WO2018030202A1 - Laminate, metal mesh, and touch panel - Google Patents

Laminate, metal mesh, and touch panel Download PDF

Info

Publication number
WO2018030202A1
WO2018030202A1 PCT/JP2017/027820 JP2017027820W WO2018030202A1 WO 2018030202 A1 WO2018030202 A1 WO 2018030202A1 JP 2017027820 W JP2017027820 W JP 2017027820W WO 2018030202 A1 WO2018030202 A1 WO 2018030202A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
laminate
copper
transparent substrate
Prior art date
Application number
PCT/JP2017/027820
Other languages
French (fr)
Japanese (ja)
Inventor
亘 冨士川
白髪 潤
朋和 髭白
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020197004171A priority Critical patent/KR102206686B1/en
Priority to CN201780048399.2A priority patent/CN109563625B/en
Priority to JP2018532948A priority patent/JP6497571B2/en
Publication of WO2018030202A1 publication Critical patent/WO2018030202A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1841Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/208Multistep pretreatment with use of metal first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0286Programmable, customizable or modifiable circuits
    • H05K1/0287Programmable, customizable or modifiable circuits having an universal lay-out, e.g. pad or land grid patterns or mesh patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1208Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns

Definitions

  • the present invention relates to a laminate using a transparent substrate, a metal mesh, and a touch panel.
  • Capacitive touch panels can be multi-touched, and can be used outdoors without malfunctioning against the sun, fallen leaves, insects, etc., so use in vending machines, station information panels, and table-type touch panels is increasing. .
  • the capacitive touch panel has a structure in which a pressed position is specified by forming a specific electrode pattern and detecting a change in capacitance value between the electrodes.
  • One method of this capacitance type is to pattern two electrodes and convert a weak current at the pressed position into a voltage by a controller to detect the voltage. Therefore, a conductive film used for a capacitive touch panel needs to have a low surface resistivity and high transparency.
  • a film having an ITO (Indium Tin Oxide) film formed on the surface has been widely used. Since the ITO film is formed on the surface of the film by vapor deposition or sputtering, it has been a problem that the increase in size is limited in terms of cost. In addition, since the ITO film has a relatively high volume resistivity, there is a limit to the reaction speed, for example, when the display becomes large, a weak current at the pressed position cannot be detected.
  • ITO Indium Tin Oxide
  • PET polyethylene terephthalate
  • a polycarbonate substrate with a copper layer formed on one or both sides of the substrate has been used to form a thin wire with a line width of 5 ⁇ m or less by photolithography, resulting in low resistivity and transparency.
  • a transparent conductive film called a metal mesh that satisfies the above has been proposed (see, for example, Patent Document 1).
  • the PET base material on which the copper layer is formed is a method of forming a copper film by depositing copper on a film, and a copper film can be easily obtained.
  • the temperature at which copper is deposited is lower than the temperature at which ITO is deposited, the bite of copper into the PET substrate is reduced, and the adhesion between the copper layer and the PET substrate is reduced. there were.
  • a method of forming a copper layer on the surface of the PET base material there is a method of applying an adhesive to the PET base material and bonding it to a roughened copper foil.
  • high adhesion can be obtained between the PET base material and the copper foil.
  • the unevenness of the roughened copper foil is transferred to the adhesive layer and a fine line is formed by a photolithography method,
  • the transparency of the surface of the PET base material exposed after etching was lowered.
  • the copper foil has irregularities, there is a drawback that when forming a thin line having a line width of 5 ⁇ m by photolithography, the thin line cannot be formed with high accuracy.
  • the problem to be solved by the present invention is extremely excellent in adhesion between a transparent substrate and a metal plating layer such as copper, and when a mesh-like conductive pattern is formed, the side opposite to the surface on which the conductive pattern is formed It is to provide a laminated body that is difficult to see a conductive pattern even when viewed from above and has excellent transparency, and a metal mesh and a touch panel using the laminate.
  • the present inventors have sequentially laminated a primer layer, a metal layer formed of metal nanoparticles, and a metal plating layer on a transparent substrate.
  • the lightness (L * ) of the value measured in the L * a * b * color system from the side opposite to the surface of the transparent substrate on which the primer layer and the like are formed is a certain value or less.
  • the laminate is extremely excellent in adhesion between the transparent substrate and the metal plating layer. Even when the conductive pattern is formed with an etching agent, the laminate is excellent in transparency.
  • the present invention has been completed by finding that the conductive pattern is difficult to see even when viewed from the side opposite to the surface on which the conductive pattern is formed and is excellent in transparency.
  • the primer layer (B), the metal layer (C) formed of the metal nanoparticles (c), and the metal plating layer (D) are sequentially laminated on the transparent substrate (A).
  • L * ) is 55 or less, and the present invention provides a laminate, and a metal mesh and touch panel using the laminate.
  • the laminate of the present invention is extremely superior in adhesion between the transparent base material and the metal plating layer compared to the conventional method of forming a copper layer by vapor deposition or sputtering, and is non-conductive after forming a conductive pattern with an etching agent. Excellent pattern part transparency. Further, when a mesh-like conductive pattern is formed using the laminate of the present invention, there is a feature that the mesh-like conductive pattern is difficult to see when viewed from the surface where the conductive pattern is not formed. .
  • the laminate of the present invention includes, for example, a conductive pattern, a conductive film for a touch panel, a metal mesh for a touch panel, an electronic circuit, an organic solar cell, an electronic terminal, an organic EL element, an organic transistor, a flexible printed board, and a non-contact IC.
  • a wiring member such as an RFID such as a card or an electromagnetic wave shield.
  • it is optimal for applications such as touch panels that require transparency.
  • a primer layer, a metal layer, a metal plating layer, and a blackening layer are sequentially formed on one side of a transparent substrate, and a primer layer, a metal layer, and a metal plating layer are formed on the other side, and a metal layer, a metal plating layer, and It is a top view of the metal mesh of this invention which patterned the blackening layer.
  • a primer layer, a metal layer, a metal plating layer, and a blackening layer are sequentially formed on one side of a transparent substrate, and a primer layer, a metal layer, and a metal plating layer are formed on the other side, and a metal layer, a metal plating layer, and It is a perspective view of the metal mesh of this invention which patterned the blackening layer.
  • the metal layer and metal of the laminate of the present invention in which a primer layer, a metal layer, a metal plating layer, and a blackening layer are sequentially formed on one side of a transparent substrate and a primer layer, a metal layer, and a metal plating layer are formed on the other side It is sectional drawing of the A section shown in FIG. 3 about the metal mesh of this invention which patterned the plating layer and the blackening layer.
  • a primer layer (B), a metal layer (C) formed of metal nanoparticles (c), and a metal plating layer (D) are sequentially laminated on a transparent substrate (A).
  • the laminate of the present invention may be a laminate in which a primer layer (B) or the like is sequentially laminated on one side of the transparent substrate (A), and a primer layer (B on both sides of the transparent substrate (A). ) And the like may be sequentially laminated.
  • the transparent substrate (A) preferably has a total light transmittance of 20% or more, more preferably 60% or more, and still more preferably 80% or more.
  • Examples of the material for the transparent substrate (A) include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, cycloolefin polymer, polymethyl methacrylate, polyethylene, polypropylene, polyether ether ketone, polyvinyl chloride, and polyvinylidene chloride. , Polyvinyl alcohol, polyurethane, cellulose nanofiber, glass, quartz, silicon, sapphire and the like.
  • a material of the said transparent base material (A) a polyethylene terephthalate, a polyethylene naphthalate, a polycarbonate, a polyimide, a cycloolefin polymer, polymethylmethacrylate, polyethylene Polypropylene and glass are preferred.
  • the transparent base material (A) is preferably a flexible and flexible transparent base material when the laminate of the present invention is used for applications that require bending flexibility. Specifically, a film or sheet-like transparent substrate is preferable.
  • the thickness of the film or sheet is preferably in the range of 1 to 5,000 ⁇ m, preferably in the range of 1 to 300 ⁇ m. A range of 1 to 200 ⁇ m is more preferable.
  • transduction of functional groups, such as a hydroxyl group, a carbonyl group, and a carboxyl group, may be given.
  • plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, wet treatment using an aqueous solution such as water, acid / alkali, or an organic solvent may be applied.
  • the primer layer (B) can be formed by applying a primer to a part or all of the surface of the transparent substrate and removing a solvent such as an aqueous medium or an organic solvent contained in the primer. .
  • Examples of the method for applying the primer on the surface of the transparent substrate include gravure method, coating method, screen method, roller method, rotary method, spray method and the like.
  • plasma treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment.
  • Surface treatment is preferably carried out by a wet treatment method using a method, water, an acidic or alkaline chemical solution, an organic solvent, or the like.
  • a method for removing the solvent contained in the coating layer after coating the primer on the surface of the transparent substrate for example, a method of drying using a dryer and volatilizing the solvent is common.
  • the drying temperature may be set to a temperature within a range where the solvent can be volatilized and the transparent base material is not adversely affected such as thermal deformation.
  • the film thickness of the primer layer (B) formed using the primer varies depending on the use of the laminate of the present invention, the adhesion between the transparent substrate (A) and the metal layer (C) is further improved.
  • the thickness of the primer layer is preferably in the range of 10 nm to 30 ⁇ m, more preferably in the range of 10 nm to 1 ⁇ m, and still more preferably in the range of 10 nm to 500 nm.
  • primer resin composition (b) used for forming the primer layer (B) those containing various resins and solvents can be used.
  • the resin examples include urethane resins, vinyl resins, urethane-vinyl composite resins, epoxy resins, imide resins, amide resins, melamine resins, phenol resins, urea formaldehyde resins, blocked isocyanates using phenol as a blocking agent, Examples thereof include polyvinyl alcohol and polyvinyl pyrrolidone.
  • the resin composition containing an aromatic ring because it improves the adhesion between the transparent substrate (A) and the metal layer (C) and does not lower the transparency of the transparent substrate (A). It is preferable to use a product.
  • Examples of the resin composition containing an aromatic ring include blocked isocyanates obtained by flocking urethane resin, vinyl resin, epoxy resin, imide resin, melamine resin, phenol resin, phenol and the like. Of these, urethane resin and vinyl resin are preferably used.
  • urethane resin those having an aromatic ring are preferable, and a reaction product of a polyol and a polyisocyanate containing an aromatic polyester polyol and a polyol having a hydrophilic group is preferable.
  • the aromatic ring can be introduced into the urethane resin by using a polyol having an aromatic ring as the polyol used in the production of the urethane resin.
  • the urethane resin has a hydrophilic group because it can improve the adhesion between the transparent substrate (A) and the metal layer (C).
  • the hydrophilic group include an anionic group, a cationic group, and a nonionic group. Among these, an anionic group or a cationic group is preferable, and an anionic group is more preferable.
  • anionic group examples include a carboxyl group, a sulfonic acid group, a carboxylate group in which part or all of them are neutralized with a basic compound, a sulfonate group, and the like.
  • a carboxyl group or a carboxylate group is preferable because a resin having good water dispersibility can be obtained.
  • Examples of basic compounds that can be used for neutralizing the anionic group include organic amines such as ammonia, triethylamine, pyridine, and morpholine; alkanolamines such as monoethanolamine; metals including sodium, potassium, lithium, calcium, and the like Examples include basic compounds.
  • examples of the cationic group include a tertiary amino group.
  • the tertiary amino group may be partially or entirely neutralized with acetic acid or propionic acid.
  • nonionic group examples include a polyoxyethylene group, a polyoxypropylene group, a polyoxyethylene-polyoxypropylene group, and the like.
  • the content of the hydrophilic group such as the anionic group and the cationic group in the urethane resin is in the range of 15 to 2,000 mmol / kg because the water dispersion stability of the urethane resin in the aqueous medium is improved. preferable.
  • the hydrophilic group can be introduced into the urethane resin by using a polyol or polyisocyanate having a hydrophilic group in part or all of the polyol or polyisocyanate used in the production of the urethane resin.
  • the weight average molecular weight of the urethane resin having a hydrophilic group it is possible to obtain a primer resin composition (b) capable of forming a film having excellent film forming properties and excellent heat and moisture resistance, water resistance and heat resistance.
  • the range of 5,000 to 500,000 is preferred, and the range of 20,000 to 100,000 is more preferred.
  • the vinyl resin is preferably a vinyl resin obtained by copolymerizing a vinyl monomer having an aromatic ring such as styrene or ⁇ -methylstyrene.
  • a vinyl monomer having an aromatic ring such as styrene or ⁇ -methylstyrene.
  • other various vinyl monomers such as a (meth) acrylic-acid alkylester, can be copolymerized with the vinyl monomer containing the said aromatic ring.
  • Specific examples of the vinyl resin include butadiene-styrene copolymers, acrylic-styrene copolymers, and the like.
  • the primer resin composition (b) is preferably one containing 1 to 70% by mass of the resin in the primer, and more preferably 1 to 20% by mass because the coatability is improved.
  • examples of the solvent that can be used for the primer resin composition (b) include various organic solvents and aqueous media.
  • the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone, and the like.
  • the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • organic solvent miscible with water examples include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol, propylene And alkylene glycol solvents such as glycol; polyalkylene glycol solvents such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; and lactam solvents such as N-methyl-2-pyrrolidone.
  • alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, butyl cellosolve
  • ketone solvents such as acetone and methyl ethyl ketone
  • the resin may have a crosslinkable functional group such as an alkoxysilyl group, a silanol group, a hydroxyl group, and an amino group as necessary.
  • the cross-linked structure formed by these cross-linkable functional groups may already form a cross-linked structure before the fluid is applied, and after the fluid is applied, for example, firing
  • a crosslinked structure may be formed by heating in a process or the like.
  • the primer resin composition (b) may be a known one such as a crosslinking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent, if necessary. You may add and use it suitably.
  • crosslinking agent examples include metal chelate compounds, polyamine compounds, aziridine compounds, metal salt compounds, isocyanate compounds and the like, and thermal crosslinking agents that react at a relatively low temperature of about 25 to 100 ° C. to form a crosslinked structure; Thermal crosslinking agents that react at a relatively high temperature of 100 ° C. or higher, such as melamine compounds, epoxy compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds, to form a crosslinked structure; and various photocrosslinking agents.
  • the cross-linking agent may be used in a range of 0.01 to 60 parts by mass with respect to 100 parts by mass of the resin contained in the primer because it can form a conductive pattern with excellent adhesion, although it varies depending on the type. It is preferably used in the range of 0.1 to 10 parts by mass, and more preferably in the range of 0.1 to 5 parts by mass.
  • a cross-linking structure may be formed on the primer layer (B) before forming the metal layer (C) described later.
  • a crosslinked structure may be formed in the primer layer (B) by heating in a firing step or the like.
  • the metal layer (C) is formed on the primer layer (B), and the metal constituting the metal layer (C) includes a transition metal or a compound thereof, among which an ionic transition Metal is preferred.
  • the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, and cobalt.
  • copper, silver, and gold are preferable because they have a low electrical resistance and provide a conductive pattern that is resistant to corrosion.
  • the metal layer (C) is preferably porous, and in this case, the layer has voids.
  • examples of the metal constituting the metal plating layer (D) include copper, nickel, chromium, cobalt, and tin.
  • copper is preferable because a conductive pattern having low electric resistance and strong against corrosion can be obtained.
  • the metal constituting the metal plating layer (D) is filled in the voids present in the metal layer (C), and the transparent substrate (A) and the metal layer are filled.
  • the metal layer (C) and the metal plating are filled with the metal constituting the metal plating layer (D) up to the gap in the metal layer (C) existing in the vicinity of the interface with (C). Since adhesiveness with a layer (D) improves more, it is preferable.
  • a primer layer (B) is formed on a transparent substrate (A), and then a fluid containing nano-sized metal nanoparticles (c) is applied. And a method of forming the metal plating layer (D) by electrolysis or electroless plating after forming the metal layer (C) by removing the organic solvent and the like contained in the fluid by drying. .
  • the fluid containing the metal nanoparticles (c) is coated on the primer layer (B) and dried to form the metal layer (C ′), followed by firing. And removing the organic compound containing the dispersing agent present in the metal layer (C ′) to form a void to form a porous metal layer (C), whereby the metal plating layer (D) and This is preferable because of improving the adhesion.
  • the shape of the metal nanoparticles (c) used for forming the metal layer (C) is preferably in the form of particles or fibers.
  • the metal nanoparticles (c) are nano-sized. Specifically, when the metal nanoparticles (c) are particulate, a fine mesh conductive pattern is used.
  • the average particle diameter is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 50 nm.
  • the “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance with a good dispersion solvent. For this measurement, “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
  • the fiber diameter is preferably in the range of 5 to 100 nm. A range of 5 to 50 nm is more preferable.
  • the fiber length is preferably in the range of 0.1 to 100 ⁇ m, and more preferably in the range of 0.1 to 30 ⁇ m.
  • the content of the metal nanoparticles (c) in the fluid is preferably in the range of 1 to 90% by mass, more preferably in the range of 1 to 60% by mass, and still more preferably in the range of 1 to 10% by mass.
  • a dispersant or solvent for dispersing the metal nanoparticles (c) in a solvent examples include film forming aids, antifoaming agents, and preservatives.
  • a low molecular weight or high molecular weight dispersant examples include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid, stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avintinic acid.
  • Polymeric dispersants include polyalkyleneimines such as polyethyleneimine and polypropyleneimine, compounds obtained by adding polyoxyalkylene to the polyalkyleneimine, urethane resins, acrylic resins, urethane resins and acrylic resins containing phosphate groups And the like.
  • the dispersant in the metal layer (C) is removed to be porous compared to the low molecular dispersant, and the void size is reduced. It is possible to increase the size, and it is possible to form a void having a size of nano-order to sub-micron order.
  • the voids are easily filled with the metal constituting the metal plating layer (D) described later, and the filled metal serves as an anchor, greatly improving the adhesion between the metal layer (C) and the metal plating layer (D) described later. Can be improved.
  • the amount of the dispersant used for dispersing the metal nanoparticles (c) is preferably 0.01 to 50 parts by mass, and 0.01 to 10 parts per 100 parts by mass of the metal nanoparticles (c). Part by mass is more preferable.
  • porous metal layer (C) is formed by removing the dispersant by firing for the purpose of further improving the adhesion between the metal layer (C) and the metal plating layer (D) described later.
  • an aqueous medium or an organic solvent can be used as the solvent used for the fluid.
  • the aqueous medium include distilled water, ion exchange water, pure water, and ultrapure water.
  • the organic solvent include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
  • Examples of the alcohol include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetra Decanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Spotted Ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether
  • ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used for the fluid as necessary.
  • a general surfactant can be used.
  • di-2-ethylhexylsulfosuccinate, dodecylbenzenesulfonate, alkyldiphenylether disulfonate, alkylnaphthalenesulfonate, hexametaphosphate examples include salts.
  • leveling agent a general leveling agent can be used, and examples thereof include silicone compounds, acetylenic diol compounds, and fluorine compounds.
  • a general thickening agent can be used, for example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkalinity, or a urethane that can be thickened by association of molecules.
  • Resins hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amide wax, oxidized polyethylene, metal soap, dibenzylidene sorbitol and the like can be mentioned.
  • a general film forming aid can be used.
  • an anionic surfactant dioctyl sulfosuccinate soda salt, etc.
  • a hydrophobic nonionic surfactant sorbitan monooleate
  • Etc. polyether-modified siloxane, silicone oil and the like.
  • a general antifoaming agent can be used, and examples thereof include a silicone-based antifoaming agent, a nonionic surfactant, a polyether, a higher alcohol, and a polymer-based surfactant.
  • preservatives can be used, for example, isothiazoline preservatives, triazine preservatives, imidazole preservatives, pyridine preservatives, azole preservatives, iodo preservatives, pyrithione. And system preservatives.
  • the viscosity of the fluid is preferably in the range of 0.1 to 500,000 mPa ⁇ s, more preferably in the range of 0.5 to 10,000 mPa ⁇ s. .
  • the viscosity is preferably in the range of 5 to 20 mPa ⁇ s.
  • Examples of a method for coating or printing the fluid on the primer layer (B) include, for example, an ink jet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method, a spray coating method, and a bar coating. Method, die coating method, slit coating method, roll coating method, dip coating method, pad printing, flexographic printing method and the like.
  • the metal layer (C) patterned in a thin line shape of about 0.01 to 100 ⁇ m which is required when realizing a high density of an electronic circuit or the like.
  • an inkjet is used. It is preferable to use a printing method or a reverse printing method.
  • an inkjet printer As the inkjet printing method, what is generally called an inkjet printer can be used. Specific examples include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like.
  • the fluid is applied to the surface of various blankets and brought into contact with the plate from which the non-image portion protrudes, By selectively transferring a fluid corresponding to the non-image area to the surface of the plate, the pattern is formed on the surface of the blanket or the like, and then the pattern is formed on the transparent substrate layer (A). There is a method of transferring to the top (surface).
  • a pad printing method for printing a pattern on a transparent molded product. Place the ink on the intaglio and write it with a squeegee to uniformly fill the recess, press the pad made of silicon rubber or urethane rubber onto the plate on which the ink is placed, transfer the pattern onto the pad, There is a method of transferring to a transparent molded product.
  • Mass per unit area of the metal layer (C) is preferably in the range of 1 ⁇ 30,000mg / m 2, the range of 1 ⁇ 5,000mg / m 2 is preferred.
  • the thickness of the metal layer (C) can be adjusted by controlling the processing time, current density, the amount of additive used for plating, etc. in the plating process when forming the metal plating layer (C). it can.
  • the said metal layer (C), the said metal plating layer (D), etc. are removed by the etching mentioned later, a mesh-like pattern is formed, and a metal mesh is produced. There is a way.
  • the mass per unit area of the metal layer (C) is preferably smaller, Specifically, the range of 1 to 2,000 mg / m 2 is preferable, and the range of 10 to 1,000 mg / m 2 is more preferable.
  • the metal plating layer (D) constituting the laminate of the present invention has a reliability capable of maintaining good electrical conductivity without disconnection or the like over a long period of time, for example, when the laminate is used for a conductive pattern or the like. This layer is provided for the purpose of forming a highly reliable wiring pattern.
  • the metal plating layer (D) is a layer formed on the metal layer (C), and the formation method is preferably a plating method.
  • the plating treatment include wet plating methods such as electrolytic plating methods and electroless plating methods, and dry plating methods such as sputtering methods and vacuum deposition methods. Further, the metal plating layer (D) may be formed by combining two or more of these plating methods.
  • the metal constituting the metal layer (C) is brought into contact with an electroless plating solution, thereby depositing a metal such as copper contained in the electroless plating solution from the metal film.
  • This is a method of forming an electroless plating layer (film).
  • Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
  • reducing agent examples include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
  • monocarboxylic acids such as acetic acid and formic acid
  • dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid
  • malic acid lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid, citric acid
  • amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid, glutamic acid
  • iminodiacetic acid nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc.
  • a complexing agent such as an organic compound such as an aminopolycarboxylic acid compound or a soluble salt (sodium salt, potassium salt, ammonium salt, etc.) of these organic acids, or an amine compound such as ethylenediamine, diethylenetriamine, or triethylenetetramine. It can be used for.
  • the electroless plating solution is preferably used in the range of 20 to 98 ° C.
  • the metal constituting the metal layer (C) or the surface of the electroless plating layer (coating) formed by the electroless treatment is energized in a state where the electrolytic plating solution is in contact with the surface.
  • a metal such as copper contained in the electrolytic plating solution is made of a conductive substance constituting the metal layer (C) installed on the cathode or an electroless plating layer (film) formed by the electroless treatment. It is a method of forming an electrolytic plating layer (metal film) by depositing on the surface.
  • Examples of the electrolytic plating solution include those containing metal sulfides such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
  • the electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
  • a sputtering method, a vacuum deposition method, or the like can be used as the dry plating process.
  • an inert gas mainly argon
  • negative ions are applied to the forming material of the metal plating layer (D) to generate glow discharge
  • the inert gas Atoms are ionized
  • gas ions are struck violently at the surface of the metal plating layer (D) forming material at high speed, and atoms and molecules constituting the metal plating layer (D) forming material are ejected vigorously.
  • atoms and molecules constituting the metal plating layer (D) forming material are ejected vigorously.
  • Examples of the material for forming the metal plating layer (D) by sputtering include chromium, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, indium tin oxide (ITO), and dioxide. Examples include silicon, titanium dioxide, niobium oxide, and zinc oxide.
  • a magnetron sputtering apparatus or the like When performing the plating process by the sputtering method, for example, a magnetron sputtering apparatus or the like can be used.
  • the thickness of the metal plating layer (D) is preferably in the range of 1 to 50 ⁇ m.
  • the thickness of the metal plating layer (D) is adjusted by controlling the processing time, the current density, the usage amount of the plating additive, etc. in the plating process when forming the metal plating layer (D). Can do.
  • the thickness of the metal plating layer (D) is usually preferably in the range of 0.1 to 18 ⁇ m.
  • the metal plating (D) is preferably a thin film, preferably in the range of 0.1 to 5 ⁇ m, more preferably 0.5 to 3 ⁇ m.
  • the line width of the metal mesh portion is preferably in the range of 0.1 to 10 ⁇ m, and more preferably in the range of 0.5 to 3 ⁇ m, because the transparency can be further improved.
  • the metal layer (C) and the metal plating layer (D) of the laminate of the present invention were patterned as a metal mesh and used as a touch panel to form the metal plating layer (D) and the like of the transparent substrate (A).
  • a blackening layer (E) is provided on the metal plating layer (D). By making it black, the reflection of external light can be prevented, the mesh-like wiring becomes difficult to see, and the visibility of the display is improved.
  • the primer layer (B) is prepared by applying the primer resin composition (b) to both sides or one side of the transparent substrate (A) and drying it.
  • a fluid containing metal nanoparticles (c) is applied onto the primer layer (B) and dried to form a metal layer (C), and the metal layer (C)
  • unnecessary portions of the metal layer (C) and the metal plating layer (D) are removed with an etching agent.
  • the method of forming a mesh-shaped electroconductive pattern is mentioned. Moreover, when the said metal plating layer (D) etc.
  • the metal mesh is used as a touch panel of a display, since the visibility of a display improves more, it installs in a display.
  • unnecessary portions are removed with an etching agent to form a mesh-like conductive pattern It is preferable to do.
  • the primer layer (B) is formed by coating the primer resin composition (b) on both sides or one side of the transparent base material (A) and drying the primer layer (B).
  • the fluid containing metal nanoparticles (c) is printed on the metal layer (C) and dried to form a metal layer (C) that is a mesh-like pattern.
  • a method of forming the metal plating layer (D) by an electroless plating method or a combination thereof is also included.
  • the said metal plating layer (D) etc. are formed in both surfaces of the said transparent base material (A), and the metal mesh is used as a touch panel of a display, since the visibility of a display improves more, it installs in a display. It is preferable to form a blackening layer (E) on the metal plating layer (D) on the surface which becomes the outside (viewing side).
  • a primer layer (B), a metal layer (C), a metal plating layer (D), etc. are formed on both surfaces of the transparent substrate (A) and a conductive pattern is formed on both surfaces to form a metal mesh, As shown in FIG. 3, it is preferable to form a stripe-shaped conductive pattern on one surface and the other surface so as to be orthogonal to each other.
  • the blackening layer (E) can be formed by a wet method or a dry method.
  • the method described in Japanese Patent No. 5862916 can be used.
  • the blackening layer (E) with at least one compound selected from the group consisting of palladium, ruthenium and silver, and a blackening treatment liquid comprising a halide and a compound containing a nitrogen atom.
  • the metal layer (D) is copper
  • a method of producing black copper oxide by oxidizing the copper surface with hypochlorite, chlorite or the like, or using an aqueous sulfide solution The method of forming the said blackening layer (E) by the method of producing
  • the blackened layer (E) can also be formed by cobalt-copper alloy plating. Further, a chromate treatment may be performed thereon as a rust prevention treatment. The chromate treatment is performed by immersing in a solution containing chromic acid or dichromate as a main component and drying to form a rust-proof coating.
  • Examples of the dry method include a method of forming the blackened layer (E) by sputtering or vapor deposition.
  • Examples of the compound used in this case include at least one metal compound selected from the group consisting of copper nitride, copper oxide, nickel nitride, and nickel oxide.
  • the thickness of the blackening layer (E) is only required to make the mesh-like wiring difficult to see, and is preferably in the range of 20 to 500 nm, more preferably in the range of 20 to 100 nm.
  • the laminate of the present invention obtained by the above method can be used as a conductive pattern.
  • a fluid containing the metal powder is applied to form the metal layer (C) at a position corresponding to a desired pattern shape to be formed.
  • a conductive pattern having a desired pattern can be manufactured.
  • the conductive pattern can be manufactured by, for example, a photolithographic etching method such as a subtractive method or a semi-additive method, or a method of plating on a printed pattern of the metal layer (C).
  • a desired pattern is formed on the metal plating layer (D) (the blackened layer (E) when the blackened layer (E) is formed) constituting the laminate of the present invention manufactured in advance.
  • An etching resist layer having a shape corresponding to the shape is formed, and the metal layer (C), the metal plating layer (D), and the like in the removed portion of the resist are dissolved and removed by a chemical solution by subsequent development processing.
  • a chemical solution a chemical solution containing copper chloride, iron chloride or the like can be used.
  • the semi-additive method forms the primer layer (B) and the metal layer (C) on both sides or one side of the transparent substrate (A), and corresponds to a desired pattern on the surface of the metal layer (C).
  • a plating resist layer having the shape described above, and subsequently forming a metal plating layer (D) by an electrolytic plating method, an electroless plating method, or a combination thereof
  • the plating resist layer and the metal layer (C) in contact therewith Is dissolved in a chemical solution or the like and removed, and the blackened layer (E) is formed on the formed plating layer (D) as necessary, thereby forming a desired pattern.
  • the method of plating on the printing pattern of the said metal layer (C) is an inkjet method, a reversal printing method, etc. on the said primer layer (B) formed in the both surfaces or one side of the said transparent base material (A).
  • a pattern of the metal layer (C) is printed, and the metal plating layer (D) is formed on the surface of the metal layer (C) by an electrolytic plating method, an electroless plating method, or a combination thereof, and is necessary thereon.
  • a desired pattern is formed by forming the blackening layer (E).
  • the laminate of the present invention obtained by the above method has excellent adhesion between the transparent substrate and the metal plating layer compared to the conventional method of forming a copper layer by vapor deposition or sputtering, and is conductive by an etching agent. It is excellent in the transparency of the non-pattern part after forming a pattern. Further, when a mesh-like conductive pattern is formed using the laminate of the present invention, there is a feature that the mesh-like conductive pattern is difficult to see when viewed from the surface where the conductive pattern is not formed. .
  • the laminate of the present invention includes, for example, a conductive pattern, a conductive film for a touch panel, a metal mesh for a touch panel, an electronic circuit, an organic solar cell, an electronic terminal, an organic EL element, an organic transistor, a flexible printed board, and a non-contact IC.
  • a wiring member such as an RFID such as a card or an electromagnetic wave shield.
  • it is optimal for applications such as touch panels that require transparency.
  • Resin Composition (R-1) While introducing nitrogen gas into a reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 830 parts by mass of terephthalic acid, 830 parts by mass of isophthalic acid, 685 parts by mass of 1,6-hexanediol, neopentyl glycol 604 1 part by weight and 0.5 part by weight of dibutyltin oxide were added, and a polycondensation reaction was carried out at 230 ° C. for 15 hours at 180 to 230 ° C. until the acid value became 1 or less. A polyester polyol was obtained.
  • the mixture was cooled to 40 ° C., neutralized by adding 60 parts by mass of triethylamine, and then mixed with 4700 parts by mass of water to obtain a transparent reaction product.
  • Methyl ethyl ketone was removed from the reaction product under reduced pressure of 40 to 60 ° C., and then mixed with water to obtain a resin composition (R-1) having a nonvolatile content of 10% by mass and a weight average molecular weight of 50000. .
  • a cationic silver nanoparticle comprising a grey-green metallic luster flaky mass, which is a composite of silver nanoparticles and an organic compound having a cationic group (amino group) Particles were obtained. Thereafter, this silver nanoparticle powder was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) having a solid content of 3% by mass.
  • Example 1 On the surface of a transparent substrate (“Lumirror 50T-60” manufactured by Toray Industries, Inc., polyethylene terephthalate film, thickness 50 ⁇ m; hereinafter abbreviated as “PET substrate”), the resin composition (R-1 ) was coated using a bar coater so that the thickness after drying was 0.5 ⁇ m. Next, a primer layer was formed on the surface of the PET substrate by drying at 80 ° C. for 5 minutes using a hot air dryer.
  • a transparent substrate Limirror 50T-60” manufactured by Toray Industries, Inc., polyethylene terephthalate film, thickness 50 ⁇ m; hereinafter abbreviated as “PET substrate”
  • the resin composition (R-1 ) was coated using a bar coater so that the thickness after drying was 0.5 ⁇ m.
  • a primer layer was formed on the surface of the PET substrate by drying at 80 ° C. for 5 minutes using a hot air dryer.
  • the fluid (1) obtained above was coated on the entire surface in an area of 30 cm in length and 20 cm in width using a bar coater. Next, by baking at 80 ° C. for 5 minutes, a silver layer (mass per unit area: 200 mg / m 2 ) corresponding to the metal layer (C). ) Formed.
  • Electroless copper plating was performed on the silver layer corresponding to the metal layer (C) obtained above. Electroless copper plating was performed by immersing in an electroless copper plating solution ("OIC Copper” manufactured by Okuno Pharmaceutical Co., Ltd., pH 12.5) at 55 ° C for 20 minutes. Next, the copper layer obtained by the electroless copper plating is set on the cathode side, the phosphorous copper is set on the anode side, and the current density is 2.5 A / dm 2 using an electrolytic plating solution containing copper sulfate. By performing electrolytic plating for 4 minutes, a copper plating layer (total thickness: 2 ⁇ m) corresponding to the metal layer (D) was formed on the surface of the silver layer.
  • an electroless copper plating solution ("OIC Copper” manufactured by Okuno Pharmaceutical Co., Ltd., pH 12.5)
  • the copper layer obtained by the electroless copper plating is set on the cathode side
  • the phosphorous copper is set on the anode side
  • the current density is
  • copper sulfate 70 g / L As the electrolytic plating solution, copper sulfate 70 g / L, sulfuric acid 200 g / L, chloride ion 50 mg / L, and additives (Okuno Pharmaceutical Co., Ltd. “Top Lucina SF-M”) 5 ml / L were used.
  • the copper plating layer is immersed in an aqueous solution in which 0.1 mol / L of palladium chloride, 100 g / L of hydrochloric acid, 100 g / L of ammonium chloride, and 5 g / L of diethylenetetramine are mixed for 3 minutes at 30 ° C.
  • a blackening layer was formed on the surface of the plating layer.
  • Example 2 A laminate (2) was obtained in the same manner as in Example 1 except that the resin composition (R-2) was used instead of the resin composition (R-1).
  • Example 3 A laminate (3) was obtained in the same manner as in Example 1 except that the resin composition (R-3) was used instead of the resin composition (R-1).
  • the copper plating layer is immersed in an aqueous solution in which 0.1 mol / L of palladium chloride, 100 g / L of hydrochloric acid, 100 g / L of ammonium chloride, and 5 g / L of diethylenetetramine are mixed for 3 minutes at 30 ° C.
  • a blackening layer was formed on the surface of the plating layer.
  • a laminate (R2) was obtained in the same manner as in Example 1 except that the resin composition (R-1) was not used and the primer layer (B) was not formed.
  • Peel strength was measured by a method based on IPC-TM-650 and NUMBER 2.4.9.
  • the lead width used for the measurement was 1 mm, and the peel angle was 90 °.
  • the peel strength tends to show a higher value as the plating layer becomes thicker.
  • the peel strength in the present invention is measured by adding electrolytic copper plating to a copper film thickness of 15 ⁇ m. Based on the above.
  • ⁇ Measurement of transmittance of transparent substrate> Using a spectrophotometer (“MPC-3100” manufactured by Shimadzu Corporation), the transmittance at a wavelength of 500 to 550 nm was measured, and the transmittance at the wavelength with the highest transmittance was adopted.
  • the transparent base material used in the present invention (“Lumirror 50T-60” manufactured by Toray Industries Co., Ltd., thickness 50 ⁇ m) had a transmittance of 88%.
  • ⁇ Non-visibility of metal mesh part> (Non-visibility of metal mesh part of Examples 1 to 3)
  • a primer layer, a silver layer and a copper plating layer are sequentially formed on both sides of the PET base material in the same manner as in each example, and a blackening layer is formed only on one side of the copper plating layer.
  • conductive patterns as shown in FIGS. 3, 4 and 5 were prepared using an etching agent (30 mass% aqueous solution of ferric chloride). The size of the conductive pattern was a stripe shape with a wiring width of 5 ⁇ m, a pitch of 250 ⁇ m, and a copper plating layer thickness of 2 ⁇ m.
  • the conductive pattern on the upper surface side was orthogonal to the conductive pattern on the lower surface side.
  • the obtained product was visually confirmed from the side where the blackened layer was formed, and the non-visibility (invisibility) of the metal mesh portion (the conductive pattern on the upper surface side and the lower surface side) was evaluated according to the following criteria.
  • C The wiring pattern was confirmed as a whole.
  • Non-visibility of metal mesh part of Comparative Example 1 By the method similar to the comparative example 1, the copper vapor deposition layer was formed on both surfaces of PET base material, the blackening layer was formed only in the single side
  • Non-visibility of the metal mesh part of Comparative Example 2 A conductive pattern was formed by the same method as in Examples 1 to 3 except that the primer layer was not formed, and the non-visibility of the metal mesh portion was evaluated.
  • Table 1 summarizes the measurement and evaluation results obtained above.
  • the laminates (1) to (3) obtained in Examples 1 to 3, which are laminates of the present invention have practically sufficiently high peel strength.
  • the transmittance retention of the non-patterned portion after etching was high, and high transparency was obtained even after etching.
  • the brightness measured by the L * a * b * color system from the side opposite to the surface on which the metal plating layer or the like of the transparent substrate is formed is as low as 55 or less and black, and the laminate of the present invention is a metal mesh. The pattern was difficult to see and could be used as a touch panel.
  • the laminates (R1) and (R2) obtained in Comparative Examples 1 and 2 had low peel strength and were not at a practical level.
  • the laminated body (R1) obtained in Comparative Example 1 is a metal mesh having a copper vapor-deposited layer, and the pattern is a metallic copper color tone with high brightness. It was confirmed that it was unsuitable to use.
  • Blackening layer 2 Metal plating layer 3: Metal layer 4: Primer layer 5: Transparent substrate 6: Metal mesh (touch panel sensor) 7: Upper surface pattern 8: Lower surface pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention provides the following: a laminate in which a primer layer (B), a metal layer (C) made of metal nanoparticles (c), and a metal plating layer (D) are successively layered onto a transparent substrate (A), the laminate having a brightness (L*) of 55 or less as measured according to an L*a*b* color system from the side of the transparent substrate (A) opposite the surface where the primer layer (B) and the like are formed; and a metal mesh and a touch panel using the laminate. This laminate has excellent adhesion between the transparent substrate and the metal plating layer made of copper or the like, and when forming a mesh conductive pattern, the conductive pattern is difficult to see even when viewing the conductive pattern from the side opposite the surface where the conductive pattern is formed, and the laminate thereby exhibits excellent transparency.

Description

積層体、メタルメッシュ及びタッチパネルLaminate, metal mesh and touch panel
 本発明は、透明基材を用いた積層体、メタルメッシュ及びタッチパネルに関するものである。 The present invention relates to a laminate using a transparent substrate, a metal mesh, and a touch panel.
 静電容量式のタッチパネルはマルチタッチが可能であり、西日や落ち葉、虫などにも誤作動せず屋外利用できることから自動販売機や駅案内パネル、テーブル型タッチパネルへの利用が増加している。 Capacitive touch panels can be multi-touched, and can be used outdoors without malfunctioning against the sun, fallen leaves, insects, etc., so use in vending machines, station information panels, and table-type touch panels is increasing. .
 静電容量式のタッチパネルは、特定の電極パターンを形成し電極間の静電容量値の変化を検出することで押圧した位置を特定する構造となっている。この静電容量式の1つの方式は、2面の電極をパターン化し、コントローラーにて押圧位置の微弱な電流を電圧に変換して検出しようとするものである。そのため静電容量式のタッチパネルに使用される導電性フィルムは、表面抵抗率が小さくかつ透明性の高いものが必要となっている。 The capacitive touch panel has a structure in which a pressed position is specified by forming a specific electrode pattern and detecting a change in capacitance value between the electrodes. One method of this capacitance type is to pattern two electrodes and convert a weak current at the pressed position into a voltage by a controller to detect the voltage. Therefore, a conductive film used for a capacitive touch panel needs to have a low surface resistivity and high transparency.
 従来から、透明導電性フィルムとしては、ITO(Indium Tin Oxide)膜を表面に形成させたフィルムが広く使用されている。ITO膜は、フィルムの表面に蒸着法やスパッタリング法により形成されるため、大型化はコスト面で制約されることが問題であった。またITO膜は、体積抵抗率が比較的高いため、ディスプレイが大型になると、押圧位置の微弱な電流が検知不能となるなど反応速度に限界があった。 Conventionally, as a transparent conductive film, a film having an ITO (Indium Tin Oxide) film formed on the surface has been widely used. Since the ITO film is formed on the surface of the film by vapor deposition or sputtering, it has been a problem that the increase in size is limited in terms of cost. In addition, since the ITO film has a relatively high volume resistivity, there is a limit to the reaction speed, for example, when the display becomes large, a weak current at the pressed position cannot be detected.
 それに対し、近年基材の片面もしくは両面に銅層を形成したポリエチレンテレフタレート(PET)基材やポリカーボネート基材を用い、フォトリソグラフィー法で線幅5μm以下の細線を形成し、低抵抗率と透明性を両立するメタルメッシュと呼ばれる透明導電性フィルムが提案されている(例えば、特許文献1参照。)。この銅層を形成したPET基材は、フィルムに銅を蒸着することで銅膜を形成する方法であり、簡便に銅膜が得られる。しかし、銅を蒸着する際の温度が、ITOを蒸着する場合の温度に比べ低くなることから、PET基材へ銅の食い込みが小さくなり、銅層とPET基材の密着性が低くなる欠点があった。 In contrast, in recent years, a polyethylene terephthalate (PET) substrate or a polycarbonate substrate with a copper layer formed on one or both sides of the substrate has been used to form a thin wire with a line width of 5 μm or less by photolithography, resulting in low resistivity and transparency. A transparent conductive film called a metal mesh that satisfies the above has been proposed (see, for example, Patent Document 1). The PET base material on which the copper layer is formed is a method of forming a copper film by depositing copper on a film, and a copper film can be easily obtained. However, since the temperature at which copper is deposited is lower than the temperature at which ITO is deposited, the bite of copper into the PET substrate is reduced, and the adhesion between the copper layer and the PET substrate is reduced. there were.
 また、PET基材表面に銅層を形成する方法しては、PET基材に接着剤を塗工して、粗化処理した銅箔と貼り合わせる方法がある。この方法は、PET基材と銅箔の間で高い密着力が得られる一方で、粗化処理した銅箔の凹凸が接着剤層に転写され、フォトリソグラフィー法で細線を形成した場合、銅がエッチングされた後むき出しになったPET基材表面の透明性が低下するという欠点があった。また、銅箔に凹凸があるため、フォトリソグラフィー法で線幅5μmの細線を形成する場合、精度良く細線が形成できないという欠点もあった。 Further, as a method of forming a copper layer on the surface of the PET base material, there is a method of applying an adhesive to the PET base material and bonding it to a roughened copper foil. In this method, high adhesion can be obtained between the PET base material and the copper foil. On the other hand, when the unevenness of the roughened copper foil is transferred to the adhesive layer and a fine line is formed by a photolithography method, There was a drawback that the transparency of the surface of the PET base material exposed after etching was lowered. In addition, since the copper foil has irregularities, there is a drawback that when forming a thin line having a line width of 5 μm by photolithography, the thin line cannot be formed with high accuracy.
 さらに、PET基材表面に銅層を形成した場合、銅層を形成した面とは反対側から見た場合、銅層をたとえ細線にしても、明度が高い金属銅の色調のため、目に見えてしまい、タッチパネルを設置したディスプレイの画像が見えにくくなる問題があった。 Furthermore, when a copper layer is formed on the surface of the PET substrate, when viewed from the side opposite to the surface on which the copper layer is formed, even if the copper layer is a fine line, the color of metallic copper has high brightness, There is a problem that it becomes difficult to see the image of the display on which the touch panel is installed.
特開2013-129183号公報JP2013-129183A
 本発明が解決しようとする課題は、透明基材と銅等の金属めっき層との密着性に極めて優れ、メッシュ状の導電性パターンを形成した場合、その導電性パターンの形成面とは反対側から見た場合でも導電性パターンが見えにくく透明性に優れた積層体、それを用いたメタルメッシュ及びタッチパネルを提供することである。 The problem to be solved by the present invention is extremely excellent in adhesion between a transparent substrate and a metal plating layer such as copper, and when a mesh-like conductive pattern is formed, the side opposite to the surface on which the conductive pattern is formed It is to provide a laminated body that is difficult to see a conductive pattern even when viewed from above and has excellent transparency, and a metal mesh and a touch panel using the laminate.
 本発明者らは、上記の課題を解決するため鋭意研究した結果、透明基材の上に、プライマー層と、金属ナノ粒子により形成された金属層と、金属めっき層とが順次積層されている積層体であって、前記透明基材の前記プライマー層等が形成された面とは反対側から、L表色系で測定した値の明度(L)が一定の値以下である積層体は、透明基材と金属めっき層との密着性に極めて優れ、エッチング剤により導電性パターンを形成した場合でも透明性に優れ、メッシュ状の導電性パターンを形成した場合、その導電性パターンの形成面とは反対側から見た場合でも導電性パターンが見えにくく透明性に優れることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have sequentially laminated a primer layer, a metal layer formed of metal nanoparticles, and a metal plating layer on a transparent substrate. The lightness (L * ) of the value measured in the L * a * b * color system from the side opposite to the surface of the transparent substrate on which the primer layer and the like are formed is a certain value or less. The laminate is extremely excellent in adhesion between the transparent substrate and the metal plating layer. Even when the conductive pattern is formed with an etching agent, the laminate is excellent in transparency. The present invention has been completed by finding that the conductive pattern is difficult to see even when viewed from the side opposite to the surface on which the conductive pattern is formed and is excellent in transparency.
 すなわち、本発明は、透明基材(A)の上に、プライマー層(B)と、金属ナノ粒子(c)により形成された金属層(C)と金属めっき層(D)とが順次積層されている積層体であって、前記透明基材(A)の前記プライマー層(B)等が形成された面とは反対側から、L表色系で測定した値の明度(L)が55以下であることを特徴とする積層体、及び、それを用いたメタルメッシュ及びタッチパネルを提供するものである。 That is, in the present invention, the primer layer (B), the metal layer (C) formed of the metal nanoparticles (c), and the metal plating layer (D) are sequentially laminated on the transparent substrate (A). Brightness of a value measured in the L * a * b * color system from the side opposite to the surface on which the primer layer (B) and the like of the transparent base material (A) is formed. L * ) is 55 or less, and the present invention provides a laminate, and a metal mesh and touch panel using the laminate.
 本発明の積層体は、従来の蒸着法やスパッタ法で銅層を形成する方法に比べ、透明基材と金属めっき層の密着性にきわめて優れ、エッチング剤により導電性パターンを形成した後の非パターン部の透明性に優れる。また、本発明の積層体を用いてメッシュ状の導電性パターンを形成した際、前記導電性パターンを形成していない面から見た場合に、メッシュ状の導電性パターンが見えにくいという特長がある。したがって、本発明の積層体は、例えば、導電性パターン、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、電子回路、有機太陽電池、電子端末、有機EL素子、有機トランジスタ、フレキシブルプリント基板、非接触ICカード等のRFID、電磁波シールドなどの配線部材として好適に用いることができる。特に、透明性が要求されるタッチパネル等の用途に最適である。 The laminate of the present invention is extremely superior in adhesion between the transparent base material and the metal plating layer compared to the conventional method of forming a copper layer by vapor deposition or sputtering, and is non-conductive after forming a conductive pattern with an etching agent. Excellent pattern part transparency. Further, when a mesh-like conductive pattern is formed using the laminate of the present invention, there is a feature that the mesh-like conductive pattern is difficult to see when viewed from the surface where the conductive pattern is not formed. . Therefore, the laminate of the present invention includes, for example, a conductive pattern, a conductive film for a touch panel, a metal mesh for a touch panel, an electronic circuit, an organic solar cell, an electronic terminal, an organic EL element, an organic transistor, a flexible printed board, and a non-contact IC. It can be suitably used as a wiring member such as an RFID such as a card or an electromagnetic wave shield. In particular, it is optimal for applications such as touch panels that require transparency.
透明基材の片面にプライマー層、金属層、金属めっき層及び黒化層を順次形成した本発明の積層体の断面図である。It is sectional drawing of the laminated body of this invention which formed the primer layer, the metal layer, the metal plating layer, and the blackening layer in order on the single side | surface of the transparent base material. 透明基材の片面にプライマー層、金属層、金属めっき層及び黒化層を順次形成し、他方の面にプライマー層、金属層及び金属めっき層を形成した本発明の積層体の断面図である。It is sectional drawing of the laminated body of this invention which formed the primer layer, the metal layer, the metal plating layer, and the blackening layer in order on one side of the transparent base material, and formed the primer layer, the metal layer, and the metal plating layer in the other surface. . 透明基材の片面にプライマー層、金属層、金属めっき層及び黒化層を順次形成し、他方の面にプライマー層、金属層及び金属めっき層を形成した積層体の金属層、金属めっき層及び黒化層をパターニングした本発明のメタルメッシュの上面図である。A primer layer, a metal layer, a metal plating layer, and a blackening layer are sequentially formed on one side of a transparent substrate, and a primer layer, a metal layer, and a metal plating layer are formed on the other side, and a metal layer, a metal plating layer, and It is a top view of the metal mesh of this invention which patterned the blackening layer. 透明基材の片面にプライマー層、金属層、金属めっき層及び黒化層を順次形成し、他方の面にプライマー層、金属層及び金属めっき層を形成した積層体の金属層、金属めっき層及び黒化層をパターニングした本発明のメタルメッシュの斜視図である。A primer layer, a metal layer, a metal plating layer, and a blackening layer are sequentially formed on one side of a transparent substrate, and a primer layer, a metal layer, and a metal plating layer are formed on the other side, and a metal layer, a metal plating layer, and It is a perspective view of the metal mesh of this invention which patterned the blackening layer. 透明基材の片面にプライマー層、金属層、金属めっき層及び黒化層を順次形成し、他方の面にプライマー層、金属層及び金属めっき層を形成した本発明の積層体の金属層、金属めっき層及び黒化層をパターニングした本発明のメタルメッシュについて、図3に示したA部の断面図である。The metal layer and metal of the laminate of the present invention in which a primer layer, a metal layer, a metal plating layer, and a blackening layer are sequentially formed on one side of a transparent substrate and a primer layer, a metal layer, and a metal plating layer are formed on the other side It is sectional drawing of the A section shown in FIG. 3 about the metal mesh of this invention which patterned the plating layer and the blackening layer.
 本発明の積層体は、透明基材(A)の上に、プライマー層(B)と、金属ナノ粒子(c)により形成された金属層(C)と金属めっき層(D)とが順次積層されている積層体であって、前記透明基材(A)の前記プライマー層(B)等が形成された面とは反対側から、L表色系で測定した値の明度(L)が55以下であるものである。 In the laminate of the present invention, a primer layer (B), a metal layer (C) formed of metal nanoparticles (c), and a metal plating layer (D) are sequentially laminated on a transparent substrate (A). Brightness of the value measured in the L * a * b * color system from the opposite side of the transparent substrate (A) on which the primer layer (B) and the like are formed. (L * ) is 55 or less.
 本発明の積層体は、前記透明基材(A)の片面に、プライマー層(B)等を順次積層した積層体であってもよく、前記透明基材(A)の両面にプライマー層(B)等を順次積層した積層体であってもよい。 The laminate of the present invention may be a laminate in which a primer layer (B) or the like is sequentially laminated on one side of the transparent substrate (A), and a primer layer (B on both sides of the transparent substrate (A). ) And the like may be sequentially laminated.
 前記透明基材(A)としては、全光線透過率が20%以上のものが好ましく、60%以上のものがより好ましく、さらに80%以上のものがさらに好ましい。 The transparent substrate (A) preferably has a total light transmittance of 20% or more, more preferably 60% or more, and still more preferably 80% or more.
 前記透明基材(A)の材質としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、シクロオレフィンポリマー、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリウレタン、セルロースナノファイバー、ガラス、石英、シリコン、サファイヤ等が挙げられる。 Examples of the material for the transparent substrate (A) include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, cycloolefin polymer, polymethyl methacrylate, polyethylene, polypropylene, polyether ether ketone, polyvinyl chloride, and polyvinylidene chloride. , Polyvinyl alcohol, polyurethane, cellulose nanofiber, glass, quartz, silicon, sapphire and the like.
 また、本発明の積層体をタッチパネル用のメタルメッシュとして用いる場合、前記透明基材(A)の材質としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、シクロオレフィンポリマー、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン、ガラスが好ましい。 Moreover, when using the laminated body of this invention as a metal mesh for touch panels, as a material of the said transparent base material (A), a polyethylene terephthalate, a polyethylene naphthalate, a polycarbonate, a polyimide, a cycloolefin polymer, polymethylmethacrylate, polyethylene Polypropylene and glass are preferred.
 前記透明基材(A)としては、本発明の積層体が、折り曲げ可能な柔軟性を求められる用途に用いられる場合、柔軟でフレキシブルな透明基材が好ましい。具体的には、フィルム又はシート状の透明基材が好ましい。 The transparent base material (A) is preferably a flexible and flexible transparent base material when the laminate of the present invention is used for applications that require bending flexibility. Specifically, a film or sheet-like transparent substrate is preferable.
 前記透明基材(A)の形状がフィルム状又はシート状の場合、フィルム状又はシート状の透明基材の厚さは、通常、1~5,000μmの範囲が好ましく、1~300μmの範囲がより好ましく、1~200μmの範囲がさらに好ましい。 When the shape of the transparent substrate (A) is a film or sheet, the thickness of the film or sheet is preferably in the range of 1 to 5,000 μm, preferably in the range of 1 to 300 μm. A range of 1 to 200 μm is more preferable.
 また、前記透明基材(A)と後述するプライマー層(B)との密着性を向上できることから、前記透明基材(A)の表面に、透明性を失わない程度の微細な凹凸の形成、その表面に付着した汚れの洗浄、ヒドロキシル基、カルボニル基、カルボキシル基等の官能基の導入のための表面処理等が施されていてもよい。具体的には、コロナ放電処理等のプラズマ放電処理、紫外線処理等の乾式処理、水、酸・アルカリ等の水溶液又は有機溶剤等を用いる湿式処理等が施されていてもよい。 In addition, since the adhesion between the transparent substrate (A) and the primer layer (B) described later can be improved, formation of fine irregularities on the surface of the transparent substrate (A) so as not to lose transparency, The surface treatment for the washing | cleaning of the stain | pollution | contamination adhering to the surface, introduction | transduction of functional groups, such as a hydroxyl group, a carbonyl group, and a carboxyl group, may be given. Specifically, plasma discharge treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment, wet treatment using an aqueous solution such as water, acid / alkali, or an organic solvent may be applied.
 前記プライマー層(B)は、前記透明基材の表面の一部又は全部にプライマーを塗工し、前記プライマー中に含まれる水性媒体、有機溶剤等の溶媒を除去することによって形成することができる。 The primer layer (B) can be formed by applying a primer to a part or all of the surface of the transparent substrate and removing a solvent such as an aqueous medium or an organic solvent contained in the primer. .
 前記プライマーを前記透明基材の表面に塗工する方法としては、例えば、グラビア方式、コーティング方式、スクリーン方式、ローラー方式、ロータリー方式、スプレー方式等の方法が挙げられる。 Examples of the method for applying the primer on the surface of the transparent substrate include gravure method, coating method, screen method, roller method, rotary method, spray method and the like.
 前記プライマー層(B)の表面は、前記金属層(C)との密着性をより一層向上することを目的として、例えば、コロナ放電処理法等のプラズマ放電処理法、紫外線処理法等の乾式処理法、水や酸性又はアルカリ性薬液、有機溶剤等を用いた湿式処理法によって、表面処理されていることが好ましい。 For the purpose of further improving the adhesion of the primer layer (B) with the metal layer (C), for example, plasma treatment such as corona discharge treatment, dry treatment such as ultraviolet treatment. Surface treatment is preferably carried out by a wet treatment method using a method, water, an acidic or alkaline chemical solution, an organic solvent, or the like.
 前記プライマーを透明基材の表面に塗工した後、その塗工層に含まれる溶媒を除去する方法としては、例えば、乾燥機を用いて乾燥させ、前記溶媒を揮発させる方法が一般的である。乾燥温度としては、前記溶媒を揮発させることが可能で、かつ透明基材に熱変形等の悪影響を与えない範囲の温度に設定すればよい。 As a method for removing the solvent contained in the coating layer after coating the primer on the surface of the transparent substrate, for example, a method of drying using a dryer and volatilizing the solvent is common. . The drying temperature may be set to a temperature within a range where the solvent can be volatilized and the transparent base material is not adversely affected such as thermal deformation.
 前記プライマーを用いて形成するプライマー層(B)の膜厚は、本発明の積層体を用いる用途によって異なるが、前記透明基材(A)と前記金属層(C)との密着性をより向上し、かつ透明性の低下がない範囲が好ましく、前記プライマー層の膜厚は、10nm~30μmの範囲が好ましく、10nm~1μmの範囲がより好ましく、10nm~500nmの範囲がさらに好ましい。 Although the film thickness of the primer layer (B) formed using the primer varies depending on the use of the laminate of the present invention, the adhesion between the transparent substrate (A) and the metal layer (C) is further improved. The thickness of the primer layer is preferably in the range of 10 nm to 30 μm, more preferably in the range of 10 nm to 1 μm, and still more preferably in the range of 10 nm to 500 nm.
 前記プライマー層(B)の形成に用いるプライマー樹脂組成物(b)としては、各種樹脂と溶媒とを含有するものを用いることができる。 As the primer resin composition (b) used for forming the primer layer (B), those containing various resins and solvents can be used.
 前記樹脂としては、例えば、ウレタン樹脂、ビニル樹脂、ウレタン-ビニル複合樹脂、エポキシ樹脂、イミド樹脂、アミド樹脂、メラミン樹脂、フェノール樹脂、尿素ホルムアルデヒド樹脂、フェノール等をブロック化剤として用いたブロックイソシアネート、ポリビニルアルコール、ポリビニルピロリドン等が挙げられる。これらの樹脂の中でも、特に、前記透明基材(A)と金属層(C)の密着力を向上し、透明基材(A)の透明性を低下させないことから、芳香環を含有する樹脂組成物を用いることが好ましい。 Examples of the resin include urethane resins, vinyl resins, urethane-vinyl composite resins, epoxy resins, imide resins, amide resins, melamine resins, phenol resins, urea formaldehyde resins, blocked isocyanates using phenol as a blocking agent, Examples thereof include polyvinyl alcohol and polyvinyl pyrrolidone. Among these resins, in particular, the resin composition containing an aromatic ring because it improves the adhesion between the transparent substrate (A) and the metal layer (C) and does not lower the transparency of the transparent substrate (A). It is preferable to use a product.
 芳香環を含有する樹脂組成物としては、ウレタン樹脂、ビニル樹脂、エポキシ樹脂、イミド樹脂、メラミン樹脂、フェノール樹脂、フェノール等をフロック化して用いたブロックイソシアネートが挙げられる。中でも、ウレタン樹脂、ビニル樹脂を用いることが好ましい。 Examples of the resin composition containing an aromatic ring include blocked isocyanates obtained by flocking urethane resin, vinyl resin, epoxy resin, imide resin, melamine resin, phenol resin, phenol and the like. Of these, urethane resin and vinyl resin are preferably used.
 前記ウレタン樹脂としては、芳香環を有するものが好ましく、芳香族ポリエステルポリオールと親水性基を有するポリオールとを含むポリオール及びポリイソシアネートの反応物が好ましい。 As the urethane resin, those having an aromatic ring are preferable, and a reaction product of a polyol and a polyisocyanate containing an aromatic polyester polyol and a polyol having a hydrophilic group is preferable.
 前記芳香環は、前記ウレタン樹脂の製造に用いるポリオールとして、芳香環を有するポリオールを用いることによって前記ウレタン樹脂中に導入することができる。 The aromatic ring can be introduced into the urethane resin by using a polyol having an aromatic ring as the polyol used in the production of the urethane resin.
 また、前記ウレタン樹脂は、親水性基を有するものが、前記透明基材(A)と金属層(C)の密着性を向上させることができるため好ましい。前記親水性基としては、アニオン性基、カチオン性基、又はノニオン性基が挙げられる。これらの中でも、アニオン性基又はカチオン性基が好ましく、アニオン性基がより好ましい。 Moreover, it is preferable that the urethane resin has a hydrophilic group because it can improve the adhesion between the transparent substrate (A) and the metal layer (C). Examples of the hydrophilic group include an anionic group, a cationic group, and a nonionic group. Among these, an anionic group or a cationic group is preferable, and an anionic group is more preferable.
 前記アニオン性基としては、例えばカルボキシル基、スルホン酸基、それらの一部または全部が塩基性化合物等によって中和されたカルボキシレート基、スルホネート基等が挙げられる。これらの中でも、カルボキシル基やカルボキシレート基が、良好な水分散性を有する樹脂が得られることから好ましい。 Examples of the anionic group include a carboxyl group, a sulfonic acid group, a carboxylate group in which part or all of them are neutralized with a basic compound, a sulfonate group, and the like. Among these, a carboxyl group or a carboxylate group is preferable because a resin having good water dispersibility can be obtained.
 前記アニオン性基の中和に使用可能な塩基性化合物としては、例えば、アンモニア、トリエチルアミン、ピリジン、モルホリン等の有機アミン;モノエタノールアミン等のアルカノールアミン;ナトリウム、カリウム、リチウム、カルシウム等を含む金属塩基化合物などが挙げられる。 Examples of basic compounds that can be used for neutralizing the anionic group include organic amines such as ammonia, triethylamine, pyridine, and morpholine; alkanolamines such as monoethanolamine; metals including sodium, potassium, lithium, calcium, and the like Examples include basic compounds.
 また、前記カチオン性基としては、例えば、3級アミノ基等が挙げられる。前記3級アミノ基は、その一部又は全てが酢酸やプロピオン酸等で中和されたものであってもよい。 Moreover, examples of the cationic group include a tertiary amino group. The tertiary amino group may be partially or entirely neutralized with acetic acid or propionic acid.
 また、前記ノニオン性基としては、例えば、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシエチレン-ポリオキシプロピレン基等が挙げられる。 In addition, examples of the nonionic group include a polyoxyethylene group, a polyoxypropylene group, a polyoxyethylene-polyoxypropylene group, and the like.
 前記アニオン性基、カチオン性基等の親水性基のウレタン樹脂中の含有量は、水性媒体中のウレタン樹脂の水分散安定性が良好になることから、15~2,000mmol/kgの範囲が好ましい。 The content of the hydrophilic group such as the anionic group and the cationic group in the urethane resin is in the range of 15 to 2,000 mmol / kg because the water dispersion stability of the urethane resin in the aqueous medium is improved. preferable.
 前記親水性基は、ウレタン樹脂の製造に用いるポリオールやポリイソシアネートの一部又は全部に親水性基を有するポリオールやポリイソシアネートを用いることによって、ウレタン樹脂中に導入することができる。 The hydrophilic group can be introduced into the urethane resin by using a polyol or polyisocyanate having a hydrophilic group in part or all of the polyol or polyisocyanate used in the production of the urethane resin.
 前記親水性基を有するウレタン樹脂の重量平均分子量としては、造膜性に優れ、かつ耐湿熱性、耐水性、耐熱性に優れた皮膜を形成可能なプライマー樹脂組成物(b)が得られることから、5,000~500,000の範囲が好ましく、20,000~100,000の範囲がより好ましい。 As the weight average molecular weight of the urethane resin having a hydrophilic group, it is possible to obtain a primer resin composition (b) capable of forming a film having excellent film forming properties and excellent heat and moisture resistance, water resistance and heat resistance. The range of 5,000 to 500,000 is preferred, and the range of 20,000 to 100,000 is more preferred.
 前記ビニル樹脂としては、スチレン、α-メチルスチレン等の芳香環を有するビニル単量体を共重合したビニル樹脂が好ましい。前記ビニル樹脂を製造する際には、前記芳香環を含有するビニル単量体とともに、(メタ)アクリル酸アルキルエステル等のその他各種ビニル単量体を共重合することができる。また、前記ビニル樹脂の具体例としては、ブタジエン-スチレン共重合体、アクリル-スチレン共重合体等が挙げられる。 The vinyl resin is preferably a vinyl resin obtained by copolymerizing a vinyl monomer having an aromatic ring such as styrene or α-methylstyrene. When manufacturing the said vinyl resin, other various vinyl monomers, such as a (meth) acrylic-acid alkylester, can be copolymerized with the vinyl monomer containing the said aromatic ring. Specific examples of the vinyl resin include butadiene-styrene copolymers, acrylic-styrene copolymers, and the like.
 前記プライマー樹脂組成物(b)としては、塗工性が良好になることから、前記プライマー中に前記樹脂を1~70質量%含有するものが好ましく、1~20質量%含有するものより好ましい。 The primer resin composition (b) is preferably one containing 1 to 70% by mass of the resin in the primer, and more preferably 1 to 20% by mass because the coatability is improved.
 また、前記プライマー樹脂組成物(b)に使用可能な溶媒としては、各種有機溶剤、水性媒体が挙げられる。前記有機溶剤としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、シクロヘキサノン等が挙げられ、前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。 Also, examples of the solvent that can be used for the primer resin composition (b) include various organic solvents and aqueous media. Examples of the organic solvent include toluene, ethyl acetate, methyl ethyl ketone, cyclohexanone, and the like. Examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
 前記の水と混和する有機溶剤としては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール溶剤;アセトン、メチルエチルケトン等のケトン溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール等のアルキレングリコール溶剤;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール溶剤;N-メチル-2-ピロリドン等のラクタム溶剤などが挙げられる。 Examples of the organic solvent miscible with water include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, ethyl carbitol, ethyl cellosolve, butyl cellosolve; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol, diethylene glycol, propylene And alkylene glycol solvents such as glycol; polyalkylene glycol solvents such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol; and lactam solvents such as N-methyl-2-pyrrolidone.
 また、前記樹脂は、必要に応じて、例えば、アルコキシシリル基、シラノール基、水酸基、アミノ基等の架橋性官能基を有していてもよい。これらの架橋性官能基により形成される架橋構造は、前記流動体が塗工される前に、すでに架橋構造を形成していてもよく、また、前記流動体が塗工された後、例えば焼成工程等における加熱によって架橋構造を形成してもよい。 The resin may have a crosslinkable functional group such as an alkoxysilyl group, a silanol group, a hydroxyl group, and an amino group as necessary. The cross-linked structure formed by these cross-linkable functional groups may already form a cross-linked structure before the fluid is applied, and after the fluid is applied, for example, firing A crosslinked structure may be formed by heating in a process or the like.
 前記プライマー樹脂組成物(b)には、必要に応じて、架橋剤をはじめ、pH調整剤、皮膜形成助剤、レベリング剤、増粘剤、撥水剤、消泡剤等の公知のものを適宜添加して使用してもよい。 The primer resin composition (b) may be a known one such as a crosslinking agent, a pH adjuster, a film forming aid, a leveling agent, a thickener, a water repellent, and an antifoaming agent, if necessary. You may add and use it suitably.
 前記架橋剤としては、例えば、金属キレート化合物、ポリアミン化合物、アジリジン化合物、金属塩化合物、イソシアネート化合物等が挙げられ、25~100℃程度の比較的低温で反応し架橋構造を形成する熱架橋剤;メラミン系化合物、エポキシ系化合物、オキサゾリン化合物、カルボジイミド化合物、ブロックイソシアネート化合物等の100℃以上の比較的高温で反応し架橋構造を形成する熱架橋剤;各種光架橋剤が挙げられる。 Examples of the crosslinking agent include metal chelate compounds, polyamine compounds, aziridine compounds, metal salt compounds, isocyanate compounds and the like, and thermal crosslinking agents that react at a relatively low temperature of about 25 to 100 ° C. to form a crosslinked structure; Thermal crosslinking agents that react at a relatively high temperature of 100 ° C. or higher, such as melamine compounds, epoxy compounds, oxazoline compounds, carbodiimide compounds, and blocked isocyanate compounds, to form a crosslinked structure; and various photocrosslinking agents.
 前記架橋剤は、種類等によって異なるものの、密着性に優れた導電性パターンを形成できることから、前記プライマーに含まれる樹脂の合計100質量部に対して、0.01~60質量部の範囲で用いることが好ましく、0.1~10質量部の範囲で用いることがより好ましく、0.1~5質量部の範囲で用いることがさらに好ましい。 The cross-linking agent may be used in a range of 0.01 to 60 parts by mass with respect to 100 parts by mass of the resin contained in the primer because it can form a conductive pattern with excellent adhesion, although it varies depending on the type. It is preferably used in the range of 0.1 to 10 parts by mass, and more preferably in the range of 0.1 to 5 parts by mass.
 前記架橋剤を用いた場合、後述する金属層(C)を形成する前に、プライマー層(B)に架橋構造を形成しておいても、後述する金属層(C)を形成した後、例えば、焼成工程等における加熱によって、プライマー層(B)に架橋構造を形成してもよい。 When the cross-linking agent is used, a cross-linking structure may be formed on the primer layer (B) before forming the metal layer (C) described later. A crosslinked structure may be formed in the primer layer (B) by heating in a firing step or the like.
 前記金属層(C)は、前記プライマー層(B)上に形成されたものであり、前記金属層(C)を構成する金属としては、遷移金属又はその化合物が挙げられ、中でもイオン性の遷移金属が好ましい。このイオン性の遷移金属としては、銅、銀、金、ニッケル、パラジウム、白金、コバルト等が挙げられる。これらのイオン性の遷移金属の中でも、銅、銀、金は、電気抵抗が低く、腐食に強い導電性パターンが得られることから好ましい。また、前記金属層(C)は多孔質状のものが好ましく、この場合、その層中に空隙を有する。 The metal layer (C) is formed on the primer layer (B), and the metal constituting the metal layer (C) includes a transition metal or a compound thereof, among which an ionic transition Metal is preferred. Examples of the ionic transition metal include copper, silver, gold, nickel, palladium, platinum, and cobalt. Among these ionic transition metals, copper, silver, and gold are preferable because they have a low electrical resistance and provide a conductive pattern that is resistant to corrosion. The metal layer (C) is preferably porous, and in this case, the layer has voids.
 また、前記金属めっき層(D)を構成する金属としては、銅、ニッケル、クロム、コバルト、スズ等が挙げられる。これらの中でも、電気抵抗が低く、腐食に強い導電性パターンが得られることから銅が好ましい。 Further, examples of the metal constituting the metal plating layer (D) include copper, nickel, chromium, cobalt, and tin. Among these, copper is preferable because a conductive pattern having low electric resistance and strong against corrosion can be obtained.
 本発明の積層体においては、前記金属層(C)中に存在する空隙に金属めっき層(D)を構成する金属が充填されていることが好ましく、前記透明基材(A)と前記金属層(C)との界面近傍に存在する前記金属層(C)中の空隙まで、前記金属めっき層(D)を構成する金属が充填されているものが、前記金属層(C)と前記金属めっき層(D)との密着性がより向上するため好ましい。 In the laminate of the present invention, it is preferable that the metal constituting the metal plating layer (D) is filled in the voids present in the metal layer (C), and the transparent substrate (A) and the metal layer are filled. The metal layer (C) and the metal plating are filled with the metal constituting the metal plating layer (D) up to the gap in the metal layer (C) existing in the vicinity of the interface with (C). Since adhesiveness with a layer (D) improves more, it is preferable.
 本発明の積層体の製造方法としては、まず、透明基材(A)の上に、プライマー層(B)を形成し、その後、ナノサイズの金属ナノ粒子(c)を含有する流動体を塗工し、流動体中に含まれる有機溶剤等を乾燥により除去することによって、金属層(C)を形成した後、電解又は無電解めっきにより前記金属めっき層(D)を形成する方法が挙げられる。この金属層(C)の形成の際、金属ナノ粒子(c)を含有する流動体をプライマー層(B)の上に塗工、乾燥して、金属層(C’)を形成した後、焼成して前記金属層(C’)中に存在する分散剤を含む有機化合物を除去して空隙を形成して多孔質状の金属層(C)とすることで、前記金属めっき層(D)との密着性が向上することから好ましい。 As a method for producing a laminate of the present invention, first, a primer layer (B) is formed on a transparent substrate (A), and then a fluid containing nano-sized metal nanoparticles (c) is applied. And a method of forming the metal plating layer (D) by electrolysis or electroless plating after forming the metal layer (C) by removing the organic solvent and the like contained in the fluid by drying. . When forming the metal layer (C), the fluid containing the metal nanoparticles (c) is coated on the primer layer (B) and dried to form the metal layer (C ′), followed by firing. And removing the organic compound containing the dispersing agent present in the metal layer (C ′) to form a void to form a porous metal layer (C), whereby the metal plating layer (D) and This is preferable because of improving the adhesion.
 前記金属層(C)の形成に用いる前記金属ナノ粒子(c)の形状は、粒子状又繊維状のものが好ましい。また、前記金属ナノ粒子(c)の大きさはナノサイズのものを用いるが、具体的には、前記金属ナノ粒子(c)の形状が粒子状の場合は、微細なメッシュ状の導電性パターンを形成でき、抵抗値をより低減できるため、平均粒子径が1~100nmの範囲が好ましく、1~50nmの範囲がより好ましい。なお、前記「平均粒子径」は、前記導電性物質を分散良溶媒にて希釈し、動的光散乱法により測定した体積平均値である。この測定にはマイクロトラック社製「ナノトラックUPA-150」を用いることができる。 The shape of the metal nanoparticles (c) used for forming the metal layer (C) is preferably in the form of particles or fibers. The metal nanoparticles (c) are nano-sized. Specifically, when the metal nanoparticles (c) are particulate, a fine mesh conductive pattern is used. The average particle diameter is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 50 nm. The “average particle size” is a volume average value measured by a dynamic light scattering method after diluting the conductive substance with a good dispersion solvent. For this measurement, “Nanotrack UPA-150” manufactured by Microtrack Co. can be used.
 一方、前記金属ナノ粒子(c)の形状が繊維状の場合は、微細なメッシュ状の導電性パターンを形成でき、抵抗値をより低減できるため、繊維の直径が5~100nmの範囲が好ましく、5~50nmの範囲がより好ましい。また、繊維の長さは、0.1~100μmの範囲が好ましく、0.1~30μmの範囲がより好ましい。 On the other hand, when the shape of the metal nanoparticles (c) is fibrous, a fine mesh conductive pattern can be formed and the resistance value can be further reduced. Therefore, the fiber diameter is preferably in the range of 5 to 100 nm. A range of 5 to 50 nm is more preferable. The fiber length is preferably in the range of 0.1 to 100 μm, and more preferably in the range of 0.1 to 30 μm.
 前記流動体中の前記金属ナノ粒子(c)の含有率は、1~90質量%の範囲が好ましく、1~60質量%の範囲がより好ましく、さらに1~10質量%の範囲がより好ましい。 The content of the metal nanoparticles (c) in the fluid is preferably in the range of 1 to 90% by mass, more preferably in the range of 1 to 60% by mass, and still more preferably in the range of 1 to 10% by mass.
 前記流動体に配合される成分としては、前記金属ナノ粒子(c)を溶媒中に分散させるための分散剤や溶媒、また必要に応じて、後述する界面活性剤、レベリング剤、粘度調整剤、成膜助剤、消泡剤、防腐剤等が挙げられる。 As a component to be blended in the fluid, a dispersant or solvent for dispersing the metal nanoparticles (c) in a solvent, and, if necessary, a surfactant, a leveling agent, a viscosity modifier, which will be described later, Examples include film forming aids, antifoaming agents, and preservatives.
 前記金属ナノ粒子(c)を溶媒中に分散させるため、低分子量又は高分子量の分散剤を用いることが好ましい。前記分散剤としては、例えば、ドデカンチオール、1-オクタンチオール、トリフェニルホスフィン、ドデシルアミン、ポリエチレングリコール、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルピロリドン;ミリスチン酸、オクタン酸、ステアリン酸等の脂肪酸;コール酸、グリシルジン酸、アビンチン酸等のカルボキシル基を有する多環式炭化水素化合物などが挙げられる。これらの中でも、前記金属層(C)を多孔質状とすることで前記金属層(C)と後述する金属めっき層(D)との密着性を向上できることから、高分子分散剤が好ましく、この高分子分散剤としては、ポリエチレンイミン、ポリプロピレンイミン等のポリアルキレンイミン、前記ポリアルキレンイミンにポリオキシアルキレンが付加した化合物、ウレタン樹脂、アクリル樹脂、前記ウレタン樹脂や前記アクリル樹脂にリン酸基を含有する化合物等が挙げられる。 In order to disperse the metal nanoparticles (c) in a solvent, it is preferable to use a low molecular weight or high molecular weight dispersant. Examples of the dispersant include dodecanethiol, 1-octanethiol, triphenylphosphine, dodecylamine, polyethylene glycol, polyvinylpyrrolidone, polyethyleneimine, polyvinylpyrrolidone; fatty acids such as myristic acid, octanoic acid, stearic acid; cholic acid, Examples thereof include polycyclic hydrocarbon compounds having a carboxyl group such as glycyrrhizic acid and avintinic acid. Among these, since the adhesion between the metal layer (C) and the metal plating layer (D) described later can be improved by making the metal layer (C) porous, a polymer dispersant is preferable. Polymeric dispersants include polyalkyleneimines such as polyethyleneimine and polypropyleneimine, compounds obtained by adding polyoxyalkylene to the polyalkyleneimine, urethane resins, acrylic resins, urethane resins and acrylic resins containing phosphate groups And the like.
 上記のように、前記分散剤に高分子分散剤を用いることで、低分子分散剤と比較して、前記金属層(C)中の分散剤を除去して多孔質状とし、その空隙サイズを大きくすることができ、ナノオーダーからサブミクロンオーダーの大きさの空隙を形成することができる。この空隙に後述する金属めっき層(D)を構成する金属が充填されやすくなり、充填された金属がアンカーとなり、前記金属層(C)と後述する金属めっき層(D)との密着性を大幅に向上することができる。 As described above, by using a polymer dispersant as the dispersant, the dispersant in the metal layer (C) is removed to be porous compared to the low molecular dispersant, and the void size is reduced. It is possible to increase the size, and it is possible to form a void having a size of nano-order to sub-micron order. The voids are easily filled with the metal constituting the metal plating layer (D) described later, and the filled metal serves as an anchor, greatly improving the adhesion between the metal layer (C) and the metal plating layer (D) described later. Can be improved.
 前記金属ナノ粒子(c)を分散させるために必要な前記分散剤の使用量は、前記金属ナノ粒子(c)100質量部に対し、0.01~50質量部が好ましく、0.01~10質量部がより好ましい。 The amount of the dispersant used for dispersing the metal nanoparticles (c) is preferably 0.01 to 50 parts by mass, and 0.01 to 10 parts per 100 parts by mass of the metal nanoparticles (c). Part by mass is more preferable.
 また、前記金属層(C)と後述する金属めっき層(D)との密着性をより向上する目的で、焼成により分散剤を除去して多孔質状の前記金属層(C)を形成する場合は、前記ナノサイズの金属粉100質量部に対し、0.1~10質量部が好ましく、0.1~5質量部がより好ましい。 When the porous metal layer (C) is formed by removing the dispersant by firing for the purpose of further improving the adhesion between the metal layer (C) and the metal plating layer (D) described later. Is preferably from 0.1 to 10 parts by weight, more preferably from 0.1 to 5 parts by weight, based on 100 parts by weight of the nano-sized metal powder.
 前記流動体に用いる溶媒としては、水性媒体や有機溶剤を用いることができる。前記水性媒体としては、例えば、蒸留水、イオン交換水、純水、超純水等が挙げられる。また、前記有機溶剤としては、アルコール化合物、エーテル化合物、エステル化合物、ケトン化合物等が挙げられる。 As the solvent used for the fluid, an aqueous medium or an organic solvent can be used. Examples of the aqueous medium include distilled water, ion exchange water, pure water, and ultrapure water. Examples of the organic solvent include alcohol compounds, ether compounds, ester compounds, and ketone compounds.
 前記アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロピルアルコール、n-ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、ヘプタノール、ヘキサノール、オクタノール、ノナノール、デカノール、ウンデカノール、ドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ステアリルアルコール、アリルアルコール、シクロヘキサノール、テルピネオール、ターピネオール、ジヒドロターピネオール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、トリプロピレングリコールモノブチルエーテル等が挙げられる。 Examples of the alcohol include methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, sec-butanol, tert-butanol, heptanol, hexanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetra Decanol, pentadecanol, stearyl alcohol, allyl alcohol, cyclohexanol, terpineol, terpineol, dihydroterpineol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Spotted Ether, tetraethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, propylene glycol monopropyl ether, dipropylene glycol monopropyl ether, propylene glycol monobutyl ether, dipropylene glycol monobutyl ether, tri And propylene glycol monobutyl ether.
 また、前記流動体には、上記の金属粉、溶媒の他に、必要に応じてエチレングリコール、ジエチレングリコール、1,3-ブタンジオール、イソプレングリコール等を用いることができる。 In addition to the above metal powder and solvent, ethylene glycol, diethylene glycol, 1,3-butanediol, isoprene glycol and the like can be used for the fluid as necessary.
 前記界面活性剤としては、一般的な界面活性剤を用いることができ、例えば、ジ-2-エチルヘキシルスルホコハク酸塩、ドデシルベンゼンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルキルナフタレンスルホン酸塩、ヘキサメタリン酸塩等が挙げられる。 As the surfactant, a general surfactant can be used. For example, di-2-ethylhexylsulfosuccinate, dodecylbenzenesulfonate, alkyldiphenylether disulfonate, alkylnaphthalenesulfonate, hexametaphosphate Examples include salts.
 前記レベリング剤としては、一般的なレベリング剤を用いることができ、例えば、シリコーン系化合物、アセチレンジオール系化合物、フッ素系化合物等が挙げられる。 As the leveling agent, a general leveling agent can be used, and examples thereof include silicone compounds, acetylenic diol compounds, and fluorine compounds.
 前記粘度調整剤としては、一般的な増粘剤を用いることができ、例えば、アルカリ性に調整することによって増粘可能なアクリル重合体や合成ゴムラテックス、分子が会合することによって増粘可能なウレタン樹脂、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、ポリビニルアルコール、水添加ヒマシ油、アマイドワックス、酸化ポリエチレン、金属石鹸、ジベンジリデンソルビトールなどが挙げられる。 As the viscosity adjusting agent, a general thickening agent can be used, for example, an acrylic polymer or synthetic rubber latex that can be thickened by adjusting to alkalinity, or a urethane that can be thickened by association of molecules. Resins, hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, polyvinyl alcohol, water-added castor oil, amide wax, oxidized polyethylene, metal soap, dibenzylidene sorbitol and the like can be mentioned.
 前記成膜助剤としては、一般的な成膜助剤を用いることができ、例えば、アニオン系界面活性剤(ジオクチルスルホコハク酸エステルソーダ塩など)、疎水性ノニオン系界面活性剤(ソルビタンモノオレエートなど)、ポリエーテル変性シロキサン、シリコーンオイル等が挙げられる。 As the film forming aid, a general film forming aid can be used. For example, an anionic surfactant (dioctyl sulfosuccinate soda salt, etc.), a hydrophobic nonionic surfactant (sorbitan monooleate). Etc.), polyether-modified siloxane, silicone oil and the like.
 前記消泡剤としては、一般的な消泡剤を用いることができ、例えばシリコーン系消泡剤や、ノニオン系界面活性剤、ポリエーテル,高級アルコール、ポリマー系界面活性剤等が挙げられる。 As the antifoaming agent, a general antifoaming agent can be used, and examples thereof include a silicone-based antifoaming agent, a nonionic surfactant, a polyether, a higher alcohol, and a polymer-based surfactant.
 前記防腐剤としては、一般的な防腐剤を用いることができ、例えば、イソチアゾリン系防腐剤、トリアジン系防腐剤、イミダゾール系防腐剤、ピリジン系防腐剤、アゾール系防腐剤、ヨード系防腐剤、ピリチオン系防腐剤等が挙げられる。 As the preservative, general preservatives can be used, for example, isothiazoline preservatives, triazine preservatives, imidazole preservatives, pyridine preservatives, azole preservatives, iodo preservatives, pyrithione. And system preservatives.
 前記流動体の粘度(25℃でB型粘度計を用いて測定した値)は、0.1~500,000mPa・sの範囲が好ましく、0.5~10,000mPa・sの範囲がより好ましい。また、前記流動体を、後述するインクジェット印刷法、凸版反転印刷等の方法によって塗工(印刷)する場合には、その粘度は5~20mPa・sの範囲が好ましい。 The viscosity of the fluid (measured with a B-type viscometer at 25 ° C.) is preferably in the range of 0.1 to 500,000 mPa · s, more preferably in the range of 0.5 to 10,000 mPa · s. . In addition, when the fluid is applied (printed) by a method such as an ink jet printing method or letterpress reverse printing described later, the viscosity is preferably in the range of 5 to 20 mPa · s.
 前記プライマー層(B)の上に前記流動体を塗工や印刷する方法としては、例えば、インクジェット印刷法、反転印刷法、スクリーン印刷法、オフセット印刷法、スピンコート法、スプレーコート法、バーコート法、ダイコート法、スリットコート法、ロールコート法、ディップコート法、パッド印刷、フレキソ印刷法等が挙げられる。 Examples of a method for coating or printing the fluid on the primer layer (B) include, for example, an ink jet printing method, a reverse printing method, a screen printing method, an offset printing method, a spin coating method, a spray coating method, and a bar coating. Method, die coating method, slit coating method, roll coating method, dip coating method, pad printing, flexographic printing method and the like.
 これらの塗工方法の中でも、電子回路等の高密度化を実現する際に求められる0.01~100μm程度の細線状でパターン化された前記金属層(C)を形成する場合には、インクジェット印刷法、反転印刷法を用いることが好ましい。 Among these coating methods, in the case of forming the metal layer (C) patterned in a thin line shape of about 0.01 to 100 μm, which is required when realizing a high density of an electronic circuit or the like, an inkjet is used. It is preferable to use a printing method or a reverse printing method.
 前記インクジェット印刷法としては、一般にインクジェットプリンターといわれるものを用いることができる。具体的には、コニカミノルタEB100、XY100(コニカミノルタIJ株式会社製)、ダイマティックス・マテリアルプリンターDMP-3000、ダイマティックス・マテリアルプリンターDMP-2831(富士フィルム株式会社製)等が挙げられる。 As the inkjet printing method, what is generally called an inkjet printer can be used. Specific examples include Konica Minolta EB100, XY100 (manufactured by Konica Minolta IJ Co., Ltd.), Dimatics Material Printer DMP-3000, Dimatics Material Printer DMP-2831 (manufactured by Fuji Film Co., Ltd.), and the like.
 また、反転印刷法としては、凸版反転印刷法、凹版反転印刷法が知られており、例えば、各種ブランケットの表面に前記流動体を塗工し、非画線部が突出した版と接触させ、前記非画線部に対応する流動体を前記版の表面に選択的に転写させることによって、前記ブランケット等の表面に前記パターンを形成し、次いで、前記パターンを、前記透明基材層(A)の上(表面)に転写させる方法が挙げられる。 Further, as the reversal printing method, a letterpress reversal printing method and an intaglio reversal printing method are known, for example, the fluid is applied to the surface of various blankets and brought into contact with the plate from which the non-image portion protrudes, By selectively transferring a fluid corresponding to the non-image area to the surface of the plate, the pattern is formed on the surface of the blanket or the like, and then the pattern is formed on the transparent substrate layer (A). There is a method of transferring to the top (surface).
 また、透明の成形品へのパターンの印刷については、パッド印刷法が知られている。凹版の上にインクを載せ、スキージで書き取ることでインクを均質に凹部に充填し、インクを載せた版上に、シリコンゴムやウレタンゴム製のパッドを押し当て、パターンをパッド上に転写し、透明の成形品へ転写させる方法が挙げられる。 Also, a pad printing method is known for printing a pattern on a transparent molded product. Place the ink on the intaglio and write it with a squeegee to uniformly fill the recess, press the pad made of silicon rubber or urethane rubber onto the plate on which the ink is placed, transfer the pattern onto the pad, There is a method of transferring to a transparent molded product.
 前記金属層(C)の単位面積当たりの質量は、1~30,000mg/mの範囲が好ましく、1~5,000mg/mの範囲が好ましい。前記金属層(C)の厚さは、前記金属めっき層(C)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 Mass per unit area of the metal layer (C) is preferably in the range of 1 ~ 30,000mg / m 2, the range of 1 ~ 5,000mg / m 2 is preferred. The thickness of the metal layer (C) can be adjusted by controlling the processing time, current density, the amount of additive used for plating, etc. in the plating process when forming the metal plating layer (C). it can.
 本発明の積層体を後述するメタルメッシュとして用いる場合、前記金属層(C)、前記金属めっき層(D)等を後述するエッチングにより除去し、メッシュ状のパターンを形成してメタルメッシュを作製する方法がある。この際、エッチングにより前記金属層(C)を除去しやすく、非パターン部(エッチング部)の透明性をより向上できることから、前記金属層(C)の単位面積当たりの質量は少ない方が好ましく、具体的には1~2,000mg/mの範囲が好ましく、10~1,000mg/mの範囲がより好ましい。 When using the laminated body of this invention as a metal mesh mentioned later, the said metal layer (C), the said metal plating layer (D), etc. are removed by the etching mentioned later, a mesh-like pattern is formed, and a metal mesh is produced. There is a way. At this time, since the metal layer (C) can be easily removed by etching and the transparency of the non-patterned portion (etched portion) can be further improved, the mass per unit area of the metal layer (C) is preferably smaller, Specifically, the range of 1 to 2,000 mg / m 2 is preferable, and the range of 10 to 1,000 mg / m 2 is more preferable.
 本発明の積層体を構成する金属めっき層(D)は、例えば、前記積層体を導電性パターン等に用いる場合に、長期間にわたり断線等を生じることなく、良好な通電性を維持可能な信頼性の高い配線パターンを形成することを目的として設けられる層である。 The metal plating layer (D) constituting the laminate of the present invention has a reliability capable of maintaining good electrical conductivity without disconnection or the like over a long period of time, for example, when the laminate is used for a conductive pattern or the like. This layer is provided for the purpose of forming a highly reliable wiring pattern.
 前記金属めっき層(D)は、前記金属層(C)の上に形成される層であるが、その形成方法としては、めっき処理によって形成する方法が好ましい。このめっき処理としては、例えば、電解めっき法、無電解めっき法等の湿式めっき法、スパッタリング法、真空蒸着法等の乾式めっき法などが挙げられる。また、これらのめっき法を2つ以上組み合わせて、前記金属めっき層(D)を形成しても構わない。 The metal plating layer (D) is a layer formed on the metal layer (C), and the formation method is preferably a plating method. Examples of the plating treatment include wet plating methods such as electrolytic plating methods and electroless plating methods, and dry plating methods such as sputtering methods and vacuum deposition methods. Further, the metal plating layer (D) may be formed by combining two or more of these plating methods.
 上記の無電解めっき法は、例えば、前記金属層(C)を構成する金属に、無電解めっき液を接触させることで、無電解めっき液中に含まれる銅等の金属を析出させ金属皮膜からなる無電解めっき層(皮膜)を形成する方法である。 In the electroless plating method, for example, the metal constituting the metal layer (C) is brought into contact with an electroless plating solution, thereby depositing a metal such as copper contained in the electroless plating solution from the metal film. This is a method of forming an electroless plating layer (film).
 前記無電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属と、還元剤と、水性媒体、有機溶剤等の溶媒とを含有するものが挙げられる。 Examples of the electroless plating solution include those containing a metal such as copper, nickel, chromium, cobalt, and tin, a reducing agent, and a solvent such as an aqueous medium and an organic solvent.
 前記還元剤としては、例えば、ジメチルアミノボラン、次亜燐酸、次亜燐酸ナトリウム、ジメチルアミンボラン、ヒドラジン、ホルムアルデヒド、水素化ホウ素ナトリウム、フェノール等が挙げられる。 Examples of the reducing agent include dimethylaminoborane, hypophosphorous acid, sodium hypophosphite, dimethylamine borane, hydrazine, formaldehyde, sodium borohydride, phenol and the like.
 また、前記無電解めっき液としては、必要に応じて、酢酸、蟻酸等のモノカルボン酸;マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸等のジカルボン酸化合物;リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸等のヒドロキシカルボン酸化合物;グリシン、アラニン、イミノジ酢酸、アルギニン、アスパラギン酸、グルタミン酸等のアミノ酸化合物;イミノジ酢酸、ニトリロトリ酢酸、エチレンジアミンジ酢酸、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸等のアミノポリカルボン酸化合物などの有機酸、又はこれらの有機酸の可溶性塩(ナトリウム塩、カリウム塩、アンモニウム塩等)、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物等の錯化剤を含有するものを用いることができる。 In addition, as the electroless plating solution, if necessary, monocarboxylic acids such as acetic acid and formic acid; dicarboxylic acid compounds such as malonic acid, succinic acid, adipic acid, maleic acid, and fumaric acid; malic acid, lactic acid, glycol Hydroxycarboxylic acid compounds such as acid, gluconic acid, citric acid; amino acid compounds such as glycine, alanine, iminodiacetic acid, arginine, aspartic acid, glutamic acid; iminodiacetic acid, nitrilotriacetic acid, ethylenediaminediacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, etc. Containing a complexing agent such as an organic compound such as an aminopolycarboxylic acid compound or a soluble salt (sodium salt, potassium salt, ammonium salt, etc.) of these organic acids, or an amine compound such as ethylenediamine, diethylenetriamine, or triethylenetetramine. It can be used for.
 前記無電解めっき液は、20~98℃の範囲で用いることが好ましい。 The electroless plating solution is preferably used in the range of 20 to 98 ° C.
 前記電解めっき法は、例えば、前記金属層(C)を構成する金属、又は、前記無電解処理によって形成された無電解めっき層(皮膜)の表面に、電解めっき液を接触した状態で通電することにより、前記電解めっき液中に含まれる銅等の金属を、カソードに設置した前記金属層(C)を構成する導電性物質又は前記無電解処理によって形成された無電解めっき層(皮膜)の表面に析出させ、電解めっき層(金属皮膜)を形成する方法である。 In the electrolytic plating method, for example, the metal constituting the metal layer (C) or the surface of the electroless plating layer (coating) formed by the electroless treatment is energized in a state where the electrolytic plating solution is in contact with the surface. Thus, a metal such as copper contained in the electrolytic plating solution is made of a conductive substance constituting the metal layer (C) installed on the cathode or an electroless plating layer (film) formed by the electroless treatment. It is a method of forming an electrolytic plating layer (metal film) by depositing on the surface.
 前記電解めっき液としては、例えば、銅、ニッケル、クロム、コバルト、スズ等の金属の硫化物と、硫酸と、水性媒体とを含有するもの等が挙げられる。具体的には、硫酸銅と硫酸と水性媒体とを含有するものが挙げられる。 Examples of the electrolytic plating solution include those containing metal sulfides such as copper, nickel, chromium, cobalt, and tin, sulfuric acid, and an aqueous medium. Specifically, what contains copper sulfate, sulfuric acid, and an aqueous medium is mentioned.
 前記電解めっき液は、20~98℃の範囲で用いることが好ましい。 The electrolytic plating solution is preferably used in the range of 20 to 98 ° C.
 上記電解めっき処理法では、毒性の高い物質を用いることなく、作業性がよいため、電解めっき法を用いた銅からなる金属めっき層(D)を形成することが好ましい。 In the above electrolytic plating treatment method, workability is good without using a highly toxic substance. Therefore, it is preferable to form a metal plating layer (D) made of copper using the electrolytic plating method.
 また、前記乾式めっき処理工程としては、スパッタリング法、真空蒸着法等を用いることができる。前記スパッタリング法は、真空中で不活性ガス(主にアルゴン)を導入し、金属めっき層(D)を形成材料に対してマイナスイオンを印加してグロー放電を発生させ、次いで、前記不活性ガス原子をイオン化し、高速で前記金属めっき層(D)の形成材料の表面にガスイオンを激しく叩きつけ、金属めっき層(D)の形成材料を構成する原子及び分子を弾き出し勢いよく前記金属層(C)の表面に付着させることにより金属めっき層(D)を形成する方法である。 Further, as the dry plating process, a sputtering method, a vacuum deposition method, or the like can be used. In the sputtering method, an inert gas (mainly argon) is introduced in a vacuum, negative ions are applied to the forming material of the metal plating layer (D) to generate glow discharge, and then the inert gas Atoms are ionized, gas ions are struck violently at the surface of the metal plating layer (D) forming material at high speed, and atoms and molecules constituting the metal plating layer (D) forming material are ejected vigorously. ) To form the metal plating layer (D).
 スパッタリング法による前記金属めっき層(D)の形成材料としては、例えば、クロム、銅、チタン、銀、白金、金、ニッケル-クロム合金、ステンレス、銅-亜鉛合金、インジウムチンオキサイド(ITO)、二酸化ケイ素、二酸化チタン、酸化ニオブ、酸化亜鉛等が挙げられる。 Examples of the material for forming the metal plating layer (D) by sputtering include chromium, copper, titanium, silver, platinum, gold, nickel-chromium alloy, stainless steel, copper-zinc alloy, indium tin oxide (ITO), and dioxide. Examples include silicon, titanium dioxide, niobium oxide, and zinc oxide.
 前記スパッタリング法によりめっき処理する際には、例えば、マグネトロンスパッタ装置等を用いることができる。 When performing the plating process by the sputtering method, for example, a magnetron sputtering apparatus or the like can be used.
 前記金属めっき層(D)の厚さは、1~50μmの範囲が好ましい。前記金属めっき層(D)の厚さは、前記金属めっき層(D)の形成する際のめっき処理工程における処理時間、電流密度、めっき用添加剤の使用量等を制御することによって調整することができる。 The thickness of the metal plating layer (D) is preferably in the range of 1 to 50 μm. The thickness of the metal plating layer (D) is adjusted by controlling the processing time, the current density, the usage amount of the plating additive, etc. in the plating process when forming the metal plating layer (D). Can do.
 本発明の積層体の前記金属層(C)及び前記金属層(D)をメタルメッシュとしてパターニングする場合、前記金属めっき層(D)の厚さは、通常0.1~18μmの範囲が好ましく、さらにエッチング後の配線幅を小さくするためには、金属めっき(D)が薄膜である方が良く、0.1~5μmの範囲が好ましく、0.5~3μmがより好ましい。また、メタルメッシュ部の線幅は、より透明性を向上できるため、0.1~10μmの範囲が好ましく、0.5~3μmの範囲がより好ましい。 When patterning the metal layer (C) and the metal layer (D) of the laminate of the present invention as a metal mesh, the thickness of the metal plating layer (D) is usually preferably in the range of 0.1 to 18 μm, In order to further reduce the wiring width after etching, the metal plating (D) is preferably a thin film, preferably in the range of 0.1 to 5 μm, more preferably 0.5 to 3 μm. Further, the line width of the metal mesh portion is preferably in the range of 0.1 to 10 μm, and more preferably in the range of 0.5 to 3 μm, because the transparency can be further improved.
 本発明の積層体の前記金属層(C)及び前記金属めっき層(D)をメタルメッシュとしてパターニングし、タッチパネルとして用い、前記透明基材(A)の前記金属めっき層(D)等を形成した面を外側(見る側)にしてディスプレイに設置する場合、ディスプレイの視認性を向上するため、前記金属めっき層(D)の上に、さらに黒化層(E)を形成することが好ましい。これは、例えば、金属めっき層(D)が銅の場合、銅による外光の反射でメッシュ状の配線が見えてしまう場合、前記金属めっき層(D)上に黒化層(E)を設けて黒色にすることで、外光の反射を防止でき、メッシュ状の配線が見えにくくなり、ディスプレイの視認性が向上する。 The metal layer (C) and the metal plating layer (D) of the laminate of the present invention were patterned as a metal mesh and used as a touch panel to form the metal plating layer (D) and the like of the transparent substrate (A). When installing on a display with the surface facing outside (viewing side), it is preferable to further form a blackening layer (E) on the metal plating layer (D) in order to improve the visibility of the display. For example, when the metal plating layer (D) is copper, when a mesh-like wiring is visible due to reflection of external light by copper, a blackening layer (E) is provided on the metal plating layer (D). By making it black, the reflection of external light can be prevented, the mesh-like wiring becomes difficult to see, and the visibility of the display is improved.
 本発明の積層体をメタルメッシュとする場合のその製造方法としては、透明基材(A)の両面又は片面にプライマー樹脂組成物(b)を塗工し、乾燥することによってプライマー層(B)を形成し、前記プライマー層(B)の上に金属ナノ粒子(c)を含有する流動体を塗工し、乾燥することによって金属層(C)を形成し、前記金属層(C)の上に電解めっき法、無電解めっき法又はこれらの組み合わせにより金属めっき層(D)を形成した後、前記金属層(C)及び前記金属めっき層(D)の不要な部分をエッチング剤により除去してメッシュ状の導電性パターンを形成する方法が挙げられる。また、前記透明基材(A)の両面に前記金属めっき層(D)等を形成し、そのメタルメッシュをディスプレイのタッチパネルとして用いる場合、ディスプレイの視認性がより向上することから、ディスプレイに設置する際に外側(見る側)となる面の前記金属めっき層(D)の上に黒化層(E)を形成した後、不要な部分をエッチング剤により除去してメッシュ状の導電性パターンを形成することが好ましい。 When the laminate of the present invention is used as a metal mesh, the primer layer (B) is prepared by applying the primer resin composition (b) to both sides or one side of the transparent substrate (A) and drying it. A fluid containing metal nanoparticles (c) is applied onto the primer layer (B) and dried to form a metal layer (C), and the metal layer (C) After forming the metal plating layer (D) by electrolytic plating, electroless plating, or a combination thereof, unnecessary portions of the metal layer (C) and the metal plating layer (D) are removed with an etching agent. The method of forming a mesh-shaped electroconductive pattern is mentioned. Moreover, when the said metal plating layer (D) etc. are formed in both surfaces of the said transparent base material (A), and the metal mesh is used as a touch panel of a display, since the visibility of a display improves more, it installs in a display. After forming the blackening layer (E) on the metal plating layer (D) on the surface that becomes the outside (viewing side), unnecessary portions are removed with an etching agent to form a mesh-like conductive pattern It is preferable to do.
 また、メタルメッシュの製造方法として、透明基材(A)の両面又は片面にプライマー樹脂組成物(b)を塗工し、乾燥することによってプライマー層(B)を形成し、前記プライマー層(B)の上に金属ナノ粒子(c)を含有する流動体を印刷し、乾燥することによってメッシュ状のパターンである金属層(C)を形成し、前記金属層(C)の上に電解めっき法、無電解めっき法又はこれらの組み合わせにより金属めっき層(D)を形成する方法も挙げられる。また、前記透明基材(A)の両面に前記金属めっき層(D)等を形成し、そのメタルメッシュをディスプレイのタッチパネルとして用いる場合、ディスプレイの視認性がより向上することから、ディスプレイに設置する際に外側(見る側)となる面の前記金属めっき層(D)の上に黒化層(E)を形成することが好ましい。 In addition, as a method for producing a metal mesh, the primer layer (B) is formed by coating the primer resin composition (b) on both sides or one side of the transparent base material (A) and drying the primer layer (B). The fluid containing metal nanoparticles (c) is printed on the metal layer (C) and dried to form a metal layer (C) that is a mesh-like pattern. Further, a method of forming the metal plating layer (D) by an electroless plating method or a combination thereof is also included. Moreover, when the said metal plating layer (D) etc. are formed in both surfaces of the said transparent base material (A), and the metal mesh is used as a touch panel of a display, since the visibility of a display improves more, it installs in a display. It is preferable to form a blackening layer (E) on the metal plating layer (D) on the surface which becomes the outside (viewing side).
 前記透明基材(A)の両面に、プライマー層(B)、金属層(C)、金属めっき層(D)等を形成し、両面に導電性パターンを形成し、メタルメッシュとする場合、図3のように一方の面と他方の面に、ストライプ状の導電性パターンとし、互いに直交させて形成することが好ましい。 In the case where a primer layer (B), a metal layer (C), a metal plating layer (D), etc. are formed on both surfaces of the transparent substrate (A) and a conductive pattern is formed on both surfaces to form a metal mesh, As shown in FIG. 3, it is preferable to form a stripe-shaped conductive pattern on one surface and the other surface so as to be orthogonal to each other.
 前記黒化層(E)は、湿式法又は乾式法で形成できる。 The blackening layer (E) can be formed by a wet method or a dry method.
 前記湿式法としては、例えば、特許第5862916号公報に記載の方法を用いることができる。具体的には、パラジウム、ルテニウム及び銀からなる群から選ばれる少なくとも1つの化合物と、ハロゲン化物、窒素原子を含む化合物からなる黒化処理液により黒化層(E)を形成する方法が挙げられる。また、前記金属層(D)が銅の場合、次亜塩素酸塩、亜塩素酸塩等を用いて銅表面を酸化処理して黒色の酸化銅を生成する方法や、硫化物水溶液を用いて黒色の硫化銅を生成する方法により、前記黒化層(E)を形成する方法が挙げられる。 As the wet method, for example, the method described in Japanese Patent No. 5862916 can be used. Specifically, there is a method of forming the blackening layer (E) with at least one compound selected from the group consisting of palladium, ruthenium and silver, and a blackening treatment liquid comprising a halide and a compound containing a nitrogen atom. . When the metal layer (D) is copper, a method of producing black copper oxide by oxidizing the copper surface with hypochlorite, chlorite or the like, or using an aqueous sulfide solution The method of forming the said blackening layer (E) by the method of producing | generating black copper sulfide is mentioned.
 また、コバルト-銅合金めっきによっても前記黒化層(E)を形成できる。さらにその上に防錆処理としてクロメート処理をしてもよい。なお、クロメート処理は、クロム酸もしくは重クロム酸塩を主成分とする溶液中に浸漬し、乾燥させて防錆被膜を形成するものである。 The blackened layer (E) can also be formed by cobalt-copper alloy plating. Further, a chromate treatment may be performed thereon as a rust prevention treatment. The chromate treatment is performed by immersing in a solution containing chromic acid or dichromate as a main component and drying to form a rust-proof coating.
 前記乾式法としては、例えば、スパッタ法や蒸着法により前記黒化層(E)を形成する方法が挙げられる。この場合に用いる化合物としては、窒化銅、酸化銅、窒化ニッケル、及び酸化ニッケルからなる群より選ばれる少なくとも1つの金属化合物が挙げられる。 Examples of the dry method include a method of forming the blackened layer (E) by sputtering or vapor deposition. Examples of the compound used in this case include at least one metal compound selected from the group consisting of copper nitride, copper oxide, nickel nitride, and nickel oxide.
 前記黒化層(E)の厚さとしては、メッシュ状の配線が見えにくくなればよく、20~500nmの範囲が好ましく、20~100nmの範囲がより好ましい。 The thickness of the blackening layer (E) is only required to make the mesh-like wiring difficult to see, and is preferably in the range of 20 to 500 nm, more preferably in the range of 20 to 100 nm.
 上記の方法により得られた本発明の積層体は、導電性パターンとして用いることが可能である。本発明の積層体を導電性パターンに用いる場合、形成しようとする所望のパターン形状に対応した位置に、前記金属層(C)を形成するため、前記金属粉を含有する流動体を塗工することによって、所望のパターンを有する導電性パターンを製造することができる。 The laminate of the present invention obtained by the above method can be used as a conductive pattern. When the laminate of the present invention is used for a conductive pattern, a fluid containing the metal powder is applied to form the metal layer (C) at a position corresponding to a desired pattern shape to be formed. Thus, a conductive pattern having a desired pattern can be manufactured.
 また、前記導電性パターンは、例えば、サブトラクティブ法、セミアディティブ法等のフォトリソ-エッチング法、又は金属層(C)の印刷パターン上にめっきする方法によって製造することができる。 The conductive pattern can be manufactured by, for example, a photolithographic etching method such as a subtractive method or a semi-additive method, or a method of plating on a printed pattern of the metal layer (C).
 前記サブトラクティブ法は、予め製造した本発明の積層体を構成する金属めっき層(D)(黒化層(E)を形成した場合は、黒化層(E))の上に、所望のパターン形状に対応した形状のエッチングレジスト層を形成し、その後の現像処理によって、前記レジストの除去された部分の前記金属層(C)、前記金属めっき層(D)等を薬液で溶解し除去することによって、所望のパターンを形成する方法である。前記薬液としては、塩化銅、塩化鉄等を含有する薬液を用いることができる。 In the subtractive method, a desired pattern is formed on the metal plating layer (D) (the blackened layer (E) when the blackened layer (E) is formed) constituting the laminate of the present invention manufactured in advance. An etching resist layer having a shape corresponding to the shape is formed, and the metal layer (C), the metal plating layer (D), and the like in the removed portion of the resist are dissolved and removed by a chemical solution by subsequent development processing. Is a method of forming a desired pattern. As the chemical solution, a chemical solution containing copper chloride, iron chloride or the like can be used.
 前記セミアディティブ法は、前記透明基材(A)の両面又は片面に前記プライマー層(B)及び前記金属層(C)を形成し、前記金属層(C)の表面に、所望のパターンに対応した形状のめっきレジスト層を形成し、次いで、電解めっき法、無電解めっき法又はそれらの組み合わせによって金属めっき層(D)を形成した後、前記めっきレジスト層とそれに接触した前記金属層(C)とを薬液等に溶解し除去し、形成した前記めっき層(D)の上に、必要に応じて前記黒化層(E)を形成することによって、所望のパターンを形成する方法である。 The semi-additive method forms the primer layer (B) and the metal layer (C) on both sides or one side of the transparent substrate (A), and corresponds to a desired pattern on the surface of the metal layer (C). After forming a plating resist layer having the shape described above, and subsequently forming a metal plating layer (D) by an electrolytic plating method, an electroless plating method, or a combination thereof, the plating resist layer and the metal layer (C) in contact therewith Is dissolved in a chemical solution or the like and removed, and the blackened layer (E) is formed on the formed plating layer (D) as necessary, thereby forming a desired pattern.
 また、前記金属層(C)の印刷パターン上にめっきする方法は、前記透明基材(A)の両面又は片面に形成した前記プライマー層(B)の上に、インクジェット法、反転印刷法等で前記金属層(C)のパターンを印刷し、前記金属層(C)の表面に、電解めっき法、無電解めっき法又はそれらの組み合わせによって前記金属めっき層(D)を形成し、その上に必要に応じて前記黒化層(E)を形成することによって、所望のパターンを形成する方法である。 Moreover, the method of plating on the printing pattern of the said metal layer (C) is an inkjet method, a reversal printing method, etc. on the said primer layer (B) formed in the both surfaces or one side of the said transparent base material (A). A pattern of the metal layer (C) is printed, and the metal plating layer (D) is formed on the surface of the metal layer (C) by an electrolytic plating method, an electroless plating method, or a combination thereof, and is necessary thereon. According to the method, a desired pattern is formed by forming the blackening layer (E).
 上記の方法で得られた本発明の積層体は、従来の蒸着法やスパッタ法で銅層を形成する方法に比べ、透明基材と金属めっき層の密着性にきわめて優れ、エッチング剤により導電性パターンを形成した後の非パターン部の透明性に優れる。また、本発明の積層体を用いてメッシュ状の導電性パターンを形成した際、前記導電性パターンを形成していない面から見た場合に、メッシュ状の導電性パターンが見えにくいという特長がある。したがって、本発明の積層体は、例えば、導電性パターン、タッチパネル向け導電性フィルム、タッチパネル用メタルメッシュ、電子回路、有機太陽電池、電子端末、有機EL素子、有機トランジスタ、フレキシブルプリント基板、非接触ICカード等のRFID、電磁波シールドなどの配線部材として好適に用いることができる。特に、透明性が要求されるタッチパネル等の用途に最適である。 The laminate of the present invention obtained by the above method has excellent adhesion between the transparent substrate and the metal plating layer compared to the conventional method of forming a copper layer by vapor deposition or sputtering, and is conductive by an etching agent. It is excellent in the transparency of the non-pattern part after forming a pattern. Further, when a mesh-like conductive pattern is formed using the laminate of the present invention, there is a feature that the mesh-like conductive pattern is difficult to see when viewed from the surface where the conductive pattern is not formed. . Therefore, the laminate of the present invention includes, for example, a conductive pattern, a conductive film for a touch panel, a metal mesh for a touch panel, an electronic circuit, an organic solar cell, an electronic terminal, an organic EL element, an organic transistor, a flexible printed board, and a non-contact IC. It can be suitably used as a wiring member such as an RFID such as a card or an electromagnetic wave shield. In particular, it is optimal for applications such as touch panels that require transparency.
 以下、実施例により本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
[樹脂組成物(R-1)の調製]
 温度計、窒素ガス導入管、撹拌機を備えた反応容器中で窒素ガスを導入しながら、テレフタル酸830質量部、イソフタル酸830質量部、1,6-ヘキサンジオール685質量部、ネオペンチルグリコール604質量部及びジブチル錫オキサイド0.5質量部を仕込み、180~230℃で酸価が1以下になるまで230℃で15時間重縮合反応を行い、水酸基価55.9、酸価0.2のポリエステルポリオールを得た。
[Preparation of Resin Composition (R-1)]
While introducing nitrogen gas into a reaction vessel equipped with a thermometer, a nitrogen gas introduction tube, and a stirrer, 830 parts by mass of terephthalic acid, 830 parts by mass of isophthalic acid, 685 parts by mass of 1,6-hexanediol, neopentyl glycol 604 1 part by weight and 0.5 part by weight of dibutyltin oxide were added, and a polycondensation reaction was carried out at 230 ° C. for 15 hours at 180 to 230 ° C. until the acid value became 1 or less. A polyester polyol was obtained.
 上記のポリエステルポリオール1000質量部を減圧下100℃で脱水し、80℃まで冷却した後、メチルエチルケトン883質量部を加え十分撹拌、溶解し、2,2-ジメチロールプロピオン酸80質量部を加え、次いでイソホロンジイソシアネート244質量部を加えて70℃で8時間反応させた。 After dehydrating 1000 parts by weight of the above polyester polyol at 100 ° C. under reduced pressure and cooling to 80 ° C., 883 parts by weight of methyl ethyl ketone was added and sufficiently stirred and dissolved, and then 80 parts by weight of 2,2-dimethylolpropionic acid was added. 244 parts by mass of isophorone diisocyanate was added and reacted at 70 ° C. for 8 hours.
 前記反応終了後、40℃まで冷却し、トリエチルアミン60質量部加えて中和した後、水4700質量部と混合し透明な反応生成物を得た。 After completion of the reaction, the mixture was cooled to 40 ° C., neutralized by adding 60 parts by mass of triethylamine, and then mixed with 4700 parts by mass of water to obtain a transparent reaction product.
 前記反応生成物から、40~60℃の減圧下でメチルエチルケトンを除去し、次いで、水を混合することで、不揮発分10質量%、重量平均分子量50000の樹脂組成物(R-1)を得た。 Methyl ethyl ketone was removed from the reaction product under reduced pressure of 40 to 60 ° C., and then mixed with water to obtain a resin composition (R-1) having a nonvolatile content of 10% by mass and a weight average molecular weight of 50000. .
[樹脂組成物(R-2)の調製]
 攪拌機を備えた耐熱重合装置に、水90質量部、アルキルジフェニルエーテルジスルホン酸ナトリウム(ダウケミカル社製「ダウファックス2A-1」)0.7質量部、エチレンジアミン四酢酸ナトリム0.15質量部、ブタジエン29質量部、スチレン68質量部、アクリル酸3質量部を仕込み攪拌を開始した。その後、60℃まで昇温し、温度が安定したら過硫酸アンモニウム0.15質量部を添加し、重合を開始した。60℃で3時間重合を進めた後、75℃に昇温し、さらに6時間重合した。その後、30℃まで冷却し、25質量%アンモニア水と水を添加することで、pHと固形分を調整し、pH7、固形部10%の樹脂組成物(R-2)を得た。
[Preparation of Resin Composition (R-2)]
In a heat-resistant polymerization apparatus equipped with a stirrer, 90 parts by weight of water, 0.7 parts by weight of sodium alkyldiphenyl ether disulfonate (“Dowfax 2A-1” manufactured by Dow Chemical Company), 0.15 parts by weight of sodium ethylenediaminetetraacetate, 29 parts of butadiene A mass part, 68 mass parts of styrene, and 3 mass parts of acrylic acid were prepared, and stirring was started. Thereafter, the temperature was raised to 60 ° C., and when the temperature was stabilized, 0.15 part by mass of ammonium persulfate was added to initiate polymerization. After proceeding polymerization at 60 ° C. for 3 hours, the temperature was raised to 75 ° C. and polymerization was further performed for 6 hours. Thereafter, the mixture was cooled to 30 ° C., and 25 mass% ammonia water and water were added to adjust pH and solid content to obtain a resin composition (R-2) having a pH of 7 and a solid part of 10%.
[樹脂組成物(R-3)の調製]
 攪拌機、還流冷却管、窒素導入管、温度計、単量体混合物滴下用滴下漏斗及び重合触媒滴下用滴下漏斗を備えた反応容器に、酢酸エチル180質量部を入れ、窒素を吹き込みながら80℃まで昇温した。80℃まで昇温した反応容器内に、攪拌下、メタクリル酸メチル90質量部、アクリル酸n-ブチル10質量部を含有するビニル単量体混合物と、アゾイソブチロニトリル1質量部及び酢酸エチル20質量部を含有する重合開始剤溶液を、各々別の滴下漏斗から反応容器内温度を80±1℃に保ちながら240分間かけて滴下し重合した。滴下終了後、同温度にて120分間攪拌した後、前記反応容器内の温度を30℃に冷却した。次いで、不揮発分が10質量%になるように酢酸エチルを加え、200メッシュ金網で濾過することによって、樹脂組成物(R-3)を得た。
[Preparation of resin composition (R-3)]
Into a reaction vessel equipped with a stirrer, reflux condenser, nitrogen inlet tube, thermometer, dropping funnel for dropping the monomer mixture and dropping funnel for dropping the polymerization catalyst, 180 parts by mass of ethyl acetate was added and the temperature was increased to 80 ° C. while blowing nitrogen. The temperature rose. In a reaction vessel heated to 80 ° C., with stirring, a vinyl monomer mixture containing 90 parts by weight of methyl methacrylate and 10 parts by weight of n-butyl acrylate, 1 part by weight of azoisobutyronitrile and ethyl acetate A polymerization initiator solution containing 20 parts by mass was dropped and polymerized from another dropping funnel over 240 minutes while maintaining the temperature in the reaction vessel at 80 ± 1 ° C. After completion of dropping, the mixture was stirred at the same temperature for 120 minutes, and then the temperature in the reaction vessel was cooled to 30 ° C. Next, ethyl acetate was added so that the nonvolatile content was 10% by mass, and the mixture was filtered through a 200 mesh wire net to obtain a resin composition (R-3).
[流動体(1)の調製]
 特許第4573138号公報記載の実施例1にしたがって、銀ナノ粒子とカチオン性基(アミノ基)を有する有機化合物の複合体である灰緑色の金属光沢があるフレーク状の塊からなるカチオン性銀ナノ粒子を得た。その後、この銀ナノ粒子の粉末を、エチレングリコール45質量部と、イオン交換水55質量部との混合溶媒に分散させて、固形分が3質量%の流動体(1)を調製した。
[Preparation of fluid (1)]
According to Example 1 described in Japanese Patent No. 4573138, a cationic silver nanoparticle comprising a grey-green metallic luster flaky mass, which is a composite of silver nanoparticles and an organic compound having a cationic group (amino group) Particles were obtained. Thereafter, this silver nanoparticle powder was dispersed in a mixed solvent of 45 parts by mass of ethylene glycol and 55 parts by mass of ion-exchanged water to prepare a fluid (1) having a solid content of 3% by mass.
[実施例1]
 透明基材(東レ式会社製「ルミラー50T-60」、ポリエチレンテレフタレートフィルム、厚さ50μm;以下、「PET基材」と略記する。)の表面に、上記で調製した樹脂組成物(R-1)を、バーコーターを用いて、その乾燥後の厚さが0.5μmとなるように塗工した。次いで、熱風乾燥機を用いて80℃で5分間乾燥することによって、PET基材の表面にプライマー層を形成した。
[Example 1]
On the surface of a transparent substrate (“Lumirror 50T-60” manufactured by Toray Industries, Inc., polyethylene terephthalate film, thickness 50 μm; hereinafter abbreviated as “PET substrate”), the resin composition (R-1 ) Was coated using a bar coater so that the thickness after drying was 0.5 μm. Next, a primer layer was formed on the surface of the PET substrate by drying at 80 ° C. for 5 minutes using a hot air dryer.
 次に、前記プライマー層の表面に、上記で得られた流動体(1)を、バーコーターを用いて縦30cm、横20cmの面積に全面塗工した。次いで、80℃で5分間焼成することによって、前記金属層(C)に相当する銀層(単位面積当たりの質量:200mg/m
)形成した。
Next, on the surface of the primer layer, the fluid (1) obtained above was coated on the entire surface in an area of 30 cm in length and 20 cm in width using a bar coater. Next, by baking at 80 ° C. for 5 minutes, a silver layer (mass per unit area: 200 mg / m 2 ) corresponding to the metal layer (C).
) Formed.
 次に、上記で得られた前記金属層(C)に相当する銀層に無電解銅めっきを行った。無電解銅めっき液(奥野製薬工業株式会社製「OICカッパー」、pH12.5)中に55℃で20分間浸漬し、無電解銅めっきを行った。次いで、この無電解銅めっきで得られた銅層をカソード側に設定し、含リン銅をアノード側に設定し、硫酸銅を含有する電解めっき液を用いて電流密度2.5A/dmで4分間電解めっきを行うことによって、前記銀層の表面に、前記金属層(D)に相当する銅めっき層(合計厚さ2μm)を形成した。前記電解めっき液としては、硫酸銅70g/L、硫酸200g/L、塩素イオン50mg/L、添加剤(奥野製薬工業(株)製「トップルチナSF-M」)5ml/Lを用いた。 Next, electroless copper plating was performed on the silver layer corresponding to the metal layer (C) obtained above. Electroless copper plating was performed by immersing in an electroless copper plating solution ("OIC Copper" manufactured by Okuno Pharmaceutical Co., Ltd., pH 12.5) at 55 ° C for 20 minutes. Next, the copper layer obtained by the electroless copper plating is set on the cathode side, the phosphorous copper is set on the anode side, and the current density is 2.5 A / dm 2 using an electrolytic plating solution containing copper sulfate. By performing electrolytic plating for 4 minutes, a copper plating layer (total thickness: 2 μm) corresponding to the metal layer (D) was formed on the surface of the silver layer. As the electrolytic plating solution, copper sulfate 70 g / L, sulfuric acid 200 g / L, chloride ion 50 mg / L, and additives (Okuno Pharmaceutical Co., Ltd. “Top Lucina SF-M”) 5 ml / L were used.
 次に、前記銅めっき層を、塩化パラジウム0.1mol/L、塩酸100g/L、塩化アンモニウム100g/L、ジエチレンテトラミン5g/Lを混合した水溶液に30℃で3分間浸漬することにより、前記銅めっき層の表面に黒化層を形成した。 Next, the copper plating layer is immersed in an aqueous solution in which 0.1 mol / L of palladium chloride, 100 g / L of hydrochloric acid, 100 g / L of ammonium chloride, and 5 g / L of diethylenetetramine are mixed for 3 minutes at 30 ° C. A blackening layer was formed on the surface of the plating layer.
 以上の方法によって、透明基材(A)、プライマー層(B)、金属層(C)、金属めっき層(D)、黒化層(E)の順に各層が積層された積層体(1)を得た。 By the above method, the laminate (1) in which the layers are laminated in the order of the transparent substrate (A), the primer layer (B), the metal layer (C), the metal plating layer (D), and the blackening layer (E). Obtained.
[実施例2]
 前記樹脂組成物(R-1)の代わりに樹脂組成物(R-2)を用いたこと以外は、実施例1と同様の方法によって、積層体(2)を得た。
[Example 2]
A laminate (2) was obtained in the same manner as in Example 1 except that the resin composition (R-2) was used instead of the resin composition (R-1).
[実施例3]
 前記樹脂組成物(R-1)の代わりに樹脂組成物(R-3)を用いたこと以外は、実施例1と同様の方法によって、積層体(3)を得た。
[Example 3]
A laminate (3) was obtained in the same manner as in Example 1 except that the resin composition (R-3) was used instead of the resin composition (R-1).
[比較例1]
 PET基材の表面に、電子ビーム(EB)蒸着法で銅の厚さが2μmになるように蒸着を行い、銅蒸着層を形成した。その際、電子ビームの出力は成膜幅に対して53.5kW/mとした。
[Comparative Example 1]
Vapor deposition was performed on the surface of the PET substrate by electron beam (EB) vapor deposition so that the thickness of copper was 2 μm, thereby forming a copper vapor deposition layer. At that time, the output of the electron beam was 53.5 kW / m with respect to the film formation width.
 次に、前記銅めっき層を、塩化パラジウム0.1mol/L、塩酸100g/L、塩化アンモニウム100g/L、ジエチレンテトラミン5g/Lを混合した水溶液に30℃で3分間浸漬することにより、前記銅めっき層の表面に黒化層を形成した。 Next, the copper plating layer is immersed in an aqueous solution in which 0.1 mol / L of palladium chloride, 100 g / L of hydrochloric acid, 100 g / L of ammonium chloride, and 5 g / L of diethylenetetramine are mixed for 3 minutes at 30 ° C. A blackening layer was formed on the surface of the plating layer.
 以上の方法によって、透明基材(A)、金属めっき層(D)、黒化層(E)の順に各層が積層された積層体(R1)を得た。 By the above method, a laminate (R1) in which the respective layers were laminated in the order of the transparent substrate (A), the metal plating layer (D), and the blackening layer (E) was obtained.
[比較例2]
 前記樹脂組成物(R-1)を使用せず、プライマー層(B)を形成しないこと以外は実施例1と同様の方法によって、積層体(R2)を得た。
[Comparative Example 2]
A laminate (R2) was obtained in the same manner as in Example 1 except that the resin composition (R-1) was not used and the primer layer (B) was not formed.
 上記の実施例1~3及び比較例1~2で得られた積層体(1)~(3)、(R1)及び(R2)について、下記の測定及び評価を行った。 The laminates (1) to (3), (R1) and (R2) obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were subjected to the following measurements and evaluations.
<ピール強度測定による密着性評価>
 IPC-TM-650、NUMBER2.4.9に準拠した方法により、ピール強度を測定した。測定に用いるリード幅は1mm、そのピールの角度は90°とした。なお、ピール強度は、前記めっき層の厚さが厚くなるほど高い値を示す傾向にあるが、本発明でのピール強度の測定は、電解銅めっきを追加で行い、銅膜厚15μmに置ける測定値を基準として実施した。
<Adhesion evaluation by peel strength measurement>
Peel strength was measured by a method based on IPC-TM-650 and NUMBER 2.4.9. The lead width used for the measurement was 1 mm, and the peel angle was 90 °. The peel strength tends to show a higher value as the plating layer becomes thicker. However, the peel strength in the present invention is measured by adding electrolytic copper plating to a copper film thickness of 15 μm. Based on the above.
<L表色系による明度評価>
 コニカミノルタ株式会社製CM3500dを用い、JIS Z 8722に準拠し測定した。測定は、前記透明基材のプライマー層等が形成された面とは反対側から測定した。
<L * a * b * Lightness evaluation by color system>
It measured based on JISZ8722 using Konica Minolta CM3500d. The measurement was performed from the side opposite to the surface on which the primer layer of the transparent substrate was formed.
<透明基材の透過率測定>
 分光光度計(株式会社島津製作所製「MPC-3100」)を用いて、波長500~550nmの透過率を測定し、最も透過率の高い波長の透過率を採用した。なお、本発明で用いた透明基材(東レ式会社製「ルミラー50T-60」、厚さ50μm)は、透過率が88%であった。
<Measurement of transmittance of transparent substrate>
Using a spectrophotometer (“MPC-3100” manufactured by Shimadzu Corporation), the transmittance at a wavelength of 500 to 550 nm was measured, and the transmittance at the wavelength with the highest transmittance was adopted. The transparent base material used in the present invention (“Lumirror 50T-60” manufactured by Toray Industries Co., Ltd., thickness 50 μm) had a transmittance of 88%.
<エッチング後の非パターン部の透過率測定>
 上記で得られた積層体を、エッチング剤(第二塩化鉄の30質量%水溶液)を用いて、金属層(C)、金属めっき層(D)及び黒化層(E)を除去した後、各層を除去した部分(非パターン部)を、透明基材の透過率と同様の方法で、透過率を測定した。その後、透明基材の透過率と、エッチング後の非パターン部の透過率の値から、下式により保持率を計算した。
式:保持率(%)=エッチング後の非パターン部の透過率/透明基材の透過率
<Measurement of transmittance of non-patterned portion after etching>
After removing the metal layer (C), the metal plating layer (D) and the blackening layer (E) using the etching agent (30% by mass aqueous solution of ferric chloride), the laminate obtained above was removed. The transmittance of the portion (non-patterned portion) from which each layer was removed was measured by the same method as the transmittance of the transparent substrate. Thereafter, the retention rate was calculated from the transmittance of the transparent base material and the transmittance value of the non-patterned portion after etching according to the following equation.
Formula: Retention rate (%) = transmittance of non-patterned portion after etching / transmittance of transparent substrate
<メタルメッシュ部の非視認性>
(実施例1~3のメタルメッシュ部の非視認性)
 図2に示したように、それぞれの実施例と同様の方法で、PET基材の両面にプライマー層、銀層及び銅めっき層を順次形成し、銅めっき層の片面のみに黒化層を形成し、積層体を得た。その後、エッチング剤(第二塩化鉄の30質量%水溶液)を用いて、図3、4及び5のような導電性パターンを作製した。なお、導電性パターンのサイズは、配線幅5μm、ピッチを250μm、銅めっき層の厚さ2μmのストライプ状とした。また、図3のように上面側の導電性パターンは、下面側の導電性パターンに対して、直交したものとした。得られたものの黒化層を形成した側から目視で確認し、メタルメッシュ部(前記上面側及び下面側の導電性パターン)の非視認性(見えにくさ)を下記の基準に従って評価した。
 A:全体的に配線パターンが見えなかった。
 B:全体的に薄く配線パターンが確認された。
 C:全体的に配線パターンが確認された。
<Non-visibility of metal mesh part>
(Non-visibility of metal mesh part of Examples 1 to 3)
As shown in FIG. 2, a primer layer, a silver layer and a copper plating layer are sequentially formed on both sides of the PET base material in the same manner as in each example, and a blackening layer is formed only on one side of the copper plating layer. As a result, a laminate was obtained. Thereafter, conductive patterns as shown in FIGS. 3, 4 and 5 were prepared using an etching agent (30 mass% aqueous solution of ferric chloride). The size of the conductive pattern was a stripe shape with a wiring width of 5 μm, a pitch of 250 μm, and a copper plating layer thickness of 2 μm. Further, as shown in FIG. 3, the conductive pattern on the upper surface side was orthogonal to the conductive pattern on the lower surface side. The obtained product was visually confirmed from the side where the blackened layer was formed, and the non-visibility (invisibility) of the metal mesh portion (the conductive pattern on the upper surface side and the lower surface side) was evaluated according to the following criteria.
A: The wiring pattern was not visible as a whole.
B: The wiring pattern was confirmed to be thin overall.
C: The wiring pattern was confirmed as a whole.
(比較例1のメタルメッシュ部の非視認性)
 比較例1と同様の方法で、PET基材の両面に銅蒸着層を形成し、銅蒸着層の片面のみに黒化層を形成し、積層体を得た。その後は、上記の実施例1~3と同様の方法で、導電性パターンを形成し、メタルメッシュ部の非視認性を評価した。
(Non-visibility of metal mesh part of Comparative Example 1)
By the method similar to the comparative example 1, the copper vapor deposition layer was formed on both surfaces of PET base material, the blackening layer was formed only in the single side | surface of a copper vapor deposition layer, and the laminated body was obtained. Thereafter, a conductive pattern was formed by the same method as in Examples 1 to 3, and the non-visibility of the metal mesh portion was evaluated.
(比較例2のメタルメッシュ部の非視認性)
 プライマー層を形成しないこと以外は、上記の実施例1~3と同様の方法で、導電性パターンを形成し、メタルメッシュ部の非視認性を評価した。
(Non-visibility of the metal mesh part of Comparative Example 2)
A conductive pattern was formed by the same method as in Examples 1 to 3 except that the primer layer was not formed, and the non-visibility of the metal mesh portion was evaluated.
 上記で得られた測定、評価結果をまとめたものを表1に示す。 Table 1 summarizes the measurement and evaluation results obtained above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の積層体である実施例1~3で得られた積層体(1)~(3)は、実用上、十分に高いピール強度を有することが確認できた。また、エッチング後の非パターン部の透過率の保持率が高く、エッチング処理しても高い透明性を有することが確認できた。さらに、透明基材の金属めっき層等を形成した面とは反対側からL表色系で測定した明度は、55以下と低く黒色であり、本発明の積層体をメタルメッシュとした際のそのパターンは見えにくく、タッチパネルとして十分に利用可能であることを確認できた。 It was confirmed that the laminates (1) to (3) obtained in Examples 1 to 3, which are laminates of the present invention, have practically sufficiently high peel strength. In addition, it was confirmed that the transmittance retention of the non-patterned portion after etching was high, and high transparency was obtained even after etching. Furthermore, the brightness measured by the L * a * b * color system from the side opposite to the surface on which the metal plating layer or the like of the transparent substrate is formed is as low as 55 or less and black, and the laminate of the present invention is a metal mesh. The pattern was difficult to see and could be used as a touch panel.
 一方、比較例1及び2で得られた積層体(R1)及び(R2)は、ピール強度が低く、実用レベルではないことが確認できた。また、比較例1で得られた積層体(R1)は、銅蒸着層を形成したメタルメッシュとした際のそのパターンは、明度が高い金属銅の色調であり、そのパターンが見えやすく、タッチパネルとして利用するのは不適であることが確認できた。 On the other hand, it was confirmed that the laminates (R1) and (R2) obtained in Comparative Examples 1 and 2 had low peel strength and were not at a practical level. Moreover, the laminated body (R1) obtained in Comparative Example 1 is a metal mesh having a copper vapor-deposited layer, and the pattern is a metallic copper color tone with high brightness. It was confirmed that it was unsuitable to use.
1:黒化層
2:金属めっき層
3:金属層
4:プライマー層
5:透明基材
6:メタルメッシュ(タッチパネルセンサー)
7:上面のパターン
8:下面のパターン
1: Blackening layer 2: Metal plating layer 3: Metal layer 4: Primer layer 5: Transparent substrate 6: Metal mesh (touch panel sensor)
7: Upper surface pattern 8: Lower surface pattern

Claims (11)

  1.  透明基材(A)の上に、プライマー層(B)と、金属ナノ粒子(c)により形成された金属層(C)と、金属めっき層(D)とが順次積層されている積層体であって、前記透明基材(A)の前記プライマー層(B)等が形成された面とは反対側から、L表色系で測定した値の明度(L)が55以下であることを特徴とする積層体。 A laminate in which a primer layer (B), a metal layer (C) formed of metal nanoparticles (c), and a metal plating layer (D) are sequentially laminated on a transparent substrate (A). The lightness (L * ) of the value measured in the L * a * b * color system is 55 from the side opposite to the surface on which the primer layer (B) and the like of the transparent substrate (A) is formed. A laminate having the following characteristics.
  2.  請求項1記載の積層体の前記プライマー層(B)等が形成された面とは反対面の前記透明基材(A)の上に、さらにプライマー層(B)と、金属ナノ粒子(c)により形成された金属層(C)と、金属めっき層(D)とが順次積層されている積層体。 The primer layer (B) and metal nanoparticles (c) are further formed on the transparent substrate (A) opposite to the surface on which the primer layer (B) or the like of the laminate according to claim 1 is formed. The laminated body in which the metal layer (C) formed by the above and the metal plating layer (D) are sequentially laminated.
  3.  金属めっき層(D)の上に、さらに黒化層(E)を形成した請求項1記載の積層体。 The laminate according to claim 1, wherein a blackening layer (E) is further formed on the metal plating layer (D).
  4.  2面ある金属めっき層(D)のいずれか一方の上に、さらに黒化層(E)を形成した請求項2記載の積層体。 The laminate according to claim 2, further comprising a blackening layer (E) formed on one of the two metal plating layers (D).
  5.  前記透明基材(A)が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、シクロオレフィンポリマー、ポリメチルメタアクリレート、ポリエチレン、ポリプロピレン及びガラスからなる群から選ばれるものである請求項1~4のいずれか1項記載の積層体。 The transparent substrate (A) is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, cycloolefin polymer, polymethyl methacrylate, polyethylene, polypropylene and glass. The laminate according to claim 1.
  6.  前記プライマー層(B)が、芳香環を有する樹脂により形成されたものである請求項1~5のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the primer layer (B) is formed of a resin having an aromatic ring.
  7.  前記金属ナノ粒子(c)が、銀、銅、パラジウム、金、ニッケル、白金及びコバルトからなる群から選ばれる少なくとも1種である請求項1~6のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the metal nanoparticles (c) are at least one selected from the group consisting of silver, copper, palladium, gold, nickel, platinum and cobalt.
  8.  前記金属層(C)の単位面積当たりの質量が、1~1,000mg/mの範囲である請求項1~7のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the mass per unit area of the metal layer (C) is in the range of 1 to 1,000 mg / m 2 .
  9.  前記金属めっき層(D)が、銅である請求項1~8のいずれか1項記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the metal plating layer (D) is copper.
  10.  請求項1~9のいずれか1項記載の積層体の金属層(C)、金属めっき層(D)及び黒化層(E)がパターン化されていることを特徴とするメタルメッシュ。 A metal mesh, wherein the metal layer (C), the metal plating layer (D), and the blackening layer (E) of the laminate according to any one of claims 1 to 9 are patterned.
  11.  請求項10記載のメタルメッシュを有することを特徴とするタッチパネル。 A touch panel comprising the metal mesh according to claim 10.
PCT/JP2017/027820 2016-08-08 2017-08-01 Laminate, metal mesh, and touch panel WO2018030202A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197004171A KR102206686B1 (en) 2016-08-08 2017-08-01 Laminate, metal mesh and touch panel
CN201780048399.2A CN109563625B (en) 2016-08-08 2017-08-01 Laminate, metal mesh, and touch panel
JP2018532948A JP6497571B2 (en) 2016-08-08 2017-08-01 Laminate, metal mesh and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-155573 2016-08-08
JP2016155573 2016-08-08

Publications (1)

Publication Number Publication Date
WO2018030202A1 true WO2018030202A1 (en) 2018-02-15

Family

ID=61162240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027820 WO2018030202A1 (en) 2016-08-08 2017-08-01 Laminate, metal mesh, and touch panel

Country Status (5)

Country Link
JP (1) JP6497571B2 (en)
KR (1) KR102206686B1 (en)
CN (1) CN109563625B (en)
TW (1) TWI737779B (en)
WO (1) WO2018030202A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109504942A (en) * 2019-01-18 2019-03-22 黄饶 A kind of processing technology of metal film layer surface ultra-low reflectance
WO2019167778A1 (en) * 2018-02-27 2019-09-06 Dic株式会社 Electronic component package and method for producing same
JPWO2020003878A1 (en) * 2018-06-26 2020-09-17 Dic株式会社 Manufacturing method of printed wiring board
JPWO2020085136A1 (en) * 2018-10-22 2021-02-15 Dic株式会社 Laminated body and method for manufacturing the laminated body
WO2021070591A1 (en) * 2019-10-10 2021-04-15 Dic株式会社 Layered body, shaped article, printed-wiring board and electromagnetic wave shield

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112219459A (en) * 2018-06-26 2021-01-12 Dic株式会社 Method for producing molded body having metal pattern
EP4030442B1 (en) * 2018-07-30 2023-09-27 Asahi Kasei Kabushiki Kaisha Conductive film and conductive film roll, electronic paper, touch panel and flat-panel display comprising the same
CN114077331A (en) * 2020-08-20 2022-02-22 神讯电脑(昆山)有限公司 Touch panel and touch equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156490A (en) * 1999-11-26 2001-06-08 Nissha Printing Co Ltd Light transmissive electromagnetic wave shielding material and its manufacturing method
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern
JP2013540331A (en) * 2010-10-19 2013-10-31 エルジー・ケム・リミテッド Touch panel including conductive pattern and method of manufacturing the same
JP2015025198A (en) * 2013-06-21 2015-02-05 Dic株式会社 Electroless plating catalyst, metal film using the same and method for manufacturing metal film
WO2016136117A1 (en) * 2015-02-25 2016-09-01 凸版印刷株式会社 Conductive laminated body for touch panel, and method for manufacturing conductive laminated body for touch panel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152306A1 (en) * 2006-01-04 2007-07-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
CN101384425A (en) * 2006-02-20 2009-03-11 大赛璐化学工业株式会社 Porous film and multilayer assembly using the same
KR101486641B1 (en) * 2010-06-07 2015-01-26 히타치가세이가부시끼가이샤 Photosensitive resin composition, photosensitive element comprising the composition, method for formation of septum for image display device, process for production of image display device, and image display device
JP2012204738A (en) * 2011-03-28 2012-10-22 Dainippon Printing Co Ltd Optical filter for pdp, and plasma display device using the same
JP6099875B2 (en) 2011-11-22 2017-03-22 東レ株式会社 Manufacturing method of laminate
KR20140074642A (en) * 2012-12-10 2014-06-18 (주)엘지하우시스 Films expressing metallic appearance using ultraviolet curable resin and method of manufacturing thereof
CN104969305B (en) * 2013-02-06 2017-03-22 三菱树脂株式会社 Transparent stacked film, transparent conductive film, and gas barrier stacked film
JP6140586B2 (en) * 2013-02-22 2017-05-31 株式会社神戸製鋼所 Water-based resin coating laminated metal sheet
TW201522071A (en) * 2013-09-10 2015-06-16 Dainippon Ink & Chemicals Laminate body, conductive pattern, electrical circuit, and method for producing laminate body
KR101548824B1 (en) * 2013-12-17 2015-08-31 삼성전기주식회사 Touch panel
JP6201804B2 (en) * 2014-02-17 2017-09-27 住友金属鉱山株式会社 Thin line pattern forming method and conductive substrate manufacturing method
CN107111408B (en) * 2015-01-20 2020-07-17 住友金属矿山股份有限公司 Conductive substrate and method for manufacturing conductive substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156490A (en) * 1999-11-26 2001-06-08 Nissha Printing Co Ltd Light transmissive electromagnetic wave shielding material and its manufacturing method
JP2013540331A (en) * 2010-10-19 2013-10-31 エルジー・ケム・リミテッド Touch panel including conductive pattern and method of manufacturing the same
WO2013146195A1 (en) * 2012-03-28 2013-10-03 Dic株式会社 Electroconductive pattern, electric circuit, electromagnetic wave shield, and method for manufacturing electroconductive pattern
JP2015025198A (en) * 2013-06-21 2015-02-05 Dic株式会社 Electroless plating catalyst, metal film using the same and method for manufacturing metal film
WO2016136117A1 (en) * 2015-02-25 2016-09-01 凸版印刷株式会社 Conductive laminated body for touch panel, and method for manufacturing conductive laminated body for touch panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019167778A1 (en) * 2018-02-27 2019-09-06 Dic株式会社 Electronic component package and method for producing same
JPWO2020003878A1 (en) * 2018-06-26 2020-09-17 Dic株式会社 Manufacturing method of printed wiring board
EP3817524A4 (en) * 2018-06-26 2022-03-16 DIC Corporation Method of manufacturing printed wiring board
JPWO2020085136A1 (en) * 2018-10-22 2021-02-15 Dic株式会社 Laminated body and method for manufacturing the laminated body
CN109504942A (en) * 2019-01-18 2019-03-22 黄饶 A kind of processing technology of metal film layer surface ultra-low reflectance
WO2021070591A1 (en) * 2019-10-10 2021-04-15 Dic株式会社 Layered body, shaped article, printed-wiring board and electromagnetic wave shield
JPWO2021070591A1 (en) * 2019-10-10 2021-10-21 Dic株式会社 Laminates, molded products, printed wiring boards and electromagnetic wave shields
JP7044203B2 (en) 2019-10-10 2022-03-30 Dic株式会社 Laminates, molded products, printed wiring boards and electromagnetic wave shields

Also Published As

Publication number Publication date
KR20190030218A (en) 2019-03-21
JP6497571B2 (en) 2019-04-10
TW201810298A (en) 2018-03-16
JPWO2018030202A1 (en) 2019-02-28
CN109563625A (en) 2019-04-02
CN109563625B (en) 2021-06-22
TWI737779B (en) 2021-09-01
KR102206686B1 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
JP6497571B2 (en) Laminate, metal mesh and touch panel
JP5418738B1 (en) LAMINATE, CONDUCTIVE PATTERN, ELECTRIC CIRCUIT, AND LAMINATE MANUFACTURING METHOD
JP5177607B1 (en) RECEPTION LAYER FORMING RESIN COMPOSITION AND RECEPTION SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED USING THE SAME
JP5201433B1 (en) RECEPTION LAYER FORMING RESIN COMPOSITION AND RECEPTION SUBSTRATE, PRINTED MATERIAL, CONDUCTIVE PATTERN AND ELECTRIC CIRCUIT OBTAINED USING THE SAME
KR102065955B1 (en) Conductive ultrafine pattern forming method, conductive ultrafine patterns, and electric circuits
JP5652687B1 (en) High-definition metal pattern forming method, high-definition metal pattern, and electronic component
KR102463945B1 (en) How to form wiring
JP5569662B1 (en) Laminate, conductive pattern and electrical circuit
JP2019014188A (en) Laminate, and printed wiring board, flexible printed wiring board and molded article using the same
JP7044203B2 (en) Laminates, molded products, printed wiring boards and electromagnetic wave shields
TW201909709A (en) Laminate, printed wiring board in which same is used, flexible printed wiring board, and molded article
JP2017117931A (en) Laminate, conducting pattern, electronic circuit, transparent electrode and method for manufacturing electromagnetic wave shield material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018532948

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17839275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004171

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17839275

Country of ref document: EP

Kind code of ref document: A1