WO2018029840A1 - Probe - Google Patents

Probe Download PDF

Info

Publication number
WO2018029840A1
WO2018029840A1 PCT/JP2016/073673 JP2016073673W WO2018029840A1 WO 2018029840 A1 WO2018029840 A1 WO 2018029840A1 JP 2016073673 W JP2016073673 W JP 2016073673W WO 2018029840 A1 WO2018029840 A1 WO 2018029840A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
housing
plate
spacecraft
top plate
Prior art date
Application number
PCT/JP2016/073673
Other languages
French (fr)
Japanese (ja)
Inventor
ジョン ウォーカー
敏郎 清水
利樹 田中
大輔 古友
裕 工藤
清菜 宮本
Original Assignee
株式会社ispace
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ispace filed Critical 株式会社ispace
Priority to PCT/JP2016/073673 priority Critical patent/WO2018029840A1/en
Priority to PCT/JP2017/028682 priority patent/WO2018030368A1/en
Publication of WO2018029840A1 publication Critical patent/WO2018029840A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/16Extraterrestrial cars
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00

Definitions

  • the present invention relates to a spacecraft.
  • Spacecraft used for lunar or planetary exploration activities are known.
  • a spacecraft there is a space exploration vehicle that can travel on the moon surface or on the planet (see Patent Document 1), and US Mars Rover is known.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a probe that can be searched even if it is downsized.
  • the spacecraft according to the first aspect of the present invention is a spacecraft that can travel, the wheels, the first camera that is arranged in the direction in which the spacecraft can travel, and the spacecraft that travels.
  • This configuration makes it possible to confirm whether or not stones are caught in the wheels.
  • the spacecraft according to the second aspect of the present invention is the spacecraft according to the first aspect, and the resolution of the first camera is higher than the resolution of the second camera.
  • This configuration allows the field of view in the direction of travel to be viewed with higher resolution, so that obstacles in the direction of travel can be easily found.
  • a spacecraft according to a third aspect of the present invention is the spacecraft according to the first or second aspect, and includes a plurality of processors, and the spacecraft can travel in both the front and rear directions.
  • a camera As a camera, it has a front camera arranged toward the front and a rear camera arranged toward the rear, and the front camera and the rear camera are respectively connected to separate processors.
  • the spacecraft can be moved either forward or backward while viewing the image of either the front camera or the rear camera.
  • a probe according to a fourth aspect of the present invention is the probe according to any one of the first to third aspects, and is connected to the first camera or the second camera via a serial or parallel interface.
  • a camera controller, and a communication controller for communicating the camera controller requests and obtains video data from the camera at a predetermined frame rate, and compresses the obtained video data by hardware encoding.
  • the communication controller transmits the compressed data.
  • moving image data captured by the probe camera can be transferred to the ground station, and the operator operating the probe can view the moving image data on the earth.
  • the first camera or the second camera need not always be turned on, and only needs to operate when moving image data is requested, so that power consumption can be suppressed.
  • a probe according to a fifth aspect of the present invention is the probe according to any one of the first to fourth aspects, and includes a casing, and the casing includes a substrate and a Teflon (registered trademark) layer or A quartz glass layer; and a metal film provided between the substrate and the Teflon layer or the quartz glass layer.
  • the casing includes a substrate and a Teflon (registered trademark) layer or A quartz glass layer; and a metal film provided between the substrate and the Teflon layer or the quartz glass layer.
  • a probe according to a sixth aspect of the present invention is the probe according to the fifth aspect, and an indium oxide bell layer is provided on the Teflon layer or the quartz glass layer.
  • a probe according to a seventh aspect of the present invention is the probe according to any one of the first to sixth aspects, comprising a housing and an electronic device, wherein the housing includes a side plate, The top plate to which the electronic device is fixed is provided, and a heat insulating material is provided between the side plate and the top plate.
  • a probe according to an eighth aspect of the present invention is the probe according to the seventh aspect, and the electronic device is provided on the back of the top board.
  • a spacecraft according to a ninth aspect of the present invention is the spacecraft according to any one of the first to eighth aspects, wherein the spacecraft is exposed from the top plate of the housing and the top surface of the housing.
  • the heat generated from the battery can be released from the top plate of the housing to the outer space to suppress the temperature rise of the battery.
  • a probe according to a tenth aspect of the present invention is the probe according to any one of the first to ninth aspects, and includes a housing, and the front plate and / or the rear plate of the housing is formed from a bottom plate. It leans to the inside of the spacecraft over the top plate.
  • This configuration can reduce the rate at which sunlight reflected on the lunar surface hits the front plate and the rear plate, so that the temperature rise of the spacecraft can be suppressed.
  • a probe according to an eleventh aspect of the present invention is a probe according to any one of the first to tenth aspects, and includes a housing and a solar cell arranged obliquely on the housing. .
  • This configuration makes it possible to increase the exclusive area ratio of the outer surface of the solar cell housing, and to arrange a large number of solar cells within a limited area.
  • a probe according to a twelfth aspect of the present invention is the probe according to the eleventh aspect, further comprising a charge / discharge circuit to which power generated by the solar cell is supplied, and penetrating the casing.
  • a hole is provided, and wiring from the solar cell is connected to a charge / discharge circuit in the casing through a through hole provided in the casing.
  • This configuration eliminates the need to provide a space for fixing the wiring on the outer surface of the housing, so that many solar cells can be arranged within a limited area.
  • a probe according to a thirteenth aspect of the present invention is the probe according to any one of the first to twelfth aspects, further comprising a solar cell disposed on the casing, wherein the solar cell is disposed.
  • the surface of the case is tilted to the inside of the spacecraft from the bottom plate to the top plate.
  • This configuration makes it possible to efficiently receive light from the sun, thus increasing the amount of power generation.
  • the probe according to the fourteenth aspect of the present invention is the probe according to the thirteenth aspect, wherein the inclination of the surface of the casing on which the solar cell is arranged is the latitude at which the probe is to be arranged. It is decided according to.
  • This configuration sets the solar cell inclination according to the maximum elevation angle of the sun, so that the amount of power generation can be increased.
  • a probe according to a fifteenth aspect of the present invention is the probe according to any one of the first to fourteenth aspects, and has a motor provided on the wheel and a cone-shaped convex portion near the center.
  • the convex portion is fitted in the second hole in a state where the back surface of the clamp and the hub are opposed to each other.
  • FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. 26. It is sectional drawing of the clamp HC when it cuts in CC section of FIG.
  • the spacecraft is used for lunar exploration activities as an example.
  • the spacecraft according to the present embodiment can also be used for search activities for planets, asteroids, and other satellites.
  • search activities for planets, asteroids, and other satellites.
  • FIG. 1 is a schematic diagram showing an outline of an exploration system according to this embodiment.
  • the exploration system S includes an exploration device (also referred to as a rover) R that explores the lunar surface LS, and a transport ship (also referred to as a lander) L that transports the exploration device to the moon MN.
  • a ground station E provided on the earth ET.
  • the spacecraft R according to the present embodiment is an unmanned spacecraft as an example, and can travel on the moon surface.
  • the probe R can communicate with the transport ship L.
  • the transport ship L can communicate with the ground station. Thereby, the spacecraft E can be controlled from the ground station E.
  • FIG. 2 is a perspective view showing an outline of the spacecraft according to the present embodiment.
  • the spacecraft R according to the present embodiment includes a housing HS, shafts LSF and RSF provided in the housing HS, wheels FW1 and RW1 connected to a shaft RSF (not shown), Wheels FW2 and RW2 connected to the shaft LSF are provided.
  • the spacecraft R includes a distance sensor DS provided on the front surface of the casing, and a first antenna AT1 and a second antenna AT2 provided on the top plate of the casing HS.
  • the distance sensor DS measures a distance from an object on the moon (for example, an obstacle such as a rock).
  • the probe R according to the present embodiment has no difference in driving mechanism between the case of traveling in the direction in which the distance sensor DS is provided and the case of traveling in the opposite direction.
  • the direction where the distance sensor DS is provided is assumed to be the front, and the opposite direction is assumed to be the rear.
  • the spacecraft R includes a front camera FC, a rear camera BC, a right side camera RC, and a left side camera LC.
  • the front camera FC, the rear camera BC, the right-side camera RC, and the left-side camera LC have a lens and an imaging unit that captures an object using light incident from the lens. As shown in FIGS. 13A and 13C described later, the probe R can move back and forth, but cannot move left and right.
  • the front camera FC and the rear camera BC are an example of a first camera arranged in a direction in which the spacecraft R can travel.
  • the right side camera RC and the left side camera LC are an example of a second camera arranged in a direction other than the direction in which the spacecraft can travel.
  • FIG. 3 is a front view of the spacecraft according to the present embodiment as viewed from the front. As shown in FIG. 3, the wheel FW1 is connected to the shaft RSF, and the wheel FW2 connected to the shaft LSF is connected.
  • FIG. 4 is a side view of the spacecraft according to the present embodiment as viewed from the left side.
  • the directions of the lenses LF and LB of the front camera FC and the rear camera BC, which are the first cameras, are directed downward from the horizontal. Thereby, the obstacle on the moon surface in the running direction can be visualized.
  • FIG. 5 is a top view of the spacecraft according to the present embodiment as viewed from above.
  • the solar cells M7-1 to M7-4, M8 to M8-5, M9-1 to M9-5, M10-1 to M10- are also applied to the right side plate RP on the right side of the housing HS.
  • M11-1 to M11-5, and M12-1 to M12-5 are provided.
  • the solar cells are arranged obliquely. Thereby, the exclusive area rate in the housing
  • the housing HS has a top plate TP, a front plate FP, a rear plate BP, a right side plate RP, a left side plate LP, and a bottom plate DP (not shown).
  • the right side plate RP or the left side plate LP may be collectively referred to as a side plate.
  • the plates PL1, PL2, PL3, and PL4 are fixed to the top plate TP in a state where they are exposed from the top plate TP of the housing HS. That is, the surface is exposed to the outside by connecting to the top plate TP of the housing HS.
  • FIG. 6 is a schematic diagram of the AA cross section of FIG.
  • the spacecraft according to the present embodiment searches outside the equator of the moon. That is, it is assumed that sunlight is incident on the spacecraft R at an angle. For this reason, as shown in FIG. 6, the electronic device is provided in the back of the top plate, and the electronic device is being fixed to the top plate TP. Thereby, since reflected light when sunlight reflects on the ground such as the lunar surface LS does not hit the top plate TP, the electronic device is provided on the back of the top plate to prevent the temperature of the electronic device from rising. can do.
  • a battery board BB on which a battery which is one of electronic devices is mounted is fixed to the back surface of the plate PL1 via support columns P1-1 and P1-2.
  • the plate PL1 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS.
  • the battery which is one of the electronic devices, is fixed to the top plate TP.
  • an adhesive material (gel) GL1 having high thermal conductivity is sandwiched between the battery board BB and the back surface of the top plate TP. Thereby, the heat generated in the battery can be efficiently transmitted to the plate PL1, and the heat dissipation effect can be improved.
  • a power supply board PUB on which a power supply controller, which is one of electronic devices, is mounted is fixed to the back surface of the plate PL2 via support columns P2-1 and P2-2.
  • the plate PL2 has a convex cross section, and is fitted in an opening provided in the top plate TP of the housing HS.
  • the power supply controller that is one of the electronic devices is fixed to the top plate TP.
  • an adhesive material (gel) GL2 having high thermal conductivity is sandwiched between the power supply board PUB and the back surface of the top plate TP. Thereby, the heat generated by the power supply controller can be efficiently transmitted to the plate PL2, and the heat dissipation effect can be improved.
  • a motor board MCB on which a motor controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL3 via support columns P3-1 and P3-2.
  • the plate PL3 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS.
  • the motor controller which is one of the electronic devices is fixed to the top plate TP.
  • an adhesive (gel) GL3 having a high thermal conductivity is sandwiched between the motor board MCB and the back surface of the top plate TP. Thereby, the heat generated by the motor controller can be efficiently transmitted to the plate PL3, and the heat dissipation effect can be improved.
  • a camera board CB on which a camera controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL4 via support columns P4-1 and P4-2.
  • the plate PL4 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS.
  • the camera controller which is one of the electronic devices is fixed to the top plate TP.
  • an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
  • a communication board RB on which a communication controller that is one of electronic devices is mounted is fixed to the back surface of the plate PL5 via support columns P5-1 and P5-2.
  • the plate PL5 has a convex cross section, and is fitted into an opening provided in the rear plate BP of the housing HS.
  • the communication controller which is one of the electronic devices is fixed to the rear plate BP.
  • an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
  • FIG. 7 is a perspective view showing the structure of the plate PL4.
  • a camera board CB on which a camera controller is mounted and a plate PL4 are connected via four columns P4-1 to P4-4.
  • four holes HE1 to HE4 for fixing the plate PL4 to the top plate TP with screws are provided.
  • assembly can be simplified by packaging.
  • FIG. 8 is a table showing an example of the heat radiation amount for each plate and the paint color of the exposed surface (surface) of the plate.
  • the reflectance and absorption rate of light differ depending on the color. Therefore, the color of the exposed surface of the plate on which the electronic device is mounted is set so that the greater the heat dissipation amount of the electronic device, the higher the light reflectance and the lower the absorption rate.
  • the plates PL1 and PL4 to which the heat radiation source having a large heat radiation amount is fixed have, for example, a white paint color on the exposed surface (surface).
  • White has high light reflectivity and low absorptance, so it can suppress the temperature rise of the plates PL1 and PL4 even when exposed to sunlight, and can suppress the temperature rise of the battery and camera controller with large heat dissipation. it can.
  • the plates PL2 and PL3 to which the heat radiation source having a small heat radiation amount is fixed have, for example, a black painted color on the exposed surface (surface). Black has low light reflectivity and high absorption, so when sunlight is applied, it promotes the temperature rise of the plates PL2 and PL3, and makes the temperature of the battery and camera controller with a small amount of heat dissipation moderate. Can do.
  • the front plate FP and the rear plate BP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP.
  • the ratio which the sunlight reflected on the moon surface hits the front board FP and the back board BP can be reduced, the temperature rise of the spacecraft R can be suppressed.
  • FIG. 9 is a schematic view of the BB cross section of FIG.
  • the right side plate RP and the left side plate LP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP.
  • the ratio which the sunlight reflected on the lunar surface hits the right side board RP and the left side board LP can be reduced, the temperature rise of the spacecraft R can be suppressed.
  • a heat insulating material HI-1 is provided between the right side plate RP and the top plate TP, and the heat insulating material HI-1 is fixed to the top plate TP with bolts B1.
  • a heat insulating material HI-2 is provided between the left side plate LP and the top plate TP, and the heat insulating material HI-2 is fixed to the top plate TP with bolts B2.
  • the heat insulating materials HI-1 and HI-2 according to the present embodiment are, for example, engineering plastics, for example, ULTEM (registered trademark) of amorphous thermoplastic polyetherimide (PEI) resin.
  • FIG. 10 is a schematic diagram showing the visual field range of the camera in the horizontal direction.
  • the front view range FHV is the view range of the front camera FC
  • the rear view range BHV is the view range of the rear camera BC
  • the right view range RHV is the view range of the right camera RC
  • the left view range LHV is the left camera.
  • LC viewing range As shown in FIG. 10, the front visual field range FHV and the right side visual field range RHV partially overlap, and the front visual field range FHV and the left side visual field range LHV partially overlap.
  • the rear visual field range BHV and the right side visual field range RHV partially overlap, and the rear visual field range BHV and the left side visual field range LHV partially overlap. Thereby, 360 degrees around can be seen in the horizontal direction.
  • FIG. 11 is a schematic diagram showing the field of view of the camera in the AA section of FIG.
  • the front vertical visual field range FVV is a vertical visual field range of the front camera FC
  • the rear vertical visual field range is a vertical visual field range of the rear camera BC.
  • the front vertical visual field range FVV includes wheels FW1 and FW2.
  • wheels RW1 and RW2 are included in the rear vertical visual field range BVV.
  • both the front camera FC and the rear camera BC are in the field of view above the horizontal line L1.
  • FIG. 12 is a schematic diagram showing the field of view of the camera in the BB cross section of FIG.
  • the right vertical visual field range RVV is a vertical visual field range of the right-side camera RC
  • the left vertical visual field range is a vertical visual field range of the left-side camera LC.
  • the right vertical visual field range RVV includes wheels FW1 and RW1. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW1 and RW1.
  • the left vertical visual field range LVV includes wheels FW2 and RW2. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW2 and RW2.
  • both the right side camera RC and the left side camera LC are in the field of view above the horizontal line L2.
  • the resolution of the first camera such as the front camera FC and the rear camera BC is higher than the resolution of the second camera such as the right side camera RC and the left side camera LC. That is, the resolution of the camera in the traveling method (the method in which the wheel advances) is higher than the resolution of the side camera. Thereby, since the visual field range in the traveling direction can be seen with higher resolution, an obstacle or the like in the traveling direction can be easily found.
  • FIG. 13A is a schematic diagram illustrating a first movement mode of the spacecraft R.
  • FIG. 13B is a schematic diagram illustrating a second movement mode of the spacecraft R.
  • FIG. 13C is a schematic diagram showing directions in which the spacecraft R cannot move.
  • FIG. 13D is a schematic diagram illustrating a third movement mode of the spacecraft R. As shown to FIG. 13A, it can move to back and front, and as shown to FIG. 13B, it can turn on the spot. However, as shown in FIG.
  • FIG. 14 is a schematic block diagram showing the configuration of the spacecraft R according to the present embodiment.
  • the probe R includes a battery BAT and a power supply controller that controls the battery BAT.
  • the spacecraft R includes a motor MT, a gear box GB, and a motor controller MC that controls the motor MT and the gear box GB.
  • the spacecraft R is connected to the front camera FC, the right side camera RC, the first camera controller CMC1 that controls the front camera FC and the right side camera RC, and the first camera controller CMC1 via wiring.
  • 1 communication controller CC1 and 1st antenna AT1 connected to 1st communication controller CC1 are provided.
  • the first camera controller CMC1 includes a first processor PC1.
  • the spacecraft R is connected to the rear camera BC, the left camera LC, the second camera controller CMC2 for controlling the rear camera BC and the left camera LC, and the second camera controller CMC2 via wiring.
  • 2 communication controller CC2 and 2nd antenna AT2 connected to 2nd communication controller CC2.
  • the second camera controller CMC2 includes a second processor PC2.
  • the front camera FC is connected to the first processor PC1
  • the rear camera BC is connected to the second processor PC2. That is, the front camera and the rear camera are connected to separate processors.
  • the other processor can operate. Therefore, either the front camera FC or the rear camera BC can be operated. Can be transferred to the ground station E. Therefore, the spacecraft R can be moved either forward or backward while viewing the image of either the front camera FC or the rear camera BC.
  • FIG. 15 is a schematic diagram showing a hardware configuration of the first camera controller CMC1.
  • the front camera FC is connected to an A / D converter AD1
  • the A / D converter AD1 is connected to the serial interface SI1 of the first camera controller CMC1 via a flat cable.
  • the serial interface SI1 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
  • the right side camera RC is connected to the A / D converter AD2, and the A / D converter AD2 is connected to the parallel interface PI1 of the first camera controller CMC1 via a flat cable.
  • the first camera controller CMC1 is connected to the front camera FC or the right camera RC via a serial or parallel interface.
  • the first camera controller CMC1 requests and acquires moving image data from the front camera FC and the right side camera RC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding.
  • the compressed data is transferred to the first communication controller CC1.
  • the first communication controller CC1 transmits the compressed data from the first antenna AT1 to the transport ship (lander) L. Thereafter, the compressed data is transferred from the transport ship (lander) L to the ground station E.
  • the moving image data photographed by the front camera FC and the right-side camera RC of the spacecraft R can be transferred to the ground station, and the operator who operates the spacecraft R can view the moving image data on the earth.
  • the operator who operates the spacecraft R can see the image of the moon on the earth.
  • the front camera FC and the right-side camera RC do not need to be always turned on like the USB camera, and need only operate when requesting moving image data, thereby reducing power consumption. Can do.
  • FIG. 16 is a schematic diagram showing a hardware configuration of the second camera controller CMC2.
  • the rear camera BC is connected to an A / D converter AD3, and the A / D converter AD3 is connected to the serial interface SI2 of the second camera controller CMC2 via a flat cable.
  • the serial interface SI2 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
  • the left side camera LC is connected to the A / D converter AD4, and the A / D converter AD4 is connected to the parallel interface PI2 of the second camera controller CMC2 via a flat cable.
  • the second camera controller CMC2 is connected to the rear camera BC or the left camera LC via a serial or parallel interface.
  • the second camera controller CMC2 requests and acquires moving image data from the rear camera BC and the left camera LC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding.
  • the compressed data is transferred to the second communication controller CC2.
  • the second communication controller CC2 transmits the compressed data from the second antenna AT2 to the transport ship (lander) L. Thereafter, the compressed data is transferred from the transport ship (lander) L to the ground station E.
  • FIG. 17 is a schematic diagram illustrating an outline of a cross section of the housing HS.
  • the housing HS includes a substrate 1, a metal film (here, a silver film as an example) 2 deposited on the substrate 1, and a Teflon layer provided on the metal film 2.
  • the substrate is, for example, carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics: hereinafter referred to as CFRP).
  • CFRP Carbon Fiber Reinforced Plastics
  • sunlight can be reflected by the metal film 2 and the heat of the housing HS can be emitted from the Teflon layer 3 as infrared rays by radiation.
  • a quartz glass layer may be used instead of the Teflon layer 3.
  • the housing HS includes an indium oxide tin (Indium Tin Oxide: hereinafter referred to as ITO) layer 4 provided on the Teflon layer 3.
  • ITO Indium Tin Oxide
  • ITO is a transparent conductive film.
  • FIG. 18 is a flowchart illustrating an example of a process flow relating to coating of the casing on the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP.
  • Step S101 First, the CFRP plate is processed.
  • a CFRP plate is cut out to a predetermined size, and an opening for fitting a distance sensor is made.
  • CFRP is cut out to a predetermined size, and an opening for fitting the plate PL5 is made.
  • CFRP is cut out to a predetermined size, and openings for fitting the plates PL1 to PL4 are made.
  • CFRP is cut out to a predetermined size.
  • Step S102 silver is deposited on the CFRP plate in a vacuum.
  • Step S103 Teflon powder is sprayed onto the silver deposition surface. As a result, Teflon particles on the beads adhere to the silver deposition surface.
  • Step S104 Next, the temperature is raised and Teflon is melted and baked. As a result, the Teflon particles are melted and connected to each other, and the surface of the Teflon layer becomes flat.
  • Step S105 ITO is deposited in vacuum. Thereby, the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP are obtained.
  • FIG. 19 is a schematic diagram showing the left side plate LP before coating.
  • the left side plate LP is provided with through holes H1 to H6 for drawing wirings connected to the solar cell into the housing HS. ing.
  • casing HS is similarly provided in the left side plate LP.
  • FIG. 20 is a diagram illustrating an example of the configuration of the power controller PU.
  • the solar cells are connected in series for each column by wiring, and the wiring is drawn into the housing HS from, for example, the through holes H1 to H6 shown in FIG. Connected.
  • each wiring from the solar cell is connected to the anodes of the corresponding diodes D1 to D12 and rectified.
  • the cathodes of the diodes D1 to D12 are respectively connected to the charge / discharge circuit CDC, and the current rectified by the diodes D1 to D12 is input to the charge / discharge circuit CDC.
  • the wiring from the solar cell is connected to the charge / discharge circuit CDC in the housing HS through the through holes H1 to H6 provided in the housing HS.
  • the charge / discharge circuit CDC charges the battery BAT using the input current.
  • the charge / discharge circuit CDC supplies power to other electronic devices using the power of the battery BAT.
  • FIG. 21 is a flowchart showing an example of a process of creating the right side plate RP or the left side plate LP which is a side plate.
  • Step S201 First, CFRP is cut into a predetermined size, and a through hole is opened in the CFRP plate.
  • Step S202 Next, the through hole provided in the CFRP plate is masked. Thereby, it can avoid that a through-hole is obstruct
  • Step S203 silver is deposited on the CFRP plate in a vacuum.
  • Step S204 Teflon powder is sprayed onto the silver deposition surface. As a result, Teflon particles on the beads adhere to the silver deposition surface.
  • Step S205 Next, the temperature is raised and the Teflon is melted and baked. As a result, the Teflon particles are melted and connected to each other, and the surface of the Teflon layer becomes flat.
  • Step S206 ITO is deposited in vacuum.
  • Step S207 Next, the masking attached in Step S202 is taken.
  • Step S208 a heat-resistant and cold-resistant polyimide film is stuck on the ITO.
  • the polyimide film is, for example, Kapton (registered trademark).
  • Step S209 the solar cell is fixed on the polyimide film. Thereby, the right side plate RP or the left side plate LP which is a side plate is obtained.
  • FIG. 22 is a schematic diagram of a front view of the probe R at a predetermined latitude where the probe R is arranged.
  • the surface of the housing on which the solar cells are arranged (in this embodiment, the right side surface and the left side surface as an example) is inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. ing. Thereby, since the light from the sun can be received efficiently, the power generation amount can be increased.
  • the right side surface and the left side surface which are the surfaces of the housing where the solar cells are disposed, are inclined at an angle at which the power generation capacity from when the sun rises to when it sinks is maximized at the latitude where the spacecraft R is to be disposed. Yes. Specifically, as shown in FIG. 22, when the maximum elevation angle of the sun at the latitude where the spacecraft R is to be arranged is ⁇ 1 degree, the angle at which the power generation capacity from when the sun rises until it sinks is maximum is ⁇ 1. Therefore, the inclination of the right side surface and the left side surface from the horizontal plane is set to ⁇ 1 degree.
  • FIG. 23 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is higher than that in FIG.
  • the maximum elevation angle ⁇ 2 of the sun at the latitude where the spacecraft R is to be arranged becomes smaller than ⁇ 1.
  • the angle at which the power generation capacity from when the sun rises until it sinks becomes ⁇ 2, which is larger than ⁇ 1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to ⁇ 2 degrees.
  • FIG. 24 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is lower than in the case of FIG.
  • the maximum elevation angle ⁇ 3 of the sun at the latitude where the spacecraft R is to be arranged becomes larger than ⁇ 1.
  • the angle at which the power generation capacity from when the sun rises until it sinks becomes ⁇ 3 smaller than ⁇ 1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to ⁇ 3 degrees.
  • the inclination of the surface (here, the right side surface and the left side surface) of the casing on which the solar cell is disposed is determined according to the latitude at which the spacecraft R is to be disposed. Specifically, the higher the latitude at which the spacecraft R is to be arranged, the smaller the maximum elevation angle of the sun, so the inclination of the right side RP and the left side from the horizontal plane increases. Thereby, since the inclination of the solar cell is set according to the maximum elevation angle of the sun, the amount of power generation can be increased.
  • FIG. 25 is an exploded perspective view of the wheel FW2.
  • the wheel FW2 includes a motor MT, a motor slave SV, a bearing BR1, a bearing spacer BS, a bearing BR2, a motor housing MH, a bearing hold plate BHP, a clamp HC, a hub HB, and a wheel WL2.
  • the motor MT is inserted into the motor slave SV, the rotation shaft of the motor MT is inserted into the first hole HL in FIG. 26 of the hub HB, and the rotation shaft of the motor MT is clamped to the hub HB by the clamp HC.
  • FIG. 26 is a front view of the hub HB as seen from the direction of the arrow A1 in FIG. As shown in FIG. 26, it has the 1st hole HL and the notch CO connected to the said 1st hole HL.
  • FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. As shown in FIG. 27, the hub HB has a cone-shaped projection PJ near the center. As described above, the hub HB has the cone-shaped convex portion PJ near the center, and communicates with the first hole HL in which the rotation shaft of the motor MT is fitted in the convex portion PJ and the first hole HL. Has cutout CO.
  • FIG. 28 is a cross-sectional view of the clamp HC taken along the CC cross section of FIG.
  • the rotating shaft of the motor MT is inserted from the front surface FS side, and the hub HB is on the back surface RS side.
  • the clamp HC has a second hole HL2 whose diameter gradually decreases from the rear surface RS toward the front surface FS.
  • the convex portion PJ is fitted in the second hole HL2 with the back surface RS of the clamp HC and the hub HB facing each other.
  • the notch CO is narrowed
  • the contour around the first hole HL of the hub HB is narrowed
  • the rotation shaft of the motor MT is strongly restrained. .
  • the motor MT is fixed, if an excessive force is applied to the rotating shaft of the motor MT in the rotating shaft direction, the motor MT suddenly stops rotating.
  • the electronic device is not fixed to the top plate, but the electronic device may be disposed on the back surface of the front plate FP or the rear plate BP, or the electronic device may be disposed on the back surface of the bottom plate DP.
  • an electronic device can be provided on the back side of the surface where sunlight does not enter, and an increase in temperature of the electronic device can be prevented.
  • the heat generated from the electronic device can be released from the top plate TP of the housing HS to the outer space to suppress the temperature rise of the electronic device.
  • both the front plate FP and the rear plate BP of the housing are inclined to the inside of the spacecraft R from the bottom plate DP to the top plate TP. Good.
  • both the right side plate RP and the left side plate LP of the housing are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP, but only one of them is inclined. Also good.
  • the wheel FW1 is included in both the field of view of the front camera FC that is one of the first cameras and the field of view of the right-side camera RC that is one of the second cameras.
  • the present invention is not limited to this, and the wheel FW1 may be included only in one field of view.
  • the other wheels FW2, RW1, RW2. In this way, it is only necessary to see the wheels with at least one of the cameras. Thereby, it can be confirmed whether the wheel is not clogged with stones.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)

Abstract

This probe, which is capable of travel, includes: wheels; a first camera disposed so as to face a direction in which the probe can travel; and a second camera disposed so as to face a direction other than the direction in which the probe can travel. The lens of the first camera and/or the second camera is oriented so as to face in a downward direction with respect to the horizontal direction, and the wheels are included in the visual field of the first camera and/or the visual field of the second camera.

Description

探査機Spacecraft
 本発明は、探査機に関する。 The present invention relates to a spacecraft.
 月または惑星の探査活動に用いられる探査機が知られている。例えば、探査機には、月面上または惑星上を走行可能な宇宙探査用走行車があり(特許文献1参照)、米国の火星ローバーなどが知られている。 Spacecraft used for lunar or planetary exploration activities are known. For example, as a spacecraft, there is a space exploration vehicle that can travel on the moon surface or on the planet (see Patent Document 1), and US Mars Rover is known.
特開2010-132261号公報JP 2010-132261 A
 これまでの探査機は大型で重いので、月または惑星などに探査機を輸送するのに大きなコストがかかるという問題があった。 Since the conventional spacecraft is large and heavy, there is a problem that it takes a large cost to transport the spacecraft to the moon or planet.
 本発明は、上記問題に鑑みてなされたものであり、小型化しても探査することを可能とする探査機を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a probe that can be searched even if it is downsized.
 本発明の第1の態様に係る探査機は、走行可能な探査機であって、車輪と、当該探査機が進行可能な方向に向けて配置された第1のカメラと、当該探査機が進行可能な方向以外の方向に向けて配置された第2のカメラと、を備え、前記第1のカメラ及び/または前記第2のカメラのレンズの向きが水平よりも下方に向けられており、前記第1のカメラの視野内及び/または前記第2のカメラの視野内に、車輪が含まれている。 The spacecraft according to the first aspect of the present invention is a spacecraft that can travel, the wheels, the first camera that is arranged in the direction in which the spacecraft can travel, and the spacecraft that travels. A second camera arranged in a direction other than a possible direction, and the lens orientation of the first camera and / or the second camera is directed downward from the horizontal, Wheels are included in the field of view of the first camera and / or in the field of view of the second camera.
 この構成により、車輪に、石などが挟まっているか否かを確認することができる。 This configuration makes it possible to confirm whether or not stones are caught in the wheels.
 本発明の第2の態様に係る探査機は、第1の態様に係る探査機であって、前記第1のカメラの解像度は、前記第2のカメラの解像度より高い。 The spacecraft according to the second aspect of the present invention is the spacecraft according to the first aspect, and the resolution of the first camera is higher than the resolution of the second camera.
 この構成により、進行方向の視野範囲をより高い解像度で見ることができるので、進行方向にある障害物などを容易に発見することができる。 This configuration allows the field of view in the direction of travel to be viewed with higher resolution, so that obstacles in the direction of travel can be easily found.
 本発明の第3の態様に係る探査機は、第1または2の態様に係る探査機であって、プロセッサを複数備え、当該探査機は、前後どちらにも走行可能であり、前記第1のカメラとして、前方に向けて配置された前方カメラと、後方に向けて配置された後方カメラとを有し、前記前方カメラと、前記後方カメラはそれぞれ別々のプロセッサに接続されている。 A spacecraft according to a third aspect of the present invention is the spacecraft according to the first or second aspect, and includes a plurality of processors, and the spacecraft can travel in both the front and rear directions. As a camera, it has a front camera arranged toward the front and a rear camera arranged toward the rear, and the front camera and the rear camera are respectively connected to separate processors.
 この構成により、仮に、プロセッサのうちの一方が故障して動作できない場合でも、他方のプロセッサが動作することができるので、前方カメラ、後方カメラのいずれかのカメラの画像を地上局に転送することができる。よって、前方カメラ、後方カメラのいずれかのカメラの画像を見ながら、前後のいずれかに探査機を移動することができる。 With this configuration, even if one of the processors fails and cannot operate, the other processor can operate, so the images of either the front camera or the rear camera can be transferred to the ground station. Can do. Therefore, the spacecraft can be moved either forward or backward while viewing the image of either the front camera or the rear camera.
 本発明の第4の態様に係る探査機は、第1から3のいずれかの態様に係る探査機であって、前記第1のカメラまたは前記第2のカメラと、シリアルあるいはパラレルインタフェースで接続されているカメラコントローラと、通信するための通信コントローラと、を備え、前記カメラコントローラは、所定のフレームレートで前記カメラに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮し、前記通信コントローラは、圧縮後のデータを送信する。 A probe according to a fourth aspect of the present invention is the probe according to any one of the first to third aspects, and is connected to the first camera or the second camera via a serial or parallel interface. A camera controller, and a communication controller for communicating, the camera controller requests and obtains video data from the camera at a predetermined frame rate, and compresses the obtained video data by hardware encoding. The communication controller transmits the compressed data.
 この構成により、探査機のカメラが撮影した動画データを地上局に転送可能であり、探査機を操作するオペレータは地球上で動画データを見ることができる。第1のカメラまたは第2のカメラは、カメラの電源を常時オンしておく必要がなく、動画データの要求時だけ動作すればよいので消費電力を抑えることができる。 With this configuration, moving image data captured by the probe camera can be transferred to the ground station, and the operator operating the probe can view the moving image data on the earth. The first camera or the second camera need not always be turned on, and only needs to operate when moving image data is requested, so that power consumption can be suppressed.
 本発明の第5の態様に係る探査機は、第1から4のいずれかの態様に係る探査機であって、筐体を備え、前記筐体は、基板と、テフロン(登録商標)層あるいは石英ガラス層と、前記基板と前記テフロン層あるいは石英ガラス層との間に設けられた金属膜と、を有する。 A probe according to a fifth aspect of the present invention is the probe according to any one of the first to fourth aspects, and includes a casing, and the casing includes a substrate and a Teflon (registered trademark) layer or A quartz glass layer; and a metal film provided between the substrate and the Teflon layer or the quartz glass layer.
 この構成により、金属膜で太陽光を反射し、筐体の熱をテフロン層あるいは石英ガラス層から輻射により赤外線として放出することができる。 With this configuration, sunlight can be reflected by the metal film, and the heat of the casing can be emitted as infrared rays by radiation from the Teflon layer or the quartz glass layer.
 本発明の第6の態様に係る探査機は、第5の態様に係る探査機であって、前記テフロン層あるいは前記石英ガラス層の上に、酸化インジウム鈴層が設けられている。 A probe according to a sixth aspect of the present invention is the probe according to the fifth aspect, and an indium oxide bell layer is provided on the Teflon layer or the quartz glass layer.
 この構成により、テフロン層の上に酸化インジウム鈴層を設けることにより、太陽光を透過させることができるとともに、酸化インジウム鈴層上に発生した電荷をグラウンドに流すことができる。 With this configuration, by providing the indium oxide bell layer on the Teflon layer, it is possible to transmit sunlight and to allow the charge generated on the indium oxide bell layer to flow to the ground.
 本発明の第7の態様に係る探査機は、第1から6のいずれかの態様に係る探査機であって、筐体と、電子機器と、を備え、前記筐体は、側板と、前記電子機器が固定された天板とを有し、前記側板と前記天板との間に断熱材が設けられている。 A probe according to a seventh aspect of the present invention is the probe according to any one of the first to sixth aspects, comprising a housing and an electronic device, wherein the housing includes a side plate, The top plate to which the electronic device is fixed is provided, and a heat insulating material is provided between the side plate and the top plate.
 この構成により、側板から天板への熱伝達を遮断することにより、天板に固定された電子機器の温度上昇を抑制することができる。 With this configuration, by blocking the heat transfer from the side plate to the top plate, the temperature rise of the electronic device fixed to the top plate can be suppressed.
 本発明の第8の態様に係る探査機は、第7の態様に係る探査機であって、前記電子機器は、前記天板の裏に設けられている。 A probe according to an eighth aspect of the present invention is the probe according to the seventh aspect, and the electronic device is provided on the back of the top board.
 この構成により、太陽光が地面に反射した場合の反射光が天板には当らないので、電子機器が天板の裏に設けられていることで電子機器の温度上昇を予防することができる。 With this configuration, since the reflected light when sunlight is reflected on the ground does not hit the top plate, it is possible to prevent the temperature of the electronic device from rising by providing the electronic device behind the top plate.
 本発明の第9の態様に係る探査機は、第1から8のいずれかの態様に係る探査機であって、筐体と、前記筐体の天板から露出された状態で当該天板に固定されているプレートと、前記プレートの裏面側に固定されている電子機器と、を備え、前記プレートは断面が凸状の形状を有し、前記筐体の天板に設けられた開口に嵌まっている。 A spacecraft according to a ninth aspect of the present invention is the spacecraft according to any one of the first to eighth aspects, wherein the spacecraft is exposed from the top plate of the housing and the top surface of the housing. A plate that is fixed, and an electronic device that is fixed to the back side of the plate, the plate having a convex cross section and fitted into an opening provided in the top plate of the housing. waiting.
 この構成により、筐体の天板から宇宙空間に、バッテリから発生した熱を放出して、バッテリの温度上昇を抑えることができる。 With this configuration, the heat generated from the battery can be released from the top plate of the housing to the outer space to suppress the temperature rise of the battery.
 本発明の第10の態様に係る探査機は、第1から9のいずれかの態様に係る探査機であって、筐体を備え、前記筐体の前板及び/または後板は、底板から天板にかけて当該探査機の内側に傾いている。 A probe according to a tenth aspect of the present invention is the probe according to any one of the first to ninth aspects, and includes a housing, and the front plate and / or the rear plate of the housing is formed from a bottom plate. It leans to the inside of the spacecraft over the top plate.
 この構成により、月面に反射した太陽光が前板及び後板に当たる割合を低減することができるので、探査機の温度上昇を抑制することができる。 This configuration can reduce the rate at which sunlight reflected on the lunar surface hits the front plate and the rear plate, so that the temperature rise of the spacecraft can be suppressed.
 本発明の第11の態様に係る探査機は、第1から10のいずれかの態様に係る探査機であって、筐体と、前記筐体の上に、斜めに配列されている太陽電池と、を備える。 A probe according to an eleventh aspect of the present invention is a probe according to any one of the first to tenth aspects, and includes a housing and a solar cell arranged obliquely on the housing. .
 この構成により、太陽電池の筐体外面における専有面積率を高くすることができ、限られた面積のうちに多くの太陽電池を配置できる。 This configuration makes it possible to increase the exclusive area ratio of the outer surface of the solar cell housing, and to arrange a large number of solar cells within a limited area.
 本発明の第12の態様に係る探査機は、第11の態様に係る探査機であって、前記太陽電池で発電された電力が供給される充放電回路を更に備え、前記筐体には貫通孔が設けられており、前記太陽電池からの配線は、前記筐体に設けられた貫通孔を通して前記筐体内の充放電回路に接続されている。 A probe according to a twelfth aspect of the present invention is the probe according to the eleventh aspect, further comprising a charge / discharge circuit to which power generated by the solar cell is supplied, and penetrating the casing. A hole is provided, and wiring from the solar cell is connected to a charge / discharge circuit in the casing through a through hole provided in the casing.
 この構成により、筐体外面に配線を固定するスペースを設けなくてもよくなるので、限られた面積のうちに多くの太陽電池を配置できる。 This configuration eliminates the need to provide a space for fixing the wiring on the outer surface of the housing, so that many solar cells can be arranged within a limited area.
 本発明の第13の態様に係る探査機は、第1から12のいずれかの態様に係る探査機であって、前記筐体の上に配置された太陽電池を更に備え、前記太陽電池が配置された筐体の面は、底板から天板にかけて当該探査機の内側に傾いている。 A probe according to a thirteenth aspect of the present invention is the probe according to any one of the first to twelfth aspects, further comprising a solar cell disposed on the casing, wherein the solar cell is disposed. The surface of the case is tilted to the inside of the spacecraft from the bottom plate to the top plate.
 この構成により、太陽からの光を効率よく受けることができるので、発電量を増加させることができる。 This configuration makes it possible to efficiently receive light from the sun, thus increasing the amount of power generation.
 本発明の第14の態様に係る探査機は、第13の態様に係る探査機であって、前記太陽電池が配置された筐体の面の傾きは、当該探査機が配置される予定の緯度に応じて決定されている。 The probe according to the fourteenth aspect of the present invention is the probe according to the thirteenth aspect, wherein the inclination of the surface of the casing on which the solar cell is arranged is the latitude at which the probe is to be arranged. It is decided according to.
 この構成により、太陽の最大仰角に応じて太陽電池の傾きが設定されるので、発電量を増加させることができる。 This configuration sets the solar cell inclination according to the maximum elevation angle of the sun, so that the amount of power generation can be increased.
 本発明の第15の態様に係る探査機は、第1から14のいずれかの態様に係る探査機であって、前記車輪に設けられたモータと、コーン状の凸部を中央付近に有し、当該凸部に前記モータの回転軸が嵌っている第1の穴と当該第1の穴に連通する切り欠きを有するハブと、裏面から表面に向けて徐々に直径が小さくなる第2の穴を有するクランプと、を備え、前記クランプの当該裏面と前記ハブとが対向状態で前記第2の穴に前記凸部が嵌まっている。 A probe according to a fifteenth aspect of the present invention is the probe according to any one of the first to fourteenth aspects, and has a motor provided on the wheel and a cone-shaped convex portion near the center. A first hole in which the rotating shaft of the motor is fitted in the convex part, a hub having a notch communicating with the first hole, and a second hole whose diameter gradually decreases from the back surface to the surface. And the convex portion is fitted in the second hole in a state where the back surface of the clamp and the hub are opposed to each other.
 この構成により、第2の穴に凸部が嵌まることにより、切り欠きが狭まって、ハブの第1の穴の回りの輪郭が狭まり、モータの回転軸を強く拘束する。これにより、モータの回転軸が滑るのを防止することができる。また、モータを固定するときに、モータの回転軸に回転軸方向に過剰な力を与えると、モータが突然、回転を停止する問題があった。それに対し、上記の構成によれば、クランプで締め上げるときに、ハブは動かずにクランプだけ動かすので、モータの回転軸に回転軸方向への過剰な力を与えないので、モータの突然の回転の停止を防止することができる。 With this configuration, when the convex portion is fitted in the second hole, the notch is narrowed, the contour around the first hole of the hub is narrowed, and the rotation shaft of the motor is strongly restrained. Thereby, it can prevent that the rotating shaft of a motor slips. Further, when fixing the motor, if an excessive force is applied to the rotating shaft of the motor in the direction of the rotating shaft, the motor suddenly stops rotating. On the other hand, according to the above configuration, when the clamp is tightened, the hub is moved only by the clamp without moving, so that an excessive force in the direction of the rotation axis is not given to the rotation axis of the motor, so that the sudden rotation of the motor Can be prevented.
本実施形態に係る探査システムの概略を示す模式図である。It is a mimetic diagram showing the outline of the exploration system concerning this embodiment. 本実施形態に係る探査機の概略を示す斜視図である。It is a perspective view which shows the outline of the explorer which concerns on this embodiment. 実施形態に係る探査機を前方から見た正面図である。It is the front view which looked at the spacecraft concerning an embodiment from the front. 本実施形態に係る探査機を左側から見た側面図である。It is the side view which looked at the spacecraft concerning this embodiment from the left side. 本実施形態に係る探査機を上から見た上面図である。It is the top view which looked at the spacecraft concerning this embodiment from the top. 図2のAA断面の模式図である。It is a schematic diagram of the AA cross section of FIG. プレートPL4の構造を示す斜視図である。It is a perspective view which shows the structure of plate PL4. プレート毎の放熱量とプレートの露出面(表面)の塗装色の例を示す表である。It is a table | surface which shows the example of the coating color of the heat radiation amount for every plate, and the exposed surface (surface) of a plate. 図2のBB断面の模式図である。It is a schematic diagram of the BB cross section of FIG. 水平方向のカメラの視野範囲を示す模式図である。It is a schematic diagram which shows the visual field range of the camera of a horizontal direction. 図2のAA断面におけるカメラの視野範囲を示す模式図である。It is a schematic diagram which shows the visual field range of the camera in the AA cross section of FIG. 図2のBB断面におけるカメラの視野範囲を示す模式図である。It is a schematic diagram which shows the visual field range of the camera in the BB cross section of FIG. 探査機Rの第1の移動様式を示す模式図である。It is a schematic diagram which shows the 1st movement mode of the spacecraft. 探査機Rの第2の移動様式を示す模式図である。It is a schematic diagram which shows the 2nd movement mode of the spacecraft. 探査機Rが移動できない方向を示す模式図である。It is a schematic diagram which shows the direction where the spacecraft R cannot move. 探査機Rの第3の移動様式を示す模式図である。It is a schematic diagram which shows the 3rd movement mode of the spacecraft. 本実施形態に係る探査機Rの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the spacecraft R which concerns on this embodiment. 第1カメラコントローラCMC1のハードウェア構成を示す概略図である。It is the schematic which shows the hardware constitutions of 1st camera controller CMC1. 第2カメラコントローラCMC2のハードウェア構成を示す概略図である。It is the schematic which shows the hardware constitutions of 2nd camera controller CMC2. 筐体HSの断面の概略を示す模式図である。It is a schematic diagram which shows the outline of the cross section of housing | casing HS. 前板FP、後板BP、天板TP、底板DPにおける筐体のコーティングに関する工程の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process regarding the coating of the housing | casing in front board FP, rear board BP, top board TP, and bottom board DP. コーティング前のCFRPの板を示す模式図である。It is a schematic diagram which shows the board of CFRP before coating. 電源コントローラPUの構成の一例を示す図である。It is a figure which shows an example of a structure of power supply controller PU. 側板である右側板RPあるいは左側板LPの作成工程の一例を示すフローチャートである。It is a flowchart which shows an example of the production process of the right side plate RP or the left side plate LP which is a side plate. 探査機Rが配置される所定の緯度における探査機Rの正面図の模式図である。It is a schematic diagram of the front view of the probe R in the predetermined latitude where the probe R is arrange | positioned. 探査機Rが配置される予定の緯度が図22の場合よりも高い場合における探査機Rの正面図の模式図である。It is a schematic diagram of the front view of the probe R when the latitude where the probe R is planned is higher than the case of FIG. 探査機Rが配置される予定の緯度が図22の場合よりも低い場合における探査機Rの正面図の模式図である。It is a schematic diagram of the front view of the probe R when the latitude where the probe R is planned is lower than the case of FIG. 車輪FW2の分解斜視図である。It is a disassembled perspective view of wheel FW2. ハブHBを図25の矢印A1方向からみた正面図である。It is the front view which looked at the hub HB from the arrow A1 direction of FIG. 図26のDD断面で切ったときのハブHBの断面図である。FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. 26. 図25のCC断面で切ったときのクランプHCの断面図である。It is sectional drawing of the clamp HC when it cuts in CC section of FIG.
 本実施形態では、探査機を、一例として月の探査活動に用いる場合について説明する。なお、本実施形態に係る探査機は、惑星、小惑星、他の衛星などの探索活動にも用いることができる。以下、本実施形態について、図面を参照しながら説明する。 In this embodiment, a case where the spacecraft is used for lunar exploration activities will be described as an example. Note that the spacecraft according to the present embodiment can also be used for search activities for planets, asteroids, and other satellites. Hereinafter, the present embodiment will be described with reference to the drawings.
 図1は、本実施形態に係る探査システムの概略を示す模式図である。図1に示すように、本実施形態に係る探査システムSは、月面LSを探査する探査装置(ローバーともいう)Rと、月MNまで探査装置を輸送する輸送船(ランダーともいう)Lと、地球ET上に設けられた地上局Eを備える。本実施形態に係る探査機Rは、一例として無人探査機であり、月面上を走行可能である。探査機Rは輸送船Lと通信可能である。また、輸送船Lは地上局と通信可能である。これにより、地上局Eから探査機Rを制御することができる。 FIG. 1 is a schematic diagram showing an outline of an exploration system according to this embodiment. As shown in FIG. 1, the exploration system S according to the present embodiment includes an exploration device (also referred to as a rover) R that explores the lunar surface LS, and a transport ship (also referred to as a lander) L that transports the exploration device to the moon MN. And a ground station E provided on the earth ET. The spacecraft R according to the present embodiment is an unmanned spacecraft as an example, and can travel on the moon surface. The probe R can communicate with the transport ship L. The transport ship L can communicate with the ground station. Thereby, the spacecraft E can be controlled from the ground station E.
 図2は、本実施形態に係る探査機の概略を示す斜視図である。図2に示すように、本実施形態に係る探査機Rは、筐体HSと、筐体HSに設けられたシャフトLSF、RSFと、不図示のシャフトRSFに連結された車輪FW1、RW1と、シャフトLSFに連結された車輪FW2、RW2とを備える。 FIG. 2 is a perspective view showing an outline of the spacecraft according to the present embodiment. As shown in FIG. 2, the spacecraft R according to the present embodiment includes a housing HS, shafts LSF and RSF provided in the housing HS, wheels FW1 and RW1 connected to a shaft RSF (not shown), Wheels FW2 and RW2 connected to the shaft LSF are provided.
 探査機Rは、筐体の前面に設けられた距離センサDSと、筐体HSの天板に設けられた第1アンテナAT1、第2アンテナAT2とを備える。ここで距離センサDSは、月面上の物体(例えば、岩などの障害物)との間の距離を計測する。本実施形態に係る探査機Rは一例として、距離センサDSが設けられた方向に進む場合とその反対方向に進む場合で駆動機構上の違いはない。本実施形態では一例として、距離センサDSが設けられた方を前方とし、その反対方向を後方として以下、説明する。 The spacecraft R includes a distance sensor DS provided on the front surface of the casing, and a first antenna AT1 and a second antenna AT2 provided on the top plate of the casing HS. Here, the distance sensor DS measures a distance from an object on the moon (for example, an obstacle such as a rock). As an example, the probe R according to the present embodiment has no difference in driving mechanism between the case of traveling in the direction in which the distance sensor DS is provided and the case of traveling in the opposite direction. In the present embodiment, as an example, the direction where the distance sensor DS is provided is assumed to be the front, and the opposite direction is assumed to be the rear.
 探査機Rは、前方カメラFCと、後方カメラBCと、右側方カメラRCと、左側方カメラLCとを備える。前方カメラFCと、後方カメラBCと、右側方カメラRCと、左側方カメラLCは、レンズと、レンズから入射した光を用いて被写体を撮像する撮像部とを有している。後述する図13A、図13Cに示すように、探査機Rは、前後移動が可能であるのに対し、左右に移動できない。前方カメラFCと後方カメラBCは、探査機Rが進行可能な方向に向けて配置された第1のカメラの一例である。右側方カメラRCと左側方カメラLCは、探査機が進行可能な方向以外の方向に向けて配置された第2のカメラの一例である。 The spacecraft R includes a front camera FC, a rear camera BC, a right side camera RC, and a left side camera LC. The front camera FC, the rear camera BC, the right-side camera RC, and the left-side camera LC have a lens and an imaging unit that captures an object using light incident from the lens. As shown in FIGS. 13A and 13C described later, the probe R can move back and forth, but cannot move left and right. The front camera FC and the rear camera BC are an example of a first camera arranged in a direction in which the spacecraft R can travel. The right side camera RC and the left side camera LC are an example of a second camera arranged in a direction other than the direction in which the spacecraft can travel.
 図3は、本実施形態に係る探査機を前方から見た正面図である。図3に示すように、シャフトRSFに車輪FW1が連結され、シャフトLSFに連結された車輪FW2が連結されている。 FIG. 3 is a front view of the spacecraft according to the present embodiment as viewed from the front. As shown in FIG. 3, the wheel FW1 is connected to the shaft RSF, and the wheel FW2 connected to the shaft LSF is connected.
 図4は、本実施形態に係る探査機を左側から見た側面図である。図4の水平線HXと比較すると明らかなように、第1のカメラである前方カメラFC及び後方カメラBCのレンズLF、LBの向きが水平よりも下方に向けられている。これにより、走行方向にある月面上の障害物を可視化することができる。 FIG. 4 is a side view of the spacecraft according to the present embodiment as viewed from the left side. As is clear from comparison with the horizontal line HX in FIG. 4, the directions of the lenses LF and LB of the front camera FC and the rear camera BC, which are the first cameras, are directed downward from the horizontal. Thereby, the obstacle on the moon surface in the running direction can be visualized.
 また図4に示すように、筐体HSの左側面側の左側板LPには、太陽電池M1-1~M1-4、M2-1~M2-5、M3-1~M3-5、M4-1~M4-4、M5-1~M5-5、M6-1~M6-5が設けられている。
 図5は、本実施形態に係る探査機を上から見た上面図である。図5に示すように、筐体HSの右側面側の右側板RPにも太陽電池M7-1~M7-4、M8~M8-5、M9-1~M9-5、M10-1~M10-4、M11-1~M11-5、M12-1~M12-5が設けられている。
 図4及び図5に示すように、太陽電池は、斜めに配列されている。これにより、太陽電池の筐体HS外面における専有面積率を高くすることができ、限られた面積のうちに多くの太陽電池を配置できる。
As shown in FIG. 4, solar cells M1-1 to M1-4, M2-1 to M2-5, M3-1 to M3-5, M4- 1 to M4-4, M5-1 to M5-5, and M6-1 to M6-5 are provided.
FIG. 5 is a top view of the spacecraft according to the present embodiment as viewed from above. As shown in FIG. 5, the solar cells M7-1 to M7-4, M8 to M8-5, M9-1 to M9-5, M10-1 to M10- are also applied to the right side plate RP on the right side of the housing HS. 4, M11-1 to M11-5, and M12-1 to M12-5 are provided.
As shown in FIGS. 4 and 5, the solar cells are arranged obliquely. Thereby, the exclusive area rate in the housing | casing HS outer surface of a solar cell can be made high, and many solar cells can be arrange | positioned within the limited area.
 図5に示すように、筐体HSは、天板TP、前板FP、後板BP、右側板RP、左側板LP及び不図示の底板DPを有している。以下、右側板RPあるいは左側板LPを総称して側板ということもある。図5に示すように、プレートPL1、PL2、PL3、PL4が筐体HSの天板TPから露出された状態で天板TPに固定されている。すなわち、筐体HSの天板TPに連結して表面が外側に露出している。 As shown in FIG. 5, the housing HS has a top plate TP, a front plate FP, a rear plate BP, a right side plate RP, a left side plate LP, and a bottom plate DP (not shown). Hereinafter, the right side plate RP or the left side plate LP may be collectively referred to as a side plate. As shown in FIG. 5, the plates PL1, PL2, PL3, and PL4 are fixed to the top plate TP in a state where they are exposed from the top plate TP of the housing HS. That is, the surface is exposed to the outside by connecting to the top plate TP of the housing HS.
 図6は、図2のAA断面の模式図である。本実施形態に係る探査機は一例として、月の赤道付近以外で探査する。つまり太陽光が探査機Rに対して斜めに入射することを想定する。このため、図6に示すように、電子機器が天板の裏に設けられており、天板TPに電子機器が固定されている。これにより、太陽光が月面LSなどの地面に反射した場合の反射光が天板TPには当らないので、電子機器が天板の裏に設けられていることで電子機器の温度上昇を予防することができる。 FIG. 6 is a schematic diagram of the AA cross section of FIG. As an example, the spacecraft according to the present embodiment searches outside the equator of the moon. That is, it is assumed that sunlight is incident on the spacecraft R at an angle. For this reason, as shown in FIG. 6, the electronic device is provided in the back of the top plate, and the electronic device is being fixed to the top plate TP. Thereby, since reflected light when sunlight reflects on the ground such as the lunar surface LS does not hit the top plate TP, the electronic device is provided on the back of the top plate to prevent the temperature of the electronic device from rising. can do.
 図6に示すように、電子機器の一つであるバッテリが搭載されたバッテリボードBBが、支柱P1-1、P1-2を介してプレートPL1の裏面に固定されている。当該プレートPL1は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つであるバッテリが固定されている。これにより、筐体HSの天板TPから宇宙空間に、バッテリから発生した熱を放出して、バッテリの温度上昇を抑えることができる。また、バッテリボードBBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL1が挟まれている。これにより、バッテリで生じた熱を、効率良くプレートPL1まで伝達することができ、放熱効果を向上させることができる。 As shown in FIG. 6, a battery board BB on which a battery which is one of electronic devices is mounted is fixed to the back surface of the plate PL1 via support columns P1-1 and P1-2. The plate PL1 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS. In this way, the battery, which is one of the electronic devices, is fixed to the top plate TP. Thereby, the heat generated from the battery can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the battery can be suppressed. Further, an adhesive material (gel) GL1 having high thermal conductivity is sandwiched between the battery board BB and the back surface of the top plate TP. Thereby, the heat generated in the battery can be efficiently transmitted to the plate PL1, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つである電源コントローラが搭載された電源ボードPUBが、支柱P2-1、P2-2を介してプレートPL2の裏面に固定されている。当該プレートPL2は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つである電源コントローラが固定されている。これにより、筐体HSの天板TPから宇宙空間に、電源コントローラから発生した熱を放出して、電源コントローラの温度上昇を抑えることができる。また、電源ボードPUBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL2が挟まれている。これにより、電源コントローラで生じた熱を、効率良くプレートPL2まで伝達することができ、放熱効果を向上させることができる。 Similarly, a power supply board PUB on which a power supply controller, which is one of electronic devices, is mounted is fixed to the back surface of the plate PL2 via support columns P2-1 and P2-2. The plate PL2 has a convex cross section, and is fitted in an opening provided in the top plate TP of the housing HS. In this way, the power supply controller that is one of the electronic devices is fixed to the top plate TP. Thereby, the heat generated from the power supply controller can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the power supply controller can be suppressed. Further, an adhesive material (gel) GL2 having high thermal conductivity is sandwiched between the power supply board PUB and the back surface of the top plate TP. Thereby, the heat generated by the power supply controller can be efficiently transmitted to the plate PL2, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つであるモータコントローラが搭載されたモータ用ボードMCBが、支柱P3-1、P3-2を介してプレートPL3の裏面に固定されている。当該プレートPL3は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つであるモータコントローラが固定されている。これにより、筐体HSの天板TPから宇宙空間に、モータコントローラから発生した熱を放出して、モータコントローラの温度上昇を抑えることができる。また、モータ用ボードMCBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL3が挟まれている。これにより、モータコントローラで生じた熱を、効率良くプレートPL3まで伝達することができ、放熱効果を向上させることができる。 Similarly, a motor board MCB on which a motor controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL3 via support columns P3-1 and P3-2. The plate PL3 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS. Thus, the motor controller which is one of the electronic devices is fixed to the top plate TP. Thereby, the heat generated from the motor controller can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the motor controller can be suppressed. Further, an adhesive (gel) GL3 having a high thermal conductivity is sandwiched between the motor board MCB and the back surface of the top plate TP. Thereby, the heat generated by the motor controller can be efficiently transmitted to the plate PL3, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つであるカメラコントローラが搭載されたカメラ用ボードCBが、支柱P4-1、P4-2を介してプレートPL4の裏面に固定されている。当該プレートPL4は断面が凸状の形状を有し、筐体HSの天板TPに設けられた開口に嵌まっている。このようにして、天板TPに、電子機器の一つであるカメラコントローラが固定されている。これにより、筐体HSの天板TPから宇宙空間に、カメラコントローラから発生した熱を放出して、カメラコントローラの温度上昇を抑えることができる。また、カメラ用ボードCBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL4が挟まれている。これにより、カメラコントローラで生じた熱を、効率良くプレートPL4まで伝達することができ、放熱効果を向上させることができる。 Similarly, a camera board CB on which a camera controller which is one of electronic devices is mounted is fixed to the back surface of the plate PL4 via support columns P4-1 and P4-2. The plate PL4 has a convex cross section, and is fitted into an opening provided in the top plate TP of the housing HS. Thus, the camera controller which is one of the electronic devices is fixed to the top plate TP. Thereby, the heat generated from the camera controller can be released from the top plate TP of the housing HS to the outer space, and the temperature rise of the camera controller can be suppressed. Further, an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
 同様にして、電子機器の一つである通信コントローラが搭載された通信用ボードRBが、支柱P5-1、P5-2を介してプレートPL5の裏面に固定されている。当該プレートPL5は断面が凸状の形状を有し、筐体HSの後板BPに設けられた開口に嵌まっている。このようにして、後板BPに、電子機器の一つである通信コントローラが固定されている。これにより、筐体HSの後板BPから宇宙空間に、通信コントローラから発生した熱を放出して、通信コントローラの温度上昇を抑えることができる。また、カメラ用ボードCBと天板TPの裏面との間に、熱伝導率の高い接着材(ジェル)GL4が挟まれている。これにより、カメラコントローラで生じた熱を、効率良くプレートPL4まで伝達することができ、放熱効果を向上させることができる。 Similarly, a communication board RB on which a communication controller that is one of electronic devices is mounted is fixed to the back surface of the plate PL5 via support columns P5-1 and P5-2. The plate PL5 has a convex cross section, and is fitted into an opening provided in the rear plate BP of the housing HS. Thus, the communication controller which is one of the electronic devices is fixed to the rear plate BP. As a result, the heat generated from the communication controller can be released from the rear plate BP of the housing HS to the outer space to suppress the temperature increase of the communication controller. Further, an adhesive (gel) GL4 having a high thermal conductivity is sandwiched between the camera board CB and the back surface of the top plate TP. Thereby, the heat generated by the camera controller can be efficiently transmitted to the plate PL4, and the heat dissipation effect can be improved.
 続いて、プレートPL1~PL5を代表してプレートPL4の構造について説明する。図7は、プレートPL4の構造を示す斜視図である。図7に示すように、カメラコントローラが搭載されたカメラ用ボードCBとプレートPL4とが、4本の支柱P4-1~P4-4を介して連結されている。そして、プレートPL4の四隅には、プレートPL4をねじで天板TPに固定するための四つの穴HE1~HE4が設けられている。このように、パッケージ化することによって組み立てを簡易にすることができる。 Subsequently, the structure of the plate PL4 will be described on behalf of the plates PL1 to PL5. FIG. 7 is a perspective view showing the structure of the plate PL4. As shown in FIG. 7, a camera board CB on which a camera controller is mounted and a plate PL4 are connected via four columns P4-1 to P4-4. At the four corners of the plate PL4, four holes HE1 to HE4 for fixing the plate PL4 to the top plate TP with screws are provided. Thus, assembly can be simplified by packaging.
 図8は、プレート毎の放熱量とプレートの露出面(表面)の塗装色の例を示す表である。色によって光の反射率及び吸収率が異なる。そのため、電子機器の放熱量が大きいほど光の反射率が高く且つ吸収率が低くなるように、当該電子機器が搭載されたプレートの露出面の色が設定されている。例えば、図8に示すように、放熱量が大きい放熱源が固定されているプレートPL1、PL4は、例えば、露出面(表面)の塗装色が白である。白は光の反射率が高く吸収率が低いので、太陽光が照射されてもプレートPL1、PL4の温度上昇を抑制することでき、放熱量が大きいバッテリ及びカメラコントローラの温度上昇を抑制することができる。一方、図8に示すように、放熱量が小さい放熱源が固定されているプレートPL2、PL3は、例えば、露出面(表面)の塗装色が黒である。黒は光の反射率が低く吸収率が高いので、太陽光が照射されるとプレートPL2、PL3の温度上昇を促進して、放熱量が小さいバッテリ及びカメラコントローラの温度を適度な温度にすることができる。 FIG. 8 is a table showing an example of the heat radiation amount for each plate and the paint color of the exposed surface (surface) of the plate. The reflectance and absorption rate of light differ depending on the color. Therefore, the color of the exposed surface of the plate on which the electronic device is mounted is set so that the greater the heat dissipation amount of the electronic device, the higher the light reflectance and the lower the absorption rate. For example, as shown in FIG. 8, the plates PL1 and PL4 to which the heat radiation source having a large heat radiation amount is fixed have, for example, a white paint color on the exposed surface (surface). White has high light reflectivity and low absorptance, so it can suppress the temperature rise of the plates PL1 and PL4 even when exposed to sunlight, and can suppress the temperature rise of the battery and camera controller with large heat dissipation. it can. On the other hand, as shown in FIG. 8, the plates PL2 and PL3 to which the heat radiation source having a small heat radiation amount is fixed have, for example, a black painted color on the exposed surface (surface). Black has low light reflectivity and high absorption, so when sunlight is applied, it promotes the temperature rise of the plates PL2 and PL3, and makes the temperature of the battery and camera controller with a small amount of heat dissipation moderate. Can do.
 図2及び図6に示すように、筐体HSの前板FP及び後板BPは、底板DPから天板TPにかけて当該探査機Rの内側に傾いている。これにより、月面に反射した太陽光が前板FP及び後板BPに当たる割合を低減することができるので、探査機Rの温度上昇を抑制することができる。 As shown in FIGS. 2 and 6, the front plate FP and the rear plate BP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. Thereby, since the ratio which the sunlight reflected on the moon surface hits the front board FP and the back board BP can be reduced, the temperature rise of the spacecraft R can be suppressed.
 図9は、図2のBB断面の模式図である。図9に示すように筐体HSの右側板RP及び左側板LPは、底板DPから天板TPにかけて当該探査機Rの内側に傾いている。これにより、月面に反射した太陽光が右側板RP及び左側板LPに当たる割合を低減することができるので、探査機Rの温度上昇を抑制することができる。 FIG. 9 is a schematic view of the BB cross section of FIG. As shown in FIG. 9, the right side plate RP and the left side plate LP of the housing HS are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. Thereby, since the ratio which the sunlight reflected on the lunar surface hits the right side board RP and the left side board LP can be reduced, the temperature rise of the spacecraft R can be suppressed.
 図9に示すように、右側板RPと天板TPとの間に断熱材HI-1が設けられ、ボルトB1で断熱材HI-1が天板TPに固定されている。同様に、左側板LPと天板TPとの間に断熱材HI-2が設けられ、ボルトB2で断熱材HI-2が天板TPに固定されている。ここで本実施形態に係る断熱材HI-1、HI-2は一例として、エンジニアリングプラスチックであり、例えば非晶性熱可塑性ポリエーテルイミド(PEI)樹脂のULTEM(登録商標)である。これにより、右側板RP及び左側板LPから天板TPへの熱伝達を遮断することにより、天板TPに固定された電子機器の温度上昇を抑制することができる。 As shown in FIG. 9, a heat insulating material HI-1 is provided between the right side plate RP and the top plate TP, and the heat insulating material HI-1 is fixed to the top plate TP with bolts B1. Similarly, a heat insulating material HI-2 is provided between the left side plate LP and the top plate TP, and the heat insulating material HI-2 is fixed to the top plate TP with bolts B2. Here, the heat insulating materials HI-1 and HI-2 according to the present embodiment are, for example, engineering plastics, for example, ULTEM (registered trademark) of amorphous thermoplastic polyetherimide (PEI) resin. Thereby, the temperature rise of the electronic device fixed to the top plate TP can be suppressed by blocking the heat transfer from the right side plate RP and the left side plate LP to the top plate TP.
 続いて、カメラの視野範囲について図10~図12を用いて説明する。
 図10は、水平方向のカメラの視野範囲を示す模式図である。前方視野範囲FHVは前方カメラFCの視野範囲で、後方視野範囲BHVは後方カメラBCの視野範囲で、右側方視野範囲RHVは右側方カメラRCの視野範囲で、左側方視野範囲LHVは左側方カメラLCの視野範囲である。図10に示すように、前方視野範囲FHVと右側方視野範囲RHVが一部重なっており、前方視野範囲FHVと左側方視野範囲LHVが一部重なっている。同様に、後方視野範囲BHVと右側方視野範囲RHVが一部重なっており、後方視野範囲BHVと左側方視野範囲LHVが一部重なっている。これにより、水平方向に周囲360度を見ることができる。
Subsequently, the visual field range of the camera will be described with reference to FIGS.
FIG. 10 is a schematic diagram showing the visual field range of the camera in the horizontal direction. The front view range FHV is the view range of the front camera FC, the rear view range BHV is the view range of the rear camera BC, the right view range RHV is the view range of the right camera RC, and the left view range LHV is the left camera. LC viewing range. As shown in FIG. 10, the front visual field range FHV and the right side visual field range RHV partially overlap, and the front visual field range FHV and the left side visual field range LHV partially overlap. Similarly, the rear visual field range BHV and the right side visual field range RHV partially overlap, and the rear visual field range BHV and the left side visual field range LHV partially overlap. Thereby, 360 degrees around can be seen in the horizontal direction.
 図11は、図2のAA断面におけるカメラの視野範囲を示す模式図である。前方垂直視野範囲FVVは、前方カメラFCの垂直方向の視野範囲で、後方垂直視野範囲は、後方カメラBCの垂直方向の視野範囲である。図11に示すように、前方垂直視野範囲FVVに、車輪FW1、FW2が含まれている。これにより、車輪FW1、FW2に、石などが挟まっているか否かを確認することができる。同様に、後方垂直視野範囲BVVに、車輪RW1、RW2が含まれている。これにより、車輪RW1、RW2に、石などが挟まっているか否かを確認することができる。また前方カメラFC、後方カメラBCは一例として両方とも、水平線L1より上も視野に入っている。 FIG. 11 is a schematic diagram showing the field of view of the camera in the AA section of FIG. The front vertical visual field range FVV is a vertical visual field range of the front camera FC, and the rear vertical visual field range is a vertical visual field range of the rear camera BC. As shown in FIG. 11, the front vertical visual field range FVV includes wheels FW1 and FW2. Thereby, it is possible to confirm whether or not stones are sandwiched between the wheels FW1 and FW2. Similarly, wheels RW1 and RW2 are included in the rear vertical visual field range BVV. Thereby, it is possible to confirm whether or not stones are sandwiched between the wheels RW1 and RW2. Further, as an example, both the front camera FC and the rear camera BC are in the field of view above the horizontal line L1.
 図12は、図2のBB断面におけるカメラの視野範囲を示す模式図である。右垂直視野範囲RVVは、右側方カメラRCの垂直方向の視野範囲で、左垂直視野範囲は、左側方カメラLCの垂直方向の視野範囲である。図12に示すように、右垂直視野範囲RVVに、車輪FW1、RW1が含まれている。これにより、車輪FW1、RW1に、石などが挟まっているか否かを確認することができる。同様に、左垂直視野範囲LVVに、車輪FW2、RW2が含まれている。これにより、車輪FW2、RW2に、石などが挟まっているか否かを確認することができる。また右側方カメラRC、左側方カメラLCは一例として両方とも、水平線L2より上も視野に入っている。 FIG. 12 is a schematic diagram showing the field of view of the camera in the BB cross section of FIG. The right vertical visual field range RVV is a vertical visual field range of the right-side camera RC, and the left vertical visual field range is a vertical visual field range of the left-side camera LC. As shown in FIG. 12, the right vertical visual field range RVV includes wheels FW1 and RW1. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW1 and RW1. Similarly, the left vertical visual field range LVV includes wheels FW2 and RW2. Thereby, it can be confirmed whether or not stones are sandwiched between the wheels FW2 and RW2. Further, as an example, both the right side camera RC and the left side camera LC are in the field of view above the horizontal line L2.
 前方カメラFC及び後方カメラBCといった第1のカメラの解像度は、右側方カメラRC及び左側方カメラLCといった第2のカメラの解像度より高い。すなわち、進行方法(車輪が進む方法)のカメラの解像度が側方のカメラの解像度より高い。これにより、進行方向の視野範囲をより高い解像度で見ることができるので、進行方向にある障害物などを容易に発見することができる。 The resolution of the first camera such as the front camera FC and the rear camera BC is higher than the resolution of the second camera such as the right side camera RC and the left side camera LC. That is, the resolution of the camera in the traveling method (the method in which the wheel advances) is higher than the resolution of the side camera. Thereby, since the visual field range in the traveling direction can be seen with higher resolution, an obstacle or the like in the traveling direction can be easily found.
 続いて、図13A~13Dを用いて、探査機Rの移動様式について説明する。図13Aは、探査機Rの第1の移動様式を示す模式図である。図13Bは、探査機Rの第2の移動様式を示す模式図である。図13Cは、探査機Rが移動できない方向を示す模式図である。図13Dは、探査機Rの第3の移動様式を示す模式図である。
 図13Aに示すように、前後いずれにも移動可能であり、図13Bに示すように、その場で旋回可能である。しかし、図13Cに示すように、左右方向に車輪FW1、FW2、RW1、RW2が回転しないので、そのままの状態では左右に移動ができない。その代わりに図13Dに示すように、その場で90度し、その後に前後に動くことにより、結果的に左右方向に動くことが可能である。
Subsequently, the movement mode of the probe R will be described with reference to FIGS. 13A to 13D. FIG. 13A is a schematic diagram illustrating a first movement mode of the spacecraft R. FIG. FIG. 13B is a schematic diagram illustrating a second movement mode of the spacecraft R. FIG. 13C is a schematic diagram showing directions in which the spacecraft R cannot move. FIG. 13D is a schematic diagram illustrating a third movement mode of the spacecraft R.
As shown to FIG. 13A, it can move to back and front, and as shown to FIG. 13B, it can turn on the spot. However, as shown in FIG. 13C, since the wheels FW1, FW2, RW1, and RW2 do not rotate in the left-right direction, the left-right movement cannot be performed. Instead, as shown in FIG. 13D, by moving 90 degrees on the spot and then moving back and forth, it is possible to move left and right as a result.
 続いて、本実施形態に係る探査機Rの機能について図14を用いて説明する。図14は、本実施形態に係る探査機Rの構成を示す概略ブロック図である。図14に示すように、探査機Rは、バッテリBATと、バッテリBATを制御する電源コントローラとを備える。更に、探査機Rは、モータMTと、ギアボックスGBと、モータMTとギアボックスGBを制御するモータコントローラMCとを備える。 Subsequently, the function of the spacecraft R according to the present embodiment will be described with reference to FIG. FIG. 14 is a schematic block diagram showing the configuration of the spacecraft R according to the present embodiment. As shown in FIG. 14, the probe R includes a battery BAT and a power supply controller that controls the battery BAT. Further, the spacecraft R includes a motor MT, a gear box GB, and a motor controller MC that controls the motor MT and the gear box GB.
 更に、探査機Rは、前方カメラFCと、右側方カメラRCと、前方カメラFC及び右側方カメラRCを制御する第1カメラコントローラCMC1と、第1カメラコントローラCMC1に配線を介して接続された第1通信コントローラCC1と、第1通信コントローラCC1に接続された第1アンテナAT1を備える。ここで第1カメラコントローラCMC1は、第1プロセッサPC1を備える。 Further, the spacecraft R is connected to the front camera FC, the right side camera RC, the first camera controller CMC1 that controls the front camera FC and the right side camera RC, and the first camera controller CMC1 via wiring. 1 communication controller CC1 and 1st antenna AT1 connected to 1st communication controller CC1 are provided. Here, the first camera controller CMC1 includes a first processor PC1.
 更に、探査機Rは、後方カメラBCと、左側方カメラLCと、後方カメラBC及び左側方カメラLCを制御する第2カメラコントローラCMC2と、第2カメラコントローラCMC2に配線を介して接続された第2通信コントローラCC2と、第2通信コントローラCC2に接続された第2アンテナAT2を備える。ここで第2カメラコントローラCMC2は、第2プロセッサPC2を備える。 Further, the spacecraft R is connected to the rear camera BC, the left camera LC, the second camera controller CMC2 for controlling the rear camera BC and the left camera LC, and the second camera controller CMC2 via wiring. 2 communication controller CC2 and 2nd antenna AT2 connected to 2nd communication controller CC2. Here, the second camera controller CMC2 includes a second processor PC2.
 このように、前方カメラFCは第1プロセッサPC1に、後方カメラBCは第2プロセッサPC2に接続されている。すなわち、前方カメラと、後方カメラはそれぞれ別々のプロセッサに接続されている。
 これにより、仮に、第1プロセッサPC1と第2プロセッサPC2のうちの一方が故障して動作できない場合でも、他方のプロセッサが動作することができるので、前方カメラFC、後方カメラBCのいずれかのカメラの画像を地上局Eに転送することができる。よって、前方カメラFC、後方カメラBCのいずれかのカメラの画像を見ながら、前後のいずれかに探査機Rを移動することができる。
Thus, the front camera FC is connected to the first processor PC1, and the rear camera BC is connected to the second processor PC2. That is, the front camera and the rear camera are connected to separate processors.
As a result, even if one of the first processor PC1 and the second processor PC2 fails and cannot operate, the other processor can operate. Therefore, either the front camera FC or the rear camera BC can be operated. Can be transferred to the ground station E. Therefore, the spacecraft R can be moved either forward or backward while viewing the image of either the front camera FC or the rear camera BC.
 図15は、第1カメラコントローラCMC1のハードウェア構成を示す概略図である。図15に示すように、前方カメラFCはA/D変換器AD1に接続され、A/D変換器AD1は、フラットケーブルを介して第1カメラコントローラCMC1のシリアルインタフェースSI1に接続されている。ここで、シリアルインタフェースSI1は例えばMIPI(Mobile Industry Processor Interface)規格に準拠したインタフェースである。 FIG. 15 is a schematic diagram showing a hardware configuration of the first camera controller CMC1. As shown in FIG. 15, the front camera FC is connected to an A / D converter AD1, and the A / D converter AD1 is connected to the serial interface SI1 of the first camera controller CMC1 via a flat cable. Here, the serial interface SI1 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
 右側方カメラRCはA/D変換器AD2に接続され、A/D変換器AD2は、フラットケーブルを介して第1カメラコントローラCMC1のパラレルインタフェースPI1に接続されている。このように、第1カメラコントローラCMC1は、前方カメラFCまたは右側方カメラRCと、シリアルあるいはパラレルインタフェースで接続されている。 The right side camera RC is connected to the A / D converter AD2, and the A / D converter AD2 is connected to the parallel interface PI1 of the first camera controller CMC1 via a flat cable. As described above, the first camera controller CMC1 is connected to the front camera FC or the right camera RC via a serial or parallel interface.
 第1カメラコントローラCMC1は、所定のフレームレートで前方カメラFC及び右側方カメラRCに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮する。圧縮後のデータは、第1通信コントローラCC1に転送される。
 第1通信コントローラCC1は、圧縮後のデータを第1アンテナAT1から輸送船(ランダー)Lへ送信する。その後、圧縮後のデータは、輸送船(ランダー)Lから地上局Eに転送される。これにより、探査機Rの前方カメラFC及び右側方カメラRCが撮影した動画データを地上局に転送可能であり、探査機Rを操作するオペレータは地球上で動画データを見ることができる。このように、探査機Rを操作するオペレータは、月面の映像を地球上で見ることができる。この構成によれば、前方カメラFC及び右側方カメラRCは、USBカメラのようにカメラの電源を常時オンしておく必要がなく、動画データの要求時だけ動作すればよいので消費電力を抑えることができる。
The first camera controller CMC1 requests and acquires moving image data from the front camera FC and the right side camera RC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding. The compressed data is transferred to the first communication controller CC1.
The first communication controller CC1 transmits the compressed data from the first antenna AT1 to the transport ship (lander) L. Thereafter, the compressed data is transferred from the transport ship (lander) L to the ground station E. Thereby, the moving image data photographed by the front camera FC and the right-side camera RC of the spacecraft R can be transferred to the ground station, and the operator who operates the spacecraft R can view the moving image data on the earth. Thus, the operator who operates the spacecraft R can see the image of the moon on the earth. According to this configuration, the front camera FC and the right-side camera RC do not need to be always turned on like the USB camera, and need only operate when requesting moving image data, thereby reducing power consumption. Can do.
 図16は、第2カメラコントローラCMC2のハードウェア構成を示す概略図である。図16に示すように、後方カメラBCはA/D変換器AD3に接続され、A/D変換器AD3は、フラットケーブルを介して第2カメラコントローラCMC2のシリアルインタフェースSI2に接続されている。ここで、シリアルインタフェースSI2は例えばMIPI(Mobile Industry Processor Interface)規格に準拠したインタフェースである。 FIG. 16 is a schematic diagram showing a hardware configuration of the second camera controller CMC2. As shown in FIG. 16, the rear camera BC is connected to an A / D converter AD3, and the A / D converter AD3 is connected to the serial interface SI2 of the second camera controller CMC2 via a flat cable. Here, the serial interface SI2 is an interface compliant with, for example, MIPI (Mobile Industry Processor Interface) standard.
 左側方カメラLCはA/D変換器AD4に接続され、A/D変換器AD4は、フラットケーブルを介して第2カメラコントローラCMC2のパラレルインタフェースPI2に接続されている。このように、第2カメラコントローラCMC2は、後方カメラBCまたは左側方カメラLCと、シリアルあるいはパラレルインタフェースで接続されている。 The left side camera LC is connected to the A / D converter AD4, and the A / D converter AD4 is connected to the parallel interface PI2 of the second camera controller CMC2 via a flat cable. As described above, the second camera controller CMC2 is connected to the rear camera BC or the left camera LC via a serial or parallel interface.
 第2カメラコントローラCMC2は、所定のフレームレートで後方カメラBC及び左側方カメラLCに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮する。圧縮後のデータは、第2通信コントローラCC2に転送される。
 第2通信コントローラCC2は、圧縮後のデータを第2アンテナAT2から輸送船(ランダー)Lへ送信する。その後、圧縮後のデータは、輸送船(ランダー)Lから地上局Eに転送される。
The second camera controller CMC2 requests and acquires moving image data from the rear camera BC and the left camera LC at a predetermined frame rate, and compresses the acquired moving image data by hardware encoding. The compressed data is transferred to the second communication controller CC2.
The second communication controller CC2 transmits the compressed data from the second antenna AT2 to the transport ship (lander) L. Thereafter, the compressed data is transferred from the transport ship (lander) L to the ground station E.
 続いて、筐体のコーティングについて図17及び図18を用いて説明する。図17は、筐体HSの断面の概略を示す模式図である。図17に示すように、筐体HSは、基板1と、基板1の上に蒸着されている金属膜(ここでは一例として銀の膜)2と、金属膜2の上に設けられたテフロン層3とを備える。ここで基板は例えば、炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:以下、CFRPという)である。これにより、金属膜2で太陽光を反射し、筐体HSの熱をテフロン層3から輻射により赤外線として放出することができる。なお、テフロン層3ではなく、石英ガラス層でもよい。 Subsequently, the casing coating will be described with reference to FIGS. 17 and 18. FIG. 17 is a schematic diagram illustrating an outline of a cross section of the housing HS. As shown in FIG. 17, the housing HS includes a substrate 1, a metal film (here, a silver film as an example) 2 deposited on the substrate 1, and a Teflon layer provided on the metal film 2. 3. Here, the substrate is, for example, carbon fiber reinforced plastic (Carbon Fiber Reinforced Plastics: hereinafter referred to as CFRP). Thereby, sunlight can be reflected by the metal film 2 and the heat of the housing HS can be emitted from the Teflon layer 3 as infrared rays by radiation. Note that a quartz glass layer may be used instead of the Teflon layer 3.
 更に、筐体HSは、テフロン層3の上に設けられた酸化インジウム鈴(Indium Tin Oxide:以下、ITOという)層4を有する。ITOは透明伝導膜である。このように、テフロン層の上にITO層4を設けることにより、太陽光を透過させることができるとともに、ITO上に発生した電荷をグラウンドに流すことができる。 Further, the housing HS includes an indium oxide tin (Indium Tin Oxide: hereinafter referred to as ITO) layer 4 provided on the Teflon layer 3. ITO is a transparent conductive film. Thus, by providing the ITO layer 4 on the Teflon layer, it is possible to transmit sunlight and to allow the electric charge generated on the ITO to flow to the ground.
 続いて筐体のコーティングに関するプロセスを図18を用いて説明する。図18は、前板FP、後板BP、天板TP、底板DPにおける筐体のコーティングに関する工程の流れの一例を示すフローチャートである。 Next, a process related to coating of the casing will be described with reference to FIG. FIG. 18 is a flowchart illustrating an example of a process flow relating to coating of the casing on the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP.
 (ステップS101)まず、CFRPの板を加工する。前板FPの場合には例えば、所定の大きさにCFRPの板を切り出し、距離センサを嵌めるための開口を作る。また、後板BPの場合には例えば、所定の大きさにCFRPを切り出し、プレートPL5を嵌めるための開口を作る。また天板TPの場合には例えば、所定の大きさにCFRPを切り出し、プレートPL1~PL4を嵌めるための開口を作る。また底板DPの場合には例えば、所定の大きさにCFRPを切り出す。 (Step S101) First, the CFRP plate is processed. In the case of the front plate FP, for example, a CFRP plate is cut out to a predetermined size, and an opening for fitting a distance sensor is made. In the case of the rear plate BP, for example, CFRP is cut out to a predetermined size, and an opening for fitting the plate PL5 is made. In the case of the top plate TP, for example, CFRP is cut out to a predetermined size, and openings for fitting the plates PL1 to PL4 are made. In the case of the bottom plate DP, for example, CFRP is cut out to a predetermined size.
 (ステップS102)次に、真空中でCFRPの板に銀を蒸着する。 (Step S102) Next, silver is deposited on the CFRP plate in a vacuum.
 (ステップS103)次に、銀の蒸着面にテフロンの粉体を吹き付ける。これにより、銀の蒸着面にビーズ上のテフロンの粒子が付着する。 (Step S103) Next, Teflon powder is sprayed onto the silver deposition surface. As a result, Teflon particles on the beads adhere to the silver deposition surface.
 (ステップS104)次に、昇温してテフロンを溶かして焼き固める。これにより、テフロンの粒子が溶けて互いにつながり、テフロン層の表面が平坦(フラット)になる。 (Step S104) Next, the temperature is raised and Teflon is melted and baked. As a result, the Teflon particles are melted and connected to each other, and the surface of the Teflon layer becomes flat.
 (ステップS105)次に、真空中でITOを蒸着する。これにより、前板FP、後板BP、天板TP、底板DPが得られる。 (Step S105) Next, ITO is deposited in vacuum. Thereby, the front plate FP, the rear plate BP, the top plate TP, and the bottom plate DP are obtained.
 続いて、側板である右側板RPと左側板LPの作成プロセスについて図19~21を用いて説明する。図19は、コーティング前の左側板LPを示す模式図である。本実施形態では、右側板RPと左側板LPに太陽電池を配置するため、左側板LPには、太陽電池に接続される配線を筐体HS内に引き込むための貫通孔H1~H6が設けられている。なお、図示は省略するが、同様に、左側板LPにも太陽電池に接続される配線を筐体HS内に引き込むための貫通孔が設けられている。 Subsequently, a process of creating the right side plate RP and the left side plate LP as side plates will be described with reference to FIGS. FIG. 19 is a schematic diagram showing the left side plate LP before coating. In the present embodiment, since the solar cells are arranged on the right side plate RP and the left side plate LP, the left side plate LP is provided with through holes H1 to H6 for drawing wirings connected to the solar cell into the housing HS. ing. In addition, although illustration is abbreviate | omitted, the through-hole for drawing in the wiring connected to a solar cell in the housing | casing HS is similarly provided in the left side plate LP.
 図20は、電源コントローラPUの構成の一例を示す図である。図20に示すように、太陽電池は、列ごとに直列に配線で接続されており、当該配線が、例えば図19に示す貫通孔H1~H6から筐体HS内に引き込まれて電源コントローラPUに接続される。具体的には、太陽電池からの配線それぞれが、対応するダイオードD1~D12のアノードに接続されて整流される。ダイオードD1~D12のカソードはそれぞれ充放電回路CDCに接続されており、ダイオードD1~D12で整流された電流が充放電回路CDCに入力される。このように、太陽電池からの配線は、筐体HSに設けられた貫通孔H1~H6を通して筐体HS内の充放電回路CDCに接続されている。この構成により、筐体HS外面に配線を固定するスペースを設けなくてもよくなるので、限られた面積のうちに多くの太陽電池を配置できる。充放電回路CDCは、入力された電流を用いてバッテリBATを充電する。また充放電回路CDCは、バッテリBATの電力を用いて、他の電子機器に電力を供給する。 FIG. 20 is a diagram illustrating an example of the configuration of the power controller PU. As shown in FIG. 20, the solar cells are connected in series for each column by wiring, and the wiring is drawn into the housing HS from, for example, the through holes H1 to H6 shown in FIG. Connected. Specifically, each wiring from the solar cell is connected to the anodes of the corresponding diodes D1 to D12 and rectified. The cathodes of the diodes D1 to D12 are respectively connected to the charge / discharge circuit CDC, and the current rectified by the diodes D1 to D12 is input to the charge / discharge circuit CDC. In this manner, the wiring from the solar cell is connected to the charge / discharge circuit CDC in the housing HS through the through holes H1 to H6 provided in the housing HS. With this configuration, it is not necessary to provide a space for fixing the wiring on the outer surface of the housing HS, so that many solar cells can be arranged within a limited area. The charge / discharge circuit CDC charges the battery BAT using the input current. The charge / discharge circuit CDC supplies power to other electronic devices using the power of the battery BAT.
 図21は、側板である右側板RPあるいは左側板LPの作成工程の一例を示すフローチャートである。 FIG. 21 is a flowchart showing an example of a process of creating the right side plate RP or the left side plate LP which is a side plate.
 (ステップS201)まずCFRPを所定の大きさに切り出し、CFRPの板に貫通孔を開ける。 (Step S201) First, CFRP is cut into a predetermined size, and a through hole is opened in the CFRP plate.
 (ステップS202)次に、CFRPの板に設けられた貫通孔をマスキングする。これにより、以降の処理で付着する物質により、貫通孔が塞がれることを避けることができる。 (Step S202) Next, the through hole provided in the CFRP plate is masked. Thereby, it can avoid that a through-hole is obstruct | occluded with the substance adhering by subsequent processes.
 (ステップS203)次に、真空中でCFRPの板に銀を蒸着する。 (Step S203) Next, silver is deposited on the CFRP plate in a vacuum.
 (ステップS204)次に、銀の蒸着面にテフロンの粉体を吹き付ける。これにより、銀の蒸着面にビーズ上のテフロンの粒子が付着する。 (Step S204) Next, Teflon powder is sprayed onto the silver deposition surface. As a result, Teflon particles on the beads adhere to the silver deposition surface.
 (ステップS205)次に、昇温してテフロンを溶かして焼き固める。これにより、テフロンの粒子が溶けて互いにつながり、テフロン層の表面が平坦(フラット)になる。 (Step S205) Next, the temperature is raised and the Teflon is melted and baked. As a result, the Teflon particles are melted and connected to each other, and the surface of the Teflon layer becomes flat.
 (ステップS206)次に、真空中でITOを蒸着する。 (Step S206) Next, ITO is deposited in vacuum.
 (ステップS207)次に、ステップS202で貼付したマスキングをとる。 (Step S207) Next, the masking attached in Step S202 is taken.
 (ステップS208)次に、ITOの上から、耐熱性且つ耐寒性のポリイミドフィルムを貼る。ポリイミドフィルムは例えばカプトン(登録商標)である。 (Step S208) Next, a heat-resistant and cold-resistant polyimide film is stuck on the ITO. The polyimide film is, for example, Kapton (registered trademark).
 (ステップS209)次に、ポリイミドフィルムの上からソーラセルを固定する。これにより、側板である右側板RPあるいは左側板LPが得られる。 (Step S209) Next, the solar cell is fixed on the polyimide film. Thereby, the right side plate RP or the left side plate LP which is a side plate is obtained.
 続いて、太陽電池が配置された筐体の面の傾きについて説明する。図22は、探査機Rが配置される所定の緯度における探査機Rの正面図の模式図である。図2及び図22に示すように、太陽電池が配置された筐体の面(本実施形態では一例として右側面と左側面)は、底板DPから天板TPにかけて当該探査機Rの内側に傾いている。これにより太陽からの光を効率よく受けることができるので、発電量を増加させることができる。
 太陽電池が配置された筐体の面である右側面と左側面は、当該探査機Rが配置される予定の緯度において、太陽が昇ってから沈むまでの発電容量が最大になる角度で傾いている。具体的には図22に示すように、探査機Rが配置される予定の緯度における太陽の最大仰角がφ1度になる場合、太陽が昇ってから沈むまでの発電容量が最大になる角度はθ1度であるので、右側面と左側面の水平面からの傾きはθ1度に設定される。
Then, the inclination of the surface of the housing | casing in which the solar cell is arrange | positioned is demonstrated. FIG. 22 is a schematic diagram of a front view of the probe R at a predetermined latitude where the probe R is arranged. As shown in FIGS. 2 and 22, the surface of the housing on which the solar cells are arranged (in this embodiment, the right side surface and the left side surface as an example) is inclined inward of the spacecraft R from the bottom plate DP to the top plate TP. ing. Thereby, since the light from the sun can be received efficiently, the power generation amount can be increased.
The right side surface and the left side surface, which are the surfaces of the housing where the solar cells are disposed, are inclined at an angle at which the power generation capacity from when the sun rises to when it sinks is maximized at the latitude where the spacecraft R is to be disposed. Yes. Specifically, as shown in FIG. 22, when the maximum elevation angle of the sun at the latitude where the spacecraft R is to be arranged is φ1 degree, the angle at which the power generation capacity from when the sun rises until it sinks is maximum is θ1. Therefore, the inclination of the right side surface and the left side surface from the horizontal plane is set to θ1 degree.
 図23は、探査機Rが配置される予定の緯度が図22の場合よりも高い場合における探査機Rの正面図の模式図である。図23に示すように、探査機Rが配置される予定の緯度における太陽の最大仰角φ2がφ1より小さくなる。このとき、太陽が昇ってから沈むまでの発電容量が最大になる角度はθ1より大きいθ2となるので、右側面と左側面の水平面からの傾きはθ2度に設定される。 FIG. 23 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is higher than that in FIG. As shown in FIG. 23, the maximum elevation angle φ2 of the sun at the latitude where the spacecraft R is to be arranged becomes smaller than φ1. At this time, the angle at which the power generation capacity from when the sun rises until it sinks becomes θ2, which is larger than θ1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to θ2 degrees.
 一方、図24は、探査機Rが配置される予定の緯度が図22の場合よりも低い場合における探査機Rの正面図の模式図である。図24に示すように、探査機Rが配置される予定の緯度における太陽の最大仰角φ3がφ1より大きくなる。このとき、太陽が昇ってから沈むまでの発電容量が最大になる角度はθ1より小さいθ3となるので、右側面と左側面の水平面からの傾きはθ3度に設定される。 On the other hand, FIG. 24 is a schematic diagram of a front view of the spacecraft R when the latitude where the spacecraft R is to be arranged is lower than in the case of FIG. As shown in FIG. 24, the maximum elevation angle φ3 of the sun at the latitude where the spacecraft R is to be arranged becomes larger than φ1. At this time, the angle at which the power generation capacity from when the sun rises until it sinks becomes θ3 smaller than θ1, so the inclination of the right side surface and the left side surface from the horizontal plane is set to θ3 degrees.
 このように、太陽電池が配置された筐体の面(ここでは右側面と左側面)の傾きは、当該探査機Rが配置される予定の緯度に応じて決定されている。具体的には、探査機Rが配置される予定の緯度が高くなるほど、太陽の最大仰角が小さくなるので、右側面RPと左側面の水平面からの傾きは大きくなる。これにより、太陽の最大仰角に応じて太陽電池の傾きが設定されるので、発電量を増加させることができる。 Thus, the inclination of the surface (here, the right side surface and the left side surface) of the casing on which the solar cell is disposed is determined according to the latitude at which the spacecraft R is to be disposed. Specifically, the higher the latitude at which the spacecraft R is to be arranged, the smaller the maximum elevation angle of the sun, so the inclination of the right side RP and the left side from the horizontal plane increases. Thereby, since the inclination of the solar cell is set according to the maximum elevation angle of the sun, the amount of power generation can be increased.
 続いて、図25~27を用いて、車輪FW1、RW1、RW2の構造は、車輪FW2と同様であるので、車輪を代表して、モータMTを車輪FW2へ固定するための構造について説明する。 Subsequently, since the structures of the wheels FW1, RW1, and RW2 are the same as those of the wheels FW2, the structure for fixing the motor MT to the wheels FW2 as a representative of the wheels will be described with reference to FIGS.
 図25は、車輪FW2の分解斜視図である。図25に示すように、車輪FW2は、モータMT、モータスレーブSV、ベアリングBR1、ベアリングスペーサBS、ベアリングBR2、モータハウジングMH、ベアリングホールドプレートBHP、クランプHC、ハブHB、及びホイールWL2を備える。モータMTがモータスレーブSV内に挿入されて、モータMTの回転軸がハブHBの図26の第1の穴HLに挿入され、クランプHCによってモータMTの回転軸がハブHBにクランプされる。 FIG. 25 is an exploded perspective view of the wheel FW2. As shown in FIG. 25, the wheel FW2 includes a motor MT, a motor slave SV, a bearing BR1, a bearing spacer BS, a bearing BR2, a motor housing MH, a bearing hold plate BHP, a clamp HC, a hub HB, and a wheel WL2. The motor MT is inserted into the motor slave SV, the rotation shaft of the motor MT is inserted into the first hole HL in FIG. 26 of the hub HB, and the rotation shaft of the motor MT is clamped to the hub HB by the clamp HC.
 図26は、ハブHBを図25の矢印A1方向からみた正面図である。図26に示すように、第1の穴HLと当該第1の穴HLに連通する切り欠きCOを有する。図27は、図26のDD断面で切ったときのハブHBの断面図である。図27に示すように、ハブHBは、コーン状の凸部PJを中央付近に有する。このように、ハブHBは、コーン状の凸部PJを中央付近に有し、当該凸部PJにモータMTの回転軸が嵌っている第1の穴HLと当該第1の穴HLに連通する切り欠きCOを有する。 FIG. 26 is a front view of the hub HB as seen from the direction of the arrow A1 in FIG. As shown in FIG. 26, it has the 1st hole HL and the notch CO connected to the said 1st hole HL. FIG. 27 is a cross-sectional view of the hub HB when cut along the DD cross section of FIG. As shown in FIG. 27, the hub HB has a cone-shaped projection PJ near the center. As described above, the hub HB has the cone-shaped convex portion PJ near the center, and communicates with the first hole HL in which the rotation shaft of the motor MT is fitted in the convex portion PJ and the first hole HL. Has cutout CO.
 図28は、図25のCC断面で切ったときのクランプHCの断面図である。図28において、表面FS側の方からモータMTの回転軸が挿入され、裏面RS側にハブHBがある。図28に示すように、クランプHCは、裏面RSから表面FSに向けて徐々に直径が小さくなる第2の穴HL2を有する。 FIG. 28 is a cross-sectional view of the clamp HC taken along the CC cross section of FIG. In FIG. 28, the rotating shaft of the motor MT is inserted from the front surface FS side, and the hub HB is on the back surface RS side. As shown in FIG. 28, the clamp HC has a second hole HL2 whose diameter gradually decreases from the rear surface RS toward the front surface FS.
 クランプHCの当該裏面RSとハブHBとが対向状態で第2の穴HL2に凸部PJが嵌まっている。この構成により、第2の穴HL2に凸部PJが嵌まることにより、切り欠きCOが狭まって、ハブHBの第1の穴HLの回りの輪郭が狭まり、モータMTの回転軸を強く拘束する。これにより、モータMTの回転軸が滑るのを防止することができる。また、モータMTを固定するときに、モータMTの回転軸に回転軸方向に過剰な力を与えると、モータMTが突然、回転を停止する問題があった。それに対し、上記の構成によれば、クランプHCで締め上げるときに、ハブHBは動かずにクランプHCだけ動かすので、モータMTの回転軸に回転軸方向への過剰な力を与えないので、モータMTの突然の回転の停止を防止することができる。 The convex portion PJ is fitted in the second hole HL2 with the back surface RS of the clamp HC and the hub HB facing each other. With this configuration, when the convex portion PJ is fitted into the second hole HL2, the notch CO is narrowed, the contour around the first hole HL of the hub HB is narrowed, and the rotation shaft of the motor MT is strongly restrained. . Thereby, it is possible to prevent the rotation shaft of the motor MT from slipping. Further, when the motor MT is fixed, if an excessive force is applied to the rotating shaft of the motor MT in the rotating shaft direction, the motor MT suddenly stops rotating. On the other hand, according to the above configuration, when tightening with the clamp HC, the hub HB does not move but moves only by the clamp HC, so that an excessive force in the direction of the rotation axis is not applied to the rotation shaft of the motor MT. Stop of sudden rotation of MT can be prevented.
 なお、本実施形態では一例として月の赤道付近以外で探査することを想定したが、月の赤道付近で探査することを想定してもよい。この場合、電子機器が天板に固定されるのではなく、電子機器が前板FPあるいは後板BPの裏面に配置されるか、電子機器が底板DPの裏面に配置されていてもよい。これにより、太陽光が入射しない面の裏側に電子機器を設けられることができ、電子機器の温度上昇を予防することができる。更に筐体HSの天板TPから宇宙空間に、電子機器から発生した熱を放出して、電子機器の温度上昇を抑えることができる。 In this embodiment, as an example, it is assumed that the exploration is not performed near the equator of the moon. However, the exploration may be assumed near the equator of the moon. In this case, the electronic device is not fixed to the top plate, but the electronic device may be disposed on the back surface of the front plate FP or the rear plate BP, or the electronic device may be disposed on the back surface of the bottom plate DP. Thereby, an electronic device can be provided on the back side of the surface where sunlight does not enter, and an increase in temperature of the electronic device can be prevented. Furthermore, the heat generated from the electronic device can be released from the top plate TP of the housing HS to the outer space to suppress the temperature rise of the electronic device.
 また、本実施形態では一例として、筐体の前板FP及び後板BPの両方とも、底板DPから天板TPにかけて当該探査機Rの内側に傾いているとしたが、片方だけ傾いていてもよい。
 同様に、本実施形態では一例として、筐体の右側板RP及び左側板LPの両方とも、底板DPから天板TPにかけて当該探査機Rの内側に傾いているとしたが、片方だけ傾いていてもよい。
In the present embodiment, as an example, both the front plate FP and the rear plate BP of the housing are inclined to the inside of the spacecraft R from the bottom plate DP to the top plate TP. Good.
Similarly, in the present embodiment, as an example, both the right side plate RP and the left side plate LP of the housing are inclined inward of the spacecraft R from the bottom plate DP to the top plate TP, but only one of them is inclined. Also good.
 また、本実施形態では一例として、第1のカメラの一つである前方カメラFCの視野内と、第2のカメラの一つである右側方カメラRCの視野内の両方に車輪FW1が含まれていたが、これに限らず、片方の視野内だけに車輪FW1が含まれていてもよい。同様のことは、他の車輪FW2、RW1、RW2にも当てはまる。このように、少なくともいずれかのカメラで車輪が見えればよい。これにより、車輪に石などが詰まっていないか否か確認することができる。 In the present embodiment, as an example, the wheel FW1 is included in both the field of view of the front camera FC that is one of the first cameras and the field of view of the right-side camera RC that is one of the second cameras. However, the present invention is not limited to this, and the wheel FW1 may be included only in one field of view. The same applies to the other wheels FW2, RW1, RW2. In this way, it is only necessary to see the wheels with at least one of the cameras. Thereby, it can be confirmed whether the wheel is not clogged with stones.
 以上、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 As described above, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
 AD1、AD2、AD3、AD4 A/D変換器
 AT1 第1アンテナ
 AT2 第2アンテナ
 B1、B2 ボルト
 BAT バッテリ
 BB バッテリボード
 BC 後方カメラ
 BHP ベアリングホールドプレート
 BP 後板
 BR1、BR2 ベアリング
 BS ベアリングスペーサ
 CB カメラ用ボード
 CC1 第1通信コントローラ
 CC2 第2通信コントローラ
 CDC 充放電回路
 CMC1 第1カメラコントローラ
 CMC2 第2カメラコントローラ
 CO 切り欠き
 D1 ダイオード
 DP 底板
 DS 距離センサ
 E 地上局
 ET 地球
 FC 前方カメラ
 FP 前板
 FW1、FW2、RW1、RW2 車輪
 GB ギアボックス
 H1 貫通孔
 HB ハブ
 HC クランプ
 HE1 穴
 HI 断熱材
 HL 第1の穴
 HL2 第2の穴
 HS 筐体
 L 輸送船
 LC 左側方カメラ
 LP 左側板
 LSF、RSF シャフト
 M1-1~M1-4、M2-1~M2-5、M3-1~M3-5、M4-1~M4-4、M5-1~M5-5、M6-1~M6-5、M7-1~M7-4、M8~M8-5、M9-1~M9-5、M10-1~M10-4、M11-1~M11-5、M12-1~M12-5 太陽電池
 MC モータコントローラ
 MCB モータ用ボード
 MH モータハウジング
 MT モータ
 P1-1、P1-2、P2-1、P2-2、P3-1、P3-2、P4-1、P4-2、P4-3、P4-4、P5-1、P5-2 支柱
 PC1 第1プロセッサ
 PC2 第2プロセッサ
 PI1、PI2 パラレルインタフェース
 PJ 凸部
 PL1、PL2、PL3、PL4 プレート
 PU 電源コントローラ
 PUB 電源ボード
 R 探査機
 RB 通信用ボード
 RC 右側方カメラ
 RP 右側板
 S 探査システム
 SI1、SI2 シリアルインタフェース
 SV モータスレーブ
 TP 天板
 WL2 ホイール

 
AD1, AD2, AD3, AD4 A / D converter AT1 1st antenna AT2 2nd antenna B1, B2 Bolt BAT Battery BB Battery board BC Rear camera BHP Bearing hold plate BP Rear plate BR1, BR2 Bearing BS Bearing spacer CB Camera board CC1 1st communication controller CC2 2nd communication controller CDC Charge / discharge circuit CMC1 1st camera controller CMC2 2nd camera controller CO Notch D1 Diode DP Bottom plate DS Distance sensor E Ground station ET Earth FC Front camera FP Front plate FW1, FW2, RW1 , RW2 Wheel GB Gearbox H1 Through hole HB Hub HC Clamp HE1 Hole HI Insulation HL First hole HL2 Second hole HS Housing L Transport ship LC Left side camera L Left side plate LSF, RSF Shaft M1-1 to M1-4, M2-1 to M2-5, M3-1 to M3-5, M4-1 to M4-4, M5-1 to M5-5, M6-1 to M6-5, M7-1 to M7-4, M8 to M8-5, M9-1 to M9-5, M10-1 to M10-4, M11-1 to M11-5, M12-1 to M12-5 Battery MC Motor controller MCB Motor board MH Motor housing MT Motor P1-1, P1-2, P2-1, P2-2, P3-1, P3-1, P4-1, P4-2, P4-3, P4 -4, P5-1, P5-2 Prop PC1 1st processor PC2 2nd processor PI1, PI2 Parallel interface PJ Convex part PL1, PL2, PL3, PL4 Plate PU Power supply controller PUB Power supply board R Explorer R Communication board RC right side camera RP right side plate S exploration system SI1, SI2 serial interface SV motor slave TP top plate WL2 wheel

Claims (15)

  1.  走行可能な探査機であって、
     車輪と、
     当該探査機が進行可能な方向に向けて配置された第1のカメラと、
     当該探査機が進行可能な方向以外の方向に向けて配置された第2のカメラと、
     を備え、
     前記第1のカメラ及び/または前記第2のカメラのレンズの向きが水平よりも下方に向けられており、
     前記第1のカメラの視野内及び/または前記第2のカメラの視野内に、車輪が含まれている
     探査機。
    A spacecraft that can travel,
    Wheels,
    A first camera arranged in a direction in which the spacecraft can travel;
    A second camera arranged in a direction other than the direction in which the probe can travel;
    With
    The direction of the lens of the first camera and / or the second camera is directed downward from the horizontal,
    Wheels are included in the field of view of the first camera and / or in the field of view of the second camera.
  2.  前記第1のカメラの解像度は、前記第2のカメラの解像度より高い
     請求項1に記載の探査機。
    The spacecraft according to claim 1, wherein the resolution of the first camera is higher than the resolution of the second camera.
  3.  プロセッサを複数備え、
     当該探査機は、前後どちらにも走行可能であり、
     前記第1のカメラとして、前方に向けて配置された前方カメラと、後方に向けて配置された後方カメラとを有し、
     前記前方カメラと、前記後方カメラはそれぞれ別々のプロセッサに接続されている
     請求項1または2に記載の探査機。
    With multiple processors,
    The spacecraft can travel both forward and backward,
    As the first camera, it has a front camera disposed toward the front and a rear camera disposed toward the rear,
    The spacecraft according to claim 1 or 2, wherein the front camera and the rear camera are respectively connected to separate processors.
  4.  前記第1のカメラまたは前記第2のカメラと、シリアルあるいはパラレルインタフェースで接続されているカメラコントローラと、
     通信するための通信コントローラと、
     を備え、
     前記カメラコントローラは、所定のフレームレートで前記カメラに動画データを要求して取得し、取得した動画データをハードウェアエンコーディングで圧縮し、
     前記通信コントローラは、圧縮後のデータを送信する
     請求項1から3のいずれか一項に記載の探査機。
    A camera controller connected to the first camera or the second camera via a serial or parallel interface;
    A communication controller for communication;
    With
    The camera controller requests and acquires video data from the camera at a predetermined frame rate, compresses the acquired video data by hardware encoding,
    The spacecraft according to any one of claims 1 to 3, wherein the communication controller transmits the compressed data.
  5.  筐体を備え、
     前記筐体は、基板と、テフロン層あるいは石英ガラス層と、前記基板と前記テフロン層あるいは石英ガラス層との間に設けられた金属膜と、を有する
     請求項1から4のいずれか一項に記載の探査機。
    With a housing,
    The said housing | casing has a board | substrate, a Teflon layer or a quartz glass layer, and the metal film provided between the said board | substrate and the said Teflon layer or a quartz glass layer. The described probe.
  6.  前記テフロン層あるいは前記石英ガラス層の上に、酸化インジウム鈴層が設けられている
     請求項5に記載の探査機。
    The spacecraft according to claim 5, wherein an indium oxide bell layer is provided on the Teflon layer or the quartz glass layer.
  7.  筐体と、
     電子機器と、
     を備え、
     前記筐体は、側板と、前記電子機器が固定された天板とを有し、
     前記側板と前記天板との間に断熱材が設けられている
     請求項1から6のいずれか一項に記載の探査機。
    A housing,
    Electronic equipment,
    With
    The housing includes a side plate and a top plate to which the electronic device is fixed.
    The spacecraft according to any one of claims 1 to 6, wherein a heat insulating material is provided between the side plate and the top plate.
  8.  前記電子機器は、前記天板の裏に設けられている
     請求項7に記載の探査機。
    The spacecraft according to claim 7, wherein the electronic device is provided behind the top plate.
  9.  筐体と、
     前記筐体の天板から露出された状態で当該天板に固定されているプレートと、
     前記プレートの裏面側に固定されている電子機器と、
     を備え、
     前記プレートは断面が凸状の形状を有し、前記筐体の天板に設けられた開口に嵌まっている
     請求項1から8のいずれか一項に記載の探査機。
    A housing,
    A plate fixed to the top plate in a state exposed from the top plate of the housing;
    An electronic device fixed to the back side of the plate;
    With
    The spacecraft according to any one of claims 1 to 8, wherein the plate has a convex cross section and is fitted in an opening provided in a top plate of the housing.
  10.  筐体を備え、
     前記筐体の前板及び/または後板は、底板から天板にかけて当該探査機の内側に傾いている
     請求項1から9のいずれか一項に記載の探査機。
    With a housing,
    The probe according to any one of claims 1 to 9, wherein the front plate and / or the rear plate of the housing is inclined inward from the bottom plate to the top plate.
  11.  筐体と、
     前記筐体の上に、斜めに配列されている太陽電池と、
     を備える請求項1から10のいずれか一項に記載の探査機。
    A housing,
    Solar cells arranged obliquely on the housing,
    The spacecraft according to claim 1, comprising:
  12.  前記太陽電池で発電された電力が供給される充放電回路を更に備え、
     前記筐体には貫通孔が設けられており、
     前記太陽電池からの配線は、前記筐体に設けられた貫通孔を通して前記筐体内の充放電回路に接続されている
     請求項11に記載の探査機。
    A charge / discharge circuit to which power generated by the solar cell is supplied;
    The housing is provided with a through hole,
    The spacecraft according to claim 11, wherein the wiring from the solar cell is connected to a charge / discharge circuit in the casing through a through hole provided in the casing.
  13.  前記筐体の上に配置された太陽電池を更に備え、
     前記太陽電池が配置された筐体の面は、底板から天板にかけて当該探査機の内側に傾いている
     請求項1から12のいずれか一項に記載の探査機。
    Further comprising a solar cell disposed on the housing;
    The spacecraft according to any one of claims 1 to 12, wherein a surface of the housing in which the solar cell is disposed is inclined inward from the bottom plate to the top plate.
  14.  前記太陽電池が配置された筐体の面の傾きは、当該探査機が配置される予定の緯度に応じて決定されている
     請求項13に記載の探査機。
    The spacecraft according to claim 13, wherein the inclination of the surface of the housing in which the solar cell is disposed is determined according to a latitude at which the spacecraft is to be disposed.
  15.  前記車輪に設けられたモータと、
     コーン状の凸部を中央付近に有し、当該凸部に前記モータの回転軸が嵌っている第1の穴と当該第1の穴に連通する切り欠きを有するハブと、
     裏面から表面に向けて徐々に直径が小さくなる第2の穴を有するクランプと、
     を備え、
     前記クランプの当該裏面と前記ハブとが対向状態で前記第2の穴に前記凸部が嵌まっている
    請求項1から14のいずれか一項に記載の探査機。
    A motor provided on the wheel;
    A hub having a cone-shaped convex portion near the center, a first hole into which the rotational shaft of the motor is fitted, and a notch communicating with the first hole;
    A clamp having a second hole that gradually decreases in diameter from the back surface to the front surface;
    With
    The probe according to any one of claims 1 to 14, wherein the convex portion is fitted in the second hole in a state where the back surface of the clamp and the hub are opposed to each other.
PCT/JP2016/073673 2016-08-10 2016-08-10 Probe WO2018029840A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/073673 WO2018029840A1 (en) 2016-08-10 2016-08-10 Probe
PCT/JP2017/028682 WO2018030368A1 (en) 2016-08-10 2017-08-08 Probe, method for manufacturing probe component, and probe manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073673 WO2018029840A1 (en) 2016-08-10 2016-08-10 Probe

Publications (1)

Publication Number Publication Date
WO2018029840A1 true WO2018029840A1 (en) 2018-02-15

Family

ID=61162010

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/073673 WO2018029840A1 (en) 2016-08-10 2016-08-10 Probe
PCT/JP2017/028682 WO2018030368A1 (en) 2016-08-10 2017-08-08 Probe, method for manufacturing probe component, and probe manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028682 WO2018030368A1 (en) 2016-08-10 2017-08-08 Probe, method for manufacturing probe component, and probe manufacturing method

Country Status (1)

Country Link
WO (2) WO2018029840A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626523A (en) * 2019-10-18 2019-12-31 中国矿业大学(北京) Moon region observation and communication system and bouncing device
CN112249367A (en) * 2020-10-13 2021-01-22 哈尔滨工业大学 Minor planet probe maneuvering inspection device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108725845B (en) * 2018-08-16 2020-11-24 重庆大学 Landing buffering and vibration isolation integrated suspension
CN109484673B (en) * 2018-12-24 2022-04-22 深圳航天东方红海特卫星有限公司 Load platform separated remote sensing micro satellite configuration and assembly method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466725Y1 (en) * 1966-11-18 1971-03-09
JPH04321498A (en) * 1991-04-19 1992-11-11 Nec Corp Heat insulative structural member
JP2008221875A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Ventilation duct for spacecraft
JP2015063118A (en) * 2013-08-28 2015-04-09 三菱重工業株式会社 Flexible heat control material
JP2015211560A (en) * 2014-04-28 2015-11-24 株式会社メセナ Low-floor sunlight tracking device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS466725Y1 (en) * 1966-11-18 1971-03-09
JPH04321498A (en) * 1991-04-19 1992-11-11 Nec Corp Heat insulative structural member
JP2008221875A (en) * 2007-03-08 2008-09-25 Mitsubishi Electric Corp Ventilation duct for spacecraft
JP2015063118A (en) * 2013-08-28 2015-04-09 三菱重工業株式会社 Flexible heat control material
JP2015211560A (en) * 2014-04-28 2015-11-24 株式会社メセナ Low-floor sunlight tracking device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"The rover's ''eyes'' and other ''senses", SPACECRAFT: SURFACE OPERATIONS: ROVER, 20 October 2016 (2016-10-20), XP055462792, Retrieved from the Internet <URL:http://mars.nasa.gov/mer/mission/spacecraft_rover_ees.html> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110626523A (en) * 2019-10-18 2019-12-31 中国矿业大学(北京) Moon region observation and communication system and bouncing device
CN112249367A (en) * 2020-10-13 2021-01-22 哈尔滨工业大学 Minor planet probe maneuvering inspection device

Also Published As

Publication number Publication date
WO2018030368A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2018029840A1 (en) Probe
JP6771845B2 (en) Laminated modeling system for on-track manufacturing of structures
JP6228680B1 (en) Gimbal mechanism
EP1247741B1 (en) Deployable radiator for spacecraft
AU2018303552B2 (en) Interlocking, reconfigurable, reconstitutable, reformable cell-based system with nested ring structures
KR102599320B1 (en) Beam walkoff mitigation for optical detection and ranging
CA2657941A1 (en) Rotating antenna steering mount
FR2681041A1 (en) THERMAL REGULATION ARRANGEMENTS FOR A GEOSYNCHRONOUS SPACE MACHINE.
KR102064457B1 (en) Method for thermal stabilization of a communications satellite
JP2023144041A (en) Ground facility, communication satellite, constituent satellite, artificial satellite, communication satellite constellation, satellite constellation, and satellite
KR102660577B1 (en) Heat dissipation of optical devices
KR102660578B1 (en) Heat dissipation for lidar sensors
Brashears et al. Directed energy interstellar propulsion of wafersats
US9099687B2 (en) Donor substrate and method of forming transfer pattern using the same
FR2837580A1 (en) Control moment gyro for controlling attitude of space vehicle, comprises base and wheel mounted on swivelling support structure which is conical and tubular enabling wheel to be partly recessed
US10825379B2 (en) Light adjustment device, method of preparing the same, and display device
US9908643B2 (en) Passive thermal system providing an embedded interface for heat pipes
JP7341382B1 (en) spacecraft
Yang et al. Thermal design of active phased array antenna for GEO communication satellite based on structure and thermal control integration method
CN116710835B (en) Heat dissipation in an optical device
US20240140622A1 (en) Passive thermal radiator structure
WO2023054154A1 (en) Satellite monitoring system, satellite information transmission system, monitoring satellite, infrastructure satellite, bidirectional communication standard terminal, monitoring center, data relay satellite, cislunar data relay satellite, and vehicle
KR101425616B1 (en) Optical sensor module for geostationary satellite
Eyer et al. ALINA-2: Innovations on Planetary Transportation Systems GmbH’s Commercial Lunar Lander
Bilhaut A Microsystems Technology Implementation of an Optical Solar Reflector for Miniaturized Silicon Space Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP