WO2018029757A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2018029757A1
WO2018029757A1 PCT/JP2016/073326 JP2016073326W WO2018029757A1 WO 2018029757 A1 WO2018029757 A1 WO 2018029757A1 JP 2016073326 W JP2016073326 W JP 2016073326W WO 2018029757 A1 WO2018029757 A1 WO 2018029757A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
temperature
attribute
body part
unit
Prior art date
Application number
PCT/JP2016/073326
Other languages
English (en)
French (fr)
Inventor
正寛 奥野
怜司 森岡
淳一 岡崎
弘志 ▲廣▼▲崎▼
三輪 祥太郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680087792.8A priority Critical patent/CN109477655B/zh
Priority to PCT/JP2016/073326 priority patent/WO2018029757A1/ja
Priority to JP2018533320A priority patent/JP6678748B2/ja
Publication of WO2018029757A1 publication Critical patent/WO2018029757A1/ja

Links

Images

Definitions

  • the present invention relates to an air conditioner including an indoor unit that can change the air blowing direction.
  • Patent Document 1 An example of an air conditioner that controls an air volume and a wind direction in consideration of obstacles such as furniture placed in a room is disclosed in Patent Document 1.
  • the air conditioner recognizes the shape of a measurement object determined as a person using an image sensor, determines whether the measurement object is a child or an adult, and concentrates the wind around the adult.
  • the rotational speed of the indoor fan and the positions of the left and right louvers and the upper and lower louvers are adjusted so that the wind is directed away from the child without directing the wind.
  • an image sensor provided in an indoor unit measures in advance the distance from the indoor unit to the wall surface of the room when there is no person as a background, and when a person enters the room, Since the distance from the machine to the person is different from the background value, it is described that the person recognizes that the person has entered the room.
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that improves comfort even if the person in the room is an adult or a child.
  • An air conditioner includes a compressor circuit provided in an outdoor unit and a refrigerant circuit including a load-side heat exchanger provided in the indoor unit, and is provided in the indoor unit and sucks indoor air from a suction port.
  • a fan that blows air into the room from the air outlet, a flap that is provided in the air outlet and adjusts the air blowing direction in which the load-side heat exchanger is harmonized, and an infrared sensor that detects the temperature distribution in the room,
  • a control device that controls the flap, the fan, and the compressor using a thermal image detected by the infrared sensor, and the control device determines a human body part and a position corresponding to a human body in the thermal image.
  • Human body position determining means distance determining means for calculating a distance from the indoor unit to the human body using information on the position of the human body part, and the human body part of the thermal image
  • Posture determining means for determining the posture of the human body from a shape
  • attribute determining means for determining whether the human body is an adult or a child with respect to the number of pixels of the human body portion
  • the flap Operation control means for controlling at least one of the direction, the rotation speed of the fan, and the rotation speed of the compressor.
  • the distance from the indoor unit to the human body is calculated using the thermal image indicating the temperature distribution in the room, the posture of the human body is determined, and the human body corresponding to the distance and posture and the number of pixels of the human body part
  • surface which shows an example of the relationship between the aspect ratio of a human body part, and an attitude
  • FIG. 1 is a refrigerant circuit diagram illustrating a configuration example of an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner 100 includes an indoor unit 1 installed on a wall surface in the room, and an outdoor unit 15 connected to the indoor unit 1 via a refrigerant pipe 109.
  • the outdoor unit 15 includes a heat source side heat exchanger 102 that exchanges heat with the outside air, a compressor 13 that compresses and discharges the refrigerant, an expansion valve 101 that reduces the pressure of the refrigerant, and a four-way valve 108 that switches the flow path of the refrigerant. And have.
  • the indoor unit 1 includes a load-side heat exchanger 103 that exchanges heat with indoor air, and a fan 12.
  • the compressor 13, the heat source side heat exchanger 102, the expansion valve 101, and the load side heat exchanger 103 connected through the refrigerant pipe 109 constitute a refrigerant circuit.
  • the refrigerant discharged from the discharge port of the compressor 13 passes through the four-way valve 108, the heat source side heat exchanger 102, the expansion valve 101, and the load side heat exchanger 103. Then, it returns to the suction port of the compressor 13.
  • the heat source side heat exchanger 102 functions as a condenser
  • the load side heat exchanger 103 functions as an evaporator.
  • the refrigerant discharged from the discharge port of the compressor 13 is the four-way valve 108, the load side heat exchanger 103, the expansion valve 101, and the heat source side heat exchanger 102.
  • the heat source side heat exchanger 102 functions as an evaporator
  • the load side heat exchanger 103 functions as a condenser.
  • FIG. 2A is a block diagram illustrating a configuration example of the air conditioner illustrated in FIG. 1.
  • 2B is a block diagram illustrating a configuration example of the control device illustrated in FIG. 2A.
  • the indoor unit 1 includes a fan 12, a flap 11, a sensor unit 2, an input / output interface (IF) 9, and a control device 20.
  • the control device 20 includes a storage unit 51 that stores a program, and a CPU (Central Processing Unit) 52 that executes processing according to the program.
  • the storage unit 51 includes a frame memory for holding thermal image data, which will be described later.
  • the storage unit 51 includes, for example, a nonvolatile memory and a RAM (Random Access Memory).
  • the control device 20 includes an attribute determination unit 8 and an operation control unit 10.
  • the attribute determination unit 8 and the operation control unit 10 are configured in the indoor unit 1.
  • the compressor 13, the four-way valve 108, the fan 12, the flap 11, the sensor unit 2, and the input / output IF 9 are connected to the control device 20 via signal lines.
  • the input / output IF 9 is an interface that relays transmission / reception of various signals between the remote controller 14 and the operation control means 10.
  • the input / output IF 9 transmits the received instruction signal to the operation control means 10 when receiving an instruction signal, which is a signal including an instruction content input by operating the remote controller 14 by the user, from the remote controller 14 by infrared communication.
  • the sensor unit 2 has an infrared sensor 22.
  • the infrared sensor 22 detects a room temperature in order to provide a thermal image in which the temperature distribution of the three-dimensional air-conditioning target space is represented as a two-dimensional rectangular temperature distribution, and uses the temperature distribution data in the room as an attribute determination unit. 8 and the operation control means 10. For example, the infrared sensor 22 sequentially passes temperature data detected by raster scanning the air-conditioning target space in a rectangular shape to the attribute determination unit 8 and the operation control means 10.
  • the sensor unit 2 may include a temperature sensor (not shown) that measures the temperature of indoor air and a humidity sensor (not shown) that measures the relative humidity of the room.
  • FIG. 3A is a cross-sectional view illustrating a configuration example of the indoor unit illustrated in FIG. 1.
  • 3B is an external view illustrating a configuration example when the indoor unit illustrated in FIG. 1 is viewed from the front.
  • the fan 12 sucks indoor air from the suction port 106 of the indoor unit 1, and blows out air conditioned by the load-side heat exchanger 103 into the room from the blower port 107.
  • FIG. 3A shows the direction of air suction and air blowing by arrows.
  • the fan 12 has a configuration in which a plurality of blades (not shown) are attached to a shaft of an electric motor (not shown).
  • the fan 12 changes the air volume by changing the rotational speed of the shaft. For example, when the fan 12 receives the control command signal including the command content related to the operation from the operation control means 10, the fan 12 adjusts the air volume supplied to the air-conditioning target space according to the command content included in the control command signal.
  • the flap 11 has left and right flaps 104 and upper and lower flaps 105.
  • the left and right flaps 104 and the upper and lower flaps 105 are provided at the outlet 107 of the indoor unit 1.
  • the upper and lower flaps 105 have plate-like members along the longitudinal direction of the indoor unit 1.
  • the plate-like member has a certain curvature along a short direction that is a direction perpendicular to the longitudinal direction of the indoor unit 1.
  • the upper and lower flaps 105 change the direction of the wind blown from the outlet 107 to the vertical direction by changing the direction of the plate-like member.
  • the left and right flaps 104 have polygonal plate-like members as shown in FIG. 3A. As shown in FIG. 3B, the polygonal plate-like member is provided at two locations at the outlet 107, and is also provided at both ends of the outlet 107. In FIG. 3B, since the left and right flaps 104 cannot be seen from the outside of the indoor unit 1, the left and right flaps 104 are indicated by broken lines. The left and right flaps 104 change the direction of the wind blown from the outlet 107 to the left and right direction by changing the direction of the polygonal plate-like member.
  • the flap 11 including the left and right flaps 104 and the upper and lower flaps 105 directs wind in the direction of a person existing in the air-conditioning target space or winds in a direction in which no person exists according to a control command signal received from the operation control means 10.
  • 3A and 3B show the case where there are two upper and lower flaps 105, the number of upper and lower flaps 105 is not limited to two.
  • the shape of the left and right flaps 104 shown in FIG. 3A is a pentagon, but is not limited to a pentagon.
  • 3B shows a case where the left and right flaps 104 are four, the number of the left and right flaps 104 is not limited to four.
  • the attribute determination unit 8 includes an image acquisition unit 3, a human body position determination unit 4, a distance determination unit 5, a posture determination unit 6, and an attribute determination unit 7.
  • the control device 20 includes a sensible temperature determining unit 31 that acquires a sensible temperature that is a sensation of a temperature felt by human skin, and a thermal sensation determining unit 32 that acquires a thermal sensation such as hot and cold.
  • the image acquisition means 3 When the image acquisition means 3 receives the indoor temperature distribution data from the sensor unit 2, the image acquisition means 3 generates a two-dimensional thermal image showing the indoor temperature distribution.
  • the image acquisition unit 3 applies a plurality of storage units constituting a frame memory (not shown) of the storage unit 51 to a plurality of pixels, and stores the thermal image in the storage unit 51.
  • the thermal image has a configuration in which a plurality of pixels are arranged in a grid pattern.
  • One storage unit has a storage capacity of 6 bits, for example. In this case, 6 bits are assigned to each pixel as temperature information. If the temperature unit detectable by the infrared sensor 22 is 1 ° C.
  • the image acquisition means 3 can generate a thermal image having a temperature distribution in the range of ⁇ 10 ° C. to + 54 ° C.
  • the temperature value in each pixel is referred to as a pixel value.
  • the image acquisition unit 3 passes the generated thermal image to the human body position determination unit 4.
  • the human body position determination unit 4 determines the human body part corresponding to the human body in the thermal image using the temperature difference between the person and the person's surroundings.
  • the surroundings of a person are, for example, walls, floors, and furniture.
  • the human body position determining unit 4 passes the thermal image and information indicating the position of the pixel corresponding to the human body part to the distance determining unit 5.
  • the human body position determining unit 4 may generate a binary image obtained by binarizing pixels corresponding to the human body part and pixels other than the human body part as information indicating the position of the pixel corresponding to the human body part. In this case, the human body position determining unit 4 may pass the binary image to the distance determining unit 5 instead of the thermal image and the information indicating the position of the pixel corresponding to the human body part.
  • the distance determining unit 5 calculates the distance from the indoor unit 1 to the human body using the thermal image received from the human body position determining unit 4 and information indicating the position of the human body part.
  • the distance determination unit 5 passes the calculated distance information to the attribute determination unit 7, and passes the thermal image and information indicating the position of the human body part to the posture determination unit 6.
  • the posture determination means 6 determines the posture of the human body from the shape represented by a plurality of pixels corresponding to the human body portion in the thermal image.
  • the posture determination unit 6 passes the thermal image, information indicating the position of the human body part, and information on the determined posture to the attribute determination unit 7.
  • the attribute determination means 7 determines whether the person in the room is an adult or a child from the distance calculated by the distance determination means 5, the posture determined by the posture determination means 6, and the number of pixels corresponding to the human body part. Determine the attributes. For example, for each set of distance and posture, a threshold value serving as a reference for discriminating the attribute of whether the human body is an adult or a child from the number of pixels corresponding to the human body is stored in the storage unit 51 in advance.
  • the attribute determination means 7 determines the attribute of whether the human body is an adult or a child from the set of distance and posture and the number of pixels corresponding to the human body part.
  • the attribute determination unit 7 passes the determination result indicating the attribute of adult or child to the operation control unit 10.
  • the sensory temperature determining unit 31 acquires the human body temperature of the person in the room.
  • the sensation determining means 32 acquires a thermal sensation.
  • the operation control means 10 When the operation control means 10 receives the instruction signal from the remote controller 14 via the input / output IF 9, the operation control means 10 stores the instruction content indicated by the instruction signal in the storage unit 51 and generates a control command signal corresponding to the instruction content to flap. 11, to the fan 12 and the compressor 13. For example, the instruction signal is transmitted from the remote controller 14 to the operation control means 10 via the input / output IF 9 when the air conditioner 100 is activated. Further, when the user changes the indoor set temperature or the like, an instruction signal is transmitted from the remote controller 14 to the operation control means 10 via the input / output IF 9.
  • the operation control means 10 receives the attribute determination result from the attribute determination unit 8 and receives temperature information that is information including the temperature of the person and the person from the sensor unit 2.
  • the temperature information may include indoor temperature and humidity information as well as the same data as the temperature distribution that the infrared sensor 22 passes to the attribute determination unit 8.
  • the operation control means 10 performs air conditioning control for controlling the flap 11, the fan 12, and the compressor 13 based on the temperature information, the attribute determined by the attribute determination unit 8, and the instruction content stored in the storage unit 51.
  • Control targets are, for example, the direction of the flap 11, the rotational speed of the fan 12, and the rotational speed of the compressor 13.
  • the operation control means 10 generates a control command signal for at least one device among the flap 11, the fan 12, and the compressor 13 based on the temperature information, attribute, body temperature, and instruction content, Send a control command signal to the device. For example, when the room temperature included in the temperature information is remarkably larger than the set temperature included in the instruction content, the operation control means 10 transmits a control command signal for increasing the rotational speed to the compressor 13.
  • the operation control unit 10 may use a thermal image generated by the image acquisition unit 3 instead of receiving indoor temperature distribution data from the sensor unit 2.
  • the operation control means 10 when the operation control means 10 receives the attribute discrimination result from the attribute discrimination unit 8 and receives the temperature information from the sensor unit 2, it may calculate the sensible temperature of the person in the room. Further, when the operation control means 10 receives the attribute discrimination result from the attribute discrimination section 8 and receives the sensory temperature or the thermal sensation information from the thermal sensation temperature determining means 31, the motion control means 10 receives the attribute of the person in the room. The sensory temperature or thermal sensation according to the above may be calculated. It is generally known that children have a higher sensible temperature than adults. Taking this into account, an example of a method for calculating the sensible temperature corresponding to the attribute will be described. Here, it is assumed that the sensor unit 2 has a humidity sensor (not shown).
  • the temperature difference ⁇ t is stored in the storage unit 51 in advance.
  • the temperature difference ⁇ t is 3 ° C., for example.
  • a temperature conversion table for converting the surface temperature of the human body portion indicated by the thermal image into the sensible temperature is stored in the storage unit 51 in advance.
  • the value of the sensory temperature in the temperature conversion table is calculated in advance by, for example, a Misnar calculation formula using room temperature and humidity as parameters.
  • an expression for calculating the sensible temperature from the surface temperature may be registered in the storage unit 51 in advance.
  • the motion control means 10 obtains the body temperature corresponding to the surface temperature by referring to the temperature conversion table when acquiring the surface temperature in the human body part of the thermal image.
  • the operation control means 10 refers to the temperature conversion table, obtains the body temperature from the surface temperature of the human body, and then adds the temperature difference ⁇ t to the body temperature.
  • the operation control unit 10 controls the flap 11, the fan 12, and the compressor 13 based on the attribute determined by the attribute determination unit 8, the calculated body temperature, and the instruction content stored in the storage unit 51.
  • the compressor 13 is a device that constitutes a part of the refrigerant circuit.
  • the compressor 13 adjusts the amount of refrigerant circulating in the refrigerant circuit by changing the rotation speed.
  • the compressor 13 adjusts the amount of refrigerant circulating in the refrigerant circuit in accordance with a control command signal received from the operation control means 10, and performs heat exchange between the load side heat exchanger 103 and the heat source side heat exchanger 102. Control the amount.
  • a fan that supplies outdoor air to the heat source side heat exchanger 102 may be provided in the outdoor unit 15.
  • a fan (not shown) provided in the outdoor unit 15 is also connected to the operation control means 10 through a signal line in the same manner as the fan 12 and is controlled by the operation control means 10. Further, in the first embodiment, the description regarding the control of the operation control means 10 with respect to the four-way valve 108 and the state of the control are not shown in FIG. 2A.
  • FIG. 4 is a flowchart illustrating a procedure of an air conditioning control method executed by the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram for explaining a method by which the sensor unit illustrated in FIG. 2A acquires temperature distribution data that is the basis of a thermal image.
  • the image acquisition unit 3 acquires a thermal image indicating the temperature distribution based on the temperature distribution data received from the sensor unit 2 (step S2).
  • FIG. 5 shows how the infrared sensor 22 acquires indoor temperature distribution data. As shown in FIG. 5, the infrared sensor 22 detects, for example, the surface temperature of the human body of the child 203 and the adult 204 and the temperature around the person. The surroundings of a person are, for example, a wall and a floor.
  • the human body position determining unit 4 determines the human body part in the thermal image acquired by the image acquiring unit 3. For example, the human body position determining unit 4 recognizes the human body part from the thermal image as follows. When comparing a thermal image detected with a person in the room and a thermal image detected without a person in the room, the pixel value is larger when a person is present at the same position. Using this characteristic, a threshold value serving as a criterion for determining whether or not a human body exists is stored in the storage unit 51 in advance with respect to the difference in pixel values.
  • the human body position determination unit 4 compares the thermal image received from the image acquisition unit 3 with the thermal image detected in the absence of a person in the room, and the position of a pixel whose pixel value difference is equal to or greater than a threshold corresponds to the human body part. The position to be determined.
  • FIG. 6 is an image showing an example when the human body position determining means shown in FIG. 2A converts the thermal image into a binary image indicating the position of the human body part. 6 corresponds to the child 203 shown in FIG. 5, and the human body part 304 shown in the binary image 34 corresponds to the adult 204 shown in FIG.
  • the human body position determining means 4 determines the positions of the human body portions 304 and 303 corresponding to the adult 204 and the child 203 shown in FIG. 5 as shown in FIG. In addition, the human body position determination unit 4 acquires the number of pixels of the human body parts 303 and 304.
  • step S4 shown in FIG. 4 the distance determination means 5 calculates the distance from the indoor unit 1 to the human body as follows with reference to FIG. 6 and FIG.
  • FIG. 7 is a table showing an example of a relationship between a pixel corresponding to a human body part and a distance used when the distance determining unit shown in FIG. 2A calculates the distance from the indoor unit to the human body.
  • the table shown in FIG. 7 is an example, and is not limited to the values shown in FIG.
  • FIG. 7 shows the relationship between the lower end pixel position, which is the position of the lower end pixel of the human body part, and the distance from the indoor unit 1 to the human body part in the binary image shown in FIG. Even for the same person, the size of the human body part represented by the thermal image is relatively different depending on whether the distance from the indoor unit 1 is short or far.
  • the respective distances from the indoor unit 1 to the child 203 and the adult 204 in FIG. 5 can be obtained by referring to FIG. 7 from the lower end pixel positions of the human body part 303 and the human body part 304 in the binary image shown in FIG. Calculated.
  • the lower end pixel position of the human body 304 is 6. Referring to FIG. 7, since the lower end pixel position of the human body part 304 is 6, the distance from the indoor unit 1 to the human body part 304 is found to be 3.4 m. Referring to FIG. 6, the lower end pixel position of the human body part 303 is 3. Referring to FIG. 7, since the lower end pixel position of the human body part 303 is 3, the distance from the indoor unit 1 to the human body part 303 is 1.8 m.
  • step S5 the posture determination unit 6 determines the posture of the human body corresponding to the human body part determined by the human body position determination unit 4 as follows with reference to FIG.
  • FIG. 8 is a table showing an example of the relationship between the aspect ratio of the human body part and the posture used when the posture determination unit shown in FIG. 2A determines the posture of the human body.
  • the table shown in FIG. 8 is an example, and is not limited to the values shown in FIG.
  • FIG. 8 shows the maximum number of vertical pixels that is the maximum value of the number of pixels in the vertical direction and the maximum number of horizontal pixels that is the maximum value of the number of pixels in the horizontal direction in the shape represented by the plurality of pixels corresponding to the human body part in the thermal image
  • Human body aspect ratio n (maximum number of vertical pixels / maximum number of horizontal pixels).
  • the posture is, for example, a supine position, a sitting position, and a standing position.
  • the posture determination means 6 reads the human body aspect ratio n of the human body part that is the target of attribute determination.
  • the posture determination means 6 determines that the posture of the human body is supine if the human body aspect ratio n is 0.2 or less, and determines that the posture of the human body is standing if the human body aspect ratio n is 0.5 or more. If the human body aspect ratio n is outside these ranges, the human body posture is determined to be sitting.
  • FIG. 9 is a binary image showing an example of the type of sitting position to be subjected to the discrimination processing executed by the posture discrimination means shown in FIG. 2A.
  • FIG. 10 is a diagram for explaining a detailed determination method regarding the sitting position, which is executed by the posture determination unit shown in FIG. 2A.
  • the number of pixels on the thermal image is greatly different between the chair sitting state when the human body is sitting on the chair and the floor sitting state when the human body is sitting on the floor.
  • the binary image 72 shown in FIG. 9 represents the case where the human body part 701 is in the chair sitting position and the human body part 703 represents the case in the floor sitting position.
  • the types of these sitting positions tend to vary not only from the number of pixels but also from the center of gravity with respect to the position of each pixel constituting the human body part.
  • step S6 the posture discriminating means 6 calculates the center of gravity moment of the human body part to be posture discriminated as follows, and discriminates whether the sitting position is the chair sitting position or the floor sitting position.
  • FIG. 10 is an image diagram for explaining a method of calculating the centroid moment.
  • the centroid moment is a value indicating the degree of variation from the centroid for each of the x direction (left and right direction) and the y direction (up and down direction) in a certain figure.
  • the binary image 72 shown in FIG. 9 in the human body portion 701 in the chair sitting position, the degree of variation in the vertical direction from the center of gravity is larger than the degree of variation in the horizontal direction from the center of gravity.
  • the human body part 703 has a greater degree of variation in the horizontal direction from the center of gravity than a degree of variation in the vertical direction from the center of gravity.
  • the posture determination means 6 can determine whether the sitting position is the chair sitting position or the floor sitting position by calculating the center of gravity moment of the human body part and comparing the calculated center of gravity moment with a predetermined threshold value. It can.
  • a threshold value serving as a reference for determining the type of sitting position is stored in the storage unit 51 in advance.
  • the calculation target of the degree of variation from the center of gravity may be for each of a plurality of minute units constituting the outer shape of the figure, or may be for each of a plurality of minute units constituting the entire figure.
  • step S7 shown in FIG. 4 the attribute determination unit 7 determines the attribute based on the number of pixels acquired in step S3, the distance acquired in step S4, and the result of the attitude determination acquired in steps S5 to S6. Determine whether the target human body is an adult or a child.
  • a threshold value is stored in advance in the storage unit 51 as an attribute determination criterion regarding the number of pixels of the human body part. For example, when there are ten combinations of postures and distances, ten threshold values are preset.
  • the attribute determination unit 7 refers to the information stored in the storage unit 51, identifies a set from the posture and distance results, and reads the threshold value of the identified set from the storage unit 51.
  • the attribute determining means 7 determines that the human body is an adult when the number of pixels of the human body part to be attribute-determined is equal to or greater than the threshold, and determines that the human body is a child when the number of pixels of the human body part to be the attribute determination target is smaller than the threshold. Determine.
  • step S7 when the human body to be subjected to attribute determination is determined to be an adult, the operation control means 10 performs air conditioning control in accordance with the adult (step S8).
  • step S8 when the human body to be subjected to attribute determination is determined to be a child, the operation control means 10 performs air conditioning control in accordance with the child (step S9).
  • step S9 the operation control means 10 may perform the following control on the flap 11, the fan 12, and the compressor 13.
  • the operation control means 10 will be described by taking as an example a case where the flap 11, the fan 12, and the compressor 13 are controlled based on the surface temperature of the human body acquired by the infrared sensor 22. For example, when there are a plurality of persons in the room, the operation control means 10 controls the direction of the flap 11 so that the wind is directed toward a person with a high surface temperature. In this case, even if it is determined that there is a child in the room, if the surface temperature of the child is the same as the surface temperature of the adult, the operation control means 10 determines that the child is the same temperature as the adult, and the flap 11, fan 12 and the compressor 13 are controlled.
  • the motion control means 10 determines that the adult has a higher sensible temperature than the child, so that the wind is directed toward the adult. It is conceivable to control the direction of the flap 11.
  • the operation control means 10 determines that the child has the same temperature as an adult and controls the flap 11, the fan 12, and the compressor 13, the child may not be comfortable. Therefore, when the attribute determination unit 8 determines that both the child and the adult are present in the room, the operation control means 10 corrects the sensible temperature of the child so that both the child and the adult are comfortable.
  • the fan 12 and the compressor 13 are controlled. Specifically, the motion control means 10 obtains the sensible temperature from the child's surface temperature, and then adds a temperature difference ⁇ t that takes heat into consideration.
  • the operation control means 10 compares the corrected sensory temperature for children with the adult sensory temperature, and controls the direction of the flap 11 so that the wind is directed toward a person with a high sensory temperature.
  • the operation control means 10 compares the corrected sensory temperature for children with the adult sensory temperature, and controls the direction of the flap 11 so that the wind is directed toward a person with a high sensory temperature.
  • the operation control means 10 operates the flap 11 so that the person is not exposed to wind when it is determined that the person's thermal sensation has become comfortable.
  • the operation control means 10 determines whether or not the human thermal sensation is comfortable, for example, based on the surface temperature of the human body acquired from the thermal image.
  • the motion control means 10 corrects the thermal sensation in the direction of the heat because the child is hotter than the adult. That is, the operation control means 10 lowers the surface temperature at which it is determined that the human thermal sensation has become comfortable by a temperature difference ⁇ t than that of an adult.
  • the motion control means 10 when there is one human body that is identified as a child 203 and an adult 204 in the room, the motion control means 10 is configured so that the adult 204 becomes comfortable when the thermal feeling of the adult 204 becomes comfortable.
  • the direction of the flap 11 is controlled so that the wind does not hit 204.
  • the operation control means 10 controls the direction of the flap 11 so that the wind continues to hit the child 203.
  • the motion control means 10 continues to apply wind until the corrected thermal sensation of the child 203 becomes comfortable, and when the corrected thermal sensation becomes comfortable, the direction of the flap 11 is set so that the child does not receive wind. Control.
  • the air conditioner 100 may perform air-conditioning control so that the child and the adult are comfortable regardless of the operation. For example, even if the compressor 13 operates at a certain frequency and the direction of the flap 11 is controlled in a direction in which the wind hits the human body, if the indoor attribute is an adult, the operation control means 10 may rotate. What is necessary is just to control the fan 12 so that a number may become low. Thereby, a weak wind is sent with respect to an adult, and an adult can maintain a comfortable state. Further, if the attribute of the person in the room is a child, the operation control means 10 controls the fan 12 so as to increase the rotational speed so as to send a strong wind to the child so that the child's thermal feeling becomes comfortable. You may control. In this way, the operation control means 10 controls the rotation speed of the fan 12 without controlling the rotation speed of the compressor 13 and the direction of the flap 11, thereby making the room more comfortable for the user. it can.
  • the operation control means 10 controls the rotational speed of the compressor 13 to control the air conditioning. Just do. For example, when the person in the room is a child during the cooling operation of the air conditioner 100, the operation control means 10 increases the rotational speed of the compressor 13.
  • the air conditioner 100 includes a refrigerant circuit including a compressor 13 provided in the outdoor unit 15 and a load side heat exchanger 103 provided in the indoor unit 1, and a fan provided in the indoor unit 1. 12, a flap 11 provided at the outlet of the indoor unit 1, an infrared sensor 22 that detects a temperature distribution in the room, and a control device 20.
  • the control device 20 determines a human body part in the thermal image.
  • Human body position determining means 4 for calculating the distance from the indoor unit to the human body, posture determining means 6 for determining the posture of the human body from the shape of the human body portion, and the number of pixels of the human body portion
  • Attribute determination means 7 for determining whether the attribute is adult or child, and operation control for controlling at least one of the direction of the flap 11, the rotational speed of the fan 12, and the rotational speed of the compressor 13 according to the attribute.
  • Mean 10 And it has a.
  • the distance from the indoor unit 1 to the human body is calculated using a thermal image indicating the temperature distribution in the room, the posture of the human body is determined, and the distance and posture and the number of pixels of the human body portion are supported.
  • the operation control means 10 acquires the surface temperature of the human body part or the ambient temperature other than the human body part from the thermal image, and uses the temperature information of one or both of the surface temperature and the ambient temperature. Then, the thermal sensation or the human sensible temperature may be calculated, and control may be performed according to at least one of the thermal sensation or the thermal sensation temperature and the attribute. In this case, at the time of cooling operation, it is possible not to apply wind to a hot child but to apply wind to a cold adult.
  • the operation control means 10 corrects the sensory temperature or the thermal sensation when the human body is a child as a result of the determination by the attribute determining means 7, and controls the corrected sensory temperature or the thermal sensation. It may be used. If the attribute discrimination target is determined to be a child, the child is hotter than the adult, so if the temperature or thermal sensation is corrected to the hotter and air conditioning control is performed with the corrected temperature or thermal sensation, A comfortable air-conditioning space can be provided for children.
  • the operation control means 10 changes the direction of the flap 11 to change the direction of the flap 11 so that the air blowing direction is the direction of the human body when the human body is a child during the cooling operation. At least one of the control of increasing the speed and increasing the rotational speed of the compressor 13 may be performed. In this case, when a child who is hotter than an adult is in the room, such as in summer, when the cooling operation is performed, the child's feeling of warmth or cooling becomes comfortable by the wind being applied to the child or the temperature of the room being lowered.
  • the posture determination means 6 calculates the human body aspect ratio for a plurality of pixels constituting the human body part in the thermal image, and the posture of the human body is supine or sitting according to the calculated human body aspect ratio. Or standing position may be determined.
  • the attribute determining unit 7 determines the attribute according to the posture and distance of the human body and the number of pixels of the human body part, the accuracy of the determination is improved.
  • the posture determination unit 6 calculates a center of gravity moment that is a degree of variation from the center of gravity of the human body portion with respect to a plurality of pixels constituting the human body portion. You may make it discriminate
  • FIG. 11 is a block diagram illustrating a configuration example of an air conditioner according to Embodiment 2 of the present invention.
  • FIG. 12 is a flowchart showing a procedure of an air-conditioning control method executed by the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 13 is an image showing an example of a thermal image that the human body position determination unit shown in FIG. 11 passes to the outer shape determination unit.
  • the configuration of the air conditioner according to the second embodiment will be described with reference to FIG.
  • the configuration excluding the outer shape determining unit 25, the temperature distribution determining unit 26, and the attribute determining unit 7 in the configuration shown in FIG. 11 has been described with reference to FIG. 2A of the first embodiment. Since it is the same as that of a structure, the detailed description is abbreviate
  • the attribute determination unit 8 includes an outer shape determination unit 25, a temperature distribution determination unit 26, and an attribute determination unit 7.
  • the outer shape discriminating unit 25 uses the thermal image received from the human body position determining unit 4 and information indicating the position of the human body part to acquire feature amount information of the outer shape of the human body part as the outer shape information.
  • a thermal image 80 shown in FIG. 13 shows a case where two human bodies are detected.
  • the outer shape obtained from the feature amount information of the human body portion 81 is a triangle
  • the outer shape obtained from the feature amount information of the human body portion 82 is an ellipse.
  • the outer shape determination unit 25 passes the outer shape information and the thermal image to the temperature distribution determination unit 26.
  • the temperature distribution discriminating means 26 acquires from the thermal image the temperature distribution method including the high temperature part and the medium temperature part in the human body part as temperature distribution information. The determination of the high temperature and the medium temperature with respect to the temperature in the human body part is performed in comparison with a threshold value stored in advance in the storage unit 51. In the thermal image 80 shown in FIG. 13, the temperature distribution is classified into three temperature ranges and displayed in the human body parts 81 and 82. The thermal image 80 indicates that the higher the dot distribution density, the higher the temperature.
  • the temperature distribution determination unit 26 passes the thermal image, the outer shape information, and the temperature distribution information to the attribute determination unit 7. The attribute determination unit 7 determines whether the person in the room is an adult or a child from the outer shape information acquired by the outer shape determination unit 25 and the temperature distribution information acquired by the temperature distribution determination unit 26.
  • steps S1 to S3, steps S8 and S9 are the same as steps S1 to S3 and step S8 described in the first embodiment with reference to FIG. And since it is the same as that of step S9, the detailed description is abbreviate
  • the outer shape discriminating unit 25 uses the thermal image received from the human body position determining unit 4 and the information indicating the position of the human body part, as described with reference to FIG. Obtain (step S14).
  • the outer shape determination unit 25 passes the acquired outer shape information and the thermal image to the temperature distribution determination unit 26.
  • the temperature distribution discriminating means 26 acquires the temperature distribution method including the high temperature part and the middle temperature part in the human body part as the temperature distribution information (step S15).
  • the temperature distribution determination unit 26 passes the thermal image, the outer shape information, and the temperature distribution information to the attribute determination unit 7.
  • the attribute determining means 7 determines whether the person in the room is an adult or a child from the outer shape information acquired by the outer shape determining means 25 and the temperature distribution information acquired by the temperature distribution determining means 26 (step) S16). For example, the human body part 81 shown in FIG. 13 has high-temperature parts gathered upward and has a three-stroke shape. Therefore, the attribute determining means 7 determines that the human body part 81 is an adult. In addition, since the human body part 82 shown in FIG. 13 is centered on the high temperature part and has an elliptical shape, the attribute determining means 7 determines that the human body part 82 is a child. The attribute determination unit 7 passes the determination result indicating the attribute of adult or child to the operation control unit 10.
  • the operation control unit 10 controls at least one of the flap 11, the fan 12, and the compressor 13 according to the attribute indicated by the determination result received from the attribute determining unit 7 (steps S8 and S9).
  • the attribute determination means 7 discriminates the attribute using the high temperature part and the outer shape of the temperature distribution in the human body part, but the medium temperature part may be used instead of the high temperature part of the temperature distribution, and both are used. May be.
  • the second embodiment it is possible to perform an erroneous determination of an attribute based only on shape recognition by determining an attribute of whether the human body is an adult or a child in accordance with the external shape and temperature distribution of the human body part acquired from the thermal image. And can improve comfort for both adults and children.

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本発明の空気調和機は、室外機に設けられた圧縮機および室内機に設けられた負荷側熱交換器を含む冷媒回路と、室内機に設けられたファンと、室内機の吹き出し口に設けられたフラップと、室内の温度分布を検知する赤外線センサと、制御装置とを有し、制御装置は、赤外線センサが検知した熱画像において人体に相当する人体部および位置を決定する人***置決定手段と、人体部の位置の情報を用いて室内機から人体までの距離を算出する距離決定手段、熱画像のうち人体部の形状から人体の姿勢を判別する姿勢判別手段、および人体部の画素数に対して人体が大人か子供かの属性を判別する属性決定手段と、属性に応じて、フラップの向き、ファンの回転数および圧縮機の回転数のうち、少なくともいずれか1つを制御する動作制御手段と、を有するものである。

Description

空気調和機
 本発明は、空気の吹き出し方向を変更できる室内機を備えた空気調和機に関するものである。
 室内に置かれた家具などの障害物を考慮して、風量および風向きを制御する空気調和機の一例が特許文献1に開示されている。特許文献1には、空気調和機が、画像センサを用いて人と判定した測定対象物の形状認識を行って、測定対象物が子供か大人かを判断し、風を大人の周りに集中させ、子供には風を直接当てずに離れた所に風を向けるように、室内ファンの回転数、左右ルーバーおよび上下ルーバーの位置を調整することが記載されている。
 また、特許文献1には、室内機に設けられた画像センサは、人がいない場合の室内機から室内の壁面までの距離をバックグラウンドとして予め計測し、室内に人が入ってくると、室内機から人までの距離がバックグラウンドの値と異なるので、人が室内に入ったことを認識することが記載されている。
特開2009-139010号公報
 特許文献1に開示された方法では、室内に人が居るか否かが室内機を基準に計測される距離の変化で判定され、室内に居る人が大人か子供かの判別は形状認識で行われる。形状認識だけでは大人と子供の判別は難しく、判別がうまくいかないと、利用者にとって不快な空調となってしまう。
 本発明は、上記のような課題を解決するためになされたもので、室内に居る人が大人であっても子供であっても快適性を向上する空気調和機を提供するものである。
 本発明に係る空気調和機は、室外機に設けられた圧縮機および室内機に設けられた負荷側熱交換器を含む冷媒回路と、前記室内機に設けられ、吸い込み口から室内の空気を吸い込み、吹き出し口から空気を室内に吹き出すファンと、前記吹き出し口に設けられ、前記負荷側熱交換器が調和した空気の吹き出し方向を調整するフラップと、前記室内の温度分布を検知する赤外線センサと、前記赤外線センサが検知した熱画像を用いて前記フラップ、前記ファンおよび前記圧縮機を制御する制御装置と、を有し、前記制御装置は、前記熱画像において人体に相当する人体部および位置を決定する人***置決定手段と、前記人体部の位置の情報を用いて前記室内機から前記人体までの距離を算出する距離決定手段と、前記熱画像のうち前記人体部の形状から前記人体の姿勢を判別する姿勢判別手段と、前記人体部の画素数と、に対して前記人体が大人か子供かの属性を判別する属性決定手段と、前記属性に応じて、前記フラップの向き、前記ファンの回転数および前記圧縮機の回転数のうち、少なくともいずれか1つを制御する動作制御手段と、を有するものである。
 本発明によれば、室内の温度分布を示す熱画像を用いて室内機から人体までの距離を算出するとともに人体の姿勢を判別し、距離および姿勢と人体部の画素数とに対応して人体が大人か子供かの属性を判別することで、形状認識のみに基づく属性の誤判別を防ぎ、大人および子供のいずれに対しても快適性を向上させることができる。
本発明の実施の形態1における空気調和機の一構成例を示す冷媒回路図である。 図1に示した空気調和機の一構成例を示すブロック図である。 図2Aに示す制御装置の一構成例を示すブロック図である。 図1に示した室内機の一構成例を示す断面図である。 図1に示した室内機を正面から見たときの一構成例を示す外観図である。 本発明の実施の形態1における空気調和機が実行する空気調和制御方法の手順を示すフローチャートである。 図2Aに示したセンサ部が熱画像の基になる温度分布のデータを取得する方法を説明するための図である。 図2Aに示した人***置決定手段が熱画像を人体部の位置を示す2値画像に変換した場合の一例を示す画像である。 図2Aに示した距離決定手段が室内機から人体までの距離を算出する際に用いる、人体部に相当する画素と距離との関係の一例を示す表である。 図2Aに示した姿勢判別手段が人体の姿勢を判別する際に用いる、人体部の縦横比と姿勢との関係の一例を示す表である。 図2Aに示した姿勢判別手段が実行する判別処理の対象となる座位の種類の一例を示す2値画像である。 図2Aに示した姿勢判別手段が実行する、座位に関する詳細判別の方法を説明するための図である。 本発明の実施の形態2における空気調和機の一構成例を示すブロック図である。 本発明の実施の形態2における空気調和機が実行する空気調和制御方法の手順を示すフローチャートである。 図11に示す人***置決定手段が外形状判別手段に渡す熱画像の一例を示す画像である。
実施の形態1.
 本実施の形態1の空気調和機の構成を説明する。図1は、本発明の実施の形態1における空気調和機の一構成例を示す冷媒回路図である。図1に示すように、空気調和機100は、室内の壁面に設置された室内機1と、室内機1と冷媒配管109を介して接続された室外機15とを有する。室外機15は、外気と熱交換を行う熱源側熱交換器102と、冷媒を圧縮して吐出する圧縮機13と、冷媒の圧力を下げる膨張弁101と、冷媒の流路を切り替える四方弁108とを有する。室内機1は、室内の空気と熱交換を行う負荷側熱交換器103と、ファン12とを有する。冷媒配管109を介して接続された圧縮機13、熱源側熱交換器102、膨張弁101および負荷側熱交換器103は、冷媒回路を構成する。
 空気調和機100の運転状態が冷房運転であるとき、圧縮機13の吐出口から吐出される冷媒は、四方弁108、熱源側熱交換器102、膨張弁101および負荷側熱交換器103を経由して圧縮機13の吸入口に戻る。冷房運転では、熱源側熱交換器102は凝縮器として機能し、負荷側熱交換器103は蒸発器として機能する。一方、空気調和機100の運転状態が暖房運転であるとき、圧縮機13の吐出口から吐出される冷媒は、四方弁108、負荷側熱交換器103、膨張弁101および熱源側熱交換器102を経由して圧縮機13の吸入口に戻る。暖房運転では、熱源側熱交換器102は蒸発器として機能し、負荷側熱交換器103は凝縮器として機能する。
 次に、図1に示した室内機1の構成を説明する。図2Aは、図1に示した空気調和機の一構成例を示すブロック図である。図2Bは、図2Aに示す制御装置の一構成例を示すブロック図である。図2Aに示すように、室内機1は、ファン12と、フラップ11と、センサ部2と、入出力インターフェース(IF)9と、制御装置20とを有する。図2Bに示すように、制御装置20は、プログラムを記憶する記憶部51と、プログラムにしたがって処理を実行するCPU(Central Processig Unit)52とを有する。記憶部51は、後述する熱画像のデータを保持するためのフレームメモリを有する。記憶部51は、例えば、不揮発性メモリおよびRAM(Random Access Memory)を有する。
 図2Aに示すように、制御装置20は、属性判別部8と、動作制御手段10とを有する。図2Bに示したCPU52がプログラムを実行することで、属性判別部8および動作制御手段10が室内機1に構成される。圧縮機13、四方弁108、ファン12、フラップ11、センサ部2および入出力IF9は信号線を介して制御装置20と接続されている。
 入出力IF9は、リモートコントローラ14と動作制御手段10との間の各種信号の送受信を中継するインターフェースである。入出力IF9は、利用者がリモートコントローラ14を操作して入力した指示内容を含む信号である指示信号をリモートコントローラ14から赤外線通信で受信すると、受信した指示信号を動作制御手段10に送信する。
 センサ部2は赤外線センサ22を有する。赤外線センサ22は、3次元の空調対象空間の温度分布を2次元の矩形状の温度分布に表した熱画像を提供するために室内の温度を検知し、室内の温度分布のデータを属性判別部8および動作制御手段10に渡す。例えば、赤外線センサ22は、空調対象空間を矩形状にラスタースキャンして検知する温度のデータを順次、属性判別部8および動作制御手段10に渡す。センサ部2は、赤外線センサ22の他に、室内の空気の温度を測定する温度センサ(不図示)および室内の相対湿度を測定する湿度センサ(不図示)を有していてもよい。
 次に、図2Aに示したフラップ11とファン12の構成を詳しく説明する。図3Aは、図1に示した室内機の一構成例を示す断面図である。図3Bは、図1に示した室内機を正面から見たときの一構成例を示す外観図である。
 図3Aに示すように、ファン12は、室内機1の吸い込み口106から室内の空気を吸い込み、負荷側熱交換器103が空気調和を行った空気を吹き出し口107から室内に吹出す。図3Aは、空気の吸い込みと空気の吹き出しの方向を矢印で示している。ファン12は、電動機(不図示)のシャフトに複数の羽根(不図示)が取り付けられた構成である。ファン12は、シャフトの回転数を変化させることで、風量を変更する。例えば、ファン12は、動作に関する指令内容を含む制御指令信号を動作制御手段10から受信すると、制御指令信号に含まれる指令内容に応じて、空調対象空間に供給する風量を調整する。
 図3Aおよび図3Bに示すように、フラップ11は、左右フラップ104と、上下フラップ105とを有する。左右フラップ104および上下フラップ105は、室内機1の吹き出し口107に設けられている。上下フラップ105は、例えば、図3Bに示すように、室内機1の長手方向に沿った板状の部材を有する。この板状の部材は、図3Aに示すように、室内機1の長手方向に垂直な方向である短手方向に沿って一定の曲率を有している。上下フラップ105は、板状の部材の向きを変えることで、吹き出し口107から吹出される風の方向を上下方向に変更する。
 左右フラップ104は、図3Aに示すように、多角形の板状の部材を有する。この多角形の板状の部材は、図3Bに示すように、吹き出し口107に2箇所設けられ、吹き出し口107の両端にも設けられている。図3Bでは、室内機1の外側から左右フラップ104を見ることができないので、左右フラップ104を破線で示している。左右フラップ104は、多角形の板状の部材の向きを変えることで、吹き出し口107から吹出される風の方向を左右方向に変更する。
 例えば、左右フラップ104および上下フラップ105を含むフラップ11は、動作制御手段10から受信する制御指令信号に応じて、空調対象空間に存在する人の方向へ風を向けたり、人のいない方向へ風を向けたりする。なお、図3Aおよび図3Bは、上下フラップ105が2枚の場合を示しているが、上下フラップ105の枚数は2枚に限らない。図3Aに示す左右フラップ104の形状は、5角形であるが、5角形に限らない。また、図3Bは、左右フラップ104が4枚の場合を示しているが、左右フラップ104の枚数は4枚に限らない。
 次に、図2Aを参照して、制御装置20の構成を詳しく説明する。図2Aに示すように、属性判別部8は、画像取得手段3と、人***置決定手段4と、距離決定手段5と、姿勢判別手段6と、属性決定手段7とを有する。また、制御装置20は、人の肌が感じる温度の感覚である体感温度を取得する体感温度決定手段31と、暑い寒いといった温冷感を取得する温冷感決定手段32とを有する。
 画像取得手段3は、室内の温度分布のデータをセンサ部2から受け取ると、室内の温度分布を示す2次元の熱画像を生成する。例えば、画像取得手段3は、記憶部51のフレームメモリ(不図示)を構成する複数の記憶単位を複数の画素に当てはめ、記憶部51に熱画像を格納する。熱画像は複数の画素が格子状に配置された構成である。1つの記憶単位は、例えば、6ビット分の記憶容量を有している。この場合、各画素に温度の情報として6ビットを割り当てられる。赤外線センサ22が検知できる温度単位を1℃とし、最低温度を-10℃とすると、画像取得手段3は、-10℃~+54℃の範囲の温度分布の熱画像を生成できる。以下では、各画素における温度の値を画素値と称する。画像取得手段3は、生成した熱画像を人***置決定手段4に渡す。
 人***置決定手段4は、画像取得手段3から熱画像を受け取ると、人と人の周囲との温度差を利用して、熱画像において人体に相当する人体部を決定する。人の周囲とは、例えば、壁、床および家具である。人***置決定手段4は、熱画像と人体部に相当する画素の位置を示す情報とを距離決定手段5に渡す。人***置決定手段4は、人体部に相当する画素の位置を示す情報として、人体部に相当する画素と人体部以外の画素とを2値化した2値画像を生成してもよい。この場合、人***置決定手段4は、熱画像および人体部に相当する画素の位置を示す情報の代わりに、2値画像を距離決定手段5に渡せばよい。
 距離決定手段5は、人***置決定手段4から受け取る熱画像と人体部の位置を示す情報とを用いて、室内機1から人体までの距離を算出する。距離決定手段5は、算出した距離の情報を属性決定手段7に渡し、熱画像と人体部の位置を示す情報とを姿勢判別手段6に渡す。姿勢判別手段6は、熱画像のうち、人体部に相当する複数の画素が表す形状から人体の姿勢を判別する。姿勢判別手段6は、熱画像と、人体部の位置を示す情報と、判別した姿勢の情報とを属性決定手段7に渡す。
 属性決定手段7は、距離決定手段5が算出した距離、姿勢判別手段6が判別した姿勢、および人体部に相当する画素数の情報から、室内に居る人物が大人であるか子供であるかの属性を判別する。例えば、距離および姿勢の組毎に、人体部に相当する画素数から人体が大人であるか子供であるかの属性を判別する基準となる閾値が予め記憶部51に格納されている。属性決定手段7は、距離および姿勢の組と人体部に相当する画素数とから、人体が大人か子供かの属性を判別する。属性決定手段7は、大人か子供かの属性示す判別結果を動作制御手段10に渡す。
 人***置決定手段4より送られる人体部の温度情報もしくは人体部以外の周囲温度の少なくともいずれか1つを用いて、体感温度決定手段31が室内の人物の体感温度を取得し、また、温冷感決定手段32が温冷感を取得する。
 動作制御手段10は、入出力IF9を介してリモートコントローラ14から指示信号を受信すると、指示信号が示す指示内容を記憶部51に格納するとともに、指示内容に対応する制御指令信号を生成してフラップ11、ファン12および圧縮機13に送信する。指示信号は、例えば、空気調和機100の起動時にリモートコントローラ14から入出力IF9を介して動作制御手段10に送信される。また、利用者が室内の設定温度などを変更する際、指示信号は、リモートコントローラ14から入出力IF9を介して動作制御手段10に送信される。
 また、動作制御手段10は、属性判別部8から属性の判別結果を受け取り、センサ部2から人および人の周囲の温度を含む情報である温度情報を受け取る。温度情報は、赤外線センサ22が属性判別部8に渡す温度分布と同じデータだけでなく、室内の温度および湿度の情報を含んでいてもよい。動作制御手段10は、温度情報と、属性判別部8が判別した属性と、記憶部51が記憶する指示内容とを基に、フラップ11、ファン12および圧縮機13を制御する空調制御を行う。制御対象は、例えば、フラップ11の向き、ファン12の回転数および圧縮機13の回転数である。
 具体的には、動作制御手段10は、温度情報、属性、体感温度および指示内容を基にフラップ11、ファン12および圧縮機13のうち、少なくとも1つの機器に対する制御指令信号を生成し、対象の機器に制御指令信号を送信する。例えば、温度情報に含まれる室温が指示内容に含まれる設定温度に比べて著しく大きい場合、動作制御手段10は、回転数を大きくする旨の制御指令信号を圧縮機13に送信する。なお、動作制御手段10は、センサ部2から室内の温度分布のデータを受け取る代わりに、画像取得手段3が生成する熱画像を用いてもよい。
 さらに、動作制御手段10は、属性判別部8から属性の判別結果を受け取り、センサ部2から温度情報を受け取ると、室内の人物の体感温度を算出してもよい。さらに、動作制御手段10は、属性判別部8から属性の判別結果を受け取り、体感温度決定手段31から体感温度もしくは温冷感決定手段32から温冷感の情報を受け取ると、室内の人物の属性に応じた体感温度もしくは温冷感を算出してもよい。一般的に子供は大人よりも体感温度が高いことが知られている。このことを考慮して、属性に対応した体感温度の算出方法の一例を説明する。ここでは、センサ部2が湿度センサ(不図示)を有しているものとする。また、大人と子供の体感温度の差をΔtとすると、温度差Δtは予め記憶部51に格納されている。温度差Δtは、例えば、3℃である。さらに、熱画像が示す人体部の表面温度を体感温度に変換する温度変換表が予め記憶部51に格納されている。温度変換表における体感温度の値は、例えば、室温および湿度をパラメータとしたミスナールの計算式によって予め算出されている。なお、温度変換表の代わりに、表面温度から体感温度を算出する式が予め記憶部51に登録されていてもよい。
 室内に居る人体の属性が大人である場合、動作制御手段10は、熱画像の人体部における表面温度を取得すると、温度変換表を参照し、表面温度に対応する体感温度を求める。室内の人体の属性が子供である場合、動作制御手段10は、温度変換表を参照して、人体部の表面温度から体感温度を求めた後、体感温度に温度差Δtを加算する。動作制御手段10は、属性判別部8が判別した属性と、算出した体感温度と、記憶部51が記憶する指示内容とを基に、フラップ11、ファン12および圧縮機13を制御する。
 次に、室外機15に設けられた圧縮機13について説明する。圧縮機13は、図1に示したように、冷媒回路の一部を構成する機器である。圧縮機13は、回転数を変化することで、冷媒回路を循環する冷媒の量を調整する。例えば、圧縮機13は、動作制御手段10から受信する制御指令信号に応じて、冷媒回路を循環する冷媒量を調整し、負荷側熱交換器103および熱源側熱交換器102のそれぞれの熱交換量を制御する。
 なお、室外機15に熱源側熱交換器102に外気を供給するファン(不図示)が設けられていてもよい。この場合、室外機15に設けられたファン(不図示)も、ファン12と同様に動作制御手段10と信号線を介して接続され、動作制御手段10によって制御される。また、本実施の形態1では、動作制御手段10の四方弁108に対する制御に関する説明と、その制御の様子を図2Aに示すことを省略している。
 次に、本実施の形態1における空気調和機100が実行する空気調和制御方法を説明する。図4は、本発明の実施の形態1における空気調和機が実行する空気調和制御方法の手順を示すフローチャートである。図5は、図2Aに示したセンサ部が熱画像の基になる温度分布のデータを取得する方法を説明するための図である。
 空気調和機100が起動すると(ステップS1)、画像取得手段3は、センサ部2から受け取る温度分布のデータを基に温度分布を示す熱画像を取得する(ステップS2)。図5は、赤外線センサ22が室内の温度分布のデータを取得する様子を示す。図5に示すように、赤外線センサ22は、例えば、子供203および大人204の人体の表面温度および人の周囲の温度を検知する。人の周囲とは、例えば、壁および床である。
 次に、ステップS3において、人***置決定手段4は、画像取得手段3が取得した熱画像において人体部を決定する。例えば、人***置決定手段4は、次のようにして熱画像から人体部を認識する。室内に人が居る状態で検知された熱画像と、室内に人がいない状態で検知された熱画像とを比較すると、同じ位置でも人が存在する場合の方が画素の値が大きい。この特性を利用して、画素値の差に関して、人体が存在するか否かの判定基準となる閾値が予め記憶部51に格納されている。人***置決定手段4は、画像取得手段3から受け取った熱画像と室内に人がいない状態で検知された熱画像とを比較し、画素値の差が閾値以上の画素の位置を人体部に相当する位置として決定する。
 図6は、図2Aに示した人***置決定手段が熱画像を人体部の位置を示す2値画像に変換した場合の一例を示す画像である。図6の2値画像34に示す人体部303は図5に示した子供203に対応し、2値画像34に示す人体部304は図5に示した大人204に対応する。人***置決定手段4は、図5に示した大人204および子供203のそれぞれに対応する人体部304、303の位置を図6に示すように決定する。また、人***置決定手段4は、人体部303、304の画素数を取得する。
 次に、図4に示すステップS4において、距離決定手段5は、図6および図7を参照して、次のようにして、室内機1から人体までの距離を算出する。図7は、図2Aに示した距離決定手段が室内機から人体までの距離を算出する際に用いる、人体部に相当する画素と距離との関係の一例を示す表である。図7に示す表は一例であって、図7に示す値に限定されない。
 図7は、図6に示した2値画像において、人体部の下端の画素の位置である下端画素位置と室内機1から人体部までの距離との関係を示している。同じ人物であっても、室内機1からの距離が近い場合と遠い場合とで、熱画像で表される人体部の大きさは相対的に異なる。図5における室内機1から子供203および大人204までのそれぞれの距離は、図6に示す2値画像における人体部303および人体部304のそれぞれの下端画素位置から、図7を参照することで、算出される。
 図6を参照すると、人体部304の下端画素位置は6である。図7を参照すると、人体部304の下端画素位置が6なので、室内機1から人体部304までの距離は3.4mと求まる。また、図6を参照すると、人体部303の下端画素位置は3である。図7を参照すると、人体部303の下端画素位置が3なので、室内機1から人体部303までの距離は1.8mと求まる。
 次に、ステップS5において、姿勢判別手段6は、図8を参照して、次のようにして、人***置決定手段4が決定した人体部に対応する人体の姿勢を判別する。図8は、図2Aに示した姿勢判別手段が人体の姿勢を判別する際に用いる、人体部の縦横比と姿勢との関係の一例を示す表である。図8に示す表は一例であって、図8に示す値に限定されない。
 図8は、熱画像において人体部に相当する複数の画素が表す形状において、縦方向の画素数の最大値である最大縦画素数と横方向の画素数の最大値である最大横画素数との比を人体縦横比nとしたとき、人体縦横比nの値に対応する姿勢を示す。人体縦横比n=(最大縦画素数/最大横画素数)で表される。姿勢は、例えば、臥位、座位および立位である。例えば、図6に示した2値画像において、姿勢判別手段6は、属性判別の対象となる人体部の人体縦横比nを読み出す。そして、姿勢判別手段6は、人体縦横比nが0.2以下であれば人体の姿勢は臥位と判定し、人体縦横比nが0.5以上であれば人体の姿勢は立位と判定し、人体縦横比nがこれらの範囲以外であれば人体の姿勢は座位と判定する。
 次に、ステップS5の姿勢判別の結果、人体の姿勢が座位と判別された場合、姿勢判別手段6は、座位に関して詳細な判別を行う(ステップS6)。座位に関する詳細判別の方法の一例を、図9および図10を参照して説明する。図9は、図2Aに示した姿勢判別手段が実行する判別処理の対象となる座位の種類の一例を示す2値画像である。図10は、図2Aに示した姿勢判別手段が実行する、座位に関する詳細判別の方法を説明するための図である。
 座位では、人体が椅子に座っている場合の椅子座位状態と、人体が床に座っている場合の床座位状態とを比べると、熱画像上の画素数が大きく異なる。例えば、図9に示す2値画像72は、人体部701は椅子座位の場合を表し、人体部703は床座位の場合を表している。これらの座位の種類は、画素数だけでなく、人体部を構成する各画素の位置について重心からのばらつきが異なる傾向がある。
 ステップS6において、姿勢判別手段6は、次のようにして、姿勢判別対象となる人体部の重心モーメントを算出して、座位が椅子座位であるか床座位であるかを判別する。図10は、重心モーメントの算出方法を説明するためのイメージ図を示す。重心モーメントは、ある図形において、x方向(左右方向)およびy方向(上下方向)のそれぞれについて、重心からのばらつき度合を示す値である。図9に示す2値画像72を参照すると、椅子座位の場合の人体部701は、重心から上下方向のばらつき度合が重心から左右方向のばらつき度合よりも大きい。一方、床座位の場合の人体部703は、重心から左右方向のばらつき度合が重心から上下方向のばらつき度合よりも大きい。
 このように、椅子座位と床座位とでは、重心から上下方向および左右方向のばらつき度合が異なる。そのため、姿勢判別手段6は、人体部の重心モーメントを算出し、算出した重心モーメントを予め決められた閾値と比較することで、座位が椅子座位であるか床座位であるかを判別することができる。座位の種類を判別する基準となる閾値は予め記憶部51に格納されている。なお、重心からのばらつき度合の算出対象は、図形の外形を構成する複数の微小単位毎であってもよく、図形全体を構成する複数の微小単位毎であってもよい。
 図4に示すステップS7において、属性決定手段7は、ステップS3において取得された画素数、ステップS4において取得された距離、およびステップS5~S6において取得された姿勢判別の結果を元に、属性判別対象の人体が大人か子供かの属性判別を行う。具体例を説明する。姿勢および距離の組に対応して、人体部の画素数に関する属性判定基準として閾値が予め記憶部51に格納されている。例えば、姿勢および距離の組が10通りある場合、10個の閾値が予め設定されている。属性決定手段7は、記憶部51が記憶する情報を参照し、姿勢および距離の結果から組を特定し、特定した組の閾値を記憶部51から読み出す。そして、属性決定手段7は、属性判別対象の人体部の画素数が閾値以上である場合、人体を大人と判別し、属性判別対象の人体部の画素数が閾値より小さい場合、人体を子供と判別する。
 ステップS7の判定の結果、属性判別対象の人体が大人と判別された場合、動作制御手段10は、大人に合わせた空調制御を行う(ステップS8)。一方、ステップS7の判定の結果、属性判別対象の人体が子供と判別された場合、動作制御手段10は、子供に合わせた空調制御を行う(ステップS9)。さらに、ステップS9において、動作制御手段10は、フラップ11、ファン12および圧縮機13に対して、次のような制御を行ってもよい。
 動作制御手段10は、赤外線センサ22が取得する人体の表面温度を基に、フラップ11、ファン12および圧縮機13を制御する場合を例に説明する。例えば、室内に複数の人が居る場合、動作制御手段10は、表面温度の高い人に風が向くようにフラップ11の向きを制御する。この場合、室内に子供が居ると判定されても、動作制御手段10は、子供の表面温度が大人の表面温度と同じであれば、子供も大人と同じ体感温度と判断し、フラップ11、ファン12および圧縮機13を制御する。室内に居る大人と子供のうち、表面温度が大人の方が子供よりも大きいと、動作制御手段10は、大人の方が子供よりも体感温度が高いと判断し、大人に風が向くようにフラップ11の向きを制御することが考えられる。
 例えば、夏季において、子供は大人よりも暑がりと言われている。そのため、動作制御手段10が子供も大人と同じ体感温度と判断してフラップ11、ファン12および圧縮機13を制御すると、子供にとっては快適ではない場合がある。そこで、属性判別部8が室内に子供と大人の両方が居ると判断した場合、動作制御手段10は、子供の体感温度を補正することで、子供と大人の両方が快適になるようにフラップ11、ファン12および圧縮機13を制御する。具体的には、動作制御手段10は、子供の表面温度から体感温度を求めた後、体感温度に暑がりを考慮した温度差Δtを加算する。そして、動作制御手段10は、子供用の補正後の体感温度と大人の体感温度とを比較し、体感温度の高い人に風が向くようにフラップ11の向きを制御する。以下に、子供が大人に比べて暑がりであることを考慮した、別の具体例を説明する。
 圧縮機13がある一定の周波数で動作し、ファン12がある一定の回転数で動作し、フラップ11が人体に風があたるように動作している場合、一定時間経つと、風を受けている人の温冷感が下がり快適となる。そのまま人体に風を当て続けていると、人の温冷感がさらに下がり、人は快適から寒いと感じてしまう。そのため、動作制御手段10は、人の温冷感が快適になったと判断した時点で人に風があたらないようにフラップ11を動作させる。動作制御手段10は、人の温冷感が快適になったか否かを、例えば、熱画像から取得する人体の表面温度で判断する。
 属性判別部8が室内に居る人の属性が子供と判別した場合、子供は大人よりも暑がりである分、動作制御手段10は、温冷感を暑がりの方向へ補正する。つまり、動作制御手段10は、人の温冷感が快適になったと判断する表面温度を大人の場合よりも温度差Δtだけ低くする。
 例えば、図5に示したように、室内に子供203と大人204と判別された人体が1人ずつ存在する場合、動作制御手段10は、大人204の温冷感が快適になった時点で大人204に風が当たらないようにフラップ11の向きを制御する。このとき、子供203の温冷感は補正されているため、大人と同じタイミングでは快適にならないため、動作制御手段10は、子供203に風が当たり続けるようにフラップ11の向きを制御する。
 動作制御手段10は、子供203の補正された温冷感が快適になるまで風を当て続け、補正された温冷感が快適になったら、子供に風が当たらないようにフラップ11の向きを制御する。
 このとき、空気調和機100は、何れの動作の場合であっても、子供と大人のそれぞれが快適になるよう空調制御をすればよい。例えば、ある一定の周波数で圧縮機13が動作し、人体に風が当たる方向にフラップ11の向きが制御されていても、室内の人の属性が大人であれば、動作制御手段10は、回転数が低くなるようにファン12を制御すればよい。これにより、大人に対して弱風を送り、大人は快適な状態を維持できる。また、室内の人の属性が子供であれば、動作制御手段10は、回転数が高くなるようにファン12を制御することで子供に強風を送り、子供の温冷感が快適となるように制御してもよい。このようにして、動作制御手段10は、圧縮機13の回転数とフラップ11の向きを制御しなくても、ファン12の回転数を制御することで、利用者にとって室内をより快適な状態にできる。
 なお、ファン12がある一定の回転数で動作し、フラップ11の向きが人体に風が当たる方向に設定されている場合、動作制御手段10は、圧縮機13の回転数を制御して空調制御を行えばよい。例えば、空気調和機100の冷房運転中に室内にいる人が子供である場合、動作制御手段10は、圧縮機13の回転数を高くする。
 本実施の形態1の空気調和機100は、室外機15に設けられた圧縮機13および室内機1に設けられた負荷側熱交換器103を含む冷媒回路と、室内機1に設けられたファン12と、室内機1の吹き出し口に設けられたフラップ11と、室内の温度分布を検知する赤外線センサ22と、制御装置20とを有し、制御装置20は、熱画像において人体部を決定する人***置決定手段4と、室内機から人体までの距離を算出する距離決定手段5、人体部の形状から人体の姿勢を判別する姿勢判別手段6、および人体部の画素数に対して、人体が大人か子供かの属性を判別する属性決定手段7と、属性に応じて、フラップ11の向き、ファン12の回転数および圧縮機13の回転数のうち、少なくともいずれか1つを制御する動作制御手段10とを有するものである。
 本実施の形態1では、室内の温度分布を示す熱画像を用いて室内機1から人体までの距離を算出するとともに人体の姿勢を判別し、距離および姿勢と人体部の画素数とに対応して、人体が大人か子供かの属性を判別することで、形状認識のみに基づく属性の誤判別を防ぎ、利用者により適合した空調空間を提供することができる。その結果、大人および子供のいずれに対しても快適性を向上させることができる。
 本実施の形態1において、動作制御手段10は、熱画像から人体部の表面温度もしくは人体部以外の周囲温度を取得し、表面温度および周囲温度のうち、いずれか片方もしくは両方の温度情報を使用して温冷感もしくは人体の体感温度を算出し、温冷感または体感温度の少なくともいずれか1つおよび属性に応じて制御を行ってもよい。この場合、冷房運転時に、暑がっている子供に風を当てないで、寒がっている大人に風を当ててしまうことを防げる。
 本実施の形態1において、動作制御手段10は、属性決定手段7の判別の結果、人体が子供である場合、体感温度もしくは温冷感を補正し、補正した体感温度もしくは温冷感を制御に用いてもよい。属性判別対象が子供と判断された場合、大人よりも子供の方が暑がりなので、体感温度もしくは温冷感を暑がりの方に補正し、補正後の体感温度もしくは温冷感で空調制御を行えば、子供に対して快適な空調対象空間を提供できる。
 本実施の形態1において、動作制御手段10は、冷房運転中において、人体が子供である場合、空気の吹き出し方向が人体の方向になるようにフラップ11の向きを変える、ファン12の回転数を高くする、および圧縮機13の回転数を高くすることのうち、少なくともいずれか1つの制御を行ってもよい。この場合、冷房運転が行われる夏季などにおいて、大人よりも暑がりな子供が室内に居る場合、子供に風が当たる、または室内の温度が下がることにより、子供の温冷感が快適となる。
 本実施の形態1において、姿勢判別手段6は、熱画像における人体部を構成する複数の画素について、人体縦横比を算出し、算出した人体縦横比に応じて、人体の姿勢が臥位、座位および立位のうち、いずれであるかを判別してもよい。この場合、属性決定手段7が人体の姿勢および距離と人体部の画素数とに応じて属性を判別する際、判別の精度が向上する。
 本実施の形態1において、姿勢判別手段6は、人体の姿勢が座位である場合、人体部を構成する複数の画素について、人体部の重心からのばらつき度合である重心モーメントを算出し、算出した重心モーメントに応じて、床座位および椅子座位のうち、いずれの座位であるかを判別するようにしてもよい。この場合、座位の状態がより詳細に判別されるため、属性決定手段7が人体の姿勢および距離と人体部の画素とに応じて属性を判別する際、判別の精度がより向上する。
実施の形態2.
 本実施の形態2の空気調和機について、図11~図13を参照して説明する。図11は、本発明の実施の形態2における空気調和機の一構成例を示すブロック図である。図12は、本発明の実施の形態2における空気調和機が実行する空気調和制御方法の手順を示すフローチャートである。図13は、図11に示す人***置決定手段が外形状判別手段に渡す熱画像の一例を示す画像である。
 本実施の形態2における空気調和機の構成を、図11を参照して説明する。本実施の形態2においては、図11に示す構成のうち、外形状判別手段25、温度分布判別手段26および属性決定手段7を除く構成は、実施の形態1の図2Aを参照して説明した構成と同様であるため、その詳細な説明を省略する。
 図11に示すように、属性判別部8は、外形状判別手段25と、温度分布判別手段26と、属性決定手段7とを有する。外形状判別手段25は、人***置決定手段4から受け取る熱画像と人体部の位置を示す情報とを用いて、人体部の外形形状の特徴量情報を外形形状情報として取得する。図13に示す熱画像80は、2人の人体が検知された場合を示す。図13に示す熱画像80の例では、人体部81の特徴量情報から求まる外形形状は三角であり、人体部82の特徴量情報から求まる外形形状は楕円である。外形状判別手段25は、外形形状情報および熱画像を温度分布判別手段26に渡す。
 温度分布判別手段26は、熱画像から人体部の中で高温部および中温部を含む温度の分布の仕方を温度分布情報として取得する。人体部における温度に対して、高温および中温の判定は、記憶部51に予め格納された閾値と比較して行われる。図13に示した熱画像80では、人体部81、82において温度分布が3つの温度範囲に分類して表示されている。熱画像80は、ドットの分布密度が高いほど高温であることを示している。温度分布判別手段26は、熱画像と、外形形状情報と、温度分布情報とを属性決定手段7に渡す。属性決定手段7は、外形状判別手段25が取得した外形形状情報および温度分布判別手段26が取得した温度分布情報から、室内に居る人物が大人であるか子どもであるか判別する。
 次に、本実施の形態2における空気調和制御方法の手順を、図12および図13を参照して説明する。本実施の形態2においては、図12に示す処理のうち、ステップS1~ステップS3、ステップS8およびステップS9は、実施の形態1で図4を参照して説明したステップS1~ステップS3、ステップS8およびステップS9と同様であるため、その詳細な説明を省略する。
 外形状判別手段25は、人***置決定手段4から受け取る熱画像と人体部の位置を示す情報とを用いて、図13を参照して説明したように、人体部の外形形状の特徴量情報を取得する(ステップS14)。外形状判別手段25は、取得した外形形状情報と、熱画像とを温度分布判別手段26に渡す。温度分布判別手段26は、人体部の中で高温部および中温部を含む温度の分布の仕方を温度分布情報として取得する(ステップS15)。温度分布判別手段26は、熱画像と、外形形状情報と、温度分布情報とを属性決定手段7に渡す。
 属性決定手段7は、外形状判別手段25が取得した外形形状情報と、温度分布判別手段26が取得した温度分布情報とから、室内に居る人物が大人であるか子どもであるか判別する(ステップS16)。例えば、図13に示す人体部81は高温部が上方に集まっており、形状が三画型であることから、属性決定手段7は人体部81の人体を大人と判別する。また、図13に示す人体部82は高温部が中心に集まっており、形状が楕円型であることから、属性決定手段7は人体部82の人体を子供と判別する。属性決定手段7は、大人か子供かの属性を示す判別結果を動作制御手段10へ渡す。
 動作制御手段10は、属性決定手段7から受け取る判定結果が示す属性に応じて、フラップ11、ファン12、圧縮機13のうち、少なくともいずれか1つを制御する(ステップS8、ステップS9)。なお、ステップS16において、属性決定手段7が人体部における温度分布の高温部と外形形状を用いて属性を判別したが、温度分布の高温部の替わりに中温部を用いてもよく、両方を用いてもよい。
 本実施の形態2によれば、熱画像から取得した人体部の外形形状および温度分布に対応して人体が大人か子供かの属性を判別することで、形状認識のみに基づく属性の誤判別を防ぎ、大人および子供のいずれに対しても快適性を向上させることができる。
 1 室内機、2 センサ部、3 画像取得手段、4 人***置決定手段、5 距離決定手段、6 姿勢判別手段、7 属性決定手段、8 属性判別部、9 入出力IF、10 動作制御手段、11 フラップ、12 ファン、13 圧縮機、14 リモートコントローラ、15 室外機、20 制御装置、22 赤外線センサ、25 外形状判別手段、26 温度分布判別手段 31 体感温度決定手段、32 温冷感決定手段、34 2値画像、51 記憶部、52 CPU、72 2値画像、80 熱画像、81、82 人体部、100 空気調和機、101 膨張弁、102 熱源側熱交換器、103 負荷側熱交換器、104 左右フラップ、105 上下フラップ、106 吸い込み口、107 吹き出し口、108 四方弁、109 冷媒配管、203 子供、204 大人、303、304、701、703 人体部。

Claims (4)

  1.  室外機に設けられた圧縮機および室内機に設けられた負荷側熱交換器を含む冷媒回路と、
     前記室内機に設けられ、吸い込み口から室内の空気を吸い込み、吹き出し口から空気を室内に吹き出すファンと、
     前記吹き出し口に設けられ、前記負荷側熱交換器が調和した空気の吹き出し方向を調整するフラップと、
     前記室内の温度分布を検知する赤外線センサと、
     前記赤外線センサが検知した熱画像を用いて前記フラップ、前記ファンおよび前記圧縮機を制御する制御装置と、を有し、
     前記制御装置は、
     前記熱画像において人体に相当する人体部および位置を決定する人***置決定手段と、
     前記人体部の位置の情報を用いて前記室内機から前記人体までの距離を算出する距離決定手段と、前記熱画像のうち前記人体部の形状から前記人体の姿勢を判別する姿勢判別手段と、前記人体部の画素数と、に対して前記人体が大人か子供かの属性を判別する属性決定手段と、
     前記属性に応じて、前記フラップの向き、前記ファンの回転数および前記圧縮機の回転数のうち、少なくともいずれか1つを制御する動作制御手段と、
    を有する空気調和機。
  2.  前記動作制御手段は、
     前記熱画像から前記人体部における人体の表面温度もしくは前記人体部以外の周囲温度を取得して、いずれか片方もしくは両方の温度情報を使用して前記人体の暑い寒いといった温冷感もしくは前記人体の体感温度を算出し、前記温冷感または前記体感温度の少なくともいずれか1つおよび前記属性に応じて、前記フラップの向き、前記ファンの回転数および前記圧縮機の回転数のうち、少なくともいずれか1つを制御する、請求項1に記載の空気調和機。
  3.  前記動作制御手段は、
     前記属性決定手段の判別の結果、前記人体が子供である場合、前記体感温度もしくは前記温冷感を補正し、補正した体感温度もしくは温冷感を制御に用いる、請求項2に記載の空気調和機。
  4.  前記動作制御手段は、
     冷房運転中において、前記人体が子供である場合、前記空気の吹き出し方向が前記人体の方向になるように前記フラップの向きを変える、前記ファンの回転数を高くする、および前記圧縮機の回転数を高くすることのうち、少なくともいずれか1つの制御を行う、請求項3に記載の空気調和機。
PCT/JP2016/073326 2016-08-08 2016-08-08 空気調和機 WO2018029757A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680087792.8A CN109477655B (zh) 2016-08-08 2016-08-08 空调机
PCT/JP2016/073326 WO2018029757A1 (ja) 2016-08-08 2016-08-08 空気調和機
JP2018533320A JP6678748B2 (ja) 2016-08-08 2016-08-08 空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/073326 WO2018029757A1 (ja) 2016-08-08 2016-08-08 空気調和機

Publications (1)

Publication Number Publication Date
WO2018029757A1 true WO2018029757A1 (ja) 2018-02-15

Family

ID=61162838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073326 WO2018029757A1 (ja) 2016-08-08 2016-08-08 空気調和機

Country Status (3)

Country Link
JP (1) JP6678748B2 (ja)
CN (1) CN109477655B (ja)
WO (1) WO2018029757A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631276A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109737567A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
JPWO2023012922A1 (ja) * 2021-08-04 2023-02-09
WO2023082653A1 (zh) * 2021-11-11 2023-05-19 青岛海尔空调器有限总公司 用于控制空调的方法、装置及智能空调

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110686376A (zh) * 2019-09-18 2020-01-14 珠海格力电器股份有限公司 一种基于人体睡姿识别的空调电扇联合控制方法、计算机可读存储介质及空调
CN112949347B (zh) * 2019-11-26 2024-05-07 佛山市云米电器科技有限公司 基于人体姿势的风扇调节方法、风扇和存储介质
CN112926357A (zh) * 2019-12-05 2021-06-08 佛山市云米电器科技有限公司 风扇倾斜角度的控制方法、风扇及计算机可读存储介质
CN111089389A (zh) * 2019-12-11 2020-05-01 宁波奥克斯电气股份有限公司 一种具有监护功能的空调的控制方法、控制***及空调
JP7258798B2 (ja) * 2020-02-26 2023-04-17 株式会社東芝 情報処理装置、情報処理システム、情報処理方法及びプログラム
CN111425430B (zh) * 2020-03-31 2022-03-25 佛山市云米电器科技有限公司 送风参数的配置方法、***及计算机可读存储介质
CN114838489B (zh) * 2022-04-24 2023-06-23 广东鸿禾智能环境科技有限公司 一种基于位置检测的智能家居空调控制***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324792A (ja) * 1995-05-16 1995-12-12 Matsushita Electric Ind Co Ltd 人体認識装置
JP2006220405A (ja) * 2005-01-12 2006-08-24 Mitsubishi Electric Corp 空気調和装置
JP2008261567A (ja) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp 空気調和機
JP2009139010A (ja) * 2007-12-06 2009-06-25 Sharp Corp 空気調和機
US20100124376A1 (en) * 2008-11-19 2010-05-20 Deepinder Singh Thind Determination Of Class, Attributes, And Identity Of An Occupant
JP2012037102A (ja) * 2010-08-05 2012-02-23 Panasonic Corp 人物識別装置、人物識別方法及び人物識別装置を備えた空気調和機
JP2012042131A (ja) * 2010-08-19 2012-03-01 Mitsubishi Electric Corp 空気調和機
US20120105229A1 (en) * 2006-08-15 2012-05-03 Lawrence Kates System and method for intruder detection
JP2015222260A (ja) * 2013-05-17 2015-12-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 熱画像センサ、及び、空気調和機

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258816B2 (ja) * 2010-02-27 2013-08-07 三菱電機株式会社 空気調和機
MY185353A (en) * 2014-02-17 2021-05-08 Panasonic Corp Air conditioner and thermal image sensor system
JP6425452B2 (ja) * 2014-08-18 2018-11-21 日立ジョンソンコントロールズ空調株式会社 空気調和機、および空気調和機の制御方法
CN104764150B (zh) * 2015-03-27 2017-11-07 武汉海尔电器股份有限公司 空调控制方法
CN105841290A (zh) * 2015-08-24 2016-08-10 福建福伦德电器有限公司 通过人体生理参数智能化控制空调运行的方法
CN105371425A (zh) * 2015-10-12 2016-03-02 美的集团股份有限公司 空调器
CN105180385A (zh) * 2015-10-30 2015-12-23 广东美的制冷设备有限公司 一种基于脸部特征进行空调控制的方法、***及空调
CN105631418B (zh) * 2015-12-24 2020-02-18 浙江宇视科技有限公司 一种人数统计的方法和装置
CN105627508B (zh) * 2015-12-30 2018-08-14 美的集团武汉制冷设备有限公司 基于体表温度的空调控制方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324792A (ja) * 1995-05-16 1995-12-12 Matsushita Electric Ind Co Ltd 人体認識装置
JP2006220405A (ja) * 2005-01-12 2006-08-24 Mitsubishi Electric Corp 空気調和装置
US20120105229A1 (en) * 2006-08-15 2012-05-03 Lawrence Kates System and method for intruder detection
JP2008261567A (ja) * 2007-04-12 2008-10-30 Mitsubishi Electric Corp 空気調和機
JP2009139010A (ja) * 2007-12-06 2009-06-25 Sharp Corp 空気調和機
US20100124376A1 (en) * 2008-11-19 2010-05-20 Deepinder Singh Thind Determination Of Class, Attributes, And Identity Of An Occupant
JP2012037102A (ja) * 2010-08-05 2012-02-23 Panasonic Corp 人物識別装置、人物識別方法及び人物識別装置を備えた空気調和機
JP2012042131A (ja) * 2010-08-19 2012-03-01 Mitsubishi Electric Corp 空気調和機
JP2015222260A (ja) * 2013-05-17 2015-12-10 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 熱画像センサ、及び、空気調和機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631276A (zh) * 2018-12-29 2019-04-16 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
CN109737567A (zh) * 2018-12-29 2019-05-10 青岛海尔空调器有限总公司 空调的控制方法、装置、存储介质及计算机设备
JPWO2023012922A1 (ja) * 2021-08-04 2023-02-09
WO2023012922A1 (ja) * 2021-08-04 2023-02-09 三菱電機株式会社 空気調和機及びセンサ制御装置
JP7438401B2 (ja) 2021-08-04 2024-02-26 三菱電機株式会社 空気調和機及びセンサ制御装置
WO2023082653A1 (zh) * 2021-11-11 2023-05-19 青岛海尔空调器有限总公司 用于控制空调的方法、装置及智能空调

Also Published As

Publication number Publication date
JP6678748B2 (ja) 2020-04-08
CN109477655B (zh) 2021-04-20
CN109477655A (zh) 2019-03-15
JPWO2018029757A1 (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2018029757A1 (ja) 空気調和機
JP6618625B2 (ja) 空気調和機
CN107013978B (zh) 空调室内机及其送风方法
KR101558504B1 (ko) 공기조화기 및 그 동작방법
CN107560127A (zh) 壁挂式空调室内机及其控制方法
JP6790220B2 (ja) 室内機および空気調和装置
WO2019047859A1 (zh) 壁挂式空调室内机及其控制方法
CN107305035B (zh) 空调机
CN104913431A (zh) 空调控制方法及空调
JPH07103551A (ja) 空気調和機の制御装置
JP6091348B2 (ja) 空気調和機
WO2017029762A1 (ja) 空気調和機
WO2021199381A1 (ja) 空気調和システムおよび空気調和装置の制御方法
JP2016176653A (ja) 空気調和機
JP2009264608A (ja) 空気調和機
JP6772961B2 (ja) 移動体の制御システム
KR102462249B1 (ko) 이동형 공조장치
US20210239337A1 (en) Apparatus and method for controlling temperature
JP2014142099A (ja) 空気調和機
WO2019008642A1 (ja) 空気調和機
JP7268407B2 (ja) 送風システム
JP2018155440A (ja) 空調機システム
JP2021096050A (ja) 環境制御システム
WO2018029805A1 (ja) 空気調和機の室内機
JP2014142098A (ja) 空気調和機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533320

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16912641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16912641

Country of ref document: EP

Kind code of ref document: A1