WO2018037487A1 - Data processing method and device - Google Patents

Data processing method and device Download PDF

Info

Publication number
WO2018037487A1
WO2018037487A1 PCT/JP2016/074557 JP2016074557W WO2018037487A1 WO 2018037487 A1 WO2018037487 A1 WO 2018037487A1 JP 2016074557 W JP2016074557 W JP 2016074557W WO 2018037487 A1 WO2018037487 A1 WO 2018037487A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseline
range
graph
parameter
drift
Prior art date
Application number
PCT/JP2016/074557
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 小澤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/074557 priority Critical patent/WO2018037487A1/en
Publication of WO2018037487A1 publication Critical patent/WO2018037487A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis

Definitions

  • the present invention relates to a method and an apparatus for processing data such as a chromatogram obtained by a chromatograph, a spectrum obtained by a mass spectrometer or a spectroscope, for example.
  • a chromatograph is one of the devices that analyze the components contained in a sample.
  • a sample is placed on a mobile phase flow and introduced into a column.
  • Each component in the sample is temporally separated in the column and then detected by a detector to create a chromatogram. Then, each component is identified from the peak position on the chromatogram, and the concentration of the component is determined from the peak height and area.
  • a base line existing regardless of the presence or absence of a peak is superimposed on a peak derived from a sample.
  • a phenomenon called drift occurs in which the entire baseline gradually varies depending on the analysis conditions. Since the influence of this drift extends to the peak derived from the sample, it is necessary to remove the baseline and detect the peak in order to obtain accurate information of the sample from the chromatogram. Further, when a peak in a chromatogram is detected, it may be necessary to calculate and report the S / N ratio together with the intensity of the peak. In this case, the noise magnitude must be calculated from the chromatogram, but the noise magnitude is overestimated due to the effect of slowly varying drift, and as a result, the peak S / N ratio is underestimated. Sometimes.
  • Patent Document 1 proposes a method of detecting a smoothed baseline by repeating generation of approximate baselines after introducing various baseline setting methods as conventional techniques and pointing out their respective problems. Yes. Further, Patent Document 2 proposes a method of generating a first approximate baseline from which a peak is removed by passing the entire waveform through a median filter and smoothing it to determine a baseline.
  • the method proposed in Patent Document 1 is intended only for the part extracted as a baseline, and does not describe a method for extracting a baseline from an entire waveform such as a chromatogram or a spectrum.
  • the waveform removed by the median filter is not limited to the original peak waveform, and there is a possibility that the baseline drift is erroneously removed.
  • the problem to be solved by the present invention is to provide a method and apparatus capable of appropriately extracting the drift of the entire baseline from a graph in which a peak appears on the baseline, such as a chromatogram and a spectrum.
  • the present invention made to solve the above problems is a two-dimensional graph in which the second parameter changes according to the continuously changing first parameter, and the peak of the second parameter exists on the baseline
  • a) Baseline range defining step for defining all of the baseline range that is the range of the first parameter where the peak does not exist from the graph according to a predetermined method
  • b) a drift component estimation step for estimating a drift component of the graph for each of the baseline ranges
  • c) a drift component estimated for each baseline range is connected by interpolating between adjacent baseline ranges to determine a drift component for the entire graph, and an overall drift determining step is provided. is there.
  • the first parameter is time
  • the second parameter is the intensity detected by various detectors.
  • the first parameter is a wavelength or mass-to-charge ratio (m / z) or the like
  • the second parameter is an intensity detected by various detectors.
  • the method according to the present invention can be sufficiently applied to other graphs using the principle.
  • the first method uses a conventional automatic peak detection logic to detect the range of the first parameter in which the peak is present and set it as the peak range, and the range of the first parameter other than the peak range.
  • the automatic peak detection logic that has been used conventionally, there is a method of detecting a range of the first parameter in which the value of the second parameter is equal to or greater than a predetermined threshold.
  • the starting point is a position where the second derivative by the first parameter of the second parameter is positive and the first derivative is greater than or equal to a predetermined positive value, and the second derivative is positive and the first derivative is greater than or equal to a predetermined negative value
  • the end point is a position where the absolute value is equal to or less than a predetermined value.
  • the second method is a method in which a graph is shown to the user, and the range of the first parameter excluding the range of the first parameter designated as the peak range by the user is used as the baseline range.
  • the third method is a method in which the user is shown a graph and the user directly specifies the first parameter range as the baseline range.
  • the first method is a method using a low-pass filter conventionally used for smoothing, such as a moving average, a triangular filter, and a Gaussian filter.
  • the second method is a method using a non-linear filter conventionally used for noise removal, such as a median filter or a morphological filter.
  • the first method is a method of linearly interpolating the ends of adjacent baseline ranges (linear interpolation).
  • the second method is a method of interpolating the ends of adjacent baseline ranges using a spline curve connected to each end (spline interpolation).
  • the third method is a method of interpolating between ends of adjacent baseline ranges using a polynomial (polynomial interpolation).
  • the present invention is also realized as the following data processing apparatus. That is, in a two-dimensional graph in which the second parameter changes according to the continuously changing first parameter, and the apparatus for processing the graph data in which the peak of the second parameter exists on the baseline, a) a baseline range demarcating section that demarcates all of the baseline range that is the range of the first parameter in which the peak does not exist from the graph according to a predetermined method; b) a drift component estimator for estimating a drift component of the graph for each of the baseline ranges; c) A drift component estimated for each baseline range is connected by interpolating between adjacent baseline ranges, and an overall drift determining unit is provided for determining the drift component of the entire graph. is there.
  • the baseline range demarcation unit, the drift component estimation unit, and the overall drift determination unit can be configured to implement various methods as described above.
  • the data processing method and apparatus of the present invention it is possible to appropriately extract the drift of the entire baseline from graphs such as chromatograms and spectra.
  • information such as the position and intensity (height, area, etc.) relating to the peak can be extracted from the chromatogram, spectrum, etc. with high reproducibility, and qualitative and quantitative analysis can be performed more accurately.
  • an accurate value excluding the influence of drift can be calculated for each peak as well as the S / N ratio for each peak.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a data processing apparatus according to the present invention.
  • the flowchart which shows the flow of the data processing by the data processing method concerning this invention. It is an example of performing the data processing method of the present embodiment, showing a chromatogram (a) before baseline correction, a baseline range defined for the chromatogram (b), and a baseline determined for the chromatogram Graph. The chromatogram after performing baseline correction by the data processing method of this embodiment.
  • the flowchart which shows another example of the baseline range definition step in the data processing method concerning this invention.
  • the flowchart which shows another example of the baseline range definition step in the data processing method which concerns on this invention.
  • the data processing device 10 is used together with the data recording unit 1, the display device 2, and the input device 3.
  • the data recording unit 1 is a device that records data obtained at the time of measurement by a detector included in a liquid chromatograph, a gas chromatograph, or the like, and includes a hard disk, a memory, and the like.
  • the data recording unit 1 is provided outside the data processing apparatus 10 in the example shown in FIG. 1, but may be provided inside the data processing apparatus 10.
  • the display device 2 is a display that displays information during data processing by the data processing device 10 and a result of the data processing.
  • the input device 3 is a device for inputting information required by the user to the data processing device 10, and includes a keyboard and a mouse.
  • the data processing device 10 includes a chromatogram creation unit 11, a baseline range definition unit 12, a drift component estimation unit 13, an overall drift determination unit 14, and a baseline correction result creation unit 15.
  • chromatogram creation unit 11 a chromatogram creation unit 11
  • drift component estimation unit 13 a drift component estimation unit 13
  • overall drift determination unit 14 a baseline correction result creation unit 15.
  • Each of these units is actually embodied by hardware and software such as a CPU and memory of a computer.
  • FIG. 2 an embodiment of the data processing method according to the present invention will be described using the flowchart shown in FIG. 2 and the specific examples shown in FIGS. 3 and 4, and the functions of each unit of the data processing apparatus 10 will be described.
  • the chromatogram creation unit 11 acquires data from the data recording unit 1 and creates a chromatogram by a method similar to the conventional method (step S1).
  • FIG. 3 (a) shows an example of the created chromatogram.
  • the operation which produces a chromatogram is unnecessary and it is only necessary to acquire the data regarding a spectrum from the data recording part 1.
  • FIG. 3 (a) shows an example of the created chromatogram.
  • the base line range demarcating unit 12 uses the automatic peak detection logic conventionally used from the chromatogram created by the chromatogram creating unit 11 to determine the range of time (first parameter) where the peak exists (peak). Range) is detected (step S2). Then, the baseline range demarcating unit 12 determines the time that was not detected as the peak range in step S2 as the baseline range (step S3).
  • the baseline range is (N-1) points between the peaks and two points outside the peaks at both ends in the time axis direction. There are a total of (N + 1) locations. In step S3, all of these (N + 1) baseline ranges are defined. A combination of these steps S2 and S3 corresponds to the above-described baseline range defining step.
  • FIG. 3 (b) shows the baseline range defined in the example of the chromatogram in FIG. 3 (a).
  • the drift component estimation unit 13 estimates a drift component in each of the baseline ranges defined in step S3 (step S4).
  • the drift component is estimated by smoothing data in each baseline range using a low-pass filter.
  • the overall drift determination unit 14 performs an operation of interpolating between adjacent baseline ranges (within a peak range) (step S5). In this embodiment, this interpolation is performed by connecting the ends of adjacent baseline ranges with a straight line. In this way, the overall drift is determined by combining the drift component estimated in the baseline range and the drift component interpolated between the baseline ranges.
  • FIG. 3 (c) shows the overall drift determined in the example of the chromatogram in FIG. 3 (a).
  • a range 21 in FIG. 3C shows the drift component estimated in the baseline range
  • a range 22 shows the drift component interpolated between the baseline ranges.
  • the baseline correction result creation unit 15 creates a chromatogram subjected to baseline correction by subtracting the overall drift determined by the overall drift determination unit 14 from the chromatogram created by the chromatogram creation unit 11.
  • FIG. 4 shows a chromatogram after baseline correction obtained by subtracting the overall drift of FIG. 3 (c) from the chromatogram of FIG. 3 (a).
  • a slope that rises from left to right as a whole is seen due to drift, whereas in the chromatogram after baseline correction in FIG. Drift is eliminated and no slope is seen except at the peak.
  • step S6 The operation of the data processing method of the present embodiment is completed by the operations up to step S6. If necessary, post-processing such as displaying the corrected chromatogram and / or the entire drift on the screen of the display device 2 or storing it in the data recording unit 1 is performed.
  • the baseline range demarcating unit 12 detects the peak range by the automatic peak detection logic, but instead, one of the following two types of operations may be performed.
  • the baseline range demarcating unit 12 displays the chromatogram created in step S1 on the screen of the display device 2 as well as the user.
  • a display prompting the user to input the peak range is displayed on the screen (step S2A).
  • the baseline range demarcating unit 12 finishes inputting the peak range by the user using the input device 3 by, for example, clicking the start point and the end point of the peak range on the chromatogram displayed on the screen, for example. (Step S3A-1).
  • the baseline range defining unit 12 is input by the user.
  • a range other than the peak range is defined as a baseline range (step S3A-2). Thereafter, operations after step S4 may be performed in the same manner as described above.
  • the baseline range defining unit 12 displays the chromatogram created in step S ⁇ b> 1 on the screen of the display device 2 and the user. Is displayed on the screen (step S2B).
  • the baseline range defining unit 12 waits for the user to finish inputting the baseline range using the input device 3 (step S3B-1).
  • the input operation of the baseline range and the operation indicating completion of input performed by the user can be the same as the above-described operation of inputting the peak range and the operation indicating completion of input.
  • the baseline range defining unit 12 defines the range input by the user as the baseline range as it is (step S3B-2). Subsequent operations after step S4 are the same as described above.
  • the drift component estimation unit 13 estimates the drift component by smoothing the data of each baseline range using a low-pass filter, but instead of or along with such a smoothing process.
  • An operation for removing noise from data in each baseline range may be performed using a non-linear filter.
  • the overall drift determining unit 14 performs an operation of interpolating between the adjacent baseline ranges by connecting the ends of the adjacent baseline ranges with a straight line, but instead connects to each end. May be interpolated using a spline curve, or may be interpolated using a polynomial. By performing interpolation using these spline curves and polynomials, it is possible to connect the two baseline ranges more smoothly using the curves. In particular, when the slopes of adjacent baseline ranges are different, the end of the baseline range will be bent when interpolating with a straight line, but a smooth connection is possible by using a spline curve or polynomial. become.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed in accordance with the gist of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

This data processing method is a method for processing the data of a two-dimensional graph in which a second parameter changes according to a continuously changing first parameter and a peak of the second parameter is on a baseline. The method includes: a baseline range demarcation step (S2, S3) for using a prescribed method to demarcate, on the graph, all baseline ranges, which are the ranges of the first parameter in which there are no peaks; a drift component estimation step (S4) for estimating, for each of the baseline ranges, a graph drift component; and an overall drift determination step (S5) for connecting the drift components estimated for each baseline range through interpolation between adjacent baseline ranges and determining a drift component for the entire graph. As a result, it is possible to appropriately extract overall baseline drift from a graph, such as a chromatogram or spectrum, in which peaks appear on a baseline.

Description

データ処理方法及び装置Data processing method and apparatus
 本発明は、例えばクロマトグラフで得られるクロマトグラムや、質量分析装置や分光装置で得られるスペクトル等のデータを処理する方法及び装置に関する。 The present invention relates to a method and an apparatus for processing data such as a chromatogram obtained by a chromatograph, a spectrum obtained by a mass spectrometer or a spectroscope, for example.
 試料に含まれる成分を分析する装置の1つにクロマトグラフがある。クロマトグラフでは試料を移動相の流れに乗せてカラムに導入し、カラム内で試料中の各成分を時間的に分離した後、検出器で検出してクロマトグラムを作成する。そして、クロマトグラム上のピーク位置から各成分を同定し、ピーク高さや面積から当該成分の濃度を決定する。 A chromatograph is one of the devices that analyze the components contained in a sample. In a chromatograph, a sample is placed on a mobile phase flow and introduced into a column. Each component in the sample is temporally separated in the column and then detected by a detector to create a chromatogram. Then, each component is identified from the peak position on the chromatogram, and the concentration of the component is determined from the peak height and area.
 クロマトグラムには、試料に由来するピークに、ピークの有無に関わらず存在するベースラインが重畳する。このベースラインには、分析条件によってはベースライン全体が緩やかに変動するドリフトと呼ばれる現象が発生する。このドリフトの影響は試料に由来するピークにも及ぶため、クロマトグラムから試料の正確な情報を得るためには、ベースラインを除去してピークを検出する必要がある。
 また、クロマトグラム中のピークを検出した際に、該ピークの強度とともにS/N比を計算してレポートする必要がある場合がある。この場合、クロマトグラムからノイズの大きさを計算しなければならないが、緩やかに変動するドリフトの影響によりノイズの大きさが過大に推定され、結果としてピークのS/N比が過小に評価されることがある。
In the chromatogram, a base line existing regardless of the presence or absence of a peak is superimposed on a peak derived from a sample. In this baseline, a phenomenon called drift occurs in which the entire baseline gradually varies depending on the analysis conditions. Since the influence of this drift extends to the peak derived from the sample, it is necessary to remove the baseline and detect the peak in order to obtain accurate information of the sample from the chromatogram.
Further, when a peak in a chromatogram is detected, it may be necessary to calculate and report the S / N ratio together with the intensity of the peak. In this case, the noise magnitude must be calculated from the chromatogram, but the noise magnitude is overestimated due to the effect of slowly varying drift, and as a result, the peak S / N ratio is underestimated. Sometimes.
 そこで、ベースラインのドリフトを推定・除去する方法が各種提案されている。特許文献1では、従来技術として様々なベースライン設定方法を紹介してそれぞれの問題点を指摘した後、近似ベースラインの生成を繰り返すことにより平滑化されたベースラインを検出する方法を提案している。
 また、特許文献2には、全体の波形をメディアンフィルタに通すことによりピークを除去した第1近似基線を生成し、それを平滑化することによりベースラインを確定する方法が提案されている。
Therefore, various methods for estimating / removing the baseline drift have been proposed. Patent Document 1 proposes a method of detecting a smoothed baseline by repeating generation of approximate baselines after introducing various baseline setting methods as conventional techniques and pointing out their respective problems. Yes.
Further, Patent Document 2 proposes a method of generating a first approximate baseline from which a peak is removed by passing the entire waveform through a median filter and smoothing it to determine a baseline.
特開平11-153588号公報Japanese Patent Laid-Open No. 11-153588 特表2009-513985号公報Special Table 2009-513985
 特許文献1で提案されている方法は、専らベースラインとして抽出された部分を対象としており、クロマトグラムやスペクトル等の全体の波形からベースラインを抽出する方法については述べられていない。また、特許文献2で提案されている方法では、メディアンフィルタで除去される波形が本来のピーク波形のみとは限らず、誤ってベースラインドリフトを除去してしまう可能性がある。また、ピークが密集している箇所では、メディアンフィルタによっては適切にピーク部分のみを除去することは難しい。 The method proposed in Patent Document 1 is intended only for the part extracted as a baseline, and does not describe a method for extracting a baseline from an entire waveform such as a chromatogram or a spectrum. In the method proposed in Patent Document 2, the waveform removed by the median filter is not limited to the original peak waveform, and there is a possibility that the baseline drift is erroneously removed. In addition, it is difficult to appropriately remove only the peak portion in a portion where the peaks are dense, depending on the median filter.
 本発明が解決しようとする課題は、クロマトグラムやスペクトル等の、ベースライン上にピークが現れるグラフから前記ベースライン全体のドリフトを適切に抽出することのできる方法及び装置を提供することである。 The problem to be solved by the present invention is to provide a method and apparatus capable of appropriately extracting the drift of the entire baseline from a graph in which a peak appears on the baseline, such as a chromatogram and a spectrum.
 上記課題を解決するために成された本発明は、連続的に変化する第1パラメータに応じて第2パラメータが変化する2次元グラフであって、ベースライン上に前記第2パラメータのピークが存在するグラフのデータを処理する方法において、
 a) 前記グラフより、所定の方法により前記ピークが存在しない第1パラメータの範囲であるベースライン範囲を全て画定するベースライン範囲画定ステップと、
 b) 前記ベースライン範囲のそれぞれについて前記グラフのドリフト成分を推定するドリフト成分推定ステップと、
 c) 各ベースライン範囲について推定されたドリフト成分を、隣接ベースライン範囲間を補間することにより接続し、前記グラフ全体のドリフト成分を決定する全体ドリフト決定ステップと
 を備えることを特徴とするものである。
The present invention made to solve the above problems is a two-dimensional graph in which the second parameter changes according to the continuously changing first parameter, and the peak of the second parameter exists on the baseline In a method of processing graph data,
a) Baseline range defining step for defining all of the baseline range that is the range of the first parameter where the peak does not exist from the graph according to a predetermined method;
b) a drift component estimation step for estimating a drift component of the graph for each of the baseline ranges;
c) a drift component estimated for each baseline range is connected by interpolating between adjacent baseline ranges to determine a drift component for the entire graph, and an overall drift determining step is provided. is there.
 2次元グラフがクロマトグラムである場合には、第1パラメータは時間であり、第2パラメータは各種検出器により検出される強度である。また、2次元グラフがスペクトルである場合には、第1パラメータは波長或いは質量電荷比(m/z)等であり、第2パラメータは各種検出器により検出される強度である。本発明に係る方法は、その原理を利用して、その他のグラフにおいても十分適用可能である。 When the 2D graph is a chromatogram, the first parameter is time, and the second parameter is the intensity detected by various detectors. When the two-dimensional graph is a spectrum, the first parameter is a wavelength or mass-to-charge ratio (m / z) or the like, and the second parameter is an intensity detected by various detectors. The method according to the present invention can be sufficiently applied to other graphs using the principle.
 前記ベースライン範囲画定ステップにおいては、具体的には次の3つの方法をとることができる。
 第1の方法は、従来より用いられている自動ピーク検出ロジックを用いることにより前記ピークが存在する第1パラメータの範囲を検出してそれをピーク範囲とし、該ピーク範囲以外の第1パラメータの範囲を前記ベースライン範囲とするものである。ピーク範囲は1個である場合もあるし、複数である場合もある。ピーク範囲が1個であっても、ベースライン範囲はその両側に存在するため、ベースライン範囲は常に複数存在する。なお、従来より用いられている自動ピーク検出ロジックの一例としては、第2パラメータの値が所定の閾値以上である第1パラメータの範囲を検出する方法がある。あるいは、第2パラメータの第1パラメータによる二次微分が正であって一次微分が正の所定値以上となる位置を開始点、二次微分が正であって一次微分が負の所定値以上(絶対値では所定値以下)となる位置を終了点とする方法もある。
 第2の方法は、使用者にグラフを見せ、該使用者によりピーク範囲であるとして指定された第1パラメータの範囲を除く第1パラメータの範囲をベースライン範囲とする方法である。
 第3の方法は、使用者にグラフを見せ、該使用者により直接、ベースライン範囲となる第1パラメータ範囲を指定させる方法である。
In the baseline range defining step, specifically, the following three methods can be taken.
The first method uses a conventional automatic peak detection logic to detect the range of the first parameter in which the peak is present and set it as the peak range, and the range of the first parameter other than the peak range. Is the baseline range. There may be one peak range or a plurality of peak ranges. Even if there is only one peak range, there are always multiple baseline ranges because there are baseline ranges on both sides. As an example of the automatic peak detection logic that has been used conventionally, there is a method of detecting a range of the first parameter in which the value of the second parameter is equal to or greater than a predetermined threshold. Alternatively, the starting point is a position where the second derivative by the first parameter of the second parameter is positive and the first derivative is greater than or equal to a predetermined positive value, and the second derivative is positive and the first derivative is greater than or equal to a predetermined negative value ( There is also a method in which the end point is a position where the absolute value is equal to or less than a predetermined value.
The second method is a method in which a graph is shown to the user, and the range of the first parameter excluding the range of the first parameter designated as the peak range by the user is used as the baseline range.
The third method is a method in which the user is shown a graph and the user directly specifies the first parameter range as the baseline range.
 前記ドリフト成分推定ステップにおいては、具体的には次の2つの方法をとることができる。
 第1の方法は、移動平均、三角フィルタ、ガウシアンフィルタなどの、平滑化を行うために従来より用いられているローパスフィルタを用いる方法である。
 第2の方法は、メディアンフィルタ、モルフォロジーフィルタなどの、ノイズ除去のための従来より用いられている非線形フィルタを用いる方法である。
In the drift component estimation step, specifically, the following two methods can be taken.
The first method is a method using a low-pass filter conventionally used for smoothing, such as a moving average, a triangular filter, and a Gaussian filter.
The second method is a method using a non-linear filter conventionally used for noise removal, such as a median filter or a morphological filter.
 前記全体ドリフト決定ステップにおいては、具体的には次の2つの方法をとることができる。
 第1の方法は、隣接するベースライン範囲の端部同士を直線で補間する方法である(線形補間)。
 第2の方法は、隣接するベースライン範囲の端部同士を、各端部に接続するスプライン曲線を用いて補間する方法である(スプライン補間)。
 第3の方法は、隣接するベースライン範囲の端部同士の間を多項式を用いて補間する方法である(多項式補間)。
In the overall drift determination step, specifically, the following two methods can be taken.
The first method is a method of linearly interpolating the ends of adjacent baseline ranges (linear interpolation).
The second method is a method of interpolating the ends of adjacent baseline ranges using a spline curve connected to each end (spline interpolation).
The third method is a method of interpolating between ends of adjacent baseline ranges using a polynomial (polynomial interpolation).
 また、本発明は次のようなデータ処理装置としても実現される。すなわち、連続的に変化する第1パラメータに応じて第2パラメータが変化する2次元グラフであって、ベースライン上に前記第2パラメータのピークが存在するグラフのデータを処理する装置において、
 a) 前記グラフより、所定の方法により前記ピークが存在しない第1パラメータの範囲であるベースライン範囲を全て画定するベースライン範囲画定部と、
 b) 前記ベースライン範囲のそれぞれについて前記グラフのドリフト成分を推定するドリフト成分推定部と、
 c) 各ベースライン範囲について推定されたドリフト成分を、隣接ベースライン範囲間を補間することにより接続し、前記グラフ全体のドリフト成分を決定する全体ドリフト決定部と
 を備えることを特徴とするものである。
The present invention is also realized as the following data processing apparatus. That is, in a two-dimensional graph in which the second parameter changes according to the continuously changing first parameter, and the apparatus for processing the graph data in which the peak of the second parameter exists on the baseline,
a) a baseline range demarcating section that demarcates all of the baseline range that is the range of the first parameter in which the peak does not exist from the graph according to a predetermined method;
b) a drift component estimator for estimating a drift component of the graph for each of the baseline ranges;
c) A drift component estimated for each baseline range is connected by interpolating between adjacent baseline ranges, and an overall drift determining unit is provided for determining the drift component of the entire graph. is there.
 このデータ処理装置においても、ベースライン範囲画定部、ドリフト成分推定部及び全体ドリフト決定部についてはそれぞれ前記のような各種方法を実施する装置構成とすることができる。 Also in this data processing device, the baseline range demarcation unit, the drift component estimation unit, and the overall drift determination unit can be configured to implement various methods as described above.
 本発明に係るデータ処理方法及び装置によると、クロマトグラムやスペクトル等のグラフからベースライン全体のドリフトを適切に抽出することができる。これにより、クロマトグラムやスペクトル等からピークに関する位置や強度(高さ、面積等)等の情報をより再現性良く抽出することができ、定性、定量分析をより正確に行うことができるようになる。
 また、グラフ全体のドリフトが正しく検出される結果、各ピークについて、その強度とともにS/N比も、ドリフトの影響を排除した正確な値が計算され得るようになる。
According to the data processing method and apparatus of the present invention, it is possible to appropriately extract the drift of the entire baseline from graphs such as chromatograms and spectra. As a result, information such as the position and intensity (height, area, etc.) relating to the peak can be extracted from the chromatogram, spectrum, etc. with high reproducibility, and qualitative and quantitative analysis can be performed more accurately. .
In addition, as a result of correctly detecting the drift of the entire graph, an accurate value excluding the influence of drift can be calculated for each peak as well as the S / N ratio for each peak.
本発明に係るデータ処理装置の一実施形態を示す概略構成図。1 is a schematic configuration diagram showing an embodiment of a data processing apparatus according to the present invention. 本発明に係るデータ処理方法によるデータ処理の流れを示すフローチャート。The flowchart which shows the flow of the data processing by the data processing method concerning this invention. 本実施形態のデータ処理方法を行った例であって、ベースライン補正前のクロマトグラム(a)、該クロマトグラムについて画定したベースライン範囲(b)、及び該クロマトグラムについて決定したベースラインを示すグラフ。It is an example of performing the data processing method of the present embodiment, showing a chromatogram (a) before baseline correction, a baseline range defined for the chromatogram (b), and a baseline determined for the chromatogram Graph. 本実施形態のデータ処理方法によりベースライン補正を行った後のクロマトグラム。The chromatogram after performing baseline correction by the data processing method of this embodiment. 本発明に係るデータ処理方法におけるベースライン範囲画定ステップの別の例を示すフローチャート。The flowchart which shows another example of the baseline range definition step in the data processing method concerning this invention. 本発明に係るデータ処理方法におけるベースライン範囲画定ステップのさらに別の例を示すフローチャート。The flowchart which shows another example of the baseline range definition step in the data processing method which concerns on this invention.
 図1~図6を用いて、本発明に係るデータ処理方法及び装置の実施形態を説明する。
 本実施形態のデータ処理装置10は、データ記録部1、表示装置2及び入力装置3と共に用いられる。データ記録部1は、液体クロマトグラフやガスクロマトグラフ等が有する検出器によって測定時に得られたデータを記録する装置であり、ハードディスクやメモリ等から成る。データ記録部1は、図1に示した例ではデータ処理装置10の外に設けているが、データ処理装置10内に設けてもよい。表示装置2は、データ処理装置10によるデータ処理中の情報やデータ処理の結果を表示するディスプレイである。入力装置3は、使用者が必要な情報をデータ処理装置10に入力するための装置であって、キーボードやマウス等から成る。
An embodiment of a data processing method and apparatus according to the present invention will be described with reference to FIGS.
The data processing device 10 according to the present embodiment is used together with the data recording unit 1, the display device 2, and the input device 3. The data recording unit 1 is a device that records data obtained at the time of measurement by a detector included in a liquid chromatograph, a gas chromatograph, or the like, and includes a hard disk, a memory, and the like. The data recording unit 1 is provided outside the data processing apparatus 10 in the example shown in FIG. 1, but may be provided inside the data processing apparatus 10. The display device 2 is a display that displays information during data processing by the data processing device 10 and a result of the data processing. The input device 3 is a device for inputting information required by the user to the data processing device 10, and includes a keyboard and a mouse.
 データ処理装置10は、クロマトグラム作成部11、ベースライン範囲画定部12、ドリフト成分推定部13、全体ドリフト決定部14、及びベースライン補正結果作成部15を有する。これら各部は、実際にはコンピュータのCPUやメモリ等のハードウエア、及びソフトウエアにより具現化されている。以下、図2に示すフローチャート、並びに図3及び図4に示す具体例を用いて、本発明に係るデータ処理方法の一実施形態を説明すると共に、データ処理装置10の各部の機能を説明する。 The data processing device 10 includes a chromatogram creation unit 11, a baseline range definition unit 12, a drift component estimation unit 13, an overall drift determination unit 14, and a baseline correction result creation unit 15. Each of these units is actually embodied by hardware and software such as a CPU and memory of a computer. Hereinafter, an embodiment of the data processing method according to the present invention will be described using the flowchart shown in FIG. 2 and the specific examples shown in FIGS. 3 and 4, and the functions of each unit of the data processing apparatus 10 will be described.
 まず、クロマトグラム作成部11は、データ記録部1からデータを取得して、従来と同様の方法によりクロマトグラムを作成する(ステップS1)。図3(a)に、作成したクロマトグラムの一例を示す。なお、スペクトルについて処理を行う場合には、クロマトグラムを作成する操作は不要であり、データ記録部1からスペクトルに関するデータを取得するだけでよい。 First, the chromatogram creation unit 11 acquires data from the data recording unit 1 and creates a chromatogram by a method similar to the conventional method (step S1). FIG. 3 (a) shows an example of the created chromatogram. In addition, when processing about a spectrum, the operation which produces a chromatogram is unnecessary and it is only necessary to acquire the data regarding a spectrum from the data recording part 1. FIG.
 次に、ベースライン範囲画定部12は、クロマトグラム作成部11で作成されたクロマトグラムから、従来より用いられている自動ピーク検出ロジックにより、ピークが存在する時間(第1パラメータ)の範囲(ピーク範囲)を検出する(ステップS2)。そして、ベースライン範囲画定部12は、ステップS2でピーク範囲として検出されなかった時間をベースライン範囲として確定する(ステップS3)。ここでベースライン範囲は、ピークがN個(Nは自然数)検出されたときには、ピーク同士の間の(N-1)箇所と、時間軸方向の両端にあるピークの外側にある2箇所の、合計(N+1)箇所存在する。ステップS3では、これら(N+1)箇所のベースライン範囲を全て画定する。これらステップS2とS3を合わせたものが前述のベースライン範囲画定ステップに該当する。図3(b)に、同図(a)のクロマトグラムの例において画定したベースライン範囲を示す。 Next, the base line range demarcating unit 12 uses the automatic peak detection logic conventionally used from the chromatogram created by the chromatogram creating unit 11 to determine the range of time (first parameter) where the peak exists (peak). Range) is detected (step S2). Then, the baseline range demarcating unit 12 determines the time that was not detected as the peak range in step S2 as the baseline range (step S3). Here, when N peaks (N is a natural number) are detected, the baseline range is (N-1) points between the peaks and two points outside the peaks at both ends in the time axis direction. There are a total of (N + 1) locations. In step S3, all of these (N + 1) baseline ranges are defined. A combination of these steps S2 and S3 corresponds to the above-described baseline range defining step. FIG. 3 (b) shows the baseline range defined in the example of the chromatogram in FIG. 3 (a).
 次に、ドリフト成分推定部13は、ステップS3で画定されたベースライン範囲の各々においてドリフト成分を推定する(ステップS4)。ドリフト成分の推定は、本実施形態では、ローパスフィルタを用いて各ベースライン範囲のデータを平滑化することにより行う。続いて、全体ドリフト決定部14は、隣接するベースライン範囲間(ピーク範囲内)を補間する操作を行う(ステップS5)。この補間は、本実施形態では、隣接するベースライン範囲の端部同士を直線で結ぶことにより行う。このようにして、ベースライン範囲で推定されたドリフト成分と、ベースライン範囲間で補間したドリフト成分を合わせた全体ドリフトを決定する。図3(c)に、同図(a)のクロマトグラムの例において決定した全体ドリフトを示す。同図(c)中の範囲21は、ベースライン範囲で推定されたドリフト成分を示し、範囲22は、ベースライン範囲間で補間したドリフト成分を示す。 Next, the drift component estimation unit 13 estimates a drift component in each of the baseline ranges defined in step S3 (step S4). In this embodiment, the drift component is estimated by smoothing data in each baseline range using a low-pass filter. Subsequently, the overall drift determination unit 14 performs an operation of interpolating between adjacent baseline ranges (within a peak range) (step S5). In this embodiment, this interpolation is performed by connecting the ends of adjacent baseline ranges with a straight line. In this way, the overall drift is determined by combining the drift component estimated in the baseline range and the drift component interpolated between the baseline ranges. FIG. 3 (c) shows the overall drift determined in the example of the chromatogram in FIG. 3 (a). A range 21 in FIG. 3C shows the drift component estimated in the baseline range, and a range 22 shows the drift component interpolated between the baseline ranges.
 次に、ベースライン補正結果作成部15は、クロマトグラム作成部11で作成されたクロマトグラムから、全体ドリフト決定部14で決定した全体ドリフトを減算することによりベースライン補正を行ったクロマトグラムを作成する(ステップS6)。図4に、図3(a)のクロマトグラムから図3(c)の全体ドリフトを差し引いた、ベースライン補正後のクロマトグラムを示す。図3(a)に示した補正前のクロマトグラムではドリフトを受けて全体的に左から右に向けて上がってゆく傾きが見られるのに対して、図4のベースライン補正後のクロマトグラムではドリフトが排除され、ピーク以外では傾きが見られない。 Next, the baseline correction result creation unit 15 creates a chromatogram subjected to baseline correction by subtracting the overall drift determined by the overall drift determination unit 14 from the chromatogram created by the chromatogram creation unit 11. (Step S6). FIG. 4 shows a chromatogram after baseline correction obtained by subtracting the overall drift of FIG. 3 (c) from the chromatogram of FIG. 3 (a). In the chromatogram before correction shown in FIG. 3 (a), a slope that rises from left to right as a whole is seen due to drift, whereas in the chromatogram after baseline correction in FIG. Drift is eliminated and no slope is seen except at the peak.
 以上のステップS6までの操作により、本実施形態のデータ処理方法の動作が終了する。なお、必要に応じて、ベースライン補正を行ったクロマトグラム及び/又は全体ドリフトを表示装置2の画面に表示したり、データ記録部1に保存する等の後処理を行う。 The operation of the data processing method of the present embodiment is completed by the operations up to step S6. If necessary, post-processing such as displaying the corrected chromatogram and / or the entire drift on the screen of the display device 2 or storing it in the data recording unit 1 is performed.
 上記実施形態では、ベースライン範囲画定部12は自動ピーク検出ロジックによりピーク範囲を検出するが、その代わりに以下の2種類の操作のいずれかを行うようにしてもよい。 In the above embodiment, the baseline range demarcating unit 12 detects the peak range by the automatic peak detection logic, but instead, one of the following two types of operations may be performed.
 1種類目の操作では、図5に示すように、ステップS1の終了後にまず、ベースライン範囲画定部12は、ステップS1で作成されたクロマトグラムを表示装置2の画面に表示すると共に、使用者に対してピーク範囲を入力するように促す表示を該画面に示す(ステップS2A)。ベースライン範囲画定部12は、使用者が入力装置3を用いて、例えば画面に表示されたクロマトグラム上でピーク範囲の開始点及び終了点をそれぞれクリックする等の操作によりピーク範囲を入力し終えるのを待つ(ステップS3A-1)。そして、使用者が全てのピーク範囲の入力が完了したことを示す操作(例えば、画面中に設けた「完了」ボタンをクリック)を行ったとき、ベースライン範囲画定部12は、使用者が入力したピーク範囲以外の範囲をベースライン範囲として画定する(ステップS3A-2)。その後、ステップS4以降の操作は上記同様に行えばよい。 In the first type of operation, as shown in FIG. 5, first, after the end of step S1, the baseline range demarcating unit 12 displays the chromatogram created in step S1 on the screen of the display device 2 as well as the user. A display prompting the user to input the peak range is displayed on the screen (step S2A). The baseline range demarcating unit 12 finishes inputting the peak range by the user using the input device 3 by, for example, clicking the start point and the end point of the peak range on the chromatogram displayed on the screen, for example. (Step S3A-1). When the user performs an operation indicating that the input of all the peak ranges has been completed (for example, by clicking the “Done” button provided on the screen), the baseline range defining unit 12 is input by the user. A range other than the peak range is defined as a baseline range (step S3A-2). Thereafter, operations after step S4 may be performed in the same manner as described above.
 2種類目の操作では、図6に示すように、ステップS1の終了後にまず、ベースライン範囲画定部12は、ステップS1で作成されたクロマトグラムを表示装置2の画面に表示すると共に、使用者に対してベースライン範囲を入力するように促す表示を該画面に示す(ステップS2B)。ベースライン範囲画定部12は、使用者が入力装置3を用いてベースライン範囲を入力し終えるのを待つ(ステップS3B-1)。使用者が行うベースライン範囲の入力操作及び入力完了を示す操作は、前述のピーク範囲の入力操作及び入力完了を示す操作と同様のものを用いることができる。使用者が入力完了を示す操作を行ったとき、ベースライン範囲画定部12は、使用者が入力した範囲をそのまま、ベースライン範囲として画定する(ステップS3B-2)。その後のステップS4以降の操作は上記同様である。 In the second type of operation, as shown in FIG. 6, after the end of step S <b> 1, first, the baseline range defining unit 12 displays the chromatogram created in step S <b> 1 on the screen of the display device 2 and the user. Is displayed on the screen (step S2B). The baseline range defining unit 12 waits for the user to finish inputting the baseline range using the input device 3 (step S3B-1). The input operation of the baseline range and the operation indicating completion of input performed by the user can be the same as the above-described operation of inputting the peak range and the operation indicating completion of input. When the user performs an operation indicating completion of input, the baseline range defining unit 12 defines the range input by the user as the baseline range as it is (step S3B-2). Subsequent operations after step S4 are the same as described above.
 上記実施形態では、ドリフト成分推定部13は、ローパスフィルタを用いて各ベースライン範囲のデータを平滑化することによりドリフト成分を推定するが、このような平滑化の処理の代わりに、又はそれと共に、非線形フィルタを用いて各ベースライン範囲のデータからノイズを除去する操作を行ってもよい。 In the above embodiment, the drift component estimation unit 13 estimates the drift component by smoothing the data of each baseline range using a low-pass filter, but instead of or along with such a smoothing process. An operation for removing noise from data in each baseline range may be performed using a non-linear filter.
 上記実施形態では、全体ドリフト決定部14は、隣接するベースライン範囲の端部同士を直線で結ぶことにより該隣接ベースライン範囲間を補間する操作を行うが、その代わりに、各端部に接続するスプライン曲線を用いて補間したり、多項式を用いて補間してもよい。これらスプライン曲線や多項式を用いた補間を行うことにより、曲線を用いてより滑らかに2つのベースライン範囲を接続することができる。特に、隣接するベースライン範囲同士の傾きが異なる場合には、直線で補間するとベースライン範囲の端部で折れ曲がりが生じてしまうのに対して、スプライン曲線や多項式を用いることで滑らかな接続が可能になる。 In the above embodiment, the overall drift determining unit 14 performs an operation of interpolating between the adjacent baseline ranges by connecting the ends of the adjacent baseline ranges with a straight line, but instead connects to each end. May be interpolated using a spline curve, or may be interpolated using a polynomial. By performing interpolation using these spline curves and polynomials, it is possible to connect the two baseline ranges more smoothly using the curves. In particular, when the slopes of adjacent baseline ranges are different, the end of the baseline range will be bent when interpolating with a straight line, but a smooth connection is possible by using a spline curve or polynomial. become.
 その他の点においても、本発明は上記実施形態には限定されず、本発明の主旨に沿って適宜変更が可能である。 In other respects, the present invention is not limited to the above-described embodiment, and can be appropriately changed in accordance with the gist of the present invention.
1…データ記録部
2…表示装置
3…入力装置
10…データ処理装置
11…クロマトグラム作成部
12…ベースライン範囲画定部
13…ドリフト成分推定部
14…全体ドリフト決定部
15…ベースライン補正結果作成部
21…ベースライン範囲で推定されたドリフト成分
22…ベースライン範囲間で補間したドリフト成分
DESCRIPTION OF SYMBOLS 1 ... Data recording part 2 ... Display apparatus 3 ... Input device 10 ... Data processing apparatus 11 ... Chromatogram preparation part 12 ... Baseline range demarcation part 13 ... Drift component estimation part 14 ... Overall drift determination part 15 ... Baseline correction result preparation Part 21 ... drift component estimated in the baseline range 22 ... drift component interpolated between the baseline ranges

Claims (13)

  1.  連続的に変化する第1パラメータに応じて第2パラメータが変化する2次元グラフであって、ベースライン上に前記第2パラメータのピークが存在するグラフのデータを処理する方法において、
     a) 前記グラフより、所定の方法により前記ピークが存在しない第1パラメータの範囲であるベースライン範囲を全て画定するベースライン範囲画定ステップと、
     b) 前記ベースライン範囲のそれぞれについて前記グラフのドリフト成分を推定するドリフト成分推定ステップと、
     c) 各ベースライン範囲について推定されたドリフト成分を、隣接ベースライン範囲間を補間することにより接続し、前記グラフ全体のドリフト成分を決定する全体ドリフト決定ステップと
     を備えることを特徴とするデータ処理方法。
    In a method for processing data of a graph in which a second parameter changes according to a continuously changing first parameter, and the peak of the second parameter exists on a baseline,
    a) Baseline range defining step for defining all of the baseline range that is the range of the first parameter where the peak does not exist from the graph according to a predetermined method;
    b) a drift component estimation step for estimating a drift component of the graph for each of the baseline ranges;
    c) connecting the estimated drift component for each baseline range by interpolating between adjacent baseline ranges, and determining an overall drift for determining the drift component of the entire graph. Method.
  2.  前記グラフがクロマトグラムであることを特徴とする請求項1に記載のデータ処理方法。 The data processing method according to claim 1, wherein the graph is a chromatogram.
  3.  前記グラフがスペクトルであることを特徴とする請求項1に記載のデータ処理方法。 The data processing method according to claim 1, wherein the graph is a spectrum.
  4.  前記グラフから前記グラフ全体のドリフト成分を減算することによりドリフト成分を補正したグラフを作成するステップを備えることを特徴とする請求項1に記載のデータ処理方法。 The data processing method according to claim 1, further comprising the step of creating a graph in which the drift component is corrected by subtracting the drift component of the entire graph from the graph.
  5.  前記ベースライン範囲画定ステップにおいて、自動ピーク検出ロジックを用いることにより前記ピークが存在する第1パラメータの範囲を検出して該範囲をピーク範囲とし、該ピーク範囲以外の第1パラメータの範囲を前記ベースライン範囲とすることを特徴とする請求項1に記載のデータ処理方法。 In the baseline range defining step, by using an automatic peak detection logic, a range of a first parameter in which the peak exists is detected and the range is set as a peak range, and a range of a first parameter other than the peak range is set as the base range. The data processing method according to claim 1, wherein the data range is a line range.
  6.  前記ベースライン範囲画定ステップにおいて、使用者に対して前記グラフを示し、使用者によりピーク範囲であるとして指定された第1パラメータの範囲を除く第1パラメータの範囲をベースライン範囲とすることを特徴とする請求項1に記載のデータ処理方法。 In the baseline range defining step, the graph is shown to the user, and the range of the first parameter excluding the range of the first parameter designated as the peak range by the user is set as the baseline range. The data processing method according to claim 1.
  7.  前記ベースライン範囲画定ステップにおいて、使用者に対して前記グラフを示し、使用者によりベースライン範囲となる第1パラメータ範囲を指定させることを特徴とする請求項1に記載のデータ処理方法。 The data processing method according to claim 1, wherein, in the baseline range defining step, the graph is shown to the user, and the user is allowed to specify a first parameter range that is a baseline range.
  8.  前記ドリフト成分推定ステップにおいて、ローパスフィルタを用いて平滑化を行うことにより前記ベースライン範囲のドリフト成分を推定することを特徴とする請求項1に記載のデータ処理方法。 The data processing method according to claim 1, wherein in the drift component estimation step, the drift component in the baseline range is estimated by performing smoothing using a low-pass filter.
  9.  前記ドリフト成分推定ステップにおいて、非線形フィルタを用いてノイズ除去を行うことにより前記ベースライン範囲のドリフト成分を推定することを特徴とする請求項1に記載のデータ処理方法。 The data processing method according to claim 1, wherein in the drift component estimation step, the drift component in the baseline range is estimated by performing noise removal using a nonlinear filter.
  10.  前記全体ドリフト決定ステップにおいて、隣接するベースライン範囲の端部同士を直線で補間することを特徴とする請求項1に記載のデータ処理方法。 2. The data processing method according to claim 1, wherein in the overall drift determination step, ends of adjacent baseline ranges are interpolated with a straight line.
  11.  前記全体ドリフト決定ステップにおいて、隣接するベースライン範囲の端部同士を、各端部に接続するスプライン曲線を用いて補間することを特徴とする請求項1に記載のデータ処理方法。 2. The data processing method according to claim 1, wherein in the overall drift determination step, the ends of adjacent baseline ranges are interpolated using a spline curve connected to each end.
  12.  前記全体ドリフト決定ステップにおいて、隣接するベースライン範囲の端部同士の間を多項式を用いて補間することを特徴とする請求項1に記載のデータ処理方法。 2. The data processing method according to claim 1, wherein, in the overall drift determination step, interpolation is performed between ends of adjacent baseline ranges using a polynomial.
  13.  連続的に変化する第1パラメータに応じて第2パラメータが変化する2次元グラフであって、ベースライン上に前記第2パラメータのピークが存在するグラフのデータを処理する装置において、
     a) 前記グラフより、所定の方法により前記ピークが存在しない第1パラメータの範囲であるベースライン範囲を全て画定するベースライン範囲画定部と、
     b) 前記ベースライン範囲のそれぞれについて前記グラフのドリフト成分を推定するドリフト成分推定部と、
     c) 各ベースライン範囲について推定されたドリフト成分を、隣接ベースライン範囲間を補間することにより接続し、前記グラフ全体のドリフト成分を決定する全体ドリフト決定部と
     を備えることを特徴とするデータ処理装置。
    In a two-dimensional graph in which the second parameter changes according to the first parameter that changes continuously, and processing the data of the graph in which the peak of the second parameter exists on the baseline,
    a) a baseline range demarcating section that demarcates all of the baseline range that is the range of the first parameter in which the peak does not exist from the graph according to a predetermined method;
    b) a drift component estimator for estimating a drift component of the graph for each of the baseline ranges;
    c) A data processing comprising: a drift component estimated for each baseline range is connected by interpolating between adjacent baseline ranges, and an overall drift determining unit that determines the drift component of the entire graph is included. apparatus.
PCT/JP2016/074557 2016-08-23 2016-08-23 Data processing method and device WO2018037487A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074557 WO2018037487A1 (en) 2016-08-23 2016-08-23 Data processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074557 WO2018037487A1 (en) 2016-08-23 2016-08-23 Data processing method and device

Publications (1)

Publication Number Publication Date
WO2018037487A1 true WO2018037487A1 (en) 2018-03-01

Family

ID=61245636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074557 WO2018037487A1 (en) 2016-08-23 2016-08-23 Data processing method and device

Country Status (1)

Country Link
WO (1) WO2018037487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521440A (en) * 2018-04-18 2021-08-26 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Analysis of blank tests for chromatograph performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293466A (en) * 1987-05-27 1988-11-30 Shimadzu Corp Data processor for chromatograph
JPH01129659U (en) * 1988-02-19 1989-09-04
JPH08233795A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Data processor for chromatograph
JP2001343324A (en) * 2000-06-01 2001-12-14 Advantest Corp Method for correcting base line of infrared ray absorption spectrum, and program recording medium therefor
JP2009008582A (en) * 2007-06-29 2009-01-15 Shimadzu Corp Chromatogram data processor
JP2009204397A (en) * 2008-02-27 2009-09-10 Shimadzu Corp Data processor for chromatograph

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293466A (en) * 1987-05-27 1988-11-30 Shimadzu Corp Data processor for chromatograph
JPH01129659U (en) * 1988-02-19 1989-09-04
JPH08233795A (en) * 1995-02-27 1996-09-13 Hitachi Ltd Data processor for chromatograph
JP2001343324A (en) * 2000-06-01 2001-12-14 Advantest Corp Method for correcting base line of infrared ray absorption spectrum, and program recording medium therefor
JP2009008582A (en) * 2007-06-29 2009-01-15 Shimadzu Corp Chromatogram data processor
JP2009204397A (en) * 2008-02-27 2009-09-10 Shimadzu Corp Data processor for chromatograph

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521440A (en) * 2018-04-18 2021-08-26 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. Analysis of blank tests for chromatograph performance
JP7483626B2 (en) 2018-04-18 2024-05-15 アジレント・テクノロジーズ・インク Analysis of blank tests on chromatographic performance.

Similar Documents

Publication Publication Date Title
US11499950B2 (en) Peak detection method and data processing device
US20160025691A1 (en) Chromatography/mass spectrometry data processing device
JP6079511B2 (en) Peak extraction method and program
US9500629B2 (en) Chromatogram data processing method and device
CN108780074B (en) Chromatogram data processing method and chromatogram data processing device
JPWO2015056329A1 (en) Method and apparatus for detecting peak end point in waveform
JP5211753B2 (en) Chromatographic data processor
JP6036838B2 (en) Comprehensive 2D chromatograph data processor
JP2013068444A (en) Comprehensive two-dimensional chromatograph mass analysis data processing apparatus
JP3807306B2 (en) Chromatographic data processing apparatus, chromatographic data processing method, and chromatographic analyzer
JP2006177980A (en) Chromatographic data processing device, chromatographic data processing method, and chromatographic analyzer
JP6060793B2 (en) Peak detector
WO2018037487A1 (en) Data processing method and device
Peters et al. Development of a resolution metric for comprehensive two-dimensional chromatography
JP6493076B2 (en) Peak waveform processing device
JP6256162B2 (en) Signal waveform data processing device
JP5333329B2 (en) Chromatogram data processing method and apparatus
JP2019174399A (en) Chromatograph data processing device, data processing method, and chromatograph
JP6597883B2 (en) Peak detection method and data processing apparatus
EP3137891B1 (en) Multi-trace quantitation
JP4826579B2 (en) Chromatographic data processor
US10236167B1 (en) Peak waveform processing device
JP7334788B2 (en) WAVEFORM ANALYSIS METHOD AND WAVEFORM ANALYSIS DEVICE
Li et al. Diffusion enhancement model and its application in peak detection
US11321425B2 (en) Method and device for processing data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP