WO2018030364A1 - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
WO2018030364A1
WO2018030364A1 PCT/JP2017/028675 JP2017028675W WO2018030364A1 WO 2018030364 A1 WO2018030364 A1 WO 2018030364A1 JP 2017028675 W JP2017028675 W JP 2017028675W WO 2018030364 A1 WO2018030364 A1 WO 2018030364A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant passage
shaft
refrigerant
expansion valve
central portion
Prior art date
Application number
PCT/JP2017/028675
Other languages
French (fr)
Japanese (ja)
Inventor
松井 賢司
正浩 森下
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Priority to CN201780047193.8A priority Critical patent/CN109564040A/en
Publication of WO2018030364A1 publication Critical patent/WO2018030364A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof

Definitions

  • the present invention relates to an expansion valve and, for example, relates to an apparatus that adjusts the amount of refrigerant flowing to the evaporator in accordance with the temperature and pressure of the refrigerant flowing from the evaporator.
  • the side of the main body block 103 of the expansion valve 101 is decompressed and expanded by the expansion valve 101 and a port T1 to which a high-pressure refrigerant pipe is connected so as to receive a high-temperature and high-pressure refrigerant from a receiver / dryer (not shown).
  • a port T2 to which a low-pressure refrigerant pipe for supplying a low-temperature and low-pressure refrigerant to an evaporator (not shown) is connected, to a port T3 to which a refrigerant pipe from the evaporator outlet is connected, and to a compressor (not shown)
  • a port T4 to which the leading refrigerant pipe is connected.
  • the port T1 and the port T2 are connected to each other by a refrigerant passage 105 provided in the main body block 103, and the port T3 and the port T4 are connected to each other by a refrigerant passage 107 provided in the main body block 103.
  • a valve portion 109 for adjusting the opening of the refrigerant passage 105 (adjusting the flow rate of the refrigerant flowing through the refrigerant passage 105) is provided.
  • the valve unit 109 includes a valve seat 111 formed on the main body block 103 and a ball-shaped (spherical) valve body 113.
  • the valve body 113 is disposed upstream of the valve seat 111 in the flow direction of the refrigerant flowing through the refrigerant passage 105.
  • valve body 113 moves upward from the state shown in FIG. 10, and the valve body 113 is in close contact with the valve seat 111.
  • a gap 115 is formed between the valve seat 111 and the valve body 113 as shown in FIG.
  • the gap 115 constitutes a variable orifice that throttles the high-pressure refrigerant.
  • a compression coil spring 117 that urges the valve body 113 so that the valve body 113 is seated on the valve seat 111 is disposed.
  • a power element 119 is provided at the upper end of the main body block 103.
  • the power element 119 has a diaphragm 121 made of a flexible metal thin plate arranged so as to partition a space surrounded by a thick metal housing, and the lower surface thereof receives the displacement of the diaphragm 121.
  • a diaphragm receiving plate 123 is disposed.
  • the upper space of the diaphragm 121 constitutes a greenhouse, and is filled with two or more kinds of refrigerant gas and inert gas.
  • a rod 125 that transmits the displacement of the diaphragm 121 to the valve body 113 is disposed below the diaphragm receiving plate 123.
  • the rod 125 is supported by the main body block 103 and can move by a predetermined stroke in the vertical direction of FIG. 10, and also hangs down across the refrigerant passage 107 communicating with the ports T3 and T4. .
  • reference numeral 127 in FIG. 10 is a cover of the rod 125.
  • the rod 125 has an upper end in contact with the lower surface of the diaphragm receiving plate 123 and a lower end in contact with the valve body 113. Thereby, the movement of the diaphragm 121 is transmitted to the valve body 113 through the diaphragm receiving plate 123 and the rod 125.
  • the expansion valve 101 when the temperature of the refrigerant returned from the evaporator to the port T3 is lowered, the temperature of the temperature sensing chamber of the power element 119 is lowered, and the refrigerant gas in the temperature sensing chamber is condensed on the inner surface of the diaphragm 121. As a result, the pressure in the power element 119 is reduced and the diaphragm 121 is displaced upward, and the rod 125 is pushed by the compression coil spring 117 and moved upward. As a result, the valve body 113 moves to the valve seat 111 side, the passage area of the high-pressure refrigerant (passage area in the gap 115) is reduced, and the flow rate of the refrigerant sent to the evaporator is reduced. This also works in the same way when the pressure of the refrigerant returning from the evaporator to the port T3 increases.
  • Patent Document 1 the one described in Patent Document 1 is known as the one in which the cover 127 is removed from the above-described conventional expansion valve.
  • the conventional expansion valve shown in FIG. 10 has a problem that the number of components increases and the structure becomes complicated by providing a cover.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an expansion valve that can prevent the generation of noise with a simple configuration.
  • a shaft for operating the valve portion to adjust the amount of the refrigerant flowing through the valve portion is disposed in the refrigerant passage through which the refrigerant flows.
  • the eigenvalue of the arranged refrigerant passage is set larger than the frequency of Karman vortex generated by the outer diameter of the shaft.
  • the outer shape of the shaft is formed in a cylindrical shape.
  • the shaft is an expansion valve disposed in the refrigerant passage in an exposed state.
  • the expansion valve according to one aspect of the present invention can prevent noise from being generated with a simple configuration.
  • FIG. 1 is a diagram showing a schematic configuration of an expansion valve according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the expansion valve according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a relationship between the diameter of the refrigerant passage and the eigenvalue of the refrigerant passage in the expansion valve according to the embodiment of the present invention.
  • FIG. 4A is a diagram showing a cross section of the refrigerant passage provided with the shaft
  • FIG. 4B is a diagram showing the relationship between the reduced area ratio of the refrigerant passage and the passage resistance.
  • FIG. 5A is a diagram showing a cross-section (permeation circle diameter) of the refrigerant passage provided with the shaft, and FIG.
  • FIG. 5B is a diagram showing the relationship between the reduced area ratio of the refrigerant passage and the passage resistance.
  • C is a figure which shows the cross section (permeation
  • FIG. 6 is a diagram showing a noise generation state when the shaft diameter and the diameter of the central portion of the refrigerant passage are changed.
  • FIG. 7 is a diagram showing the ratio of the projected area of the shaft to the projected area of the refrigerant passage center when the shaft diameter and the diameter of the refrigerant passage center are changed.
  • FIG. 8 is a diagram showing the ratio of the projected area of the shaft to the projected area of the refrigerant passage center when the shaft diameter and the diameter of the refrigerant passage center are changed.
  • FIG. 9 is a diagram showing a reduction rate of the equivalent circular diameter when the shaft diameter and the diameter of the central portion of the refrigerant passage are changed.
  • FIG. 10 is a view showing a conventional expansion valve
  • the expansion valve 1 according to the embodiment of the present invention is used for a cooling cycle (for example, a refrigeration cycle of an air conditioner for an automobile) in the same manner as the conventional expansion valve 101 and the expansion valve described in Patent Document 1.
  • a cooling cycle for example, a refrigeration cycle of an air conditioner for an automobile
  • the expansion valve 1 corresponds to a first refrigerant passage (a refrigerant passage corresponding to the refrigerant passage 105 shown in FIG. 10) and a second refrigerant passage 3 (a refrigerant passage 107 shown in FIG. 10). Refrigerant path).
  • the expansion valve 1 is different from the conventional expansion valve 101 in the configuration of the second refrigerant passage (second refrigerant flow path) 3 and the shaft 5, but other portions are the same as those of the conventional expansion valve 101.
  • the configuration is almost the same.
  • a shaft 5 is disposed in a second refrigerant passage (hereinafter simply referred to as “refrigerant passage”) 3 of the expansion valve 1.
  • the shaft 5 operates the valve portion in order to adjust the amount of refrigerant flowing through the valve portion (not shown in FIGS. 1 and 2).
  • the refrigerant for example, R134a
  • evaporator not shown
  • the value of the eigenvalue F0 of the refrigerant passage 3 in which the shaft 5 is disposed is the frequency of Karman vortex generated according to the outer diameter D4 of the shaft 5 (the frequency of refrigerant due to Karman vortex in the refrigerant passage). It is set larger than the value of F1. Details of the refrigerant passage central portion 7 will be described later.
  • the eigenvalue F0 is a natural frequency of the refrigerant when the refrigerant is flowing through the refrigerant passage 3 including the refrigerant passage central portion 7.
  • the eigenvalue F0 the value in the refrigerant passage 3 from which the shaft 5 is removed is listed, but the value in the refrigerant path 3 in which the shaft 5 is arranged may be listed.
  • the outer shape of the shaft 5 is formed in a cylindrical shape, and is disposed in the refrigerant passage 3 in a state where the shaft 5 is exposed.
  • the expansion valve 1 includes a body (main body block) 9 made of, for example, aluminum or resin.
  • One opening of the first refrigerant passage (refrigerant inlet; corresponding to port T1 in FIG. 10) is connected to a receiver / dryer (not shown) via a pipe, and the other of the first refrigerant passage
  • the opening (refrigerant outlet; corresponding to port T2 in FIG. 10) is connected to the evaporator via a pipe.
  • One opening (refrigerant inlet; corresponding to port T3 in FIG. 10) of the refrigerant passage 3 is connected to the evaporator via a pipe, and the other opening (refrigerant outlet; port T4 in FIG. 10) of the refrigerant passage 3 is connected. Is connected to the compressor via a pipe.
  • a valve portion (not shown) for adjusting the amount of refrigerant flowing through the first refrigerant passage is provided in the middle of the first refrigerant passage.
  • the shaft 5 is supported by the body 9, extends in the vertical direction in the refrigerant passage 3, and crosses the refrigerant passage 3.
  • the shaft 5 moves in the vertical direction of FIGS. 1 and 2 with respect to the body 9 according to the temperature and pressure of the refrigerant in the refrigerant passage 3.
  • the opening degree of the valve part provided in the 1st refrigerant path is changed, and the quantity of the refrigerant
  • the refrigerant passage 3 is set larger than the frequency F1 of Karman vortex generated by the outer diameter of the shaft 5 and the flow of the refrigerant.
  • the refrigerant passage 3 is formed in a columnar shape, and the refrigerant flows through the columnar space substantially parallel to the extending direction of the axis of the column (from the right to the left in FIGS. 1 and 2). .
  • the outer diameter D4 of the cylindrical shaft 5 is sufficiently smaller than the inner diameter D2 of the cylindrical refrigerant passage 3.
  • the central axis of the shaft 5, that is, the central axis extending in the vertical direction in FIGS. 1 and 2, and the central axis of the refrigerant passage 3 intersect each other at a single point. Further, the shaft 5 extends the columnar refrigerant passage 3 over the entire length in the radial direction, that is, the vertical direction in FIGS. 1 and 2.
  • a power element 11 is provided at a location slightly entering upward from the refrigerant passage 3, as in the conventional case, and is in the direction of extension of the central axis that is the longitudinal direction of the shaft 5.
  • One end, that is, the upper end is engaged with the power element 11, and the other end in the longitudinal direction of the shaft 5 is engaged with the valve portion.
  • the shaft 5 is appropriately moved in the extending direction of the central axis to adjust the opening degree of the valve portion. It is supposed to be.
  • the opening degree of the valve portion increases as the shaft 5 moves downward, and the opening degree of the valve portion increases as the shaft 5 moves upward. Becomes smaller.
  • D2 is the inner diameter of the refrigerant passage central portion 7 shown in FIG. 1 and FIG.
  • the unit of F0 is Hz, and the unit of D2 is mm.
  • the eigenvalue F0 of the refrigerant passage 3 is not only the inner diameter D2 of the refrigerant passage central portion 7, but also the flow rate (flow velocity) of the refrigerant flowing through the refrigerant passage 3, the inner diameters D1 and D3 of the passages of the insertion joints 13 and 15 (FIG. 2), and also varies depending on the distance between the insertion joints 13 and 15, that is, the length L of the refrigerant passage central portion 7 and the outer diameter D4 of the shaft 5.
  • V is the flow velocity of the refrigerant flowing through the refrigerant passage central portion 7, and its unit is m / sec.
  • the unit of D4 is mm, and the unit of F1 is kHz.
  • the characteristic value F0 of the refrigerant passage 3 (refrigerant passage central portion 7) in which the shaft 5 is disposed is set to be larger than the Karman vortex frequency F1 generated by the outer diameter D4 of the shaft 5.
  • FIG. Will be described with reference to FIG.
  • the inner diameter D2 may be set to the inner diameter D2 on the left side of the diagram G2.
  • the inner diameter D2 of the refrigerant passage central portion 7 is set within the range A1 in the diagram G3, the eigenvalue F0> the Karman vortex frequency F1.
  • the inner diameter D2 of the refrigerant passage central portion 7 is preferably about 11 mm, more preferably about 13 mm, and further preferably about 14 mm.
  • the inner diameter D2 of the refrigerant passage central portion 7 traversed by the shaft 5 is about 17 mm.
  • the inner diameter D2 of the refrigerant passage central portion 7 is set within the range A2 in the diagram G4, the eigenvalue F0> the Karman vortex frequency F1.
  • the inner diameter D2 of the refrigerant passage central portion 7 is preferably about 10 mm, more preferably about 12 mm, and further preferably about 13 mm.
  • the inner diameter D2 of the refrigerant passage central portion 7 traversed by the shaft 5 is about 16 mm.
  • the inner diameter D2 of the refrigerant passage central portion 7 is set within the range A3 in the diagram G5, the eigenvalue F0> the Karman vortex frequency F1.
  • the inner diameter D2 of the refrigerant passage central portion 7 is preferably about 13 mm, more preferably about 16 mm, and further preferably about 17 mm.
  • the inner diameter D2 of the refrigerant passage central portion 7 traversed by the shaft 5 is about 18 mm.
  • the expansion valve 1 will be further described.
  • the projected area S1 of the shaft 5 is 25% or less of the projected area S2 of the refrigerant passage 3, that is, the refrigerant passage central portion 7.
  • the projected area S1 of the shaft 5 may be less than 25% of the projected area S2 of the refrigerant passage 3.
  • the projected area S1 of the shaft 5 is an area of the shaft 5 when the cylindrical refrigerant passage central portion 7 is viewed from the extending direction of the central axis. That is, it is the area of the part shown by the oblique line in FIG.
  • S1 / S2 ⁇ 0.25. That is, the ratio of the projection area S1 to the projection area S2, that is, S1 / S2 is within the range A4 shown in FIG. It is desirable that S1 / S2 be within the range of 0.10 to 0.25. It is more desirable that S1 / S2 is within the range of 0.12 to 0.25. Note that S1 / S2 ⁇ 0.30 may be satisfied.
  • the outer diameter D4 of the shaft 5 is, for example, 2.0 mm or more and 3 mm or less.
  • the outer diameter D4 of the shaft 5 is more preferably 2.2 mm or more and 3 mm or less.
  • the outer diameter D4 of the shaft 5 is 2.9 mm or less.
  • the inner diameter D2 of the refrigerant passage central portion 7 refrigerant is preferably 14 mm or more and 19 mm or less.
  • the outer diameter D4 of the shaft 5 is desirably 2.0 mm or more so that the Karman vortex frequency F1 is not too high.
  • the outer diameter D4 of the shaft 5 is more preferably 2.2 mm or more. If the generation of noise can be suppressed by other conditions, the above value of 25% may be exceeded. In this case, for example, 30% or less is desirable.
  • the reduction rate of the equivalent circular diameter is 16% or less.
  • the “D” -shaped refrigerant passage section 17 is a portion of one refrigerant passage of two refrigerant passages divided into two equal parts by the shaft 5.
  • FIG. 5A is a view of the portion 7 of the refrigerant passage 3 in which the shaft 5 is provided as viewed from the flow direction of the refrigerant.
  • the semicircle 19 in the portion 7 of the refrigerant passage 3 where the shaft 5 is not present is the two refrigerant passages formed by dividing the circular refrigerant passage central portion 7 into two equal parts with a predetermined diameter. It is a part of one of the refrigerant passages.
  • FIG. 5C is a view of the refrigerant passage when the shaft 5 is removed as seen from the refrigerant flow direction.
  • Af1 is the area of the “D” -shaped portion 17 and Wp1 is the wet length, that is, the entire circumference of the outer periphery of the “D” -shaped portion 17 or the wall surface of the “D” -shaped portion. Length.
  • the recessed portion 2 (see FIGS. 1 and 2) around the shaft 5 that is countersunk may be ignored.
  • Af2 is the area of the semicircular portion, and Wp2 is the wet length, that is, the length of the wall surface of the semicircular portion.
  • (De2-De1) /De2 ⁇ 0.16 the reduction rate (De2-De1) / De2 of the equivalent circular diameter is within the range A5 shown in FIG. Note that (De2-De1) / De2 may fall within the range of 0.125 to 0.16. It is more desirable that (De2-De1) / De2 be within the range of 0.13 to 0.16.
  • insertion joints 13 and 15 are inserted into the refrigerant passage 3 of the expansion valve 1, and the value of the inner diameter D ⁇ b> 2 of the refrigerant passage 3, that is, the refrigerant passage central portion 7, is , 15 is larger than the values of the inner diameters D1, D3.
  • the joints (insertion joints) 13 and 15 are provided by being inserted into both ends of one end of the refrigerant passage 3 and the other end of the refrigerant passage 3, respectively.
  • an inlet side joint (upstream side joint) 13 that is inserted into the refrigerant path 3 from the refrigerant passage inlet and provided at the refrigerant inlet as a joint and the inlet flow side joint 13 are separate from each other, and the refrigerant path
  • An outlet side joint 15 that is inserted into the refrigerant passage 3 from the outlet and provided at the refrigerant outlet is provided.
  • the value of the length L in the axial direction of the central portion 7 of the refrigerant passage 3 is divided by the value of the depth D in the radial direction of the central portion 7 of the refrigerant passage 3.
  • the value of the parameter a obtained by multiplying the value of the inner diameter dimension (D1 or D3) is set to be less than 40.
  • a cylindrical portion of the upstream joint 13, that is, a portion 21 whose outer diameter is equal to the inner diameter D 2 of the refrigerant passage 3 and whose inner diameter is D 1 enters the refrigerant passage 3.
  • a cylindrical portion of the downstream side joint 15, that is, a portion 23 having an outer diameter equal to the inner diameter D ⁇ b> 2 of the refrigerant passage 3 and an inner diameter D ⁇ b> 3 enters the refrigerant passage 3.
  • the tip of the cylindrical portion 21 of the upstream joint 13 inserted in the refrigerant passage 3 (the right end in FIG. 1) and the tip of the cylindrical portion 23 of the downstream joint 15 inserted in the refrigerant passage 3 (The left end in FIG. 1) are separated from each other by a distance L.
  • a central portion (refrigerant passage central portion) 7 where the joints 13 and 15 are not present is formed at the central portion of the refrigerant passage 3.
  • the shaft 5 is provided in the center of the refrigerant passage central portion 7 and is separated from the upstream side joint 13 and the downstream side joint 15.
  • the dimension L of the axial length of the refrigerant passage central portion 7 is a dimension of the refrigerant passage central portion 7 in the extending direction of the central axis of the central portion 7 of the refrigerant passage, as already understood. That is, it is a dimension between the upstream joint 13 and the downstream joint 15.
  • the radial depth D of the refrigerant passage central portion 7 is “2” obtained by subtracting the value of the inner diameter D3 of the cylindrical portion of the downstream joint 15 from the value of the diameter D2 of the refrigerant passage central portion 7.
  • the depth dimension D may be obtained by dividing the value obtained by subtracting the value of the inner diameter D1 of the cylindrical portion of the upstream joint 13 from the value of the diameter D2 of the refrigerant passage central portion 7 by “2”. .
  • the parameter is “a”, the dimension of the axial length of the refrigerant passage central portion 7 is “L”, the depth of the refrigerant passage central portion 7 in the radial direction is “D”, and the cylinder of the downstream joint 15
  • the inner diameter D2 of the refrigerant passage central portion 7 is made smaller than before in order to increase the eigenvalue F0.
  • the inner diameter D2 of the refrigerant passage central portion 7 is reduced from the conventional inner diameter of 18 mm to 15 mm.
  • D1 is 12 mm
  • D2 is 15 mm
  • D3 is 13.7 mm
  • D4 is 2.4 mm
  • L is 12 mm.
  • the expansion valve 1 operates in the same manner as the conventional expansion valve 101 or the like. That is, the flow rate of the refrigerant flowing through the evaporator is appropriately adjusted according to the temperature and pressure of the refrigerant flowing through the refrigerant passage 3.
  • the dimension L of the axial length of the refrigerant passage central portion 7 is fixed to 18 mm, and the inner diameter D2 of the refrigerant passage central portion 7 and the outer diameter D4 of the shaft 5 are changed. .
  • the noise is within the allowable range at the circle mark.
  • the inner diameter D2 is in the range of 12 mm to 19 mm and the outer diameter D4 of the shaft 5 is in the range of 2.8 mm to 5.0 mm
  • the inner diameter D2 is in the range of 12 mm to 18 mm
  • the outer diameter D4 of the shaft 5 is in the range of 2.6 mm to 2.8 mm
  • the inner diameter D2 is in the range of 12 mm to 17 mm
  • the outer diameter D4 of the shaft 5 is in the range of 2.4 mm to 2.6 mm.
  • the inner diameter D2 is in the range of 12 mm to 15 mm and the outer diameter D4 of the shaft 5 is in the range of 2.2 mm to 2.4 mm, the inner diameter D2 is in the range of 12 mm to 14 mm. Further, when the outer diameter D4 of the shaft 5 is within the range of 2.0 mm to 2.2 mm, the noise is within the allowable range.
  • the inner diameter D2 of the refrigerant passage center 7 and the shaft 5 such that the range indicated by the thick frame shown in FIG. If the outer diameter D4 is adopted, generation of noise can be suppressed.
  • the inner diameter of the refrigerant passage central portion 7 capable of suppressing noise by using the range indicated by the thick frame shown in FIG. 8 instead of FIG. 7, that is, the range in which the number in the frame is 0.18 to 0.25. You may employ
  • the dimension L of the axial length of the refrigerant passage central portion 7 is fixed to 18 mm, and the inner diameter D2 of the refrigerant passage central portion 7 and the outer diameter D4 of the shaft 5 are changed. .
  • noise can be suppressed within a range indicated by a thick frame.
  • the numbers such as “0.847” shown in FIG. 9 assume that the outer diameter of the shaft 5 is “0” and the fluid diameter ratio when the fluid diameter obtained by equally dividing the refrigerant passage central portion 7 is “1”. Is shown.
  • a value obtained by subtracting “0.847” from “1” is the reduction rate of the equivalent circular diameter. If the reduction rate of the equivalent circular diameter is 0.13 to 0.16, that is, 13% to 16%, noise can be suppressed.
  • the outer shape of the shaft 5 is formed in a cylindrical shape, and the shaft 5 is exposed in the refrigerant passage 3 (the refrigerant passage central portion 7). For this reason, the expansion valve 1 does not require a cover surrounding the shaft 5, and it is not necessary to form dimples or the like on the outer surface of the shaft 5 to form a large number of irregularities on the outer surface of the shaft 5. ing. That is, the configuration of the expansion valve 1 is simplified. Further, the outer surface of the shaft 5 has a smooth shape with no irregularities. For this reason, the flow path resistance of the refrigerant passage 3 can be reduced.
  • the eigenvalue F0 of the refrigerant passage central portion 7 where the shaft 5 is disposed is set to be larger than the frequency F1 of Karman vortex generated by the shaft 5. For this reason, when the refrigerant flows through the refrigerant passage 3 in which the shaft 5 is disposed, resonance between the Karman vortex generated by the shaft 5 and the refrigerant in the refrigerant passage 3 is avoided, and generation of noise is prevented. Can do.
  • the diameter of the shaft 5 may be increased.
  • the projected area S1 in the refrigerant passage 3 is increased and the passage resistance of the refrigerant flow is increased. Will go up.
  • the projected area S 1 of the shaft 5 is 25% or less of the projected area S 2 of the refrigerant passage central portion 7, so that the refrigerant due to an increase in the projected area S 1 of the shaft 5 in the refrigerant passage 3. An increase in the flow path resistance can be suppressed, and the Karman vortex frequency F1 can be lowered appropriately.
  • the expansion valve 1 is not provided with a cover surrounding the shaft 5 as in the prior art. That is, the substantial outer diameter of the shaft 5 in the refrigerant passage 2 is small. For this reason, even if the Karman vortex frequency F1 is increased, the inner diameter D2 of the refrigerant passage central portion 7 is smaller than that of the conventional one, so that the generation of noise can be prevented.
  • the reduction rate of the equivalent circular diameter is 16% or less in the “D” -shaped refrigerant passage section 17 in the portion 7 of the refrigerant passage 3 where the shaft 5 is provided.
  • the friction loss on the wall surface through which the refrigerant flows, that is, the refrigerant passage and the wall surface of the shaft can be reduced, and the passage resistance of the refrigerant flow in the portion 7 of the refrigerant passage 3 provided with the shaft 5 can be suppressed. .
  • the value of the inner diameter D2 of the refrigerant passage central portion 7 is larger than the values of the inner diameters D1 and D3 of the joints 13 and 15, so that the passage resistance in the refrigerant passage 2 increases. Is suppressed.
  • the expansion valve 1 even if the value of the parameter a is set to less than 40, the eigenvalue F0 of the refrigerant passage 3 in which the shaft 5 is disposed is the Karman vortex generated by the outer diameter D4 of the shaft 5. Since it is set to be larger than the frequency F1, it is possible to prevent the generation of noise due to the flow of the refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An expansion valve (1) for which a shaft (5) that operates a valve part in order to adjust the amount of refrigerant flowing through the valve part is arranged in a refrigerant passage (3) through which refrigerant flows. The characteristic value (F0) of the refrigerant passage (3) in which the shaft (5) is arranged is set so as to be greater than the frequency (F1) of a Karman vortex generated by the shaft (5). The outer shape of the shaft (5) is formed in a cylindrical shape. The shaft (5) is arranged in the refrigerant passage (3) in an uncovered manner.

Description

膨張弁Expansion valve
 本発明は、膨張弁に係り、たとえば、エバポレータから流れてきた冷媒の温度や圧力に応じて、エバポレータへ流す冷媒の量を調整するものに関する。 The present invention relates to an expansion valve and, for example, relates to an apparatus that adjusts the amount of refrigerant flowing to the evaporator in accordance with the temperature and pressure of the refrigerant flowing from the evaporator.
 従来、自動車用エアコンの冷凍サイクルに使用されて、高温・高圧の液冷媒を減圧・膨張させて低温・低圧の霧状の冷媒にするとともに、エバポレータ出口で冷媒の蒸発状態が適度な過熱度を持つように冷媒流量を調節する機能を持った膨張弁101が知られている(図10参照)。 Conventionally, it is used in the refrigeration cycle of automobile air conditioners, and the high-temperature and high-pressure liquid refrigerant is decompressed and expanded to form a low-temperature and low-pressure mist-like refrigerant, and the evaporation state of the refrigerant at the evaporator outlet has an appropriate degree of superheat. There is known an expansion valve 101 having a function of adjusting the refrigerant flow rate so as to have (see FIG. 10).
 膨張弁101の本体ブロック103の側部には、レシーバ/ドライヤ(図示せず)から高温・高圧の冷媒を受けるよう高圧冷媒配管が接続されるポートT1と、膨張弁101にて減圧・膨張された低温・低圧の冷媒をエバポレータ(図示せず)へ供給するための低圧冷媒配管が接続されるポートT2と、エバポレータ出口からの冷媒配管が接続されるポートT3と、コンプレッサ(図示せず)へ至る冷媒配管が接続されるポートT4とが設けられている。 The side of the main body block 103 of the expansion valve 101 is decompressed and expanded by the expansion valve 101 and a port T1 to which a high-pressure refrigerant pipe is connected so as to receive a high-temperature and high-pressure refrigerant from a receiver / dryer (not shown). To a port T2 to which a low-pressure refrigerant pipe for supplying a low-temperature and low-pressure refrigerant to an evaporator (not shown) is connected, to a port T3 to which a refrigerant pipe from the evaporator outlet is connected, and to a compressor (not shown) And a port T4 to which the leading refrigerant pipe is connected.
 ポートT1とポートT2とは、本体ブロック103に設けられた冷媒通路105によってお互いがつながっており、ポートT3とポートT4とは、本体ブロック103に設けられた冷媒通路107によってお互いがつながっている。 The port T1 and the port T2 are connected to each other by a refrigerant passage 105 provided in the main body block 103, and the port T3 and the port T4 are connected to each other by a refrigerant passage 107 provided in the main body block 103.
 冷媒通路105の途中には、冷媒通路105の開度を調整(冷媒通路105を流れる冷媒の流量を調整)するための弁部109が設けられている。 In the middle of the refrigerant passage 105, a valve portion 109 for adjusting the opening of the refrigerant passage 105 (adjusting the flow rate of the refrigerant flowing through the refrigerant passage 105) is provided.
 弁部109は、本体ブロック103に形成された弁座111と、ボール状(球状)の弁体113とを備えて構成されている。弁体113は、冷媒通路105を流れる冷媒の流れ方向で、弁座111の上流側に配置されている。 The valve unit 109 includes a valve seat 111 formed on the main body block 103 and a ball-shaped (spherical) valve body 113. The valve body 113 is disposed upstream of the valve seat 111 in the flow direction of the refrigerant flowing through the refrigerant passage 105.
 冷媒通路105が閉じているときには、図10で示す状態よりも弁体113が上方に移動して、弁体113が弁座111に密着している。また、冷媒通路105が閉じているときには、図10で示すように、弁座111と弁体113との間に間隙115が形成されている。この間隙115が高圧の冷媒を絞る可変オリフィスを構成している。 When the refrigerant passage 105 is closed, the valve body 113 moves upward from the state shown in FIG. 10, and the valve body 113 is in close contact with the valve seat 111. When the refrigerant passage 105 is closed, a gap 115 is formed between the valve seat 111 and the valve body 113 as shown in FIG. The gap 115 constitutes a variable orifice that throttles the high-pressure refrigerant.
 弁座111の上流側の空間には、弁体113を弁座111に着座させるように弁体113を付勢する圧縮コイルスプリング117が配置されている。 In the space upstream of the valve seat 111, a compression coil spring 117 that urges the valve body 113 so that the valve body 113 is seated on the valve seat 111 is disposed.
 本体ブロック103の上端部には、パワーエレメント119が設けられている。このパワーエレメント119は、厚い金属製のハウジングによって囲まれた空間を仕切るよう配置された可撓性のある金属薄板からなるダイヤフラム121を有しており、その下面には、ダイヤフラム121の変位を受けるダイヤフラム受け盤123が配置されている。ダイヤフラム121の上部空間は、感温室を構成し、ここに2種類以上の冷媒ガスと不活性ガスとが充填されている。 A power element 119 is provided at the upper end of the main body block 103. The power element 119 has a diaphragm 121 made of a flexible metal thin plate arranged so as to partition a space surrounded by a thick metal housing, and the lower surface thereof receives the displacement of the diaphragm 121. A diaphragm receiving plate 123 is disposed. The upper space of the diaphragm 121 constitutes a greenhouse, and is filled with two or more kinds of refrigerant gas and inert gas.
 ダイヤフラム受け盤123の下方には、ダイヤフラム121の変位を弁体113へ伝達するロッド125が配置されている。このロッド125は、本体ブロック103に支持されて図10の上下方向で所定のストロークだけ移動できるようになっているとともに、ポートT3,T4に連通している冷媒通路107を横切って垂下している。なお、図10に参照符号127で示すものは、ロッド125のカバーである。 A rod 125 that transmits the displacement of the diaphragm 121 to the valve body 113 is disposed below the diaphragm receiving plate 123. The rod 125 is supported by the main body block 103 and can move by a predetermined stroke in the vertical direction of FIG. 10, and also hangs down across the refrigerant passage 107 communicating with the ports T3 and T4. . Note that what is indicated by reference numeral 127 in FIG. 10 is a cover of the rod 125.
 ロッド125は、上端がダイヤフラム受け盤123の下面に当接しており、下端が弁体113に当接している。これにより、ダイヤフラム121の動きが、ダイヤフラム受け盤123とロッド125とを介して、弁体113へ伝達されるようになっている。 The rod 125 has an upper end in contact with the lower surface of the diaphragm receiving plate 123 and a lower end in contact with the valve body 113. Thereby, the movement of the diaphragm 121 is transmitted to the valve body 113 through the diaphragm receiving plate 123 and the rod 125.
 そして、膨張弁101では、エバポレータからポートT3に戻ってきた冷媒の温度が低下すると、パワーエレメント119の感温室の温度が下がり、感温室内の冷媒ガスがダイヤフラム121の内表面にて凝縮する。これにより、パワーエレメント119内の圧力が低下してダイヤフラム121が上方に変位し、ロッド125が圧縮コイルスプリング117で押されて上方へ移動する。その結果、弁体113が弁座111側に移動し高圧の冷媒の通路面積(間隙115での通路面積)が減り、エバポレータに送り込まれる冷媒の流量が減少するようになっている。これは、エバポレータからポートT3に戻ってきた冷媒の圧力が増加した場合も同様に作用するようになっている。 In the expansion valve 101, when the temperature of the refrigerant returned from the evaporator to the port T3 is lowered, the temperature of the temperature sensing chamber of the power element 119 is lowered, and the refrigerant gas in the temperature sensing chamber is condensed on the inner surface of the diaphragm 121. As a result, the pressure in the power element 119 is reduced and the diaphragm 121 is displaced upward, and the rod 125 is pushed by the compression coil spring 117 and moved upward. As a result, the valve body 113 moves to the valve seat 111 side, the passage area of the high-pressure refrigerant (passage area in the gap 115) is reduced, and the flow rate of the refrigerant sent to the evaporator is reduced. This also works in the same way when the pressure of the refrigerant returning from the evaporator to the port T3 increases.
 逆に、エバポレータからポートT3に戻ってきた冷媒の温度が上昇すると、パワーエレメント119の感温室内の圧力が上昇することにより、ロッド125は圧縮コイルスプリング117の付勢力に抗して押し下げられる。そのため、弁体113が弁座111から離れる方向に移動し、高圧の冷媒の通路面積が増加して、エバポレータに送り込まれる冷媒の流量が増加するようになっている。これは、エバポレータからポートT3に戻ってきた冷媒の圧力が減少した場合も同様に作用するようになっている。 Conversely, when the temperature of the refrigerant returned from the evaporator to the port T3 rises, the pressure in the temperature sensing chamber of the power element 119 rises, so that the rod 125 is pushed down against the urging force of the compression coil spring 117. Therefore, the valve body 113 moves in a direction away from the valve seat 111, the passage area of the high-pressure refrigerant is increased, and the flow rate of the refrigerant sent to the evaporator is increased. This also works in the same way when the pressure of the refrigerant returning from the evaporator to the port T3 decreases.
 なお、上述した従来の膨張弁からカバー127を無くしたものとして、たとえば、特許文献1記載のものが知られている。 Note that, for example, the one described in Patent Document 1 is known as the one in which the cover 127 is removed from the above-described conventional expansion valve.
特開2016-44861号公報Japanese Unexamined Patent Publication No. 2016-44861
 ところで、図10に示す従来の膨張弁では、カバーを設けていることで構成部品点数が多くなり構造が煩雑になるという問題がある。 Incidentally, the conventional expansion valve shown in FIG. 10 has a problem that the number of components increases and the structure becomes complicated by providing a cover.
 図10に示す従来の膨張弁においてカバーと除去すると、シャフトのところを冷媒が流れることによって発生するカルマン渦によって騒音が発生する場合があるという問題がある。 When the cover and the conventional expansion valve shown in FIG. 10 are removed, there is a problem that noise may be generated due to Karman vortices generated by the flow of refrigerant through the shaft.
 また、特許文献1に記載の膨張弁では、騒音を低減させるために、シャフトにディンプル加工を施す等しているが、これにより、構造が煩雑になるという問題がある。 Further, in the expansion valve described in Patent Document 1, dimple processing is performed on the shaft in order to reduce noise, but this causes a problem that the structure becomes complicated.
 本発明は、上記問題点に鑑みてなされたものであり、簡素な構成で騒音の発生を防止することができる膨張弁を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an expansion valve that can prevent the generation of noise with a simple configuration.
 本発明の一態様に係る膨張弁は、弁部を流れる冷媒の量を調整するために弁部を作動させるシャフトが、冷媒が流れる冷媒通路中に配置されている。シャフトは、配置されている冷媒通路の固有値が、前記シャフトの外径により発生するカルマン渦の周波数よりも大きく設定されている。シャフトの外形、は円柱状に形成されている。そして、シャフトは、むき出し状態で冷媒通路中に配置されている膨張弁である。 In the expansion valve according to one aspect of the present invention, a shaft for operating the valve portion to adjust the amount of the refrigerant flowing through the valve portion is disposed in the refrigerant passage through which the refrigerant flows. In the shaft, the eigenvalue of the arranged refrigerant passage is set larger than the frequency of Karman vortex generated by the outer diameter of the shaft. The outer shape of the shaft is formed in a cylindrical shape. The shaft is an expansion valve disposed in the refrigerant passage in an exposed state.
 本発明の一態様に係る膨張弁によれば、簡素な構成で騒音の発生を防止することができる。 The expansion valve according to one aspect of the present invention can prevent noise from being generated with a simple configuration.
図1は、本発明の実施形態に係る膨張弁の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an expansion valve according to an embodiment of the present invention. 図2は、本発明の実施形態に係る膨張弁を模式的に示した図である。FIG. 2 is a diagram schematically showing the expansion valve according to the embodiment of the present invention. 図3は、本発明の実施形態に係る膨張弁における冷媒通路の径と冷媒通路の固有値との関係を示す図である。FIG. 3 is a diagram showing a relationship between the diameter of the refrigerant passage and the eigenvalue of the refrigerant passage in the expansion valve according to the embodiment of the present invention. 図4(a)は、シャフトが設けられている冷媒通路の断面を示す図であり、図4(b)は、冷媒通路の減少面積比と通路抵抗との関係を示す図である。FIG. 4A is a diagram showing a cross section of the refrigerant passage provided with the shaft, and FIG. 4B is a diagram showing the relationship between the reduced area ratio of the refrigerant passage and the passage resistance. 図5(a)は、シャフトが設けられている冷媒通路の断面(透過円直径)を示す図であり、図5(b)は、冷媒通路の減少面積比と通路抵抗との関係を示す図であり、(c)は冷媒通路(半円)の断面(透過円直径)を示す図である。FIG. 5A is a diagram showing a cross-section (permeation circle diameter) of the refrigerant passage provided with the shaft, and FIG. 5B is a diagram showing the relationship between the reduced area ratio of the refrigerant passage and the passage resistance. (C) is a figure which shows the cross section (permeation | transmission circle diameter) of a refrigerant path (semicircle). 図6は、シャフト径と冷媒通路中央部の径とを変えたときにおける騒音の発生状態を示す図である。FIG. 6 is a diagram showing a noise generation state when the shaft diameter and the diameter of the central portion of the refrigerant passage are changed. 図7は、シャフト径と冷媒通路中央部の径とを変えたときにおける冷媒通路中央部の投影面積に対するシャフトの投影面積の比を示す図である。FIG. 7 is a diagram showing the ratio of the projected area of the shaft to the projected area of the refrigerant passage center when the shaft diameter and the diameter of the refrigerant passage center are changed. 図8は、シャフト径と冷媒通路中央部の径とを変えたときにおける冷媒通路中央部の投影面積に対するシャフトの投影面積の比を示す図である。FIG. 8 is a diagram showing the ratio of the projected area of the shaft to the projected area of the refrigerant passage center when the shaft diameter and the diameter of the refrigerant passage center are changed. 図9は、シャフト径と冷媒通路中央部の径とを変えたときにおける等価円直径の減少率を示す図である。FIG. 9 is a diagram showing a reduction rate of the equivalent circular diameter when the shaft diameter and the diameter of the central portion of the refrigerant passage are changed. 図10は、従来の膨張弁を示す図である。FIG. 10 is a view showing a conventional expansion valve.
 本発明の実施形態に係る膨張弁1は、従来の膨張弁101や特許文献1に記載の膨張弁と同様にして、冷却サイクル(たとえば自動車用エアコンの冷凍サイクル)に使用されるものである。 The expansion valve 1 according to the embodiment of the present invention is used for a cooling cycle (for example, a refrigeration cycle of an air conditioner for an automobile) in the same manner as the conventional expansion valve 101 and the expansion valve described in Patent Document 1.
 膨張弁1は、従来の膨張弁101と同様に、第1の冷媒通路(図10で示す冷媒通路105に相当する冷媒通路)と第2の冷媒通路3(図10で示す冷媒通路107に相当する冷媒通路)とを備えて構成されている。 Similarly to the conventional expansion valve 101, the expansion valve 1 corresponds to a first refrigerant passage (a refrigerant passage corresponding to the refrigerant passage 105 shown in FIG. 10) and a second refrigerant passage 3 (a refrigerant passage 107 shown in FIG. 10). Refrigerant path).
 また、膨張弁1は、第2の冷媒通路(第2の冷媒流路)3やシャフト5のところの構成が、従来の膨張弁101と異なるが、その他の箇所は、従来の膨張弁101とほぼ同様に構成されている。 The expansion valve 1 is different from the conventional expansion valve 101 in the configuration of the second refrigerant passage (second refrigerant flow path) 3 and the shaft 5, but other portions are the same as those of the conventional expansion valve 101. The configuration is almost the same.
 なお、図1、図2では、膨張弁1の下側の部位(第1の通路や図10で示す弁部109等)の表示を省略している。 In FIG. 1 and FIG. 2, the display of the lower portion of the expansion valve 1 (the first passage, the valve portion 109 shown in FIG. 10, etc.) is omitted.
 膨張弁1の第2の冷媒通路(以下、単に「冷媒通路」という)3中には、シャフト5が配置されている。シャフト5は、弁部(図1、図2では図示せず)を流れる冷媒の量を調整するために弁部を作動させるようになっている。なお、冷媒通路3には、エバポレータ(図示せず)から出てきた冷媒(たとえばR134a)が流れるようになっており、冷媒通路3を流れた冷媒は、コンプレッサに至るようになっている。 A shaft 5 is disposed in a second refrigerant passage (hereinafter simply referred to as “refrigerant passage”) 3 of the expansion valve 1. The shaft 5 operates the valve portion in order to adjust the amount of refrigerant flowing through the valve portion (not shown in FIGS. 1 and 2). Note that the refrigerant (for example, R134a) coming out of an evaporator (not shown) flows through the refrigerant passage 3, and the refrigerant flowing through the refrigerant passage 3 reaches the compressor.
 膨張弁1では、シャフト5が配置されている冷媒通路3の固有値F0の値が、シャフト5の外径D4に応じて発生するカルマン渦の周波数(冷媒通路でのカルマン渦による冷媒の振動数)F1の値よりも大きく設定されている。冷媒通路中央部7の詳細については後述する。 In the expansion valve 1, the value of the eigenvalue F0 of the refrigerant passage 3 in which the shaft 5 is disposed is the frequency of Karman vortex generated according to the outer diameter D4 of the shaft 5 (the frequency of refrigerant due to Karman vortex in the refrigerant passage). It is set larger than the value of F1. Details of the refrigerant passage central portion 7 will be described later.
 固有値F0とは、冷媒通路中央部7を含む冷媒通路3に冷媒が流れているときの冷媒の固有振動数である。固有値F0として、シャフト5が除かれている冷媒通路3のものを掲げるが、シャフト5が配置されている冷媒通路3のものを掲げてもよい。 The eigenvalue F0 is a natural frequency of the refrigerant when the refrigerant is flowing through the refrigerant passage 3 including the refrigerant passage central portion 7. As the eigenvalue F0, the value in the refrigerant passage 3 from which the shaft 5 is removed is listed, but the value in the refrigerant path 3 in which the shaft 5 is arranged may be listed.
 シャフト5の外形は円柱状に形成されているとともに、シャフト5がむき出し状態で冷媒通路3中に配置されている。 The outer shape of the shaft 5 is formed in a cylindrical shape, and is disposed in the refrigerant passage 3 in a state where the shaft 5 is exposed.
 さらに説明すると、膨張弁1は、たとえばアルミニウムまたは樹脂によって作られているボディ(本体ブロック)9を備えている。内部を冷媒が流れる第1の冷媒通路(図示せず)と冷媒通路3とは、ボディ9を貫通している。なお、すでに理解されるように、冷媒通路3は、第1の冷媒通路から離れてボディ9を貫通している。 More specifically, the expansion valve 1 includes a body (main body block) 9 made of, for example, aluminum or resin. A first refrigerant passage (not shown) through which the refrigerant flows and the refrigerant passage 3 pass through the body 9. As already understood, the refrigerant passage 3 penetrates the body 9 away from the first refrigerant passage.
 第1の冷媒通路の一方の開口部(冷媒入口;図10のポートT1が相当)は、配管を介してレシーバ/ドライヤ(図示せず)に接続されており、第1の冷媒通路の他方の開口部(冷媒出口;図10のポートT2が相当)は、配管を介してエバポレータに接続されている。 One opening of the first refrigerant passage (refrigerant inlet; corresponding to port T1 in FIG. 10) is connected to a receiver / dryer (not shown) via a pipe, and the other of the first refrigerant passage The opening (refrigerant outlet; corresponding to port T2 in FIG. 10) is connected to the evaporator via a pipe.
 冷媒通路3の一方の開口部(冷媒入口;図10のポートT3が相当)は、配管を介してエバポレータに接続されており、冷媒通路3の他方の開口部(冷媒出口;図10のポートT4が相当)は、配管を介してコンプレッサに接続されている。 One opening (refrigerant inlet; corresponding to port T3 in FIG. 10) of the refrigerant passage 3 is connected to the evaporator via a pipe, and the other opening (refrigerant outlet; port T4 in FIG. 10) of the refrigerant passage 3 is connected. Is connected to the compressor via a pipe.
 第1の冷媒通路を流れる冷媒の量を調整する弁部(図示せず)は、第1の冷媒通路の途中に設けられている。 A valve portion (not shown) for adjusting the amount of refrigerant flowing through the first refrigerant passage is provided in the middle of the first refrigerant passage.
 シャフト5は、ボディ9に支持されており、冷媒通路3中で上下方向に延びて、冷媒通路3を横断している。また、シャフト5は、冷媒通路3内の冷媒の温度や圧力に応じて、ボディ9に対して図1や図2の上下方向で移動するようになっている。そして、上述したように、第1の冷媒通路に設けられている弁部の開度を変え、弁部を流れる冷媒の量を調整するようになっている。 The shaft 5 is supported by the body 9, extends in the vertical direction in the refrigerant passage 3, and crosses the refrigerant passage 3. The shaft 5 moves in the vertical direction of FIGS. 1 and 2 with respect to the body 9 according to the temperature and pressure of the refrigerant in the refrigerant passage 3. And as above-mentioned, the opening degree of the valve part provided in the 1st refrigerant path is changed, and the quantity of the refrigerant | coolant which flows through a valve part is adjusted.
 また、冷媒通路3での冷媒の流れにより冷媒通路3でシャフト5の下流側に発生するカルマン渦によって、冷媒通路3での冷媒が共鳴することを防止するために、上述したように、冷媒通路3の固有値F0が、シャフト5の外径と冷媒の流れにより発生するカルマン渦の周波数F1よりも大きく設定されている。 In order to prevent the refrigerant in the refrigerant passage 3 from resonating due to Karman vortices generated on the downstream side of the shaft 5 in the refrigerant passage 3 due to the refrigerant flow in the refrigerant passage 3, as described above, the refrigerant passage 3 is set larger than the frequency F1 of Karman vortex generated by the outer diameter of the shaft 5 and the flow of the refrigerant.
 冷媒通路3は、円柱状に形成されており、円柱状の空間を円柱の軸の延伸方向にほぼ平行に(図1や図2の右から左に向かって)冷媒が流れるようになっている。 The refrigerant passage 3 is formed in a columnar shape, and the refrigerant flows through the columnar space substantially parallel to the extending direction of the axis of the column (from the right to the left in FIGS. 1 and 2). .
 円柱状のシャフト5の外径D4は、円柱状の冷媒通路3の内径D2に比べて十分に小さくなっている。シャフト5の中心軸、つまり図1や図2で上下方向に延びている中心軸と、冷媒通路3の中心軸とは、お互いが直交して1点で交わっている。また、シャフト5は、円柱状の冷媒通路3をこの径方向、つまり図1や図2の上下方向の全長にわたって延伸している。 The outer diameter D4 of the cylindrical shaft 5 is sufficiently smaller than the inner diameter D2 of the cylindrical refrigerant passage 3. The central axis of the shaft 5, that is, the central axis extending in the vertical direction in FIGS. 1 and 2, and the central axis of the refrigerant passage 3 intersect each other at a single point. Further, the shaft 5 extends the columnar refrigerant passage 3 over the entire length in the radial direction, that is, the vertical direction in FIGS. 1 and 2.
 また、冷媒通路3から上方に若干入り込んだ箇所には、図1で示すように、従来のものと同様にパワーエレメント11が設けられており、シャフト5の長手方向である中心軸の延伸方向の一方の端、つまり上端がパワーエレメント11に係合しており、シャフト5の長手方向の他方の端が弁部に係合している。 Further, as shown in FIG. 1, a power element 11 is provided at a location slightly entering upward from the refrigerant passage 3, as in the conventional case, and is in the direction of extension of the central axis that is the longitudinal direction of the shaft 5. One end, that is, the upper end is engaged with the power element 11, and the other end in the longitudinal direction of the shaft 5 is engaged with the valve portion.
 そして、パワーエレメント11が検出した冷媒の温度と圧力、つまりエバポレータを出てきた冷媒の温度と圧力に応じて、シャフト5がこの中心軸の延伸方向で適宜移動し、弁部の開度を調整するようになっている。 And according to the temperature and pressure of the refrigerant detected by the power element 11, that is, the temperature and pressure of the refrigerant coming out of the evaporator, the shaft 5 is appropriately moved in the extending direction of the central axis to adjust the opening degree of the valve portion. It is supposed to be.
 なお、従来の膨張弁と同様にして、膨張弁1では、シャフト5が下方向に移動することで弁部の開度が大きくなり、シャフト5が上方向に移動することで弁部の開度が小さくなる。 As in the case of the conventional expansion valve, in the expansion valve 1, the opening degree of the valve portion increases as the shaft 5 moves downward, and the opening degree of the valve portion increases as the shaft 5 moves upward. Becomes smaller.
 ここで、冷媒通路3の固有値F0について説明する。 Here, the eigenvalue F0 of the refrigerant passage 3 will be described.
 固有値F0は、実際のエアコンの作動条件を考慮した通常の使用領域では、次に示す近似式f1であらわされる。近似式f1;F0=13582exp(―0.054×D2)。 The eigenvalue F0 is expressed by the following approximate expression f1 in the normal use region in consideration of the actual operating condition of the air conditioner. Approximate expression f1; F0 = 135282exp (−0.054 × D2).
 D2は、図1や図2で示す冷媒通路中央部7の内径である。F0の単位はHzであり、D2の単位はmmである。 D2 is the inner diameter of the refrigerant passage central portion 7 shown in FIG. 1 and FIG. The unit of F0 is Hz, and the unit of D2 is mm.
 また、冷媒通路3の固有値F0は、冷媒通路中央部7の内径D2だけでなく、冷媒通路3を流れる冷媒の流量(流速)、挿入継手13,15の通路の内径D1,D3(図1、図2参照)、挿入継手13,15間の距離、つまり冷媒通路中央部7の長さL、シャフト5の外径D4によっても変動する。 In addition, the eigenvalue F0 of the refrigerant passage 3 is not only the inner diameter D2 of the refrigerant passage central portion 7, but also the flow rate (flow velocity) of the refrigerant flowing through the refrigerant passage 3, the inner diameters D1 and D3 of the passages of the insertion joints 13 and 15 (FIG. 2), and also varies depending on the distance between the insertion joints 13 and 15, that is, the length L of the refrigerant passage central portion 7 and the outer diameter D4 of the shaft 5.
 しかし、実際には、冷媒の流量、挿入継手13,15の内径D1,D3、冷媒通路中央部7の長さL、シャフト5の外径D4による影響は小さく、概ね無視することができる。そこで、近似式f1では、変数として、冷媒通路中央部7の内径D2のみを採用している。 However, in practice, the influence of the refrigerant flow rate, the inner diameters D1 and D3 of the insertion joints 13 and 15, the length L of the refrigerant passage central portion 7, and the outer diameter D4 of the shaft 5 is small and can be almost ignored. Therefore, in the approximate expression f1, only the inner diameter D2 of the refrigerant passage central portion 7 is adopted as a variable.
 次に、シャフト5による冷媒のカルマン渦の周波数F1について説明する。 Next, the frequency F1 of the Karman vortex of the refrigerant by the shaft 5 will be described.
 カルマン渦の周波数F1は、次に示す近似式f2であらわされる。近似式f2;F1=0.2×V/D4。 Karman vortex frequency F1 is expressed by the following approximate expression f2. Approximate expression f2; F1 = 0.2 × V / D4.
 Vは、冷媒通路中央部7を流れる冷媒の流速であり、単位は、m/secである。D4の単位はmmであり、F1の単位はkHzである。 V is the flow velocity of the refrigerant flowing through the refrigerant passage central portion 7, and its unit is m / sec. The unit of D4 is mm, and the unit of F1 is kHz.
 次に、シャフト5が配置されている冷媒通路3(冷媒通路中央部7)の固有値F0が、シャフト5の外径D4により発生するカルマン渦の周波数F1よりも大きく設定されることについて、図3を参照しつつ説明する。 Next, the characteristic value F0 of the refrigerant passage 3 (refrigerant passage central portion 7) in which the shaft 5 is disposed is set to be larger than the Karman vortex frequency F1 generated by the outer diameter D4 of the shaft 5. FIG. Will be described with reference to FIG.
 図3の横軸は、冷媒通路中央部7の内径D2を示しており、縦軸は、固有値F0を示している。 3 represents the inner diameter D2 of the refrigerant passage central portion 7, and the vertical axis represents the eigenvalue F0.
 図3の線図G1は、シャフト5の外径D4が2.4mmであるときにおける、冷媒通路中央部7の内径D2と冷媒通路3の固有値F0との関係を示している。 3 shows a relationship between the inner diameter D2 of the refrigerant passage central portion 7 and the eigenvalue F0 of the refrigerant passage 3 when the outer diameter D4 of the shaft 5 is 2.4 mm.
 図3の線図G2は、線図G1を下方に余裕値として所定の値、たとえば300Hzだけ移動したものである。300Hz分の下方へ移動した線図G2を基準に内径D2を設定することによって、カルマン渦の周波数F1に誤差等があっても、冷媒通路3の固有値F0をカルマン渦の周波数F1よりも確実に大きくすることができる。 3 is obtained by moving the diagram G1 downward by a predetermined value, for example, 300 Hz. By setting the inner diameter D2 with reference to the diagram G2 moved downward by 300 Hz, even if there is an error in the Karman vortex frequency F1, the eigenvalue F0 of the refrigerant passage 3 is more reliably set than the Karman vortex frequency F1. Can be bigger.
 即ち、線図G3の場合、内径D2を線図G2よりも左側になる内径D2に設定すればよい。 That is, in the case of the diagram G3, the inner diameter D2 may be set to the inner diameter D2 on the left side of the diagram G2.
 図3に示す線図G3は、シャフト5の外径D4が2.4mmであるときにおけるカルマン渦の周波数F1であり、5000Hzを示している。線図G3のうちの範囲A1内に、冷媒通路中央部7の内径D2を設定すれば、固有値F0>カルマン渦の周波数F1になる。範囲A1の下限では、冷媒通路中央部7の内径D2が、好ましくは11mm程度で、より好ましくは13mm程度で、さらに好ましくは14mm程度になっている。範囲A1の上限では、シャフト5が横切る冷媒通路中央部7の内径D2が17mm程度になっている。 3 is a Karman vortex frequency F1 when the outer diameter D4 of the shaft 5 is 2.4 mm, and indicates 5000 Hz. If the inner diameter D2 of the refrigerant passage central portion 7 is set within the range A1 in the diagram G3, the eigenvalue F0> the Karman vortex frequency F1. At the lower limit of the range A1, the inner diameter D2 of the refrigerant passage central portion 7 is preferably about 11 mm, more preferably about 13 mm, and further preferably about 14 mm. At the upper limit of the range A1, the inner diameter D2 of the refrigerant passage central portion 7 traversed by the shaft 5 is about 17 mm.
 図3に示す線図G4は、シャフト5の外径D4が2.2mmであるときにおけるカルマン渦の周波数であり、5500Hzを示している。線図G4のうちの範囲A2内に、冷媒通路中央部7の内径D2を設定すれば、固有値F0>カルマン渦の周波数F1になる。範囲A2の下限では、冷媒通路中央部7の内径D2が、好ましくは10mm程度で、より好ましくは12mm程度で、さらに好ましくは13mm程度になっている。範囲A2の上限では、シャフト5が横切る冷媒通路中央部7の内径D2が16mm程度になっている。 3 is a Karman vortex frequency when the outer diameter D4 of the shaft 5 is 2.2 mm, and indicates 5500 Hz. If the inner diameter D2 of the refrigerant passage central portion 7 is set within the range A2 in the diagram G4, the eigenvalue F0> the Karman vortex frequency F1. At the lower limit of the range A2, the inner diameter D2 of the refrigerant passage central portion 7 is preferably about 10 mm, more preferably about 12 mm, and further preferably about 13 mm. At the upper limit of the range A2, the inner diameter D2 of the refrigerant passage central portion 7 traversed by the shaft 5 is about 16 mm.
 図3に示す線図G5は、シャフト5の外径D4が2.9mmであるときにおけるカルマン渦の周波数であり、4800Hzを示している。線図G5のうちの範囲A3内に、冷媒通路中央部7の内径D2を設定すれば、固有値F0>カルマン渦の周波数F1になる。範囲A3の下限では、冷媒通路中央部7の内径D2が、好ましくは13mm程度で、より好ましくは16mm程度で、さらに好ましくは17mm程度になっている。範囲A3の上限では、シャフト5が横切る冷媒通路中央部7の内径D2が18mm程度になっている。 3 is a Karman vortex frequency when the outer diameter D4 of the shaft 5 is 2.9 mm, and shows 4800 Hz. If the inner diameter D2 of the refrigerant passage central portion 7 is set within the range A3 in the diagram G5, the eigenvalue F0> the Karman vortex frequency F1. At the lower limit of the range A3, the inner diameter D2 of the refrigerant passage central portion 7 is preferably about 13 mm, more preferably about 16 mm, and further preferably about 17 mm. At the upper limit of the range A3, the inner diameter D2 of the refrigerant passage central portion 7 traversed by the shaft 5 is about 18 mm.
 膨張弁1についてさらに説明する。 The expansion valve 1 will be further described.
 膨張弁1では、シャフト5の投影面積S1が、冷媒通路3、つまり冷媒通路中央部7の投影面積S2の25%以下になっている。なお、シャフト5の投影面積S1が、冷媒通路3の投影面積S2の25%未満になっていてもよい。 In the expansion valve 1, the projected area S1 of the shaft 5 is 25% or less of the projected area S2 of the refrigerant passage 3, that is, the refrigerant passage central portion 7. The projected area S1 of the shaft 5 may be less than 25% of the projected area S2 of the refrigerant passage 3.
 シャフト5の投影面積S1とは、円柱状の冷媒通路中央部7をこの中心軸の延伸方向から見たときにおける、シャフト5の面積である。つまり、図4(a)に斜線で示す部位の面積である。 The projected area S1 of the shaft 5 is an area of the shaft 5 when the cylindrical refrigerant passage central portion 7 is viewed from the extending direction of the central axis. That is, it is the area of the part shown by the oblique line in FIG.
 冷媒通路中央部7の投影面積S2とは、円柱状の冷媒通路中央部7をこの中心軸の延伸方向から見たときにおける、冷媒通路中央部7の面積である。すなわち、冷媒通路中央部7の断面、つまり冷媒通路3の中心軸の延伸方向に対して直交する平面による断面の面積であり、冷媒通路中央部7の内径をD2とした場合、冷媒通路中央部7の投影面積S2は、式f3;S2=π×D2/4で表わされる。 The projected area S2 of the refrigerant passage central portion 7 is an area of the refrigerant passage central portion 7 when the cylindrical refrigerant passage central portion 7 is viewed from the extending direction of the central axis. That is, the area of the cross section of the refrigerant passage central portion 7, that is, the cross section of the plane orthogonal to the extending direction of the central axis of the refrigerant passage 3, and the refrigerant passage central portion 7 is defined as D2 the projected area S2 of 7, wherein f3; represented by S2 = π × D2 2/4 .
 そして、膨張弁1では、S1/S2≦0.25となっている。すなわち、投影面積S2に対する投影面積S1の比、つまりS1/S2が図4(b)で示す範囲A4内におさまっている。なお、S1/S2が、0.10~0.25の範囲内におさまっていることが望ましい。S1/S2が、0.12~0.25の範囲内におさまっているとより望ましい。なお、S1/S2≦0.30になっていてもよい。 And, in the expansion valve 1, S1 / S2 ≦ 0.25. That is, the ratio of the projection area S1 to the projection area S2, that is, S1 / S2 is within the range A4 shown in FIG. It is desirable that S1 / S2 be within the range of 0.10 to 0.25. It is more desirable that S1 / S2 is within the range of 0.12 to 0.25. Note that S1 / S2 ≦ 0.30 may be satisfied.
 また、膨張弁1では、シャフト5の外径D4が、たとえば、2.0mm以上であって3mm以下になっている。シャフト5の外径D4が、2.2mm以上であって3mm以下であるとより望ましい。 Moreover, in the expansion valve 1, the outer diameter D4 of the shaft 5 is, for example, 2.0 mm or more and 3 mm or less. The outer diameter D4 of the shaft 5 is more preferably 2.2 mm or more and 3 mm or less.
 さらには、シャフト5の外径D4が2.9mm以下であることが望ましい。このときの冷媒通路中央部7冷媒の内径D2は、14mm以上であって19mm以下であることが望ましい。 Furthermore, it is desirable that the outer diameter D4 of the shaft 5 is 2.9 mm or less. At this time, the inner diameter D2 of the refrigerant passage central portion 7 refrigerant is preferably 14 mm or more and 19 mm or less.
 ただし、シャフト5の外径D4は、カルマン渦の周波数F1が高すぎることにならないように、2.0mm以上であることが望ましい。シャフト5の外径D4は、2.2mm以上であるとより望ましい。なお、騒音の発生が他の条件によって抑えられるのであれば、上記25%の値を超えてもよい。この場合、たとえば、30%以下であることが望ましい。 However, the outer diameter D4 of the shaft 5 is desirably 2.0 mm or more so that the Karman vortex frequency F1 is not too high. The outer diameter D4 of the shaft 5 is more preferably 2.2 mm or more. If the generation of noise can be suppressed by other conditions, the above value of 25% may be exceeded. In this case, for example, 30% or less is desirable.
 また、膨張弁1では、シャフト5が設けられている冷媒通路3の部位における「D」字状の冷媒通路断面17(図5(a)参照)では、シャフト5が非存在である冷媒通路3の部位7の半円19(図5(c)参照)に比べて、等価円直径の減少率が16%以下になっている。 Further, in the expansion valve 1, the refrigerant passage 3 in which the shaft 5 is not present in the “D” -shaped refrigerant passage section 17 (see FIG. 5A) in the portion of the refrigerant passage 3 where the shaft 5 is provided. Compared with the semicircle 19 (see FIG. 5C) of the part 7 in FIG. 5, the reduction rate of the equivalent circular diameter is 16% or less.
 さらに説明すると、「D」字状の冷媒通路断面17は、シャフト5によって2等分された2つの冷媒通路のうちの1つの冷媒通路の部位である。なお、図5(a)は、シャフト5が設けられている冷媒通路3の部位7を冷媒の流れ方向から見た図である。 More specifically, the “D” -shaped refrigerant passage section 17 is a portion of one refrigerant passage of two refrigerant passages divided into two equal parts by the shaft 5. FIG. 5A is a view of the portion 7 of the refrigerant passage 3 in which the shaft 5 is provided as viewed from the flow direction of the refrigerant.
 また、シャフト5が非存在である冷媒通路3の部位7における半円19とは、円形状の冷媒通路中央部7を所定の1つの直径で2等分して形成された2つの冷媒通路のうちの1つの冷媒通路の部位である。なお、図5(c)は、シャフト5を取り除いた場合における冷媒通路を冷媒の流れ方向から見た図である。 Further, the semicircle 19 in the portion 7 of the refrigerant passage 3 where the shaft 5 is not present is the two refrigerant passages formed by dividing the circular refrigerant passage central portion 7 into two equal parts with a predetermined diameter. It is a part of one of the refrigerant passages. FIG. 5C is a view of the refrigerant passage when the shaft 5 is removed as seen from the refrigerant flow direction.
 シャフト5が設けられている冷媒通路3の部位7における「D」字状の冷媒通路断面17の等価円直径De1は、式f4;De1=4×Af1/Wp1で表わされる。Af1は、「D」字状の部位17の面積であり、Wp1は濡れ長さ、つまり「D」字状の部位17の外周の全周長さ、あるいは「D」字状の部位の壁面の長さである。式f4を用いた計算において、シャフト5まわりの、座ぐり加工されている凹部2(図1、図2参照)は無視してもよい。 The equivalent circular diameter De1 of the “D” -shaped refrigerant passage section 17 in the portion 7 of the refrigerant passage 3 where the shaft 5 is provided is represented by the formula f4; De1 = 4 × Af1 / Wp1. Af1 is the area of the “D” -shaped portion 17 and Wp1 is the wet length, that is, the entire circumference of the outer periphery of the “D” -shaped portion 17 or the wall surface of the “D” -shaped portion. Length. In the calculation using the equation f4, the recessed portion 2 (see FIGS. 1 and 2) around the shaft 5 that is countersunk may be ignored.
 シャフト5が非存在である冷媒通路3の部位7における半円19の等価円直径De2は、式f7;De2=4×Af2/Wp2で表わされる。Af2は、半円の部位の面積であり、Wp2は濡れ長さ、つまり半円の部位の壁面の長さである。 The equivalent circular diameter De2 of the semicircle 19 in the portion 7 of the refrigerant passage 3 where the shaft 5 is not present is expressed by the formula f7; De2 = 4 × Af2 / Wp2. Af2 is the area of the semicircular portion, and Wp2 is the wet length, that is, the length of the wall surface of the semicircular portion.
 膨張弁1では、(De2―De1)/De2≦0.16となっている。すなわち、等価円直径の減少率(De2―De1)/De2が図5(b)で示す範囲A5内におさまっている。なお、(De2―De1)/De2が、0.125~0.16の範囲内におさまっていてもよい。(De2―De1)/De2が、0.13~0.16の範囲内におさまっているとより望ましい。 In the expansion valve 1, (De2-De1) /De2≦0.16. That is, the reduction rate (De2-De1) / De2 of the equivalent circular diameter is within the range A5 shown in FIG. Note that (De2-De1) / De2 may fall within the range of 0.125 to 0.16. It is more desirable that (De2-De1) / De2 be within the range of 0.13 to 0.16.
 また、膨張弁1の冷媒通路3には、図1で示すように、挿入継手13,15が挿入されており、冷媒通路3、つまり冷媒通路中央部7の内径D2の値は、挿入継手13,15の内径D1,D3の値よりも大きくなっている。 Further, as shown in FIG. 1, insertion joints 13 and 15 are inserted into the refrigerant passage 3 of the expansion valve 1, and the value of the inner diameter D <b> 2 of the refrigerant passage 3, that is, the refrigerant passage central portion 7, is , 15 is larger than the values of the inner diameters D1, D3.
 継手(挿入継手)13,15は、冷媒通路3の一方の端部と冷媒通路3の他方の端部との両方の端部のそれぞれに挿入されて設けられている。 The joints (insertion joints) 13 and 15 are provided by being inserted into both ends of one end of the refrigerant passage 3 and the other end of the refrigerant passage 3, respectively.
 すなわち、継手として、冷媒通路入口から冷媒通路3に挿入されて冷媒入口に設けられている入口側継手(上流側継手)13と、この入口流側継手13とは別体であって、冷媒通路出口から冷媒通路3に挿入されて冷媒出口に設けられている出口側継手15が設けられている。 That is, an inlet side joint (upstream side joint) 13 that is inserted into the refrigerant path 3 from the refrigerant passage inlet and provided at the refrigerant inlet as a joint and the inlet flow side joint 13 are separate from each other, and the refrigerant path An outlet side joint 15 that is inserted into the refrigerant passage 3 from the outlet and provided at the refrigerant outlet is provided.
 そして、冷媒通路3の中央部位7の軸方向の長さの寸法Lの値を冷媒通路3の中央部位7の半径方向の深さ寸法Dの値で除したものに、継手13もしくは継手15の内径寸法(D1もしくはD3)の値を乗じて得られたパラメータaの値が、膨張弁1では、40未満に設定されている。 Then, the value of the length L in the axial direction of the central portion 7 of the refrigerant passage 3 is divided by the value of the depth D in the radial direction of the central portion 7 of the refrigerant passage 3. In the expansion valve 1, the value of the parameter a obtained by multiplying the value of the inner diameter dimension (D1 or D3) is set to be less than 40.
 さらに説明すると、上流側継手13の円筒状の部位、つまり外径が冷媒通路3の内径D2と等しく内径がD1になっている部位21が、冷媒通路3内に入り込んでいる。そして、下流側継手15の円筒状の部位、つまり外径が冷媒通路3の内径D2と等しく内径がD3になっている部位23が、冷媒通路3内に入り込んでいる。 More specifically, a cylindrical portion of the upstream joint 13, that is, a portion 21 whose outer diameter is equal to the inner diameter D 2 of the refrigerant passage 3 and whose inner diameter is D 1 enters the refrigerant passage 3. A cylindrical portion of the downstream side joint 15, that is, a portion 23 having an outer diameter equal to the inner diameter D <b> 2 of the refrigerant passage 3 and an inner diameter D <b> 3 enters the refrigerant passage 3.
 冷媒通路3内に挿入されている上流側継手13の円筒状の部位21の先端(図1では右端)と、冷媒通路3内に挿入されている下流側継手15の円筒状の部位23の先端(図1では左端)とは、お互いが、距離Lだけ離れている。そして、冷媒通路3の中央部には、継手13,15が非存在である中央部位(冷媒通路中央部)7が形成されている。 The tip of the cylindrical portion 21 of the upstream joint 13 inserted in the refrigerant passage 3 (the right end in FIG. 1) and the tip of the cylindrical portion 23 of the downstream joint 15 inserted in the refrigerant passage 3 (The left end in FIG. 1) are separated from each other by a distance L. A central portion (refrigerant passage central portion) 7 where the joints 13 and 15 are not present is formed at the central portion of the refrigerant passage 3.
 シャフト5は、冷媒通路中央部7の中央に設けられており、上流側継手13、下流側継手15から離れている。 The shaft 5 is provided in the center of the refrigerant passage central portion 7 and is separated from the upstream side joint 13 and the downstream side joint 15.
 冷媒通路中央部7の軸方向の長さの寸法Lとは、すでに理解されるように、冷媒通路の中央部7の中心軸の延伸方向における冷媒通路中央部7の寸法である。すなわち、上流側継手13と下流側継手15との間の寸法である。 The dimension L of the axial length of the refrigerant passage central portion 7 is a dimension of the refrigerant passage central portion 7 in the extending direction of the central axis of the central portion 7 of the refrigerant passage, as already understood. That is, it is a dimension between the upstream joint 13 and the downstream joint 15.
 冷媒通路中央部7の半径方向の深さ寸法Dとは、冷媒通路中央部7の直径D2の値から下流側継手15の円筒状の部位の内径D3の値を減じたものを「2」で除したものである。なお、深さ寸法Dは、冷媒通路中央部7の直径D2の値から上流側継手13の円筒状の部位の内径D1の値を減じたものを「2」で除したものであってもよい。 The radial depth D of the refrigerant passage central portion 7 is “2” obtained by subtracting the value of the inner diameter D3 of the cylindrical portion of the downstream joint 15 from the value of the diameter D2 of the refrigerant passage central portion 7. Divided. The depth dimension D may be obtained by dividing the value obtained by subtracting the value of the inner diameter D1 of the cylindrical portion of the upstream joint 13 from the value of the diameter D2 of the refrigerant passage central portion 7 by “2”. .
 パラメータを「a」とし、冷媒通路中央部7の軸方向の長さの寸法を「L」とし、冷媒通路中央部7の半径方向の深さ寸法を「D」とし、下流側継手15の円筒状の部位23の内径寸法を「D3」とすると、パラメータaは、式f8;a=L/D×D3で表される。また、冷媒通路中央部7の半径方向の深さ寸法Dは、式f9;D=(D2-D3)/2で表される。 The parameter is “a”, the dimension of the axial length of the refrigerant passage central portion 7 is “L”, the depth of the refrigerant passage central portion 7 in the radial direction is “D”, and the cylinder of the downstream joint 15 When the inner diameter dimension of the portion 23 is “D3”, the parameter a is expressed by the equation f8; a = L / D × D3. Further, the depth dimension D in the radial direction of the refrigerant passage central portion 7 is expressed by the equation f9; D = (D2−D3) / 2.
 膨張弁1では、固有値F0が冷媒通路中央部7の内径D2により変化する為、固有値F0を上昇させるために冷媒通路中央部7の内径D2を従来よりも小径化した。たとえば、冷媒通路中央部7の内径D2を従来の内径である18mmから小径化して15mmにした。 In the expansion valve 1, since the eigen value F0 changes depending on the inner diameter D2 of the refrigerant passage central portion 7, the inner diameter D2 of the refrigerant passage central portion 7 is made smaller than before in order to increase the eigenvalue F0. For example, the inner diameter D2 of the refrigerant passage central portion 7 is reduced from the conventional inner diameter of 18 mm to 15 mm.
 また、膨張弁1では、たとえば、D1を12mmとし、D2を15mmとし、D3を13.7mmとし、D4を2.4mmとし、Lを12mmとしている。 In the expansion valve 1, for example, D1 is 12 mm, D2 is 15 mm, D3 is 13.7 mm, D4 is 2.4 mm, and L is 12 mm.
 膨張弁1は、従来の膨張弁101等と同様に動作する。すなわち、冷媒通路3を流れる冷媒の温度と圧力とに応じて、エバポレータに流れる冷媒の流量を適宜調整する。 The expansion valve 1 operates in the same manner as the conventional expansion valve 101 or the like. That is, the flow rate of the refrigerant flowing through the evaporator is appropriately adjusted according to the temperature and pressure of the refrigerant flowing through the refrigerant passage 3.
 図6に示す試験結果では、冷媒通路中央部7の軸方向の長さの寸法Lを18mmに固定して、冷媒通路中央部7の内径D2と、シャフト5の外径D4とを変えている。図6に示すケースでは、○印のところで、騒音が許容範囲内におさまっている。 In the test result shown in FIG. 6, the dimension L of the axial length of the refrigerant passage central portion 7 is fixed to 18 mm, and the inner diameter D2 of the refrigerant passage central portion 7 and the outer diameter D4 of the shaft 5 are changed. . In the case shown in FIG. 6, the noise is within the allowable range at the circle mark.
 すなわち、内径D2が12mm~19mmの範囲内であり、かつ、シャフト5の外径D4が2.8mm~5.0mm範囲内であるとき、内径D2が12mm~18mmの範囲内であり、かつ、シャフト5の外径D4が2.6mm~2.8mm範囲内であるとき、内径D2が12mm~17mmの範囲内であり、かつ、シャフト5の外径D4が2.4mm~2.6mm範囲内であるとき、内径D2が12mm~15mmの範囲内であり、かつ、シャフト5の外径D4が2.2mm~2.4mm範囲内であるとき、内径D2が12mm~14mmの範囲内であり、かつ、シャフト5の外径D4が2.0mm~2.2mm範囲内であるときに、騒音が許容範囲内におさまっている。 That is, when the inner diameter D2 is in the range of 12 mm to 19 mm and the outer diameter D4 of the shaft 5 is in the range of 2.8 mm to 5.0 mm, the inner diameter D2 is in the range of 12 mm to 18 mm, and When the outer diameter D4 of the shaft 5 is in the range of 2.6 mm to 2.8 mm, the inner diameter D2 is in the range of 12 mm to 17 mm, and the outer diameter D4 of the shaft 5 is in the range of 2.4 mm to 2.6 mm. When the inner diameter D2 is in the range of 12 mm to 15 mm and the outer diameter D4 of the shaft 5 is in the range of 2.2 mm to 2.4 mm, the inner diameter D2 is in the range of 12 mm to 14 mm. Further, when the outer diameter D4 of the shaft 5 is within the range of 2.0 mm to 2.2 mm, the noise is within the allowable range.
 さらに説明すると、図7に示す太枠で示す範囲、つまり枠内の数字が0.18~0.30になっている範囲になるような、冷媒通路中央部7の内径D2と、シャフト5の外径D4とを採用すれば、騒音の発生を抑制することができる。 More specifically, the inner diameter D2 of the refrigerant passage center 7 and the shaft 5 such that the range indicated by the thick frame shown in FIG. If the outer diameter D4 is adopted, generation of noise can be suppressed.
 なお、図7の代わりに図8に示す太枠で示す範囲、つまり枠内の数字が0.18~0.25になっている範囲を用いて、騒音を抑制できる冷媒通路中央部7の内径D2とシャフト5の外径D4とを採用してもよい。 It should be noted that the inner diameter of the refrigerant passage central portion 7 capable of suppressing noise by using the range indicated by the thick frame shown in FIG. 8 instead of FIG. 7, that is, the range in which the number in the frame is 0.18 to 0.25. You may employ | adopt D2 and the outer diameter D4 of the shaft 5. FIG.
 図9で示す試験結果では、冷媒通路中央部7の軸方向の長さの寸法Lを18mmに固定して、冷媒通路中央部7の内径D2と、シャフト5の外径D4とを変えている。図9に示すケースでは、太枠で示す範囲内で、騒音を抑制することができる。 In the test results shown in FIG. 9, the dimension L of the axial length of the refrigerant passage central portion 7 is fixed to 18 mm, and the inner diameter D2 of the refrigerant passage central portion 7 and the outer diameter D4 of the shaft 5 are changed. . In the case shown in FIG. 9, noise can be suppressed within a range indicated by a thick frame.
 図9で示す「0.847」等の数字は、シャフト5の外径を「0」と仮定し、冷媒通路中央部7を二等分割した流体直径を「1」としたときの流体直径比を示している。「1」から「0.847」等を減じた値(たとえば、1-0.847=0.153)が、等価円直径の減少率になる。等価円直径の減少率が、0.13~0.16、つまり13%~16%であれば、騒音を抑制することができる。 The numbers such as “0.847” shown in FIG. 9 assume that the outer diameter of the shaft 5 is “0” and the fluid diameter ratio when the fluid diameter obtained by equally dividing the refrigerant passage central portion 7 is “1”. Is shown. A value obtained by subtracting “0.847” from “1” (for example, 1−0.847 = 0.153) is the reduction rate of the equivalent circular diameter. If the reduction rate of the equivalent circular diameter is 0.13 to 0.16, that is, 13% to 16%, noise can be suppressed.
 膨張弁1には、シャフト5の外形が円柱状に形成されているとともにシャフト5がむき出し状態で冷媒通路3(冷媒通路中央部7)中に配置されている。このため、膨張弁1には、シャフト5を囲むカバーが不要になっており、また、シャフト5の外表面にディンプル加工等を施してシャフト5の外表面に多数の凹凸を形成する必要が無くなっている。つまり、膨張弁1は、構成が簡素化されている。また、シャフト5の外表面が凹凸の無いなめらかな形状になっている。このため、冷媒通路3の流路抵抗を小さくすることができる。 In the expansion valve 1, the outer shape of the shaft 5 is formed in a cylindrical shape, and the shaft 5 is exposed in the refrigerant passage 3 (the refrigerant passage central portion 7). For this reason, the expansion valve 1 does not require a cover surrounding the shaft 5, and it is not necessary to form dimples or the like on the outer surface of the shaft 5 to form a large number of irregularities on the outer surface of the shaft 5. ing. That is, the configuration of the expansion valve 1 is simplified. Further, the outer surface of the shaft 5 has a smooth shape with no irregularities. For this reason, the flow path resistance of the refrigerant passage 3 can be reduced.
 また、膨張弁1は、シャフト5が配置されている冷媒通路中央部7の固有値F0が、シャフト5により発生するカルマン渦の周波数F1よりも大きく設定されている。このため、シャフト5が配置されている冷媒通路3を冷媒が流れたときに、シャフト5によって発生するカルマン渦と、冷媒通路3での冷媒との共振が回避され、騒音の発生を防止することができる。 Further, in the expansion valve 1, the eigenvalue F0 of the refrigerant passage central portion 7 where the shaft 5 is disposed is set to be larger than the frequency F1 of Karman vortex generated by the shaft 5. For this reason, when the refrigerant flows through the refrigerant passage 3 in which the shaft 5 is disposed, resonance between the Karman vortex generated by the shaft 5 and the refrigerant in the refrigerant passage 3 is avoided, and generation of noise is prevented. Can do.
 また、膨張弁1においてカルマン渦の周波数F1を下げるためにはシャフト5を大径化すればよいが、シャフト5を大径化によって冷媒通路3中の投影面積S1が大きくなり冷媒流れの通路抵抗が上がってしまう。しかし、膨張弁1では、シャフト5の投影面積S1が冷媒通路中央部7の投影面積S2の25%以下になっているので、冷媒通路3中のシャフト5の投影面積S1が大きくなることによる冷媒流れの通路抵抗が上昇することが抑えられるとともに、カルマン渦の周波数F1を適度に下げることができる。 Further, in order to lower the Karman vortex frequency F1 in the expansion valve 1, the diameter of the shaft 5 may be increased. However, by increasing the diameter of the shaft 5, the projected area S1 in the refrigerant passage 3 is increased and the passage resistance of the refrigerant flow is increased. Will go up. However, in the expansion valve 1, the projected area S 1 of the shaft 5 is 25% or less of the projected area S 2 of the refrigerant passage central portion 7, so that the refrigerant due to an increase in the projected area S 1 of the shaft 5 in the refrigerant passage 3. An increase in the flow path resistance can be suppressed, and the Karman vortex frequency F1 can be lowered appropriately.
 また、膨張弁1は、従来のようにシャフト5を囲むカバーを設けていない。つまり、冷媒通路2中のシャフト5の実質的な外径が小さくなっている。このため、カルマン渦の周波数F1が高くなる場合であっても、冷媒通路中央部7の内径D2が従来のものに比べて小さくなっていることで、騒音の発生を防止することができる。 Further, the expansion valve 1 is not provided with a cover surrounding the shaft 5 as in the prior art. That is, the substantial outer diameter of the shaft 5 in the refrigerant passage 2 is small. For this reason, even if the Karman vortex frequency F1 is increased, the inner diameter D2 of the refrigerant passage central portion 7 is smaller than that of the conventional one, so that the generation of noise can be prevented.
 また、膨張弁1によれば、シャフト5が設けられている冷媒通路3の部位7における「D」字状の冷媒通路断面17では、等価円直径の減少率が16%以下になっているので、冷媒が流れる壁面、つまり冷媒通路やシャフトの壁面での摩擦損失を小さくすることができ、シャフト5が設けられている冷媒通路3の部位7における冷媒流れの通路抵抗が上昇することが抑えられる。 Further, according to the expansion valve 1, the reduction rate of the equivalent circular diameter is 16% or less in the “D” -shaped refrigerant passage section 17 in the portion 7 of the refrigerant passage 3 where the shaft 5 is provided. The friction loss on the wall surface through which the refrigerant flows, that is, the refrigerant passage and the wall surface of the shaft can be reduced, and the passage resistance of the refrigerant flow in the portion 7 of the refrigerant passage 3 provided with the shaft 5 can be suppressed. .
 また、膨張弁1によれば、冷媒通路中央部7の内径D2の値が継手13,15の内径D1,D3の値よりも大きくなっているので、冷媒通路2での通路抵抗が上昇することが抑制される。 Further, according to the expansion valve 1, the value of the inner diameter D2 of the refrigerant passage central portion 7 is larger than the values of the inner diameters D1 and D3 of the joints 13 and 15, so that the passage resistance in the refrigerant passage 2 increases. Is suppressed.
 また、膨張弁1によれば、パラメータaの値が40未満に設置されていても、シャフト5が配置されている冷媒通路3の固有値F0が、シャフト5の外径D4により発生するカルマン渦の周波数F1よりも大きく設定されているので、冷媒の流れによる騒音の発生を防止することができる。 Further, according to the expansion valve 1, even if the value of the parameter a is set to less than 40, the eigenvalue F0 of the refrigerant passage 3 in which the shaft 5 is disposed is the Karman vortex generated by the outer diameter D4 of the shaft 5. Since it is set to be larger than the frequency F1, it is possible to prevent the generation of noise due to the flow of the refrigerant.
 1 膨張弁
 3 冷媒通路
 5 シャフト
 7 冷媒通路の部位
 13 継手(入口側挿入継手)
 15 継手(出口側挿入継手)
 17 「D」字状の冷媒通路断面
 a パラメータ
 D 冷媒通路の中央部位の半径方向の深さ
 D1 入口側挿入継手の内径寸法
 D3 出口側挿入継手の内径寸法
 F0 冷媒通路の固有値
 F1 カルマン渦の周波数
 L 冷媒通路の中央部位の軸方向の長さ
 S1 シャフトの投影面積
 S2 冷媒通路の投影面積
1 Expansion Valve 3 Refrigerant Passage 5 Shaft 7 Refrigerant Passage Part 13 Joint (Inlet Side Insertion Joint)
15 Fitting (Outlet side insertion fitting)
17 “D” -shaped refrigerant passage cross-section a Parameter D Radial depth of the central portion of the refrigerant passage D1 Inner diameter dimension of the inlet side insertion joint D3 Inner diameter dimension of the outlet side insertion joint F0 Eigenvalue of the refrigerant path F1 Karman vortex frequency L Length in the axial direction of the central part of the refrigerant passage S1 Projected area of the shaft S2 Projected area of the refrigerant passage

Claims (6)

  1.  弁部を流れる冷媒の量を調整するために前記弁部を作動させるシャフトが、冷媒が流れる冷媒通路中に配置されている膨張弁であって、
     前記シャフトが配置されている冷媒通路の固有値が、前記シャフトの外径により発生するカルマン渦の周波数よりも大きく設定されており、
     前記シャフトの外形は円柱状に形成されているとともに、前記シャフトがむき出し状態で前記冷媒通路中に配置されていることを特徴とする膨張弁。
    A shaft that operates the valve portion to adjust the amount of refrigerant flowing through the valve portion is an expansion valve disposed in a refrigerant passage through which the refrigerant flows,
    The eigenvalue of the refrigerant passage in which the shaft is arranged is set to be larger than the frequency of Karman vortex generated by the outer diameter of the shaft,
    An expansion valve characterized in that an outer shape of the shaft is formed in a cylindrical shape, and the shaft is disposed in the refrigerant passage in an exposed state.
  2.  請求項1に記載の膨張弁において、
     前記シャフトの投影面積が、前記冷媒通路の投影面積の30%以下であることを特徴とする膨張弁。
    The expansion valve according to claim 1,
    An expansion valve, wherein a projected area of the shaft is 30% or less of a projected area of the refrigerant passage.
  3.  請求項1または請求項2に記載の膨張弁において、
     前記シャフトの径は、3mm以下であることを特徴とする膨張弁。
    The expansion valve according to claim 1 or 2,
    The shaft has a diameter of 3 mm or less.
  4.  請求項1~請求項3のいずれか1項に記載の膨張弁において、
     前記シャフトが設けられている前記冷媒通路の部位における「D」字状の冷媒通路断面では、等価円直径の減少率が16%以下になっていることを特徴とする膨張弁。
    The expansion valve according to any one of claims 1 to 3,
    An expansion valve characterized in that a reduction rate of an equivalent circular diameter is 16% or less in a "D" -shaped refrigerant passage section in a portion of the refrigerant passage where the shaft is provided.
  5.  請求項1~請求項4のいずれか1項に記載の膨張弁において、
     前記冷媒通路には、継手が挿入されており、
     前記冷媒通路の内径の値は、前記継手の内径の値よりも大きくなっていることを特徴とする膨張弁。
    The expansion valve according to any one of claims 1 to 4,
    A joint is inserted in the refrigerant passage,
    The expansion valve according to claim 1, wherein an inner diameter value of the refrigerant passage is larger than an inner diameter value of the joint.
  6.  請求項5に記載の膨張弁において、
     前記継手は、前記冷媒通路の一方の端部と前記冷媒通路の他方の端部とに挿入されており、
     前記冷媒通路の中央部位の軸方向の長さの寸法の値を前記冷媒通路の中央部位の半径方向の深さ寸法の値で除したものに前記継手の内径寸法の値を乗じて得られたパラメータの値が、40未満に設置されていることを特徴とする膨張弁。
    The expansion valve according to claim 5,
    The joint is inserted into one end of the refrigerant passage and the other end of the refrigerant passage,
    Obtained by multiplying the value of the axial length of the central portion of the refrigerant passage by the value of the radial depth of the central portion of the refrigerant passage and the value of the inner diameter of the joint. An expansion valve having a parameter value set to less than 40.
PCT/JP2017/028675 2016-08-10 2017-08-08 Expansion valve WO2018030364A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780047193.8A CN109564040A (en) 2016-08-10 2017-08-08 Expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016157838A JP2018025364A (en) 2016-08-10 2016-08-10 Expansion valve
JP2016-157838 2016-08-10

Publications (1)

Publication Number Publication Date
WO2018030364A1 true WO2018030364A1 (en) 2018-02-15

Family

ID=61162323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028675 WO2018030364A1 (en) 2016-08-10 2017-08-08 Expansion valve

Country Status (3)

Country Link
JP (1) JP2018025364A (en)
CN (1) CN109564040A (en)
WO (1) WO2018030364A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145656A (en) * 2015-02-06 2016-08-12 株式会社テージーケー Expansion valve and pipeline attachment structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159616A (en) * 1994-12-05 1996-06-21 Zexel Corp Cooling cycle
JPH10288424A (en) * 1997-04-11 1998-10-27 Fuji Koki Corp Temperature type expansion valve
JPH11173705A (en) * 1997-12-09 1999-07-02 Tgk Co Ltd Expansion valve with bypass pipeline for refrigeration cycle
JP2004053181A (en) * 2002-07-23 2004-02-19 Fuji Koki Corp Expansion valve
JP2016044861A (en) * 2014-08-21 2016-04-04 株式会社テージーケー Expansion valve

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446636B2 (en) * 2015-02-06 2019-01-09 株式会社テージーケー Expansion valve and its piping mounting structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159616A (en) * 1994-12-05 1996-06-21 Zexel Corp Cooling cycle
JPH10288424A (en) * 1997-04-11 1998-10-27 Fuji Koki Corp Temperature type expansion valve
JPH11173705A (en) * 1997-12-09 1999-07-02 Tgk Co Ltd Expansion valve with bypass pipeline for refrigeration cycle
JP2004053181A (en) * 2002-07-23 2004-02-19 Fuji Koki Corp Expansion valve
JP2016044861A (en) * 2014-08-21 2016-04-04 株式会社テージーケー Expansion valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145656A (en) * 2015-02-06 2016-08-12 株式会社テージーケー Expansion valve and pipeline attachment structure

Also Published As

Publication number Publication date
JP2018025364A (en) 2018-02-15
CN109564040A (en) 2019-04-02

Similar Documents

Publication Publication Date Title
EP2667118A2 (en) Expansion valve and vibration-proof spring
KR101930347B1 (en) Suction dampening device with internal dampening for vehicle air conditioning compressor
JP6367164B2 (en) Pressure operated valve and refrigeration cycle
EP3184938B1 (en) Expansion valve
US11428239B2 (en) Compressor suction pipe, compression unit, and chiller
JP2017026191A (en) Temperature expansion valve and refrigeration cycle
JP2008014628A (en) Temperature expansion valve
CN102588669B (en) Thermal expansion valve
JP6327401B2 (en) Pressure reducing valve
JP6231509B2 (en) Throttle device and refrigeration cycle
JP6659624B2 (en) Motorized valve and refrigeration cycle system
WO2018030364A1 (en) Expansion valve
JP2009299683A (en) Variable displacement compressor with discharge pressure compensated suction shutoff valve
JP5535098B2 (en) Refrigeration cycle equipment
EP3133325B1 (en) Control valve
JP2021038802A (en) Electric valve and refrigeration cycle system
CN107636406B (en) Throttle device and refrigeration cycle
JP6697976B2 (en) Expansion valve
JP6828532B2 (en) Temperature expansion valve
JP6697975B2 (en) Expansion valve
JP2017187225A (en) Expansion valve
JP2016044861A (en) Expansion valve
JP2017072352A (en) Refrigerating device
JP6899584B2 (en) Expansion valve
US20160195318A1 (en) Expansion apparatus and refrigerant cycle of vehicle air conditioner using the same

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17839435

Country of ref document: EP

Kind code of ref document: A1