WO2018036214A1 - 一种基于可关断阀的强迫电流转移型混合式限流器 - Google Patents

一种基于可关断阀的强迫电流转移型混合式限流器 Download PDF

Info

Publication number
WO2018036214A1
WO2018036214A1 PCT/CN2017/084491 CN2017084491W WO2018036214A1 WO 2018036214 A1 WO2018036214 A1 WO 2018036214A1 CN 2017084491 W CN2017084491 W CN 2017084491W WO 2018036214 A1 WO2018036214 A1 WO 2018036214A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
branch
arc
steady
power system
Prior art date
Application number
PCT/CN2017/084491
Other languages
English (en)
French (fr)
Inventor
魏晓光
陈龙龙
汤广福
贺之渊
赵岩
高阳
杨兵建
Original Assignee
全球能源互联网研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全球能源互联网研究院, 国家电网公司 filed Critical 全球能源互联网研究院
Publication of WO2018036214A1 publication Critical patent/WO2018036214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/021Current limitation using saturable reactors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/028Current limitation by detuning a series resonant circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • the invention relates to the technical field of AC and DC power transmission and power electronics, and particularly relates to a forced current transfer type hybrid current limiter based on a switchable valve.
  • the fault current generated after the failure of the power system will cause a great current impact on the normal operation of the power equipment, causing the power equipment to withstand large thermal stress and electric power, and generate a high overvoltage on the inductive equipment of the power system.
  • the fault current imposes extremely high technical requirements on the development of current breaking devices, such as current breaking devices such as DC circuit breakers.
  • a current limiter is generally installed in a power system to reduce the fault current.
  • the traditional fault current limiter is mainly a superconducting current limiter, but since the superconducting material needs to work at very low temperature, the steady state current during the normal operation of the power system will generate a large heat on the superconducting material. Loss, which is prone to superconducting quenching, requires cryogenic cooling, which in turn reduces the reliability of the superconducting current limiter.
  • An arc current transfer type current limiter proposed in the literature "Research on Power System Fault Current Limiter” does not use superconducting materials but uses vacuum switch combined with discharge gap arc voltage control technology to transfer fault current and overcome superconductivity.
  • the material has low heat loss and low reliability, but the current that the arc current transfer type current limiter can transfer is greatly affected by the arc voltage and the lead stray inductance. When the arc voltage is low, the fault current is difficult to be transferred.
  • the present invention provides a forced current transfer type hybrid restrictor based on a shuttable valve.
  • the hybrid current limiter includes a current limiting branch, a steady current flow branch, an arc current processing branch, and a lightning arrester branch respectively connected in parallel;
  • the current limiting branch includes a current limiting resistor and a reactor connected in series;
  • the steady state flow branch includes an ultra high speed mechanical switch for transmitting load current and transferring fault current;
  • the arc current processing branch includes a full bridge circuit for assisting the steady state flow branch to transfer fault current.
  • the full bridge circuit includes a first branch, a second branch, and a third branch that are respectively connected in parallel;
  • the first branch includes a series-connectable shut-off valve unit and a diode
  • the second branch includes a series resonant inductor and a capacitor
  • the third branch includes a series-connectable shut-off valve unit and a diode
  • One end of the steady-state through-flow branch is connected between the first branch and between the diode and the diode, and the other end is connected to the second branch to close between the valve unit and the diode.
  • the positive electrode of the capacitor is connected to the resonant inductor, and the negative electrode is respectively connected to the negative electrode of the diode in the first branch and the second branch.
  • shuttable valve units of the first branch and the second branch each comprise a plurality of thyristors connected in series;
  • the series number of the thyristors is determined according to the voltage level of the hybrid current limiter to be connected to the power system.
  • the preferred technical solution provided by the present invention is that: when the power system is in normal operation, the hybrid current limiter is controlled to operate in a normal operation mode, and the load current of the power system is transmitted, which specifically includes:
  • An ultra-high speed mechanical switch that closes the steady-state flow branch and blocks the switchable valve unit of the arc current processing branch.
  • the preferred technical solution further provided by the present invention is: controlling the hybrid current limiter to operate in a fault operation mode when the power system fails, and transferring the fault current of the power system, specifically:
  • the capacitor current of the arc current processing branch The ultra high speed mechanical switch discharges an arc
  • a terminal voltage of the capacitor is detected, and the switchable valve unit is blocked when the terminal voltage is zero.
  • the present invention provides a forced current transfer type hybrid current limiter based on a shuttable valve.
  • the arc current processing branch can inject a reverse current into the steady current flow branch, so that The ultra-high speed mechanical switch can be reliably disconnected without being affected by the arc voltage;
  • the present invention provides a forced current transfer type hybrid current limiter based on a shuttable valve, and the arc current processing branch can realize bidirectional charging of the capacitor, that is, when the fault current flows in different directions, the capacitor can be Injecting a reverse current, assisting the ultra-high speed mechanical switch of the steady-state flow branch to extinguish the arc. At the same time, the fault current flowing through the capacitor can be quickly cut off by blocking the valve unit;
  • the present invention provides a forced current transfer type hybrid current limiter based on a shuttable valve, and a super high speed machine.
  • the contact resistance of the mechanical switch is extremely low, resulting in a very low voltage drop and loss, which reduces the load current loss.
  • FIG. 1 is a topological schematic diagram of a forced current transfer type hybrid current limiter based on a shuttable valve in an embodiment of the present invention
  • FIG. 2 is a schematic view showing a state in which the hybrid restrictor is in a normal operation mode according to an embodiment of the present invention
  • Figure 3 is a schematic view showing a discharge of a capacitor in an embodiment of the present invention.
  • Figure 4 is a schematic view showing another capacitor discharge in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an arc current extinguishing path according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a forced current transfer path in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an input current path of a current limiting branch according to an embodiment of the present invention.
  • FIG. 1 is a topological schematic diagram of a forced current transfer type hybrid current limiter based on a switchable valve according to an embodiment of the present invention. As shown in the figure, a forced current transfer type hybrid type based on a switchable valve is provided in this embodiment.
  • the current limiter includes a current limiting branch, a steady current flow branch, an arc current processing branch and a lightning arrester branch. among them,
  • the current limiting branch includes a series current limiting resistor R and a reactor L S .
  • the steady state flow branch includes an ultra high speed mechanical switch K for transmitting load current and transferring fault current.
  • the steady-state through-flow branch is used to transmit the load current
  • the steady-state through-flow branch is used to transfer the fault current.
  • the arc current processing branch includes a full bridge circuit for assisting the steady state flow branch to transfer fault current.
  • the arrester branch is used to prevent the power supply equipment from being damaged due to overvoltage caused by the current limiting branch during the current limiting process.
  • the present invention provides a forced current transfer type hybrid current limiter based on a shuttable valve.
  • the arc current processing branch can inject a reverse current into the steady current flow branch to make the super
  • the high-speed mechanical switch K can be reliably disconnected from the influence of the arc voltage.
  • arc current processing branch of the present invention can adopt the following topology.
  • the full bridge circuit of the arc current processing branch in this embodiment includes a first branch, a second branch, and a third branch that are respectively connected in parallel. among them,
  • the first branch includes a series of shuttable valve units and diodes, and the switchable valve units each include a plurality of thyristors connected in series, and the number of series connected thyristors can be determined according to the voltage level of the hybrid current limiter to be connected to the power system.
  • the second branch includes a series resonant inductor and a capacitor, the positive pole of the capacitor is connected to the resonant inductor, and the negative pole is respectively connected to the negative pole of the diode in the first branch and the second branch.
  • the third branch includes a series of shuttable valve units and diodes, and the switchable valve units each include a plurality of thyristors connected in series, and the number of series connection of the thyristors can be determined according to the voltage level of the hybrid current limiter to be connected to the power system.
  • One end of the steady state flow branch is connected between the first branch to close the valve unit and the diode, and the other end is connected to the second branch to close between the valve unit and the diode.
  • the first branch in this embodiment includes a thyristor GTO and a diode D connected in series, a second branch resonant inductor LZ and a capacitor C
  • the third branch includes a thyristor GTO and a diode D connected in series.
  • the positive electrode of the capacitor C is connected to the resonant inductor L Z
  • the negative electrode of the capacitor C is connected to the negative electrode of the two diodes D described above.
  • the capacitor C needs to be pre-charged before the arc current processing branch is operated, so that after the operation, the reverse current extinction arc can be injected into the steady-state flow branch.
  • FIG. 3 and 4 are schematic diagrams showing discharge of two types of capacitors according to an embodiment of the present invention.
  • the arc current processing branch in the embodiment can perform bidirectional charging/discharging of the capacitor C, that is, when the fault current flows in different directions.
  • C can inject a reverse current into it, assisting the ultra-high speed mechanical switch K of the steady-state flow branch to extinguish the arc.
  • the fault current flowing through the capacitor C can be quickly cut off by blocking the valve unit.
  • the working mode of the hybrid restrictor in the present invention includes a normal operation mode and a fault operation mode, wherein
  • the hybrid restrictor When the power system is in normal operation, the hybrid restrictor is controlled to operate in a normal operation mode for transmitting the load current of the power system. Specifically: an ultra-high-speed mechanical switch that closes the steady-state flow branch, and a shut-off valve unit that blocks the arc current processing branch.
  • FIG. 2 is a schematic view showing a state in which the hybrid flow restrictor is in a normal operation mode according to an embodiment of the present invention.
  • the ultra-high speed mechanical switch K is closed, and the two thyristors GTO are both locked, and the load current of the power system is passed.
  • the steady state flow branch is transmitted from left to right.
  • the contact resistance of the ultra-high speed mechanical switch K is extremely low, and the voltage drop and loss generated are extremely low, that is, the load current loss is reduced.
  • the hybrid current limiter works in the fault operation mode and is used to transfer the fault current of the power system. Specifically:
  • the ultra-high speed mechanical switch After detecting the failure of the power system, the ultra-high speed mechanical switch is quickly disconnected by the trigger signal.
  • FIG. 5 is a schematic diagram of an arc current extinguishing path according to an embodiment of the present invention.
  • the splitting distance of the ultra-high speed mechanical switch K is detected, and when the splitting distance reaches the rated opening distance, the guiding is sent to the GTO of the thyristor.
  • the trigger signal is passed so that the capacitor C can discharge the arc through the resonant inductor L Z to the ultra-high speed mechanical switch K.
  • the current path of the capacitor C discharged to the ultrahigh speed mechanical switch K in this embodiment is as shown in FIG.
  • FIG. 6 is a schematic diagram of a forced current transfer path according to an embodiment of the present invention.
  • capacitor C injects a reverse current into the ultra-high speed mechanical switch K in this embodiment
  • the fault current is also charged to the capacitor C, so that the capacitor is The capacitor voltage begins to fall and reverse.
  • a latch trigger signal is sent to the thyristor GTO, thereby inserting the current limiting branch into the loop to limit the magnitude and rate of rise of the fault current.
  • FIG. 7 is a schematic diagram of an input current path of a current limiting branch according to an embodiment of the present invention.
  • the fault current sequentially flows through the current resistor R and the reactor L S .
  • the hybrid restrictor is controlled to operate in the normal operation mode, the ultra high speed mechanical switch K is reclosed, and the current limiting branch is bypassed to transfer the load current from the current limiting branch to the steady current circulating branch.
  • the invention provides a forced current transfer type hybrid current limiter based on a switchable valve, which has a simple and easy topology and strong operability.
  • a computer program to instruct related hardware
  • the program can be stored in a computer readable storage medium.
  • the program when executed, may include the flow of an embodiment of the methods as described above.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only, ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

一种基于可关断阀的强迫电流转移型混合式限流器,包括并联的限流支路、稳态通流支路、电弧电流处理支路和避雷器支路。限流支路包括串联的限流电阻(R)和电抗器(LS)。稳态通流支路包括超高速机械开关(K),用于传输负荷电流和转移故障电流。电弧电流处理支路包括全桥电路,用于辅助稳态通流支路转移故障电流。该种基于可关断阀的强迫电流转移型混合式限流器在电力***发生故障时通过电弧电流处理支路向稳态通流支路注入反向电流,使得稳态通流支路不受电弧电压影响能够可靠分断。

Description

一种基于可关断阀的强迫电流转移型混合式限流器 技术领域
本发明涉及交直流输电及电力电子技术领域,具体涉及一种基于可关断阀的强迫电流转移型混合式限流器。
背景技术
电力***故障后产生的故障电流会对电力设备的正常运行造成极大地电流冲击,使得电力设备承受较大的热应力和电动力,并在电力***的感性设备上产生较高的过电压。同时,故障电流会对电流分断设备的研制提出极高的技术要求,例如直流断路器等电流分断设备。
目前一般在电力***中安装电流限制器起到降低故障电流的目的。传统的故障电流限制器主要为超导限流器,但由于超导材料需要在极低温度下才能起作用,电力***正常运行过程中的稳态电流会在超导材料上产生较大的热损耗,容易造成超导失超现象,因此需要对其进行低温冷却,这又降低了超导限流器的可靠性。
文献《电力***故障电流限制器研究综述》提出的一种电弧电流转移型限流器,未采用超导材料而是采用真空开关结合放电间隙电弧电压控制的技术方案转移故障电流,克服了超导材料热损耗和可靠性低的缺陷,但是这种电弧电流转移型限流器可转移的电流受到电弧电压和引线杂散电感的影响较大,当电弧电压很低时故障电流很难被转移。
发明内容
为了克服现有技术的缺陷,本发明提供了一种基于可关断阀的强迫电流转移型混合式限流器。
本发明的技术方案是:
所述混合式限流器包括分别并联的限流支路、稳态通流支路、电弧电流处理支路和避雷器支路;
所述限流支路包括串联的限流电阻和电抗器;
所述稳态通流支路包括超高速机械开关,用于传输负荷电流和转移故障电流;
所述电弧电流处理支路包括全桥电路,用于辅助所述稳态通流支路转移故障电流。
本发明进一步提供的优选技术方案为:所述全桥电路包括分别并联的第一支路、第二支路和第三支路;
所述第一支路包括串联的可关断阀单元和二极管,所述第二支路包括串联的谐振电感和电容器;所述第三支路包括串联的可关断阀单元和二极管;
所述稳态通流支路的一端连接于所述第一支路中可关断阀单元与二极管之间,另一端连接于所述第二支路中可关断阀单元与二极管之间。
本发明进一步提供的优选技术方案为:
所述电容器的正极与谐振电感连接,负极分别与所述第一支路和第二支路中二极管的负极连接。
本发明进一步提供的优选技术方案为:所述第一支路和第二支路的可关断阀单元均包括多个串联的晶闸管;
所述晶闸管的串联数量依据所述混合式限流器待接入电力***的电压等级确定。
本发明进一步提供的优选技术方案为:当电力***正常运行时控制所述混合式限流器工作于正常运行模式,传输所述电力***的负荷电流,具体包括:
闭合稳态通流支路的超高速机械开关,闭锁电弧电流处理支路的可关断阀单元。
本发明进一步提供的优选技术方案为:当电力***发生故障时控制所述混合式限流器工作于故障运行模式,转移所述电力***的故障电流,具体包括:
断开稳态通流支路的超高速机械开关;
检测所述超高速机械开关的分断开距,当所述分断开距达到额定开距时触发电弧电流处理支路的可关断阀单元导通,所述电弧电流处理支路的电容器向所述超高速机械开关放电熄灭电弧;
检测所述电容器的端电压,当所述端电压为零时闭锁所述可关断阀单元。
与最接近的现有技术相比,本发明的有益效果是:
1、本发明提供的一种基于可关断阀的强迫电流转移型混合式限流器,当电力***发生故障时,电弧电流处理支路可以向稳态通流支路注入反向电流,使得超高速机械开关不受电弧电压影响能够可靠分断;
2、本发明提供的一种基于可关断阀的强迫电流转移型混合式限流器,电弧电流处理支路可以实现对电容器进行双向充电,即当故障电流流向不同方向时电容器均可以向其注入反向电流,辅助稳态通流支路的超高速机械开关熄灭电弧。同时,通过闭锁可关断阀单元可以快速切断流过电容器的故障电流;
3、本发明提供的一种基于可关断阀的强迫电流转移型混合式限流器,超高速机 械开关的触头接触电阻极低,产生的电压降和损耗极低,即降低了负荷电流损耗。
附图说明
图1:本发明实施例中一种基于可关断阀的强迫电流转移型混合式限流器的拓扑示意图;
图2:本发明实施例中混合式限流器处于正常运行模式时的状态示意图;
图3:本发明实施例中一种电容器放电示意图;
图4:本发明实施例中另一种电容器放电示意图;
图5为本发明实施例中电弧电流熄灭通路示意图;
图6为本发明实施例中强迫电流转移通路示意图;
图7为本发明实施例中限流支路投入电流通路示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面分别结合附图,对本发明实施例提供的一种基于可关断阀的强迫电流转移型混合式限流器进行说明。
图1为本发明实施例中一种基于可关断阀的强迫电流转移型混合式限流器的拓扑示意图,如图所示,本实施例中基于可关断阀的强迫电流转移型混合式限流器包括限流支路、稳态通流支路、电弧电流处理支路和避雷器支路四条并联支路。其中,
限流支路包括串联的限流电阻R和电抗器LS
稳态通流支路包括超高速机械开关K,用于传输负荷电流和转移故障电流。本实施例中当电力***正常运行时稳态通流支路用于传输负荷电流,当电力***发生故障时稳态通流支路用于转移故障电流。
电弧电流处理支路包括全桥电路,用于辅助稳态通流支路转移故障电流。
避雷器支路,用于防止限流支路在限流过程中产生过电压造成电力设备损坏。
本实施例提供的一种基于可关断阀的强迫电流转移型混合式限流器,当电力***发生故障时,电弧电流处理支路可以向稳态通流支路注入反向电流,使得超高速机械开关K不受电弧电压影响能够可靠分断。
进一步地,本发明中电弧电流处理支路可以采用下述拓扑结构。
本实施例中电弧电流处理支路的全桥电路包括分别并联的第一支路、第二支路和第三支路。其中,
第一支路包括串联的可关断阀单元和二极管,其可关断阀单元均包括多个串联的晶闸管,晶闸管的串联数量可以依据混合式限流器待接入电力***的电压等级确定。
第二支路包括串联的谐振电感和电容器,电容器的正极与谐振电感连接,负极分别与第一支路和第二支路中二极管的负极连接。
第三支路包括串联的可关断阀单元和二极管,其可关断阀单元均包括多个串联的晶闸管,晶闸管的串联数量可以依据混合式限流器待接入电力***的电压等级确定。
稳态通流支路的一端连接于第一支路中可关断阀单元与二极管之间,另一端连接于第二支路中可关断阀单元与二极管之间。
如图1所示,本实施例中第一支路包括串联的一个晶闸管GTO和二极管D,第二支路谐振电感LZ和电容器C,第三支路包括串联的一个晶闸管GTO和二极管D。其中,电容器C的正极与谐振电感LZ连接,电容器C的负极与上述两个二极管D的负极连接。其中,电弧电流处理支路工作前需要对电容器C进行预充电,使得其在工作后可以向稳态通流支路注入反向电流熄灭电弧。
图3和4为本发明实施例中两种电容器放电示意图,如图所示,本实施例中电弧电流处理支路可以实现对电容器C进行双向充/放电,即当故障电流流向不同方向时电容器C均可以向其注入反向电流,辅助稳态通流支路的超高速机械开关K熄灭电弧。同时,通过闭锁可关断阀单元可以快速切断流过电容器C的故障电流。
下面分别结合附图,对本发明实施例提供的一种基于可关断阀的强迫电流转移型混合式限流器的工作过程进行说明。
本发明中混合式限流器的工作模式包括正常运行模式和故障运行模式,其中,
1、当电力***正常运行时控制混合式限流器工作于正常运行模式,用于传输电力***的负荷电流。具体为:闭合稳态通流支路的超高速机械开关,闭锁电弧电流处理支路的可关断阀单元。
图2为本发明实施例中混合式限流器处于正常运行模式时的状态示意图,如图所示,本实施例中超高速机械开关K闭合,两个晶闸管GTO均闭锁,电力***的负荷电流通过稳态通流支路自左向右传输。本实施例中超高速机械开关K的触头接触电阻极低,产生的电压降和损耗极低,即降低了负荷电流损耗。
2、当电力***发生故障控制混合式限流器工作于故障运行模式,用于转移电力***的故障电流。具体为:
(1)断开稳态通流支路的超高速机械开关。
检测到电力***发生故障后,通过触发信号控制超高速机械开关快速断开。
(2)检测超高速机械开关的分断开距,当分断开距达到额定开距时触发电弧电流处理支路的可关断阀单元导通,电弧电流处理支路的电容器向超高速机械开关放电熄灭电弧。
图5为本发明实施例中电弧电流熄灭通路示意图,如图所示,本实施例中检测超高速机械开关K的分断开距,当分断开距达到其额定开距后向晶闸管GTO发送导通触发信号,使得电容器C可以通过谐振电感LZ向超高速机械开关K放电熄灭电弧。本实施例中电容器C向超高速机械开关K放电的电流路径如图3所示。
(3)检测电容器的端电压,当端电压为零时闭锁可关断阀单元。
图6为本发明实施例中强迫电流转移通路示意图,如图所示,本实施例中当电容器C向超高速机械开关K注入反向电流时,故障电流也会向电容器C充电,使得电容器的电容电压开始下降并反向,当电容电压降为零时向晶闸管GTO发送闭锁触发信号,从而将限流支路***回路限制故障电流的幅值和上升率。
图7为本发明实施例中限流支路投入电流通路示意图,如图所示,本实施例中故障电流顺次通过电流电阻R和电抗器LS流通。当故障电流抑制完成后控制混合式限流器工作于正常运行模式,重新闭合超高速机械开关K,将限流支路旁路使得负荷电流从限流支路转移至稳态通流支路。
本发明提供的一种基于可关断阀的强迫电流转移型混合式限流器的拓扑结构简单易行,具有很强的操作性。同时,本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (6)

  1. 一种基于可关断阀的强迫电流转移型混合式限流器,其特征在于,所述混合式限流器包括分别并联的限流支路、稳态通流支路、电弧电流处理支路和避雷器支路;
    所述限流支路包括串联的限流电阻和电抗器;
    所述稳态通流支路包括超高速机械开关,用于传输负荷电流和转移故障电流;
    所述电弧电流处理支路包括全桥电路,用于辅助所述稳态通流支路转移故障电流。
  2. 如权利要求1所述的一种基于可关断阀的强迫电流转移型混合式限流器,其特征在于,所述全桥电路包括分别并联的第一支路、第二支路和第三支路;
    所述第一支路包括串联的可关断阀单元和二极管,所述第二支路包括串联的谐振电感和电容器;所述第三支路包括串联的可关断阀单元和二极管;
    所述稳态通流支路的一端连接于所述第一支路中可关断阀单元与二极管之间,另一端连接于所述第二支路中可关断阀单元与二极管之间。
  3. 如权利要求2所述的一种基于可关断阀的强迫电流转移型混合式限流器,其特征在于,
    所述电容器的正极与谐振电感连接,负极分别与所述第一支路和第二支路中二极管的负极连接。
  4. 如权利要求2所述的一种基于可关断阀的强迫电流转移型混合式限流器,其特征在于,所述第一支路和第二支路的可关断阀单元均包括多个串联的晶闸管;
    所述晶闸管的串联数量依据所述混合式限流器待接入电力***的电压等级确定。
  5. 如权利要求1-4任一项所述的一种基于可关断阀的强迫电流转移型混合式限流器,其特征在于,当电力***正常运行时控制所述混合式限流器工作于正常运行模式,传输所述电力***的负荷电流,具体包括:
    闭合稳态通流支路的超高速机械开关,闭锁电弧电流处理支路的可关断阀单元。
  6. 如权利要求1-4任一项所述的一种基于可关断阀的强迫电流转移型混合式限流器,其特征在于,当电力***发生故障时控制所述混合式限流器工作于故 障运行模式,转移所述电力***的故障电流,具体包括:
    断开稳态通流支路的超高速机械开关;
    检测所述超高速机械开关的分断开距,当所述分断开距达到额定开距时触发电弧电流处理支路的可关断阀单元导通,所述电弧电流处理支路的电容器向所述超高速机械开关放电熄灭电弧;
    检测所述电容器的端电压,当所述端电压为零时闭锁所述可关断阀单元。
PCT/CN2017/084491 2016-08-23 2017-05-16 一种基于可关断阀的强迫电流转移型混合式限流器 WO2018036214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610705506.1A CN107769179A (zh) 2016-08-23 2016-08-23 一种基于可关断阀的强迫电流转移型混合式限流器
CN201610705506.1 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018036214A1 true WO2018036214A1 (zh) 2018-03-01

Family

ID=61246327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084491 WO2018036214A1 (zh) 2016-08-23 2017-05-16 一种基于可关断阀的强迫电流转移型混合式限流器

Country Status (2)

Country Link
CN (1) CN107769179A (zh)
WO (1) WO2018036214A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法
CN113162000A (zh) * 2021-01-08 2021-07-23 天津大学 一种改进的自适应限流直流固态断路器及其控制方法
CN113422358A (zh) * 2021-07-22 2021-09-21 全球能源互联网研究院有限公司 一种有源振荡型直流断路器及其应用方法
CN113422359A (zh) * 2021-07-22 2021-09-21 全球能源互联网研究院有限公司 一种直流断路器及其应用方法
CN113922345A (zh) * 2021-09-30 2022-01-11 广东电网有限责任公司 一种直流无弧故障限流器及控制方法
CN114336550A (zh) * 2022-01-05 2022-04-12 全球能源互联网研究院有限公司 一种自取能多端口直流断路器及应用方法
EP4138245A4 (en) * 2020-04-16 2023-06-07 Mitsubishi Electric Corporation ENERGY DISTRIBUTION SYSTEM FOR MOBILE BODY

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288849A (zh) * 2018-03-23 2018-07-17 西安交通大学 一种超导限流式低损耗混合直流断路器及其开断电流方法
CN110323721B (zh) * 2018-03-30 2023-05-23 全球能源互联网研究院有限公司 一种机械自激振荡型直流断路器、参数确定方法和装置
CN108649544A (zh) * 2018-06-01 2018-10-12 重庆大学 一种机械式高压直流断路器装置及其开断方法
CN109066606A (zh) * 2018-07-12 2018-12-21 武汉杭久电气有限公司 一种双向强迫换流型直流限流断路器
CN109728571A (zh) * 2018-12-19 2019-05-07 华北电力大学 一种电容换相混合式故障限流器及其控制方法
CN110212506B (zh) * 2019-06-14 2021-07-20 哈尔滨工业大学 一种可级联式固态直流故障限流器、级联结构及工作方法
CN111564830B (zh) * 2020-07-15 2020-10-13 天津动态智能科技有限公司 一种基于人工过零限流的变压器限流装置的限流方法
CN114172132A (zh) * 2021-12-07 2022-03-11 广东电网有限责任公司 一种双向限流的直流限流器
CN116667300B (zh) * 2023-06-09 2024-03-15 暨南大学 固态直流限流器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737724A (en) * 1970-08-06 1973-06-05 Kind D Current limiting interruption of currents at high voltages
CN101515710A (zh) * 2009-04-07 2009-08-26 东南大学 基于反向电流注入法的直流限流断路装置
CN103346531A (zh) * 2013-02-06 2013-10-09 西安交通大学 一种双向分断的混合式断路器
CN103414175A (zh) * 2013-07-29 2013-11-27 西安交通大学 一种短路故障限流器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203632229U (zh) * 2013-07-29 2014-06-04 西安交通大学 一种短路故障限流器
CN204732845U (zh) * 2015-06-02 2015-10-28 荣信电力电子股份有限公司 一种全固态直流断路器
CN205429693U (zh) * 2015-11-20 2016-08-03 中国船舶重工集团公司第七一二研究所 一种双向混合式直流断路器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737724A (en) * 1970-08-06 1973-06-05 Kind D Current limiting interruption of currents at high voltages
CN101515710A (zh) * 2009-04-07 2009-08-26 东南大学 基于反向电流注入法的直流限流断路装置
CN103346531A (zh) * 2013-02-06 2013-10-09 西安交通大学 一种双向分断的混合式断路器
CN103414175A (zh) * 2013-07-29 2013-11-27 西安交通大学 一种短路故障限流器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIANG, DAOZHUO ET AL.: "A Scheme for Current-limitin Hybrid DC Circuit Breaker", AUTOMATION OF ELECTRIC POWER SYSTEMS, vol. 38, no. 4, 25 February 2014 (2014-02-25), pages 65 - 68 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109981092A (zh) * 2019-01-14 2019-07-05 全球能源互联网研究院有限公司 一种全桥模块、全桥模块的混合式直流断路器及应用方法
EP4138245A4 (en) * 2020-04-16 2023-06-07 Mitsubishi Electric Corporation ENERGY DISTRIBUTION SYSTEM FOR MOBILE BODY
US11962142B2 (en) 2020-04-16 2024-04-16 Mitsubishi Electric Corporation Power distribution system for moving body
CN113162000A (zh) * 2021-01-08 2021-07-23 天津大学 一种改进的自适应限流直流固态断路器及其控制方法
CN113162000B (zh) * 2021-01-08 2023-02-21 天津大学 一种改进的自适应限流直流固态断路器及其控制方法
CN113422358A (zh) * 2021-07-22 2021-09-21 全球能源互联网研究院有限公司 一种有源振荡型直流断路器及其应用方法
CN113422359A (zh) * 2021-07-22 2021-09-21 全球能源互联网研究院有限公司 一种直流断路器及其应用方法
CN113922345A (zh) * 2021-09-30 2022-01-11 广东电网有限责任公司 一种直流无弧故障限流器及控制方法
CN113922345B (zh) * 2021-09-30 2023-06-09 广东电网有限责任公司 一种直流无弧故障限流器及控制方法
CN114336550A (zh) * 2022-01-05 2022-04-12 全球能源互联网研究院有限公司 一种自取能多端口直流断路器及应用方法

Also Published As

Publication number Publication date
CN107769179A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2018036214A1 (zh) 一种基于可关断阀的强迫电流转移型混合式限流器
CN100588067C (zh) 复合超导故障限流器
CN104242265B (zh) 一种直流配电网全固态直流断路器
JP6134778B2 (ja) 直流遮断器およびその遮断方法
CN106207953B (zh) 大功率混合式直流断路器
KR100763163B1 (ko) 재폐로 동작이 가능한 초전도 한류 시스템
US9362734B2 (en) Apparatus for limiting current of line or breaking current, and control method thereof
CN107276045B (zh) 一种混合直流限流断路器
WO2016197973A1 (zh) 预充电型高速直流断路器及其控制方法和存储介质
KR101044492B1 (ko) 하이브리드 한류기
WO2018076431A1 (zh) 一种短路故障限流器
US8284529B2 (en) Reclosing control system and method using superconducting fault current limiter
WO2015024509A1 (zh) 一种高压大电流直流断路器及其控制方法
Xiang et al. Study on the parameter requirements for resistive-type superconducting fault current limiters combined with mechanical DC circuit breakers in hybrid AC/DC transmission grids
CN106206208A (zh) 大功率双向开断的混合式直流断路器
CN107134762B (zh) 一种基于超导限流的无弧直流断路器及开断方法
CN109687405A (zh) 一种多端口组合型混合式直流断路器及控制方法
CN103199505A (zh) 高压电池组输出短路保护电路
KR20130011817A (ko) 한류기
JP2013027309A (ja) 限流器
CN106711930A (zh) 一种直流断路器及其控制方法
CN105680411A (zh) 直流固态断路器及断路控制方法
CN107769178A (zh) 一种基于正温度系数阻性材料的混合式限流器
CN203193261U (zh) 高压电池组输出短路保护电路
CN107069653B (zh) 一种直流限流开断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17842639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17842639

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 A DATED 04/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17842639

Country of ref document: EP

Kind code of ref document: A1