WO2018026239A1 - Electrochemical migration preventive additive for copper and method for preventing electrochemical migration by using same - Google Patents

Electrochemical migration preventive additive for copper and method for preventing electrochemical migration by using same Download PDF

Info

Publication number
WO2018026239A1
WO2018026239A1 PCT/KR2017/008453 KR2017008453W WO2018026239A1 WO 2018026239 A1 WO2018026239 A1 WO 2018026239A1 KR 2017008453 W KR2017008453 W KR 2017008453W WO 2018026239 A1 WO2018026239 A1 WO 2018026239A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrochloride
butyl
chloride
electrochemical migration
copper
Prior art date
Application number
PCT/KR2017/008453
Other languages
French (fr)
Korean (ko)
Inventor
김정구
송솔지
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2018026239A1 publication Critical patent/WO2018026239A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions

Definitions

  • the present invention relates to a preventive additive for inhibiting electrochemical migration causing an electrical short circuit of copper and a method for preventing electrochemical migration using a material mixed with such additives.
  • the wiring of an electronic component is made of copper, which has good electrical conductivity and thermal conductivity and is inexpensive.
  • ECM electrochemical migration
  • the ECM reaction mechanism of copper can be distinguished in two steps below.
  • ECM of copper is further accelerated by chloride ions.
  • EMC or underfill used in the semiconductor packaging process contains chloride ions in the manufacturing process.
  • the actual copper metal is exposed to a corrosive environment containing up to several ppm of chloride ions. In the presence of chloride ions in the corrosive environment, the following reaction occurs at the copper anode.
  • chloride ions are recirculated to continuously serve as catalysts. This can cause traces of chloride ions to be fatal to the ECM of copper.
  • the generation and growth rate of the ECM of copper also depends on environmental factors such as humidity, temperature, electrode spacing, etc.
  • environmental factors such as humidity, temperature, electrode spacing, etc.
  • this causes additional time and money loss by further processing in conventional metal wiring fabrication and packaging. Therefore, it is time to study to easily prevent the ECM of copper without requiring an additional process.
  • One object of the present invention is to provide a preventive additive and a method using the same, which can prevent ECM from occurring in copper metal wiring.
  • An electrochemical migration prevention additive of copper is polyethylene glycol (PEG), polypropylene glycol (PPG), imidazole, polyvinylpyrrolidone (PVP) ), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Dideda Didecyl-dimethylammonium chloride (DDAC), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), Nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl pyreridinium bromide (N -butyl-methyl piperidinium bromide (PP 14 Br)), Polyethyleneimine (PEI), 4-Amino-2,1,3-benzo-2,1,3-benz
  • a method for preventing electrochemical migration may include polyethylene glycol (PEG), polypropylene glycol (PPG), imidazole, and polyvinylpyrrolidone (PVPP). )), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Didecyl-dimethylammonium chloride (DDAC), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl pyreridinium bromide ( N-butyl-methyl piperidinium bromide (PP 14 Br)), poly Polyethyleneimine (PEI), 4-amino-2,1,3
  • the materials may retard at least one of the formation and growth of dendritic crystals between copper metal interconnects, either alone or in combination.
  • electrochemical migration can be suppressed by delaying or preventing generation or growth of dendritic crystals occurring between copper metal wirings. This can ultimately prevent short circuits.
  • an additive when such an additive is used in combination with an EMC or underfill material in a packaging process such as a semiconductor, the reliability of the semiconductor device can be improved.
  • 1 is a schematic view of a semiconductor package (wire bond) and the image of the corrosion type.
  • FIG. 2 is a schematic diagram of a semiconductor package (Flip chip) and the image of the corrosion type.
  • FIG. 3 is a schematic diagram of an EMC process occurring between copper wires.
  • FIG. 4 is a schematic diagram showing growth and inhibition of dendrite.
  • FIG. 5 is a graph of the average and standard deviation of ECM time of Experimental Example 1.
  • FIG. 6 is a graph showing the length of dendrite versus ECM time of Experimental Example 1.
  • FIG. 7 is a graph showing the average and standard deviation of ECM time of Experimental Example 2.
  • FIG. 8 is a graph showing the length of dendrite versus ECM time of Experimental Example 2.
  • FIG. 9 is a graph showing the average and standard deviation of ECM time of Experimental Example 3.
  • FIG. 10 is a graph showing the length of dendrite versus ECM time of Experimental Example 3.
  • Shorten. 1 shows a schematic diagram and a corrosion type of a semiconductor package (wire bond). As shown in FIG. 1, electrochemical migration occurs, and short-circuit phenomenon of a lead frame is likely to occur.
  • FIG. 2 shows a schematic diagram and corrosion type of a semiconductor package (Flip chip). As shown in Fig. 2, the distance between electrodes is finer, and between bumps, electrochemical migration occurs and short circuiting is also likely to occur.
  • 3 shows the ECM mechanism occurring in the copper wiring. As shown in FIG. 3, when moisture is absorbed between the electrodes, dissolution occurs in one electrode, and ions of the electrode metal dissociate. These metal ions are deposited on the other electrode. After deposition, dendrite is generated and eventually a short occurs.
  • the inventors of the present invention have added an additive, which is an embodiment of the present invention, to an epoxy mold compound (EMC) or an underfill material, which is a packaging material present between conductors, to dissolve or deposit even if water is absorbed.
  • EMC epoxy mold compound
  • underfill material which is a packaging material present between conductors
  • mass transport refers to the transfer of material that occurs between the bulk solution and the electrode surface during electrode reactions, which is caused by diffusion, and diffusion is known to determine the rate of the reaction. This mass transport means not only growth of the dendrite by charge transport, but also dispersion of the nucleation region for the dendrite to grow through dispersion of the moved metal ions.
  • a leveler, a suppressor, and a grain refiner can reduce the short circuit caused by dendrite.
  • Dendritic growth is more likely to occur at the peak portion of the micro-rough surface than the trough portion at the micro-rough surface. That is, in order to suppress the growth of dendrite, the role of the leveler, the planarizing agent, and the crystal refiner is very important. A schematic diagram illustrating this is shown in FIG. 4. As shown in Fig. 4A, the dendrite is gradually formed at the peak position. On the other hand, as shown in FIG. 4 (b), when the leveling agent, the leveler and the crystal refiner are present, the growth of the dendrite is suppressed.
  • An electrochemical migration prevention additive of copper is polyethylene glycol (PEG), polypropylene glycol (PPG), imidazole, polyvinylpyrrolidone (PVP) ), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Dideda Didecyl-dimethylammonium chloride (DDAC), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), Nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl pyreridinium bromide (N -butyl-methyl piperidinium bromide (PP 14 Br)), Polyethyleneimine (PEI), 4-Amino-2,1,3-benzo-2,1,3-benz
  • the electrochemical migration prevention method of copper which is another embodiment of the present invention, prepares one of the above-mentioned prevention additives, and mixes the prepared prevention additives with an epoxy molding compound (EMC) or an underfill material to form a copper metal wiring It is used for the molding of.
  • EMC epoxy molding compound
  • the materials may retard at least one of the formation and growth of dendritic crystals between copper metal interconnects, either alone or in combination.
  • Sodium chloride (NaCl) was used in deionized water having an electrical conductivity of 15 M ⁇ or more as a reference solution for confirming the effect of the present invention, and a solution having a high concentration of chloride ions (chloride ion) was prepared. Since chloride ions accelerate the ionization reaction of the anodic copper metal to promote the ECM phenomenon, the chloride ion solution was set as the accelerated environment in this experiment. The low chloride chloride solution simulated a mild environment and the high chloride chloride solution was corrosive, and additives were added to the accelerated solution to confirm the effect of the invention.
  • the drop test is a useful test method for observing ECM in a short time by growing dendrite under severe conditions compared to other test methods. Based on the report that 1000 times of dendrite growth rate difference occurs compared with the commonly used constant temperature and humidity test, the ECM time difference in this experiment result will be effective to prevent the ECM of copper wiring used in the field. Judging. In this experiment, a voltage of 3V was applied in the standby state (atmosphere temperature and atmospheric humidity), and ECM time was measured at the same time.
  • FIG. 6 the length of the dendrite growth at every predetermined time in the process of connecting the dendrite was measured and shown in a graph.
  • this graph is a graph obtained by calculating the distance when the dendrite is connected between two copper wirings to 1 and calculating the fraction thereof.
  • FIG. 6 it can be seen that there is a difference in the timing at which the initial dendrite is generated and the growth rate depending on the solution used in the drop test.
  • ECG prevention additives polyethylene glycol, imidazole and benzotriazole were added, ECM was prevented through different mechanisms.
  • polyethylene glycol In the case of polyethylene glycol, it takes the longest time to generate a dendrite, which means that it plays a role of delaying the time point at which the initial dendrite is generated.
  • the ether group of polyethylene glycol traps copper ions eluted at the anode, thereby preventing the reduction of copper ions at the cathode.
  • chloride ions serve as a bridge to copper ion trapping, and thus have a better effect at high concentrations of chloride ions.
  • imidazole containing a nitrogen functional group is adsorbed on the convex region of the copper wiring surface to prevent the reduction of copper ions, thereby delaying the growth of the dendrite.
  • benzotriazole the time taken for dendritic formation to be longer than that of imidazole, but shorter than polyethylene glycol. This also, like imidazole, was thought to play a role in slowing the growth rate of some dendrites.

Abstract

According to one embodiment of the present invention, an electrochemical migration preventive additive can suppress electrochemical migration by delaying or preventing the generation or the growth of a dendrite generated between copper metal wirings. Therefore, shorting of a circuit can be ultimately prevented. In addition, when the preventive additive is used by being mixed with an EMC or underfill material of a packaging process of a semiconductor and the like, the reliability of a semiconductor device can be increased.

Description

구리의 전기화학적 마이그레이션 방지 첨가제 및 이를 이용한 전기화학적 마이그레이션을 방지하는 방법Additives to prevent electrochemical migration of copper and methods for preventing electrochemical migration using the same
본 발명은 구리의 전기 단락을 유발하는 전기화학적 마이그레이션을 억제하기 위한 방지 첨가제 및 이러한 첨가제를 혼합한 물질을 이용하여 전기화학적 마이그레이션을 방지하는 방법에 관한 것이다.The present invention relates to a preventive additive for inhibiting electrochemical migration causing an electrical short circuit of copper and a method for preventing electrochemical migration using a material mixed with such additives.
산업사회가 발전함에 따라 고성능, 고신뢰성 전자부품이 필요하게 되고, 그 적용분야가 크게 확장되고 있다. 따라서 반도체 등 전자부품이 고밀도화되고, 고집적화되고 있다. 이에 따라, 그러한 전자부품에 사용되는 금속 배선이나 접합층의 선폭이나, 간격이 줄어들고 있으며, 그에 따라 새로운 신뢰성 문제가 발생하였다. 전자부품의 배선은 일반적으로 전기전도도 및 열전도도가 좋고, 가격이 저렴한 구리가 사용된다. 그러나, 전자부품의 배선이 수분에 노출되고, 두 배선 간에 전기가 흐르면 회로 상에 ECM(Electrochemical migration)이 발생되며, 이는 전자회로에서 전기적 단락(short)을 유발하여, 전자부품의 수명을 단축시킨다. As the industrial society develops, high-performance, high-reliability electronic components are needed, and their applications are greatly expanded. Therefore, electronic parts such as semiconductors have been densified and highly integrated. As a result, the line widths and spacings of the metal wirings and the bonding layers used in such electronic components are reduced, thereby causing new reliability problems. In general, the wiring of an electronic component is made of copper, which has good electrical conductivity and thermal conductivity and is inexpensive. However, when the wiring of the electronic component is exposed to moisture and electricity flows between the two wirings, electrochemical migration (ECM) occurs on the circuit, which causes an electrical short in the electronic circuit, which shortens the life of the electronic component. .
구리의 ECM 반응 메커니즘은 아래의 2가지 단계로 구별할 수 있다.The ECM reaction mechanism of copper can be distinguished in two steps below.
1단계 : 양극 반응 Step 1: Anode Reaction
Cu + 4H2O → Cu(OH)2 + O2 + 3H2Cu + 4H 2 O → Cu (OH) 2 + O 2 + 3H 2
2단계 : 음극 반응 Step 2: Cathode Reaction
Cu(OH)2 → CuO ↓ + H2OCu (OH) 2 → CuO ↓ + H 2 O
이러한 반응이 지속됨에 따라, CuO가 음극에서 양극으로 성장하여 수지상정(dendrite)을 발생시켜 전기적 단락을 유발한다.As this reaction continues, CuO grows from the cathode to the anode, generating dendrite, causing an electrical short.
또한 구리의 ECM은 클로라이드 이온에 의해 더욱 가속화 된다. 반도체 패키지 공정에서 사용되는 EMC나 언더필은 제조 공정상 클로라이드 이온이 포함된다. 따라서 실제 구리 금속은 수 ppm 이하의 클로라이드 이온이 포함된 부식 환경에 노출된다. 부식 환경에 클로라이드 이온이 존재하는 경우, 구리의 양극에서는 다음과 같은 반응이 발생한다.In addition, the ECM of copper is further accelerated by chloride ions. EMC or underfill used in the semiconductor packaging process contains chloride ions in the manufacturing process. Thus, the actual copper metal is exposed to a corrosive environment containing up to several ppm of chloride ions. In the presence of chloride ions in the corrosive environment, the following reaction occurs at the copper anode.
Cu + Cl- → CuCl + e- Cu + Cl - → CuCl + e -
Cu + 2Cl- → CuCl2 + 2e- Cu + 2Cl - → CuCl 2 + 2e -
Cu2O + 4HCl → 2H[CuCl2] + H2OCu 2 O + 4HCl → 2H [CuCl 2 ] + H 2 O
H[CuCl2] → H+ + [CuCl2]- H [CuCl 2 ] → H + + [CuCl 2 ] -
[CuCl2]- → CuCl2 + e- [CuCl 2] - → CuCl 2 + e -
CuCl → Cu+ + Cl- CuCl → Cu + + Cl -
CuCl2 → Cu2+ + 2Cl- CuCl 2 → Cu 2+ + 2Cl -
한편 구리의 음극에서는 다음과 같은 반응이 발생한다.On the other hand, the following reaction occurs at the cathode of copper.
Cu+ + e- → CuCu + + e - → Cu
Cu2+ + 2e- → CuCu 2+ + 2e - → Cu
위와 같은 반응을 통해 클로라이드 이온은 재 순환되어 지속적으로 촉매의 역할을 한다. 이로 인해 미량의 클로라이드 이온도 구리의 ECM에는 치명적일 수 있다.Through the above reaction, chloride ions are recirculated to continuously serve as catalysts. This can cause traces of chloride ions to be fatal to the ECM of copper.
또한 구리의 ECM의 발생과 성장 속도는 습도, 온도, 전극 간격 등과 같은 환경적 요소들에 의존한다. ECM을 방지하기 위해서 인접한 금속 배선 층 사이에 폴리머 계열의 물질을 도포하는 방법 등이 존재하나, 이는 종래의 금속 배선 제작 및 패키징에 추가적인 공정을 진행함으로써 시간적, 금전적인 손실을 야기한다. 그래서, 추가적인 공정을 요구하지 않고, 용이하게 구리의 ECM을 방지하기 위한 연구가 필요한 시점이다.The generation and growth rate of the ECM of copper also depends on environmental factors such as humidity, temperature, electrode spacing, etc. In order to prevent ECM, there is a method of applying a polymer-based material between adjacent metal wiring layers, but this causes additional time and money loss by further processing in conventional metal wiring fabrication and packaging. Therefore, it is time to study to easily prevent the ECM of copper without requiring an additional process.
본 발명의 일 목적은 구리 금속 배선에서 발생하기 쉬운 ECM을 방지할 수 있는 방지 첨가제 및 이를 이용한 방법을 제공하고자 한다.One object of the present invention is to provide a preventive additive and a method using the same, which can prevent ECM from occurring in copper metal wiring.
본 발명의 일실시예인 구리의 전기화학적 마이그레이션 방지 첨가제는 폴리에틸렌 글리콜(Polyethylene glycol (PEG)), 폴리프로필렌 글리콜(Polypropylene glycol(PPG)), 이미다졸(Imidazole), 폴리비닐피로리돈(Polyvinylpyrrolidone(PVP)), 야누스 그린 B(Janus Green B (JGB)), 벤조트리아졸(Benzotriazole (BTA)), 폴리-디알릴디메틸암모니움 클로라이드(Poly-diallyldimethylammonium chloride(PolyDADMAC)), 싸이오우레아(Thiourea), 디데실-디메틸암모니움 클로라이드(Didecyl-dimethylammonium chloride (DDAC)), 디아진 블랙(Diazine black (DB)), 1-부틸-3-메틸이미다졸리움 하이드로겐 설파이트(1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4)), 니트로테트라졸리움 블루 클로라이드(Nitrotetrazolium blue chloride (NTBC)), 6-아미노벤조-싸이아졸(6-aminobenzo-thiazole), N-부틸-메틸 피레리디늄 브로마이드(N-butyl-methyl piperidinium bromide (PP14Br)), 폴리에틸렌이민(Polyethyleneimine (PEI)), 4-아미노-2,1,3-벤조싸이아디아졸(4-Amino-2,1,3-benzothiadiazole), 데나토니움 벤조에이트(Denatonium benzoate), 브랜치드 4차 암모니움 설팩턴트(Branched quaternary ammonium surfactant), 4-니트로페놀(4-Nitrophenol), 디알릴메틸아민 하이드로클로라이드 및 설파 디옥사이드 혼성 고분자(Diallylmethylamine hydrochloride and sulfur dioxide copolymer), 디알릴아민 하이드로클로라이드 말레산 혼성 고분자(Diallylamine hydrochloride maleic acid copolymer (410C)), 에피클로로하이드린 디알릴아민 하이드로클로라이드 4차 아민 혼성고분자( Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), 메틸디알릴아민 하이드로클로라이드 설퍼 디옥사이드 혼성고분자(Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), 도데실 트리메틸 암모니움 브로마이드(Dodecyltrimethylammoniumbromide (DTAB)), 피리딘(Pyridine), 젤라틴(Gelatin) 중 적어도 하나를 포함하며, 단독 사용 혹은 복합 사용시 구리 금속 배선의 수지상정의 생성 및 성장 중 적어도 하나를 지연시킬 수 있다.An electrochemical migration prevention additive of copper according to one embodiment of the present invention is polyethylene glycol (PEG), polypropylene glycol (PPG), imidazole, polyvinylpyrrolidone (PVP) ), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Dideda Didecyl-dimethylammonium chloride (DDAC), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), Nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl pyreridinium bromide (N -butyl-methyl piperidinium bromide (PP 14 Br)), Polyethyleneimine (PEI), 4-Amino-2,1,3-benzothiadiazole, Denatonium benzoate, Branch 4 Branched quaternary ammonium surfactant, 4-nitrophenol, diallylmethylamine hydrochloride and sulfur dioxide copolymer, diallylamine hydrochloride maleic acid hybrid Polymer (Diallylamine hydrochloride maleic acid copolymer (410C)), Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880), Methyldiallylamine hydrochloride sulfur dioxide hybrid polymer (Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), Dodecyltrimethyl ammonium bromide iumbromide (DTAB)), pyridine, gelatin, and at least one of delayed generation and growth of dendrite of copper metal wiring when used alone or in combination.
본 발명의 다른 실시예인 전기화학적 마이그레션의 방지방법은 폴리에틸렌 글리콜(Polyethylene glycol (PEG)), 폴리프로필렌 글리콜(Polypropylene glycol(PPG)), 이미다졸(Imidazole), 폴리비닐피로리돈(Polyvinylpyrrolidone(PVP)), 야누스 그린 B(Janus Green B (JGB)), 벤조트리아졸(Benzotriazole (BTA)), 폴리-디알릴디메틸암모니움 클로라이드(Poly-diallyldimethylammonium chloride(PolyDADMAC)), 싸이오우레아(Thiourea), 디데실-디메틸암모니움 클로라이드(Didecyl-dimethylammonium chloride (DDAC)), 디아진 블랙(Diazine black (DB)), 1-부틸-3-메틸이미다졸리움 하이드로겐 설파이트(1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4)), 니트로테트라졸리움 블루 클로라이드(Nitrotetrazolium blue chloride (NTBC)), 6-아미노벤조-싸이아졸(6-aminobenzo-thiazole), N-부틸-메틸 피레리디늄 브로마이드(N-butyl-methyl piperidinium bromide (PP14Br)), 폴리에틸렌이민(Polyethyleneimine (PEI)), 4-아미노-2,1,3-벤조싸이아디아졸(4-Amino-2,1,3-benzothiadiazole), 데나토니움 벤조에이트(Denatonium benzoate), 브랜치드 4차 암모니움 설팩턴트(Branched quaternary ammonium surfactant), 4-니트로페놀(4-Nitrophenol), 디알릴메틸아민 하이드로클로라이드 및 설파 디옥사이드 혼성 고분자(Diallylmethylamine hydrochloride and sulfur dioxide copolymer), 디알릴아민 하이드로클로라이드 말레산 혼성 고분자(Diallylamine hydrochloride maleic acid copolymer (410C)), 에피클로로하이드린 디알릴아민 하이드로클로라이드 4차 아민 혼성고분자( Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), 메틸디알릴아민 하이드로클로라이드 설퍼 디옥사이드 혼성고분자(Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), 도데실 트리메틸 암모니움 브로마이드(Dodecyltrimethylammoniumbromide (DTAB)), 피리딘(Pyridine), 젤라틴(Gelatin) 중 적어도 하나를 포함하는 전기화학적 마이그레이션 방지 첨가제를 준비하는 단계; 및 상기 준비된 방지 첨가제를 EMC(Epoxy molding compound) 또는 언더필(Underfill) 물질에 혼합하여, 구리 금속 배선의 몰딩에 이용하는 단계를 포함한다.In another embodiment of the present invention, a method for preventing electrochemical migration may include polyethylene glycol (PEG), polypropylene glycol (PPG), imidazole, and polyvinylpyrrolidone (PVPP). )), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Didecyl-dimethylammonium chloride (DDAC), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl pyreridinium bromide ( N-butyl-methyl piperidinium bromide (PP 14 Br)), poly Polyethyleneimine (PEI), 4-amino-2,1,3-benzothiadiazole, Denatonium benzoate, Branch 4 Branched quaternary ammonium surfactant, 4-nitrophenol, diallylmethylamine hydrochloride and sulfur dioxide copolymer, diallylamine hydrochloride maleic acid hybrid Polymer (Diallylamine hydrochloride maleic acid copolymer (410C)), Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880), Methyldiallylamine hydrochloride sulfur dioxide hybrid polymer (Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), Dodecyltrimethylammoniumbromide (DTAB)), pyridine (Pyridine), gelatin (Gelatin) comprising the steps of preparing an electrochemical migration prevention additive; And mixing the prepared prevention additive with an epoxy molding compound (EMC) or an underfill material and using the same for molding copper metal wires.
상기 물질들은 단독 사용 혹은 복합 사용시 구리 금속 배선 사이에서 수지상정의 생성 및 성장 중 적어도 하나를 지연시킬 수 있다.The materials may retard at least one of the formation and growth of dendritic crystals between copper metal interconnects, either alone or in combination.
본 발명을 통하여, 구리 금속 배선 사이에서 발생하는 수지상정의 생성 또는 성장을 지연 또는 방지하여 전기화학적 마이그레이션을 억제할 수 있다. 이를 통하여, 회로의 단락을 궁극적으로 방지할 수 있다. 또한, 이러한 방지 첨가제를, 반도체 등의 패키징 공정의 EMC 또는 언더필 재료와 혼합하여 사용할 경우, 반도체 소자의 신뢰도를 높일 수 있다.Through the present invention, electrochemical migration can be suppressed by delaying or preventing generation or growth of dendritic crystals occurring between copper metal wirings. This can ultimately prevent short circuits. In addition, when such an additive is used in combination with an EMC or underfill material in a packaging process such as a semiconductor, the reliability of the semiconductor device can be improved.
도 1은 반도체 패키지(wire bond)의 모식도 및 부식유형의 이미지이다. 1 is a schematic view of a semiconductor package (wire bond) and the image of the corrosion type.
도 2는 반도체 패키지(Flip chip)의 모식도 및 부식유형의 이미지이다.2 is a schematic diagram of a semiconductor package (Flip chip) and the image of the corrosion type.
도 3은 구리 배선 사이에서 발생되는 EMC 과정에 관한 모식도이다. 3 is a schematic diagram of an EMC process occurring between copper wires.
도 4는 수지상정의 성장 및 억제를 나타내는 모식도이다.4 is a schematic diagram showing growth and inhibition of dendrite.
도 5는 실험예 1의 ECM time의 평균(average) 및 표준 편차(standard deviation)에 대한 그래프이다. 5 is a graph of the average and standard deviation of ECM time of Experimental Example 1. FIG.
도 6은 실험예 1의 ECM time에 대한 수지상정의 길이를 나타내는 그래프이다.FIG. 6 is a graph showing the length of dendrite versus ECM time of Experimental Example 1. FIG.
도 7은 실험예 2의 ECM time의 평균(average) 및 표준 편차(standard deviation)에 대한 그래프이다. 7 is a graph showing the average and standard deviation of ECM time of Experimental Example 2. FIG.
도 8은 실험예 2의 ECM time에 대한 수지상정의 길이를 나타내는 그래프이다. FIG. 8 is a graph showing the length of dendrite versus ECM time of Experimental Example 2. FIG.
도 9은 실험예 3의 ECM time의 평균(average) 및 표준 편차(standard deviation)에 대한 그래프이다. 9 is a graph showing the average and standard deviation of ECM time of Experimental Example 3. FIG.
도 10은 실험예 3의 ECM time에 대한 수지상정의 길이를 나타내는 그래프이다.FIG. 10 is a graph showing the length of dendrite versus ECM time of Experimental Example 3. FIG.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that a feature, component, or the like described in the specification exists, and one or more other features or components may not be present or added thereto. It does not mean nothing.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
상술한 바와 같이, 특히, 반도체 패키지 공정에서, 두 배선 간에 전기가 흐르면, 회로 상에 전기화학적 마이그레이션(eletrochemical migration)이 발생되며, 이는 전자회로에서 전기적 단락(short)을 유발하여, 전자부품의 수명을 단축시킨다. 도 1에 반도체 패키지(wire bond)의 모식도 및 부식유형을 나타내었다. 도 1에 나타낸 바와 같이, 전기화학적 마이그레이션이 발생되고, 리드 프레임(lead frame)의 단락현상이 발생되기 쉽다. 또한, 도 2에 반도체 패키지(Flip chip)의 모식도 및 부식유형을 나타내었다. 도 2에 나타낸 바와 같이, 전극간 거리가 더 미세하며, 범프(bump) 사이에서, 전기화학적 마이그레이션이 발생되고 단락현상이 역시 발생되기 쉽다. 도 3에 구리 배선에서 발생하는 ECM 메커니즘을 나타내었다. 도 3에 나타낸 바와 같이, 전극 사이에서 수분(moisture)이 흡수되면, 일방의 전극에서 용해(dissolution)가 발생하여, 전극 금속의 이온이 해리된다. 이러한 금속 이온들이 타방의 전극에 증착(deposition)하게 된다. 증착 후 성장을 통하여 수지상정(dendrite)이 발생되고 결국 단락(short)이 발생하게 된다. As described above, in particular, in a semiconductor package process, when electricity flows between two wires, an electrochemical migration occurs on the circuit, which causes an electrical short in the electronic circuit, resulting in a lifetime of the electronic component. Shorten. 1 shows a schematic diagram and a corrosion type of a semiconductor package (wire bond). As shown in FIG. 1, electrochemical migration occurs, and short-circuit phenomenon of a lead frame is likely to occur. In addition, FIG. 2 shows a schematic diagram and corrosion type of a semiconductor package (Flip chip). As shown in Fig. 2, the distance between electrodes is finer, and between bumps, electrochemical migration occurs and short circuiting is also likely to occur. 3 shows the ECM mechanism occurring in the copper wiring. As shown in FIG. 3, when moisture is absorbed between the electrodes, dissolution occurs in one electrode, and ions of the electrode metal dissociate. These metal ions are deposited on the other electrode. After deposition, dendrite is generated and eventually a short occurs.
본 발명자들은 컨덕터(conductor) 사이에 존재하는 패키징 물질인 EMC(Epoxy Mold Compound)나 언더필(Underfill) 물질에, 본 발명의 일실시예인 첨가제를 추가하여 이용하면, 수분을 흡수하더라도, 용해나 증착 반응을 억제하여, 단락 현상이 지연되거나 억제될 수 있음을 착안하여, 본 발명인 전기화학적 마이그레이션을 방지하기 위한 기술을 도출하였다.The inventors of the present invention have added an additive, which is an embodiment of the present invention, to an epoxy mold compound (EMC) or an underfill material, which is a packaging material present between conductors, to dissolve or deposit even if water is absorbed. By suppressing the present invention, the inventors have focused on the fact that the short circuit phenomenon can be delayed or suppressed, thereby deriving a technique for preventing the electrochemical migration of the present invention.
또한, 수지상의 증착(dendritic deposition)은 매스 트랜스포트(Mass transport)가 제한되면 발생한다. 매스 트랜스포트는 전극 반응 동안 벌크 솔루션(bulk solution)과 계면(electrode surface) 사이에서 일어나는 물질의 전달을 의미하며, 이는 확산(diffusion)에 의하여 일어나고, 확산이 반응의 속도를 결정한다고 알려져 있다. 이러한 매스 트랜스포트는 전하 트랜스포트(Charge transport)에 의한 수지상정의 성장 뿐만 아니라, 이동한 금속 이온의 분산을 통해 수지상정이 성장하기 위한 핵 생성 영역의 분산을 의미한다. 그리고, 레벨러(leveler), 평탄제 (Suppressor), 결정 미세화제(grain refiner)를 이용하면, 수지상정에 의한 회로 단락을 감소시킬 수 있다고 알려져 있다. In addition, dendritic deposition occurs when mass transport is limited. Mass transport refers to the transfer of material that occurs between the bulk solution and the electrode surface during electrode reactions, which is caused by diffusion, and diffusion is known to determine the rate of the reaction. This mass transport means not only growth of the dendrite by charge transport, but also dispersion of the nucleation region for the dendrite to grow through dispersion of the moved metal ions. In addition, it is known that the use of a leveler, a suppressor, and a grain refiner can reduce the short circuit caused by dendrite.
수지상정의 성장은 마이크로-러프(micro-rough)한 표면에서, 피크(peak)부분이 골(trough)부분 보다 증착이 많이 발생한다. 즉, 수지상정의 성장을 억제하기 위하여, 레벨러, 평탄제, 결정 미세화제의 역할이 매우 중요한 것이다. 이를 나타내는 모식도를 도 4에 나타내었다. 도 4(a)와 같이, 피크 위치에 점점 수지상정이 형성된다. 반면에, 도 4(b)와 같이, 평탄제, 레벨러, 결정 미세화제가 존재하는 경우, 수지상정의 성장이 억제된다.Dendritic growth is more likely to occur at the peak portion of the micro-rough surface than the trough portion at the micro-rough surface. That is, in order to suppress the growth of dendrite, the role of the leveler, the planarizing agent, and the crystal refiner is very important. A schematic diagram illustrating this is shown in FIG. 4. As shown in Fig. 4A, the dendrite is gradually formed at the peak position. On the other hand, as shown in FIG. 4 (b), when the leveling agent, the leveler and the crystal refiner are present, the growth of the dendrite is suppressed.
본 발명의 일실시예인 구리의 전기화학적 마이그레이션 방지 첨가제는 폴리에틸렌 글리콜(Polyethylene glycol (PEG)), 폴리프로필렌 글리콜(Polypropylene glycol(PPG)), 이미다졸(Imidazole), 폴리비닐피로리돈(Polyvinylpyrrolidone(PVP)), 야누스 그린 B(Janus Green B (JGB)), 벤조트리아졸(Benzotriazole (BTA)), 폴리-디알릴디메틸암모니움 클로라이드(Poly-diallyldimethylammonium chloride(PolyDADMAC)), 싸이오우레아(Thiourea), 디데실-디메틸암모니움 클로라이드(Didecyl-dimethylammonium chloride (DDAC)), 디아진 블랙(Diazine black (DB)), 1-부틸-3-메틸이미다졸리움 하이드로겐 설파이트(1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4)), 니트로테트라졸리움 블루 클로라이드(Nitrotetrazolium blue chloride (NTBC)), 6-아미노벤조-싸이아졸(6-aminobenzo-thiazole), N-부틸-메틸 피레리디늄 브로마이드(N-butyl-methyl piperidinium bromide (PP14Br)), 폴리에틸렌이민(Polyethyleneimine (PEI)), 4-아미노-2,1,3-벤조싸이아디아졸(4-Amino-2,1,3-benzothiadiazole), 데나토니움 벤조에이트(Denatonium benzoate), 브랜치드 4차 암모니움 설팩턴트(Branched quaternary ammonium surfactant), 4-니트로페놀(4-Nitrophenol), 디알릴메틸아민 하이드로클로라이드 및 설파 디옥사이드 혼성 고분자(Diallylmethylamine hydrochloride and sulfur dioxide copolymer), 디알릴아민 하이드로클로라이드 말레산 혼성 고분자(Diallylamine hydrochloride maleic acid copolymer (410C)), 에피클로로하이드린 디알릴아민 하이드로클로라이드 4차 아민 혼성고분자( Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), 메틸디알릴아민 하이드로클로라이드 설퍼 디옥사이드 혼성고분자(Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), 도데실 트리메틸 암모니움 브로마이드(Dodecyltrimethylammoniumbromide (DTAB)), 피리딘(Pyridine), 젤라틴(Gelatin) 중 적어도 하나를 포함하며, 단독 사용 혹은 복합 사용시 구리 금속 배선의 수지상정의 생성 및 성장 중 적어도 하나를 지연시킬 수 있다. 또한, 본 발명의 다른 실시예인 구리의 전기화학적 마이그레이션 방지 방법은 상술한 방지 첨가제 중 하나를 준비하고, 상기 준비된 방지 첨가제를 EMC(Epoxy molding compound) 또는 언더필(Underfill) 물질에 혼합하여, 구리 금속 배선의 몰딩에 이용하는 단계를 포함한다. 상기 물질들은 단독 사용 혹은 복합 사용시 구리 금속 배선 사이에서 수지상정의 생성 및 성장 중 적어도 하나를 지연시킬 수 있다.An electrochemical migration prevention additive of copper according to one embodiment of the present invention is polyethylene glycol (PEG), polypropylene glycol (PPG), imidazole, polyvinylpyrrolidone (PVP) ), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Dideda Didecyl-dimethylammonium chloride (DDAC), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), Nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl pyreridinium bromide (N -butyl-methyl piperidinium bromide (PP 14 Br)), Polyethyleneimine (PEI), 4-Amino-2,1,3-benzothiadiazole, Denatonium benzoate, Branch 4 Branched quaternary ammonium surfactant, 4-nitrophenol, diallylmethylamine hydrochloride and sulfur dioxide copolymer, diallylamine hydrochloride maleic acid hybrid Polymer (Diallylamine hydrochloride maleic acid copolymer (410C)), Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880), Methyldiallylamine hydrochloride sulfur dioxide hybrid polymer (Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), Dodecyltrimethyl ammonium bromide iumbromide (DTAB)), pyridine, gelatin, and at least one of delayed generation and growth of dendrite of copper metal wiring when used alone or in combination. In addition, the electrochemical migration prevention method of copper, which is another embodiment of the present invention, prepares one of the above-mentioned prevention additives, and mixes the prepared prevention additives with an epoxy molding compound (EMC) or an underfill material to form a copper metal wiring It is used for the molding of. The materials may retard at least one of the formation and growth of dendritic crystals between copper metal interconnects, either alone or in combination.
이하, 실험예 및 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through experimental examples and examples.
(실험예 1)Experimental Example 1
본 발명의 효과를 확인하기 위한 기준 용액으로 전기전도도가 15MΩ 이상인 탈이온수에 염화나트륨(sodium chloride(NaCl))을 사용하여 클로라이드 이온(chloride ion)의 농도가 저농도인 용액과 고농도인 용액을 제작하였다. 클로라이드 이온은 양극 구리 금속의 이온화 반응을 가속화시켜 ECM 현상을 촉진시키므로, 본 실험에서는 클로라이드 이온 용액을 가속 환경으로 설정하였다. 저농도 클로라이드 이온 용액은 mild 한 환경을, 고농도 클로라이드 이온 용액은 corrosive한 환경을 모사하였으며, 이러한 가속 용액에 첨가제를 첨가하여 발명의 효과를 확인하고자 하였다. 본 실험예에서는 폴리에틸렌 글리콜, 이미다졸 및 벤조트리아졸을 가속 용액인 클로라이드 이온 용액에 첨가하여 ECM 방지 첨가제로서 사용하였다. 각 용액은 충분히 교반 후, 안정화를 위하여 충분한 에이징 시간을 부여하였다. 상기와 같이, 준비된 8 종류의 용액을 구리 배선에 떨어뜨려 ECM Time을 측정하는 실험을 각 용액당 5회 이상 실시하였다. 이러한 실험은 물방울 시험(Water drop test)으로서, IPC-TM-650에 준하여 Comb Type으로 제작된 구리 배선에 물방울을 떨어뜨리고, 구리 배선 양쪽에 전압을 인가하여, 두 구리 배선 사이에 수지상정이 연결되는 과정과 시간을 측정하는 평가 방법이다. 물방울 시험은 타 시험 방법과 비교하였을 때, 가혹한 조건으로 수지상정을 성장시켜, 단시간에 ECM을 관찰하는데 유용한 실험방법이다. 일반적으로 사용되는 항온항습시험과 비교하여, 1000배의 수지상정 성장속도 차가 발생한다는 보고에 의거하여, 본 실험 결과에서의 ECM time 차이는 실제 필드에서 사용되는 구리 배선의 ECM을 방지하는데 효과적일 것으로 판단되었다. 본 실험에서는 대기 상태(대기온도, 대기습도)에서 3V의 전압을 인가하여 진행되었고, 이와 동시에 ECM time을 측정하였다. Sodium chloride (NaCl) was used in deionized water having an electrical conductivity of 15 MΩ or more as a reference solution for confirming the effect of the present invention, and a solution having a high concentration of chloride ions (chloride ion) was prepared. Since chloride ions accelerate the ionization reaction of the anodic copper metal to promote the ECM phenomenon, the chloride ion solution was set as the accelerated environment in this experiment. The low chloride chloride solution simulated a mild environment and the high chloride chloride solution was corrosive, and additives were added to the accelerated solution to confirm the effect of the invention. In the present experimental example, polyethylene glycol, imidazole and benzotriazole were added to the chloride ion solution as an acceleration solution and used as an ECM prevention additive. Each solution was stirred well before giving sufficient aging time for stabilization. As described above, the experiment of measuring the ECM Time by dropping the prepared eight kinds of solutions on the copper wiring was performed five times or more for each solution. This test is a water drop test, in which a drop of water is dropped on a copper wire made of a comb type according to IPC-TM-650, and a voltage is applied to both sides of the copper wire to connect a resin phase between the two copper wires. It is an evaluation method to measure the process and time. The drop test is a useful test method for observing ECM in a short time by growing dendrite under severe conditions compared to other test methods. Based on the report that 1000 times of dendrite growth rate difference occurs compared with the commonly used constant temperature and humidity test, the ECM time difference in this experiment result will be effective to prevent the ECM of copper wiring used in the field. Judging. In this experiment, a voltage of 3V was applied in the standby state (atmosphere temperature and atmospheric humidity), and ECM time was measured at the same time.
도 5에 가속 용액과 방지 첨가제 용액에 대한 ECM time의 평균(average) 및 표준 편차(standard deviation)를 나타내었다. 도 5에 나타낸 바와 같이, 저농도 및 고농도의 클로라이드 이온 용액과 비교하여, 폴리에틸렌 글리콜, 이미다졸 벤조트리아졸을 첨가한 용액에서, 수지상정이 생성되기까지 시간이 길게 나타남을 확인할 수 있으며, 그 효과는 클로라이드 이온의 농도에 따라 차이가 발생함을 알 수 있었다.5 shows the average and standard deviation of ECM time for the accelerated solution and the preventive additive solution. As shown in Figure 5, compared with the chloride and low concentration of the chloride ion solution, in the solution of polyethylene glycol, imidazole benzotriazole, it can be seen that a long time until the dendrite is produced, the effect is It can be seen that the difference occurs depending on the concentration of chloride ions.
도 6에 수지상정이 연결되는 과정에서 일정 시간마다 수지상정이 성장하는 길이를 측정하여 그래프로 나타내었다. 또한, 이 그래프는 두 구리 배선 사이에서 수지상정이 연결되었을 때의 거리를 1로 산출하여, 이에 대한 분율로 계산한 그래프이다. 도 6에 나타낸 바와 같이, 물방울 시험에 사용한 용액에 따라 초기 수지상정이 생성되는 시점과 성장하는 속도에 차이가 있음을 알 수 있다. 특히 ECM 방지 첨가제인 폴리에틸렌 글리콜, 이미다졸과 벤조트리아졸을 첨가한 경우, 서로 다른 메커니즘을 통해 ECM을 방지함을 확인할 수 있었다. 폴리에틸렌 글리콜의 경우, 수지상정이 생성되기까지 소요되는 시간이 가장 길게 나타났으며, 이는 초기 수지상정이 생성되는 시점을 지연하는 역할을 수행함을 의미한다. 폴리에틸렌 글리콜의 경우, 폴리에틸렌 글리콜의 에테르 기(ether group)가 양극에서 용출된 구리이온을 트래핑(trapping)함으로써 음극에서 구리 이온이 환원되는 것을 방지한다. 폴리에틸렌 글리콜의 경우 클로라이드 이온이 구리이온 트래핑에 브릿지(bridge) 역할을 하므로, 고농도 클로라이드 이온에서 더 좋은 효과를 나타낸다. 용출되는 구리 이온의 농도가 폴리에틸렌 글리콜의 농도 대비 과포화되면 음극에서 구리 이온의 환원이 발생하여 수지상정이 성장하게 되며, 폴리에틸렌 글리콜의 구리 이온 트래핑이 초기 수지상정의 생성을 억제하는 것으로 판단된다. 반면에, 이미다졸의 경우, 폴리에틸렌 글리콜과 유사하게 수지상정의 생성 시간을 지연시키는 역할을 하였으나, 이보다는 수지상정의 성장을 지연시키는 역할을 수행함을 확인할 수 있었다. 수지상정은 도금 과정이 부분적으로 확산 제어될 때 발생하는 데, 마이크로 단위의 표면조도를 가진 재료는 볼록한 영역이 오목한 영역보다 흡착이 더 많이 발생한다. 질소 작용기(Nitrogen functional group)를 포함하는 이미다졸은 구리 배선 표면의 볼록한 영역에 흡착되어 구리 이온의 환원을 방지하여 수지상정의 성장을 지연시키는 것으로 판단된다. 반면에, 벤조 트리아졸의 경우, 수지상정이 생성되기까지 소요되는 시간은 이미다졸보다는 길었으나, 폴리에틸렌 글리콜보다는 짧았다. 이 역시, 이미다졸처럼 일부 수지상정의 성장 속도를 지연시키는 역할을 하는 것으로 판단되었다.In FIG. 6, the length of the dendrite growth at every predetermined time in the process of connecting the dendrite was measured and shown in a graph. In addition, this graph is a graph obtained by calculating the distance when the dendrite is connected between two copper wirings to 1 and calculating the fraction thereof. As shown in FIG. 6, it can be seen that there is a difference in the timing at which the initial dendrite is generated and the growth rate depending on the solution used in the drop test. In particular, when ECG prevention additives polyethylene glycol, imidazole and benzotriazole were added, ECM was prevented through different mechanisms. In the case of polyethylene glycol, it takes the longest time to generate a dendrite, which means that it plays a role of delaying the time point at which the initial dendrite is generated. In the case of polyethylene glycol, the ether group of polyethylene glycol traps copper ions eluted at the anode, thereby preventing the reduction of copper ions at the cathode. In the case of polyethylene glycol, chloride ions serve as a bridge to copper ion trapping, and thus have a better effect at high concentrations of chloride ions. When the concentration of the eluted copper ions is supersaturated relative to the concentration of the polyethylene glycol, reduction of the copper ions occurs at the cathode, thereby increasing the dendritic crystals, and the copper ion trapping of the polyethylene glycol is believed to suppress the formation of the initial dendrite. On the other hand, in the case of imidazole, similarly to polyethylene glycol played a role of delaying the production time of the dendrite, it was confirmed that the role of delaying the growth of the dendrite. The dendrite occurs when the plating process is partially diffusion controlled. Materials with surface roughness in micro units generate more adsorption than convex areas. It is believed that imidazole containing a nitrogen functional group is adsorbed on the convex region of the copper wiring surface to prevent the reduction of copper ions, thereby delaying the growth of the dendrite. On the other hand, in the case of benzotriazole, the time taken for dendritic formation to be longer than that of imidazole, but shorter than polyethylene glycol. This also, like imidazole, was thought to play a role in slowing the growth rate of some dendrites.
(실험예 2)Experimental Example 2
실험예 1과 동일한 실험조건으로 실험을 실시하였고, 가속 용액 2종과 폴리에틸렌 글리콜, 이미다졸, 벤조트리아졸 이외에, 폴리에틸렌 글리콜+이미다졸을 방지 첨가제로 첨가하여 실험하였다. 도 7에, 도 5와 마찬가지로, 가속 용액과 방지 첨가제 용액에 대한 ECM time의 평균(average) 및 표준 편차(standard deviation)를 나타내었다. 또한, 도 8에, 도 6과 마찬가지로 수지상정이 연결되는 과정에서 일정 시간마다 수지상정이 성장하는 길이를 측정하여 그래프로 나타내었다. 실험예 1과 비교하였을 때, 가속 용액에 첨가제를 단독 첨가하는 경우보다, 복합 첨가하는 경우 ECM time이 더 길게 나타나는 것을 확인할 수 있었다. 폴리에틸렌 글리콜+이미다졸은 수지상정이 생성되기까지 소요시간은 폴리에틸렌 글리콜보다 길게 나타났으며, 이미다졸처럼 일부 수지상정의 성장 속도를 지연시키는 역할을 하는 것으로 판단되었다.Experiments were carried out under the same experimental conditions as in Experimental Example 1, and in addition to the two accelerated solutions, polyethylene glycol, imidazole, and benzotriazole, polyethylene glycol + imidazole was added as an additive to prevent the experiment. In FIG. 7, as in FIG. 5, the average and standard deviation of ECM time for the acceleration solution and the prevention additive solution are shown. In addition, in FIG. 8, the length of the dendrite growth is measured and shown in a graph in the process of connecting the dendrite in the same manner as in FIG. 6. Compared with Experimental Example 1, it was confirmed that the ECM time appears longer when complex addition than when the additive is added to the accelerated solution alone. Polyethylene glycol + imidazole was longer than polyethylene glycol for the formation of dendrite, and, like imidazole, it was considered to delay the growth rate of some dendrite.
(실험예 3)Experimental Example 3
실험예 1과 동일한 실험조건으로 실험을 실시하였고, 가속 용액 2종과 폴리에틸렌 글리콜, 이미다졸, 벤조트리아졸, 폴리에틸렌 글리콜+이미다졸 이외에 야누스 그린 B+이미다졸, 야누스 그린 B+벤조트리아졸을 방지 첨가제로 첨가하여 실험하였다. 야누스 그린 B의 경우, 가속 용액에 단독 첨가한 경우 ECM time을 증가시키는 효과가 나타나지 않았지만, 이를 다른 첨가제와 복합 첨가하는 경우 ECM time이 증가하는 것을 확인할 수 있었다. 도 8에, 도 5와 마찬가지로, 가속 용액과 방지 첨가제 용액에 대한 ECM time의 평균(average) 및 표준 편차(standard deviation)를 나타내었다. 또한, 도 9에, 도 6과 마찬가지로 수지상정이 연결되는 과정에서 일정 시간마다 수지상정이 성장하는 길이를 측정하여 그래프로 나타내었다. 야누스 그린 B+이미다졸은 수지상정이 생성되기까지 소요시간은 벤조트리아졸과 유사하게 나타났으나, 수지상정의 성장 속도 지연이 다른 용액에 비해 크게 나타났다. 이는 용액 내 야누스 그린 B가 이미다졸의 수지상정 성장 속도 지연 효과를 향상시키기 때문이라고 판단된다. 또한, 야누스 그린 B+벤조트리아졸은 수지상정이 생성되기까지 소요시간이 다른 용액에 비해 크게 나타났다. 이는 용액 내 야누스 그린 B와 벤조트리아졸의 상호 작용에 의한 효과로 판단된다.The experiment was carried out under the same experimental conditions as in Experimental Example 1, except for two accelerated solutions, polyethylene glycol, imidazole, benzotriazole, polyethylene glycol + imidazole, and Janus green B + imidazole and Janus green B + benzotriazole as anti-additive Experiment by addition. In the case of Janus Green B, the ECM time was not increased when added to the accelerated solution alone, but when it was added in combination with other additives, the ECM time was increased . In FIG. 8, as in FIG. 5, the average and standard deviation of ECM time for the acceleration solution and the prevention additive solution are shown. In addition, in Fig. 9, the length of the dendrite growth is measured in a certain time in the process of connecting the dendrite as shown in Figure 6 is shown in a graph. Janus Green B + imidazole showed similar time as the benzotriazole before the dendrite was formed, but the growth rate of the dendrite was significantly higher than that of other solutions. This is considered to be because Janus Green B in solution improves the dendritic growth rate delay effect of imidazole. In addition, Janus Green B + benzotriazole showed a longer time required for the formation of dendrite than other solutions. This is judged by the effect of interaction of Janus Green B with benzotriazole in the solution.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.

Claims (3)

  1. 폴리에틸렌 글리콜(Polyethylene glycol (PEG)), 폴리프로필렌 글리콜(Polypropylene glycol(PPG)), 이미다졸(Imidazole), 폴리비닐피로리돈(Polyvinylpyrrolidone(PVP)), 야누스 그린 B(Janus Green B (JGB)), 벤조트리아졸(Benzotriazole (BTA)), 폴리-디알릴디메틸암모니움 클로라이드(Poly-diallyldimethylammonium chloride(PolyDADMAC)), 싸이오우레아(Thiourea), 디데실-디메틸암모니움 클로라이드(Didecyl-dimethylammonium chloride (DDAC)), 디아진 블랙(Diazine black (DB)), 1-부틸-3-메틸이미다졸리움 하이드로겐 설파이트(1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4)), 니트로테트라졸리움 블루 클로라이드(Nitrotetrazolium blue chloride (NTBC)), 6-아미노벤조-싸이아졸(6-aminobenzo-thiazole), N-부틸-메틸 피레리디늄 브로마이드(N-butyl-methyl piperidinium bromide (PP14Br)), 폴리에틸렌이민(Polyethyleneimine (PEI)), 4-아미노-2,1,3-벤조싸이아디아졸(4-Amino-2,1,3-benzothiadiazole), 데나토니움 벤조에이트(Denatonium benzoate), 브랜치드 4차 암모니움 설팩턴트(Branched quaternary ammonium surfactant), 4-니트로페놀(4-Nitrophenol), 디알릴메틸아민 하이드로클로라이드 및 설파 디옥사이드 혼성 고분자(Diallylmethylamine hydrochloride and sulfur dioxide copolymer), 디알릴아민 하이드로클로라이드 말레산 혼성 고분자(Diallylamine hydrochloride maleic acid copolymer (410C)), 에피클로로하이드린 디알릴아민 하이드로클로라이드 4차 아민 혼성고분자( Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), 메틸디알릴아민 하이드로클로라이드 설퍼 디옥사이드 혼성고분자(Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), 도데실 트리메틸 암모니움 브로마이드(Dodecyltrimethylammoniumbromide (DTAB)), 피리딘(Pyridine), 젤라틴(Gelatin) 중 적어도 하나를 포함하며, Polyethylene glycol (PEG), Polypropylene glycol (PPG), Imidazole, Polyvinylpyrrolidone (PVP), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Didecyl-dimethylammonium chloride (DDAC) ), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), nitrotezolium blue Nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl piperidinium bromide (PP 14 Br), polyethylene Polyethyleneimine (PEI), 4-amino-2,1,3-benzothiadiazole (4-A mino-2,1,3-benzothiadiazole, Denatonium benzoate, branched quaternary ammonium surfactant, 4-nitrophenol, diallylmethylamine Diallylmethylamine hydrochloride and sulfur dioxide copolymer, diallylamine hydrochloride maleic acid copolymer (410C), epichlorohydrin diallylamine hydrochloride quaternary amine hybrid polymer (Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl), Dodecyltrimethylammonium bromide (DTAB), Pyridine At least one of gelatin ,
    구리 금속 배선의 수지상정의 생성 및 성장 중 적어도 하나를 지연시키는 전기화학적 마이그레이션 방지 첨가제.An electrochemical migration prevention additive that delays at least one of the generation and growth of dendrites of copper metal interconnects.
  2. 폴리에틸렌 글리콜(Polyethylene glycol (PEG)), 폴리프로필렌 글리콜(Polypropylene glycol(PPG)), 이미다졸(Imidazole), 폴리비닐피로리돈(Polyvinylpyrrolidone(PVP)), 야누스 그린 B(Janus Green B (JGB)), 벤조트리아졸(Benzotriazole (BTA)), 폴리-디알릴디메틸암모니움 클로라이드(Poly-diallyldimethylammonium chloride(PolyDADMAC)), 싸이오우레아(Thiourea), 디데실-디메틸암모니움 클로라이드(Didecyl-dimethylammonium chloride (DDAC)), 디아진 블랙(Diazine black (DB)), 1-부틸-3-메틸이미다졸리움 하이드로겐 설파이트(1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4)), 니트로테트라졸리움 블루 클로라이드(Nitrotetrazolium blue chloride (NTBC)), 6-아미노벤조-싸이아졸(6-aminobenzo-thiazole), N-부틸-메틸 피레리디늄 브로마이드(N-butyl-methyl piperidinium bromide (PP14Br)), 폴리에틸렌이민(Polyethyleneimine (PEI)), 4-아미노-2,1,3-벤조싸이아디아졸(4-Amino-2,1,3-benzothiadiazole), 데나토니움 벤조에이트(Denatonium benzoate), 브랜치드 4차 암모니움 설팩턴트(Branched quaternary ammonium surfactant), 4-니트로페놀(4-Nitrophenol), 디알릴메틸아민 하이드로클로라이드 및 설파 디옥사이드 혼성 고분자(Diallylmethylamine hydrochloride and sulfur dioxide copolymer), 디알릴아민 하이드로클로라이드 말레산 혼성 고분자(Diallylamine hydrochloride maleic acid copolymer (410C)), 에피클로로하이드린 디알릴아민 하이드로클로라이드 4차 아민 혼성고분자( Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), 메틸디알릴아민 하이드로클로라이드 설퍼 디옥사이드 혼성고분자(Methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl)), 도데실 트리메틸 암모니움 브로마이드(Dodecyltrimethylammoniumbromide (DTAB)), 피리딘(Pyridine), 젤라틴(Gelatin) 중 적어도 하나를 포함하는 전기화학적 마이그레이션 방지 첨가제를 준비하는 단계; 및Polyethylene glycol (PEG), Polypropylene glycol (PPG), Imidazole, Polyvinylpyrrolidone (PVP), Janus Green B (JGB), Benzotriazole (BTA), Poly-diallyldimethylammonium chloride (PolyDADMAC), Thiourea, Didecyl-dimethylammonium chloride (DDAC) ), Diazine black (DB), 1-butyl-3-methylimidazolium hydrogen sulfite (1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM] HSO 4 )), nitrotezolium blue Nitrotetrazolium blue chloride (NTBC), 6-aminobenzo-thiazole, N-butyl-methyl piperidinium bromide (PP 14 Br), polyethylene Polyethyleneimine (PEI), 4-amino-2,1,3-benzothiadiazole (4-A mino-2,1,3-benzothiadiazole, Denatonium benzoate, branched quaternary ammonium surfactant, 4-nitrophenol, diallylmethylamine Diallylmethylamine hydrochloride and sulfur dioxide copolymer, diallylamine hydrochloride maleic acid copolymer (410C), epichlorohydrin diallylamine hydrochloride quaternary amine hybrid polymer (Epichlorogydrinated diallylamine hydrochloride quaternary amine copolymer (880)), methyldiallylamine hydrochloride sulfur dioxide copolymer (220lCl), Dodecyltrimethylammonium bromide (DTAB), Pyridine At least one of gelatin Steps to prepare an electrochemical migration preventing additives; And
    상기 준비된 방지 첨가제를 상기 물질들을 EMC(Epoxy molding compound) 또는 언더필(Underfill) 물질에 혼합하여, 구리 금속 배선의 몰딩에 이용하는 단계를 포함하는 전기화학적 마이그레이션을 방지하는 방법.Mixing the prepared prevention additives with an epoxy molding compound (EMC) or underfill material to use for molding copper metal interconnects.
  3. 제2항에 있어서, 상기 금속 배선 사이에서 수지상정의 생성 및 성장 중 적어도 하나를 지연시키는 전기화학적 마이그레이션을 방지하는 방법.The method of claim 2, wherein the electrochemical migration that delays at least one of the generation and growth of dendrite between the metal interconnects is delayed.
PCT/KR2017/008453 2016-08-04 2017-08-04 Electrochemical migration preventive additive for copper and method for preventing electrochemical migration by using same WO2018026239A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160099331 2016-08-04
KR10-2016-0099331 2016-08-04
KR1020160107614A KR101769716B1 (en) 2016-08-04 2016-08-24 Electrochemical migration preventive additives and method for inhibiting electrochemical migration by using the same
KR10-2016-0107614 2016-08-24

Publications (1)

Publication Number Publication Date
WO2018026239A1 true WO2018026239A1 (en) 2018-02-08

Family

ID=59753230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/008453 WO2018026239A1 (en) 2016-08-04 2017-08-04 Electrochemical migration preventive additive for copper and method for preventing electrochemical migration by using same

Country Status (2)

Country Link
KR (1) KR101769716B1 (en)
WO (1) WO2018026239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128268B1 (en) 2020-05-28 2021-09-21 Nxp Usa, Inc. Power amplifier packages containing peripherally-encapsulated dies and methods for the fabrication thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289861B1 (en) 2019-07-03 2021-08-18 대한민국 Apparatus and method of fire visualization by metal migration

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321994A (en) * 1997-05-16 1998-12-04 Senju Metal Ind Co Ltd Method of preventing migration in conductor parts of electronics
JP2001257451A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Printed wiring board and method of manufacturing the same
KR20080017309A (en) * 2005-05-10 2008-02-26 다우 코닝 코포레이션 Process for minimizing electromigration in an electronic device
KR20080032455A (en) * 2006-10-10 2008-04-15 삼성전기주식회사 Anti-migration ink composition and conductive wiring manufactured using the same
JP2012231035A (en) * 2011-04-26 2012-11-22 Fujifilm Corp Molded circuit board and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321994A (en) * 1997-05-16 1998-12-04 Senju Metal Ind Co Ltd Method of preventing migration in conductor parts of electronics
JP2001257451A (en) * 2000-03-09 2001-09-21 Matsushita Electric Ind Co Ltd Printed wiring board and method of manufacturing the same
KR20080017309A (en) * 2005-05-10 2008-02-26 다우 코닝 코포레이션 Process for minimizing electromigration in an electronic device
KR20080032455A (en) * 2006-10-10 2008-04-15 삼성전기주식회사 Anti-migration ink composition and conductive wiring manufactured using the same
JP2012231035A (en) * 2011-04-26 2012-11-22 Fujifilm Corp Molded circuit board and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11128268B1 (en) 2020-05-28 2021-09-21 Nxp Usa, Inc. Power amplifier packages containing peripherally-encapsulated dies and methods for the fabrication thereof

Also Published As

Publication number Publication date
KR101769716B1 (en) 2017-08-18

Similar Documents

Publication Publication Date Title
US6444110B2 (en) Electrolytic copper plating method
KR100728852B1 (en) Semiconductor device
WO2018026239A1 (en) Electrochemical migration preventive additive for copper and method for preventing electrochemical migration by using same
US20020127847A1 (en) Electrochemical co-deposition of metals for electronic device manufacture
JP2006057177A (en) Electrolytic copper-plating bath and electrolytic copper-plating method
US11791248B2 (en) Coated semiconductor devices
KR20150079077A (en) a copper plating solution containing quinolinium leveler and copper plating method using the same
CN108728877A (en) Copper electroplating bath and electro-coppering plating film
WO2020180016A1 (en) Etching composition for silicon nitride film
KR20140092626A (en) Copper electroplating solution, copper electroplating apparatus and method of forming a copper bumper for a semiconductor chip in the electroplating apparatus
JP4809546B2 (en) Void-free copper plating method using organic solvent
KR20140091689A (en) Aqueous composition for etching of copper and copper alloys
KR20150047057A (en) a solution for copper plating and copper plating methods using the same
US20070205109A1 (en) Palladium plating solution
JP2008098646A (en) Semiconductor device
CN115074734A (en) Copper-reducing additive for aluminum substrate circuit board and preparation method and use method thereof
CN115011964A (en) Precise circuit etching solution additive and application thereof
WO2021095909A1 (en) Composition for plating nickel-phosphorus alloy
WO2020096374A2 (en) Electrolyte solution containing bromine ions for copper electroplating and method for copper electroplating using same
US20050175780A1 (en) Acidic solution for silver deposition and method for silver layer deposition on metal surfaces
KR101184558B1 (en) Pre-treating agent for electroless metal plating and manufacturing method of circuit board using the same
US20200102430A1 (en) Electrochemical migration-inhibiting additive and method for inhibiting electrochemical migration using the same
US4614963A (en) Plastics encapsulated electronic devices
CN110295382A (en) Sour copper leveling agent and its application, copper electroplating solution and preparation method thereof
US11946153B2 (en) Copper or copper alloy electroplating bath

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17837290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17837290

Country of ref document: EP

Kind code of ref document: A1