WO2018032893A1 - 一种无弧有载自动调压配电变压器装置及其调压方法 - Google Patents

一种无弧有载自动调压配电变压器装置及其调压方法 Download PDF

Info

Publication number
WO2018032893A1
WO2018032893A1 PCT/CN2017/091524 CN2017091524W WO2018032893A1 WO 2018032893 A1 WO2018032893 A1 WO 2018032893A1 CN 2017091524 W CN2017091524 W CN 2017091524W WO 2018032893 A1 WO2018032893 A1 WO 2018032893A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
winding
switch
voltage regulating
regulating
Prior art date
Application number
PCT/CN2017/091524
Other languages
English (en)
French (fr)
Inventor
宋祺鹏
盛万兴
王金丽
尹忠东
韩筛根
寇凌峰
王利
方恒福
赵晓龙
Original Assignee
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司 filed Critical 中国电力科学研究院
Publication of WO2018032893A1 publication Critical patent/WO2018032893A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils

Definitions

  • the invention relates to the technical field of voltage automatic regulation of a distribution transformer, in particular to an arcless on-load automatic voltage regulation distribution transformer device and a voltage regulation method thereof.
  • on-load tap-changer in power systems is more and more extensive, and its role in improving system voltage quality and power supply reliability is very important.
  • the traditional on-load tap-changing transformer is completed by the mechanical on-load tap-changer adjusting its tap and related electric components.
  • the tap changer generates a large arc when the load is switched, and it is easy to ablate the contact to cause oil pollution. , affecting the insulation properties and service life of the transformer.
  • the electric operating mechanism is prone to failure. According to relevant statistics, the failure rate accounts for about 80% of the tap-changer, and the maintenance workload is large, which restricts the exertion of the transformer on-load voltage regulation.
  • the automatic voltage regulation of the distribution transformer is the most effective way to stabilize the voltage.
  • On-load voltage regulation and tapping The switch is the main device of the automatic voltage regulating transformer.
  • Most of the existing tap changers are mechanical type contact switches. This switch not only has the arc generated when switching, the mechanical contacts are easily damaged, and the adjustment speed is slow. It is not possible to operate frequently, thus limiting the range of applications of such switches.
  • Second, the regulation accuracy of conventional distribution transformers with winding tap adjustment is not high. For a given voltage of 2.5%, in the case of positive and negative three-stage winding taps, the distribution transformer's regulation range is about -7.5% to 7.5% of its given voltage.
  • an embodiment of the present invention provides an arcless on-load automatic voltage regulating distribution transformer device, including: a low voltage side and a high voltage side; a low voltage side including a low voltage winding, and a high voltage side including: N tunings Compression winding, N switch modules, high voltage windings and voltage regulation control modules,
  • the two ends of the voltage regulating winding are respectively connected with the two ends of the switch module; the N switch modules are serially connected, wherein the Nth switch module is respectively connected with the high voltage winding and one end of the voltage regulating control module, the high voltage winding and the voltage regulating control module in parallel.
  • the switch module includes: a switch, an electronic switch unit, and a normally closed switch.
  • the changeover switch includes: a magnetic hold relay or a position change switch with four terminals.
  • One end of one of the position switch of the position change switch is connected to one end of the voltage regulating winding, and the other two terminals are respectively connected to two terminals connected in series in the switch module;
  • two terminals are connected to the other end of the voltage regulating winding, and the other two terminals are respectively connected with two terminals connected in series with the switch module; two of the electronic switch unit and the normally closed switch The terminals are respectively connected to two terminals connected in series to the switch module.
  • the external connection end of the electronic switch unit is connected to both ends of the varistor; the varistor is connected in parallel with the two reverse-connected thyristors.
  • One external connection end of the electronic switch unit is respectively connected to the cathode of the diode and the collector of the insulated gate bipolar transistor; the other external connection end of the electronic switch unit is respectively connected to the other diode
  • the cathode is connected to the collector of another insulated gate bipolar transistor; the anodes of the two diodes are respectively connected to the emitters of the two insulated gate bipolar transistors; the anode of the diode is connected to the anode of the other diode, and the insulation is insulated
  • the emitter of the gate bipolar transistor is connected to the emitter of another insulated gate bipolar transistor.
  • An external connection end of the electronic switch unit is respectively connected to the cathode of the diode and the emitter of the insulated gate bipolar transistor; the other external connection end of the electronic switch unit is respectively connected to the cathode of the other diode and the other insulated gate bipolar transistor
  • the emitters of the two diodes are respectively connected to the collectors of the two insulated gate bipolar transistors; the anode of the diode is connected to the anode of the other diode, and the collector of the insulated gate bipolar transistor is connected to the other The collector of the insulated gate bipolar transistor is connected.
  • Two parallel diode branches are arranged between the two external connection ends of the electronic switch unit; one diode branch is provided with two diodes opposite to each other, and the other diode branch is provided with two anodes reversely connected
  • the diodes of the two diodes of the cathode oppositely connected are respectively connected to the collectors of the insulated gate bipolar transistors, and the anodes of the two diodes which are oppositely connected to the anodes are respectively connected to the emitters of the insulated gate bipolar transistors.
  • the voltage regulation control module comprises: an operation control unit connected to the power take-off unit, and a measurement unit and a trigger output unit connected to the operation control unit.
  • the method includes the following steps:
  • Step B includes:
  • Step B2 includes:
  • Step C includes:
  • control logic of the switch module corresponding to the state bit is formed according to the change of the second bit state
  • Step D includes:
  • the series connection state of the voltage regulating winding includes: the forward winding of the voltage regulating winding is connected to the high voltage winding, and the voltage regulating winding is shorted and the reverse winding of the voltage regulating winding is connected to the high voltage winding.
  • the forward winding of the regulating winding into the high voltage winding includes:
  • the position switch K1 is cut until A1-C1 is turned on, and the position switch K2 is cut until B2-D2 is turned on, the electronic switch unit is turned off, and the current is connected from the outside.
  • the terminal E1 flows to the external connection terminal E2 via A1-C1-B2-D2.
  • the voltage regulating winding corresponding to the switch module is connected from the external connection terminal E1 to the external connection terminal E2; the number of equivalent winding turns on the high voltage side increases.
  • the voltage regulating winding is shorted to include:
  • the reverse winding of the voltage regulating winding into the high voltage winding includes:
  • U H and U L are respectively the highest voltage and the lowest voltage on the high voltage side
  • N is the number of voltage regulating windings
  • K is the number of voltage regulating stages.
  • the S 0 matrix has a total of N columns and 3 N rows.
  • T 0 is the corresponding coefficient matrix.
  • the equivalent winding turns measured by high voltage is the sum of the number of basic winding turns on the high voltage side and the number of turns of the connected regulating winding;
  • the invention realizes the voltage regulating function by changing the topology structure and the voltage regulating mode to make the voltage regulating winding vector string into the high voltage winding.
  • the voltage regulation principle provided by the invention can realize the phase separation voltage regulation function of the transformer and realize the dynamic voltage regulation function according to the voltage of the low voltage side.
  • the present invention simplifies device configuration and reduces the size and unnecessary cost of the distribution transformer.
  • the invention eliminates the hidden troubles of the original electric switch mechanism, and is easier to quickly select and switch through software control, and effectively prolongs the service life of the switch.
  • the electronic switch unit used in the present invention does not string into the high voltage side winding under normal operating conditions, so there is no drive and power loss.
  • FIG. 1 is a schematic structural diagram of a phase circuit according to an embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a switch module and a voltage regulating winding of the present invention
  • FIG. 3 is a schematic structural view of a voltage regulating control module of the present invention.
  • Figure 4 is an electronic switch unit form 1 of the present invention.
  • Figure 5 is an electronic switch unit form 2 of the present invention.
  • Figure 6 is an electronic switch unit form 3 of the present invention.
  • Figure 7 is an electronic switch unit form 4 of the present invention.
  • Figure 8 is a logic diagram showing the input or exit of the voltage regulating winding of the present invention.
  • Figure 9 is a flow chart of the voltage regulation process of the transformer of the present invention.
  • a high-precision arcless on-load automatic voltage regulating distribution transformer includes: a transformer high voltage winding, a transformer low voltage winding, n voltage regulating windings, n switching modules, and a control module.
  • n is a positive integer (typically 2 or 3) and each voltage regulating winding is connected to a switching module.
  • the switch modules include: two position switchers (or switches having similar switching functions) K1 and K2, an electronic switch unit K3, and a normally closed switch K4; one end of the switch module is connected to the voltage regulating winding, The other end E1 and E2 are connected in series in the high voltage winding; the A1 and A2 terminals of the position switch K1 and K2 of the switch module are connected with E1, the D1 and D2 terminals are connected with E2; the position switch of the switch module is K1 The B1 and C1 terminals are connected to the X1 end of the voltage regulating winding, and the B2 and C2 terminals of the position switch K2 of the switch module are connected to the X2 end of the voltage regulating winding; one end of the electronic switch unit K3 of the switch module is connected to the E1, and the other end is connected Connected to E2; one end of the normally closed switch K4 of the switch module is connected to E1, and the other end is connected to E2.
  • the control module mainly includes: a power taking unit, a measuring unit, an arithmetic control unit, and a trigger output unit.
  • the load regulating transformer of the embodiment can be based on the actual voltage fluctuation of the distribution network where the distribution transformer is located.
  • the regulating winding can be connected to the high-voltage winding in the forward, reverse or short-circuit, and the equivalent winding turns of the high-voltage winding can be changed.
  • the voltage output on the low voltage side of the distribution transformer is stabilized in a wide range.
  • the electronic switch unit K3 is turned on, and then the on/off of the position change switch or the normally closed switch K4 is adjusted, thereby eliminating the generation of an arc during the conversion.
  • the present invention provides a method for determining the relationship between the voltage regulation range, the number of voltage regulation stages, the number of voltage regulation windings, the step size of the voltage regulation, and the number of turns of the voltage regulation winding of the load regulating device of the distribution transformer, and forms a method.
  • the method determines the step size of the voltage regulation according to the range of the voltage to be adjusted and the number of voltage regulating windings, thereby determining the number of turns of the voltage regulating winding.
  • the voltage regulation is greatly increased by increasing the number of voltage regulating windings under the premise of a given voltage adjustment step. Range; under the premise of any given voltage regulation range, by increasing the number of voltage regulating windings, the voltage adjustment step size can be greatly reduced, and the adjustment accuracy can be increased.
  • the correspondingly connected voltage-conducting winding vector string can be connected into the high-voltage winding, thereby changing the equivalent number of turns of the high-voltage winding, on the other hand,
  • the generation of an arc during the voltage regulation process can be eliminated by the action of the electronic switching unit.
  • the voltage regulating winding corresponding to the switch module can be introduced into the high voltage winding in a forward, reverse or short circuit manner to increase, reduce or maintain the equivalent winding of the original high voltage winding.
  • the purpose of the number Through the combined use of multiple voltage regulating windings and switch modules, the number of adjustment stages of the voltage regulating winding can be realized several times, which greatly increases the voltage regulation range and accuracy of the distribution transformer, so that the fluctuation of the voltage at the load terminal is maintained at a reasonable level.
  • the winding direction of the voltage regulating winding is the same as the winding direction of the high voltage winding.
  • the switch module and the voltage regulating winding shown in FIG. 2 as an example, when the winding direction of the voltage regulating winding is the same as the winding direction of the high voltage winding, the polarity of the first end of the voltage regulating winding is the same as the polarity of the high voltage winding.
  • the switch K4 is turned on, and then the current flows directly from the terminal E1 through the K4 to the terminal E2, which is equivalent to the short-circuit of the regulating winding, that is, the regulating winding corresponding to the switching module is not connected to the high-voltage winding, and the high-voltage side of the distribution transformer is equivalent.
  • the number of winding turns does not change.
  • the position switch K1 When the switch K4 is turned off, the position switch K1 is cut until A1-C1 is turned on, and the position switch K2 is cut until B2-D2 is turned on. At this time, the current flows from the terminal E1 to the terminal E2 via A1-C1-B2-D2.
  • the voltage regulating winding corresponding to the switch module is connected from the terminal E1 end to the E2 end, that is, the forward winding of the voltage regulating winding is connected to the high voltage winding, and the number of turns of the high voltage side equivalent winding of the distribution transformer increases.
  • the position switch K1 When the switch K4 is turned off, the position switch K1 is cut to B1-D1, and the position switch K2 is cut to A2-C2.
  • the current flows from the terminal E1 to the terminal E2 via A2-C2-B1-D1.
  • the voltage regulating winding corresponding to the switch module is connected from the terminal E2 end to the E1 end, that is, the reverse winding of the voltage regulating winding is connected to the high voltage winding, and the number of turns of the high voltage side equivalent winding of the distribution transformer is reduced.
  • the switch switch corresponding to the switch module has four terminals, function
  • the position switch K1 which may only be the A1-C1 guide. It is turned on or between B1-D1, or it is changed between the two, for example, the conduction between A1-C1 is changed to be between B1-D1, and there is no other state.
  • the position switch can be a magnetic holding relay in a specific implementation.
  • the voltage regulation control module mainly includes a power taking unit, a measuring unit, an operation control unit, and a trigger output unit.
  • the power take-off unit is connected to the high voltage winding (as shown in FIG. 2), and the power take-off transformer T supplies power to the entire control module.
  • the measuring unit is mainly used to measure the output voltage of the low-voltage side of the transformer, and provides a reference for the voltage regulation of the regulating transformer, usually with the rated voltage of the low-voltage side as the adjustment target.
  • the given voltage is the output target voltage of the transformer, which is set according to the voltage at the outlet end of the low-voltage side of the transformer and the end of the low-voltage line are within the acceptable range, usually the rated voltage.
  • the arithmetic control unit calculates the number of winding turns that should be adjusted on the high voltage side according to the difference between the current low voltage side voltage and the given voltage provided by the measuring unit, and generates an expected voltage regulating winding state matrix and voltage regulating logic.
  • the trigger output unit outputs the response control signal according to the timing according to the voltage regulation logic generated by the operation control unit, and turns on or off the corresponding switch, so that the voltage regulation winding is connected in the forward, reverse or short circuit manner according to the voltage regulation logic. Enter the high pressure side to achieve the purpose of pressure regulation.
  • the electronic switch unit K3 includes two anti-parallel thyristors SCR1, a thyristor SCR2 and a varistor R1, and the anodes of the thyristors SCR1 are respectively Connected to the cathode of the thyristor SCR2 and one end of the varistor R1, the anode of the thyristor SCR2 is respectively connected to the cathode of the thyristor SCR1 and the other end of the varistor R1, and the two common connection terminals P and Q respectively serve as the external switch unit K3. Connection end.
  • the bidirectional switching function of the electronic switch unit K3 under different conditions can be realized.
  • a varistor R1 connected in parallel with two thyristors is used to limit both ends of the thyristor Voltage, protection thyristor.
  • the electronic switch unit K3 includes: two insulated gate bipolar transistors (IGBT) T1, T2 and two diodes D1, D2,
  • the emitter of the insulated gate bipolar transistor T1 is respectively connected to the emitter of the insulated gate bipolar transistor T2, the anode of the diode D1, the anode of the diode D2, the collector of the insulated gate bipolar transistor T1 and the cathode of the diode D2, respectively.
  • the collector of the insulated gate bipolar transistor T2 and the cathode of the diode D1 are respectively connected to the external common connection terminal Q.
  • the electronic switch unit includes: two insulated gate bipolar transistors (IGBT) T3, T4 and two diodes D3, D4, and insulation.
  • the collector of the gate bipolar transistor T3 is respectively connected to the collector of the insulated gate bipolar transistor T4, the anode of the diode D1, the anode of the diode D2, the emitter of the insulated gate bipolar transistor T3 and the cathode of the diode D4, respectively.
  • the external common connection terminal P is connected, and the emitter of the insulated gate bipolar transistor T4 and the cathode of the diode D3 are respectively connected to the external common connection terminal Q.
  • the electronic switch unit includes: an insulated gate bipolar transistor (IGBT) T5 and four diodes D5, D6, D7, D8, and insulation.
  • the collector of the gate bipolar transistor T5 is respectively connected to the cathode of the diode D5 and the cathode of the diode D6, and the emitter of the insulated gate bipolar transistor T5 is respectively connected to the anode of the diode D7 and the anode of the diode D8, and the external common connection terminal P They are respectively connected to the cathode of the diode D7 and the anode of the diode D5, and the external common connection terminal Q is connected to the cathode of the diode D8 and the anode of the diode D6, respectively.
  • IGBT insulated gate bipolar transistor
  • each conversion process of the voltage regulating winding corresponding to the switch module on the high voltage side for example, from forward series to short circuit access state, from forward string to reverse state, slave short circuit
  • the access state is changed to the reverse access state, and the reverse access state is converted to the short access.
  • the switch module first turns on the electronic switch unit K3, and then the other switches K1, K2 and K4 switch or turn on according to the state that the voltage regulating winding needs to be connected to the high voltage side, and finally the electronic switch unit K3 is disconnected, a change
  • the electronic switching unit K3 plays a transitional role in the switching of the series, reverse and shorting of the entire regulating winding.
  • the high and low voltage windings and voltage regulating windings shown in Fig. 2 are only the connection diagrams of the voltage regulation of one phase of the three-phase windings of the distribution transformer in practical applications, and the other two phases are connected in the same manner as in Fig. 2.
  • the invention provides a relationship between determining the voltage regulation range of the load regulating device of the distribution transformer, the number of voltage regulation stages (directly determining the voltage regulation accuracy), the number of voltage regulation windings, the voltage regulation step length, and the number of turns of the voltage regulation winding. Methods. Since the ratio of the voltage on the high voltage side and the low voltage side of the distribution transformer is proportional to the number of turns of the high and low voltage windings, the voltage on the low voltage side can be adjusted to a reasonable range by adjusting the high voltage side equivalent winding.
  • the voltage regulation range of the distribution transformer U H -U L , the number of voltage regulation stages K, the number of voltage regulation windings N, and the number of turns of the voltage regulation winding M are mutually influential relations, where U H , U L are adjusted on the high voltage side The highest voltage and lowest voltage in the range.
  • the number K of the pressure regulating stages on the high pressure side is related to the number N of the voltage regulating windings
  • the voltage regulating range U H -U L of the high pressure side is equal to the product of the number K of voltage regulating stages and the basic step size Ui of the regulating voltage
  • the basic step Ui of the regulating voltage is Ui It is related to the number of turns of the regulating winding.
  • the switching of the corresponding switching module of each regulating winding can realize the winding of the regulating winding, the reverse string and the short-circuit to the high-voltage winding, that is, the state of the switch module and the corresponding voltage-regulating winding.
  • the access status is closely related, and the state of each switch module corresponds to the total equivalent winding turns of different high voltage sides.
  • the state function Si of the switch module is defined according to formula (1):
  • the voltage regulating states of the three voltage regulating windings are constructed based on the formula (1).
  • T is the corresponding coefficient matrix
  • T 0 of the N voltage regulating coils is:
  • the high voltage side equivalent winding has 27 adjustable stages, and the number of turns varies from 87% to 113% of the original high voltage winding turns. That is to say, the change of the original high voltage turns is -13%-13%, so that the output voltage of the low voltage side of the distribution transformer also varies from 87% to 113% of the given voltage.
  • the voltage regulating transformer can keep the low voltage side voltage constant at a given output voltage in the range of 87%-113% of the given voltage on the high voltage side. .
  • the invention provides a logic method for determining the input or exit of the voltage regulating winding vector and the voltage regulation process of the transformer according to the requirement of the voltage regulation change under the premise that the number and the number of turns of the voltage regulating winding have been determined.
  • the purpose of the automatic voltage regulation of the distribution transformer is to maintain the stability of the low-voltage side voltage by adjusting the equivalent number of turns on the high-voltage side. Therefore, different high-voltage side voltages correspond to different voltage-regulating equivalent turns, and the voltage-regulating process is the input of different windings. Or the process of exiting.
  • the state matrix S corresponding to each voltage regulating winding on the current high voltage side determines the state matrix S corresponding to each voltage regulating winding on the current high voltage side, according to Calculating the state matrix S' corresponding to each voltage regulating winding on the high voltage side when the current low voltage side voltage is adjusted to a given voltage by calculating the difference between the current voltage on the low voltage side and the given voltage; and then judging the state matrix S and S' of the voltage regulating winding Whether the state quantity of the first bit (the leftmost bit of the matrix) changes, if there is a change, the switch control logic corresponding to the voltage regulating winding is formed according to the change of the state bit, and if there is no change, the state matrix S and S are continuously judged. 'The corresponding second bit state quantity has a change.
  • the switch control logic corresponding to the voltage regulating winding is formed according to the change of the state bit. If there is no change, the next bit is judged to the right until the last bit. . Finally, after judging that the state matrix S and S' are compared, according to the above-mentioned switch control logic for forming each voltage regulating winding, the control switch is sequentially operated, and the voltage regulating winding with less turns is adjusted first from left to right, and then adjusted. The order of the number of voltage regulating windings is adjusted, and the series connection state of each voltage regulating winding is adjusted to achieve the purpose of voltage regulation, and the voltage regulation process is ended.
  • the voltage regulating winding vector is serially inserted into the high voltage winding by changing the topology structure and the voltage regulating mode, thereby realizing the voltage regulating function.
  • the voltage regulation principle provided can realize the phase separation voltage regulation function of the transformer and realize the dynamic voltage regulation function according to the voltage of the low voltage side. Simplifies equipment configuration and reduces the size and unnecessary cost of the distribution transformer. Eliminate the hidden dangers of the original electric switch mechanism, make it easier to quickly select and switch through software control, and effectively extend the use of the switch life.
  • the electronic switch unit used does not string into the high side winding under normal operating conditions, so there is no drive and power loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

本发明实施例提供了一种无弧有载自动调压配电变压器装置,其装置包括:低压侧和高压侧;低压侧包括低压绕组,高压侧包括:N个调压绕组、N个开关模块、高压绕组和调压控制模块,调压绕组的两端分别与开关模块的两端相连;高压绕组和开关模块串连,调压控制模块和高压绕组并联。

Description

一种无弧有载自动调压配电变压器装置及其调压方法
相关申请的交叉引用
本申请基于申请号为201610685827.X、申请日为2016年08月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及配电变压器的电压自动调节技术领域,具体讲涉及一种无弧有载自动调压配电变压器装置及其调压方法。
背景技术
电力***中有载调压变压器的应用越来越广泛,它在提高***电压质量和供电可靠性方面的作用可谓举足轻重。但传统的有载调压变压器是由机械式有载分接开关调整其分接头和相关的电动部件完成的,分接开关带负荷切换时产生较大的电弧,容易烧蚀触头造成油污染,影响变压器的绝缘特性和使用寿命。电动操作机构容易出现故障,据有关数据统计,其故障率约占分接开关故陳的80%,维护工作量大,制约了变压器有载调压作用的发挥。
配电变压器自动调压技术目前存在两方面问题:一是在电力***无功功率充足的情况下,配电变压器采用有载自动调压是稳定电压的最有效的方式,有载调压分接开关是自动调压变压器的主要装置,现有的分接开关绝大多数为机械式有触点开关,这种开关不仅切换时伴有电弧的产生,机械触头容易损坏,而且调节速度慢,不能频繁操作,因此限制了这种开关的应用范围。二是常规含有绕组抽头调节的配电变压器调节精度不高,约 为给定电压的2.5%,在正负各三级绕组抽头的情况下,配电变压器的调节范围约为其给定电压的-7.5%~7.5%。
目前,也有少量采用电力电子器件开关模块控制变压器调压绕组来实现调压的相关技术,但是这些技术方案一方面存在拓扑结构复杂,实现起来困难的问题,另一方面存在正常状态下电力电子器件一直处于工作状态,存在能量损耗、持续驱动及抗扰动能力差等问题。然而,相关技术中,对此问题,并未存在有效的解决方案。
发明内容
为了克服上述现有技术的不足,本发明实施例提供一种无弧有载自动调压配电变压器装置,其包括:低压侧和高压侧;低压侧包括低压绕组,高压侧包括:N个调压绕组、N个开关模块、高压绕组和调压控制模块,
调压绕组的两端分别与开关模块的两端相连;N个开关模块串行连接,其中,第N个开关模块分别与高压绕组和调压控制模块的一端相连,高压绕组和调压控制模块并联。
开关模块包括:切换开关、电子开关单元和常闭开关。
切换开关包括:磁保持继电器或带有四个端子的位置切换开关。
位置切换开关中的一个位置切换开关的两个端子的一端与调压绕组的一端相连,其另两个端子分别与开关模块中对外串接的两个端子相连;
位置切换开关中的另一位置切换开关中两个端子与调压绕组的另一端相连,其另外两个端子分别与开关模块对外串接的两个端子相连;电子开关单元和常闭开关的两端分别与开关模块对外串接的两个端子相连。
电子开关单元的对外连接端与压敏电阻的两端相连;压敏电阻与两个反向并接的晶闸管并联。
电子开关单元的一个对外连接端分别与二极管的阴极和绝缘栅双极型晶体管的集电极相连;电子开关单元的另一对外连接端分别与另一二极管 的阴极和另一绝缘栅双极型晶体管的集电极相连;上述两个二极管的阳极分别与上述两个绝缘栅双极型晶体管的发射极相连;二极管的阳极与另一二极管的阳极相连,绝缘栅双极型晶体管的发射极与另一绝缘栅双极型晶体管的发射极相连。
电子开关单元的一个对外连接端分别与二极管的阴极和绝缘栅双极型晶体管的发射极相连;电子开关单元的另一对外连接端分别与另一二极管的阴极和另一绝缘栅双极型晶体管的发射极相连;上述两个二极管的阳极分别与上述两个绝缘栅双极型晶体管的集电极相连;二极管的阳极与另一二极管的阳极相连,绝缘栅双极型晶体管的集电极与另一绝缘栅双极型晶体管的集电极相连。
电子开关单元的两个对外连接端之间,设有两条并联的二极管支路;一条二极管支路设有两个阴极反向对接的二极管,另一二极管支路设有两个阳极反向对接的二极管;阴极反向对接的两个二极管的阴极分别与绝缘栅双极型晶体管的集电极相连,阳极反向对接的两个二极管的阳极分别与绝缘栅双极型晶体管的发射极相连。
调压控制模块包括:与取电单元相连的运算控制单元,以及同运算控制单元相连的测量单元和触发输出单元。
其方法包括如下步骤:
A.确定当前低压侧的输出电压与给定电压间的差;
B.将差与低压侧的调压步长比较;
C.根据高压侧调压绕组状态矩阵每一位的变化形成开关模块的控制逻辑;
D.根据所有开关模块的控制逻辑,依次调整调压绕组的串接状态。
步骤B包括:
B1.若差值小于所述调压步长,则返回继续判断差值的大小;
B2.若差值大于所述调压步长,确定当前高压侧调压绕组对应的状态矩阵为S。
步骤B2包括:
在当前低压侧电压调整为给定电压时,高压侧调压绕组对应的状态矩阵为S’。
步骤C包括:
C1.判断状态矩阵S和S’的第一位状态量是否有变化;
C2.如果第一位状态量变化,则根据第一位状态量的变化形成与该状态位对应的开关模块的控制逻辑;
C3.如果第一位状态量变化无变化,则继续判断状态矩阵S和S’的第二位状态量是否有变化;
C4.如果第二位状态量有变化,则根据第二位状态的变化形成与该状态位对应的开关模块的控制逻辑;
C5.如果第二位状态无变化,则继续判断下一位,直至最后一位。
步骤D包括:
D1.根据开关模块的控制逻辑,依次控制所有开关模块的动作;
D2.根据所有开关模块的动作,改变调压绕组的串接状态。
调压绕组的串接状态包括:调压绕组正向串接入高压绕组,调压绕组被短接和调压绕组反向串接入高压绕组。
调压绕组正向串接入高压绕组包括:
当电子开关单元导通,常闭开关断开时,将位置切换开关K1切至A1-C1导通,位置切换开关K2切至B2-D2导通后,断开电子开关单元,电流从对外连接端子E1经A1-C1-B2-D2流向对外连接端子E2,此时开关模块对应的调压绕组从对外连接端子E1至对外连接端子E2接入;高压侧的等效绕组匝数增加。
调压绕组被短接包括:
当电子开关单元导通和常闭开关均导通后,再断开电子开关单元,电流从对外连接端子E1经常闭开关流向对外连接端子E2;
高压侧的等效绕组匝数不变。
调压绕组反向串接入高压绕组包括:
当电子开关单元导通,常闭开关断开,将位置切换开关K1切至B1-D1导通,位置切换开关K2切至A2-C2导通后,断开电子开关单元,电流从对外连接端子E1经A2-C2-B1-D1流向对外连接端子E2,此时开关模块对应的调压绕组从所述对外连接端子E2至对外连接端子E1接入;高压侧的等效绕组匝数减少。
高压侧的调压步长:
Figure PCTCN2017091524-appb-000001
其中,UH和UL分别为高压侧的最高电压和最低电压;
K=3N,N为调压绕组的个数,K为调压级数。
N个调压绕组的全部可能接入状态S0为:
Figure PCTCN2017091524-appb-000002
其中,S0矩阵共N列,3N行。
调压绕组的匝数M与高压侧的基本绕组匝数M0的关系为:
M=T0*M0
T0为对应的系数矩阵。
系数矩阵T0
Figure PCTCN2017091524-appb-000003
高压测的等效绕组匝数为高压侧的基本绕组匝数与接入的调压绕组匝数之和;
则等效绕组匝数Meq与高压侧的基本绕组匝数M0的关系为:Meq=(1+S0*T0)*M0
与最接近的现有技术相比,本发明实施例提供的技术方案具有以下有益效果:
1、本发明通过改变拓扑结构及调压方式,使调压绕组矢量串入高压绕组内,从而实现调压功能。
2、本发明所提供的调压原理可以实现变压器的分相调压功能和依据低压侧电压实现动态调压功能。
3、本发明简化了设备配置,减小了配电变压器的体积和不必要的成本。
4、本发明消除了原有电动开关机构的隐患,更易于通过软件控制快速完成选择和切换,并有效延长了开关的使用寿命。
5、本发明所用的电子开关单元在正常工作状态下不串入高压侧绕组,故没有驱动和功率损耗。
附图说明
图1为本发明实施例中一相电路的结构示意图;
图2为本发明开关模块和调压绕组的电路结构示意图;
图3为本发明调压控制模块的结构示意图;
图4为本发明的电子开关单元形式1;
图5为本发明的电子开关单元形式2;
图6为本发明的电子开关单元形式3;
图7为本发明的电子开关单元形式4;
图8为本发明调压绕组投入或退出的逻辑示意图;
图9为本发明变压器的调压过程流程图。
具体实施方式
下面结合说明书附图对本发明的技术方案做进一步详细说明。
如图1所示,一种高精度无弧有载自动调压配电变压器包括:变压器高压绕组、变压器低压绕组、n个调压绕组、n个开关模块、一个控制模块。其中n是正整数(一般为2或3),且每一调压绕组都与一个开关模块连接。
如图2所示,开关模块均包括:两个位置切换开关(或有类似切换功能的开关)K1和K2,一个电子开关单元K3,一个常闭开关K4;开关模块一端与调压绕组连接,另一端E1和E2串接在高压绕组内;开关模块的位置切换开关K1和K2的A1、A2端子都与E1相连接,D1和D2端子都与E2相连接;开关模块的位置切换开关K1的B1和C1端子与调压绕组的X1端相连,开关模块的位置切换开关K2的B2和C2端子与调压绕组的X2端相连;开关模块的电子开关单元K3的一端与E1相连接,另一端与E2相连接;开关模块的常闭开关K4的一端与E1相连接,另一端与E2相连接。
如图3所示,控制模块主要包括:取电单元、测量单元、运算控制单元和触发输出单元,本实施例的有载调压变压器可根据配电变压器所在配电网的电压波动实际情况,以控制低压侧输出电压在给定范围内为目标,通过控制开关模块的开断逻辑,可以使调压绕组正向、反向或短路接入高压绕组,改变高压绕组的等效绕组匝数,从而在大范围内稳定配电变压器低压侧的电压输出。在有载变压器开关模块的任何一次调压转换过程中, 首先使电子开关单元K3导通,然后再调节位置切换开关或常闭开关K4的通断,从而消除了转换过程中电弧的产生。
同时,本发明提供了一种确定配电变压器有载调压装置的调压范围、调压级数、调压绕组数量、调压步长、调压绕组匝数之间关系的方法,形成了变压器调压绕组矢量的投入或退出的逻辑方法及变压器调压流程。该方法根据需要调节电压的范围和调压绕组的数量,确定电压调节的步长,从而确定调压绕组的匝数。由于变压器的调压级数随着调压绕组个数的增加而呈指数倍的增加,依据该方法在给定电压调节步长的前提下,通过增加调压绕组的数量,大幅增大电压调节范围;在任意给定的调压范围前提下,通过增加调压绕组的数量,可以大幅减小电压调节步长,增加调节精度。
在本实施例中,通过控制开关模块各个开关的通断状态,一方面可以使其对应连接的调压绕组矢量串接入高压绕组中,从而改变高压绕组的等效匝数,另一方面,可以通过电子开关单元的动作消除调压过程中电弧的产生。
以图2所示的开关模块和调压绕组为例:
情形1,导通电子开关单元K3,导通开关K4,然后再断开电子开关单元K3,此时电流直接从端子E1经K4流向端子E2,相当于调压绕组被短接,即该开关模块对应的调压绕组没有接入高压绕组,配电变压器高压侧等效绕组匝数不变。
情形2,导通电子开关单元K3,断开开关K4,并将位置切换开关K1切至A1-C1导通,将位置切换开关K2切至B2-D2导通,断开电子开关单元K3,此时电流从端子E1经A1-C1-B2-D2流向端子E2,此时相当于该开关模块对应的调压绕组从端子E1端至E2端接入,即调压绕组正向串接入高压绕组,配电变压器高压侧等效绕组匝数增加。
情形3,导通电子开关单元K3,断开开关K4,并将位置切换开关K1 切至B1-D1导通,将位置切换开关K2切至A2-C2导通,断开电子开关单元K3,此时电流从端子E1经A2-C2-B1-D1流向端子E2,此时相当于该开关模块对应的调压绕组从端子E2端至E1端接入,即调压绕组反向串接入高压绕组,配电变压器高压侧等效绕组匝数减少。
通过开关模块中各个开关通断的配合,可以将该开关模块对应的调压绕组以正向、反向或短接的方式引入高压绕组,实现增加、减少或保持原有高压绕组等效绕组匝数的目的。通过多个调压绕组及开关模块的联合使用,可以实现调压绕组数量级数倍的调节级数,大大增大了配电变压器的电压调节范围和精度,使得负载端电压的波动维持在合理的范围内。
作为一种具体的实施方法,调压绕组的绕制方向与高压绕组的绕制方向相同。
以图2所示的开关模块和调压绕组为例,当调压绕组的绕制方向与高压绕组的绕制方向相同时,调压绕组的1端的极性与高压绕组的极性相同,当开关K4导通,然后此时电流直接从端子E1经K4流向端子E2,相当于调压绕组被短路,即该开关模块对应的调压绕组没有串接入高压绕组,配电变压器高压侧等效绕组匝数不变。
当开关K4断开,位置切换开关K1切至A1-C1导通,位置切换开关K2切至B2-D2导通,此时电流从端子E1经A1-C1-B2-D2流向端子E2,此时相当于该开关模块对应的调压绕组从端子E1端至E2端接入,即调压绕组正向串接入高压绕组,配电变压器高压侧等效绕组匝数增加。当开关K4断开,位置切换开关K1切至B1-D1导通,位置切换开关K2切至A2-C2导通,此时电流从端子E1经A2-C2-B1-D1流向端子E2,此时相当于该开关模块对应的调压绕组从端子E2端至E1端接入,即调压绕组反向串接入高压绕组,配电变压器高压侧等效绕组匝数减少。
如图2所示,在开关模块对应的位置切换开关,其有四个端子,功能 为将其四个端子中的两个端子的导通状态变换为另外两个端子导通,而不会出现同时导通的情形,比如位置切换开关K1,其只可能是A1-C1之间导通或B1-D1之间导通,或者在两者之间变换,如A1-C1之间导通变换为B1-D1之间导通,而不会有其他状态。该位置切换开关在具体实施时可以是磁保持继电器。
如图3所示的调压控制模块结构示意图,调压控制模块主要包括取电单元、测量单元、运算控制单元、触发输出单元。取电单元引接至高压绕组(如图2所示),通取电变压器T为整个控制模块提供电能。测量单元主要用于测量变压器低压侧的输出电压,为调压变压器的调压提供参考,通常为以低压侧额定电压为调整目标。
给定电压是变压器的输出目标电压,依据变压器低压侧出口端和低压线路末端的电压都在合格范围内而设定的,通常为额定电压。
运算控制单元为根据测量单元提供的当前低压侧电压与给定电压的差值,计算高压侧应该调整的绕组匝数,生成预期的调压绕组状态矩阵和调压逻辑。触发输出单元,根据运算控制单元生成的调压逻辑,按时序输出响应的控制信号,导通或关断相应开关,实现调压绕组按调压逻辑以正向、反向或短路的方式串接入高压侧,从而实现调压目的。
如图4所示,作为开关模块中电子开关单元K3的一种具体的实施方式,电子开关单元K3包括两个反向并联的晶闸管SCR1、晶闸管SCR2和一个压敏电阻R1,晶闸管SCR1的阳极分别与晶闸管SCR2的阴极和压敏电阻R1的一端相连,晶闸管SCR2的阳极分别与晶闸管SCR1的阴极和压敏电阻R1的另一端相连,两个公共连接端P和Q分别作为电子开关单元K3的对外连接端。由于上述两个晶闸管能够在控制信号的作用下实现各自的导通或关断,因而能够实现电子开关单元K3在不同条件下的双向通断功能。在该开关单元中,与两个晶闸管并联的压敏电阻R1用于限制晶闸管两端的 电压,保护晶闸管。
如图5所示,作为开关模块中电子开关单元K3的另一种具体实施方式,电子开关单元K3包括:两个绝缘栅双极型晶体管(IGBT)T1、T2和两个二极管D1、D2,绝缘栅双极型晶体管T1的发射极分别与绝缘栅双极型晶体管T2的发射极、二极管D1的阳极、二极管D2的阳极相连,绝缘栅双极型晶体管T1的集电极和二极管D2的阴极分别与外部公共连接端P相连,绝缘栅双极型晶体管T2的集电极和二极管D1的阴极分别与外部公共连接端Q相连。
如图6所示,作为开关模块中电子开关单元K3的又一种具体实施方式,电子开关单元包括:两个绝缘栅双极型晶体管(IGBT)T3、T4和两个二极管D3、D4,绝缘栅双极型晶体管T3的集电极分别与绝缘栅双极型晶体管T4的集电极、二极管D1的阳极、二极管D2的阳极相连,绝缘栅双极型晶体管T3的发射极和二极管D4的阴极分别与外部公共连接端P相连,绝缘栅双极型晶体管T4的发射极和二极管D3的阴极分别与外部公共连接端Q相连。
如图7所示,作为开关模块中电子开关单元K3的再一种具体实施方式,电子开关单元包括:绝缘栅双极型晶体管(IGBT)T5和四个二极管D5、D6、D7、D8,绝缘栅双极型晶体管T5的集电极分别与二极管D5的阴极、二极管D6的阴极相连,绝缘栅双极型晶体管T5的发射极分别与二极管D7的阳极、二极管D8的阳极相连,外部公共连接端P分别与二极管D7的阴极、二极管D5的阳极相连,外部公共连接端Q分别与二极管D8的阴极、二极管D6的阳极相连。
在开关模块对应的调压绕组在高压侧的串接状态的每一次变换过程中,比如从正向串入变换为短路接入状态、从正向串入变换为反向接入状态、从短路接入状态变换为反向接入状态、反向接入状态变换为短路接入 状态,开关模块中首先导通的都是电子开关单元K3,然后其他开关K1,K2和K4根据调压绕组需要接入高压侧的状态切换或导通,最后电子开关单元K3断开,一个变换过程结束,电子开关单元K3在整个调压绕组的顺串、反串和短接的切换过程中起到过渡作用。
从图4到图7的4种电子开关单元K3的具体实施方式中,由于采用了IGBT和晶闸管等电子开关,特别是IGBT具有开关速度快、热稳定性好、驱动功率小、驱动电路简单等优点,使得K3不仅具有良好的开关特性,还具备了在过渡过程中消除了常规开关电弧的产生。
如图2所示的高低压绕组及调压绕组只是实际应用中配电变压器三相绕组中的一相的调压示意连接图,其他两相的连接方式和图2相同。
本发明提供了一种确定配电变压器有载调压装置的调压范围、调压级数(直接决定调压精度)、调压绕组数量、调压步长、调压绕组匝数之间关系的方法。由于配电变压器高压侧、低压侧的电压之比与高低压绕组的匝数成正比,因此通过调节高压侧等效绕组,可以调节低压侧的电压到一个合理的范围。配电变压器的调压范围UH-UL、调压级数K、调压绕组数量N、调压绕组匝数M是一个互为影响的关系,其中UH,UL为高压侧在调节范围内的最高电压和最低电压。比如,高压侧的调压级数K与调压绕组数量N有关,高压侧调压范围UH-UL等于调压级数K与调压基本步长Ui的乘积,调压基本步长Ui与调压绕组匝数M有关。
下面首先确定调压级数K与调压绕组数量N的关系:
假设调压绕组个数为N=3,通过每一个调压绕组对应的开关模块的变换可以实现调压绕组顺串、反串以及短接接入高压绕组,即开关模块的状态与对应调压绕组的接入状态密切相关,每一个开关模块的状态都对应着不同的高压侧总的等效绕组匝数。
Figure PCTCN2017091524-appb-000004
为了描述方便,根据公式(1)定义开关模块的状态函数Si:当开关K4断开,位置切换开关K1切至A1-C1导通,位置切换开关K2切至B2-D2导通,此时电流从端子E1经A1-C1-B2-D2流向端子E2,此时相当于该开关模块对应的调压绕组从端子X1端至X2端接入,即调压绕组正向串接入高压绕组,Si=1;当开关K4导通,电流直接从端子E1经K4流向端子E2,相当于调压绕组被短路时,Si=0;当开关K4断开,位置切换开关K1切至B1-D1导通,位置切换开关K2切至A2-C2导通,此时电流从端子E1经A2-C2-B1-D1流向端子E2,此时相当于该开关模块对应的调压绕组从端子X2端至X1端接入,即调压绕组反向串接入高压绕组,Si=-1。
由于每一个调压绕组对应的开关模块都存在三种不同的状态将调压绕组接入,因此为了能表征所有情况,以公式(1)为基础,构建了3个调压绕组的调压状态矩阵,当调压线圈的个数为N=2时,调压级数的级数为9;如(2)式所示,当调压线圈的个数为N=3时,调压级数的级数为27;该状态矩阵包括了3个调压绕组的全部可能的接入状态。
Figure PCTCN2017091524-appb-000005
从而可知,当调压线圈的个数为N=4时,调压级数的级数为81;当调压线圈的个数为N时,调压级数的级数为3N,则N个调压线圈全部可能的接入状态矩阵为:
Figure PCTCN2017091524-appb-000006
调压级数K与调压绕组个数N的关系为:
K=3N(N=1,2,3)         (4)
调压基本步长:
Figure PCTCN2017091524-appb-000007
假设高压侧基本绕组匝数为M0,高压侧给定电压为U0,调压基本步长Ui对应的绕组的匝数为Mi:
Figure PCTCN2017091524-appb-000008
假定Mi=0.01M0,0.01为基础调压倍数;当调压线圈的个数为N=3时,由于式(4)可知,调压级数对应公式的底数为3,因此不同调压绕组的倍数关系也应为3,三个调压绕组的匝数分别为0.01M0,0.03M0,0.09M0,用矩阵表示调压绕组M与高压侧基本绕组匝数M0的关系为:
Figure PCTCN2017091524-appb-000009
T为对应的系数矩阵,则N个调压线圈的系数矩阵T0为:
Figure PCTCN2017091524-appb-000010
由于高压等效绕组匝数为高压侧基本绕组匝数与接入调压绕组的匝数之和,根据式(2)和(7)可以用矩阵的形式计算出高压绕组的等效绕组匝数,则当调压线圈的个数为N=3时,高压侧等效绕组匝数Meq为:
Figure PCTCN2017091524-appb-000011
从式(8)可知,三个调压绕组矢量的接入高压绕组后,高压侧等效绕组有27个可调级,匝数变化范围为原有高压绕组匝数的87%-113%,即在原有高压匝数的基础上变化-13%-13%,从而配电变压器低压侧输出电压的变化范围也为给定电压的87%-113%。
由于调压配电变压器的调节目标为保持低压侧电压稳定,因此也可以认为在高压侧在给定电压的87%-113%范围内,调压变压器能够保持低压侧电压为恒定给定输出电压。
从本实施案例,我们可看出,当调压范围给定时,只要增加调压绕组的数量,就能增加调压级数,增加调节精度,同时减小基础调压倍数;当调压绕组数量给定时,调压级数也就定了,只要增加基础调压倍数,就能大幅增加调压的范围,这为针对不同需求而开发相应的产品指明了方向。
本发明提供了一种在已确定调压绕组数量和匝数的前提下,根据调压变化需求确定调压绕组矢量的投入或退出的逻辑方法及变压器的调压流程。配电变压器自动调压的目的是通过调整高压侧的等效匝数来保持低压侧电压的稳定,因此不同的高压侧电压对应不同的调压等效匝数,调压过程就是不同绕组的投入或退出的过程。
如图8所示,仍以调压绕组的个数N=3,调压绕组的匝数分别为0.01M0,0.03M0,0.09M0为例来说明变压器的调压逻辑;由式(2)和(8)可知,式(8)中每一个高压侧的等效匝数都对应式(2)中一个调压状态矩阵,来反映不同调压绕组的投入或退出状态,比如式(8)中等效匝数为0.93M0时,对应的调压状态矩阵为[-1,1,-1],1.01M0对应的调压状态矩阵为[1,0,0];若根据调压需求,对应等效绕组需要从0.93M0变为1.01M0时,只需将对应的调压状态矩阵从[-1,1,-1]调为[1,0,0],对应0.01M0调压绕组的状态量由-1变为1,即该调压绕组由反向串入状态变为正向串入状态,但由于电子开关支路的短路过渡过程,其实际变换过程为状态量由-1变为0,接着再变为1,即该调压绕组由反向串入状态变为短路状态,接着在变位正向串入状态;对应0.03M0调压绕组的状态量由1变为0,即该调压绕组由正向串入状态变为短路状态;对应0.09M0调压绕组的状态量由-1变为0,即该调压绕组由反向串入状态变为短路状态;其先后顺序为从状态矩阵最左侧变量对应的调压绕组先变换状态,依次向右侧变量对应的调压绕组接着变换状态,直到最后一个。
如图9所示,为变压器有载调压过程流程图。其步骤为:首先判断低 压侧输出电压与给定电压的差值是否大于低压侧对应的调压步长(该调压步长为高压侧调压步长Ui与变压器变比的比值,如图8示例中,Ui=0.01*10kV=100V,那么此时低压侧对应调压步长就为100V/10/0.4=4V),如果大于该调压步长,判断当前高压侧各个调压绕组对应的状态矩阵S,根据低压侧当前电压与给定电压的差值,计算将当前低压侧电压调整为给定电压时高压侧各个调压绕组对应的状态矩阵S’;然后判断调压绕组的状态矩阵S和S’对应的第一位(矩阵最左侧位)状态量是否有变化,如果有变化,则根据该状态位的变化形成对应调压绕组的开关控制逻辑,如果没有变化,则继续判断状态矩阵S和S’对应的第二位状态量是否有变化,如果有变化,则根据该状态位的变化形成对应调压绕组的开关控制逻辑,如果没有变化,则继续向右判断下一位,直至最后一位。最后,判断状态矩阵S和S’对比结束后,根据以上形成各个调压绕组的开关控制逻辑,依次动作控制开关,按照从左至右,亦即先调节匝数少的调压绕组,后调节匝数多的调压绕组的顺序,调整各个调压绕组的串接状态,实现调压目的,结束此次调压过程。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,所属领域的普通技术人员参照上述实施例依然可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换,均在申请待批的本发明的权利要求保护范围之内。
工业实用性
采用本发明实施例,通过改变拓扑结构及调压方式,使调压绕组矢量串入高压绕组内,从而实现调压功能。所提供的调压原理可以实现变压器的分相调压功能和依据低压侧电压实现动态调压功能。简化了设备配置,减小了配电变压器的体积和不必要的成本。消除了原有电动开关机构的隐患,更易于通过软件控制快速完成选择和切换,并有效延长了开关的使用 寿命。所用的电子开关单元在正常工作状态下不串入高压侧绕组,故没有驱动和功率损耗。

Claims (23)

  1. 一种无弧有载自动调压配电变压器装置,其包括:低压侧和高压侧;所述低压侧包括低压绕组,所述高压侧包括:N个调压绕组、N个开关模块、高压绕组和调压控制模块,
    每一所述调压绕组的都分别与一个所述开关模块的并联;
    所述高压绕组和所述的N个开关模块串联。
  2. 根据权利要求1所述的配电变压器装置,其中,所述开关模块包括:切换开关、电子开关单元和常闭开关。
  3. 根据权利要求2所述的配电变压器装置,其中,所述切换开关包括:磁保持继电器或带有四个端子的位置切换开关。
  4. 根据权利要求3所述的配电变压器装置,其中,
    所述位置切换开关中的一个位置切换开关的两个端子的一端与所述调压绕组的一端相连,其另两个端子分别与所述开关模块中对外串接的两个端子相连;
    所述位置切换开关中的另一位置切换开关中两个端子与所述调压绕组的另一端相连,其另外两个端子分别与所述开关模块对外串接的两个端子相连;
    所述电子开关单元和所述常闭开关的两端分别与所述开关模块对外串接的两个端子相连。
  5. 根据权利要求2所述的配电变压器装置,其中,
    所述电子开关单元的对外连接端与压敏电阻的两端相连;
    所述压敏电阻与两个反向并接的晶闸管并联。
  6. 根据权利要求2所述的配电变压器装置,其中,所述电子开关单元的一个对外连接端分别与二极管的阴极和绝缘栅双极型晶体管的集电极相连;
    所述电子开关单元的另一对外连接端分别与另一二极管的阴极和另一绝缘栅双极型晶体管的集电极相连;
    上述两个二极管的阳极分别与上述两个绝缘栅双极型晶体管的发射极相连;所述二极管的阳极与所述另一二极管的阳极相连,所述绝缘栅双极型晶体管的发射极与所述另一绝缘栅双极型晶体管的发射极相连。
  7. 根据权利要求2所述的配电变压器装置,其中,
    所述电子开关单元的一个对外连接端分别与二极管的阴极和绝缘栅双极型晶体管的发射极相连;
    所述电子开关单元的另一对外连接端分别与另一二极管的阴极和另一绝缘栅双极型晶体管的发射极相连;
    上述两个二极管的阳极分别与上述两个绝缘栅双极型晶体管的集电极相连;所述二极管的阳极与所述另一二极管的阳极相连,所述绝缘栅双极型晶体管的集电极与所述另一绝缘栅双极型晶体管的集电极相连。
  8. 根据权利要求2所述的配电变压器装置,其中,
    所述电子开关单元的两个对外连接端之间,设有两条并联的二极管支路;
    一条二极管支路设有两个阴极反向对接的二极管,另一二极管支路设有两个阳极反向对接的二极管;
    所述阴极反向对接的两个二极管的阴极分别与绝缘栅双极型晶体管的集电极相连,所述阳极反向对接的两个二极管的阳极分别与绝缘栅双极型晶体管的发射极相连。
  9. 根据权利要求2所述的配电变压器装置,其中,所述调压控制模块包括:
    与所述取电单元相连的运算控制单元,以及同运算控制单元相连的测量单元和触发输出单元。
  10. 一种无弧有载自动调压配电变压器的调压方法,包括:
    确定当前低压侧的输出电压与给定电压间的差;
    将所述差与所述低压侧的调压步长比较;
    根据高压侧调压绕组状态矩阵每一位的变化形成开关模块的控制逻辑;
    根据所有开关模块的控制逻辑,依次调整调压绕组的串接状态。
  11. 根据权利要求10所述的调压方法,其中,将所述差与所述低压侧的调压步长比较,包括:
    若所述差值小于所述调压步长,则返回继续判断所述差值的大小;
    若所述差值大于所述调压步长,确定当前高压侧调压绕组对应的状态矩阵为S。
  12. 根据权利要求11所述的调压方法,其中,若所述差值大于所述调压步长,确定当前高压侧调压绕组对应的状态矩阵为S,包括:
    在当前低压侧电压调整为所述给定电压时,所述高压侧调压绕组对应的状态矩阵为S’。
  13. 根据权利要求12所述的调压方法,其中,根据高压侧调压绕组状态矩阵每一位的变化形成开关模块的控制逻辑,包括:
    判断状态矩阵S和S’的第一位状态量是否有变化;
    如果所述第一位状态量变化,则根据所述第一位状态量的变化形成与该状态位对应的开关模块的控制逻辑;
    如果所述第一位状态量变化无变化,则继续判断状态矩阵S和S’的第二位状态量是否有变化;
    如果所述第二位状态量有变化,则根据所述第二位状态的变化形成与该状态位对应的开关模块的控制逻辑;
    如果所述第二位状态无变化,则继续判断下一位,直至最后一位。
  14. 根据权利要求10或13所述的调压方法,其中,根据所有开关模块的控制逻辑,依次调整调压绕组的串接状态,包括:
    根据所述开关模块的控制逻辑,依次控制所有开关模块的动作;
    根据所述所有开关模块的动作,改变所述调压绕组的串接状态。
  15. 根据权利要求14所述的调压方法,其中,
    所述调压绕组的串接状态包括:所述调压绕组正向串接入高压绕组,所述调压绕组被短接和所述调压绕组反向串接入所述高压绕组。
  16. 根据权利要求15所述的调压方法,其中,所述调压绕组正向串接入高压绕组包括:
    当电子开关单元导通,常闭开关断开时,将位置切换开关K1切至A1-C1导通,位置切换开关K2切至B2-D2导通后,断开所述电子开关单元,电流从对外连接端子E1经A1-C1-B2-D2流向对外连接端子E2,此时所述开关模块对应的调压绕组从所述对外连接端子E1至所述对外连接端子E2接入;
    所述高压侧的等效绕组匝数增加。
  17. 根据权利要求15所述的调压方法,其中,所述调压绕组被短接包括:
    当电子开关单元导通和常闭开关均导通后,再断开所述电子开关单元,电流从对外连接端子E1经所述常闭开关流向对外连接端子E2;
    所述高压侧的等效绕组匝数不变。
  18. 根据权利要求15所述的调压方法,其中,所述调压绕组反向串接入所述高压绕组包括:
    当电子开关单元导通,常闭开关断开,将位置切换开关K1切至B1-D1导通,位置切换开关K2切至A2-C2导通后,断开所述电子开关单元,电流从对外连接端子E1经A2-C2-B1-D1流向对外连接端子E2,此时所述开关模块对应的调压绕组从所述对外连接端子E2至所述对外连接端子E1接 入;
    所述高压侧的等效绕组匝数减少。
  19. 根据权利要求10所述的调压方法,其中,所述高压侧的调压步长:
    Figure PCTCN2017091524-appb-100001
    其中,UH和UL分别为所述高压侧的最高电压和最低电压;
    K=3N,N为调压绕组的个数,K为调压级数。
  20. 根据权利要求19所述的调压方法,其中,N个调压绕组的全部可能接入状态S0为:
    Figure PCTCN2017091524-appb-100002
    其中,S0矩阵共N列,3N行。
  21. 根据权利要求20所述的调压方法,其中,所述调压绕组的匝数M与所述高压侧的基本绕组匝数M0的关系为:
    M=T0*M0
    T0为对应的系数矩阵。
  22. 根据权利要求21所述的调压方法,其中,所述系数矩阵T0
    Figure PCTCN2017091524-appb-100003
  23. 根据权利要求22所述的调压方法,其中,
    所述高压测的等效绕组匝数为所述高压侧的基本绕组匝数与接入的调压绕组匝数之和;
    所述等效绕组匝数Meq与高压侧的基本绕组匝数M0的关系为:Meq=(1+S0*T0)*M0
PCT/CN2017/091524 2016-08-18 2017-07-03 一种无弧有载自动调压配电变压器装置及其调压方法 WO2018032893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610685827.X 2016-08-18
CN201610685827.XA CN106252040A (zh) 2016-08-18 2016-08-18 一种无弧有载自动调压配电变压器装置及其调压方法

Publications (1)

Publication Number Publication Date
WO2018032893A1 true WO2018032893A1 (zh) 2018-02-22

Family

ID=57591732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091524 WO2018032893A1 (zh) 2016-08-18 2017-07-03 一种无弧有载自动调压配电变压器装置及其调压方法

Country Status (2)

Country Link
CN (1) CN106252040A (zh)
WO (1) WO2018032893A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109038606A (zh) * 2018-08-08 2018-12-18 全球能源互联网研究院有限公司 一种有载调压变压器及统一潮流控制***
CN109142881A (zh) * 2018-08-11 2019-01-04 国网湖南省电力有限公司电力科学研究院 电力变压器电气试验智能切换线装置
CN112748371A (zh) * 2020-12-18 2021-05-04 国网福建省电力有限公司检修分公司 变压器试验多测试项目的通用测试结构及逻辑控制方法
CN112865569A (zh) * 2021-01-28 2021-05-28 三峡大学 一种混合t型桥的单相三电平整流器
CN114285341A (zh) * 2021-12-29 2022-04-05 西安交通大学 一种电力电子式有载无弧调容变压器暂态优化控制***和方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252040A (zh) * 2016-08-18 2016-12-21 中国电力科学研究院 一种无弧有载自动调压配电变压器装置及其调压方法
CN110518845B (zh) * 2019-07-30 2021-11-02 广东电网有限责任公司广州供电局 变压器有载调压开关
CN112636244B (zh) * 2020-12-11 2022-03-08 国网湖南省电力有限公司 兼顾宽调压及电流精细可调的消舞融冰变压器设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697310A (zh) * 2009-11-03 2010-04-21 保定天威集团有限公司 一种双器身自耦有载调压变压器的绕组接线结构
CN102136354A (zh) * 2010-12-16 2011-07-27 保定天威集团有限公司 一种大范围有载调压的试验用变压器
CN102420042A (zh) * 2011-12-05 2012-04-18 保定天威集团有限公司 一种多功能电厂用变压器
CN204884832U (zh) * 2015-08-26 2015-12-16 杭州佰盟智能开关有限公司 混合式有载调压变压器
CN106252040A (zh) * 2016-08-18 2016-12-21 中国电力科学研究院 一种无弧有载自动调压配电变压器装置及其调压方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697310A (zh) * 2009-11-03 2010-04-21 保定天威集团有限公司 一种双器身自耦有载调压变压器的绕组接线结构
CN102136354A (zh) * 2010-12-16 2011-07-27 保定天威集团有限公司 一种大范围有载调压的试验用变压器
CN102420042A (zh) * 2011-12-05 2012-04-18 保定天威集团有限公司 一种多功能电厂用变压器
CN204884832U (zh) * 2015-08-26 2015-12-16 杭州佰盟智能开关有限公司 混合式有载调压变压器
CN106252040A (zh) * 2016-08-18 2016-12-21 中国电力科学研究院 一种无弧有载自动调压配电变压器装置及其调压方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109038606A (zh) * 2018-08-08 2018-12-18 全球能源互联网研究院有限公司 一种有载调压变压器及统一潮流控制***
CN109038606B (zh) * 2018-08-08 2024-04-02 全球能源互联网研究院有限公司 一种有载调压变压器及统一潮流控制***
CN109142881A (zh) * 2018-08-11 2019-01-04 国网湖南省电力有限公司电力科学研究院 电力变压器电气试验智能切换线装置
CN109142881B (zh) * 2018-08-11 2023-12-22 国网湖南省电力有限公司电力科学研究院 电力变压器电气试验智能切换线装置
CN112748371A (zh) * 2020-12-18 2021-05-04 国网福建省电力有限公司检修分公司 变压器试验多测试项目的通用测试结构及逻辑控制方法
CN112748371B (zh) * 2020-12-18 2024-03-12 国网福建省电力有限公司检修分公司 变压器试验多测试项目的通用测试结构及逻辑控制方法
CN112865569A (zh) * 2021-01-28 2021-05-28 三峡大学 一种混合t型桥的单相三电平整流器
CN114285341A (zh) * 2021-12-29 2022-04-05 西安交通大学 一种电力电子式有载无弧调容变压器暂态优化控制***和方法
CN114285341B (zh) * 2021-12-29 2023-12-15 西安交通大学 一种电力电子式有载无弧调容变压器暂态优化控制***和方法

Also Published As

Publication number Publication date
CN106252040A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
WO2018032893A1 (zh) 一种无弧有载自动调压配电变压器装置及其调压方法
WO2017084634A1 (zh) 变压器有载调压分接开关及有载调压变压器
CN201821315U (zh) 一种变压器有载调压控制***
IL122683A (en) Method and device for adjusting the binding ratio in the transformer
WO2019192273A1 (zh) 一种有载分接开关及其方法
EP2937883B1 (en) Load tap changer
CN211699982U (zh) 一种基于mosfet的自动变匝比电流互感器
CN113077978A (zh) 一种带有附加电抗器的大容量双器身高阻抗新型调压移相变压器
CN112735790A (zh) 一种电力电子式有载调压配电变压器及其调压方法
CN112216494A (zh) 一种有载分接开关及其运行控制方法
CN2625948Y (zh) 一种无触点补偿式电力稳压器
Hailong et al. Research on Key Technologies of the 10kV Wide Range and Arcless on-Load Automatic Voltage Regulation Distribution Transformer
CN110518845A (zh) 变压器有载调压开关
US20150162144A1 (en) Load tap changer
CN206331885U (zh) 一种无弧有载自动调压配电变压器装置
Wang et al. A hybrid voltage regulator with arcless tap change and stepless voltage regulation functions
CN104409203B (zh) 电网智能调节装置及其调节方法
CN114441950A (zh) 一种用于有载分接开关电气切换试验的电路***
US9588527B2 (en) Method of operating on-load tap changer
CN201742303U (zh) 交流调压装置
CN101483393A (zh) 有芯感应电炉用变频供电装置
CN217157910U (zh) 一种无弧有载自动调压配电变压器调压分接***
CN105510681B (zh) 一种非线性电流取样组件
CN111555330B (zh) 电力电子有载分接开关及其控制方法
CN110134173A (zh) 一种无触点单相交流稳压器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17840869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17840869

Country of ref document: EP

Kind code of ref document: A1