して、試験する基板の昇温温度又は降温温度よりも若干高めあるいは低めにする。
 また、継続的にガスGを筐体10の領域R2側に供給しつつ領域R1側から排気し、筐体10内に領域R2から領域R1へ向かうガスGの流れを形成する。なお、ガスGの供給流量及び排気流量は、領域R2から領域R1へ向かうガスGの流れが、筐体10内で発生するガスGの自然対流に打ち勝つ程度となるようにするので、ガスGの領域R2から領域R1へ向かう流れが筐体10内の熱的な安定性を害することはない。
First, before starting the test, the temperature adjustment surface 31 of the high temperature stage 30 is set to about 155 ° C., and the temperature adjustment surface 41 of the low temperature stage 40 is adjusted to about −45 ° C. The temperature of the high temperature stage 30 and the low temperature stage 40 is set slightly higher or lower than the temperature rise or temperature drop of the substrate to be tested in consideration of heat dissipation and the like.
Further, the gas G is exhausted from the region R1 side while continuously supplying the gas G to the region R2 side of the housing 10, and a flow of the gas G from the region R2 to the region R1 is formed in the housing 10. The supply flow rate and the exhaust flow rate of the gas G are such that the flow of the gas G from the region R2 to the region R1 overcomes the natural convection of the gas G generated in the housing 10, so The flow from the region R2 to the region R1 does not impair the thermal stability in the housing 10.
 図5に示すように、試験体である基板Wを図示しない搬送ロボットを用いて略水平状態に保持した状態で水平方向に前進させ、自動的に開放された自動開閉通路100を通じて筐体10内に搬入する。基板Wの搬入後に、自動開閉通路100は自動的に閉鎖される。
 基板Wは、アーム52に移し替えられ、アーム52が高温ステージ30の収容溝32に収容されることで、基板Wは、図6に示すように、高温ステージ30の被温調面31に接触した状態となる。この基板Wが配置される位置が本発明の第1の処理位置である。なお、前述したように、基板Wは、被温調面31に接触しなくてもスペースを置いて対向配置されてもよく、基板Wの裏面の状態等に応じて適宜変更できる。
As shown in FIG. 5, a substrate W as a test body is advanced in the horizontal direction while being held in a substantially horizontal state using a transfer robot (not shown), and the inside of the housing 10 is passed through the automatic opening / closing passage 100 that is automatically opened. Carry in. After loading the substrate W, the automatic opening / closing passage 100 is automatically closed.
The substrate W is transferred to the arm 52, and the arm 52 is accommodated in the accommodating groove 32 of the high temperature stage 30, so that the substrate W contacts the temperature-controlled surface 31 of the high temperature stage 30, as shown in FIG. It will be in the state. The position where the substrate W is disposed is the first processing position of the present invention. Note that, as described above, the substrate W may be disposed to be opposed to the temperature-controlled surface 31 with a space therebetween, and can be appropriately changed according to the state of the back surface of the substrate W and the like.
 図6に示す第1の処理位置において、図示しない温度センサにより測定される基板Wの温度が150℃に達したところで、基板Wは被温調面31の上方に位置するようにアーム52により垂直上方向B1に持ち上げられ、その後、図7に示すように、略水平状態に保持されたまま通路GPを通じて低温ステージ40の設置領域R2に移動され、図8に示すように、低温ステージ40の被温調面41の上方に到達する。この状態から、アーム52が低温ステージ40の収容溝42に収容されることで、基板Wは、図9に示すように、低温ステージ40の被温調面41に接触した状態となる。この基板Wが配置される位置が本発明の第2の処理位置である。なお、前述したように、基板Wは、被温調面41に接触しなくてもスペースを置いて対向配置されてもよい。
 図示しない温度センサにより測定される被温調面41上にある基板Wの温度が-40℃に達したところで、基板Wは被温調面41の上方に位置するようにアーム52により垂直上方向B1に持ち上げられる。これにより、温度サイクル試験の1サイクルが完了する。
 なお、本実施形態では、温度センサを用いて被温調面31,41の温度を目標温度に温調する場合を例示するが、タイマー制御により電熱ヒータやペルチェ素子に強制的に電力供給して被温調面31,41の温度を目標温度に維持するなど、被温調面31,41の温調方法は周知のあらゆる方法を採用できる。
In the first processing position shown in FIG. 6, when the temperature of the substrate W measured by a temperature sensor (not shown) reaches 150 ° C., the substrate W is vertically moved by the arm 52 so as to be positioned above the temperature control surface 31. As shown in FIG. 7, it is then moved up to the installation region R2 of the low temperature stage 40 through the passage GP while being held in a substantially horizontal state, and as shown in FIG. It reaches above the temperature control surface 41. Since the arm 52 is accommodated in the accommodating groove 42 of the low temperature stage 40 from this state, the substrate W comes into contact with the temperature control surface 41 of the low temperature stage 40 as shown in FIG. The position where the substrate W is disposed is the second processing position of the present invention. Note that, as described above, the substrate W may be disposed facing the space-adjusted surface 41 without being in contact with the temperature-controlled surface 41.
When the temperature of the substrate W on the temperature control surface 41 measured by a temperature sensor (not shown) reaches −40 ° C., the substrate W is vertically upward by the arm 52 so as to be positioned above the temperature control surface 41. Lifted to B1. Thereby, one cycle of the temperature cycle test is completed.
In this embodiment, a temperature sensor is used to control the temperature of the temperature-controlled surfaces 31 and 41 to a target temperature, but power is forcibly supplied to an electric heater or Peltier element by timer control. Any known method can be adopted as the temperature control method for the temperature control surfaces 31 and 41, such as maintaining the temperature of the temperature control surfaces 31 and 41 at the target temperature.
 その後は同様に、基板Wは高温ステージ30と低温ステージ40との間を繰り返し移動され、5サイクルの温度サイクル試験が実施されたのち、図示しない搬送ロボットにより自動開閉通路100を通じて外部に搬出される。 Thereafter, similarly, the substrate W is repeatedly moved between the high-temperature stage 30 and the low-temperature stage 40, and after a five-cycle temperature cycle test is performed, the substrate W is unloaded by the transfer robot (not shown) through the automatic opening / closing passage 100. .
 図10に示すグラフ(1)は、装置1で基板Wの温度サイクル試験を実施した際の基板W上の温度をモニターしたものである。図10からわかるように、本実施形態に係る装置1によれば、180秒以内の短期間に約190℃の温度差を繰り返し基板Wに与えることができるのがわかる。 The graph (1) shown in FIG. 10 is obtained by monitoring the temperature on the substrate W when the temperature cycle test of the substrate W is performed by the apparatus 1. As can be seen from FIG. 10, according to the apparatus 1 according to the present embodiment, a temperature difference of about 190 ° C. can be repeatedly applied to the substrate W in a short time within 180 seconds.
 以上のように、本実施形態によれば、筐体10内に設けられた高温ステージ30および低温ステージ40の被温調面31,41の間で試験体Wを閉空間10a内で移動させるだけで、試験体Wに例えば190℃もの温度変化を与えられるので、短いサイクルタイムで広い変温範囲を得ることができる。
 高温ステージ30および低温ステージ40の被温調面31,41と試験体Wとの間で熱の付与および熱の吸収が行われる結果として、加熱および冷却が行われるので、雰囲気を加熱冷却する場合と比べてクリーンな環境で処理を実行できる。
 被温調面31,41は、常時目標温度に維持されているので、試験体Wに対する温度分布の均一性も確保できる。
As described above, according to the present embodiment, the test body W is simply moved in the closed space 10 a between the temperature controlled surfaces 31 and 41 of the high temperature stage 30 and the low temperature stage 40 provided in the housing 10. Thus, since a temperature change of, for example, 190 ° C. can be given to the specimen W, a wide temperature change range can be obtained in a short cycle time.
When heating and cooling are performed as a result of heat application and heat absorption between the heated surfaces 31 and 41 of the high temperature stage 30 and the low temperature stage 40 and the test body W, so that the atmosphere is heated and cooled. The process can be executed in a cleaner environment.
Since the temperature-controlled surfaces 31 and 41 are always maintained at the target temperature, the uniformity of the temperature distribution with respect to the specimen W can be ensured.
 本実施形態では、自動開閉通路100を高温ステージ30側に設けたが、これに代えて、低温ステージ40側に設けることも可能である。しかしながら、熱的安定性の観点からは、高温ステージ30側に設けることが好ましい。高温ステージ30側は常温よりも高い温度に加熱されるため、外乱を受けたとしても熱的に速やかに安定した状態に復帰することができるが、常温よりも低い温度に冷却される低温ステージ40側では、外乱を受けると、熱的に安定した状態に復帰するにはより長い時間を要するからである。 In the present embodiment, the automatic opening / closing passage 100 is provided on the high temperature stage 30 side, but it may be provided on the low temperature stage 40 side instead. However, from the viewpoint of thermal stability, it is preferably provided on the high temperature stage 30 side. Since the high temperature stage 30 side is heated to a temperature higher than the normal temperature, even if it is subjected to a disturbance, the high temperature stage 30 side can be returned to a stable state thermally, but the low temperature stage 40 is cooled to a temperature lower than the normal temperature. On the other hand, when a disturbance is applied, it takes a longer time to return to a thermally stable state.
 本実施形態では、高温ステージ30、低温ステージ40を筐体10の底部壁12A上に設けたが、これらを上部壁12B上に設け、被調温面31,41を下向きにしてもよい。この場合、試験体Wを移動機構で保持した状態で、被調温面31,41に接触させ又は対向配置させてもよい。 In the present embodiment, the high temperature stage 30 and the low temperature stage 40 are provided on the bottom wall 12A of the housing 10, but these may be provided on the upper wall 12B and the temperature-controlled surfaces 31 and 41 may be directed downward. In this case, the specimen W may be brought into contact with or opposed to the temperature-controlled surfaces 31 and 41 while being held by the moving mechanism.
 本実施形態では、試験体の搬入・搬出に、自動開閉通路100を用いたが、本発明はこれに限定されない。例えば、搬入・搬出のための予備室を設けてもよく、種々改変可能である。 In the present embodiment, the automatic opening / closing passage 100 is used for loading / unloading the specimen, but the present invention is not limited to this. For example, a spare room for carrying in / out may be provided, and various modifications are possible.
 上記実施形態では、高温ステージ30の温度を常温よりも高く設定し、低温ステージ40を零下の温度に設定したが、本発明はこれに限定されるわけではない。例えば、高温ステージ30と低温ステージ40との間に温度差があれば、高温ステージ30および低温ステージ40の双方を0℃以上の温度に設定してもよいし、逆に、高温ステージ30と低温ステージ40の双方を零下の温度に設定することも可能である。 In the above embodiment, the temperature of the high temperature stage 30 is set higher than the normal temperature and the low temperature stage 40 is set to a temperature below zero. However, the present invention is not limited to this. For example, if there is a temperature difference between the high temperature stage 30 and the low temperature stage 40, both the high temperature stage 30 and the low temperature stage 40 may be set to a temperature of 0 ° C. or higher. It is also possible to set both stages 40 to temperatures below zero.
 上記実施形態では、温度調整のために、電熱ヒータおよびペルチェ素子を使用したが、本発明はこれに限定されるわけではなく、温度調整できる温調要素であれば使用可能である。例えば、高温ステージ30および低温ステージ40の双方に電熱ヒータを使用してもよいし、あるいは、双方にペルチェ素子を使用してもよい。 In the above embodiment, an electric heater and a Peltier element are used for temperature adjustment, but the present invention is not limited to this, and any temperature control element capable of temperature adjustment can be used. For example, an electric heater may be used for both the high temperature stage 30 and the low temperature stage 40, or a Peltier element may be used for both.
 図11は、本発明の変温処理装置の第2の実施形態に係る温度サイクル試験装置1Aの構造を示す。
 筐体10Aは、完全密閉構造であり、気密に形成されている。筐体10Aの前面側の高温ステージ30に対向する位置にはゲートバルブ300が設けられ、低温ステージ40側に対向する位置には、真空ポンプ200が設けてある。真空ポンプ200には、例えば、ターボ分子型真空ポンプを使用できる。
FIG. 11 shows the structure of a temperature cycle test apparatus 1A according to the second embodiment of the temperature change treatment apparatus of the present invention.
The housing 10A has a completely sealed structure and is formed airtight. A gate valve 300 is provided at a position facing the high temperature stage 30 on the front side of the housing 10A, and a vacuum pump 200 is provided at a position facing the low temperature stage 40 side. For example, a turbo molecular vacuum pump can be used as the vacuum pump 200.
 本実施形態に係る温度サイクル試験装置1Aでは、ゲートバルブ300を通じて試験体が搬入・搬出され、試験中は、筐体10A内は減圧雰囲気あるいは高真空雰囲気にされる。 In the temperature cycle test apparatus 1A according to the present embodiment, a test specimen is carried in and out through the gate valve 300, and the inside of the housing 10A is set to a reduced pressure atmosphere or a high vacuum atmosphere during the test.
 筐体10A内が高真空雰囲気であると、低温ステージ40およびその周辺での結露の問題は解消され、加えて、高温ステージ30と低温ステージ40との間を熱的に分離できる。なおかつ、流体が移動しないので、筐体10A内は熱的にも極めて安定化される。 If the inside of the housing 10A is in a high vacuum atmosphere, the problem of condensation at the low temperature stage 40 and its surroundings is solved, and in addition, the high temperature stage 30 and the low temperature stage 40 can be thermally separated. In addition, since the fluid does not move, the inside of the housing 10A is extremely stabilized thermally.
 筐体10A内を高真空状態よりも高い圧力まで減圧した場合に、筐体10A内の空気に水蒸気が含まれていると、結露の問題が発生し得る。この場合には、筐体10A内にあらかじめドライエアあるいは窒素ガス等の不活性ガスを充填しておき、その状態から、真空ポンプ200により筐体10A内を減圧すればよい。
 高温ステージ30と低温ステージ40との間の熱的な分離が不十分な場合には、第1の実施形態に示したように、高温ステージ30の設置領域と低温ステージ40の設置領域との間に断熱壁を設けることもできる。
When the inside of the housing 10A is depressurized to a pressure higher than the high vacuum state, if the air in the housing 10A contains water vapor, a problem of dew condensation may occur. In this case, the housing 10A may be filled with an inert gas such as dry air or nitrogen gas in advance, and the inside of the housing 10A may be decompressed by the vacuum pump 200 from this state.
When the thermal separation between the high temperature stage 30 and the low temperature stage 40 is insufficient, as shown in the first embodiment, between the installation area of the high temperature stage 30 and the installation area of the low temperature stage 40. A heat insulating wall can also be provided.
 上記した各実施形態では、本発明の変温処理装置を、温度サイクル試験に用いる場合について説明したが、本発明の適用対象はこれに限定されない。例えば、処理対象物を高温で溶融し、素早く冷却して固化させる製造工程が必要な製造プロセス等にも適用可能である。
 例えば、ペースト状・クリーム状のはんだをプリント基板の必要な箇所に塗布または印刷し、次に表面実装部品をチップマウンタにより基板上の所定の位置に載せ、最後に基板ごと高温にすることではんだを溶かして、部品と基板をはんだ付けする、いわゆる「リフローはんだ付け」が知られている。本発明の変温処理装置の高温ステージではんだを溶かし、その後に、低温ステージではんだを固化する製造工程を実施することも可能である。この場合に、不活性ガス又はドライエアに加えて、又は、これに代えて特殊ガス、例えば、水素ガスやギ酸ガスを閉空間内に供給することも可能である。特殊ガスを供給することにより、結露の防止や熱の移動を抑制できるとともに、さらに他の機能を付加できる。例えば、リフローはんだ付け処理を実施する場合には、水素ガスやギ酸ガスを供給することで、ギ酸還元もしくは水素還元により、フラックスレスで安定した品質の高いリフローはんだ付けが可能となる。さらに、筐体内を減圧雰囲気とし、この減圧雰囲気下で水素ガスやギ酸ガスを閉空間内に供給しつつ高温ステージと低温ステージを用いてリフローはんだ付け処理を実施することで、はんだにボイドを発生するのを防ぐことができる。窒素ガス等のパージガスを供給するために、ガス供給路を複数設けてもよい。高温ステージの最大到達温度は、例えば、500℃程度とすることも可能である。マスフローコントローラを使用して各種ガスの流量をコントロールすることができる。
 リフロー半田付けにおいて、溶融したはんだを低温ステージで冷却するが、低温ステージの温度コントロールを実施することで、冷却速度を最適化することもできる。このような構成にすれば、熱衝撃に弱い部品の不良発生を防ぐことができる。また、冷却速度をコントロールすることで、半田の組成を好ましいものにすることができる。
 すなわち、本発明の装置および方法は電子回路基板、電気回路基板、半導体装置等の製品の製造装置および製造方法としても応用可能である。
In each of the above-described embodiments, the case where the temperature change treatment apparatus of the present invention is used for the temperature cycle test has been described, but the application target of the present invention is not limited to this. For example, the present invention can be applied to a manufacturing process that requires a manufacturing process in which an object to be processed is melted at a high temperature and quickly cooled and solidified.
For example, paste or cream-like solder is applied or printed on the required part of the printed circuit board, then the surface mount component is placed on the board by a chip mounter, and finally the entire board is heated to a high temperature. So-called “reflow soldering” is known, in which a component and a substrate are soldered by melting the solder. It is also possible to carry out a manufacturing process in which the solder is melted at the high temperature stage of the temperature change treatment apparatus of the present invention, and then the solder is solidified at the low temperature stage. In this case, a special gas such as hydrogen gas or formic acid gas can be supplied into the closed space in addition to or instead of the inert gas or dry air. By supplying the special gas, it is possible to prevent condensation and suppress heat transfer, and to add other functions. For example, when the reflow soldering process is performed, by supplying hydrogen gas or formic acid gas, fluxless and stable high quality reflow soldering can be performed by formic acid reduction or hydrogen reduction. Furthermore, a void is generated in the solder by performing a reflow soldering process using a high temperature stage and a low temperature stage while supplying hydrogen gas or formic acid gas into a closed space under a reduced pressure atmosphere inside the housing. Can be prevented. A plurality of gas supply paths may be provided to supply a purge gas such as nitrogen gas. The maximum temperature reached by the high temperature stage can be set to about 500 ° C., for example. The flow rate of various gases can be controlled using a mass flow controller.
In reflow soldering, the molten solder is cooled at a low temperature stage, and the cooling rate can be optimized by controlling the temperature of the low temperature stage. With such a configuration, it is possible to prevent the occurrence of defective parts that are vulnerable to thermal shock. Moreover, the composition of solder can be made favorable by controlling the cooling rate.
That is, the apparatus and method of the present invention can also be applied as a manufacturing apparatus and manufacturing method for products such as electronic circuit boards, electric circuit boards, and semiconductor devices.
 上記した各実施形態では、高温ステージおよび低温ステージの被温調面を上向きに配置した場合について例示したが、本発明はこれに限定されるわけではなく、高温ステージおよび低温ステージの被温調面を下向きに配置することもできる。この場合には、処理対象物は、保持アーム等で保持した状態で被温調面に接触又は対向させればよい。さらに、高温ステージおよび低温ステージの被温調面を相反する向きに配置してもよい。この場合には、高温ステージおよび低温ステージの間の熱的な分離がより確実になる。また、被温調面を鉛直方向に沿った向きに配置しつつ、高温ステージを上側、低温ステージを下側に配置することも可能である。高温ステージで加熱されたガスは上昇し、低温ステージで冷却されたガスは下降するので、このような配置にすることで熱的な分離に寄与できる。
 さらに、処理対象物を所定位置に位置決めし、高温ステージおよび低温ステージを移動機構により移動させて処理対象物に温度変化を与えることも可能である。
In each of the above-described embodiments, the case where the temperature control surfaces of the high temperature stage and the low temperature stage are arranged upward is illustrated, but the present invention is not limited to this, and the temperature control surfaces of the high temperature stage and the low temperature stage are illustrated. Can also be placed downwards. In this case, the processing object may be brought into contact with or opposed to the temperature-controlled surface while being held by a holding arm or the like. Furthermore, the temperature control surfaces of the high temperature stage and the low temperature stage may be arranged in opposite directions. In this case, the thermal separation between the high temperature stage and the low temperature stage is more reliable. It is also possible to arrange the high temperature stage on the upper side and the low temperature stage on the lower side while arranging the temperature control surface in the direction along the vertical direction. Since the gas heated in the high temperature stage rises and the gas cooled in the low temperature stage falls, this arrangement can contribute to thermal separation.
Furthermore, it is possible to position the processing object at a predetermined position and move the high temperature stage and the low temperature stage by a moving mechanism to give a temperature change to the processing object.
 上記実施形態では、基板や半導体をと高温と低温の間で移動させて熱衝撃を加える場合を例示したが、本発明はこれに限定されない、半導体や電子・電気回路に通電する通電機構を筐体内に内蔵させ、これらに通電した状態で熱衝撃試験を実施することも可能である。 In the above embodiment, the case where the thermal shock is applied by moving the substrate or the semiconductor between the high temperature and the low temperature is exemplified, but the present invention is not limited to this, and the energization mechanism for energizing the semiconductor, the electronic / electrical circuit is provided. It is also possible to carry out a thermal shock test in a state where they are built in the body and are energized.
 上記実施形態では、移動機構は、垂直方向又は水平方向移動する構成としたが、本発明はこれに限定されるわけではなく、所定の半径位置で被処理対象物をアームで旋回させて位置決めすることもできるし、外部から手動で処理対象物を移動させることもできる。処理対象物を、直線移動する移動ステージを用いて高温ステージと低温ステージ間を往復移動させることも可能である。 In the above embodiment, the moving mechanism is configured to move in the vertical direction or the horizontal direction. However, the present invention is not limited to this, and the object to be processed is swung by the arm at a predetermined radial position to be positioned. It is also possible to move the processing object manually from the outside. It is also possible to reciprocate the processing object between the high temperature stage and the low temperature stage using a moving stage that moves linearly.
1、1A 温度サイクル試験装置
10、10A 筐体
11 フレーム
12A 底部壁
12B 上部壁
12C 右側壁
12D 左側壁
12E 前部壁
12F 背部壁
15 供給部
16 排出部
20 断熱壁
20A 下部側断熱壁
20B 上部側断熱壁
GP 通路
30 高温ステージ(第1の温調機構)
31 被温調面(第1の被温調面)
32 収容溝
35 支持部材
40 低温ステージ(第2の温調機構)
41 被温調面(第2の被温調面)
42 収容溝
45 支持部材
50 移動機構
51 駆動部
52 保持アーム
53 可動部
100 自動開閉通路
200 真空ポンプ
300 ゲートバルブ
G ガス
W 試験体(処理対象物)
1, 1A Temperature cycle test apparatus 10, 10A Housing 11 Frame 12A Bottom wall 12B Upper wall 12C Right side wall 12D Left side wall 12E Front wall 12F Back wall 15 Supply unit 16 Discharge unit 20 Thermal insulation wall 20A Lower side thermal insulation wall 20B Upper side Heat insulation wall GP Passage 30 High temperature stage (first temperature control mechanism)
31 Temperature control (first temperature control)
32 Housing groove 35 Support member 40 Low temperature stage (second temperature control mechanism)
41 Temperature control (second temperature control)
42 receiving groove 45 support member 50 moving mechanism 51 drive unit 52 holding arm 53 movable unit 100 automatic opening / closing passage 200 vacuum pump 300 gate valve G gas W specimen (processing object)

Claims (12)

  1.  処理対象物に温度変化を与えるための変温処理装置であって、
     外気と遮断された閉空間を画定する筐体と、
     前記閉空間内に設けられた第1および第2の温調機構と、を有し、
     前記第1の温調機構は、前記閉空間に露出する第1の被温調面を有し、当該第1の被温調面が第1の目標温度に維持されるように温調し、
     前記第2の温調機構は、前記閉空間に露出する第2の被温調面を有し、当該第2の被温調面が前記第1の目標温度よりも低い第2の目標温度に維持されるように温調し、
     前記処理対象物が前記第1の温調機構の第1の被温調面に接触し又は対向する第1の処理位置と、前記処理対象物が前記第2の温調機構の第2の被温調面に接触し又は対向する第2の処理位置との間で当該処理対象物を移動させる移動機構をさらに有する、
    ことを特徴とする変温処理装置。
    A temperature change treatment device for giving a temperature change to a treatment object,
    A housing that defines a closed space that is blocked from outside air;
    A first and a second temperature control mechanism provided in the closed space,
    The first temperature adjustment mechanism has a first temperature adjustment surface exposed to the closed space, and adjusts the temperature so that the first temperature adjustment surface is maintained at a first target temperature,
    The second temperature control mechanism has a second temperature control surface exposed to the closed space, and the second temperature control surface has a second target temperature lower than the first target temperature. Adjust the temperature so that it is maintained,
    A first processing position where the processing object contacts or opposes the first temperature control surface of the first temperature control mechanism; and the processing target is a second target of the second temperature control mechanism. A moving mechanism that moves the processing object between the second processing position that contacts or faces the temperature control surface;
    A temperature change treatment apparatus characterized by that.
  2.  前記筐体は、前記第2の温調機構の設けられた領域側に不活性ガス、ドライエア又は特殊ガスからなるガスを供給するための供給口と、
     前記第2の温調機構の設けられた領域側から前記第1の温調機構の設けられた領域側へ前記ガスが流動するように当該ガスを排気する排気口と、を有することを特徴とする請求項1に記載の変温処理装置。
    The housing has a supply port for supplying a gas composed of inert gas, dry air, or special gas to the region side where the second temperature control mechanism is provided,
    An exhaust port for exhausting the gas so that the gas flows from the region side where the second temperature control mechanism is provided to the region side where the first temperature control mechanism is provided. The temperature change processing apparatus according to claim 1.
  3.  前記筐体は、前記閉空間を減圧または高真空状態にすることが可能に形成されている、ことを特徴とする請求項1に記載の変温処理装置。 The temperature change processing apparatus according to claim 1, wherein the casing is formed so that the closed space can be in a reduced pressure or high vacuum state.
  4.  前記第1の温調機構と前記第2の温調機構との間で熱が移動するのを抑制する手段を有する、ことを特徴とする、請求項1ないし3のいずれかに記載の変温処理装置。 The temperature changing device according to any one of claims 1 to 3, further comprising means for suppressing heat transfer between the first temperature control mechanism and the second temperature control mechanism. Processing equipment.
  5.  前記第1の温調機構の設けられた領域と前記第2の温調機構の設けられた領域との間には、当該領域間の熱の移動を抑制するための断熱壁が前記処理対象物の移動を妨げないように形成されている、ことを特徴とする請求項4に記載の変温処理装置。 Between the region where the first temperature control mechanism is provided and the region where the second temperature control mechanism is provided, a heat insulating wall for suppressing heat transfer between the regions is the object to be processed. The temperature change treatment device according to claim 4, wherein the temperature change treatment device is formed so as not to prevent movement of the heat treatment device.
  6.  前記第1の温調機構の設けられた領域と前記第2の温調機構の設けられた領域との間に、不活性ガス又はドライエアからなるガス流の幕を形成するカーテン機構を有する、ことを特徴とする請求項4に記載の変温処理装置。 A curtain mechanism for forming a gas flow curtain composed of an inert gas or dry air between a region where the first temperature control mechanism is provided and a region where the second temperature control mechanism is provided; The temperature change processing apparatus according to claim 4.
  7.  外部から姿勢を保った状態で前記処理対象物を前記第1の処理位置および第2の処理位置の一方に搬入し、かつ、当該第1の処理位置および第2の処理位置の一方から当該処理対象物を搬出可能な自動開閉通路を備える、ことを特徴とする請求項1ないし6のいずれかに記載の変温処理装置。 The processing object is carried into one of the first processing position and the second processing position while maintaining the posture from the outside, and the processing is performed from one of the first processing position and the second processing position. The temperature change processing apparatus according to any one of claims 1 to 6, further comprising an automatic opening / closing passage capable of carrying out an object.
  8.  前記第1の温調機構の第1の被温調面と前記第2の温調機構の第2の被温調面とは、互いに整合する高さに配置され
     前記移動機構は、前記処理対象物の姿勢を保ったまま、前記第1および第2の被温調面に沿った方向に移動させることにより、前記第1の処理位置および第2の処理位置に当該処理対象物を位置決め可能である、ことを特徴とする請求項1ないし7のいずれかに記載の変温処理装置。
    The first temperature adjustment surface of the first temperature adjustment mechanism and the second temperature adjustment surface of the second temperature adjustment mechanism are arranged at a height matching each other. The object to be processed can be positioned at the first processing position and the second processing position by moving in the direction along the first and second temperature control surfaces while maintaining the posture of the object. The temperature change treatment apparatus according to claim 1, wherein the temperature change treatment apparatus is provided.
  9.  前記処理対象物は、プレート状又はシート状の形態のものを含む、ことを特徴とする請求項1ないし8のいずれかに記載の変温処理装置。 The temperature treatment apparatus according to any one of claims 1 to 8, wherein the object to be treated includes a plate-like or sheet-like one.
  10.  処理対象物に温度変化を与えるための変温処理方法であって、
     外気と遮断された閉空間内に設けられた第1および第2の温調機構の当該閉空間に露出する第1および第2の被温調面をそれぞれ第1の目標温度と当該第1の目標温度よりも低い第2の目標温度に維持されるように温調し、
     前記処理対象物が前記第1の温調機構の第1の被温調面に接触し又は対向する第1の処理位置と、前記処理対象物が前記第2の温調機構の第2の被温調面に接触し又は対向する第2の処理位置との間で当該処理対象物を移動させることにより、当該処理対象物に温度変化を与える、
    ことを特徴とする変温処理方法。
    A temperature change processing method for giving a temperature change to a processing object,
    The first and second temperature control surfaces exposed to the closed space of the first and second temperature control mechanisms provided in the closed space blocked from outside air are respectively set to the first target temperature and the first temperature control surface. Adjust the temperature so that it is maintained at a second target temperature lower than the target temperature,
    A first processing position where the processing object contacts or opposes the first temperature control surface of the first temperature control mechanism; and the processing target is a second target of the second temperature control mechanism. A temperature change is given to the processing object by moving the processing object between a second processing position that contacts or faces the temperature control surface;
    A temperature change treatment method characterized by that.
  11.  前記閉空間内を不活性ガス、ドライエア又は特殊ガスからなるガス雰囲気とするとともに、前記第2の温調機構の設けられた領域から前記第1の温調機構の設けられた領域へ向かうガスの流れを形成する、ことを特徴とする請求項10に記載の変温処理方法。 A gas atmosphere made of inert gas, dry air, or special gas is formed in the closed space, and gas flowing from a region where the second temperature control mechanism is provided to a region where the first temperature control mechanism is provided The temperature changing method according to claim 10, wherein a flow is formed.
  12.  前記閉空間内を減圧雰囲気又は高真空雰囲気にする、ことを特徴とする請求項10に記載の変温処理方法。 The temperature changing method according to claim 10, wherein the closed space is made into a reduced pressure atmosphere or a high vacuum atmosphere.
PCT/JP2017/013016 2016-08-22 2017-03-29 Temperature varying device and temperature varying method WO2018037610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-162019 2016-08-22
JP2016162019 2016-08-22

Publications (1)

Publication Number Publication Date
WO2018037610A1 true WO2018037610A1 (en) 2018-03-01

Family

ID=61245567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013016 WO2018037610A1 (en) 2016-08-22 2017-03-29 Temperature varying device and temperature varying method

Country Status (2)

Country Link
TW (1) TW201807764A (en)
WO (1) WO2018037610A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228176A (en) * 1983-06-10 1984-12-21 Hitachi Ltd Tester
JPS62169063A (en) * 1986-01-21 1987-07-25 Kumamoto Nippon Denki Kk Environmental tester
US6113262A (en) * 1999-01-22 2000-09-05 Trw Inc. Apparatus for testing electrical components
JP2002033364A (en) * 2000-07-19 2002-01-31 Mitsubishi Electric Corp Burn-in device and burn-in method
JP2007081022A (en) * 2005-09-13 2007-03-29 Oki Electric Ind Co Ltd Thermal shock test device, thermal shock test method and method of inspecting semiconductor wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228176A (en) * 1983-06-10 1984-12-21 Hitachi Ltd Tester
JPS62169063A (en) * 1986-01-21 1987-07-25 Kumamoto Nippon Denki Kk Environmental tester
US6113262A (en) * 1999-01-22 2000-09-05 Trw Inc. Apparatus for testing electrical components
JP2002033364A (en) * 2000-07-19 2002-01-31 Mitsubishi Electric Corp Burn-in device and burn-in method
JP2007081022A (en) * 2005-09-13 2007-03-29 Oki Electric Ind Co Ltd Thermal shock test device, thermal shock test method and method of inspecting semiconductor wafer

Also Published As

Publication number Publication date
TW201807764A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US10583510B2 (en) Heating and cooling device
JP6144495B2 (en) Heat bonding apparatus and method for manufacturing heat bonded product
US20070170227A1 (en) Soldering method
JP5902107B2 (en) Heat bonding apparatus and method for manufacturing heat bonded product
KR101227809B1 (en) Method for reducing temperature of substrate placing table, computer-readable storage medium, and substrate processing system
US9209057B2 (en) Temperature control method, storage medium storing a program therefor, temperature control apparatus, and heat treatment apparatus
KR101763545B1 (en) Soldering apparatus and vacuum-soldering method
KR20190116402A (en) Substrate processing apparatus, manufacturing method of semiconductor device, and program
WO2015072086A1 (en) Substrate treatment device and method
KR20130011944A (en) Heat treatment apparatus
JP2023518120A (en) Systems for connecting electronic assemblies
WO2018037610A1 (en) Temperature varying device and temperature varying method
TW201834013A (en) Substrate treating method and apparatus used therefor
JP2010245195A (en) Apparatus for manufacturing semiconductor device, and method for manufacturing semiconductor device
JP5552826B2 (en) Substrate laminating apparatus, laminated semiconductor device manufacturing method, and laminated semiconductor device
JP2013051281A (en) Substrate processing apparatus
JP2013081974A (en) Welding equipment and head structure of the same
JP2000040698A (en) Substrate heat treatment method and its device
JP3942602B2 (en) Substrate heat treatment method and apparatus
JP6984194B2 (en) Heating and cooling device
US20230201942A1 (en) Bonding apparatus and bonding method for power terminal of heating plate
KR102459563B1 (en) Bonding apparatus, bonding system, bonding method and computer storage medium
JP7429490B2 (en) Organic film forming apparatus and organic film manufacturing method
JP7490692B2 (en) Organic Film Forming Equipment
JP2005136370A (en) Substrate-processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17843100

Country of ref document: EP

Kind code of ref document: A1