WO2018030407A1 - Vehicle - Google Patents

Vehicle Download PDF

Info

Publication number
WO2018030407A1
WO2018030407A1 PCT/JP2017/028777 JP2017028777W WO2018030407A1 WO 2018030407 A1 WO2018030407 A1 WO 2018030407A1 JP 2017028777 W JP2017028777 W JP 2017028777W WO 2018030407 A1 WO2018030407 A1 WO 2018030407A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
motor
wheel
sensor
pair
Prior art date
Application number
PCT/JP2017/028777
Other languages
French (fr)
Japanese (ja)
Inventor
俊昭 川瀬
雅男 平松
Original Assignee
大同メタル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同メタル工業株式会社 filed Critical 大同メタル工業株式会社
Priority to CN201780049003.6A priority Critical patent/CN109562697A/en
Priority to JP2018533501A priority patent/JP6748211B2/en
Publication of WO2018030407A1 publication Critical patent/WO2018030407A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/13Arrangements of batteries for propulsion on rider-propelled cycles with additional electric propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • B62M6/50Control or actuating devices therefor characterised by detectors or sensors, or arrangement thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle which can be propelled by a driver's operating force, which performs posture control in accordance with a traveling state such as a start or a change in road surface.
  • a driver's operating force such as a bicycle composed of a pair of left and right wheels
  • a vehicle having a front wheel portion constituted by a pair of wheels is referred to as a “front wheel two-wheel vehicle”
  • a vehicle having a rear wheel portion constituted by a pair of wheels is referred to as a “rear wheel two-wheel vehicle”.
  • Patent Document 1 discloses a three-wheel front-wheel two-wheeled vehicle in which the entire link mechanism moves to the left and right in conjunction with steering of the steering wheel.
  • the link movable state of the link mechanism uses a link angle control device.
  • the link angle control device is attached to the stem part and the stop part attached to the link mechanism part, and the opening of the electric (electromagnetic) servo valve that is controlled via the ECU from the vehicle body speed sensor of the wheel Is set to tend to fix the movable state of the link, set to tend to eliminate the link's movable resistance in the middle and high speed range, and to control the posture of the vehicle body by controlling the movable degree of the link angle of the link mechanism is disclosed Has been.
  • the three-wheel front-wheel two-wheeled vehicle in which the right wheel and the left wheel in the front wheel portion have the same rotational force as in Patent Document 1 can improve stability against a change in posture when turning on a curve. it can.
  • the front wheel two-wheel type or rear wheel two-wheel vehicle including the three-wheel front wheel two-wheel vehicle as in Patent Document 1 has many ground contact points due to multiple wheels, it is affected by a stepped surface or an inclined surface. It tends to tilt.
  • the front wheel two-wheel type or rear wheel two-wheeled vehicle has a large wheel contact area, it requires a large amount of pedaling force when starting, which tends to cause imbalance and cause wobbling. is there.
  • the balance of the center of gravity is particularly bad on an uphill, it is difficult to increase the speed, and wobbling tends to occur even when starting off.
  • the front wheel two-wheel type or rear wheel two-wheel vehicle does not have sufficient posture control with respect to the posture change of the vehicle in both cases of low speed and medium / high speed when the tilt or the wobble occurs. There is a problem that it is difficult to ensure stability.
  • an object of the present invention is to provide a pair of motors that independently control the rotational force of each of the pair of left and right wheels on at least one of the front wheel portion and the rear wheel portion in the case of low speed and medium / high speed.
  • a vehicle in which at least one of a front wheel portion and a rear wheel portion is configured by a pair of left and right wheels and can be propelled by a driver's operating force.
  • the vehicle state is detected, and the rotational force of each of the pair of wheels can be controlled independently of each other in response to the detection.
  • a vehicle is connected to a battery, a motor for controlling the rotational force of one of the pair of wheels, and the rotational force of the other of the pair of wheels.
  • a pair of motors configured to control the motor, a sensor that detects a state and transmits a state signal based on the detection, and a control signal that controls the pair of motors by calculating the state signal
  • a motor driver for controlling power supply between the battery and the pair of motors based on a control signal transmitted from the body controller, and the motor drivers independently output each of the pair of motors.
  • the senor in a vehicle, includes a tilt sensor that detects a tilt of the vehicle with respect to a vertical direction, and the vehicle body controller calculates a state signal transmitted from the sensor so as to correct the state.
  • the control signal can be transmitted after processing.
  • the senor further includes an operating force sensor that detects the operating force by a driver of the vehicle, and the vehicle body controller transmits the state to correct the state.
  • the control signal can be transmitted by processing the signal.
  • the senor further includes a speed sensor that detects the speed of the vehicle, and the vehicle body controller performs an arithmetic process on the state signal transmitted from the sensor so as to correct the state. Control signals can be transmitted.
  • At least one of the pair of motors has a function of a generator, and at least one of the pair of motors gives a reverse rotational torque to the wheels.
  • the vehicle is a front two-wheeled three-wheeled bicycle.
  • At least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, and controls a vehicle that can be propelled by the driver's operating force.
  • the method includes a step of detecting the state of the vehicle, a step of performing a calculation process based on the detection, and a step of independently controlling the rotational forces of the pair of wheels based on the calculation process.
  • the vehicle in a method for controlling a vehicle, includes a battery, a pair of motors, a sensor, a vehicle body controller, and a motor driver disposed on each of the pair of wheels, and performs detection.
  • the step includes a step of detecting the state of the vehicle by the sensor, and the step of performing the calculation process includes a step of performing the calculation process by the vehicle body controller based on the detection by the sensor, and the rotational forces of the pair of wheels are
  • the step of controlling independently is such that the motor driver controls the power supply between the battery and the pair of motors based on the arithmetic processing by the vehicle body controller, and controls the outputs of the pair of motors independently of each other. Controlling the rotational force of each of the wheels independently of each other.
  • the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction and the speed of the vehicle by a sensor, and the rotation of each of the pair of wheels.
  • the step of controlling the forces independently from each other is that when a tilt is detected and the speed is equal to or higher than a predetermined speed, a motor disposed on a wheel on the opposite side of the tilt of the pair of wheels is applied to the wheel.
  • the method includes the step of applying a reverse rotational torque to the counter.
  • the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction, the speed of the vehicle, and the operating force by the driver of the vehicle.
  • the step of controlling the rotational force of each of the pair of wheels independently of each other is that the inclination is detected, the speed is less than a predetermined speed, and the operating force is detected, the inclination of the pair of wheels is A motor disposed on a wheel located on the same side with respect to the wheel for applying a positive rotational torque to the wheel.
  • the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction, the speed of the vehicle, and the operating force by the driver of the vehicle.
  • the step of controlling the rotational force of each of the pair of wheels independently of each other is that the inclination is detected, the speed is less than a predetermined speed, and the actuation force is not detected, the inclination of the pair of wheels is A motor disposed on a wheel located on the opposite side provides a reverse rotational torque to the wheel.
  • the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction, the speed of the vehicle, and the operating force by the driver of the vehicle.
  • control device can be propelled by a driver's operating force in which at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels.
  • the vehicle state is detected, and the rotational force of each of the pair of wheels can be controlled independently of each other in response to the detection.
  • the control device is connected to the battery, the motor connected to the battery for controlling the rotational force of one of the pair of wheels, and the other rotational force of the pair of wheels.
  • a pair of motors configured to control the motor, a sensor for detecting the state and transmitting a state signal based on the detection, and a control signal for calculating the state signal and controlling the pair of motors
  • a vehicle body controller for transmission and a motor driver for controlling power supply between the battery and the pair of motors based on a control signal transmitted from the vehicle body controller.
  • the motor driver in the control device, can control the outputs of the pair of motors independently of each other, and can control the rotational forces of the pair of wheels independently of each other. ing.
  • the senor in the control device, includes a tilt sensor that detects the tilt of the vehicle with respect to the vertical direction, and the vehicle body controller outputs a status signal transmitted from the sensor so as to correct the status.
  • the control signal can be transmitted after arithmetic processing.
  • the senor further includes an operating force sensor for detecting an operating force by a driver of the vehicle, and the vehicle body controller is transmitted from the sensor to correct the state.
  • the control signal can be transmitted by calculating the status signal.
  • the senor further includes a speed sensor that detects the speed of the vehicle, and the vehicle body controller performs processing on the state signal transmitted from the sensor so as to correct the state Thus, a control signal can be transmitted.
  • At least one of the pair of motors has a function of a generator, and at least one of the pair of motors has a reverse rotational torque with respect to the wheels.
  • the running energy of the vehicle can be recovered by the function of the generator, and power can be supplied to the battery via the motor driver.
  • a motor is disposed on each of the pair of wheels, and the output of each of the pair of motors is controlled independently of each other so that the rotational force of each of the pair of wheels is controlled independently of each other.
  • each of the pair of motors can be controlled independently from each other, one motor supplies electric power from the battery to the motor in order to give a positive rotational torque to the wheel, while the other motor Can be operated as a generator to give a reverse rotation torque to the wheel and to supply electric power from the motor to the battery.
  • FIG. 1, FIG. 2A, and FIG. 2B show a vehicle 100 that is an embodiment of the present invention.
  • the vehicle here means that at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, and a wheel on at least one of the front wheel portion and the rear wheel portion is rotated by the operating force of the driver.
  • It is a vehicle that can be propelled.
  • a vehicle for example, there is a bicycle that can be propelled by rotating a wheel by applying a pedaling force as an operating force to a pedal.
  • the present invention can also be applied to vehicles that can be propelled by the operating force of drivers other than bicycles.
  • the vehicle 100 is a front-wheel two-wheel bicycle in which a front wheel portion of a front wheel portion and a rear wheel portion is composed of a pair of left and right wheels, and is a first wheel located on the right side when viewed from a driver disposed on the front wheel portion.
  • a pair of left and right wheels having a wheel 101 and a second wheel 102 located on the left side as viewed from the driver, and a single third wheel 103 disposed in the rear wheel portion are provided.
  • one or more wheels may be provided in the rear wheel portion.
  • the first wheel 101 and the second wheel 102 may be connected by a link mechanism 113.
  • the vehicle 100 is disposed on the battery 109 and the hub of the first wheel 101, and is disposed on the hub of the first motor 104 and the second wheel 102 for controlling the rotational force of the first wheel 101.
  • a pair of motors composed of a second motor 105 for controlling the rotational force of the second wheel 102.
  • the pair of motors 104 and 105 are connected to a battery 109.
  • the vehicle 100 in FIGS. 1, 2A, and 2B is a front-wheel two-wheeled three-wheel bicycle in which the front wheel portion is configured by a pair of left and right wheels, but the rear wheel portion is configured by a pair of left and right wheels.
  • a two-wheeled vehicle may be used.
  • rear wheeled two-wheeled vehicles for example, in the case of a rear wheeled two-wheeled bicycle, by adopting a differential gear (differential gear) in the rear wheel, a difference in rotation is given to the left and right wheels, and further left and right A motor is placed on each hub of the wheel.
  • a differential gear differential gear
  • the vehicle 100 includes a sensor group that detects the state of the vehicle 100 and transmits a state signal based on the detection.
  • the state of the vehicle 100 includes, for example, the inclination of the vehicle 100 with respect to the vertical direction, the operating force by the driver of the vehicle 100, the speed of the vehicle 100, and the like. Detected by sensor 107, speed sensor 108, and the like.
  • At least one of the front wheel portion and the rear wheel portion is a pair of left and right wheels having a right wheel that is the first wheel 101 and a left wheel that is the second wheel 102.
  • the control apparatus 117 used for the vehicle 100 comprised is shown.
  • the control device 117 is connected to the battery 109, the battery 109, the first motor 104 that controls the rotational force of the right wheel that is the first wheel 101, and the rotational force of the left wheel that is the second wheel 102.
  • the state of the vehicle 100 is detected and a state signal (inclination based on the detection)
  • a group of sensors that transmit a signal 118, an actuation force signal 119, and a speed signal 120), and the state signals 118 to 120 are received and processed to control the outputs of the first motor 104 and the second motor 105.
  • the vehicle body controller 114 that transmits the control signal 121 and the battery 109 and the first module based on the control signal 121 transmitted from the vehicle body controller 114.
  • the first motor driver 115 for controlling the supply of power between the motor 104, and a second motor driver 116 for controlling the supply of power between the battery 109 and the second motor 105.
  • the first motor driver 115 and the second motor driver 116 that have received the control signal 121 supply power from the battery 109 to the first motor 104 and the second motor 105 at a certain timing, respectively.
  • power is supplied from the first motor 104 and the second motor 105 to the battery 109 so that the output of the first motor 104 and the output of the second motor 105 can be controlled independently of each other. It has become.
  • the first motor driver 115 and the second motor driver 116 may be integrated motor drivers, and the vehicle body controller 114, the first motor driver 115, and the second motor driver 116 may be An integrated controller may be used.
  • the vehicle body controller 114, the first motor driver 115, and the second motor driver 116 may be disposed on the handle 112 that is a grip portion of the driver of the vehicle 100.
  • the control signal 121 is transmitted from the vehicle body controller 114 to the first motor driver 115 and the second motor driver 116 through one signal line.
  • the authentication code for each of the first motor driver 115 and the second motor driver 116 in 121 it may be transmitted by one signal line, or it may be wired or wireless It may be a formula.
  • the inclination sensor 106 of the sensor group is operated by electric power from the battery 109 and detects the inclination of the vehicle 100 with respect to the vertical direction. By including the inclination sensor 106, it is possible to detect a wobbling that alternately inclines with respect to the left and right due to a change in the road surface or the like when the vehicle starts.
  • Examples of the tilt sensor 106 include a tilt angle sensor and a gyro sensor. As shown in FIG. 1, when the vehicle 100 is a bicycle, an inclination angle sensor, a gyro sensor, and the like may be disposed under the saddle 111. As shown in FIG.
  • the tilt angle sensor detects the tilt angle ⁇
  • the gyro sensor detects the angular velocity with respect to the tilt angle ⁇ .
  • the inclination of the vehicle 100 is detected.
  • the inclination sensor 106 for example, there is a torque sensor, and a torque sensor is arranged on each of the first wheel 101 and the second wheel 102, and the difference in torque of each wheel detected from each torque sensor is calculated.
  • the inclination of the vehicle 100 can also be detected by using it.
  • the tilt sensor 106 for example, there is a steering angle sensor, and a vehicle is also provided by arranging a steering angle sensor on a handle 112 that is a gripping portion of a driver and using a steering angle detected from the steering angle sensor. 100 tilts can be detected.
  • the inclination sensor 106 is configured so that the road surface on which the vehicle 100 is traveling is a horizontal road surface as shown in FIGS. 1, 2A, and 2B, or a road surface having an inclination of an uphill or a downhill. The inclination of the vehicle 100 with respect to the vertical direction can be detected.
  • the tilt sensor 106 generates a state signal (tilt signal 118) including the detected tilt and transmits it to the vehicle body controller 114.
  • the vehicle body controller 114 receives the state signal (inclination signal 118), determines the direction of inclination of the vehicle 100, corrects the inclination of the vehicle 100, and outputs the state signal (inclination signal 118) to return the posture to the vertical direction. Arithmetic processing.
  • the first motor driver 115 and the second motor driver 116 are respectively connected between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114. Control power supply.
  • the output of the first motor 104 and the output of the second motor 105 are based on the control signal 121 transmitted from the vehicle body controller 114 by the first motor driver 115 and the second motor driver 116, respectively.
  • the power supply between the first motor 104 and the second motor 105 is controlled so that they can be controlled independently of each other.
  • the output of the first motor 104 and the output of the second motor 105 controlled independently of each other control the rotational force of the first wheel 101 and the rotational force of the second wheel 102 independently of each other.
  • the inclination of the vehicle 100 is corrected and the posture is returned to the vertical direction.
  • the 1st motor 104 and the 2nd motor 105 can increase the rotational force of the wheel located in the same side with respect to the inclination of a pair of wheels, or the other side to the inclination The rotational force of the wheel located at can be reduced.
  • the operating force sensor 107 of the sensor group is operated by the electric power from the battery 109, and detects the operating force for propelling the vehicle 100 by the driver of the vehicle 100.
  • the operating force sensor 107 includes a torque sensor. As shown in FIG. 1, a torque sensor is arranged on a shaft connecting a pair of left and right pedals 110, and the driver of the vehicle 100 detects the torque of the rotating shaft when the driver steps on the pedal 110, and the driver makes the torque sensor. Detects pedal force, which is power.
  • the operating force sensor 107 may be any sensor that can detect the operating force applied by the driver of the vehicle 100.
  • the operating force sensor 107 generates a state signal (operating force signal 119) including the detected operating force and transmits it to the vehicle body controller 114.
  • the vehicle body controller 114 receives the state signal (inclination signal 118, operating force signal 119), corrects the inclination of the vehicle 100, and returns the posture in the vertical direction (inclination signal 118, operating force signal 119). Is processed.
  • the first motor driver 115 and the second motor driver 116 are respectively connected between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the power supply is controlled, and power is supplied from the battery 109 to the first motor 104 and the second motor 105, or power is supplied from the first motor 104 and the second motor 105 to the battery 109.
  • the output of the first motor 104 and the output of the second motor 105 whose power supply is controlled are controlled independently of each other in the same manner as described above, and the rotational force of the first wheel 101 and the output of the second wheel 102 are controlled.
  • the rotational force is controlled independently of each other to correct the inclination of the vehicle 100 and return the posture in the vertical direction.
  • the speed sensor 108 of the sensor group is operated by the electric power from the battery 109 and is arranged on the third wheel 103 which is a rear wheel as shown in FIG. 1.
  • the speed of the vehicle 100 is determined from the rotational speed of the third wheel 103. Detect.
  • the speed sensor 108 may be any sensor that can detect the speed of the vehicle 100. Further, the speed sensor 108 may be disposed on either the first wheel 101 or the second wheel 102.
  • the speed sensor 108 generates a state signal (speed signal 120) including the detected speed and transmits it to the vehicle body controller 114.
  • the vehicle body controller 114 receives the status signals (tilt signal 118, operating force signal 119, speed signal 120), corrects the tilt and returns the posture in the vertical direction (tilt signal 118, operating force signal 119). ,
  • the speed signal 120) is processed.
  • the first motor driver 115 and the second motor driver 116 are respectively connected between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the power supply is controlled, and power is supplied from the battery 109 to the first motor 104 and the second motor 105, or power is supplied from the first motor 104 and the second motor 105 to the battery 109.
  • the output of the first motor 104 and the output of the second motor 105 whose power supply is controlled are controlled independently of each other in the same manner as described above, and the rotational force of the first wheel 101 and the output of the second wheel 102 are controlled.
  • the rotational force is controlled independently of each other to correct the inclination of the vehicle 100 and return the posture in the vertical direction.
  • the vehicle body controller 114 can control at least one of the first motor 104 and the second motor 105.
  • the state signal based on the inclination (inclination signal 118) is processed, and the first motor driver 115 and the second motor driver 116 are respectively connected to the battery 109 based on the control signal 121 transmitted from the vehicle body controller 114.
  • first motor 104 and the second motor 105 respectively control the amount of torque required for the first wheel 101 and the second wheel 102 and the time for applying the torque.
  • Rotational torque can be applied to the wheel 101 and the second wheel 102 independently of each other. “Providing positive rotational torque” in “applying rotational torque” is to increase the rotational force of the wheel by applying torque in the same direction as the rotation of the wheel in the traveling direction of the vehicle 100. Thus, “applying reverse rotation torque” means applying torque in the opposite direction to the rotation of the wheel in the traveling direction of the vehicle 100 to reduce the rotational force of the wheel. Even if the rotational speed of the wheel is zero, the motor can give a rotational torque to the wheel.
  • the tilt sensor 106 detects that the vehicle 100 is tilted to the left. Then, a state signal (tilt signal 118) based on the detection (tilt on the left side) is transmitted, and the vehicle body controller 114 performs arithmetic processing on the state signal (tilt signal 118) based on the left tilt, and the second motor driver 116. Supplies electric power from the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114, and the second motor 105 gives a positive rotational torque to the left second wheel 102.
  • the first motor driver 115 By increasing the rotational force of the second wheel 102, or by the first motor driver 115 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the first motor 104 By supplying electric power to the first motor 104 from the rear 109, the first motor 104 applies a reverse rotational torque to the first wheel 101 on the right side to reduce the rotational force of the first wheel 101,
  • the respective rotational forces of the first wheel 101 and the second wheel 102 are controlled independently of each other so as to correct the inclination to the left and return the posture in the vertical direction (inclination angle in the case of FIG. 2A). 0).
  • the 1st motor 104 when applying reverse rotation torque to the 1st wheel 101 and reducing the rotational force, the 1st motor 104 is operated as a generator (generator) by the 1st motor driver 115, and the 1st wheel The electric power may be supplied from the first motor 104 to the battery 109 by causing the 101 to be regeneratively braked.
  • the tilt sensor 106 detects that the vehicle 100 is tilted to the right, and a status signal (tilt signal 118) based on the detection (right tilt).
  • the vehicle body controller 114 computes a state signal (tilt signal 118) based on the right side inclination, and the first motor driver 115 receives the first signal from the battery 109 based on the control signal 121 transmitted from the body controller 114.
  • Power is supplied to the first motor 104, and the first motor 104 applies a positive rotational torque to the right first wheel 101 to increase the rotational force of the first wheel, or the second motor 104
  • the motor driver 116 supplies power from the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114, and the second Rotation of each of the first wheel 101 and the second wheel 102 by the counter 105 giving a reverse rotational torque to the left second wheel 102 to reduce the rotational force of the second wheel 102.
  • the forces are controlled independently of each other to correct the inclination to the right and return the posture in the vertical direction.
  • the second motor driver 116 When a reverse rotational torque is applied to the second wheel 102 to reduce its rotational force, the second motor driver 116 operates the second motor 105 as a generator to regenerate the second wheel 102. It is also possible to supply power from the second motor 105 to the battery 109 by braking.
  • the motor When applying reverse rotation torque to a wheel, if it is necessary to greatly reduce the rotational force of the wheel in a short time, the motor may be operated as an electric motor.
  • the tilt correction of the vehicle 100 in the tilt correction of the vehicle 100 when the vehicle 100 is tilted to the left, the tilt correction of the vehicle 100 can catch up even if the first motor 104 is operated as a generator and the first wheel 101 is regeneratively braked. If not, the first motor 104 is operated as an electric motor so that the first motor 104 can apply a large reverse rotational torque to the first wheel 101 to increase the rotational force of the first wheel 101. It may be decreased. In this way, when applying reverse rotation torque to the wheel, the motor is operated as a generator or an electric motor, or after being operated as a generator, the motor is operated as an electric motor. A method can be selected.
  • the range that can be assisted by the speed of the vehicle 100 may be determined by law or the like, so the first motor 104, depending on the speed of the vehicle 100, The method for controlling the second motor 105 may be different.
  • a predetermined speed for example, 24 km / h
  • the vehicle cannot be assisted.
  • the inclination is corrected by applying a reverse rotational torque to the wheel by the motor.
  • the tilt sensor 106 and the speed sensor 108 are tilted to the right.
  • the vehicle 100 is at a predetermined speed or higher, transmits a state signal (tilt signal 118, speed signal 120) based on the detection, and the vehicle body controller 114 detects a state signal ( The inclination signal 118) and the state signal based on the speed (speed signal 120) are processed, and the second motor driver 116 sends the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114.
  • the electric power is supplied, and the second motor 105 gives a reverse rotational torque to the second wheel 102 on the left side so that the rotational force of the second wheel 102 is increased.
  • the first motor 104 and the second motor 105 both give reverse rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • a state signal based on the detection (tilt signal 118, speed signal 120) is transmitted, and the vehicle body controller 114 transmits a state signal based on the left side tilt (tilt signal 118) and a state signal based on the speed (speed signal 120).
  • the first motor driver 115 supplies electric power from the battery 109 to the first motor 104 based on the control signal 121 transmitted from the vehicle body controller 114, and the first motor 104 is in the right first wheel.
  • the first motor 104 and the second motor 105 both give reverse rotational torque to the first wheel 101 and the second wheel 102, respectively. You may correct
  • FIG. 1
  • the inclination sensor 106 and the speed sensor 108 detect the front-rear inclination of the vehicle 100 with respect to the vertical direction as when the vehicle 100 is going uphill or downhill.
  • the vehicle body controller 114 transmits a state signal (tilt signal 118, speed signal 120) based on the detection.
  • the state signal based on the front / rear tilt (tilt signal 118) and the state signal based on the increasing / decreasing speed (speed signal 120) are processed, and the first motor driver 115 and the second motor driver 116 Based on a control signal 121 transmitted from the controller 114, power supply between the battery 109 and the first motor 104 and the second motor 105 is performed.
  • the first motor 104 and the second motor 105 respectively apply a positive rotational torque to the first wheel 101 and the second wheel 102. And the rotational force can be increased to increase the speed of the vehicle 100.
  • the first motor 104 and the second motor 105 are respectively It may be possible to reduce the speed of the vehicle 100 by applying a reverse rotational torque to the one wheel 101 and the second wheel 102 to reduce the rotational force of the wheel 102.
  • the first motor 104 and the second motor 105 each operate as an electric motor so that electric energy (electric power) supplied from the battery 109 can be converted into kinetic energy (running energy of the vehicle 100).
  • the first motor 104 and the second motor 105 can each operate as a generator.
  • the first motor 104 and the second motor 105 that operate as a generator regeneratively brake the first wheel 101 and the second wheel 102, respectively, and thereby the first wheel 101 and the second wheel, respectively.
  • kinetic energy travel energy of vehicle 100
  • recovered by battery 109 While imparting reverse rotational torque to 102 to reduce its rotational force, kinetic energy (travel energy of vehicle 100) can be converted into electrical energy (electric power) and recovered by battery 109.
  • the second motor driver 116 determines the second based on the control signal 121 transmitted from the vehicle body controller 114.
  • the second motor 105 rotates the second wheel 102 by applying a reverse torque to the second wheel 102 by regeneratively braking the second wheel 102 on the left side. While the power is reduced, the traveling energy of the vehicle 100 is converted into electric power, and a current flows from the second motor 105 to the battery 109 so that the electric power is returned (supplied) from the second motor 105 to the battery 109. Thus, the travel energy of the vehicle 100 may be collected.
  • the driver can assist when the driver of the vehicle 100 is applying a pedal depression force, which is an operating force. Therefore, the first motor 104 according to the operating force, and The method for controlling the second motor 105 may be different.
  • the assist can be assisted when the operating force is detected by the operating force sensor 107.
  • the rotational force of the wheel located on the same side is controlled, and the inclination is corrected by applying a positive rotational torque to the wheel by the motor.
  • the tilt sensor 106, the operating force sensor 107 and the speed sensor 108 detect that the vehicle 100 is tilted to the right side, that there is an actuating force by the driver, and that the vehicle 100 is less than a predetermined speed, and a status signal
  • the vehicle body controller 114 transmits a state signal based on the right side inclination (tilt signal 118), a state signal based on the operation force (operation force signal 119), and a speed. Based on the control signal 121 transmitted from the vehicle body controller 114 by the first motor driver 115.
  • the power supply between the teller 109 and the first motor 104 is controlled, and the first motor 104 applies a positive rotational torque to the right first wheel 101 to increase the rotational force of the first wheel 101.
  • the first motor 104 and the second motor 105 both give a positive rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • the inclination to the right may be corrected so as to be larger than the positive rotational torque of the second motor 105.
  • the inclination sensor 106, the operating force sensor 107, and the speed sensor 108 indicate that the vehicle 100 is inclined to the left side and that the driver has an operating force.
  • the vehicle 100 detects that the vehicle speed is less than the predetermined speed, transmits a state signal (tilt signal 118, operating force signal 119, speed signal 120) based on the detection, and the vehicle body controller 114 is in a state based on the left-side inclination.
  • the signal (tilt signal 118), the state signal based on the operating force (the operating force signal 119), and the state signal based on the speed (speed signal 120) are processed, and the second motor driver 116 is transmitted from the body controller 114.
  • the power supply between the battery 109 and the second motor 105 is controlled based on the control signal 121, and the second motor 105 is on the left second wheel.
  • the first motor 104 and the second motor 105 both give positive rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • the inclination to the left may be corrected so as to be larger than the positive rotational torque of the first motor 104.
  • the vehicle body controller 114 increases the rotational force of the first wheel 101 on the right side.
  • the first motor driver 115 causes the first motor driver 115 to increase the rotational force of the first wheel 101 from the battery 109, that is, the current flows from the battery 109 to the first motor 104. Electric power is supplied to the motor 104 so that the first motor 104 applies a positive rotational torque to the first wheel 101.
  • the assist cannot be performed if the operating force is not detected by the operating force sensor 107.
  • the motor that controls the rotational force of the wheel located on the opposite side corrects the inclination by applying a reverse rotational torque to the wheel.
  • a specific inclination correction method is the same as the method in the case where the speed of the vehicle 100 is equal to or higher than a predetermined speed.
  • a motor that applies reverse rotation torque to the wheel is operated as a generator and the wheel is regeneratively braked, whereby the traveling energy of the vehicle 100 is recovered by the motor and the battery 109 is recovered.
  • the power may be returned (supplied).
  • the second motor driver 116 transmits a control signal transmitted from the vehicle body controller 114. Based on 121, the running energy of the vehicle 100 is reduced by operating the motor for reducing the rotational force of the second wheel 102 on the left side, that is, the second motor 105 as a generator to regeneratively brake the second wheel.
  • the second motor 105 operates as a generator while the current flows from the second motor 105 to the battery 109 so that the electric power is returned (supplied) from the second motor 105 to the battery 109. 105 may give a reverse rotational torque to the second wheel 102.
  • the vehicle body controller 114 computes the state signals (tilt signal 118, operating force signal 119, speed signal 120), and performs the first motor driver 115 and the second motor driver 115.
  • Each of the motor drivers 116 controls power supplied from the battery 109 based on the control signal 121 transmitted from the vehicle body controller 114, and supplies power to the first motor 104 and the second motor 105.
  • the first motor 104 and the second motor 105 give positive rotation torque to the first wheel 101 and the second wheel 102, respectively, and the first wheel 101 and the second wheel The rotational force of the wheel 102 is increased.
  • the first motor 104 and the second motor 105 give a minute rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • the attitude of the vehicle 100 may be stabilized. In this case, it is determined whether or not the vehicle 100 is at the start of operation by using the operating force sensor 107 and the speed sensor 108, and if the inclination is detected by the inclination sensor 106, depending on the detection.
  • the first motor 104 and the second motor 105 may give a minute rotational torque to the first wheel 101 and the second wheel 102, respectively.
  • the inclination sensor 106, the operating force sensor 107, and The speed sensor 108 detects that the vehicle 100 is tilted to the right side, that there is no operating force by the driver, and that the vehicle 100 is stopped, and a state signal (tilt signal 118) based on the detection.
  • An operation force signal 119, a speed signal 120), and the vehicle body controller 114 transmits a state signal based on the right side inclination (tilt signal 118), a state signal based on the operation force (operation force signal 119), and a state based on the speed.
  • the signal (speed signal 120) is arithmetically processed to determine that the vehicle 100 is at the start of operation, and the first motor driver 115 and the second motor driver 116 Respectively, based on the control signal 121 transmitted from the vehicle body controller 114 controls the electric power supplied from the battery 109 supplies power to the first motor 104, and the second motor 105. Then, the first motor 104 that controls the rotational force of the first wheel 101 on the right side gives a minute positive rotational torque to the first wheel 101 to make the first wheel 101 the same as the traveling direction of the vehicle 100. The second motor 105 that rotates slightly with respect to the direction and controls the rotational force of the second wheel 102 on the left side slightly applies reverse torque to the second wheel 102 to cause the second wheel 102 to move.
  • the rightward inclination is corrected and the posture is returned to the vertical direction.
  • either the first motor 104 gives a minute forward rotational torque to the first wheel 101 or the second motor 105 gives a minute reverse rotational torque to the second wheel 102.
  • Either control may be used.
  • the inclination sensor 106, the operating force sensor 107, and the speed sensor 108 indicate that the vehicle 100 is inclined to the left side and that there is no operating force by the driver.
  • the vehicle 100 detects that the vehicle 100 is stopped, transmits a state signal (inclination signal 118, operating force signal 119, speed signal 120) based on the detection, and the vehicle body controller 114 is in a state based on the left inclination.
  • a signal (inclination signal 118), a state signal based on operating force (operating force signal 119), and a state signal based on speed (speed signal 120) are processed to determine that the vehicle 100 is at the start of driving;
  • Each of the first motor driver 115 and the second motor driver 116 is based on the control signal 121 transmitted from the vehicle body controller 114.
  • the second motor 105 that controls the rotational force of the second wheel 102 on the left side gives a slight positive rotational torque to the second wheel 102 to make the second wheel 102 the same as the traveling direction of the vehicle 100.
  • the first motor 104 that rotates slightly with respect to the direction and controls the rotational force of the first wheel 101 on the right side slightly applies reverse torque to the first wheel 101 to cause the first wheel 101 to move.
  • the inclination to the left side is corrected and the posture is returned to the vertical direction.
  • either the second motor 105 gives a minute forward rotation torque to the second wheel 102
  • the first motor 104 gives a minute reverse rotation torque to the first wheel 101. Either control may be used.
  • a sensor such as a load cell is further installed under the saddle 111, and whether or not the driver has boarded the vehicle 100 based on the detection of the load by the sensor such as the load cell.
  • the first motor 104 and the second motor 105 are respectively connected to the first motor 104 and the second motor 105 as described above.
  • a minute rotational torque may be applied to the first wheel 101 and the second wheel 102.
  • At least one of the front wheel portion and the rear wheel portion includes a pair of wheels having a right wheel that is the first wheel 101 and a left wheel that is the second wheel 102.
  • a method for controlling vehicle 100 that can be propelled by the actuating force will be described. The method includes a step of detecting the state of the vehicle 100 and a step of independently controlling the rotational forces of the pair of wheels 101 and 102 in response to the detection.
  • FIG. 5 shows a method of controlling the vehicle 100 including a pair of motors, each of which is composed of a first motor 104 on the right side and a second motor 105 on the left side, disposed on each of the pair of wheels. This will be described in detail with reference to a flowchart.
  • STEP 100 the detection results of the inclination sensor 106, the actuation force sensor 107, and the speed sensor 108 included in the vehicle 100 are read.
  • STEP 101 it is determined whether the vehicle 100 is tilted based on the detection result from the tilt sensor 106.
  • STEP 102 determines whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108.
  • STEP 103 the presence or absence of the operating force by the driver is determined based on the detection result from the operating force sensor 107. If it is determined that there is an actuating force, in STEP 104, the right motor and the left motor respectively apply positive rotational torque to the right wheel and the left wheel.
  • STEP 101 If it is determined in STEP 101 that there is an inclination, it is determined in STEP 105 whether or not the vehicle 100 is at the start of operation. Whether or not the operation is started may be determined based on detection results by the operating force sensor 107 and the speed sensor 108.
  • the inclination direction of the vehicle 100 is determined in STEP 106. Note that the vehicle 100 is inclined with respect to the vertical direction even when the vehicle 100 is turned left or right. However, when it is determined that the vehicle is turning left or right instead of being staggered, the following steps 107 to 116 are performed. The step is set not to be performed.
  • the inclination to the left side is corrected so as to return the posture in the vertical direction.
  • the motor control method is different.
  • STEP 107 it is determined whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108. If it is determined that the speed is high, the right motor is changed to the right wheel in STEP 108.
  • the tilt to the left side is corrected by applying a reverse rotational torque to reduce the rotational force of the right wheel. In this case, the right motor and the left motor both give reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the right motor is less than the reverse rotation torque of the left motor.
  • the motor When applying reverse rotation torque, the motor may be operated as a generator to regeneratively brake the wheel. If it is determined in STEP 107 that the speed is low, in STEP 109, the presence / absence of an operating force by the driver is determined based on the detection result from the operating force sensor 107. If it is determined that there is no operating force, in STEP 110, the right motor applies a reverse rotational torque to the right wheel to reduce the rotational force of the right wheel, thereby correcting the inclination to the left. .
  • the right motor and the left motor both apply reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the right motor is less than the reverse rotation torque of the left motor.
  • the motor may be operated as a generator to regeneratively brake the wheel.
  • the left motor may slightly increase the rotational force of the left wheel by applying a slight positive rotational torque to the left wheel. If it is determined in STEP 109 that there is an operating force, in STEP 111, the left motor applies a positive rotational torque to the left wheel to increase the rotational force of the left wheel. Correct the tilt.
  • the right motor and the left motor both give positive rotational torque to the right wheel and left wheel, respectively, but the positive rotational torque of the left motor is greater than the positive rotational torque of the right motor.
  • STEP 106 when it is determined that the inclination is on the right side, the inclination to the right side is corrected so as to return the posture in the vertical direction.
  • the motor control method is different.
  • STEP 112 it is determined whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108. If it is determined that the speed is high, in STEP 113, the left motor is applied to the left wheel. On the other hand, a reverse rotation torque is applied to reduce the rotational force of the left wheel, thereby correcting the rightward inclination.
  • the right motor and the left motor both apply reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the left motor is greater than the reverse rotation torque of the right motor.
  • the motor may be operated as a generator to regeneratively brake the wheel. If it is determined in STEP 112 that the speed is low, in STEP 114, the presence / absence of an operating force by the driver is determined based on the detection result from the operating force sensor 107. If it is determined that there is no operating force, in STEP 115, the left motor applies reverse rotation torque to the left wheel to reduce the rotation force of the left wheel, thereby correcting the rightward inclination. .
  • the right motor and the left motor both apply reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the left motor is greater than the reverse rotation torque of the right motor.
  • the motor may be operated as a generator to regeneratively brake the wheel. Further, the right motor may slightly increase the rotational force of the right wheel by applying a slight positive torque to the right wheel. If it is determined in STEP 114 that there is an actuating force, in STEP 116, the right motor applies a positive rotational torque to the right wheel to increase the rotational force of the right wheel. Correct the tilt.
  • the right motor and the left motor both give positive rotational torque to the right wheel and left wheel, respectively, but the right rotational torque of the right motor is more than the positive rotational torque of the left motor. You may correct
  • the inclination direction of the vehicle 100 is determined in STEP 117. If it is determined in STEP 117 that the inclination is on the left side, in STEP 118, the right motor slightly applies a reverse rotation torque to the right wheel, and the right wheel is reverse to the traveling direction of the vehicle 100. Rotate the left wheel slightly with respect to the same direction as the traveling direction of the vehicle 100 by rotating the left wheel slightly with respect to the direction and / or the left motor gives a slight positive rotation torque to the left wheel. By doing so, the inclination to the left is corrected and the posture is returned to the vertical direction.
  • the left motor slightly applies reverse rotation torque to the left wheel, and the left wheel is set as the traveling direction of the vehicle 100.
  • the right wheel is slightly rotated in the same direction as the traveling direction of the vehicle 100 by slightly rotating in the opposite direction and / or the right motor gives a slight forward torque to the right wheel. To correct the inclination to the right and return the posture to the vertical direction.
  • At least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, which can be propelled by rotating the wheels by the driver's operating force Wheelchairs, wheelbarrows, etc. are included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

Provided is a vehicle that performs orientation control that corresponds with the travel state, such as during set-off or changing road surface. This vehicle 100 is configured so as to be capable of being propelled by the operating force of a rider. Rear wheel parts and/or front wheel parts of the vehicle 100 are configured from a pair of left and right vehicle wheels 101, 102. The state of the vehicle 100 is detected, and rotational force of each of the pair of vehicle wheels 101, 102 can be independently controlled in response to the detected state.

Description

車両vehicle
 本発明は、発進時や路面変化等の走行状態に応じた姿勢制御を行う、運転者の作動力によって推進することができる車両に関するものである。 The present invention relates to a vehicle which can be propelled by a driver's operating force, which performs posture control in accordance with a traveling state such as a start or a change in road surface.
 三輪以上を有し、前輪部と後輪部のうちの少なくとも一方が、左右一対の車輪により構成された自転車等の運転者の作動力によって車輪を回転させて推進することができる車両(以下、前輪部が一対の車輪により構成された車両を「前輪二輪式車両」、後輪部が一対の車輪により構成された車両を「後輪二輪式車両」という)は、前輪部及び後輪部に一輪ずつ配置された従来の二輪自転車と比較して、三輪以上の多輪のために通常は傾斜やふらつきに対して安定しているが、一方で低速及び中高速の両方の場合に対して適切な姿勢制御を行うことが難しく、カーブでの旋回時に一対の車輪間の回転数差の不適正によって転がり抵抗が大きくなって曲がりにくい。 A vehicle that has three or more wheels, and at least one of the front wheel portion and the rear wheel portion can be propelled by rotating the wheels by a driver's operating force such as a bicycle composed of a pair of left and right wheels (hereinafter, A vehicle having a front wheel portion constituted by a pair of wheels is referred to as a “front wheel two-wheel vehicle”, and a vehicle having a rear wheel portion constituted by a pair of wheels is referred to as a “rear wheel two-wheel vehicle”). Compared to conventional two-wheeled bicycles that are arranged one by one, they are usually more stable against tilting and wobbling because of more than three wheels, but suitable for both low and medium speeds It is difficult to perform proper posture control, and rolling resistance increases due to an inappropriate rotational speed difference between a pair of wheels when turning on a curve, making it difficult to turn.
 このような問題より、特許文献1には、ハンドルの操舵に連動してリンク機構全体が左右に動く三輪の前輪二輪式車両が開示され、リンク機構のリンク可動具合は、リンク角制御装置を用いて調整され、ステム部とリンク機構部に取り付けられた留部にリンク角制御装置を取り付け、車輪の車体速度センサからECUを介して制御する電気式(電磁)サーボ弁の開度によって、低速域ではリンクの可動具合を固着させる傾向で設定し、中高速域ではリンクの可動抵抗を無くす傾向で設定し、リンク機構のリンク角の可動具合を制御することで車体の姿勢を制御することが開示されている。 Due to such problems, Patent Document 1 discloses a three-wheel front-wheel two-wheeled vehicle in which the entire link mechanism moves to the left and right in conjunction with steering of the steering wheel. The link movable state of the link mechanism uses a link angle control device. The link angle control device is attached to the stem part and the stop part attached to the link mechanism part, and the opening of the electric (electromagnetic) servo valve that is controlled via the ECU from the vehicle body speed sensor of the wheel Is set to tend to fix the movable state of the link, set to tend to eliminate the link's movable resistance in the middle and high speed range, and to control the posture of the vehicle body by controlling the movable degree of the link angle of the link mechanism is disclosed Has been.
特開2010-184508号公報JP 2010-184508 A
 特許文献1のような前輪部における右側の車輪と左側の車輪が同一の回転力を有する三輪の前輪二輪式車両は、カーブでの旋回時において、姿勢変化に対して安定性を向上させることができる。しかし、特許文献1のような三輪の前輪二輪式車両を含む前輪二輪式或いは後輪二輪式車両は、多輪により接地点が多いことから、段差面や傾斜面の影響を受けた場合には傾斜しやすい傾向にある。また、該前輪二輪式或いは後輪二輪式車両は、車輪の接地面積が大きいことから、発進時に大きな踏力等の人による作動力が必要になって、バランスを崩してふらつきが発生しやすい傾向にある。例えば、前輪二輪式車両の場合、特に上り坂において重心バランスが悪く、速度を上げにくいうえに漕ぎ出し時等の発進時でもふらつきが発生しやすい。このように、該前輪二輪式或いは後輪二輪式車両は、傾斜やふらつきが発生した場合において低速及び中高速の両方の場合において車両の姿勢変化に対する姿勢制御が充分ではなく、姿勢変化に対して安定性が確保されにくい、という問題点がある。 The three-wheel front-wheel two-wheeled vehicle in which the right wheel and the left wheel in the front wheel portion have the same rotational force as in Patent Document 1 can improve stability against a change in posture when turning on a curve. it can. However, since the front wheel two-wheel type or rear wheel two-wheel vehicle including the three-wheel front wheel two-wheel vehicle as in Patent Document 1 has many ground contact points due to multiple wheels, it is affected by a stepped surface or an inclined surface. It tends to tilt. Also, since the front wheel two-wheel type or rear wheel two-wheeled vehicle has a large wheel contact area, it requires a large amount of pedaling force when starting, which tends to cause imbalance and cause wobbling. is there. For example, in the case of a front-wheel two-wheeled vehicle, the balance of the center of gravity is particularly bad on an uphill, it is difficult to increase the speed, and wobbling tends to occur even when starting off. As described above, the front wheel two-wheel type or rear wheel two-wheel vehicle does not have sufficient posture control with respect to the posture change of the vehicle in both cases of low speed and medium / high speed when the tilt or the wobble occurs. There is a problem that it is difficult to ensure stability.
 従って、本発明の目的は、低速および中高速の場合において、前輪部と後輪部のうちの少なくとも一方に左右一対の車輪の各々の回転力を互いに独立に制御する一対のモータを備えることによって、発進時や路面変化等の走行状態に応じた姿勢制御を行って、姿勢変化に対して安定性を確保する、運転者の作動力によって車輪を回転させて推進することができる車両、その車両を制御する方法、及び、その車両に使用される制御装置を提供することである。 Accordingly, an object of the present invention is to provide a pair of motors that independently control the rotational force of each of the pair of left and right wheels on at least one of the front wheel portion and the rear wheel portion in the case of low speed and medium / high speed. A vehicle capable of propulsion by rotating a wheel by a driver's operating force by performing posture control according to a running state such as starting or road surface change to ensure stability against the posture change, the vehicle And a control device used for the vehicle.
 本発明の1つの観点によれば、前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両が、車両の状態の検知を行い、検知に応答して一対の車輪の各々の回転力を互いに独立に制御できるようになっている。 According to one aspect of the present invention, there is provided a vehicle in which at least one of a front wheel portion and a rear wheel portion is configured by a pair of left and right wheels and can be propelled by a driver's operating force. The vehicle state is detected, and the rotational force of each of the pair of wheels can be controlled independently of each other in response to the detection.
 本発明の一具体例によれば、車両は、バッテリと、バッテリに接続され、一対の車輪のうちの一方の回転力を制御するためのモータ、及び一対の車輪のうちの他方の回転力を制御するためのモータから構成された一対のモータと、状態の検知を行い、検知に基づく状態信号を送信するセンサと、状態信号を演算処理して一対のモータを制御するための制御信号を送信する車体コントローラと、車体コントローラから送信された制御信号に基づいてバッテリと一対のモータとの間の電力供給を制御するモータドライバとを備え、モータドライバによって一対のモータの各々の出力を互いに独立に制御して、一対の車輪の各々の回転力を互いに独立に制御できるようになっている。 According to one embodiment of the present invention, a vehicle is connected to a battery, a motor for controlling the rotational force of one of the pair of wheels, and the rotational force of the other of the pair of wheels. A pair of motors configured to control the motor, a sensor that detects a state and transmits a state signal based on the detection, and a control signal that controls the pair of motors by calculating the state signal And a motor driver for controlling power supply between the battery and the pair of motors based on a control signal transmitted from the body controller, and the motor drivers independently output each of the pair of motors. By controlling, the rotational force of each of the pair of wheels can be controlled independently of each other.
 本発明の一具体例によれば、車両において、センサが、車両の鉛直方向に対する傾斜の検知を行う傾斜センサを含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。 According to an embodiment of the present invention, in a vehicle, the sensor includes a tilt sensor that detects a tilt of the vehicle with respect to a vertical direction, and the vehicle body controller calculates a state signal transmitted from the sensor so as to correct the state. The control signal can be transmitted after processing.
 本発明の一具体例によれば、車両において、センサが、車両の運転者による作動力の検知を行う作動力センサを更に含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。 According to an embodiment of the present invention, in the vehicle, the sensor further includes an operating force sensor that detects the operating force by a driver of the vehicle, and the vehicle body controller transmits the state to correct the state. The control signal can be transmitted by processing the signal.
 本発明の一具体例によれば、車両において、センサが、車両の速度の検知を行う速度センサを更に含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。 According to an embodiment of the present invention, in the vehicle, the sensor further includes a speed sensor that detects the speed of the vehicle, and the vehicle body controller performs an arithmetic process on the state signal transmitted from the sensor so as to correct the state. Control signals can be transmitted.
 本発明の一具体例によれば、車両において、一対のモータのうちの少なくとも一方を発電機の機能を有し、一対のモータのうちの少なくとも一方が、その車輪に対して逆回転トルクを与えることができ、且つ、発電機の機能により車両の走行エネルギーを回収してモータドライバを経由してバッテリに電力を供給することができるようになっている。 According to an embodiment of the present invention, in a vehicle, at least one of the pair of motors has a function of a generator, and at least one of the pair of motors gives a reverse rotational torque to the wheels. In addition, it is possible to collect the traveling energy of the vehicle by the function of the generator and supply power to the battery via the motor driver.
 本発明の一具体例によれば、車両が、前輪二輪式三輪自転車である。 According to a specific example of the present invention, the vehicle is a front two-wheeled three-wheeled bicycle.
 本発明の別の観点によれば、前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両を制御する方法が、車両の状態の検知を行うステップと、検知に基づいて演算処理を行うステップと、演算処理に基づいて一対の車輪の各々の回転力を互いに独立に制御するステップとを含む。 According to another aspect of the present invention, at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, and controls a vehicle that can be propelled by the driver's operating force. The method includes a step of detecting the state of the vehicle, a step of performing a calculation process based on the detection, and a step of independently controlling the rotational forces of the pair of wheels based on the calculation process.
 本発明の一具体例によれば、車両を制御する方法において、車両が、バッテリ、一対の車輪の各々に配置された一対のモータ、センサ、車体コントローラ、及び、モータドライバを備え、検知を行うステップが、センサによって車両の状態の検知を行うステップを含み、演算処理を行うステップが、センサによる検知に基づいて車体コントローラによって演算処理を行うステップを含み、一対の車輪の各々の回転力を互いに独立に制御するステップが、モータドライバが車体コントローラによる演算処理に基づいてバッテリと一対のモータとの間の電力供給を制御し、一対のモータの各々の出力を互いに独立に制御することによって、一対の車輪の各々の回転力を互いに独立に制御するステップを含む。 According to an embodiment of the present invention, in a method for controlling a vehicle, the vehicle includes a battery, a pair of motors, a sensor, a vehicle body controller, and a motor driver disposed on each of the pair of wheels, and performs detection. The step includes a step of detecting the state of the vehicle by the sensor, and the step of performing the calculation process includes a step of performing the calculation process by the vehicle body controller based on the detection by the sensor, and the rotational forces of the pair of wheels are The step of controlling independently is such that the motor driver controls the power supply between the battery and the pair of motors based on the arithmetic processing by the vehicle body controller, and controls the outputs of the pair of motors independently of each other. Controlling the rotational force of each of the wheels independently of each other.
 本発明の一具体例によれば、車両を制御する方法において、検知を行うステップが、センサによって車両の鉛直方向に対する傾斜、及び車両の速度を検知するステップを含み、一対の車輪の各々の回転力を互いに独立に制御するステップが、傾斜が検知され、速度が所定の速度以上である場合、一対の車輪のうちの傾斜に対して反対側に位置する車輪に配置されたモータがその車輪に対して逆回転トルクを与えるステップを含む。 According to an embodiment of the present invention, in the method of controlling a vehicle, the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction and the speed of the vehicle by a sensor, and the rotation of each of the pair of wheels. The step of controlling the forces independently from each other is that when a tilt is detected and the speed is equal to or higher than a predetermined speed, a motor disposed on a wheel on the opposite side of the tilt of the pair of wheels is applied to the wheel. The method includes the step of applying a reverse rotational torque to the counter.
 本発明の一具体例によれば、車両を制御する方法において、検知を行うステップが、センサによって車両の鉛直方向に対する傾斜、車両の速度、及び車両の運転者による作動力を検知するステップを含み、一対の車輪の各々の回転力を互いに独立に制御するステップが、傾斜が検知され、速度が所定の速度未満であって、作動力が検知されている場合、一対の車輪のうちの傾斜に対して同じ側に位置する車輪に配置されたモータがその車輪に対して正回転トルクを与えるステップを含む。 According to an embodiment of the present invention, in the method for controlling a vehicle, the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction, the speed of the vehicle, and the operating force by the driver of the vehicle. The step of controlling the rotational force of each of the pair of wheels independently of each other is that the inclination is detected, the speed is less than a predetermined speed, and the operating force is detected, the inclination of the pair of wheels is A motor disposed on a wheel located on the same side with respect to the wheel for applying a positive rotational torque to the wheel.
 本発明の一具体例によれば、車両を制御する方法において、検知を行うステップが、センサによって車両の鉛直方向に対する傾斜、車両の速度、及び車両の運転者による作動力を検知するステップを含み、一対の車輪の各々の回転力を互いに独立に制御するステップが、傾斜が検知され、速度が所定の速度未満であって、作動力が検知されていない場合、一対の車輪のうちの傾斜に対して反対側に位置する車輪に配置されたモータがその車輪に対して逆回転トルクを与えるステップを含む。 According to an embodiment of the present invention, in the method for controlling a vehicle, the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction, the speed of the vehicle, and the operating force by the driver of the vehicle. The step of controlling the rotational force of each of the pair of wheels independently of each other is that the inclination is detected, the speed is less than a predetermined speed, and the actuation force is not detected, the inclination of the pair of wheels is A motor disposed on a wheel located on the opposite side provides a reverse rotational torque to the wheel.
 本発明の一具体例によれば、車両を制御する方法において、検知を行うステップが、センサによって車両の鉛直方向に対する傾斜、車両の速度、及び車両の運転者による作動力を検知するステップを含み、一対の車輪の各々の回転力を互いに独立に制御するステップが、傾斜が検知されず、速度が所定の速度未満であって、作動力が検知されている場合、一対のモータの各々がその車輪に対して正回転トルクを与えるステップを含む。 According to an embodiment of the present invention, in the method for controlling a vehicle, the step of detecting includes the step of detecting the inclination of the vehicle with respect to the vertical direction, the speed of the vehicle, and the operating force by the driver of the vehicle. The step of controlling the rotational force of each of the pair of wheels independently of each other, when the inclination is not detected, the speed is less than a predetermined speed, and the operating force is detected, each of the pair of motors Applying a positive rotational torque to the wheel.
 本発明の更に別の観点によれば、制御装置が、前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両に使用され、車両の状態の検知を行い、検知に応答して一対の車輪の各々の回転力を互いに独立に制御できるようになっている。 According to still another aspect of the present invention, the control device can be propelled by a driver's operating force in which at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels. The vehicle state is detected, and the rotational force of each of the pair of wheels can be controlled independently of each other in response to the detection.
 本発明の一具体例によれば、制御装置が、バッテリと、バッテリに接続され、一対の車輪のうちの一方の回転力を制御するためのモータ、及び一対の車輪のうちの他方の回転力を制御するためのモータから構成された一対のモータと、状態の検知を行い、検知に基づく状態信号を送信するセンサと、状態信号を演算処理して一対のモータを制御するための制御信号を送信する車体コントローラと、車体コントローラから送信された制御信号に基づいてバッテリと一対のモータとの間の電力供給を制御するモータドライバとを備える。 According to an embodiment of the present invention, the control device is connected to the battery, the motor connected to the battery for controlling the rotational force of one of the pair of wheels, and the other rotational force of the pair of wheels. A pair of motors configured to control the motor, a sensor for detecting the state and transmitting a state signal based on the detection, and a control signal for calculating the state signal and controlling the pair of motors A vehicle body controller for transmission and a motor driver for controlling power supply between the battery and the pair of motors based on a control signal transmitted from the vehicle body controller.
 本発明の一具体例によれば、制御装置において、モータドライバが、一対のモータの各々の出力を互いに独立に制御して、一対の車輪の各々の回転力を互いに独立に制御できるようになっている。 According to an embodiment of the present invention, in the control device, the motor driver can control the outputs of the pair of motors independently of each other, and can control the rotational forces of the pair of wheels independently of each other. ing.
 本発明の一具体例によれば、制御装置において、センサが、車両の鉛直方向に対する傾斜の検知を行う傾斜センサを含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。 According to an embodiment of the present invention, in the control device, the sensor includes a tilt sensor that detects the tilt of the vehicle with respect to the vertical direction, and the vehicle body controller outputs a status signal transmitted from the sensor so as to correct the status. The control signal can be transmitted after arithmetic processing.
 本発明の一具体例によれば、制御装置において、センサが、車両の運転者による作動力の検知を行う作動力センサを更に含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。 According to an embodiment of the present invention, in the control device, the sensor further includes an operating force sensor for detecting an operating force by a driver of the vehicle, and the vehicle body controller is transmitted from the sensor to correct the state. The control signal can be transmitted by calculating the status signal.
 本発明の一具体例によれば、制御装置において、センサが、車両の速度の検知を行う速度センサを更に含み、車体コントローラが、状態を補正するようにセンサから送信された状態信号を演算処理して制御信号を送信できるようになっている。 According to an embodiment of the present invention, in the control device, the sensor further includes a speed sensor that detects the speed of the vehicle, and the vehicle body controller performs processing on the state signal transmitted from the sensor so as to correct the state Thus, a control signal can be transmitted.
 本発明の一具体例によれば、制御装置において、一対のモータのうちの少なくとも一方が発電機の機能を有し、一対のモータのうちの少なくとも一方が、その車輪に対して逆回転トルクを与えることができ、且つ、発電機の機能により車両の走行エネルギーを回収してモータドライバを経由してバッテリに電力を供給することができるようになっている。 According to an embodiment of the present invention, in the control device, at least one of the pair of motors has a function of a generator, and at least one of the pair of motors has a reverse rotational torque with respect to the wheels. In addition, the running energy of the vehicle can be recovered by the function of the generator, and power can be supplied to the battery via the motor driver.
 本発明によれば、一対の車輪の各々にモータを配置して、一対のモータの各々の出力を互いに独立に制御して一対の車輪の各々の回転力を互いに独立に制御させることによって、発進時、路面変化、等による車両の傾斜を補正することで、ふらつきを抑えて走行状態に応じた姿勢制御を行うことができる。また、センサによって車両の状態の検知を行い、その検知結果に基づいて演算処理することによって一対の車輪の各々に対して最適な互いに独立した回転力を発生させることができる。更に、姿勢制御を行う場合において、モータを発電機として作動させて車両の走行エネルギーを回収し、バッテリに対して電力を供給することができる。そして、一対のモータの各々の出力を互いに独立に制御できることから、一方のモータがその車輪に対して正回転トルクを与えるためにバッテリからそのモータに対して電力を供給する一方で、他方のモータを発電機として作動させてその車輪に対して逆回転トルクを与えるとともにそのモータからバッテリに対して電力を供給することもできる。 According to the present invention, a motor is disposed on each of the pair of wheels, and the output of each of the pair of motors is controlled independently of each other so that the rotational force of each of the pair of wheels is controlled independently of each other. By correcting the inclination of the vehicle due to time, road surface change, etc., it is possible to perform posture control according to the running state while suppressing wobble. In addition, by detecting the state of the vehicle with a sensor and performing arithmetic processing based on the detection result, it is possible to generate optimum mutually independent rotational forces for each of the pair of wheels. Furthermore, when performing attitude control, it is possible to operate the motor as a generator to recover the running energy of the vehicle and supply power to the battery. Since the outputs of each of the pair of motors can be controlled independently from each other, one motor supplies electric power from the battery to the motor in order to give a positive rotational torque to the wheel, while the other motor Can be operated as a generator to give a reverse rotation torque to the wheel and to supply electric power from the motor to the battery.
 なお、本発明の他の目的、特徴及び利点は、添付図面に関する以下の本発明の実施例の記載から明らかになるであろう。 Note that other objects, features, and advantages of the present invention will become apparent from the following description of embodiments of the present invention with reference to the accompanying drawings.
本発明の一実施形態としての車両を側面から見た概略図である。It is the schematic which looked at the vehicle as one Embodiment of this invention from the side. 図1の車両を前面から見た概略図である。It is the schematic which looked at the vehicle of FIG. 1 from the front. 図1の車両を運転者から見て左側に傾斜している場合の前面から見た概略図である。It is the schematic seen from the front surface in case the vehicle of FIG. 1 inclines to the left side seeing from a driver. 本発明の一実施形態としての車両に使用される制御装置におけるモータを電動機として作動させた状態を表す図である。It is a figure showing the state which operated the motor in the control apparatus used for the vehicle as one Embodiment of this invention as an electric motor. 本発明の一実施形態としての車両に使用される制御装置におけるモータを発電機として作動させた状態を表す図である。It is a figure showing the state which operated the motor in the control apparatus used for the vehicle as one Embodiment of this invention as a generator. 本発明の一実施形態としての車両を制御するための方法のフローチャートを表す図である。It is a figure showing the flowchart of the method for controlling the vehicle as one Embodiment of this invention.
 以下、本発明の実施例について図面を参照して説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described with reference to the drawings. However, the present invention is not limited to these examples.
 図1、図2A、及び図2Bに本発明の一実施形態である車両100を示す。ここでいう車両とは、前輪部と後輪部のうち少なくとも一方が左右一対の車輪から構成された、その運転者の作動力によって前輪部と後輪部のうちの少なくとも一方にある車輪を回転させて推進することができるようになっている車両である。そのような車両として、例えば、運転者が作動力である踏力をペダルに与えることによって車輪を回転させて推進することができる自転車がある。以下の実施例では車両のうち、特に自転車について示すが、自転車以外の運転者の作動力によって推進することができる車両にも適用させることができる。車両100は、前輪部と後輪部のうちの前輪部が左右一対の車輪から構成された前輪二輪式自転車であって、前輪部に配置された運転者から見て右側に位置する第1の車輪101、及び運転者から見て左側に位置する第2の車輪102を有する左右一対の車輪と、後輪部に配置された一輪の第3の車輪103を備えている。この場合、後輪部に一輪以上の車輪を備えてもよい。第1の車輪101と第2の車輪102はリンク機構113によって接続されてもよい。また、車両100は、バッテリ109と、第1の車輪101のハブに配置され、第1の車輪101の回転力を制御するための第1のモータ104、及び第2の車輪102のハブに配置され、第2の車輪102の回転力を制御するための第2のモータ105から構成された一対のモータとを備えている。一対のモータ104、105は、バッテリ109に接続されている。なお、図1、図2A、及び図2Bの車両100は、前輪部が左右一対の車輪から構成された前輪二輪式三輪自転車であるが、後輪部が左右一対の車輪から構成された後輪二輪式車両であってもよい。後輪二輪式車両のうち、例えば後輪二輪式自転車の場合には、後輪においてディファレンシャル・ギヤ(差動歯車)を採用することによって左右の車輪に回転差を与えられるようにして、更に左右の車輪の各々のハブにモータを配置する。 FIG. 1, FIG. 2A, and FIG. 2B show a vehicle 100 that is an embodiment of the present invention. The vehicle here means that at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, and a wheel on at least one of the front wheel portion and the rear wheel portion is rotated by the operating force of the driver. It is a vehicle that can be propelled. As such a vehicle, for example, there is a bicycle that can be propelled by rotating a wheel by applying a pedaling force as an operating force to a pedal. In the following embodiments, among the vehicles, particularly bicycles are shown, but the present invention can also be applied to vehicles that can be propelled by the operating force of drivers other than bicycles. The vehicle 100 is a front-wheel two-wheel bicycle in which a front wheel portion of a front wheel portion and a rear wheel portion is composed of a pair of left and right wheels, and is a first wheel located on the right side when viewed from a driver disposed on the front wheel portion. A pair of left and right wheels having a wheel 101 and a second wheel 102 located on the left side as viewed from the driver, and a single third wheel 103 disposed in the rear wheel portion are provided. In this case, one or more wheels may be provided in the rear wheel portion. The first wheel 101 and the second wheel 102 may be connected by a link mechanism 113. Further, the vehicle 100 is disposed on the battery 109 and the hub of the first wheel 101, and is disposed on the hub of the first motor 104 and the second wheel 102 for controlling the rotational force of the first wheel 101. And a pair of motors composed of a second motor 105 for controlling the rotational force of the second wheel 102. The pair of motors 104 and 105 are connected to a battery 109. The vehicle 100 in FIGS. 1, 2A, and 2B is a front-wheel two-wheeled three-wheel bicycle in which the front wheel portion is configured by a pair of left and right wheels, but the rear wheel portion is configured by a pair of left and right wheels. A two-wheeled vehicle may be used. Among rear wheeled two-wheeled vehicles, for example, in the case of a rear wheeled two-wheeled bicycle, by adopting a differential gear (differential gear) in the rear wheel, a difference in rotation is given to the left and right wheels, and further left and right A motor is placed on each hub of the wheel.
 また車両100は、車両100の状態の検知を行い、その検知に基づく状態信号を送信するセンサ群を備えている。図1に示すように、車両100の状態としては、例えば、車両100の鉛直方向に対する傾斜、車両100の運転者による作動力、車両100の速度、等があり、それぞれが傾斜センサ106、作動力センサ107、速度センサ108、等によって検知される。 Further, the vehicle 100 includes a sensor group that detects the state of the vehicle 100 and transmits a state signal based on the detection. As shown in FIG. 1, the state of the vehicle 100 includes, for example, the inclination of the vehicle 100 with respect to the vertical direction, the operating force by the driver of the vehicle 100, the speed of the vehicle 100, and the like. Detected by sensor 107, speed sensor 108, and the like.
 図3、及び図4に、前輪部と後輪部のうちの少なくとも一方が、第1の車輪101である右側の車輪、及び第2の車輪102である左側の車輪を有する左右一対の車輪により構成された車両100に使用される制御装置117を示す。制御装置117は、バッテリ109、バッテリ109に接続され、第1の車輪101である右側の車輪の回転力を制御する第1のモータ104、及び第2の車輪102である左側の車輪の回転力を制御する第2のモータ105から構成された一対のモータと、傾斜センサ106、作動力センサ107、及び速度センサ108を含み、車両100の状態の検知を行い、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信するセンサ群と、状態信号118~120を受信して演算処理し、第1のモータ104と第2のモータ105の出力を制御するための制御信号121を送信する車体コントローラ114と、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104との間の電力供給を制御する第1のモータドライバ115、及びバッテリ109と第2のモータ105との間の電力供給を制御する第2のモータドライバ116を備えている。このようにして、制御信号121を受信した第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、あるタイミングではバッテリ109から第1のモータ104、及び第2のモータ105に電力を供給し、あるタイミングでは第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給して、第1のモータ104の出力、及び第2のモータ105の出力を互いに独立に制御できるようになっている。 3 and 4, at least one of the front wheel portion and the rear wheel portion is a pair of left and right wheels having a right wheel that is the first wheel 101 and a left wheel that is the second wheel 102. The control apparatus 117 used for the vehicle 100 comprised is shown. The control device 117 is connected to the battery 109, the battery 109, the first motor 104 that controls the rotational force of the right wheel that is the first wheel 101, and the rotational force of the left wheel that is the second wheel 102. Including a pair of motors configured to control the second motor 105, a tilt sensor 106, an actuation force sensor 107, and a speed sensor 108. The state of the vehicle 100 is detected and a state signal (inclination based on the detection) A group of sensors that transmit a signal 118, an actuation force signal 119, and a speed signal 120), and the state signals 118 to 120 are received and processed to control the outputs of the first motor 104 and the second motor 105. The vehicle body controller 114 that transmits the control signal 121 and the battery 109 and the first module based on the control signal 121 transmitted from the vehicle body controller 114. The first motor driver 115 for controlling the supply of power between the motor 104, and a second motor driver 116 for controlling the supply of power between the battery 109 and the second motor 105. In this manner, the first motor driver 115 and the second motor driver 116 that have received the control signal 121 supply power from the battery 109 to the first motor 104 and the second motor 105 at a certain timing, respectively. At a certain timing, power is supplied from the first motor 104 and the second motor 105 to the battery 109 so that the output of the first motor 104 and the output of the second motor 105 can be controlled independently of each other. It has become.
 なお、第1のモータドライバ115、第2のモータドライバ116は、一体化されたモータドライバであってもよいし、更に、車体コントローラ114、第1のモータドライバ115、第2のモータドライバ116は、一体化されたコントローラであってもよい。また、車体コントローラ114、第1のモータドライバ115、第2のモータドライバ116は、車両100の運転者の把持部分であるハンドル112に配置されてもよいし、車両100が自転車の場合には、サドル111の下に配置されてもよい。図3、及び図4においては、制御信号121は、車体コントローラ114から第1のモータドライバ115、及び第2のモータドライバ116に対してそれぞれ1本の信号線で送信されているが、制御信号121に第1のモータドライバ115、及び第2のモータドライバ116の各々のための認証コードを持たせることによって、1本の信号線で送信されてもよく、また、有線式であっても無線式であってもよい。 The first motor driver 115 and the second motor driver 116 may be integrated motor drivers, and the vehicle body controller 114, the first motor driver 115, and the second motor driver 116 may be An integrated controller may be used. The vehicle body controller 114, the first motor driver 115, and the second motor driver 116 may be disposed on the handle 112 that is a grip portion of the driver of the vehicle 100. When the vehicle 100 is a bicycle, It may be arranged under the saddle 111. 3 and 4, the control signal 121 is transmitted from the vehicle body controller 114 to the first motor driver 115 and the second motor driver 116 through one signal line. By having the authentication code for each of the first motor driver 115 and the second motor driver 116 in 121, it may be transmitted by one signal line, or it may be wired or wireless It may be a formula.
 センサ群の傾斜センサ106は、バッテリ109からの電力により作動し、車両100の鉛直方向に対する傾斜を検知する。傾斜センサ106を含むことにより、車両の発進時、路面変化、等による左右に対して交互に傾斜するふらつきを検知することができる。傾斜センサ106としては、例えば、傾斜角センサ、ジャイロセンサ、等がある。図1に示すように車両100が自転車である場合には、傾斜角センサ、ジャイロセンサ、等は、サドル111の下に配置されてもよい。図2Bに示すように、車両100が鉛直方向に対して運転者から見て左側に傾斜すると、傾斜角センサによって傾斜角θが検知され、或いは、ジャイロセンサによって傾斜角θに対する角速度が検知されることによって、車両100の傾斜を検知する。また、傾斜センサ106としては、例えば、トルクセンサがあり、第1の車輪101、及び第2の車輪102の各々にトルクセンサを配置し、各トルクセンサから検知される各車輪のトルクの差を使用することによっても車両100の傾斜を検知することができる。また、傾斜センサ106としては、例えば、操舵角センサがあり、運運転者の把持部分であるハンドル112に操舵角センサを配置し、操舵角センサから検知される操舵角を使用することによっても車両100の傾斜を検知することができる。なお、傾斜センサ106は、車両100が走行している路面が、図1、図2A、図2Bのような水平な路面であっても、上り坂や下り坂という傾きがある路面であっても、車両100の鉛直方向に対する傾斜を検知することができるようになっている。 The inclination sensor 106 of the sensor group is operated by electric power from the battery 109 and detects the inclination of the vehicle 100 with respect to the vertical direction. By including the inclination sensor 106, it is possible to detect a wobbling that alternately inclines with respect to the left and right due to a change in the road surface or the like when the vehicle starts. Examples of the tilt sensor 106 include a tilt angle sensor and a gyro sensor. As shown in FIG. 1, when the vehicle 100 is a bicycle, an inclination angle sensor, a gyro sensor, and the like may be disposed under the saddle 111. As shown in FIG. 2B, when the vehicle 100 is tilted to the left as viewed from the driver with respect to the vertical direction, the tilt angle sensor detects the tilt angle θ, or the gyro sensor detects the angular velocity with respect to the tilt angle θ. Thus, the inclination of the vehicle 100 is detected. Further, as the inclination sensor 106, for example, there is a torque sensor, and a torque sensor is arranged on each of the first wheel 101 and the second wheel 102, and the difference in torque of each wheel detected from each torque sensor is calculated. The inclination of the vehicle 100 can also be detected by using it. Further, as the tilt sensor 106, for example, there is a steering angle sensor, and a vehicle is also provided by arranging a steering angle sensor on a handle 112 that is a gripping portion of a driver and using a steering angle detected from the steering angle sensor. 100 tilts can be detected. Note that the inclination sensor 106 is configured so that the road surface on which the vehicle 100 is traveling is a horizontal road surface as shown in FIGS. 1, 2A, and 2B, or a road surface having an inclination of an uphill or a downhill. The inclination of the vehicle 100 with respect to the vertical direction can be detected.
 傾斜センサ106は、検知された傾斜を含む状態信号(傾斜信号118)を生成して車体コントローラ114に送信する。車体コントローラ114は、状態信号(傾斜信号118)を受信して車両100の傾斜の方向を判定し、車両100の傾斜を補正して鉛直方向に姿勢を戻すように状態信号(傾斜信号118)を演算処理する。第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御する。第1のモータ104の出力、及び第2のモータ105の出力はそれぞれ、第1のモータドライバ115、及び第2のモータドライバ116によって、車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御されて、互いに独立に制御されることができるようになっている。互いに独立に制御された第1のモータ104の出力、及び第2のモータ105の出力がそれぞれ、第1の車輪101の回転力、及び第2の車輪102の回転力を互いに独立に制御することによって、車両100の傾斜を補正して鉛直方向に姿勢を戻す。この場合、第1のモータ104、及び第2のモータ105は、一対の車輪のうちのその傾斜に対して同じ側に位置する車輪の回転力を増加でき、或いは、その傾斜に対して反対側に位置する車輪の回転力を減少できるようになっている。 The tilt sensor 106 generates a state signal (tilt signal 118) including the detected tilt and transmits it to the vehicle body controller 114. The vehicle body controller 114 receives the state signal (inclination signal 118), determines the direction of inclination of the vehicle 100, corrects the inclination of the vehicle 100, and outputs the state signal (inclination signal 118) to return the posture to the vertical direction. Arithmetic processing. The first motor driver 115 and the second motor driver 116 are respectively connected between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114. Control power supply. The output of the first motor 104 and the output of the second motor 105 are based on the control signal 121 transmitted from the vehicle body controller 114 by the first motor driver 115 and the second motor driver 116, respectively. The power supply between the first motor 104 and the second motor 105 is controlled so that they can be controlled independently of each other. The output of the first motor 104 and the output of the second motor 105 controlled independently of each other control the rotational force of the first wheel 101 and the rotational force of the second wheel 102 independently of each other. Thus, the inclination of the vehicle 100 is corrected and the posture is returned to the vertical direction. In this case, the 1st motor 104 and the 2nd motor 105 can increase the rotational force of the wheel located in the same side with respect to the inclination of a pair of wheels, or the other side to the inclination The rotational force of the wheel located at can be reduced.
 センサ群の作動力センサ107は、バッテリ109からの電力により作動し、車両100の運転者による車両100を推進させるための作動力を検知する。車両100が自転車である場合には、作動力センサ107として、トルクセンサがある。図1に示すようにトルクセンサを左右一対のペダル110を接続しているシャフトに配置し、車両100の運転者がペダル110を踏むことによって回転するシャフトのトルクを検知して、運転者による作動力であるペダル踏力を検知する。なお、作動力センサ107は、車両100の運転者によって掛けられている作動力を検知できるものであればどのようなセンサであってもよい。 The operating force sensor 107 of the sensor group is operated by the electric power from the battery 109, and detects the operating force for propelling the vehicle 100 by the driver of the vehicle 100. When the vehicle 100 is a bicycle, the operating force sensor 107 includes a torque sensor. As shown in FIG. 1, a torque sensor is arranged on a shaft connecting a pair of left and right pedals 110, and the driver of the vehicle 100 detects the torque of the rotating shaft when the driver steps on the pedal 110, and the driver makes the torque sensor. Detects pedal force, which is power. The operating force sensor 107 may be any sensor that can detect the operating force applied by the driver of the vehicle 100.
 作動力センサ107は、検知された作動力を含む状態信号(作動力信号119)を生成して車体コントローラ114に送信する。車体コントローラ114は、状態信号(傾斜信号118、作動力信号119)を受信して、車両100の傾斜を補正して鉛直方向に姿勢を戻すように状態信号(傾斜信号118、作動力信号119)を演算処理する。第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御し、バッテリ109から第1のモータ104、及び第2のモータ105に電力を供給し、或いは、第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給する。電力供給を制御された第1のモータ104の出力、及び第2のモータ105の出力は、上記と同様に互いに独立に制御され、第1の車輪101の回転力、及び第2の車輪102の回転力を互いに独立に制御して、車両100の傾斜を補正して鉛直方向に姿勢を戻す。 The operating force sensor 107 generates a state signal (operating force signal 119) including the detected operating force and transmits it to the vehicle body controller 114. The vehicle body controller 114 receives the state signal (inclination signal 118, operating force signal 119), corrects the inclination of the vehicle 100, and returns the posture in the vertical direction (inclination signal 118, operating force signal 119). Is processed. The first motor driver 115 and the second motor driver 116 are respectively connected between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114. The power supply is controlled, and power is supplied from the battery 109 to the first motor 104 and the second motor 105, or power is supplied from the first motor 104 and the second motor 105 to the battery 109. The output of the first motor 104 and the output of the second motor 105 whose power supply is controlled are controlled independently of each other in the same manner as described above, and the rotational force of the first wheel 101 and the output of the second wheel 102 are controlled. The rotational force is controlled independently of each other to correct the inclination of the vehicle 100 and return the posture in the vertical direction.
 センサ群の速度センサ108は、バッテリ109からの電力により作動し、図1に示すように後輪である第3の車輪103に配置され、第3の車輪103の回転速度から車両100の速度を検知する。なお、速度センサ108は、車両100の速度を検知できるものであればどのようなセンサであってもよい。また、速度センサ108は、第1の車輪101、第2の車輪102のいずれかに配置されてもよい。 The speed sensor 108 of the sensor group is operated by the electric power from the battery 109 and is arranged on the third wheel 103 which is a rear wheel as shown in FIG. 1. The speed of the vehicle 100 is determined from the rotational speed of the third wheel 103. Detect. The speed sensor 108 may be any sensor that can detect the speed of the vehicle 100. Further, the speed sensor 108 may be disposed on either the first wheel 101 or the second wheel 102.
 速度センサ108は、検知された速度を含む状態信号(速度信号120)を生成して車体コントローラ114に送信する。車体コントローラ114は、状態信号(傾斜信号118、作動力信号119、速度信号120)を受信して、傾斜を補正して鉛直方向に姿勢を戻すように状態信号(傾斜信号118、作動力信号119、速度信号120)を演算処理する。第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御し、バッテリ109から第1のモータ104、及び第2のモータ105に電力を供給し、或いは、第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給する。電力供給を制御された第1のモータ104の出力、及び第2のモータ105の出力は、上記と同様に互いに独立に制御され、第1の車輪101の回転力、及び第2の車輪102の回転力を互いに独立に制御して、車両100の傾斜を補正して鉛直方向に姿勢を戻す。 The speed sensor 108 generates a state signal (speed signal 120) including the detected speed and transmits it to the vehicle body controller 114. The vehicle body controller 114 receives the status signals (tilt signal 118, operating force signal 119, speed signal 120), corrects the tilt and returns the posture in the vertical direction (tilt signal 118, operating force signal 119). , The speed signal 120) is processed. The first motor driver 115 and the second motor driver 116 are respectively connected between the battery 109 and the first motor 104 and the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114. The power supply is controlled, and power is supplied from the battery 109 to the first motor 104 and the second motor 105, or power is supplied from the first motor 104 and the second motor 105 to the battery 109. The output of the first motor 104 and the output of the second motor 105 whose power supply is controlled are controlled independently of each other in the same manner as described above, and the rotational force of the first wheel 101 and the output of the second wheel 102 are controlled. The rotational force is controlled independently of each other to correct the inclination of the vehicle 100 and return the posture in the vertical direction.
 詳細に説明すると、車両100がふらついて、傾斜センサ106によって傾斜が検知されている場合、車体コントローラ114が、第1のモータ104、及び第2のモータ105のうちの少なくとも1つを制御できるように、傾斜に基づく状態信号(傾斜信号118)を演算処理し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御して、バッテリ109から第1のモータ104、及び第2のモータ105に電力を供給することによって、又は、第1のモータ104、及び第2のモータ105からバッテリ109に電力を供給することによって、傾斜を補正して鉛直方向に姿勢を戻すようにする。なお、第1のモータ104、及び第2のモータ105はそれぞれ、第1の車輪101、及び第2の車輪102に必要とされるトルク量やトルクを掛ける時間を制御するようにして、第1の車輪101、及び第2の車輪102に互い独立に回転トルクを与えることできる。「回転トルクを与える」ことのうちの「正回転トルクを与える」とは、車両100の進行方向への車輪の回転に対して同じ方向にトルクを与えて車輪の回転力を増加させることであって、「逆回転トルクを与える」とは、車両100の進行方向への車輪の回転に対して逆の方向にトルクを与えて車輪の回転力を減少させることである。車輪の回転速度が0であってもモータは車輪に対して回転トルクを与えることができる。 More specifically, when the vehicle 100 is staggered and the inclination is detected by the inclination sensor 106, the vehicle body controller 114 can control at least one of the first motor 104 and the second motor 105. In addition, the state signal based on the inclination (inclination signal 118) is processed, and the first motor driver 115 and the second motor driver 116 are respectively connected to the battery 109 based on the control signal 121 transmitted from the vehicle body controller 114. Power supply between the first motor 104 and the second motor 105 and supplying power from the battery 109 to the first motor 104 and the second motor 105, or By supplying electric power from the first motor 104 and the second motor 105 to the battery 109, the inclination is reduced. Correct to return the posture in the vertical direction. Note that the first motor 104 and the second motor 105 respectively control the amount of torque required for the first wheel 101 and the second wheel 102 and the time for applying the torque. Rotational torque can be applied to the wheel 101 and the second wheel 102 independently of each other. “Providing positive rotational torque” in “applying rotational torque” is to increase the rotational force of the wheel by applying torque in the same direction as the rotation of the wheel in the traveling direction of the vehicle 100. Thus, “applying reverse rotation torque” means applying torque in the opposite direction to the rotation of the wheel in the traveling direction of the vehicle 100 to reduce the rotational force of the wheel. Even if the rotational speed of the wheel is zero, the motor can give a rotational torque to the wheel.
 具体的には、図2Bのように運転者から見て左側に傾斜した場合には(図2Bの場合の傾斜角θ)、傾斜センサ106は、車両100が左側に傾斜していることを検知し、その検知(左側の傾斜)に基づく状態信号(傾斜信号118)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)を演算処理し、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第2のモータ105に電力を供給し、第2のモータ105が左側の第2の車輪102に対して正回転トルクを与えて第2の車輪102の回転力を増加させることによって、或いは、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第1のモータ104に電力を供給し、第1のモータ104が右側の第1の車輪101に対して逆回転トルクを与えて第1の車輪101の回転力を減少させることによって、第1の車輪101、及び第2の車輪102の各々の回転力を互いに独立に制御して、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする(図2Aの場合の傾斜角0)。なお、第1の車輪101に逆回転トルクを与えてその回転力を減少させる場合には、第1のモータドライバ115によって第1のモータ104を発電機(ジェネレータ)として作動させて第1の車輪101を回生制動させることによって、第1のモータ104からバッテリ109に電力を供給できるようにしてもよい。また、運転者から見て右側に傾斜した場合には、傾斜センサ106は、車両100が右側に傾斜していることを検知し、その検知(右側の傾斜)に基づく状態信号(傾斜信号118)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)を演算処理し、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第1のモータ104に電力を供給し、第1のモータ104が右側の第1の車輪101に対して正回転トルクを与えて第1の車輪の回転力を増加させることによって、或いは、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第2のモータ105に電力を供給し、第2のモータ105が左側の第2の車輪102に対して逆回転トルクを与えて第2の車輪102の回転力を減少させることによって、第1の車輪101、及び第2の車輪102の各々の回転力を互いに独立に制御して、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。なお、第2の車輪102に逆回転トルクを与えてその回転力を減少させる場合には、第2のモータドライバ116によって第2のモータ105を発電機として作動させて第2の車輪102を回生制動させることによって、第2のモータ105からバッテリ109に電力を供給できるようにしてもよい。 Specifically, when tilted to the left as viewed from the driver as shown in FIG. 2B (tilt angle θ in the case of FIG. 2B), the tilt sensor 106 detects that the vehicle 100 is tilted to the left. Then, a state signal (tilt signal 118) based on the detection (tilt on the left side) is transmitted, and the vehicle body controller 114 performs arithmetic processing on the state signal (tilt signal 118) based on the left tilt, and the second motor driver 116. Supplies electric power from the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114, and the second motor 105 gives a positive rotational torque to the left second wheel 102. By increasing the rotational force of the second wheel 102, or by the first motor driver 115 based on the control signal 121 transmitted from the vehicle body controller 114. By supplying electric power to the first motor 104 from the rear 109, the first motor 104 applies a reverse rotational torque to the first wheel 101 on the right side to reduce the rotational force of the first wheel 101, The respective rotational forces of the first wheel 101 and the second wheel 102 are controlled independently of each other so as to correct the inclination to the left and return the posture in the vertical direction (inclination angle in the case of FIG. 2A). 0). In addition, when applying reverse rotation torque to the 1st wheel 101 and reducing the rotational force, the 1st motor 104 is operated as a generator (generator) by the 1st motor driver 115, and the 1st wheel The electric power may be supplied from the first motor 104 to the battery 109 by causing the 101 to be regeneratively braked. When the vehicle is tilted to the right as viewed from the driver, the tilt sensor 106 detects that the vehicle 100 is tilted to the right, and a status signal (tilt signal 118) based on the detection (right tilt). , The vehicle body controller 114 computes a state signal (tilt signal 118) based on the right side inclination, and the first motor driver 115 receives the first signal from the battery 109 based on the control signal 121 transmitted from the body controller 114. Power is supplied to the first motor 104, and the first motor 104 applies a positive rotational torque to the right first wheel 101 to increase the rotational force of the first wheel, or the second motor 104 The motor driver 116 supplies power from the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114, and the second Rotation of each of the first wheel 101 and the second wheel 102 by the counter 105 giving a reverse rotational torque to the left second wheel 102 to reduce the rotational force of the second wheel 102. The forces are controlled independently of each other to correct the inclination to the right and return the posture in the vertical direction. When a reverse rotational torque is applied to the second wheel 102 to reduce its rotational force, the second motor driver 116 operates the second motor 105 as a generator to regenerate the second wheel 102. It is also possible to supply power from the second motor 105 to the battery 109 by braking.
 車輪に逆回転トルクを与える場合において、短時間に車輪の回転力を大きく減少させる必要がある場合には、そのモータを電動機として作動させてもよい。例えば、車両100が左側に傾斜している場合の車両100の傾斜補正において、第1のモータ104を発電機として作動させて第1の車輪101を回生制動させても車両100の傾斜補正が追いつかない場合には、第1のモータ104を電動機として作動させて第1のモータ104が第1の車輪101に対して大きな逆回転トルクを与えられるようにして第1の車輪101の回転力を大きく減少させてもよい。このように車輪に逆回転トルクを与える場合には、モータを、発電機或いは電動機として作動させる、発電機として作動させた後に電動機として作動させる、等、モータに対して必要に応じた最適の作動方法を選択することができる。 When applying reverse rotation torque to a wheel, if it is necessary to greatly reduce the rotational force of the wheel in a short time, the motor may be operated as an electric motor. For example, in the tilt correction of the vehicle 100 when the vehicle 100 is tilted to the left, the tilt correction of the vehicle 100 can catch up even if the first motor 104 is operated as a generator and the first wheel 101 is regeneratively braked. If not, the first motor 104 is operated as an electric motor so that the first motor 104 can apply a large reverse rotational torque to the first wheel 101 to increase the rotational force of the first wheel 101. It may be decreased. In this way, when applying reverse rotation torque to the wheel, the motor is operated as a generator or an electric motor, or after being operated as a generator, the motor is operated as an electric motor. A method can be selected.
 車両100が電動アシスト付き自転車である場合においては、車両100の速度によってアシストすることができる範囲が法定等により決められていることがあるため、車両100の速度に応じて第1のモータ104、及び第2のモータ105を制御する方法は相違してもよい。速度センサ108によって検知された車両100の速度が所定の速度(例えば、24km/h)以上である場合においては、アシストすることができないため、傾斜センサ106によって検知された傾斜に対して反対側に位置する車輪の回転力を減少させるために、その車輪に対してそのモータが逆回転トルクを与えることによってその傾斜を補正する。 In the case where the vehicle 100 is a bicycle with electric assistance, the range that can be assisted by the speed of the vehicle 100 may be determined by law or the like, so the first motor 104, depending on the speed of the vehicle 100, The method for controlling the second motor 105 may be different. When the speed of the vehicle 100 detected by the speed sensor 108 is equal to or higher than a predetermined speed (for example, 24 km / h), the vehicle cannot be assisted. In order to reduce the rotational force of the wheel located, the inclination is corrected by applying a reverse rotational torque to the wheel by the motor.
 具体的には、車両100の速度が所定の速度以上である場合において、車両100が右側に傾斜している場合には、傾斜センサ106、及び速度センサ108が、車両100が右側に傾斜していること、及び車両100が所定の速度以上であることを検知し、その検知に基づく状態信号(傾斜信号118、速度信号120)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)、及び速度に基づく状態信号(速度信号120)を演算処理し、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第2のモータ105に電力を供給し、第2のモータ105が左側の第2の車輪102に対して逆回転トルクを与えて第2の車輪102の回転力を減少させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して逆回転トルクを与えるが、第2のモータ105の逆回転トルクを第1のモータ104の逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。また、車両100が左側に傾斜している場合には、傾斜センサ106、及び速度センサ108が、車両100が左側に傾斜していること、及び車両100が所定の速度以上であることを検知し、その検知に基づく状態信号(傾斜信号118、速度信号120)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)、及び速度に基づく状態信号(速度信号120)を演算処理し、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109から第1のモータ104に電力を供給し、第1のモータ104が右側の第1の車輪101に対して逆回転トルクを与えて第1の車輪101の回転力を減少させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して逆回転トルクを与えるが、第1のモータ104の逆回転トルクを第2のモータ105の逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。 Specifically, when the speed of the vehicle 100 is equal to or higher than a predetermined speed and the vehicle 100 is tilted to the right, the tilt sensor 106 and the speed sensor 108 are tilted to the right. And that the vehicle 100 is at a predetermined speed or higher, transmits a state signal (tilt signal 118, speed signal 120) based on the detection, and the vehicle body controller 114 detects a state signal ( The inclination signal 118) and the state signal based on the speed (speed signal 120) are processed, and the second motor driver 116 sends the battery 109 to the second motor 105 based on the control signal 121 transmitted from the vehicle body controller 114. The electric power is supplied, and the second motor 105 gives a reverse rotational torque to the second wheel 102 on the left side so that the rotational force of the second wheel 102 is increased. By causing lack, to return the posture in a vertical direction to correct the inclination in the right. In this case, the first motor 104 and the second motor 105 both give reverse rotational torque to the first wheel 101 and the second wheel 102, respectively. You may correct | amend the inclination to the right side so that it may become larger than the reverse rotational torque of the 1st motor 104. FIG. When the vehicle 100 is tilted to the left, the tilt sensor 106 and the speed sensor 108 detect that the vehicle 100 is tilted to the left and that the vehicle 100 is equal to or higher than a predetermined speed. Then, a state signal based on the detection (tilt signal 118, speed signal 120) is transmitted, and the vehicle body controller 114 transmits a state signal based on the left side tilt (tilt signal 118) and a state signal based on the speed (speed signal 120). The first motor driver 115 supplies electric power from the battery 109 to the first motor 104 based on the control signal 121 transmitted from the vehicle body controller 114, and the first motor 104 is in the right first wheel. By applying a reverse rotational torque to 101 and reducing the rotational force of the first wheel 101, the inclination to the left side is corrected and the posture in the vertical direction is corrected. Back so as to. In this case, the first motor 104 and the second motor 105 both give reverse rotational torque to the first wheel 101 and the second wheel 102, respectively. You may correct | amend the inclination to the right side so that it may become larger than the reverse rotational torque of the 2nd motor 105. FIG.
 また、車両100が上り坂を上っている場合又は下り坂を下っている場合のように、傾斜センサ106、及び速度センサ108が、車両100の鉛直方向に対する前後の傾斜を検知していること、及び車両100の速度が減少していること又は増加していることを検知している場合には、その検知に基づく状態信号(傾斜信号118、速度信号120)を送信し、車体コントローラ114が、前後の傾斜に基づく状態信号(傾斜信号118)、及び増減する速度に基づく状態信号(速度信号120)を演算処理し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第1のモータ104、及び第2のモータ105との間の電力供給を制御し、車両100の速度が減少している場合には第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して正回転トルクを与えてその回転力を増加させて車両100の速度を増加させることができ、また、車両100の速度が増加している場合には第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して逆回転トルクを与えてその車輪102の回転力を減少させて車両100の速度を減少させることができてもよい。 In addition, the inclination sensor 106 and the speed sensor 108 detect the front-rear inclination of the vehicle 100 with respect to the vertical direction as when the vehicle 100 is going uphill or downhill. When the vehicle 100 detects that the speed of the vehicle 100 is decreasing or increasing, the vehicle body controller 114 transmits a state signal (tilt signal 118, speed signal 120) based on the detection. The state signal based on the front / rear tilt (tilt signal 118) and the state signal based on the increasing / decreasing speed (speed signal 120) are processed, and the first motor driver 115 and the second motor driver 116 Based on a control signal 121 transmitted from the controller 114, power supply between the battery 109 and the first motor 104 and the second motor 105 is performed. When the speed of the vehicle 100 is decreasing, the first motor 104 and the second motor 105 respectively apply a positive rotational torque to the first wheel 101 and the second wheel 102. And the rotational force can be increased to increase the speed of the vehicle 100. When the speed of the vehicle 100 is increased, the first motor 104 and the second motor 105 are respectively It may be possible to reduce the speed of the vehicle 100 by applying a reverse rotational torque to the one wheel 101 and the second wheel 102 to reduce the rotational force of the wheel 102.
 通常、第1のモータ104、及び第2のモータ105は、それぞれ電動機として作動して、バッテリ109から供給された電気エネルギー(電力)を運動エネルギー(車両100の走行エネルギー)に変換できるようにして、第1の車輪101、及び第2の車輪102を制御するが、第1のモータ104、及び第2のモータ105はそれぞれ発電機として作動することもできる。発電機として作動する第1のモータ104、及び第2のモータ105はそれぞれ、第1の車輪101、及び第2の車輪102を回生制動させることによって、第1の車輪101、及び第2の車輪102に逆回転トルクを与えてその回転力を減少させる一方で、運動エネルギー(車両100の走行エネルギー)を電気エネルギー(電力)に変換してバッテリ109に回収することができる。例えば、傾斜方向が右側であって、車両100の速度が所定値以上であると判定された場合には、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいて第2のモータ105を発電機として作動させ、第2のモータ105は、左側の第2の車輪102を回生制動させることによって、第2の車輪102に逆回転トルクを与えて第2の車輪102の回転力を減少させる一方で、車両100の走行エネルギーを電力に変換し、第2のモータ105からバッテリ109に電流が流れて第2のモータ105からバッテリ109に対して電力を戻す(供給する)ようにして車両100の走行エネルギーを回収できるようにしてもよい。 Normally, the first motor 104 and the second motor 105 each operate as an electric motor so that electric energy (electric power) supplied from the battery 109 can be converted into kinetic energy (running energy of the vehicle 100). Although the first wheel 101 and the second wheel 102 are controlled, the first motor 104 and the second motor 105 can each operate as a generator. The first motor 104 and the second motor 105 that operate as a generator regeneratively brake the first wheel 101 and the second wheel 102, respectively, and thereby the first wheel 101 and the second wheel, respectively. While imparting reverse rotational torque to 102 to reduce its rotational force, kinetic energy (travel energy of vehicle 100) can be converted into electrical energy (electric power) and recovered by battery 109. For example, when it is determined that the inclination direction is the right side and the speed of the vehicle 100 is equal to or higher than a predetermined value, the second motor driver 116 determines the second based on the control signal 121 transmitted from the vehicle body controller 114. The second motor 105 rotates the second wheel 102 by applying a reverse torque to the second wheel 102 by regeneratively braking the second wheel 102 on the left side. While the power is reduced, the traveling energy of the vehicle 100 is converted into electric power, and a current flows from the second motor 105 to the battery 109 so that the electric power is returned (supplied) from the second motor 105 to the battery 109. Thus, the travel energy of the vehicle 100 may be collected.
 車両100が電動アシスト付き自転車である場合においては、車両100の運転者が作動力であるペダル踏力を掛けている場合にアシストすることができるため、作動力に応じて第1のモータ104、及び第2のモータ105を制御する方法は相違してもよい。速度センサ108によって車両100の速度が所定の速度未満である場合において、作動力センサ107によって作動力が検知されている場合にはアシストすることができるため、傾斜センサ106によって検知された傾斜に対して同じ側に位置する車輪の回転力を制御し、その車輪に対してそのモータが正回転トルクを与えることよってその傾斜を補正する。 In the case where the vehicle 100 is a bicycle with electric assist, the driver can assist when the driver of the vehicle 100 is applying a pedal depression force, which is an operating force. Therefore, the first motor 104 according to the operating force, and The method for controlling the second motor 105 may be different. In the case where the speed of the vehicle 100 is less than a predetermined speed by the speed sensor 108, the assist can be assisted when the operating force is detected by the operating force sensor 107. The rotational force of the wheel located on the same side is controlled, and the inclination is corrected by applying a positive rotational torque to the wheel by the motor.
 具体的には、車両100の速度が所定の速度未満である場合であって作動力が検知されている場合において、車両100が右側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が右側に傾斜していること、運転者による作動力があること、及び車両100が所定の速度未満であることを検知し、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理し、第1のモータドライバ115が車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第1のモータ104との間の電力供給を制御し、第1のモータ104が右側の第1の車輪101に対して正回転トルクを与えて第1の車輪101の回転力を増加させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して正回転トルクを与えるが、第1のモータ104の正回転トルクを第2のモータ105の正回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。また、車両100が左側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が左側に傾斜していること、運転者による作動力があること、及び車両100が所定の速度未満であることを検知し、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理し、第2のモータドライバ116が車体コントローラ114から送信された制御信号121に基づいてバッテリ109と第2のモータ105との間の電力供給を制御し、第2のモータ105が左側の第2の車輪102に対して正回転トルクを与えて第2の車輪102の回転力を増加させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104、及び第2のモータ105が共にそれぞれ第1の車輪101、及び第2の車輪102に対して正回転トルクを与えるが、第2のモータ105の正回転トルクを第1のモータ104の正回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。 Specifically, when the speed of the vehicle 100 is less than a predetermined speed and the operating force is detected, and the vehicle 100 is tilted to the right side, the tilt sensor 106, the operating force sensor 107 and the speed sensor 108 detect that the vehicle 100 is tilted to the right side, that there is an actuating force by the driver, and that the vehicle 100 is less than a predetermined speed, and a status signal ( The vehicle body controller 114 transmits a state signal based on the right side inclination (tilt signal 118), a state signal based on the operation force (operation force signal 119), and a speed. Based on the control signal 121 transmitted from the vehicle body controller 114 by the first motor driver 115. The power supply between the teller 109 and the first motor 104 is controlled, and the first motor 104 applies a positive rotational torque to the right first wheel 101 to increase the rotational force of the first wheel 101. By doing so, the inclination to the right is corrected and the posture is returned to the vertical direction. In this case, the first motor 104 and the second motor 105 both give a positive rotational torque to the first wheel 101 and the second wheel 102, respectively. The inclination to the right may be corrected so as to be larger than the positive rotational torque of the second motor 105. Further, when the vehicle 100 is inclined to the left side, the inclination sensor 106, the operating force sensor 107, and the speed sensor 108 indicate that the vehicle 100 is inclined to the left side and that the driver has an operating force. And the vehicle 100 detects that the vehicle speed is less than the predetermined speed, transmits a state signal (tilt signal 118, operating force signal 119, speed signal 120) based on the detection, and the vehicle body controller 114 is in a state based on the left-side inclination. The signal (tilt signal 118), the state signal based on the operating force (the operating force signal 119), and the state signal based on the speed (speed signal 120) are processed, and the second motor driver 116 is transmitted from the body controller 114. The power supply between the battery 109 and the second motor 105 is controlled based on the control signal 121, and the second motor 105 is on the left second wheel. By increasing the rotational force of the second wheel 102 giving a positive rotational torque to the 02, to return the posture in a vertical direction to correct the inclination in the left side. In this case, the first motor 104 and the second motor 105 both give positive rotational torque to the first wheel 101 and the second wheel 102, respectively. The inclination to the left may be corrected so as to be larger than the positive rotational torque of the first motor 104.
 なお、この場合、正回転トルクを与えているモータに対してバッテリ109から電力が供給される。例えば、傾斜方向が右側であって、車両100の速度が所定値未満であって、作動力ありの場合には、右側の第1の車輪101の回転力を増加させるために、車体コントローラ114から送信された制御信号121に基づいて第1のモータドライバ115によって、バッテリ109から第1の車輪101の回転力を増加させるモータ、すなわち、第1のモータ104に電流が流れてバッテリ109から第1のモータ104に対して電力を供給して、第1のモータ104が第1の車輪101に対して正回転トルクを与えるようにする。 In this case, electric power is supplied from the battery 109 to the motor giving the positive rotational torque. For example, when the inclination direction is the right side, the speed of the vehicle 100 is less than a predetermined value, and there is an operating force, the vehicle body controller 114 increases the rotational force of the first wheel 101 on the right side. Based on the transmitted control signal 121, the first motor driver 115 causes the first motor driver 115 to increase the rotational force of the first wheel 101 from the battery 109, that is, the current flows from the battery 109 to the first motor 104. Electric power is supplied to the motor 104 so that the first motor 104 applies a positive rotational torque to the first wheel 101.
 速度センサ108によって車両100の速度が所定の速度未満である場合において、作動力センサ107によって作動力が検知されていない場合にはアシストすることができないため、傾斜センサ106によって検知された傾斜に対して反対側に位置する車輪の回転力を制御するモータがその車輪に対して逆回転トルクを与えることによってその傾斜を補正する。具体的な傾斜の補正の方法は、上記の車両100の速度が所定の速度以上である場合における方法と同様である。 When the speed of the vehicle 100 is less than the predetermined speed by the speed sensor 108, the assist cannot be performed if the operating force is not detected by the operating force sensor 107. The motor that controls the rotational force of the wheel located on the opposite side corrects the inclination by applying a reverse rotational torque to the wheel. A specific inclination correction method is the same as the method in the case where the speed of the vehicle 100 is equal to or higher than a predetermined speed.
 なお、この場合、車輪に対して逆回転トルクを与えているモータを発電機として作動させてその車輪を回生制動させることによって、そのモータにより車両100の走行エネルギーを回収してバッテリ109に対して電力を戻す(供給する)ようにしてもよい。例えば、傾斜方向が右側であって、車両100の速度が所定値未満であって、作動力なしと判定された場合には、第2のモータドライバ116が、車体コントローラ114から送信された制御信号121に基づいて、左側の第2の車輪102の回転力を減少させるモータ、すなわち、第2のモータ105を発電機として作動させて第2の車輪を回生制動させることによって、車両100の走行エネルギーを回収し、第2のモータ105からバッテリ109に電流が流れて第2のモータ105からバッテリ109に対して電力を戻す(供給する)ようにする一方で、発電機として作動する第2のモータ105が第2の車輪102に対して逆回転トルクを与えてもよい。 In this case, a motor that applies reverse rotation torque to the wheel is operated as a generator and the wheel is regeneratively braked, whereby the traveling energy of the vehicle 100 is recovered by the motor and the battery 109 is recovered. The power may be returned (supplied). For example, when it is determined that the inclination direction is the right side, the speed of the vehicle 100 is less than a predetermined value, and there is no operating force, the second motor driver 116 transmits a control signal transmitted from the vehicle body controller 114. Based on 121, the running energy of the vehicle 100 is reduced by operating the motor for reducing the rotational force of the second wheel 102 on the left side, that is, the second motor 105 as a generator to regeneratively brake the second wheel. The second motor 105 operates as a generator while the current flows from the second motor 105 to the battery 109 so that the electric power is returned (supplied) from the second motor 105 to the battery 109. 105 may give a reverse rotational torque to the second wheel 102.
 また、傾斜センサ106によって傾斜が検知されておらず、車両100がふらついていない場合、速度センサ108によって検知された車両100の速度が所定の速度未満であって、作動力センサ107によって作動力が検知されている場合にはアシストすることができるため、車体コントローラ114は状態信号(傾斜信号118、作動力信号119、速度信号120)を演算処理し、第1のモータドライバ115、及び第2のモータドライバ116はそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109から供給される電力を制御し、第1のモータ104、及び第2のモータ105に電力を供給して、第1のモータ104の出力、及び第2のモータ105の出力を互いに独立に制御することによって、第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して正回転トルクを与えて、第1の車輪101、及び第2の車輪102の回転力を増加させるようにする。 Further, when the inclination is not detected by the inclination sensor 106 and the vehicle 100 is not wobbling, the speed of the vehicle 100 detected by the speed sensor 108 is less than a predetermined speed, and the operating force sensor 107 supplies the operating force. Since it can assist when it is detected, the vehicle body controller 114 computes the state signals (tilt signal 118, operating force signal 119, speed signal 120), and performs the first motor driver 115 and the second motor driver 115. Each of the motor drivers 116 controls power supplied from the battery 109 based on the control signal 121 transmitted from the vehicle body controller 114, and supplies power to the first motor 104 and the second motor 105. To control the output of the first motor 104 and the output of the second motor 105 independently of each other. Thus, the first motor 104 and the second motor 105 give positive rotation torque to the first wheel 101 and the second wheel 102, respectively, and the first wheel 101 and the second wheel The rotational force of the wheel 102 is increased.
 運転者が車両100の運転を開始する際も、車両100の姿勢は不安定になりやすい。そこで、運転者による車両100の運転開始時において、第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して微小に回転トルクを与えて車両100の姿勢を安定化させるようにしてもよい。この場合、作動力センサ107、及び速度センサ108を使用することによって車両100の運転開始時であるか否かの判定を行い、傾斜センサ106によって傾斜が検知された場合には、その検知に応じて第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して微小に回転トルクを与えてもよい。 When the driver starts driving the vehicle 100, the posture of the vehicle 100 is likely to be unstable. Therefore, when the driver starts driving the vehicle 100, the first motor 104 and the second motor 105 give a minute rotational torque to the first wheel 101 and the second wheel 102, respectively. The attitude of the vehicle 100 may be stabilized. In this case, it is determined whether or not the vehicle 100 is at the start of operation by using the operating force sensor 107 and the speed sensor 108, and if the inclination is detected by the inclination sensor 106, depending on the detection. Thus, the first motor 104 and the second motor 105 may give a minute rotational torque to the first wheel 101 and the second wheel 102, respectively.
 具体的には、車両100が停止しており、また、運転者は作動力を掛けていない場合において、車両100が右側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が右側に傾斜していること、運転者による作動力がないこと、及び車両100が停止していることの検知を行って、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、右側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理して車両100の運転開始時であることを判定し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109から供給される電力を制御して、第1のモータ104、及び第2のモータ105に電力を供給する。そして、右側の第1の車輪101の回転力を制御する第1のモータ104が第1の車輪101に対して微小に正回転トルクを与えて第1の車輪101を車両100の進行方向と同じ方向に対して微小に回転させ、左側の第2の車輪102の回転力を制御する第2のモータ105が第2の車輪102に対して微小に逆回転トルクを与えて第2の車輪102を車両100の進行方向と逆の方向に対して微小に回転させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第1のモータ104が第1の車輪101に対して微小に正回転トルクを与えるか、第2のモータ105が第2の車輪102に対して微小に逆回転トルクを与えるか、どちらか一方の制御でもよい。また、車両100が左側に傾斜している場合には、傾斜センサ106、作動力センサ107、及び速度センサ108が、車両100が左側に傾斜していること、運転者による作動力がないこと、及び車両100が停止していることの検知を行って、その検知に基づく状態信号(傾斜信号118、作動力信号119、速度信号120)を送信し、車体コントローラ114が、左側の傾斜に基づく状態信号(傾斜信号118)、作動力に基づく状態信号(作動力信号119)、及び速度に基づく状態信号(速度信号120)を演算処理して車両100の運転開始時であることを判定し、第1のモータドライバ115、及び第2のモータドライバ116がそれぞれ、車体コントローラ114から送信された制御信号121に基づいて、バッテリ109から供給される電力を制御して、第1のモータ104、及び第2のモータ105に電力を供給する。そして、左側の第2の車輪102の回転力を制御する第2のモータ105が第2の車輪102に対して微小に正回転トルクを与えて第2の車輪102を車両100の進行方向と同じ方向に対して微小に回転させ、右側の第1の車輪101の回転力を制御する第1のモータ104が第1の車輪101に対して微小に逆回転トルクを与えて第1の車輪101を車両100の進行方向と逆の方向に対して微小に回転させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。この場合、第2のモータ105が第2の車輪102に対して微小に正回転トルクを与えるか、第1のモータ104が第1の車輪101に対して微小に逆回転トルクを与えるか、どちらか一方の制御でもよい。なお、車両100が自転車である場合には、サドル111の下にロードセル等のセンサを更に設置し、ロードセル等のセンサによる荷重の検知に基づいて運転者が車両100に乗車したか否か、すなわち、車両100の運転開始時であるか否かの判定を行い、傾斜センサ106によって傾斜が検知された場合には、上記のように第1のモータ104、及び第2のモータ105がそれぞれ、第1の車輪101、及び第2の車輪102に対して微小に回転トルクを与えてもよい。 Specifically, when the vehicle 100 is stopped and the driver is not applying an operating force, and the vehicle 100 is tilted to the right side, the inclination sensor 106, the operating force sensor 107, and The speed sensor 108 detects that the vehicle 100 is tilted to the right side, that there is no operating force by the driver, and that the vehicle 100 is stopped, and a state signal (tilt signal 118) based on the detection. , An operation force signal 119, a speed signal 120), and the vehicle body controller 114 transmits a state signal based on the right side inclination (tilt signal 118), a state signal based on the operation force (operation force signal 119), and a state based on the speed. The signal (speed signal 120) is arithmetically processed to determine that the vehicle 100 is at the start of operation, and the first motor driver 115 and the second motor driver 116 Respectively, based on the control signal 121 transmitted from the vehicle body controller 114 controls the electric power supplied from the battery 109 supplies power to the first motor 104, and the second motor 105. Then, the first motor 104 that controls the rotational force of the first wheel 101 on the right side gives a minute positive rotational torque to the first wheel 101 to make the first wheel 101 the same as the traveling direction of the vehicle 100. The second motor 105 that rotates slightly with respect to the direction and controls the rotational force of the second wheel 102 on the left side slightly applies reverse torque to the second wheel 102 to cause the second wheel 102 to move. By slightly rotating the vehicle 100 in the direction opposite to the traveling direction, the rightward inclination is corrected and the posture is returned to the vertical direction. In this case, either the first motor 104 gives a minute forward rotational torque to the first wheel 101 or the second motor 105 gives a minute reverse rotational torque to the second wheel 102. Either control may be used. Further, when the vehicle 100 is inclined to the left side, the inclination sensor 106, the operating force sensor 107, and the speed sensor 108 indicate that the vehicle 100 is inclined to the left side and that there is no operating force by the driver. And the vehicle 100 detects that the vehicle 100 is stopped, transmits a state signal (inclination signal 118, operating force signal 119, speed signal 120) based on the detection, and the vehicle body controller 114 is in a state based on the left inclination. A signal (inclination signal 118), a state signal based on operating force (operating force signal 119), and a state signal based on speed (speed signal 120) are processed to determine that the vehicle 100 is at the start of driving; Each of the first motor driver 115 and the second motor driver 116 is based on the control signal 121 transmitted from the vehicle body controller 114. By controlling the power supplied from the supply power to the first motor 104, and the second motor 105. Then, the second motor 105 that controls the rotational force of the second wheel 102 on the left side gives a slight positive rotational torque to the second wheel 102 to make the second wheel 102 the same as the traveling direction of the vehicle 100. The first motor 104 that rotates slightly with respect to the direction and controls the rotational force of the first wheel 101 on the right side slightly applies reverse torque to the first wheel 101 to cause the first wheel 101 to move. By slightly rotating the vehicle 100 in the direction opposite to the traveling direction, the inclination to the left side is corrected and the posture is returned to the vertical direction. In this case, either the second motor 105 gives a minute forward rotation torque to the second wheel 102 or the first motor 104 gives a minute reverse rotation torque to the first wheel 101. Either control may be used. In the case where the vehicle 100 is a bicycle, a sensor such as a load cell is further installed under the saddle 111, and whether or not the driver has boarded the vehicle 100 based on the detection of the load by the sensor such as the load cell. When it is determined whether or not the vehicle 100 is in operation and the inclination sensor 106 detects inclination, the first motor 104 and the second motor 105 are respectively connected to the first motor 104 and the second motor 105 as described above. A minute rotational torque may be applied to the first wheel 101 and the second wheel 102.
 続いて、前輪部と後輪部のうちの少なくとも一方が、第1の車輪101である右側の車輪、及び第2の車輪102である左側の車輪を有する一対の車輪から構成された、運転者の作動力によって推進することができる車両100を制御する方法について説明する。その方法は、車両100の状態の検知を行うステップと、その検知に応答して一対の車輪101、102の回転力を互い独立に制御するステップとを含む。 Subsequently, at least one of the front wheel portion and the rear wheel portion includes a pair of wheels having a right wheel that is the first wheel 101 and a left wheel that is the second wheel 102. A method for controlling vehicle 100 that can be propelled by the actuating force will be described. The method includes a step of detecting the state of the vehicle 100 and a step of independently controlling the rotational forces of the pair of wheels 101 and 102 in response to the detection.
 一対の車輪の各々に配置された、右側にある第1のモータ104と左側にある第2のモータ105から構成された一対のモータを備えている車両100を制御する方法を、図5に示すフローチャートを用いて詳細に説明する。STEP100において、車両100が備える傾斜センサ106、作動力センサ107、速度センサ108による検知結果を読み込む。次にSTEP101において、傾斜センサ106からの検知結果により車両100の傾斜の有無を判定する。傾斜なしと判定された場合には、STEP102において、速度センサ108からの検知結果により車両100の速度が所定の速度より高速か低速かを判定する。低速であると判定された場合には、STEP103において、作動力センサ107からの検知結果により運転者による作動力の有無を判定する。作動力ありと判定された場合には、STEP104において、右側のモータ、及び左側のモータがそれぞれ、右側の車輪、及び左側の車輪に対して正回転トルクを付与する。 FIG. 5 shows a method of controlling the vehicle 100 including a pair of motors, each of which is composed of a first motor 104 on the right side and a second motor 105 on the left side, disposed on each of the pair of wheels. This will be described in detail with reference to a flowchart. In STEP 100, the detection results of the inclination sensor 106, the actuation force sensor 107, and the speed sensor 108 included in the vehicle 100 are read. Next, in STEP 101, it is determined whether the vehicle 100 is tilted based on the detection result from the tilt sensor 106. If it is determined that there is no inclination, it is determined in STEP 102 whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108. When it is determined that the speed is low, in STEP 103, the presence or absence of the operating force by the driver is determined based on the detection result from the operating force sensor 107. If it is determined that there is an actuating force, in STEP 104, the right motor and the left motor respectively apply positive rotational torque to the right wheel and the left wheel.
 STEP101において、傾斜ありと判定された場合には、STEP105において、車両100が運転開始時か否かを判定する。運転開始時か否かは、作動力センサ107、及び速度センサ108による検知結果に基づいて判定してもよい。 If it is determined in STEP 101 that there is an inclination, it is determined in STEP 105 whether or not the vehicle 100 is at the start of operation. Whether or not the operation is started may be determined based on detection results by the operating force sensor 107 and the speed sensor 108.
 STEP105において、運転開始時でないと判定された場合には、STEP106において、車両100の傾斜方向を判定する。なお、車両100の左折・右折時においても車両100は鉛直方向に対して傾斜するが、ふらつき時ではなく左折・右折時であると判定された場合には、以降に示されるSTEP107~116までのステップは行われないように設定されている。 If it is determined in STEP 105 that it is not at the start of driving, the inclination direction of the vehicle 100 is determined in STEP 106. Note that the vehicle 100 is inclined with respect to the vertical direction even when the vehicle 100 is turned left or right. However, when it is determined that the vehicle is turning left or right instead of being staggered, the following steps 107 to 116 are performed. The step is set not to be performed.
 STEP106において、傾斜が左側であると判定された場合には、左側への傾斜を補正して鉛直方向に姿勢を戻すようにするが、車両100の速度、作動力によって右側のモータ、及び左側のモータの制御方法は相違する。STEP107において、速度センサ108からの検知結果により車両100の速度が所定の速度より高速か低速かを判定し、高速であると判定された場合には、STEP108において、右側のモータが右側の車輪に対して逆回転トルクを付与して右側の車輪の回転力を減少させることによって、左側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、右側のモータの逆回転トルクを左側のモータの逆回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。STEP107において、低速であると判定された場合には、STEP109において、作動力センサ107からの検知結果により運転者による作動力の有無を判定する。作動力なしと判定された場合には、STEP110において、右側のモータが右側の車輪に対して逆回転トルクを付与して右側の車輪の回転力を減少させることによって、左側への傾斜を補正する。この場合、右側のモータ、及び左側のモータは共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、右側のモータの逆回転トルクを左側のモータの逆回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。また、左側のモータが左側の車輪に対して微小に正回転トルクを付与して、左側の車輪の回転力を微小に増加させてもよい。STEP109において、作動力ありと判定された場合には、STEP111において、左側のモータが左側の車輪に対して正回転トルクを付与して左側の車輪の回転力を増加させることによって、その左側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して正回転トルクを付与するが、左側のモータの正回転トルクを右側のモータの正回転トルクよりも大きくなるようにして、左側への傾斜を補正してもよい。 In STEP 106, when it is determined that the inclination is on the left side, the inclination to the left side is corrected so as to return the posture in the vertical direction. The motor control method is different. In STEP 107, it is determined whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108. If it is determined that the speed is high, the right motor is changed to the right wheel in STEP 108. On the other hand, the tilt to the left side is corrected by applying a reverse rotational torque to reduce the rotational force of the right wheel. In this case, the right motor and the left motor both give reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the right motor is less than the reverse rotation torque of the left motor. You may correct | amend the inclination to the left side so that it may become large. When applying reverse rotation torque, the motor may be operated as a generator to regeneratively brake the wheel. If it is determined in STEP 107 that the speed is low, in STEP 109, the presence / absence of an operating force by the driver is determined based on the detection result from the operating force sensor 107. If it is determined that there is no operating force, in STEP 110, the right motor applies a reverse rotational torque to the right wheel to reduce the rotational force of the right wheel, thereby correcting the inclination to the left. . In this case, the right motor and the left motor both apply reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the right motor is less than the reverse rotation torque of the left motor. You may correct | amend the inclination to the left side so that it may become large. When applying reverse rotation torque, the motor may be operated as a generator to regeneratively brake the wheel. Alternatively, the left motor may slightly increase the rotational force of the left wheel by applying a slight positive rotational torque to the left wheel. If it is determined in STEP 109 that there is an operating force, in STEP 111, the left motor applies a positive rotational torque to the left wheel to increase the rotational force of the left wheel. Correct the tilt. In this case, the right motor and the left motor both give positive rotational torque to the right wheel and left wheel, respectively, but the positive rotational torque of the left motor is greater than the positive rotational torque of the right motor. You may correct | amend the inclination to the left side so that it may become large.
 STEP106において、傾斜が右側であると判定された場合には、右側への傾斜を補正して鉛直方向に姿勢を戻すようにするが、車両100の速度、作動力によって右側のモータ、及び左側のモータの制御方法は相違する。STEP112において、速度センサ108からの検知結果により車両100の速度が所定の速度より高速か低速かを判定し、高速であると判定された場合には、STEP113において、左側のモータが左側の車輪に対して逆回転トルクを付与して左側の車輪の回転力を減少させることによって、右側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、左側のモータの逆回転トルクを右側のモータの逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。STEP112において、低速であると判定された場合には、STEP114において、作動力センサ107からの検知結果により運転者による作動力の有無を判定する。作動力なしと判定された場合には、STEP115において、左側のモータが左側の車輪に対して逆回転トルクを付与して左側の車輪の回転力を減少させることによって、右側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して逆回転トルクを付与するが、左側のモータの逆回転トルクを右側のモータの逆回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。なお逆回転トルクを付与する場合にはモータを発電機として作動させてその車輪を回生制動させてもよい。また、右側のモータが右側の車輪に対して微小に正回転トルクを付与して、右側の車輪の回転力を微小に増加させてもよい。STEP114において、作動力ありと判定された場合には、STEP116において、右側のモータが右側の車輪に対して正回転トルクを付与して右側の車輪の回転力を増加させることによって、その右側への傾斜を補正する。この場合、右側のモータ、及び左側のモータが共にそれぞれ右側の車輪、及び左側の車輪に対して正回転トルクを付与するが、右側のモータの正回転トルクを左側のモータの正回転トルクよりも大きくなるようにして、右側への傾斜を補正してもよい。 In STEP 106, when it is determined that the inclination is on the right side, the inclination to the right side is corrected so as to return the posture in the vertical direction. The motor control method is different. In STEP 112, it is determined whether the speed of the vehicle 100 is higher or lower than a predetermined speed based on the detection result from the speed sensor 108. If it is determined that the speed is high, in STEP 113, the left motor is applied to the left wheel. On the other hand, a reverse rotation torque is applied to reduce the rotational force of the left wheel, thereby correcting the rightward inclination. In this case, the right motor and the left motor both apply reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the left motor is greater than the reverse rotation torque of the right motor. You may correct | amend the inclination to the right side so that it may become large. When applying reverse rotation torque, the motor may be operated as a generator to regeneratively brake the wheel. If it is determined in STEP 112 that the speed is low, in STEP 114, the presence / absence of an operating force by the driver is determined based on the detection result from the operating force sensor 107. If it is determined that there is no operating force, in STEP 115, the left motor applies reverse rotation torque to the left wheel to reduce the rotation force of the left wheel, thereby correcting the rightward inclination. . In this case, the right motor and the left motor both apply reverse rotation torque to the right wheel and left wheel, respectively, but the reverse rotation torque of the left motor is greater than the reverse rotation torque of the right motor. You may correct | amend the inclination to the right side so that it may become large. When applying reverse rotation torque, the motor may be operated as a generator to regeneratively brake the wheel. Further, the right motor may slightly increase the rotational force of the right wheel by applying a slight positive torque to the right wheel. If it is determined in STEP 114 that there is an actuating force, in STEP 116, the right motor applies a positive rotational torque to the right wheel to increase the rotational force of the right wheel. Correct the tilt. In this case, the right motor and the left motor both give positive rotational torque to the right wheel and left wheel, respectively, but the right rotational torque of the right motor is more than the positive rotational torque of the left motor. You may correct | amend the inclination to the right side so that it may become large.
 STEP105において、車両100が運転開始時であると判定された場合には、STEP117において、車両100の傾斜方向を判定する。STEP117において、傾斜が左側であると判定された場合には、STEP118において、右側のモータが右側の車輪に対して微小に逆回転トルクを付与して右側の車輪を車両100の進行方向と逆の方向に対して微小に回転させ、及び/又は、左側のモータが左側の車輪に対して微小に正回転トルクを付与して左側の車輪を車両100の進行方向と同じ方向に対して微小に回転させることによって、左側への傾斜を補正して鉛直方向に姿勢を戻すようにする。また、STEP117において、傾斜が右側であると判定された場合には、STEP119において、左側のモータが左側の車輪に対して微小に逆回転トルクを付与して左側の車輪を車両100の進行方向と逆の方向に対して微小に回転させ、及び/又は、右側のモータが右側の車輪に対して微小に正回転トルクを付与して右側の車輪を車両100の進行方向と同じ方向に対して微小に回転させることによって、右側への傾斜を補正して鉛直方向に姿勢を戻すようにする。 If it is determined in STEP 105 that the vehicle 100 is at the start of driving, the inclination direction of the vehicle 100 is determined in STEP 117. If it is determined in STEP 117 that the inclination is on the left side, in STEP 118, the right motor slightly applies a reverse rotation torque to the right wheel, and the right wheel is reverse to the traveling direction of the vehicle 100. Rotate the left wheel slightly with respect to the same direction as the traveling direction of the vehicle 100 by rotating the left wheel slightly with respect to the direction and / or the left motor gives a slight positive rotation torque to the left wheel. By doing so, the inclination to the left is corrected and the posture is returned to the vertical direction. If it is determined in STEP 117 that the inclination is on the right side, in STEP 119, the left motor slightly applies reverse rotation torque to the left wheel, and the left wheel is set as the traveling direction of the vehicle 100. The right wheel is slightly rotated in the same direction as the traveling direction of the vehicle 100 by slightly rotating in the opposite direction and / or the right motor gives a slight forward torque to the right wheel. To correct the inclination to the right and return the posture to the vertical direction.
 前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって車輪を回転させて推進することができる車両には、3輪以上の自転車の他に、車椅子、手押し車、等が含まれる。 In addition to a bicycle having three or more wheels, in addition to a bicycle having three or more wheels, at least one of the front wheel portion and the rear wheel portion is composed of a pair of left and right wheels, which can be propelled by rotating the wheels by the driver's operating force Wheelchairs, wheelbarrows, etc. are included.
 上記記載は特定の実施例についてなされたが、本発明はそれに限らず、本発明の原理と添付の特許請求の範囲の範囲内で種々の変更及び修正をすることができることは当業者に明らかである。 While the above description has been made with respect to particular embodiments, it will be apparent to those skilled in the art that the invention is not limited thereto and that various changes and modifications can be made within the scope of the principles of the invention and the appended claims. is there.
 100 車両
 101 第1の車輪
 102 第2の車輪
 103 第3の車輪
 104 第1のモータ
 105 第2のモータ
 106 傾斜センサ
 107 作動力センサ
 108 速度センサ
 109 バッテリ
 110 ペダル
 111 サドル
 112 ハンドル
 113 リンク機構
 114 車体コントローラ
 115 第1のモータドライバ
 116 第2のモータドライバ
 117 制御装置
 118 傾斜信号
 119 作動力信号
 120 速度信号
 121 制御信号
DESCRIPTION OF SYMBOLS 100 Vehicle 101 1st wheel 102 2nd wheel 103 3rd wheel 104 1st motor 105 2nd motor 106 Tilt sensor 107 Acting force sensor 108 Speed sensor 109 Battery 110 Pedal 111 Saddle 112 Handle 113 Link mechanism 114 Car body Controller 115 First motor driver 116 Second motor driver 117 Control device 118 Tilt signal 119 Acting force signal 120 Speed signal 121 Control signal

Claims (13)

  1.  前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両であって、
     前記車両の状態の検知を行い、前記検知に応答して前記一対の車輪の各々の回転力を互いに独立に制御できるようになっている、車両。
    A vehicle configured to be propelled by a driver's operating force, wherein at least one of a front wheel portion and a rear wheel portion is composed of a pair of left and right wheels,
    A vehicle that detects the state of the vehicle and is capable of independently controlling the rotational force of each of the pair of wheels in response to the detection.
  2.  バッテリと、
     前記バッテリに接続され、前記一対の車輪のうちの一方の回転力を制御するためのモータ、及び前記一対の車輪のうちの他方の回転力を制御するためのモータから構成された一対のモータと、
     前記状態の検知を行い、前記検知に基づく状態信号を送信するセンサと、
     前記状態信号を演算処理して前記一対のモータを制御するための制御信号を送信する車体コントローラと、
     前記車体コントローラから送信された前記制御信号に基づいて前記バッテリと前記一対のモータとの間の電力供給を制御するモータドライバと
    を備え、
     前記モータドライバによって前記一対のモータの各々の出力を互いに独立に制御して、前記一対の車輪の各々の回転力を互いに独立に制御できるようになっている、請求項1に記載の車両。
    Battery,
    A pair of motors connected to the battery and configured to control a rotational force of one of the pair of wheels and a motor for controlling the other rotational force of the pair of wheels; ,
    A sensor that detects the state and transmits a state signal based on the detection;
    A vehicle body controller that computes the state signal and transmits a control signal for controlling the pair of motors;
    A motor driver that controls power supply between the battery and the pair of motors based on the control signal transmitted from the vehicle body controller;
    2. The vehicle according to claim 1, wherein outputs of each of the pair of motors can be controlled independently from each other by the motor driver, and the rotational forces of the pair of wheels can be controlled independently from each other.
  3.  前記センサが、前記車両の鉛直方向に対する傾斜の検知を行う傾斜センサを含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項2に記載の車両。 The sensor includes an inclination sensor that detects an inclination of the vehicle with respect to a vertical direction, and the vehicle body controller calculates the control signal by calculating the state signal transmitted from the sensor so as to correct the state. The vehicle according to claim 2, wherein the vehicle can be transmitted.
  4.  前記センサが、前記車両の運転者による作動力の検知を行う作動力センサを更に含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項3に記載の車両。 The sensor further includes an operating force sensor for detecting an operating force by a driver of the vehicle, and the vehicle body controller performs arithmetic processing on the state signal transmitted from the sensor so as to correct the state. The vehicle according to claim 3, wherein the vehicle can transmit a control signal.
  5.  前記センサが、前記車両の速度の検知を行う速度センサを更に含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項3又は4に記載の車両。 The sensor may further include a speed sensor for detecting the speed of the vehicle, and the vehicle body controller may process the state signal transmitted from the sensor so as to correct the state and transmit the control signal. The vehicle according to claim 3 or 4, wherein the vehicle is configured as described above.
  6.  前記一対のモータのうちの少なくとも一方が発電機の機能を有し、前記一対のモータのうちの少なくとも一方が、その車輪に対して逆回転トルクを与えることができ、且つ、発電機の機能により前記車両の走行エネルギーを回収して前記モータドライバを経由して前記バッテリに電力を供給することができるようになっている、請求項2~5の何れか一項に記載の車両。 At least one of the pair of motors has a function of a generator, at least one of the pair of motors can give a reverse rotation torque to the wheel, and the function of the generator The vehicle according to any one of claims 2 to 5, wherein traveling energy of the vehicle can be collected and electric power can be supplied to the battery via the motor driver.
  7.  前輪部と後輪部のうちの少なくとも一方が左右一対の車輪から構成された、運転者の作動力によって推進することができるようになっている車両に使用される制御装置であって、
     前記車両の状態の検知を行い、前記検知に応答して前記一対の車輪の各々の回転力を互いに独立に制御できるようになっている、制御装置。
    A control device used for a vehicle configured such that at least one of a front wheel portion and a rear wheel portion is composed of a pair of left and right wheels and can be propelled by a driver's operating force,
    A control device configured to detect the state of the vehicle and to control the rotational force of each of the pair of wheels independently of each other in response to the detection.
  8.  バッテリと、
     前記バッテリに接続され、前記一対の車輪のうちの一方の回転力を制御するためのモータ、及び前記一対の車輪のうちの他方の回転力を制御するためのモータから構成された一対のモータと、
     前記状態の検知を行い、前記検知に基づく状態信号を送信するセンサと、
     前記状態信号を演算処理して前記一対のモータを制御するための制御信号を送信する車体コントローラと、
     前記車体コントローラから送信された前記制御信号に基づいて前記バッテリと前記一対のモータとの間の電力供給を制御するモータドライバと
    を備える、請求項7に記載の制御装置。
    Battery,
    A pair of motors connected to the battery and configured to control a rotational force of one of the pair of wheels and a motor for controlling the other rotational force of the pair of wheels; ,
    A sensor that detects the state and transmits a state signal based on the detection;
    A vehicle body controller that computes the state signal and transmits a control signal for controlling the pair of motors;
    The control device according to claim 7, further comprising: a motor driver that controls power supply between the battery and the pair of motors based on the control signal transmitted from the vehicle body controller.
  9.  前記モータドライバが、前記一対のモータの各々の出力を互いに独立に制御して、前記一対の車輪の各々の回転力を互いに独立に制御できるようになっている、請求項8に記載の制御装置。 9. The control device according to claim 8, wherein the motor driver can control the outputs of the pair of motors independently of each other to independently control the rotational forces of the pair of wheels. .
  10.  前記センサが、前記車両の鉛直方向に対する傾斜の検知を行う傾斜センサを含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された状態信号を演算処理して制御信号を送信できるようになっている、請求項8又は9に記載の制御装置。 The sensor includes an inclination sensor that detects an inclination of the vehicle with respect to a vertical direction, and the vehicle body controller can process a state signal transmitted from the sensor so as to correct the state and transmit a control signal. The control device according to claim 8 or 9, wherein the control device is configured as described above.
  11.  前記センサが、前記車両の運転者による作動力の検知を行う作動力センサを更に含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項10に記載の制御装置。 The sensor further includes an operating force sensor for detecting an operating force by a driver of the vehicle, and the vehicle body controller performs arithmetic processing on the state signal transmitted from the sensor so as to correct the state. The control device according to claim 10, wherein the control device can transmit a control signal.
  12.  前記センサが、前記車両の速度の検知を行う速度センサを更に含み、前記車体コントローラが、前記状態を補正するように前記センサから送信された前記状態信号を演算処理して前記制御信号を送信できるようになっている、請求項10又は11に記載の制御装置。 The sensor may further include a speed sensor for detecting the speed of the vehicle, and the vehicle body controller may process the state signal transmitted from the sensor so as to correct the state and transmit the control signal. The control device according to claim 10 or 11, wherein the control device is configured as described above.
  13.  前記一対のモータのうちの少なくとも一方が発電機の機能を有し、前記一対のモータのうちの少なくとも一方が、その車輪に対して逆回転トルクを与えることができ、且つ、発電機の機能により前記車両の走行エネルギーを回収して前記モータドライバを経由して前記バッテリに電力を供給することができるようになっている、請求項8~12の何れか一項に記載の制御装置。 At least one of the pair of motors has a function of a generator, at least one of the pair of motors can give a reverse rotation torque to the wheel, and the function of the generator The control device according to any one of claims 8 to 12, configured to collect travel energy of the vehicle and supply power to the battery via the motor driver.
PCT/JP2017/028777 2016-08-08 2017-08-08 Vehicle WO2018030407A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780049003.6A CN109562697A (en) 2016-08-08 2017-08-08 Vehicle
JP2018533501A JP6748211B2 (en) 2016-08-08 2017-08-08 vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016155757 2016-08-08
JP2016-155757 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018030407A1 true WO2018030407A1 (en) 2018-02-15

Family

ID=61162218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028777 WO2018030407A1 (en) 2016-08-08 2017-08-08 Vehicle

Country Status (3)

Country Link
JP (1) JP6748211B2 (en)
CN (1) CN109562697A (en)
WO (1) WO2018030407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054528A1 (en) * 2018-09-11 2020-03-19 デジタルデザインスタジオ株式会社 Bicycle helmet and auxiliary lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022631A (en) * 2003-06-10 2005-01-27 Yaskawa Electric Corp Drive control device of electric scooter
JP2005184978A (en) * 2003-12-19 2005-07-07 Hitachi Ltd Controller for tricycle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3080068U (en) * 2001-03-07 2001-09-14 美珠 藍 Drive controller for powered kickboard
JP2005096500A (en) * 2003-09-22 2005-04-14 Univ Nihon Electric three-wheel kick skater
JP5401682B2 (en) * 2008-04-18 2014-01-29 株式会社 神崎高級工機製作所 Electric ground work vehicle
EP2765024B1 (en) * 2011-10-06 2021-04-07 Yamaha Hatsudoki Kabushiki Kaisha Electric vehicle
WO2013051195A1 (en) * 2011-10-06 2013-04-11 ヤマハ発動機株式会社 Electric vehicle
CN104118505B (en) * 2013-04-24 2016-03-09 文张斌 Battery-driven car

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022631A (en) * 2003-06-10 2005-01-27 Yaskawa Electric Corp Drive control device of electric scooter
JP2005184978A (en) * 2003-12-19 2005-07-07 Hitachi Ltd Controller for tricycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054528A1 (en) * 2018-09-11 2020-03-19 デジタルデザインスタジオ株式会社 Bicycle helmet and auxiliary lighting device

Also Published As

Publication number Publication date
JPWO2018030407A1 (en) 2019-06-13
JP6748211B2 (en) 2020-08-26
CN109562697A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
JP6833667B2 (en) vehicle
EP2910400B1 (en) Regenerative brake control system of electric vehicle
US10040478B2 (en) Vehicle
JP6603953B2 (en) vehicle
JP2019137115A (en) Electric power assist vehicle
WO2018030407A1 (en) Vehicle
JP6833666B2 (en) vehicle
JP2006187047A (en) Driving force controller for four-wheel independent drive vehicle
JP2017178188A (en) vehicle
JP6573239B2 (en) Motorcycle
WO2024048529A1 (en) Leaning vehicle
JP2008092682A (en) Electric cart
WO2024048534A1 (en) Leaning vehicle
WO2016143471A1 (en) Vehicle
JP2008086159A (en) Electric cart
JP2006182050A (en) Braking force control device for four-wheel independent drive vehicle
WO2024048532A1 (en) Leaning vehicle
WO2024048533A1 (en) Leaning vehicle
CN212529906U (en) Electric tricycle
JP2008109833A (en) Electric cart
TW202417311A (en) Tilt the vehicle
JP2020029224A (en) Control device for man power driving vehicle and propulsion power adjustment system
JP2020196315A (en) Electric tricycle
JP2020196314A (en) Electric tricycle
JP2017178187A (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839477

Country of ref document: EP

Kind code of ref document: A1