WO2018033989A1 - Protection device for power conversion device, and elevator control device - Google Patents

Protection device for power conversion device, and elevator control device Download PDF

Info

Publication number
WO2018033989A1
WO2018033989A1 PCT/JP2016/074127 JP2016074127W WO2018033989A1 WO 2018033989 A1 WO2018033989 A1 WO 2018033989A1 JP 2016074127 W JP2016074127 W JP 2016074127W WO 2018033989 A1 WO2018033989 A1 WO 2018033989A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
circuit
negative
gate
Prior art date
Application number
PCT/JP2016/074127
Other languages
French (fr)
Japanese (ja)
Inventor
彰 ▲高▼尾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/074127 priority Critical patent/WO2018033989A1/en
Publication of WO2018033989A1 publication Critical patent/WO2018033989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a protection device for a power conversion device and an elevator control device using the protection device for the power conversion device.
  • a control circuit for controlling on / off of the power semiconductor element, a DC power supply for supplying a voltage between the control terminals of the power semiconductor element, and a control terminal of the power semiconductor element are connected.
  • a switching power source, and a DC power source is a first DC power source that supplies a positive voltage between the control terminals of the power semiconductor element when the power semiconductor element is on, and a power source when the power semiconductor element is off.
  • a second DC power supply for supplying a negative voltage between the control terminals of the semiconductor element for switching, and the switching element is turned on when the power supply voltage of the second DC power supply is lowered, or the second DC power supply. Is turned on when the voltage between the control terminals of the power semiconductor element rises in a state where the power supply voltage of the power supply voltage decreases, and the control terminal of the power semiconductor element is short-circuited (for example, see Patent Document 1 below).
  • a series circuit of a diode and a normally-on element that is a switching element is connected between the control terminals of the power semiconductor element, and a voltage of about 1 V is connected to the control circuit power supply. Since it occurs between GNDs, only semiconductor elements with a threshold voltage of 1 V or higher can be protected.
  • the power storage unit including the DC link capacitor of the power conversion device is in the power storage state, the negative voltage between the gate G and the emitter E of the power semiconductor element disappears, and noise or the like controls the drive circuit or the power semiconductor element.
  • a low voltage threshold element such as a depletion type element, a normally-on element, or SiC (silicon carbide) increases the possibility of being turned on at a low voltage.
  • the present invention has been made in order to solve the above-described problem, and protects a power conversion device that protects more safely by controlling the control signal terminal voltage of a power semiconductor element of the power conversion device according to the state of a power supply. And it aims at providing the control apparatus of the elevator which uses the protection apparatus of this power converter device.
  • the present invention includes a power conversion unit that has a plurality of power semiconductor elements and performs power conversion of power from a main circuit power supply, and a serially connected positive power supply obtained by converting power from the main circuit power supply.
  • a gate power supply circuit having a negative power supply, connected between the positive power supply connected in series and both ends of the negative power supply, and a positive voltage of the positive power supply between control terminals of the power semiconductor element according to a control command from the outside
  • a gate drive circuit including a drive circuit provided in each of the plurality of power semiconductor elements, the driver circuit having a driver circuit that switches and supplies a negative voltage of the negative power source,
  • the driving circuit for the power semiconductor element on the lower arm side includes a series circuit composed of a resistor and a capacitor between a gate and an emitter of the power semiconductor element, and an annunciator at a connection point of the resistor and the capacitor.
  • a protection circuit having a cathode connected to a negative electrode of the negative power supply, between the positive power supply and the negative power supply and the driver circuit, or between the gate of the power semiconductor element and the driver circuit Or a cutoff switch that opens when the negative power source disappears between the gate of the power semiconductor element and the ground.
  • a protection device for a power conversion device that controls the control signal terminal voltage of the power semiconductor element of the power conversion device according to the state of the power supply for safer protection and control of an elevator using the protection device for the power conversion device
  • FIG. 1 It is a figure which shows an example of a structure of the control apparatus of the elevator which uses the protection apparatus of the power converter device by one Embodiment of this invention, for example. It is a figure which shows the relationship between the gate drive circuit of FIG. 1, and an inverter. It is a figure which shows an example of a structure of the drive circuit for the power element of the lower arm side of the protection apparatus of the power converter device by this invention. It is a figure which shows an example of a structure of the drive circuit for the power element of the upper arm side of the protection apparatus of the power converter device by this invention.
  • a protection circuit is provided that holds a voltage between the gate G and the emitter E of the power semiconductor element when the negative power supply disappears.
  • a negative bias is maintained at the gate terminal which is a control signal terminal of the power semiconductor element to prevent a short circuit.
  • FIG. 1 is a diagram showing an example of the configuration of an elevator control device, for example, using a power converter protection device according to an embodiment of the present invention.
  • the elevator has a counterweight 202 fixed to one end of a rope 203 and a car 201 fixed to the other end.
  • a rope 203 is wound around a sheave 204 of the hoisting machine, and the car 201 is formed to move up and down by rotating the sheave 204 by the motor 105 of the hoisting machine.
  • the elevator control device has, for example, a three-phase AC power source 100 which is a main power source, a main power switch S1 having a normally open contact, a normally open contact 101 of an electromagnetic switch, and a pulsating AC from the three-phase AC power source 100.
  • a converter 102 that converts to direct current
  • a DC link capacitor 103 that is a main circuit capacitor that smoothes pulsation to make direct current
  • a plurality of power semiconductor elements 4 that convert the smoothed direct current to a desired alternating voltage
  • an inverter 104 that drives and controls the motor 105 that is a hoisting machine with the converted AC voltage.
  • the three-phase AC power source 100, the main power switch S1, the normally open contact 101, the converter 102, the DC link capacitor 103, the inverter 104, and the motor 105 constitute a main circuit.
  • the inverter 104 is a power conversion unit according to the protection device of the present invention.
  • the power semiconductor element 4 is referred to as a power element 4 or the like.
  • the AC power supply is not limited to a three-phase one.
  • the protection device of the present invention can also be applied to a regenerative converter.
  • the power element 4 made of a semiconductor of the inverter 104 is on / off controlled by the gate drive circuit 108.
  • a charge / discharge circuit 106 that charges and discharges the DC link capacitor 103 charged by the three-phase AC power supply 100 via the main power switch S ⁇ b> 1 is connected to both ends of the DC link capacitor 103.
  • the gate power supply circuit 107 converts the alternating current from the three-phase alternating current power supply 100 obtained through the main power supply switch S1 into a direct current, and becomes a direct current power supply for the gate drive circuit 108. For example, as shown in FIG.
  • the gate power supply circuit 107 converts the direct current converted by the AC / DC converter 107a or the AC / DC converter 107a and the AC / DC converter 107a into a direct current of a desired voltage. It is configured by a DC / DC converter 107b.
  • the elevator control unit 109 generates a control command CCS for controlling the gate drive circuit 108 and the charge / discharge circuit 106.
  • the elevator control apparatus configured as described above, when the main power switch S1 is turned on and the normally open contact 101 is closed from the open state, an AC voltage is input to the gate power supply circuit 107. As a result, a DC voltage is supplied to the gate drive circuit 108. On the other hand, alternating current from the three-phase alternating current power supply 100 is converted into direct current through the converter 102 and the DC link capacitor 103 and input to the inverter 104.
  • the gate drive circuit 108 controls the inverter 104 according to a control command CCS from the elevator control unit 109 to stop or drive the motor 105 of the hoisting machine. As a result, the car 201 moves up and down.
  • FIG. 2 is a diagram showing the relationship between the gate drive circuit 108 and the inverter 104 in FIG.
  • the inverter 104 is provided with a pair of power elements each composed of a power element 4a on the lower arm side and a power element 4b on the upper arm side for each phase.
  • FIG. 2 shows an example in the case of a single phase, it can also be applied to a two-phase or three-phase circuit.
  • the gate drive circuit 108 includes a respective drive circuit 108a for each lower arm side power element 4a and a respective drive circuit 108b for each upper arm side power element 4b.
  • FIG. 3 shows an example of the configuration of the protection device for the power conversion device according to the present invention, and shows an example of the configuration of the drive circuit 108a for the power element 4a on the lower arm side of FIG.
  • FIG. 4 shows an example of the configuration of the drive circuit 108b for the power element 4b on the upper arm side of FIG.
  • the protection circuit 17 is connected between the gate and the emitter of the power element 4a.
  • first to fourth cutoff switches 13-16 are provided. Although the cutoff switch 13-16 is shown in an open state, it is normally in a closed state. The entire protection circuit 17 is included in the drive circuit 108a, and so on.
  • a positive power supply 11 and a negative power supply 12 on both positive and negative sides are connected in series to the ground (GND).
  • the drive circuit 108a between the positive electrode of the positive power supply 11 and the negative electrode of the negative power supply 12, a series circuit of the positive driver switch 32a and the negative driver switch 32b and the drive of the control command CCS from the elevator control unit 109 are driven.
  • a changeover control switch 31 that is turned on and off in accordance with the command signal DC is connected in parallel.
  • These positive side driver switch 32a, negative side driver switch 32b, switching control switch 31, and resistor 34 constitute a driver circuit 33.
  • the input signal to the switching control switch 31 may be a control driving signal obtained by converting the driving command signal DC from the elevator control unit 109 into a signal suitable for switching control in the driving circuit 108a.
  • Each of the switches 31, 32a, 32b is composed of, for example, an npn type bipolar transistor.
  • the base of the positive side driver switch 32 a is connected to the collector of the changeover control switch 31 and one end of the resistor 34, and the collector of the positive side driver switch 32 a is connected to the other end of the resistor 34 and the collector of the changeover control switch 31 via the resistor 34.
  • Connected to The emitter of the positive driver switch 32a is connected to the emitter of the negative driver switch 32b;
  • the base of the negative driver switch 32b is connected to the collector of the changeover control switch 31 and one end of the resistor 34 together with the base of the positive driver switch 32a.
  • the collector of the negative side driver switch 32b is connected to the emitter of the changeover control switch 31, A drive command signal DC is input to the base of the changeover control switch 31.
  • the collector of the positive side driver switch 32 a is connected to the positive electrode of the positive power source 11 via the first cutoff switch 13.
  • the base of the positive driver switch 32 a, the base of the negative driver switch 32 b, and the collector of the changeover control switch 31 are connected to the positive electrode of the positive power supply 11 via the resistor 34 and the first cutoff switch 13.
  • the collector of the negative driver switch 32 b and the emitter of the changeover control switch 31 are connected to the negative electrode of the negative power supply 12 through the second cutoff switch 14.
  • the connection point between the emitter of the positive driver switch 32a and the emitter of the negative driver switch 32b is connected to the gate G, which is the control signal terminal of the power element 4a on the lower arm side of the inverter 104, via the third cutoff switch 15. It is connected to the.
  • the power element 4a is constituted by, for example, an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor).
  • a protection circuit 17 is connected between the gate and emitter of the power element 4a.
  • the protection circuit 17 has a series circuit in which a resistor 17a and a capacitor 17b are connected in this order between the gate and emitter of the power element 4a, and an anode connected to a connection point between the capacitor 17b and the resistor 17a, and a cathode connected to the negative side driver switch 32b. It consists of a diode 17c connected to the connection point side of the collector, the emitter of the changeover control switch 31, and the second cutoff switch 14.
  • the emitter of the power element 4 a on the lower arm side in FIG. 3 is further connected to the ground through the fourth cutoff switch 16 together with the negative electrode of the DC link capacitor 103.
  • the collector of the power element 4a is connected to the emitter of the power element 4b made of the IGBT on the upper arm side in FIG.
  • the collector of the power element 4 b on the upper arm side in FIG. 4 is connected to the positive side of the DC link capacitor 103. That is, the upper arm side power element 4b and the lower arm side power element 4a are connected in series, and a DC link capacitor 103 is connected in parallel to the series circuit of the power element 4a and the power element 4b.
  • 3 and 4 show the gate power supply circuit and the drive circuit independently on the lower arm side and the upper arm side, and the DC link capacitor 103 is the same.
  • the drive circuit 108b on the upper arm side in FIG. 4 does not include the protection circuit 17 and the first to fourth cutoff switches 13-16 shown in FIG.
  • the basic operation of the driver circuit 33 of the drive circuits 108a and 108b in FIGS. 3 and 4 is the same.
  • the switching control switch 31 is turned off by the drive command signal DC from the elevator control unit 109 or the control drive signal generated by the drive circuit 108a according to the drive command signal DC
  • the positive driver switch 32a is turned on and the negative driver switch is turned on.
  • 32b is turned off, the voltage due to the positive voltage of the positive power supply 11 is applied as the control signal CS to the gate G which is the control signal terminal of the power element 4a of the inverter 104, and the power element 4a is turned on.
  • the positive driver switch 32 a When the changeover control switch 31 is in the on state, the positive driver switch 32 a is turned off and the negative driver switch 32 b is turned on, and the voltage due to the negative voltage of the negative power supply 12 is applied to the gate G of the power element 4 a of the inverter 104. Applied as the control signal CS, the power element 4a is turned off. That is, the driver circuit 33 switches between the positive voltage of the positive power supply 11 and the negative voltage of the negative power supply 12 between the gate and the emitter, which is between the control terminals of the power element 4a.
  • the drive circuit 108a for the power element 4a on the lower arm side in FIG. 3 includes a power element 4a of the inverter 104, a drive command signal DC for instructing on / off of the power element 4a, and a positive power supply 11 to the power element, A negative power source 12, a cut-off switch 13-16 that shuts off when the negative power source 12 disappears, and a protection circuit 17 that applies a negative bias between the gate G and the emitter E of the power element 4a when the negative power source 12 is discharged. It is configured.
  • the voltage is supplied from the main power source, for example, the three-phase AC power source 100 to the positive power source 11 and the negative power source 12, but the power source of the elevator system is shut off, for example When a power failure occurs, the power supply source from the three-phase AC power supply 100 disappears, the positive power supply 11 and the negative power supply 12 are discharged through the resistance component of the power supply components, and the voltage disappears.
  • the DC link capacitor 103 of the main circuit generally has a longer time constant and a longer time until the voltage disappears because the capacitor capacity is larger than that of the negative power supply 12.
  • the power element 4a When the voltage of the negative power source 12 disappears and the voltage of the DC link capacitor 103 does not disappear, if a positive voltage is applied between the gate G and the emitter E of the power element 4a due to noise or the like, the power element 4a The power element 4a and, for example, the motor 105 controlled by the power element 4a may be damaged.
  • the drive circuit 108a in FIG. 3 has a protection circuit 17 and a cutoff switch 13-16.
  • a voltage is applied to the capacitor 17 b of the protection circuit 17 from the negative power supply 12 through GND, the fourth cutoff switch 16, the diode 17 c, and the second cutoff switch 14.
  • the applied voltage does not change even when the power element 4a is turned on / off, that is, the voltage between the gate G and the emitter E becomes a positive voltage, 0 V, or a negative voltage.
  • the first to fourth cutoff switches 13-16 in FIG. 3 are each constituted by a relay switch or a semiconductor switch.
  • the cutoff switches 13-16 are constituted by relay switches, for example, a relay driving circuit as shown in FIG. 8 for driving these relay switches is provided in the gate driving circuit.
  • the relay drive circuit of FIG. 8 is an example of a circuit for driving two cutoff switches.
  • the power supply PS is connected between the ground and the ground.
  • the cutoff switch is shown in an open state in FIG. 3, but the relay contact is a B contact, that is, a normally closed contact.
  • the elevator control unit 109 includes a power cutoff command SI, a power failure occurrence signal PF, and a gate power supply abnormality signal as a control command CCS to the gate drive circuit 108 in order to detect the power cutoff of the elevator system and the occurrence of a power failure.
  • the interruption signal INT is output.
  • the negative power source 12 of the gate power source circuit 107 has, for example, the voltage of the negative power source 12 to be lower than the set value as shown in FIG.
  • a voltage detector VD is provided that outputs a cut-off signal INT when it is detected.
  • the on / off switch SW in FIG. 8 receives the cutoff signal INT from the elevator control unit 109 and the voltage detector VD, and turns on when the cutoff signal INT is input, and the relay coil RC connected in series is energized. The relay contact is opened.
  • the relay driving circuit may be shared by each driving circuit 108a, or may be provided individually.
  • FIG. 5 is a diagram showing an example of the configuration when the cutoff switch of the drive circuit for the power element on the lower arm side of the protection device of the power converter according to the present invention is configured by a semiconductor switch.
  • FIG. 5 shows a circuit based on the operation when the system is powered off, using the first and second cutoff switches 13 and 14 of FIG. 3 as semiconductor switches, for example.
  • the cutoff switches 13 and 14 are constituted by npn type bipolar transistors.
  • FIG. 5 shows that when the three-phase AC power supply 100 which is the main power supply of the system is cut off, the power cut-off command SI which is the cut-off signal INT becomes an off command, and no current flows to the photocoupler 22 and the cut-off switches 13 and 14 are turned off. Therefore, the current path of the series circuit of the resistor 17a and the capacitor 17b of the protection circuit 17 is eliminated, the voltage of the capacitor 17b is not lost, and the negative voltage is maintained between the gate G and the emitter E of the power element 4a. 4a is not turned on.
  • Each photocoupler 22 and each cutoff switch 13, 14 are connected via resistors 13a, 14a, respectively.
  • the gate power supply circuit 107 is not included in the drive circuit 108a, and the same applies hereinafter.
  • FIG. 6 is a diagram showing another example of the configuration in the case where the cutoff switch of the drive circuit for the power element on the lower arm side of the protection device of the power conversion device according to the present invention is configured by a semiconductor switch.
  • the third cutoff switch 15 in FIG. 3 is changed to one constituted by two transistors 23 and 24 and a capacitor 25.
  • a capacitor 25 is connected in parallel across the transistor.
  • the power shut-off command SI that is the shut-off signal INT becomes an off command, so that no current flows to the photocoupler 22 and the transistors 23 and 24 are off. Therefore, the current path of the series circuit of the resistor 17a and the capacitor 17b of the protection circuit 17 is eliminated, the voltage of the capacitor 17b is not lost, and the negative voltage is maintained between the gate G and the emitter E of the power element 4a. The element 4a is not turned on.
  • each of the transistors 23 and 24 are connected to each other, and the collector of the transistor 23 is connected to the emitter of the positive side driver switch 32 a of the driver circuit 33 and the emitter of the negative side driver switch 32 b.
  • the emitter of the transistor 24 is connected to the gate of the power element 4 a, and the bases of the transistors 23 and 24 are connected to the respective photocouplers 22.
  • a capacitor 25 is connected between the collector of the transistor 23 and the emitter of the transistor 24.
  • each of the transistors 23 and 24 includes parasitic diodes 23a and 24a, respectively.
  • FIG. 7 is a diagram showing still another example of a configuration in which the cutoff switch of the drive circuit for the power element on the lower arm side of the protection device of the power conversion device according to the present invention is configured by a semiconductor switch.
  • the fourth cutoff switch 16 of FIG. 3 is changed to one constituted by two transistors 23 and 24 and a capacitor 25 as in FIG.
  • a capacitor 25 is connected in parallel across the transistor.
  • the power shut-off command SI that is the shut-off signal INT becomes an off command, so that no current flows to the photocoupler 22 and the transistors 23 and 24 are off. Therefore, the current path of the series circuit of the resistor 17a and the capacitor 17b of the protection circuit 17 is eliminated, the voltage of the capacitor 17b is not lost, and the negative voltage is maintained between the gate G and the emitter E of the power element 4a. The element 4a is not turned on.
  • each of the transistors 23 and 24 includes parasitic diodes 23a and 24a, respectively.
  • the protection device for a power conversion device according to the present invention is applied to, for example, a power element of an inverter that is a power conversion unit of an elevator control device.
  • the present invention is not limited to this. It can be applied to the power element of the lower arm of the power converter including an AC-DC converter, a DC-DC converter, an inverter, and the like.
  • the power element 4 of the power conversion unit is formed of a wide band gap semiconductor.
  • Wide bandgap semiconductors have high voltage resistance and high allowable current density, so switching elements and diode elements can be miniaturized. By using these miniaturized switching elements and diode elements, these elements can be used. Therefore, it is possible to reduce the size of the protection device for the power conversion device and the control device for the elevator.
  • the present invention can be applied to power converters in various fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Disclosed is a protection device for a power conversion device, said protection device comprising: a power conversion unit that has a plurality of power elements and converts power supplied from a main circuit power supply; a gate power supply circuit having a positive power supply and a negative power supply that are obtained by converting the power supplied from the main circuit power supply and are connected in series; and a gate drive circuit including drive circuits respectively provided to the power elements, each having a driver circuit that is connected between the series-connected ends of the positive power supply and the negative power supply and, in accordance with a control command, switches between and supplies the positive voltage of the positive power supply and the negative voltage of the negative power supply to between control terminals of a power element. Therein, the drive circuit of the lower arm-side power element includes a protection circuit having: a series circuit configured from a capacitor and a resistor between the gate and the emitter of the power element; and a diode connected between the negative power supply and a connecting point between the resistor and the capacitor. Said drive circuit also includes one or more shutoff switches that open when the negative power supply is eliminated, provided such that shutoff switches are between the positive power supply and the driver circuit and between the negative power supply and the driver circuit, respectively, or such that a shutoff switch is between the gate of the power element and the driver circuit or between the gate of the power element and the ground.

Description

電力変換装置の保護装置、エレベータの制御装置Protection device for power conversion device, control device for elevator
 この発明は、電力変換装置の保護装置およびこの電力変換装置の保護装置を使用したエレベータの制御装置に関する。 The present invention relates to a protection device for a power conversion device and an elevator control device using the protection device for the power conversion device.
 従来の電力変換装置の保護装置として、電力用半導体素子のオンオフを制御する制御回路と、電力用半導体素子の制御端子間に電圧を供給する直流電源と、電力用半導体素子の制御端子間に接続されたスイッチング素子とを備え、直流電源は、電力用半導体素子がオン状態で電力用半導体素子の制御端子間に正電圧を供給する第一の直流電源と、電力用半導体素子がオフ状態で電力用半導体素子の制御端子間に負電圧を供給する第二の直流電源とで構成され、スイッチング素子は、第二の直流電源の電源電圧が低下した場合にオンし、または、第二の直流電源の電源電圧が低下した状態で電力用半導体素子の制御端子間電圧が上昇した場合にオンし、電力用半導体素子の制御端子間を短絡させるものがある(例えば下記特許文献1参照)。 As a protection device for a conventional power converter, a control circuit for controlling on / off of the power semiconductor element, a DC power supply for supplying a voltage between the control terminals of the power semiconductor element, and a control terminal of the power semiconductor element are connected. A switching power source, and a DC power source is a first DC power source that supplies a positive voltage between the control terminals of the power semiconductor element when the power semiconductor element is on, and a power source when the power semiconductor element is off. And a second DC power supply for supplying a negative voltage between the control terminals of the semiconductor element for switching, and the switching element is turned on when the power supply voltage of the second DC power supply is lowered, or the second DC power supply. Is turned on when the voltage between the control terminals of the power semiconductor element rises in a state where the power supply voltage of the power supply voltage decreases, and the control terminal of the power semiconductor element is short-circuited (for example, see Patent Document 1 below).
特開2013-179828号公報JP 2013-179828 A
 上記の従来の電力変換装置の保護装置では、ダイオードとスイッチング素子であるノーマリーオン素子との直列回路が電力用半導体素子の制御端子間に接続されており、1V程度の電圧が制御回路電源とGND間に発生するため、閾値電圧1V以上の半導体素子のみが保護可能であった。
 また、電力変換装置のDCリンク用コンデンサ等からなる蓄電部が蓄電状態で、電力用半導体素子のゲートG-エミッタE間の負電圧が消失し、ノイズ等により駆動回路または電力用半導体素子の制御端子間に正電圧が印加され、電力用半導体素子のゲートGに供給されたときに、電力用半導体素子がオンし続け、電力用半導体素子または電力変換装置の制御対象であるモータ等が損傷する恐れがあった。特にディプレッション型素子、ノーマリーオン素子、SiC(炭化ケイ素)等の低電圧閾値素子では低電圧でオンする可能性が高まる。
In the protection device for the conventional power converter described above, a series circuit of a diode and a normally-on element that is a switching element is connected between the control terminals of the power semiconductor element, and a voltage of about 1 V is connected to the control circuit power supply. Since it occurs between GNDs, only semiconductor elements with a threshold voltage of 1 V or higher can be protected.
In addition, when the power storage unit including the DC link capacitor of the power conversion device is in the power storage state, the negative voltage between the gate G and the emitter E of the power semiconductor element disappears, and noise or the like controls the drive circuit or the power semiconductor element. When a positive voltage is applied between the terminals and supplied to the gate G of the power semiconductor element, the power semiconductor element continues to be turned on, and the power semiconductor element or the motor controlled by the power converter is damaged. There was a fear. In particular, a low voltage threshold element such as a depletion type element, a normally-on element, or SiC (silicon carbide) increases the possibility of being turned on at a low voltage.
 この発明は、上記の課題を解決するためになされたものであり、電源の状態に従って電力変換装置の電力用半導体素子の制御信号端子電圧を制御してより安全に保護する電力変換装置の保護装置およびこの電力変換装置の保護装置を使用したエレベータの制御装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problem, and protects a power conversion device that protects more safely by controlling the control signal terminal voltage of a power semiconductor element of the power conversion device according to the state of a power supply. And it aims at providing the control apparatus of the elevator which uses the protection apparatus of this power converter device.
 この発明は、複数の電力用半導体素子を有し主回路電源からの電力の電力変換を行う電力変換部と、前記主回路電源からの電力を変換して得られた直列接続された正電源と負電源を有するゲート電源回路と、直列接続された前記正電源と前記負電源の両端間に接続され、外部からの制御指令に従って前記電力用半導体素子の制御端子間に前記正電源の正電圧と前記負電源の負電圧を切り替えて供給するドライバ回路を有する、前記複数の電力用半導体素子のそれぞれに設けられた駆動回路を含むゲート駆動回路と、を備え、前記複数の電力用半導体素子のうちの下アーム側の電力用半導体素子の前記駆動回路が、前記電力用半導体素子のゲートとエミッタの間の抵抗とコンデンサからなる直列回路と、前記抵抗とコンデンサの接続点にアノード、前記負電源の負極にカソードが接続されたダイオードと、を有する保護回路と、前記正電源および前記負電源と前記ドライバ回路のそれぞれの間、又は前記電力用半導体素子のゲートと前記ドライバ回路との間、又は前記電力用半導体素子のゲートとグランドとの間、に前記負電源が消失した時に開放する遮断スイッチと、を含む、電力変換装置の保護装置等にある。 The present invention includes a power conversion unit that has a plurality of power semiconductor elements and performs power conversion of power from a main circuit power supply, and a serially connected positive power supply obtained by converting power from the main circuit power supply. A gate power supply circuit having a negative power supply, connected between the positive power supply connected in series and both ends of the negative power supply, and a positive voltage of the positive power supply between control terminals of the power semiconductor element according to a control command from the outside A gate drive circuit including a drive circuit provided in each of the plurality of power semiconductor elements, the driver circuit having a driver circuit that switches and supplies a negative voltage of the negative power source, The driving circuit for the power semiconductor element on the lower arm side includes a series circuit composed of a resistor and a capacitor between a gate and an emitter of the power semiconductor element, and an annunciator at a connection point of the resistor and the capacitor. A protection circuit having a cathode connected to a negative electrode of the negative power supply, between the positive power supply and the negative power supply and the driver circuit, or between the gate of the power semiconductor element and the driver circuit Or a cutoff switch that opens when the negative power source disappears between the gate of the power semiconductor element and the ground.
 この発明では、電源の状態に従って電力変換装置の電力用半導体素子の制御信号端子電圧を制御してより安全に保護する電力変換装置の保護装置およびこの電力変換装置の保護装置を使用したエレベータの制御装置を提供することができる。 According to the present invention, a protection device for a power conversion device that controls the control signal terminal voltage of the power semiconductor element of the power conversion device according to the state of the power supply for safer protection and control of an elevator using the protection device for the power conversion device An apparatus can be provided.
この発明の一実施の形態による電力変換装置の保護装置を使用した例えばエレベータの制御装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the control apparatus of the elevator which uses the protection apparatus of the power converter device by one Embodiment of this invention, for example. 図1のゲート駆動回路とインバータとの関係を示す図である。It is a figure which shows the relationship between the gate drive circuit of FIG. 1, and an inverter. この発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の構成の一例を示す図である。It is a figure which shows an example of a structure of the drive circuit for the power element of the lower arm side of the protection apparatus of the power converter device by this invention. この発明による電力変換装置の保護装置の上アーム側のパワー素子のための駆動回路の構成の一例を示す図である。It is a figure which shows an example of a structure of the drive circuit for the power element of the upper arm side of the protection apparatus of the power converter device by this invention. この発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の遮断スイッチを半導体スイッチで構成した場合の構成の一例を示す図である。It is a figure which shows an example of a structure at the time of comprising the interruption | blocking switch of the drive circuit for the power element of the lower arm side of the protection apparatus of the power converter device by this invention with the semiconductor switch. この発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の遮断スイッチを半導体スイッチで構成した場合の構成の別の例を示す図である。It is a figure which shows another example of a structure at the time of comprising the interruption | blocking switch of the drive circuit for the power element of the lower arm side of the protection apparatus of the power converter device by this invention with the semiconductor switch. この発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の遮断スイッチを半導体スイッチで構成した場合の構成のさらに別の例を示す図である。It is a figure which shows another example of the structure at the time of comprising the interruption | blocking switch of the drive circuit for the power element of the lower arm side of the protection apparatus of the power converter device by this invention with a semiconductor switch. この発明による電力変換装置の保護装置における遮断スイッチをリレースイッチで構成した場合に設けるリレー駆動用回路の一例を示す図である。It is a figure which shows an example of the circuit for relay drive provided when the interruption | blocking switch in the protection apparatus of the power converter device by this invention is comprised with a relay switch. 図1のゲート電源回路の構成の一例を示す図である。It is a figure which shows an example of a structure of the gate power supply circuit of FIG.
 この発明では、負電源消失時に、電力用半導体素子のゲートG-エミッタE間に電圧を保持する保護回路を設ける。電力変換装置の電力用半導体素子のゲート電源がDCリンク用コンデンサより先に消失する時に、電力用半導体素子の制御信号端子であるゲート端子に負バイアスを保ち短絡を防止する。
 以下、この発明による電力変換装置の保護装置およびこの電力変換装置の保護装置を使用したエレベータの制御装置を実施の形態に従って図面を用いて説明する。なお、実施の形態において、同一もしくは相当部分は同一符号で示し、また重複する説明は省略する。
In the present invention, a protection circuit is provided that holds a voltage between the gate G and the emitter E of the power semiconductor element when the negative power supply disappears. When the gate power supply of the power semiconductor element of the power conversion device disappears before the DC link capacitor, a negative bias is maintained at the gate terminal which is a control signal terminal of the power semiconductor element to prevent a short circuit.
DESCRIPTION OF EMBODIMENTS Hereinafter, a protection device for a power conversion device according to the present invention and an elevator control device using the protection device for the power conversion device will be described with reference to the drawings. In the embodiments, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.
 実施の形態1.
 図1はこの発明の一実施の形態による電力変換装置の保護装置を使用した例えばエレベータの制御装置の構成の一例を示す図である。
 図1において、エレベータは、ロープ203の一端に釣合い錘202が固定され、他端にはかご201が固定されている。ロープ203が巻上機の綱車204に巻き掛けられ、巻上機のモータ105により綱車204を回転させることによりかご201が昇降するように形成されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an example of the configuration of an elevator control device, for example, using a power converter protection device according to an embodiment of the present invention.
In FIG. 1, the elevator has a counterweight 202 fixed to one end of a rope 203 and a car 201 fixed to the other end. A rope 203 is wound around a sheave 204 of the hoisting machine, and the car 201 is formed to move up and down by rotating the sheave 204 by the motor 105 of the hoisting machine.
 エレベータの制御装置は、主電源である例えば三相交流電源100、常開接点の主電源スイッチS1と、電磁開閉器の常開接点101と、三相交流電源100からの交流を脈動分を有する直流に変換するコンバータ102と、脈動分を平滑化して直流にする主回路コンデンサであるDCリンク用コンデンサ103と、平滑化された直流を所望の交流電圧に変換する、複数の電力用半導体素子4を有すると共に変換した交流電圧で巻上機であるモータ105を駆動制御するインバータ104とを備える。
 三相交流電源100、主電源スイッチS1、常開接点101、コンバータ102、DCリンク用コンデンサ103、インバータ104、モータ105が主回路を構成する。ここでは、インバータ104がこの発明による保護装置に係る電力変換部である。また以下では、電力用半導体素子4をパワー素子4等とする。
 なお、交流電源は三相のものに限られるものではない。またこの発明の保護装置は、回生コンバータにも適用可能である。
The elevator control device has, for example, a three-phase AC power source 100 which is a main power source, a main power switch S1 having a normally open contact, a normally open contact 101 of an electromagnetic switch, and a pulsating AC from the three-phase AC power source 100. A converter 102 that converts to direct current, a DC link capacitor 103 that is a main circuit capacitor that smoothes pulsation to make direct current, and a plurality of power semiconductor elements 4 that convert the smoothed direct current to a desired alternating voltage And an inverter 104 that drives and controls the motor 105 that is a hoisting machine with the converted AC voltage.
The three-phase AC power source 100, the main power switch S1, the normally open contact 101, the converter 102, the DC link capacitor 103, the inverter 104, and the motor 105 constitute a main circuit. Here, the inverter 104 is a power conversion unit according to the protection device of the present invention. Hereinafter, the power semiconductor element 4 is referred to as a power element 4 or the like.
The AC power supply is not limited to a three-phase one. The protection device of the present invention can also be applied to a regenerative converter.
 インバータ104の半導体から成るパワー素子4がゲート駆動回路108によってオンオフ制御される。主電源スイッチS1を介して三相交流電源100によって充電されるDCリンク用コンデンサ103の充放電を行う充放電回路106がDCリンク用コンデンサ103の両端に接続されている。ゲート電源回路107は主電源スイッチS1を介して得られる三相交流電源100からの交流を直流に変換しゲート駆動回路108の直流電源となる。ゲート電源回路107は例えば図9に示すように、AC/DC変換器107a、またはAC/DC変換器107aと、さらにAC/DC変換器107aで変換された直流を所望の電圧の直流に変換するDC/DC変換器107bで構成される。エレベータ制御部109は、ゲート駆動回路108、充放電回路106、を制御する制御指令CCSを発生する。 The power element 4 made of a semiconductor of the inverter 104 is on / off controlled by the gate drive circuit 108. A charge / discharge circuit 106 that charges and discharges the DC link capacitor 103 charged by the three-phase AC power supply 100 via the main power switch S <b> 1 is connected to both ends of the DC link capacitor 103. The gate power supply circuit 107 converts the alternating current from the three-phase alternating current power supply 100 obtained through the main power supply switch S1 into a direct current, and becomes a direct current power supply for the gate drive circuit 108. For example, as shown in FIG. 9, the gate power supply circuit 107 converts the direct current converted by the AC / DC converter 107a or the AC / DC converter 107a and the AC / DC converter 107a into a direct current of a desired voltage. It is configured by a DC / DC converter 107b. The elevator control unit 109 generates a control command CCS for controlling the gate drive circuit 108 and the charge / discharge circuit 106.
 上記のように構成されたエレベータの制御装置では、通常、主電源スイッチS1が投入されると共に、常開接点101が開放状態から閉成されると、ゲート電源回路107には交流電圧が入力され、これにより直流電圧がゲート駆動回路108に供給される。一方、三相交流電源100からの交流がコンバータ102、DCリンク用コンデンサ103を介して直流に変換されてインバータ104に入力される。ゲート駆動回路108がエレベータ制御部109からの制御指令CCSによりインバータ104を制御して巻上機のモータ105を停止又は駆動させる。これによりかご201が昇降する。 In the elevator control apparatus configured as described above, when the main power switch S1 is turned on and the normally open contact 101 is closed from the open state, an AC voltage is input to the gate power supply circuit 107. As a result, a DC voltage is supplied to the gate drive circuit 108. On the other hand, alternating current from the three-phase alternating current power supply 100 is converted into direct current through the converter 102 and the DC link capacitor 103 and input to the inverter 104. The gate drive circuit 108 controls the inverter 104 according to a control command CCS from the elevator control unit 109 to stop or drive the motor 105 of the hoisting machine. As a result, the car 201 moves up and down.
 図2は図1のゲート駆動回路108とインバータ104との関係を示す図である。インバータ104は各相毎に下アーム側のパワー素子4a、上アーム側のパワー素子4bからなる1対のパワー素子を備えている。図2では単相の場合の例を示しているが、二相または三相の回路にも適用可能である。ゲート駆動回路108は各下アーム側のパワー素子4aのためのそれぞれの駆動回路108aと、各上アーム側のパワー素子4bのためのそれぞれの駆動回路108bと、を備えている。 FIG. 2 is a diagram showing the relationship between the gate drive circuit 108 and the inverter 104 in FIG. The inverter 104 is provided with a pair of power elements each composed of a power element 4a on the lower arm side and a power element 4b on the upper arm side for each phase. Although FIG. 2 shows an example in the case of a single phase, it can also be applied to a two-phase or three-phase circuit. The gate drive circuit 108 includes a respective drive circuit 108a for each lower arm side power element 4a and a respective drive circuit 108b for each upper arm side power element 4b.
 図3はこの発明による電力変換装置の保護装置の構成の一例を示すもので、図2の下アーム側のパワー素子4aのための駆動回路108aの構成の一例を示す。また図4は、図2の上アーム側のパワー素子4bのための駆動回路108bの構成の一例を示す。
 図3において、下アーム側のパワー素子4aのための駆動回路108aでは、パワー素子4aのゲートとエミッタの間に保護回路17が接続されている。さらに、第1から第4の遮断スイッチ13-16を備えている。なお、遮断スイッチ13-16は開放状態で示されているが、通常は閉成状態にある。また、保護回路17は全体が駆動回路108aに含まれ、以下同様とする。
FIG. 3 shows an example of the configuration of the protection device for the power conversion device according to the present invention, and shows an example of the configuration of the drive circuit 108a for the power element 4a on the lower arm side of FIG. FIG. 4 shows an example of the configuration of the drive circuit 108b for the power element 4b on the upper arm side of FIG.
In FIG. 3, in the drive circuit 108a for the power element 4a on the lower arm side, the protection circuit 17 is connected between the gate and the emitter of the power element 4a. Further, first to fourth cutoff switches 13-16 are provided. Although the cutoff switch 13-16 is shown in an open state, it is normally in a closed state. The entire protection circuit 17 is included in the drive circuit 108a, and so on.
 図3において、ゲート電源回路107では、グランド(GND)に対して正負両側の正電源11と負電源12が直列に接続されている。
 駆動回路108aでは、正電源11の正極と負電源12の負極の間には、正側ドライバスイッチ32aと負側ドライバスイッチ32bの直列回路、およびエレベータ制御部109からの制御指令CCSのうちの駆動指令信号DCに従ってオンオフする切替制御スイッチ31が並列に接続されている。これらの正側ドライバスイッチ32a、負側ドライバスイッチ32b、切替制御スイッチ31、抵抗34の回路でドライバ回路33を構成する。
 なお、切替制御スイッチ31への入力信号は、エレベータ制御部109からの駆動指令信号DCを、駆動回路108aにおいて切替制御に適した信号に変換した制御駆動信号であってもよい。
In FIG. 3, in the gate power supply circuit 107, a positive power supply 11 and a negative power supply 12 on both positive and negative sides are connected in series to the ground (GND).
In the drive circuit 108a, between the positive electrode of the positive power supply 11 and the negative electrode of the negative power supply 12, a series circuit of the positive driver switch 32a and the negative driver switch 32b and the drive of the control command CCS from the elevator control unit 109 are driven. A changeover control switch 31 that is turned on and off in accordance with the command signal DC is connected in parallel. These positive side driver switch 32a, negative side driver switch 32b, switching control switch 31, and resistor 34 constitute a driver circuit 33.
The input signal to the switching control switch 31 may be a control driving signal obtained by converting the driving command signal DC from the elevator control unit 109 into a signal suitable for switching control in the driving circuit 108a.
 各スイッチ31,32a,32bは例えばnpn型のバイポーラトランジスタで構成されている。
正側ドライバスイッチ32aのベースは切替制御スイッチ31のコレクタと抵抗34の一端に接続され、正側ドライバスイッチ32aのコレクタは抵抗34の他端に接続され抵抗34を介して切替制御スイッチ31のコレクタに接続され、
正側ドライバスイッチ32aのエミッタは負側ドライバスイッチ32bのエミッタに接続され、
負側ドライバスイッチ32bのベースは正側ドライバスイッチ32aのベースと共に切替制御スイッチ31のコレクタと抵抗34の一端に接続され、
負側ドライバスイッチ32bのコレクタは切替制御スイッチ31のエミッタに接続され、
切替制御スイッチ31のベースには駆動指令信号DCが入力される。
 そして正側ドライバスイッチ32aのコレクタは第1の遮断スイッチ13を介して正電源11の正極に接続されている。そして正側ドライバスイッチ32aのベース、負側ドライバスイッチ32bのベース、切替制御スイッチ31のコレクタは、抵抗34、第1の遮断スイッチ13を介して正電源11の正極に接続されている。負側ドライバスイッチ32bのコレクタと切替制御スイッチ31のエミッタは、第2の遮断スイッチ14を介して負電源12の負極に接続されている。
Each of the switches 31, 32a, 32b is composed of, for example, an npn type bipolar transistor.
The base of the positive side driver switch 32 a is connected to the collector of the changeover control switch 31 and one end of the resistor 34, and the collector of the positive side driver switch 32 a is connected to the other end of the resistor 34 and the collector of the changeover control switch 31 via the resistor 34. Connected to
The emitter of the positive driver switch 32a is connected to the emitter of the negative driver switch 32b;
The base of the negative driver switch 32b is connected to the collector of the changeover control switch 31 and one end of the resistor 34 together with the base of the positive driver switch 32a.
The collector of the negative side driver switch 32b is connected to the emitter of the changeover control switch 31,
A drive command signal DC is input to the base of the changeover control switch 31.
The collector of the positive side driver switch 32 a is connected to the positive electrode of the positive power source 11 via the first cutoff switch 13. The base of the positive driver switch 32 a, the base of the negative driver switch 32 b, and the collector of the changeover control switch 31 are connected to the positive electrode of the positive power supply 11 via the resistor 34 and the first cutoff switch 13. The collector of the negative driver switch 32 b and the emitter of the changeover control switch 31 are connected to the negative electrode of the negative power supply 12 through the second cutoff switch 14.
 また、正側ドライバスイッチ32aのエミッタと負側ドライバスイッチ32bのエミッタの接続点は、第3の遮断スイッチ15を介して、インバータ104の下アーム側のパワー素子4aの制御信号端子であるゲートGに接続されている。パワー素子4aは例えば絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)で構成される。パワー素子4aのゲート-エミッタ間には保護回路17が接続されている。保護回路17は、パワー素子4aのゲート-エミッタ間に抵抗17a、コンデンサ17bの順番で接続された直列回路及びコンデンサ17bと抵抗17aの接続点にアノードが接続され、カソードが負側ドライバスイッチ32bのコレクタと切替制御スイッチ31のエミッタと第2の遮断スイッチ14との接続点側に接続されたダイオード17cからなる。 The connection point between the emitter of the positive driver switch 32a and the emitter of the negative driver switch 32b is connected to the gate G, which is the control signal terminal of the power element 4a on the lower arm side of the inverter 104, via the third cutoff switch 15. It is connected to the. The power element 4a is constituted by, for example, an insulated gate bipolar transistor (IGBT: Insulated Gate Bipolar Transistor). A protection circuit 17 is connected between the gate and emitter of the power element 4a. The protection circuit 17 has a series circuit in which a resistor 17a and a capacitor 17b are connected in this order between the gate and emitter of the power element 4a, and an anode connected to a connection point between the capacitor 17b and the resistor 17a, and a cathode connected to the negative side driver switch 32b. It consists of a diode 17c connected to the connection point side of the collector, the emitter of the changeover control switch 31, and the second cutoff switch 14.
 図3の下アーム側のパワー素子4aのエミッタはさらに、DCリンク用コンデンサ103の負極と共に第4の遮断スイッチ16を介してグランドに接続されている。またパワー素子4aのコレクタは、図4の上アーム側のIGBTからなるパワー素子4bのエミッタに接続されている。図4の上アーム側のパワー素子4bのコレクタはDCリンク用コンデンサ103の正側に接続されている。すなわち、上アーム側のパワー素子4bと下アーム側のパワー素子4aは直列に接続され、このパワー素子4aとパワー素子4bの直列回路にDCリンク用コンデンサ103が並列に接続されている。図3と図4はゲート電源回路と駆動回路を下アーム側と上アーム側で独立して示したものであり、DCリンク用コンデンサ103は同一のものである。 The emitter of the power element 4 a on the lower arm side in FIG. 3 is further connected to the ground through the fourth cutoff switch 16 together with the negative electrode of the DC link capacitor 103. The collector of the power element 4a is connected to the emitter of the power element 4b made of the IGBT on the upper arm side in FIG. The collector of the power element 4 b on the upper arm side in FIG. 4 is connected to the positive side of the DC link capacitor 103. That is, the upper arm side power element 4b and the lower arm side power element 4a are connected in series, and a DC link capacitor 103 is connected in parallel to the series circuit of the power element 4a and the power element 4b. 3 and 4 show the gate power supply circuit and the drive circuit independently on the lower arm side and the upper arm side, and the DC link capacitor 103 is the same.
 図4の上アーム側の駆動回路108bでは図3に示す保護回路17、第1から第4の遮断スイッチ13-16は備えていない。 The drive circuit 108b on the upper arm side in FIG. 4 does not include the protection circuit 17 and the first to fourth cutoff switches 13-16 shown in FIG.
 保護機能を下アーム側に設けることで上アーム側が誤ってオンしても電流経路が無く故障には至らない。
 例えば、パワー素子4aのU相の上下アームがオンすることでDCリンク用コンデンサ103の上アーム→下アーム→DCリンクコンデンサの経路で短絡する。U相の上アームとV相の下アームなら上アーム→モータ→下アームのように負荷短絡が発生する。短絡経路には抵抗等の電流制限素子もなく、また負電圧を失っているため、パワー素子をオフする手段がないため、大電流が流れ、やがて素子等が損失してしまう。この発明はこのような課題を解決する。
By providing a protection function on the lower arm side, there is no current path even if the upper arm side is accidentally turned on, and no failure will occur.
For example, when the upper and lower arms of the U phase of the power element 4a are turned on, a short circuit occurs in the path of the upper arm → lower arm → DC link capacitor of the DC link capacitor 103. In the case of the upper arm of the U phase and the lower arm of the V phase, a load short circuit occurs such as upper arm → motor → lower arm. Since there is no current limiting element such as a resistor in the short-circuit path and the negative voltage is lost, there is no means for turning off the power element, so that a large current flows and the element or the like is eventually lost. The present invention solves such a problem.
 次に動作を説明する。図3,図4の駆動回路108a、108bのドライバ回路33の基本的動作は同じである。エレベータ制御部109からの駆動指令信号DCまたは駆動指令信号DCに従って駆動回路108aで生成された制御駆動信号により切替制御スイッチ31がオフ状態場合には、正側ドライバスイッチ32aがオン、負側ドライバスイッチ32bがオフして、正電源11の正電圧による電圧がインバータ104のパワー素子4aの制御信号端子であるゲートGに制御信号CSとして印加され、パワー素子4aはオンする。また、切替制御スイッチ31がオン状態場合には、正側ドライバスイッチ32aがオフ、負側ドライバスイッチ32bがオンして、負電源12の負電圧による電圧がインバータ104のパワー素子4aのゲートGに制御信号CSとして印加され、パワー素子4aはオフする。
 すなわち、ドライバ回路33は、パワー素子4aの制御端子間であるゲート-エミッタ間に正電源11の正電圧と負電源12の負電圧を切り替えて供給する。
Next, the operation will be described. The basic operation of the driver circuit 33 of the drive circuits 108a and 108b in FIGS. 3 and 4 is the same. When the switching control switch 31 is turned off by the drive command signal DC from the elevator control unit 109 or the control drive signal generated by the drive circuit 108a according to the drive command signal DC, the positive driver switch 32a is turned on and the negative driver switch is turned on. 32b is turned off, the voltage due to the positive voltage of the positive power supply 11 is applied as the control signal CS to the gate G which is the control signal terminal of the power element 4a of the inverter 104, and the power element 4a is turned on. When the changeover control switch 31 is in the on state, the positive driver switch 32 a is turned off and the negative driver switch 32 b is turned on, and the voltage due to the negative voltage of the negative power supply 12 is applied to the gate G of the power element 4 a of the inverter 104. Applied as the control signal CS, the power element 4a is turned off.
That is, the driver circuit 33 switches between the positive voltage of the positive power supply 11 and the negative voltage of the negative power supply 12 between the gate and the emitter, which is between the control terminals of the power element 4a.
 図3の下アーム側のパワー素子4aのための駆動回路108aは、インバータ104のパワー素子4aと、パワー素子4aのオンオフを指令するための駆動指令信号DCと、パワー素子への正電源11,負電源12と、負電源12が消失する際に遮断する遮断スイッチ13-16と、負電源12が放電したときにパワー素子4aのゲートG-エミッタE間に負バイアスを印加する保護回路17で構成されている。 The drive circuit 108a for the power element 4a on the lower arm side in FIG. 3 includes a power element 4a of the inverter 104, a drive command signal DC for instructing on / off of the power element 4a, and a positive power supply 11 to the power element, A negative power source 12, a cut-off switch 13-16 that shuts off when the negative power source 12 disappears, and a protection circuit 17 that applies a negative bias between the gate G and the emitter E of the power element 4a when the negative power source 12 is discharged. It is configured.
 通常動作、すなわちパワー素子4aがオンオフ動作を繰り返しているときには、主電源である例えば三相交流電源100から正電源11及び負電源12には電圧が供給されているが、例えばエレベーターシステムの電源遮断や停電が発生した場合、三相交流電源100からの電源供給元が無くなり、正電源11及び負電源12は電源の構成部品の抵抗成分などを通って放電し、電圧は消失する。これに対して、主回路のDCリンク用コンデンサ103は負電源12と比較してコンデンサ容量が大きいため時定数が長く、電圧が消失するまでの時間が長いことが一般的である。負電源12の電圧が消失し、DCリンク用コンデンサ103の電圧が消失していない場合に、ノイズ等でパワー素子4aのゲートG-エミッタE間に正の電圧が印加されるとパワー素子4aがオンし、パワー素子4a、さらにパワー素子4aが制御する例えばモータ105が損傷する恐れがある。 During normal operation, that is, when the power element 4a repeats ON / OFF operation, the voltage is supplied from the main power source, for example, the three-phase AC power source 100 to the positive power source 11 and the negative power source 12, but the power source of the elevator system is shut off, for example When a power failure occurs, the power supply source from the three-phase AC power supply 100 disappears, the positive power supply 11 and the negative power supply 12 are discharged through the resistance component of the power supply components, and the voltage disappears. On the other hand, the DC link capacitor 103 of the main circuit generally has a longer time constant and a longer time until the voltage disappears because the capacitor capacity is larger than that of the negative power supply 12. When the voltage of the negative power source 12 disappears and the voltage of the DC link capacitor 103 does not disappear, if a positive voltage is applied between the gate G and the emitter E of the power element 4a due to noise or the like, the power element 4a The power element 4a and, for example, the motor 105 controlled by the power element 4a may be damaged.
 上記のようなパワー素子4a、さらにはモータ105の損傷を防ぐため、図3の駆動回路108aでは、保護回路17と遮断スイッチ13-16を有している。負電源12に電源供給されると、保護回路17のコンデンサ17bには、負電源12からGND、第4の遮断スイッチ16、ダイオード17c、第2の遮断スイッチ14を通って電圧が印加される。印加された電圧はパワー素子4aのオンオフ動作、すなわちゲートG-エミッタE間が正電圧または0Vまたは負電圧となっても電圧に変化はない。 In order to prevent damage to the power element 4a and the motor 105 as described above, the drive circuit 108a in FIG. 3 has a protection circuit 17 and a cutoff switch 13-16. When power is supplied to the negative power supply 12, a voltage is applied to the capacitor 17 b of the protection circuit 17 from the negative power supply 12 through GND, the fourth cutoff switch 16, the diode 17 c, and the second cutoff switch 14. The applied voltage does not change even when the power element 4a is turned on / off, that is, the voltage between the gate G and the emitter E becomes a positive voltage, 0 V, or a negative voltage.
 エレベーターシステムの電源遮断や停電が発生したとき、または負電源12の電圧が設定値以下になったことを感知し、
第1および第2の遮断スイッチ13,14、または
第3の遮断スイッチ15、または
第4の遮断スイッチ16、
を遮断することで、パワー素子4aのゲートG-エミッタE間には保護回路17の抵抗17aとコンデンサ17bによって負電圧が印加される。
 上述の第1および第2の遮断スイッチ13,14、または第3の遮断スイッチ15、または第4の遮断スイッチ16、が遮断されると、パワー素子4aのゲートG-エミッタE間、及び保護回路17の抵抗17aとコンデンサ17bからなる直列回路は電流経路が無くなり、コンデンサ17bの電圧は消失せずパワー素子4aのゲートG-エミッタE間は負電圧に保たれ、ノイズ等によってオンすることが無くなる。
Detects when the power supply of the elevator system is interrupted or when a power failure occurs, or when the voltage of the negative power supply 12 falls below the set value.
The first and second cutoff switches 13, 14, or the third cutoff switch 15, or the fourth cutoff switch 16,
Is cut off, a negative voltage is applied between the gate G and the emitter E of the power element 4a by the resistor 17a and the capacitor 17b of the protection circuit 17.
When the above-described first and second cutoff switches 13, 14 or the third cutoff switch 15 or the fourth cutoff switch 16 are cut off, between the gate G and the emitter E of the power element 4a and the protection circuit The series circuit composed of the 17 resistors 17a and the capacitor 17b has no current path, the voltage of the capacitor 17b does not disappear, the gate G and the emitter E of the power element 4a are kept at a negative voltage, and are not turned on by noise or the like. .
 図3の第1から第4の遮断スイッチ13-16はそれぞれリレースイッチ又は半導体スイッチで構成される。遮断スイッチ13-16をリレースイッチで構成した場合、これらのリレースイッチを駆動させる例えば図8に示すようなリレー駆動用回路をゲート駆動回路108に設ける。図8のリレー駆動用回路は2つの遮断スイッチを駆動させる回路の例であり、図3でそれぞれの遮断スイッチを示すリレー接点に対するリレーコイルRCとオンオフスイッチSWの直列回路が、例えば正電源11で構成される電源PSとグランドの間に接続されている。上述のように、図3で遮断スイッチは開放状態で示されているがリレー接点はB接点すなわち常閉接点である。 The first to fourth cutoff switches 13-16 in FIG. 3 are each constituted by a relay switch or a semiconductor switch. When the cutoff switches 13-16 are constituted by relay switches, for example, a relay driving circuit as shown in FIG. 8 for driving these relay switches is provided in the gate driving circuit. The relay drive circuit of FIG. 8 is an example of a circuit for driving two cutoff switches. A series circuit of a relay coil RC and an on / off switch SW for the relay contacts indicating the respective cutoff switches in FIG. The power supply PS is connected between the ground and the ground. As described above, the cutoff switch is shown in an open state in FIG. 3, but the relay contact is a B contact, that is, a normally closed contact.
 そして上述のようにエレベーターシステムの電源遮断や停電の発生を検知するために、エレベータ制御部109はゲート駆動回路108へ制御指令CCSとして電源遮断指令SI、停電発生信号PF、ゲート電源異常信号を含む遮断信号INTを出力する。また負電源12の電圧が設定値以下になったことを検知するために、ゲード電源回路107の負電源12には、図3等に示すように、例えば負電源12の電圧が設定値以下になったことを検知すると遮断信号INTを出力する電圧検出器VDが設けられている。 As described above, the elevator control unit 109 includes a power cutoff command SI, a power failure occurrence signal PF, and a gate power supply abnormality signal as a control command CCS to the gate drive circuit 108 in order to detect the power cutoff of the elevator system and the occurrence of a power failure. The interruption signal INT is output. Further, in order to detect that the voltage of the negative power source 12 has become equal to or lower than the set value, the negative power source 12 of the gate power source circuit 107 has, for example, the voltage of the negative power source 12 to be lower than the set value as shown in FIG. A voltage detector VD is provided that outputs a cut-off signal INT when it is detected.
 図8のオンオフスイッチSWにはこれらのエレベータ制御部109、電圧検出器VDからの遮断信号INTが入力され、遮断信号INTが入力されるとオンし、直列に接続されたリレーコイルRCが付勢されてリレー接点が開放される。
 なお、リレー駆動用回路はリレー駆動用回路は各駆動回路108aで共有してもよいし、個別に設けてもよい。
The on / off switch SW in FIG. 8 receives the cutoff signal INT from the elevator control unit 109 and the voltage detector VD, and turns on when the cutoff signal INT is input, and the relay coil RC connected in series is energized. The relay contact is opened.
The relay driving circuit may be shared by each driving circuit 108a, or may be provided individually.
 図5はこの発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の遮断スイッチを半導体スイッチで構成した場合の構成の一例を示す図である。図5は、図3の第1および第2の遮断スイッチ13,14を例えば半導体スイッチとして、システムの電源遮断時の動作を踏まえた回路を示す。遮断スイッチ13,14はnpn型のバイポーラトランジスタで構成されている。 FIG. 5 is a diagram showing an example of the configuration when the cutoff switch of the drive circuit for the power element on the lower arm side of the protection device of the power converter according to the present invention is configured by a semiconductor switch. FIG. 5 shows a circuit based on the operation when the system is powered off, using the first and second cutoff switches 13 and 14 of FIG. 3 as semiconductor switches, for example. The cutoff switches 13 and 14 are constituted by npn type bipolar transistors.
 図5では、エレベータ制御部109からの遮断信号INTである電源遮断指令SIと絶縁のためのフォトカプラ22を設け、遮断スイッチ13,14を半導体スイッチに変更したものである。図5はシステムの主電源である三相交流電源100が遮断したとき、遮断信号INTである電源遮断指令SIがオフ指令となり、フォトカプラ22に電流が流れなくなり、遮断スイッチ13,14がオフするため、保護回路17の抵抗17a及びコンデンサ17bの直列回路の電流経路が無くなり、コンデンサ17bの電圧は消失せずパワー素子4aのゲートG-エミッタE間は負電圧に保たれ、ノイズ等によってパワー素子4aがオンすることが無くなる。
 なお、各フォトカプラ22と各遮断スイッチ13,14はそれぞれ抵抗13a,14aを介して接続されている。
 また、ゲート電源回路107は駆動回路108aに含まれず、以下同様とする。
In FIG. 5, a power cutoff command SI that is a cutoff signal INT from the elevator control unit 109 and a photocoupler 22 for insulation are provided, and the cutoff switches 13 and 14 are changed to semiconductor switches. FIG. 5 shows that when the three-phase AC power supply 100 which is the main power supply of the system is cut off, the power cut-off command SI which is the cut-off signal INT becomes an off command, and no current flows to the photocoupler 22 and the cut-off switches 13 and 14 are turned off. Therefore, the current path of the series circuit of the resistor 17a and the capacitor 17b of the protection circuit 17 is eliminated, the voltage of the capacitor 17b is not lost, and the negative voltage is maintained between the gate G and the emitter E of the power element 4a. 4a is not turned on.
Each photocoupler 22 and each cutoff switch 13, 14 are connected via resistors 13a, 14a, respectively.
The gate power supply circuit 107 is not included in the drive circuit 108a, and the same applies hereinafter.
 図6はこの発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の遮断スイッチを半導体スイッチで構成した場合の構成の別の例を示す図である。図6では、図3の第3の遮断スイッチ15を、2つのトランジスタ23,24およびコンデンサ25で構成したものに変更したものである。パワー素子4aのゲートG-エミッタE間にかかる電圧の応答性を向上させるため、コンデンサ25をトランジスタの両端に並列接続している。図5と同様、システムの主電源である三相交流電源100が遮断したとき、遮断信号INTである電源遮断指令SIがオフ指令となり、フォトカプラ22に電流が流れなくなり、トランジスタ23,24がオフするため、保護回路17の抵抗17a及びコンデンサ17bの直列回路の電流経路が無くなり、コンデンサ17bの電圧は消失せずパワー素子4aのゲートG-エミッタE間は負電圧に保たれ、ノイズ等によってパワー素子4aがオンすることが無くなる。 FIG. 6 is a diagram showing another example of the configuration in the case where the cutoff switch of the drive circuit for the power element on the lower arm side of the protection device of the power conversion device according to the present invention is configured by a semiconductor switch. In FIG. 6, the third cutoff switch 15 in FIG. 3 is changed to one constituted by two transistors 23 and 24 and a capacitor 25. In order to improve the responsiveness of the voltage applied between the gate G and the emitter E of the power element 4a, a capacitor 25 is connected in parallel across the transistor. As in FIG. 5, when the three-phase AC power source 100 that is the main power source of the system is shut off, the power shut-off command SI that is the shut-off signal INT becomes an off command, so that no current flows to the photocoupler 22 and the transistors 23 and 24 are off. Therefore, the current path of the series circuit of the resistor 17a and the capacitor 17b of the protection circuit 17 is eliminated, the voltage of the capacitor 17b is not lost, and the negative voltage is maintained between the gate G and the emitter E of the power element 4a. The element 4a is not turned on.
 なお、図6の遮断スイッチ15では、トランジスタ23のエミッタとトランジスタ24のコレクタが互いに接続され、トランジスタ23のコレクタはドライバ回路33の正側ドライバスイッチ32aのエミッタと負側ドライバスイッチ32bのエミッタの接続点へ接続され、トランジスタ24のエミッタはパワー素子4aのゲートに接続され、各トランジスタ23,24のベースはそれぞれのフォトカプラ22に接続されている。また、トランジスタ23のコレクタとトランジスタ24のエミッタの間にコンデンサ25が接続されている。さらに各トランジスタ23,24は寄生ダイオード23a,24aをそれぞれ含む。 6, the emitter of the transistor 23 and the collector of the transistor 24 are connected to each other, and the collector of the transistor 23 is connected to the emitter of the positive side driver switch 32 a of the driver circuit 33 and the emitter of the negative side driver switch 32 b. The emitter of the transistor 24 is connected to the gate of the power element 4 a, and the bases of the transistors 23 and 24 are connected to the respective photocouplers 22. A capacitor 25 is connected between the collector of the transistor 23 and the emitter of the transistor 24. Further, each of the transistors 23 and 24 includes parasitic diodes 23a and 24a, respectively.
 図7はこの発明による電力変換装置の保護装置の下アーム側のパワー素子のための駆動回路の遮断スイッチを半導体スイッチで構成した場合の構成のさらに別の例を示す図である。図7では、図3の第4の遮断スイッチ16を、図6と同様に2つのトランジスタ23,24およびコンデンサ25で構成したものに変更したものである。パワー素子4aのゲートG-エミッタE間にかかる電圧の応答性を向上させるため、コンデンサ25をトランジスタの両端に並列接続している。図5と同様、システムの主電源である三相交流電源100が遮断したとき、遮断信号INTである電源遮断指令SIがオフ指令となり、フォトカプラ22に電流が流れなくなり、トランジスタ23,24がオフするため、保護回路17の抵抗17a及びコンデンサ17bの直列回路の電流経路が無くなり、コンデンサ17bの電圧は消失せずパワー素子4aのゲートG-エミッタE間は負電圧に保たれ、ノイズ等によってパワー素子4aがオンすることが無くなる。 FIG. 7 is a diagram showing still another example of a configuration in which the cutoff switch of the drive circuit for the power element on the lower arm side of the protection device of the power conversion device according to the present invention is configured by a semiconductor switch. In FIG. 7, the fourth cutoff switch 16 of FIG. 3 is changed to one constituted by two transistors 23 and 24 and a capacitor 25 as in FIG. In order to improve the responsiveness of the voltage applied between the gate G and the emitter E of the power element 4a, a capacitor 25 is connected in parallel across the transistor. As in FIG. 5, when the three-phase AC power source 100 that is the main power source of the system is shut off, the power shut-off command SI that is the shut-off signal INT becomes an off command, so that no current flows to the photocoupler 22 and the transistors 23 and 24 are off. Therefore, the current path of the series circuit of the resistor 17a and the capacitor 17b of the protection circuit 17 is eliminated, the voltage of the capacitor 17b is not lost, and the negative voltage is maintained between the gate G and the emitter E of the power element 4a. The element 4a is not turned on.
 なお、図7の遮断スイッチ16では、トランジスタ23のエミッタとトランジスタ24のコレクタが互いに接続され、トランジスタ23のコレクタは保護回路17のダイオード17cのカソード側へ接続され、トランジスタ24のエミッタはドライバ回路33の負電源12側に接続され、各トランジスタ23,24のベースはそれぞれのフォトカプラ22に接続されている。また、トランジスタ23のコレクタとトランジスタ24のエミッタの間にコンデンサ25が接続されている。さらに各トランジスタ23,24は寄生ダイオード23a,24aをそれぞれ含む。 7, the emitter of the transistor 23 and the collector of the transistor 24 are connected to each other, the collector of the transistor 23 is connected to the cathode side of the diode 17c of the protection circuit 17, and the emitter of the transistor 24 is the driver circuit 33. The bases of the transistors 23 and 24 are connected to the respective photocouplers 22. A capacitor 25 is connected between the collector of the transistor 23 and the emitter of the transistor 24. Further, each of the transistors 23 and 24 includes parasitic diodes 23a and 24a, respectively.
 なお、上記説明ではこの発明による電力変換装置の保護装置を例えばエレベータの制御装置の電力変換部であるインバータのパワー素子に適用した場合について説明したが、この発明はこれに限定されることはなく、AC-DCコンバータ、DC-DCコンバータ、インバータ等を含む電力変換部の下アームのパワー素子に適用可能である。 In the above description, the case where the protection device for a power conversion device according to the present invention is applied to, for example, a power element of an inverter that is a power conversion unit of an elevator control device has been described. However, the present invention is not limited to this. It can be applied to the power element of the lower arm of the power converter including an AC-DC converter, a DC-DC converter, an inverter, and the like.
 また、電力変換部のパワー素子4をワイドバンドギャップ半導体によって形成する。ワイドバンドギャップ半導体は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子やダイオード素子の小型化が可能であり、これら小型化されたスイッチング素子やダイオード素子を用いることにより、これらの素子を組み込んだ電力変換装置の保護装置、エレベータの制御装置の小型化が可能となる。 Also, the power element 4 of the power conversion unit is formed of a wide band gap semiconductor. Wide bandgap semiconductors have high voltage resistance and high allowable current density, so switching elements and diode elements can be miniaturized. By using these miniaturized switching elements and diode elements, these elements can be used. Therefore, it is possible to reduce the size of the protection device for the power conversion device and the control device for the elevator.
産業上の利用の可能性Industrial applicability
 この発明は、種々の分野の電力変換装置に適用することができる。 The present invention can be applied to power converters in various fields.

Claims (5)

  1.  複数の電力用半導体素子を有し主回路電源からの電力の電力変換を行う電力変換部と、
     前記主回路電源からの電力を変換して得られた直列接続された正電源と負電源を有するゲート電源回路と、
     直列接続された前記正電源と前記負電源の両端間に接続され、外部からの制御指令に従って前記電力用半導体素子の制御端子間に前記正電源の正電圧と前記負電源の負電圧を切り替えて供給するドライバ回路を有する、前記複数の電力用半導体素子のそれぞれに設けられた駆動回路を含むゲート駆動回路と、
     を備え、
     前記複数の電力用半導体素子のうちの下アーム側の電力用半導体素子の前記駆動回路が、
     前記電力用半導体素子のゲートとエミッタの間の抵抗とコンデンサからなる直列回路と、前記抵抗とコンデンサの接続点にアノード、前記負電源の負極にカソードが接続されたダイオードと、を有する保護回路と、
     前記正電源および前記負電源と前記ドライバ回路のそれぞれの間、又は前記電力用半導体素子のゲートと前記ドライバ回路との間、又は前記電力用半導体素子のゲートとグランドとの間、に前記負電源が消失した時に開放する遮断スイッチと、
     を含む、 電力変換装置の保護装置。
    A power conversion unit having a plurality of power semiconductor elements and performing power conversion of power from the main circuit power supply;
    A gate power supply circuit having a positive power supply and a negative power supply connected in series obtained by converting power from the main circuit power supply;
    It is connected between both ends of the positive power source and the negative power source connected in series, and switches between a positive voltage of the positive power source and a negative voltage of the negative power source between control terminals of the power semiconductor element in accordance with an external control command. A gate drive circuit including a drive circuit provided in each of the plurality of power semiconductor elements, the driver circuit having a driver circuit to be supplied;
    With
    The drive circuit of the power semiconductor element on the lower arm side of the plurality of power semiconductor elements is
    A protection circuit having a series circuit including a resistor and a capacitor between a gate and an emitter of the power semiconductor element, a diode having an anode connected to a connection point of the resistor and the capacitor, and a cathode connected to a negative electrode of the negative power source; ,
    The negative power source between each of the positive power source and the negative power source and the driver circuit, or between the gate of the power semiconductor element and the driver circuit, or between the gate of the power semiconductor element and the ground. A shut-off switch that opens when the
    A protection device for a power conversion device.
  2.  前記遮断スイッチがリレースイッチからなる、請求項1に記載の電力変換装置の保護装置。 The protection device for a power converter according to claim 1, wherein the cutoff switch is a relay switch.
  3.  前記遮断スイッチがトランジスタからなる、請求項1に記載の電力変換装置の保護装置。 The protection device for a power converter according to claim 1, wherein the cutoff switch is formed of a transistor.
  4.  前記電力用半導体素子がワイドバンドギャップ半導体素子からなる、請求項1から3までのいずれか1項に記載の電力変換装置の保護装置。 The protection device for a power converter according to any one of claims 1 to 3, wherein the power semiconductor element is formed of a wide band gap semiconductor element.
  5.  前記主回路電源と、
     前記請求項1から4までのいずれか1項に記載の電力変換装置の保護装置と、
     前記電力変換部で変換された電力で駆動制御される巻上機と、
     前記巻上機の回転により昇降するかごと、
     前記ゲート駆動回路に制御指令を送って前記かごの制御を行うエレベータ制御部と、
     を備えたエレベータの制御装置。
    The main circuit power supply;
    The protection device for the power conversion device according to any one of claims 1 to 4,
    A hoisting machine that is driven and controlled by the electric power converted by the power converter;
    Whether the elevator is raised or lowered by the rotation of the hoisting machine,
    An elevator controller that controls the car by sending a control command to the gate drive circuit;
    Elevator control device.
PCT/JP2016/074127 2016-08-18 2016-08-18 Protection device for power conversion device, and elevator control device WO2018033989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074127 WO2018033989A1 (en) 2016-08-18 2016-08-18 Protection device for power conversion device, and elevator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/074127 WO2018033989A1 (en) 2016-08-18 2016-08-18 Protection device for power conversion device, and elevator control device

Publications (1)

Publication Number Publication Date
WO2018033989A1 true WO2018033989A1 (en) 2018-02-22

Family

ID=61197170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074127 WO2018033989A1 (en) 2016-08-18 2016-08-18 Protection device for power conversion device, and elevator control device

Country Status (1)

Country Link
WO (1) WO2018033989A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023743A (en) * 1996-07-05 1998-01-23 Mitsubishi Electric Corp Drive circuit of semiconductor device
JP2014027345A (en) * 2012-07-24 2014-02-06 Denso Corp Semiconductor element drive circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1023743A (en) * 1996-07-05 1998-01-23 Mitsubishi Electric Corp Drive circuit of semiconductor device
JP2014027345A (en) * 2012-07-24 2014-02-06 Denso Corp Semiconductor element drive circuit

Similar Documents

Publication Publication Date Title
KR102243467B1 (en) Inverter for an electric automobile
JP6736370B2 (en) Power conversion system
US9712044B2 (en) Power converter
US9124270B2 (en) Electric power conversion device and surge voltage suppressing method
JP5752234B2 (en) Power converter
CA2903362C (en) Power conversion device
TWI625021B (en) Power conversion system
US20130223114A1 (en) Power conversion apparatus
US10840800B2 (en) Power conversion device
CN105099001B (en) Device for contactless transmission of energy
WO2015011941A1 (en) Inverter device
JP6884922B2 (en) Power converter
US10164523B2 (en) Boost chopper circuit
WO2018033989A1 (en) Protection device for power conversion device, and elevator control device
KR102050907B1 (en) Fault current limiter and fault current limiting method
CN107370369B (en) Boost chopper circuit
JP6455719B2 (en) Uninterruptible power supply system
JP6567780B1 (en) Power converter
JP5170075B2 (en) Current type inverter device
JP6447944B2 (en) Power converter and power conditioner using the same
WO2022158052A1 (en) Gate drive circuit and power conversion device
JP2019068639A (en) Discharge device
JP2018207735A (en) Power conversion device
JP7373424B2 (en) power converter
JP6869625B2 (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16913517

Country of ref document: EP

Kind code of ref document: A1