WO2018024157A1 - 信道状态信息的发送方法、接收方法、装置和*** - Google Patents

信道状态信息的发送方法、接收方法、装置和*** Download PDF

Info

Publication number
WO2018024157A1
WO2018024157A1 PCT/CN2017/094757 CN2017094757W WO2018024157A1 WO 2018024157 A1 WO2018024157 A1 WO 2018024157A1 CN 2017094757 W CN2017094757 W CN 2017094757W WO 2018024157 A1 WO2018024157 A1 WO 2018024157A1
Authority
WO
WIPO (PCT)
Prior art keywords
precoding matrix
rank
matrix
indication
channel
Prior art date
Application number
PCT/CN2017/094757
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17836339.6A priority Critical patent/EP3484061B1/en
Publication of WO2018024157A1 publication Critical patent/WO2018024157A1/zh
Priority to US16/266,735 priority patent/US10567054B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/065Variable contents, e.g. long-term or short-short

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method, a receiving method, a device and a system for transmitting channel state information.
  • LTE long term evolution
  • MIMO multiple input and multiple output
  • the precoding technique in multiple antennas can compensate for the loss to some extent.
  • the terminal device may feed back channel state information (CSI) of the common channel and CSI of the traffic channel to the base station.
  • CSI channel state information
  • the base station precodes the transmitted data using the fed back CSI.
  • the terminal device feeds back the CSI and the traffic channel CSI of the common channel, the overhead of feeding back CSI is large, and system resources are wasted.
  • the present application describes a CSI transmission method, reception method apparatus and system that use different CSI sets for common channel and traffic channel to obtain CSI.
  • the overhead of CSI feedback is reduced in the case of meeting the requirements of the common channel and the traffic channel.
  • an embodiment of the present application provides a method for sending a CSI, where the method includes:
  • the terminal device determines a first rank for the first channel and a second rank for the second channel, the first rank being indicated by a first rank indication, the second rank being indicated by a second rank indication.
  • the channel type of the first channel is different from the channel type of the second channel.
  • the terminal device determines a first precoding matrix in the first precoding matrix set, and determines a second precoding matrix in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set.
  • the rank of the first precoding matrix is the first rank, and the first precoding matrix is indicated by a first precoding matrix indication.
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is indicated by a second precoding matrix indication.
  • the terminal device sends the first rank indication, the second rank indication, the first precoding matrix indicates that the second precoding matrix indicates. Or the terminal device sends the second rank indication, where the first precoding matrix indicates that the second precoding matrix indicates that the first rank indicator is a predefined value. Due to the first The characteristics of the channel and the second channel may be different, using different sets of precoding matrices, and the first precoding matrix set is suitable for the first channel, and the second precoding matrix set is suitable for the second channel When the system requirements are met, the overhead of the feedback precoding matrix indication of the terminal device can be reduced.
  • the first precoding matrix indication is represented by B 1 bits
  • the second precoding matrix indication is represented by B 2 bits
  • the B 1 bit and the B 2 bits are partially overlapped
  • B Both 1 and B 2 are positive integers greater than one. Since the first precoding matrix indication and the second precoding matrix indicate that there are shared bits, the overhead of the terminal device feedback precoding matrix indication can be saved.
  • an embodiment of the present application provides a method for sending a CSI, where the method includes:
  • the terminal device determines a first rank for the first channel and a second rank for the second channel.
  • the first rank is indicated by a first rank indication
  • the second rank is indicated by a second rank indication.
  • the channel type of the first channel is different from the channel type of the second channel.
  • the terminal device determines a first precoding matrix in the first precoding matrix set, and determines a second precoding matrix in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set.
  • the rank of the first precoding matrix is the first rank
  • the rank of the second precoding matrix is the second rank.
  • the first precoding matrix and the second precoding matrix are indicated by a third precoding matrix indication. Since the characteristics of the first channel and the second channel may be different, different precoding matrix sets are used, and the first precoding matrix set is suitable for the first channel, and the second precoding matrix set is suitable In the case of the second channel, the feedback precoding matrix indication overhead of the terminal device can be reduced if the system requirements are met. Due to the third precoding matrix indication, both the first precoding matrix is indicated in the first precoding matrix set and the second precoding matrix is indicated in the second precoding matrix set. This can save the overhead of the terminal device feedback precoding matrix indication.
  • the terminal device sends the first rank indication, the second rank indication and the third precoding matrix indication.
  • the first rank indicator is a predefined value
  • the user equipment sends the second rank indication and the third precoding matrix indication.
  • an embodiment of the present application provides a method for receiving a CSI, where the method includes:
  • the base station acquires a first rank indication, a second rank indication, a first precoding matrix indication and a second precoding matrix indication.
  • the first precoding matrix indication, the second precoding matrix indication, and the second rank indication are acquired from a terminal device.
  • the first rank indication is obtained from a terminal device or the first rank indication is a predefined value.
  • the first rank indication is used to indicate a first rank
  • the second rank indication is used to indicate a second rank
  • the first rank is used for a first channel
  • the second rank is used for a second channel
  • the channel type of the first channel is different from the channel type of the second channel.
  • the rank of the first precoding matrix is the first rank, and the first precoding matrix is in a first precoding matrix set.
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set. Since the characteristics of the first channel and the second channel may be different, different precoding matrix sets are used, and the first precoding matrix set is suitable for the first channel, and the second precoding matrix set is suitable When the second channel is used, the terminal equipment feedback precoding matrix indication or the base station receiving the precoding matrix indication may be reduced if the system requirements are met. The number of bits. Achieve the effect of reducing the complexity of the base station and terminal equipment and reducing power consumption.
  • an embodiment of the present application provides a method for receiving a CSI, where the method includes:
  • the base station acquires a first rank indication, a second rank indication, and a third precoding matrix indication.
  • the second rank indication, the third precoding matrix indication is acquired from a terminal device.
  • the first rank indication is obtained from a terminal device or the first rank indication is a predefined value.
  • the first rank indication is used to indicate a first rank
  • the second rank indication is used to indicate a second rank
  • the first rank is used for a first channel
  • the second rank is used for a second channel.
  • the channel type of the first channel is different from the channel type of the second channel.
  • the rank of the first precoding matrix is the first rank, and the first precoding matrix is in a first precoding matrix set.
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set. Since the characteristics of the first channel and the second channel may be different, different precoding matrix sets are used, and the first precoding matrix set is suitable for the first channel, and the second precoding matrix set is suitable In the second channel, the number of bits indicated by the base station receiving the precoding matrix can be reduced if the system requirements are met. The effect of reducing the complexity of the base station and reducing the power consumption is achieved.
  • both the first precoding matrix is indicated in the first precoding matrix set and the second precoding matrix is indicated in the second precoding matrix set. This can save the overhead of the terminal device feedback precoding matrix indication.
  • an embodiment of the present application provides a terminal device, where the terminal device has a function of implementing behavior of a terminal device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the terminal device includes:
  • a processing unit configured to determine a first rank for the first channel and a second rank for the second channel, the first rank being indicated by a first rank indication, the second rank being indicated by a second rank Instructions.
  • the channel type of the first channel is different from the channel type of the second channel;
  • the processing unit is further configured to determine a first precoding matrix in the first precoding matrix set, and determine a second precoding matrix in the second precoding matrix set, where the first precoding matrix set and the first The two precoding matrix sets are different, the rank of the first precoding matrix is the first rank, and the first precoding matrix is indicated by a first precoding matrix indication.
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is indicated by a second precoding matrix indication;
  • a sending unit configured to send the first rank indication, the second rank indication, the first precoding matrix indication, and the second precoding matrix indication. Or, for transmitting the second rank indication, the first precoding matrix indication and the second precoding matrix indicate that the first rank indication is a predefined value.
  • the embodiment of the present application provides another terminal device, where the terminal device has the foregoing method
  • the function of the terminal device behavior may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the terminal device includes:
  • a processing unit configured to determine a first rank for the first channel and a second rank for the second channel, the first rank being indicated by a first rank indication, the second rank being indicated by a second rank Instructions.
  • the channel type of the first channel is different from the channel type of the second channel.
  • the processing unit is further configured to determine a first precoding matrix in the first precoding matrix set, and determine a second precoding matrix in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set.
  • the rank of the first precoding matrix is the first rank
  • the rank of the second precoding matrix is the second rank
  • the first precoding matrix and the second precoding matrix are third Precoding matrix indication to indicate;
  • a sending unit configured to send the first rank indication, where the second rank indication, the third precoding matrix indicates. Or for transmitting the second rank indication, the third precoding matrix indicates, and the first rank indication is a predefined value.
  • an embodiment of the present application provides a base station, where the base station has a function of implementing a behavior of a base station in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes:
  • an acquiring unit configured to acquire a first rank indication, a second rank indication, a first precoding matrix indication, and a second precoding matrix indication.
  • the first precoding matrix indication, the second precoding matrix indication, and the second rank indication are acquired from a terminal device.
  • the first rank indication is obtained from a terminal device or the first rank indication is a predefined value.
  • a processing unit configured to determine a first rank according to the first rank indication, determine a second rank according to the second rank indication, determine a first precoding matrix according to the first precoding matrix indication, and determine a second preamble according to the second precoding matrix indication Encoding matrix.
  • the first rank is used for the first channel
  • the second rank is used for the second channel
  • the channel type of the first channel is different from the channel type of the second channel.
  • the rank of the first precoding matrix is the first rank, and the first precoding matrix is in a first precoding matrix set.
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set.
  • the embodiment of the present application provides another base station, where the base station has a function of implementing the behavior of the base station in the actual method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes:
  • An obtaining unit configured for a first rank indication, a second rank indication, and a third precoding matrix indication.
  • the second rank indication, the third precoding matrix indication is acquired from the terminal device.
  • the first rank indication is obtained from a terminal device or the first rank indication is a predefined value.
  • a processing unit configured to determine the first precoding matrix and the second precoding matrix according to the third precoding matrix indication.
  • the first rank is used for the first channel
  • the second rank is used for the second channel
  • the channel type of the first channel is different from the channel type of the second channel.
  • the rank of the first precoding matrix is the first rank, and the first precoding matrix is in a first precoding matrix set.
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is in the second precoding matrix set.
  • the first precoding matrix set is different from the second precoding matrix set.
  • the first channel is a common channel
  • the second channel is a traffic channel.
  • the characteristics of the common channel and the traffic channel may be different, and the first precoding matrix set may be defined according to channel characteristics and required characteristics of the common channel; and the second precoding matrix set is defined according to channel characteristics and required characteristics of the traffic channel.
  • the terminal device sends a second CQI to the base station, where the second CQI is obtained according to the second precoding matrix.
  • the terminal device sends the first CQI and the second CQI to the base station, where the first CQI is obtained according to the first precoding matrix, and the second CQI is obtained according to the second precoding matrix.
  • the terminal device sends the first CQI to the base station, and may enable the base station to determine a suitable modulation mode on the first channel according to the first CQI.
  • the terminal device sends the second CQI to the base station, and may enable the base station to determine a suitable modulation mode on the second channel according to the second CQI.
  • the terminal device sends only the second CQI to the base station, and when the first CQI is not sent, the data sent on the first channel may use a predefined modulation mode. This saves signaling signaling the modulation scheme.
  • the first channel is a common channel
  • the second channel is a traffic channel.
  • the characteristics of the common channel and the traffic channel may be different, and the first precoding matrix set may be defined according to channel characteristics and required characteristics of the common channel; and the second precoding matrix set is defined according to channel characteristics and required characteristics of the traffic channel.
  • the base station receives a second CQI sent by the terminal device, where the second CQI is obtained according to the second precoding matrix.
  • the base station receives the first CQI and the second CQI sent by the terminal device.
  • the first CQI is obtained according to the first precoding matrix
  • the second CQI is obtained according to the second precoding matrix.
  • the base station receives the first CQI, and may determine a suitable modulation mode on the first channel according to the first CQI.
  • the base station receives the second CQI, and may determine a suitable modulation mode on the second channel according to the second CQI.
  • the base station only receives the second CQI, and when the first CQI is not received, the data sent on the first channel may be To use a predefined modulation method. This saves signaling signaling the modulation scheme.
  • the first channel is a common channel
  • the second channel is a traffic channel.
  • the characteristics of the common channel and the traffic channel may be different, and the first precoding matrix set may be defined according to channel characteristics and required characteristics of the common channel; and the second precoding matrix set is defined according to channel characteristics and required characteristics of the traffic channel.
  • the common channel and the traffic channel use different precoding matrix sets to save the overhead of the feedback precoding matrix indication of the terminal device when the system requirements are met.
  • the sending unit is further configured to send a second CQI to the base station, where the second CQI is obtained according to the second precoding matrix.
  • the sending unit is further configured to send, to the base station, a first CQI, a second CQI, where the first CQI is obtained according to the first precoding matrix, and the second CQI is obtained according to the second precoding matrix.
  • the sending unit sends the first CQI to the base station, and may enable the base station to determine a suitable modulation mode on the first channel according to the first CQI.
  • the sending unit sends the second CQI to the base station, and may enable the base station to determine a suitable modulation mode on the second channel according to the second CQI.
  • the sending unit sends only the second CQI to the base station.
  • the data sent on the first channel may use a predefined modulation mode. This saves signaling signaling the modulation scheme.
  • the first channel is a common channel
  • the second channel is a traffic channel.
  • the characteristics of the common channel and the traffic channel may be different, and the first precoding matrix set may be defined according to channel characteristics and required characteristics of the common channel; and the second precoding matrix set is defined according to channel characteristics and required characteristics of the traffic channel.
  • the base station further includes:
  • a receiving unit configured to receive a second CQI sent by the terminal device, where the second CQI is obtained according to the second precoding matrix.
  • the receiving unit is configured to receive the first CQI and the second CQI sent by the terminal device. The first CQI is obtained according to the first precoding matrix, and the second CQI is obtained according to the second precoding matrix.
  • the receiving unit receives the first CQI, and may determine a suitable modulation mode on the first channel according to the first CQI.
  • the receiving unit receives the second CQI, and may determine a suitable modulation mode on the second channel according to the second CQI.
  • the receiving unit only receives the second CQI, and when the first CQI is not received, the data transmitted on the first channel may use a predefined modulation mode. This saves signaling signaling the modulation scheme.
  • Number R A is the first rank, N t is greater than or equal to R A , W 1 A is a matrix of 2M rows of N t rows, W 2 A is a matrix of 2M rows of R A columns, R A , M, N t Both are positive integers, and M is greater than or equal to 2.
  • K is less than or equal to M
  • the 2M column in W 1 A includes each column in W 1 B. Since the vector between W 1 A and W 1 B has an included relationship, when the terminal device sends the first precoding matrix indication and the second precoding matrix indicates to the base station, the number of bits indicated by the transmission precoding matrix can be reduced.
  • W 1 is a matrix of N t rows and R A columns
  • N t is the number of antenna ports of the reference signal transmitted by the base station
  • R A is the first rank
  • N t is greater than or equal to R A
  • W 1 1 is N t A matrix of 2M columns
  • W 2 1 is a matrix of 2M rows of R A columns
  • N t , R A , M are all positive integers
  • M is greater than or equal to 2.
  • K is less than or equal to M, any one of the first pre-encoding matrix set in a W 1 1, and the second pre-encoding matrix set W 1 2 corresponding to a, wherein the first pre- encoding any one of a set W 2M column 11 includes any of a first set of the pre-coding a second set of precoding matrices 11 corresponding to each column of W and W 1 and 2. Since the vector between W 1 1 and W 1 2 has an included relationship, when the terminal device sends the first precoding matrix indication and the second precoding matrix indicates to the base station, the number of bits indicated by the transmission precoding matrix can be reduced.
  • ⁇ n is a complex number
  • e l is a column vector of M ⁇ 1
  • the first element is 1, the remaining elements are 0, and l is an integer from 1 to M.
  • Any column of W 2 2 used Representing, where ⁇ k is a complex number, e m is a column vector of K ⁇ 1, the mth element is 1, the remaining elements are 0, and m is an integer from 1 to k.
  • the above structure is used for W 1 1 , W 2 1 , W 2 1 and W 2 2 mainly because the antenna array currently applied is mainly a dual-polarized antenna array.
  • the precoding matrix structure described above can make the beam directions of the antennas in the two polarization directions the same. This is better matched to the dual-polarized antenna array channel characteristics, so good performance can be obtained using the precoding matrix structure described above.
  • the first CQI and the second CQI correspond to the same frequency domain resource.
  • the channel characteristics of the first channel and the channel characteristics of the second channel may be utilized to reduce CQI feedback overhead.
  • the first CQI and the second CQI are represented in a differential manner. Differential representation, saving CQI feedback overhead
  • the first precoding matrix W A is a matrix generated according to the first synthesis criterion according to W 1 A or W 1 B , and the first synthesis criterion is a predefined criterion or a criterion configured by a base station.
  • the terminal device does not need to transmit the bit indicating the precoding matrix indication of W 2 A , which reduces the overhead of the terminal device feedback.
  • the first channel is a common channel
  • the second channel is a traffic channel
  • the transmitting unit may be a transmitter
  • the receiving unit may be a receiver
  • the processing unit may be a processor
  • the acquiring unit may be a processor, or may be a processor and a receiver.
  • the embodiment of the invention further provides a system, which comprises the terminal device and the base station in the above embodiment.
  • different sets of precoding matrices are used for the common channel and the traffic channel, respectively.
  • the characteristics of the common channel and the traffic channel may be different, and the first precoding matrix set may be defined according to channel characteristics and required characteristics of the common channel; and the second precoding matrix set is defined according to channel characteristics and required characteristics of the traffic channel.
  • FIG. 1 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a base station side synthesis precoding matrix according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a method for a terminal device to synthesize a precoding matrix according to a configuration criterion of a base station and send a precoding matrix indication according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart diagram of a method for transmitting a CSI according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 6 is another schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • a terminal equipment may be referred to as a terminal, or may be a user equipment (UE), a mobile station (MS), and a mobile terminal ( Mobile terminal), a notebook computer, etc.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN), for example, the terminal device can be a mobile phone (or "cellular" phone ) or a computer having a mobile terminal, etc., for example, the terminal device is also It can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with a wireless access network.
  • RAN radio access network
  • the base station may be an evolved base station (evolved node B, referred to as “eNB or e-NodeB”) in the LTE system, or may be another base station, or may be a relay or the like. Access network equipment.
  • eNB evolved base station
  • e-NodeB evolved node B
  • Access network equipment The invention is not limited.
  • the embodiment of the present invention proposes a solution based on the communication system shown in FIG. 1 to improve the performance of the common channel and the traffic channel.
  • the embodiment of the invention provides a communication system 100.
  • the communication system 100 includes at least one base station and a plurality of terminal devices.
  • the plurality of terminal devices communicate with the base station.
  • the base station communicates with the terminal device through at least the common channel and the downlink traffic channel.
  • the base station 20 communicates with the terminal device 10
  • the terminal device 10 includes the terminal devices 10A and 10B.
  • the terminal device communicates with the base station through the uplink control channel and the uplink traffic channel.
  • the downlink refers to the direction in which the base station transmits data to the terminal device
  • the uplink refers to the direction in which the terminal device transmits data to the base station.
  • the common channel may be a common control channel, such as a physical downlink control channel (PDCCH).
  • the base station transmits control information, such as scheduling information for the terminal device, on the PDCCH.
  • the downlink traffic channel may be a channel that the base station sends downlink service data to the user equipment, such as a physical downlink shared channel (PDSCH).
  • the uplink control channel may be a physical uplink control channel (PUCCH).
  • the terminal device may send a rank indication (RI), a precoding matrix indicator (PMI), and a channel quality indication (CQI) base station on the PUCCH.
  • the uplink traffic channel may be a physical uplink control channel (PUSCH).
  • the terminal device transmits uplink service data to the base station on the PUSCH.
  • the terminal device feeds back channel state information (CSI) to the base station, and the base station determines a precoding matrix according to the CSI and precodes the data according to the precoding matrix.
  • the CSI information fed back by the terminal device may include RI, PMI, or CQI, and the like.
  • the RI is used to indicate the number of data spatial multiplexing, and is also equal to the number of precoding matrix columns.
  • the PMI is used to indicate the precoding matrix.
  • the base station obtains a precoding matrix through the RI and PMI fed back by the terminal device. In the case of RI given, one PMI is used to indicate a precoding matrix in the precoding set corresponding to the RI.
  • One RI corresponds to multiple precoding matrices.
  • a plurality of precoding matrices corresponding to one RI are a set of precoding matrices corresponding to the RI.
  • the CQI is used to indicate the channel quality of the received data of the terminal device under the given RI and PMI conditions.
  • the base station pre-codes the data of the downlink traffic channel according to the CSI fed back by the terminal device 10B, for example, sends the downlink data to the terminal device 10B through the beam 5.
  • the terminal device 10B can obtain better reception performance.
  • the base station 20 precodes the data of the downlink traffic channel transmitted to the terminal device 10A according to the CSI fed back by the terminal device 10A, and the terminal device 10A can obtain better reception performance.
  • the base station can transmit the common channel by using different beam transmissions at different times, for example, four beams transmit the common channel in turn.
  • base station 20 transmits a common channel through beam 1;
  • base station 20 transmits a common channel through beam 2;
  • base station 20 transmits a common through beam 3.
  • base station 20 transmits a common channel through beam 4.
  • Both terminal devices 10A, 10B receive data of a common channel.
  • the base station 20 precodes the data of the downlink traffic channel according to the CSI fed back by the terminal device 10B, and transmits the downlink data to the terminal device 10B through the beam 5.
  • the terminal device 10B can obtain better reception performance.
  • the terminal device 10A at time 1 has a better quality of the received beam 1.
  • the quality of the signal transmitted through the beam 1 is poor. If the base station also transmits the common channel through the beam 1 at this time, and the data on the common channel is given to the terminal device 10A, the signal quality of the terminal device 10A receiving the common channel is poor.
  • the base station may also precode the common channel using a precoding matrix in the precoding matrix set of the traffic channel.
  • the number of precoding matrices required is larger than that of the common channel.
  • the generated beam of the precoding matrix of the traffic channel is relatively thin, since the data on the common channel is to be sent to multiple users, precoding using the precoding matrix of the traffic channel may not allow each user to receive good quality.
  • the base station 20 is to transmit data to the terminal device 10A and the terminal 10B on the common channel, the common channel terminal 10A receives the poor performance by the beam 5, and the common channel is transmitted with the beam 3, and the terminal 10B receives the poor performance.
  • the terminal device can transmit the CSI of the common channel to the base station.
  • the base station uses a different set of precoding matrices for the common channel and the traffic channel. In this way, a better precoding matrix set for the common channel and the traffic channel can be used separately for the requirements of the common channel and the traffic channel.
  • the purpose of reducing the complexity of the base station and reducing the power consumption is achieved.
  • a method of synthesizing a precoding matrix is given on the base station side.
  • the base station obtains a first rank indication, a second rank indication, and a pre-coded matrix indication.
  • the second rank indicates that the base station can receive and obtain from the terminal device.
  • the first rank indication the base station may receive and obtain from the terminal device; or the first rank indication is a predefined value, and the base station directly obtains according to the predefined value.
  • the pre-coded matrix indication may include a first precoding matrix indication and a second precoding matrix indication.
  • the base station determines a first precoding matrix W A according to the first precoding matrix indication, and determines a second precoding matrix W B according to the second precoding matrix indication.
  • the rank of the first precoding matrix W A is the first rank; indication determining a second precoding matrix W B in accordance with the second precoding matrix, the rank of the second precoding matrix W B for the Second rank.
  • the precoding matrix indication includes a third precoding matrix indication. Determining a first base station indicating precoding matrix W A and W B second precoding matrix based on the third precoding matrix, the rank of the first precoding matrix W A is the first rank; the second pre The rank of the coding matrix W B is the second rank.
  • W A is a matrix of N t rows and R A columns
  • N t is a number of antenna ports of a reference signal transmitted by the base station
  • R A is the first rank
  • N t is greater than or equal to R A
  • W 1 A is N t A matrix of 2M columns
  • W 2 A is a matrix of 2M rows of R A columns
  • R A , M, N t are all positive integers
  • M is greater than or equal to 2.
  • the base station can transmit data to the terminal device on the first channel using W A .
  • the base station can transmit data to the terminal device on the second channel using W B .
  • the first precoding matrix W A can also be synthesized by W 1 A ; or W A can be synthesized by W 1 B.
  • W A can be synthesized by W 1 B.
  • the criteria for synthesizing W A can be synthesized by the method of the Butler matrix.
  • Figure 2 shows the flow chart of synthesizing W A on the base station side. The process of its synthesis is as follows.
  • the base station in FIG. 2 may be the base station 20 in FIG.
  • Step 201 The base station receives the precoding matrix indication.
  • the base station receives a precoding matrix indication transmitted from the terminal device, the precoding indication being used to indicate the aforementioned described W 1 B , W 2 B and W 1 A .
  • the base station receives the first precoding matrix indication and the second precoding matrix indication.
  • the first precoding matrix indication is used to indicate W 1 A .
  • the base station receives a third precoding matrix indication, the third precoding matrix indication being used to indicate W 1 A , W 1 B and W 2 B .
  • Step 202 The base station synthesizes a first precoding matrix.
  • step 202 the base station obtains W 1 A , W 1 B according to the precoding indication.
  • W A can be synthesized by W 1 B.
  • Nm is the synthesis of a precoding matrix
  • W W A is the number 1 B
  • ⁇ m is a real number.
  • ⁇ m is used to ensure that the synthesized W A acts on the antenna, and the formed main lobe direction and a certain W 1 B (p) are applied to the antenna to form a main lobe direction as uniform as possible.
  • ⁇ m can be obtained by traversing.
  • W A can be synthesized by W 1 A.
  • Nm is the number of W 1 A synthesis of the precoding matrix W A
  • ⁇ m is a real number.
  • ⁇ m is used to ensure that the synthesized W A acts on the antenna, and the formed main lobe direction and a certain W 1 B (p) are applied to the antenna to form a main lobe direction as uniform as possible.
  • ⁇ m can be obtained by traversing.
  • the base station does not need to receive the bit indicating the precoding matrix indication of W 2 A , and reduces the number of bits of the CSI transmitted by the base station receiving the terminal device.
  • the effect of reducing the complexity of the base station and reducing the power consumption is achieved.
  • a method of synthesizing a precoding matrix is given on the terminal device side.
  • the precoding matrix W A in the first precoding matrix set is a matrix generated according to a first synthesis criterion, where the first synthesis criterion is a predefined criterion or a criterion configured by a base station.
  • the first synthesis criterion is a predefined criterion or a criterion configured by a base station.
  • FIG. 3 is a schematic flowchart of a terminal device synthesizing a precoding matrix according to a configuration criterion of a base station and transmitting a precoding matrix indication.
  • the terminal in FIG. 3 may be the terminal device 10 in FIG. 1, including terminal devices 10A and 10B.
  • Step 301 The terminal device receives the synthesis criterion configured by the base station, and synthesizes the precoding matrix according to the synthesis criterion.
  • a method of synthesizing a precoding matrix see the foregoing embodiment of a method of synthesizing a precoding matrix on the base station side.
  • Step 302 Determine a precoding matrix and a corresponding precoding matrix indication.
  • step 302 it is determined that the precoding matrix may be determining W A , W B , or determining W 1 B , W 2 B , W 1 A .
  • W A W 1 A ⁇ W 2 A
  • W B W 1 B ⁇ W 2 B
  • W 1 A corresponds to the first precoding matrix indication.
  • the second precoding matrix corresponding to W B indicates, or W 1 B and W 2 B correspond to the second precoding matrix indication.
  • the precoding matrix indication corresponding to the precoding matrix may be the first precoding matrix indication and the second precoding matrix indication.
  • Step 303 Send the precoding matrix indication.
  • the terminal device sends the first precoding matrix indication and the second precoding matrix indication.
  • the first precoding matrix indication is used to indicate W 1 A .
  • a method for transmitting CSI is provided.
  • 4 is a schematic diagram showing a method of transmitting CSI in accordance with an implementation of the present invention.
  • the base station in FIG. 4 may be the base station 20 in FIG. 1; the terminal device in FIG. 4 may be the terminal device 10 in FIG. 1, ie, the terminal device 10A or the terminal device 10B.
  • the method includes:
  • Step 401 The base station sends configuration information to the terminal device, where the configuration information is used to configure a precoding matrix set.
  • step 401 an optional step is performed, and the base station configures the precoding matrix set to the terminal device.
  • the base station can configure multiple sets of precoding matrix sets for the terminal device.
  • a set of precoding matrix sets may include precoding matrices of multiple ranks. For a rank, there are multiple corresponding precoding matrices.
  • data transmitted on a common channel is sent to a plurality of terminal devices, and some are sent to a terminal device.
  • the data sent to the common channel of the plurality of terminal devices the base station needs to enable the plurality of terminal devices to correctly receive the data on the common channel as much as possible.
  • the main lobe width of the beam transmitted by the base station is large, and the main lobe of the beam transmitted by the base station can basically cover the direction in which the plurality of users are located.
  • a downlink data channel such as a PDSCH
  • the base station is sent to a terminal device.
  • the direction of the main lobe of the transmit beam is directed to the terminal device receiving the downlink data as much as possible, so as to achieve the purpose of maximizing the received signal power of the terminal device.
  • the beam generated by the precoding matrix is required to be narrow to achieve the effect of energy concentration.
  • a pre-coding matrix of the beamwidth to be generated may be required, and a pre-coding matrix with a narrow beam generated may also be required.
  • the number of precoding matrices is not as much as the traffic channel. Therefore, the requirements for precoding matrices are different for common channels and traffic channels.
  • the base station configures a set of precoding matrix for the common channel; and configures another set of precoding matrix for the downlink data channel.
  • the base station configures a set of precoding matrixes for the common channel; and sets E sets of precoding matrix sets for the downlink data channel, and respectively records them as the second set, the third set, the ..., the E+1 sets of precoding matrices.
  • Set, E is a positive integer.
  • the second set of precoding matrix sets in the downlink data channel, the second set of precoding matrix sets, the upwardly transmitted beam generated by the precoding matrix of the precoding matrix set; and the scenario where the user equipment is lower than the base station In the downlink data channel, a third set of precoding matrix sets is used, and the precoding matrix of the precoding matrix set generates a downward transmitted beam.
  • the precoding matrix set is predefined, and is not configured by the base station to the terminal.
  • the predefined method can reduce configuration signaling compared to the base station configuring the precoding matrix set to the terminal.
  • Step 402 The terminal device determines to determine the first rank and the second rank.
  • the terminal device determines a first rank for the first channel and a second rank for the second channel rank.
  • Rank is the number of data spatial multiplexing and is also equal to the number of precoding matrix columns.
  • One rank corresponds to one rank indication.
  • the rank indication is used to indicate the rank.
  • the terminal device sends a rank indication to the base station to indicate the number of columns of the precoding matrix used by the base station desired by the terminal device.
  • the rank has a value ranging from 1 to 8, and the rank indication is represented by 3 bits.
  • the rank indication is 000, the rank is 1; when the rank indication is 001, the rank is 2, and so on. In summary, if a rank takes a certain value, there is a rank indication corresponding to the rank.
  • the first channel may be a common channel, such as a common control channel; the second channel may be a downlink traffic channel, such as a PDSCH.
  • the first rank for the first channel refers to the first rank being for the first channel.
  • the terminal device determines the first rank, and the purpose is to determine the rank of the precoding matrix used by the base station or the number of columns of the precoding matrix.
  • the base station pre-codes the data on the first channel by using a precoding matrix whose rank of the precoding matrix is equal to the first rank.
  • the role of the second rank for the second channel can be obtained.
  • the terminal device may determine the rank based on information such as CSI.
  • the base station sends a cell-specific reference signal (CRS) to the terminal device, or sends a channel state information reference signal (CSI-RS).
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the terminal device obtains the downlink channel estimation and the downlink interference estimation according to the CRS, or the CSI-RS, and then determines the rank expected by the terminal device in the downlink transmission according to the two.
  • the method for determining the rank of the terminal device is as follows.
  • the terminal device receives a PDSCH and a reference signal.
  • the mathematical model of the terminal device receiving the PDSCH signal is
  • y is the signal vector of the received PDSCH
  • H is the channel matrix obtained by the reference signal
  • W is the precoding matrix
  • s is the transmitted symbol vector
  • n is the interference plus noise obtained by the reference signal.
  • the terminal device traverses all ranks and all coding matrices corresponding to each rank, and calculates the channel capacity obtained by precoding each precoding matrix. For each precoding matrix, one channel capacity is obtained.
  • the channel capacity can be the number of bits that the sender can correctly transmit.
  • the precoding matrix corresponding to the largest channel capacity and the rank of the precoding matrix are obtained.
  • the CQI can also be obtained according to the precoding matrix. For example, based on the precoding matrix, the ratio of the detected signal to the interference plus noise is obtained as the CQI.
  • the precoding matrix When the terminal device traverses a precoding matrix corresponding to one rank, the precoding matrix may be obtained by using a precoding matrix indication. For example, traversing the precoding matrix indication, when traversing to a certain precoding matrix indication, obtaining a precoding matrix according to the precoding matrix indication, and calculating a channel capacity according to the precoding matrix. The precoding matrix may also be traversed directly. After the precoding matrix that maximizes the channel capacity is selected, the precoding matrix indication is obtained according to the one-to-one correspondence between the precoding matrix and the precoding matrix.
  • the first rank corresponds to a rank of a first precoding matrix of the first channel, and the first rank is indicated by a first rank indication, and the second rank corresponds to a rank of a second precoding matrix of the second channel, And the second rank is indicated by a second rank indication, the channel type of the first channel is different from the channel type of the second channel.
  • the first channel may be a common channel, such as a common control channel; the second channel may be a downlink traffic channel, such as a PDSCH. Since different types of channels have different requirements, performance can be improved for a certain type of channel using a precoding matrix set suitable for its needs.
  • step 403 the terminal device determines a precoding matrix.
  • the terminal device determines the first precoding matrix in a first precoding matrix set corresponding to the first rank, and determines a location in a second precoding matrix set corresponding to the second rank.
  • the second precoding matrix is indicated by a first precoding matrix indication
  • the second precoding matrix is indicated by a second precoding matrix indication.
  • the first precoding matrix set is different from the second precoding matrix set. In this way, different sets of precoding matrices can be used for the requirements of the first channel and the second channel.
  • the first precoding matrix set is optimized for the first channel, and the second precoding matrix is an optimized design for the second channel. This can achieve the effect of improving performance.
  • the first precoding matrix set is different from the second precoding matrix set, and means that the precoding matrices included in the two precoding matrix sets are not completely identical. Or the first precoding matrix set is different from the second precoding matrix set, and refers to at least one rank, and the precoding matrix in the first precoding matrix set corresponding to the rank corresponds to the rank.
  • the precoding matrices in the second set of precoding matrices are not identical.
  • the terminal device determines, in a first precoding matrix set corresponding to the first rank, a first precoding matrix, in a second precoding matrix set corresponding to the second rank. Determining a second precoding matrix, the first precoding matrix and the second precoding matrix being indicated by a third precoding matrix indication.
  • the first precoding matrix set is different from the second precoding matrix set.
  • the third precoding matrix indication comprises 8 bits indicating both the first precoding matrix in the first precoding matrix set and the second precoding matrix in the second precoding matrix set. This can save the overhead of the terminal device feedback precoding matrix indication.
  • the second precoding matrix indicated by the second precoding matrix indicator case, optionally, the first precoding matrix indicated by B 1 th
  • the bit indicates that the second precoding matrix indication is represented by B 2 bits, the B 1 bit and the B 2 bits are partially overlapped, and both B 1 and B 2 are positive integers. Since the first precoding matrix indication and the second precoding matrix indicate that there are shared bits, the overhead of the terminal device feedback precoding matrix indication can be saved. For example, a total of 12 bits represent the first precoding matrix indication and the second precoding matrix indication.
  • the 1st to 8th bits are indicated by the first precoding matrix; the 1st to 4th bits, the 9th to 12th bits are indicated by the second precoding matrix. Since the 4-bit precoding indication is shared by the first precoding matrix and the second precoding matrix, the overhead of the terminal device feedback precoding matrix indication is saved.
  • the first precoding matrix is indicated by a first precoding matrix indication
  • the second precoding matrix is indicated by a second precoding matrix indication
  • the first precoding matrix, the second precoding matrix is indicated by a third precoding matrix
  • Number of antenna ports R A is the first rank, N t is greater than or equal to R A , W 1 A is a matrix of 2 M rows of N t rows, W 2 A is a matrix of 2 M rows of R A columns, R A , M , N t is a positive integer, and M is greater than or equal to 2.
  • K is less than or equal to M
  • the 2M column in W 1 A includes each column in W 1 B.
  • W 1 A contains 16 column vectors (ie, 16 columns in W 1 A ), and W 1 B contains 8 column vectors.
  • the 16 column vectors in W 1 A contain 8 column vectors in W 1 B.
  • a vector for generating an entire cell beam may be included in the W 1 A , or the main lobe direction may be included to point to a specific direction.
  • Vector the vector covering the entire cell beam generates a wide beam; the vector whose main lobe direction points in a specific direction generates a narrow beam.
  • the second channel is a downlink data channel, for example, the data channel is, W 1 A main lobe direction in a specific direction vector may be contained in the W 1 B. Since the vector between a common channel W 1 A and the downlink data channel W 1 B relationship contained, in the case of needs common channel and a downlink data channel, it is possible to reduce the number of bits of the precoding matrix indicator feedback.
  • W 1 is a matrix of N t rows R A columns, N t is the number of antenna ports, R A is the first rank, N t is greater than or equal to R A , and W 1 1 is a matrix of 2 M rows of N t rows, W 2 1 is a matrix of 2M rows R A columns, N t , R A , M are both positive integers, and M is greater than or equal to 2.
  • K is less than or equal to M, any one of the first pre-encoding matrix set in a W 1 1, and the second pre-encoding matrix set W 1 2 corresponding to a, wherein the first pre- encoding any one of a set W 2M column 11 includes any of a first set of the pre-coding a second set of precoding matrices 11 corresponding to each column of W and W 1 and 2.
  • N t is an even number.
  • X 1 is a matrix of N t /2 rows and M columns
  • N t is an even number
  • X 1 [v 0 ... v M-1 ]
  • v d is a column vector containing N t /2 elements
  • d is 0 to An integer of M-1.
  • any column of W 2 1 Representation where ⁇ n is a complex number, e l is a column vector of M ⁇ 1, the first element is 1, the remaining elements are 0, and l is an integer from 1 to M. e l is equivalent to the column selection matrix, and one column in X 1 is selected.
  • the role of e l is to select a pre-coded vector, and the action of ⁇ n is to phase weight between two sets of antennas (usually two sets of polarized antennas).
  • the 8-antenna port is divided into two polarization directions of 45-degree polarization and -45-degree polarization, and each antenna direction has 4 antenna ports. Since the first N t /2 lines of the precoding matrix W correspond to the precoding weights of the antenna ports of one polarization direction, the latter N t /2 lines correspond to the precoding weights of the antenna ports of the other polarization direction.
  • any column of W 2 2 used Representing, where ⁇ k is a complex number, e m is a column vector of K ⁇ 1, the mth element is 1, the remaining elements are 0, and m is an integer from 1 to k. e l is equivalent to the column selection matrix, and one column in X 2 is selected.
  • the e m function is to select a precoded vector, and the ⁇ n effect is to phase weight between two sets of antennas (usually two sets of polarized antennas).
  • the above structure is used for W 1 1 , W 2 1 , W 2 1 and W 2 2 mainly because the antenna array currently applied is mainly a dual-polarized antenna array.
  • the precoding matrix structure described above can make the beam directions of the antennas in the two polarization directions the same. This is better matched to the dual-polarized antenna array channel characteristics, so good performance can be obtained using the precoding matrix structure described above.
  • W 1 For W 1 , it applies to the entire system bandwidth and has long-period characteristics. Slowly varying channel / sub band characteristics embodied in the W 2.
  • W 2 is a feedback that can be applied to each sub-band and has a short period characteristic.
  • the definition matrix B is as described in the formula (2), wherein the matrix B has 32 column vectors.
  • the W 1 representation is a block diagonal matrix, and each sub-block matrix corresponds to one polarization direction, ie
  • the column vector in X 1 belongs to the column vector in set B. When applied to an antenna port in a polarization direction, it can function as a beamforming.
  • One diagonal block X 1 in W 1 is used for one polarization direction, and the other diagonal block X 1 is used for the other polarization direction.
  • the representation is a select column vector with the nth element being 1 and the remaining elements being 0.
  • the definition matrix B is as follows.
  • each X (k) has 8 vectors
  • X (k) is as follows.
  • e p is a 4 ⁇ 1 column vector
  • the pth element is 1, the remaining elements are 0, and p is an integer from 1 to 8.
  • the first precoding matrix W A is a matrix of N t rows and R A columns.
  • the second precoding matrix is a matrix in which W B is a N t row R B column.
  • the precoding matrix set and/or the number of the precoding matrix sets are configured by the base station to be configured by the base station.
  • the base station configures three precoding matrix sets, which are denoted as precoding matrix set 1, precoding matrix set 2, and precoding matrix set 3.
  • W 1 1 contains 16 column vectors, W 1 2 contains 8 column vectors, and W 1 3 contains 4 column vectors.
  • W 1 1 is a column vector including 16 W 8 column vectors 1 and 2; column vector W 8 12 W 4 contains 13 of the column vectors.
  • Inter-cell interference coordination can be implemented by the base station configuring different precoding matrix sets to the end user. For example, when the coverage is satisfied and the inter-cell interference is severely restricted, the base station can configure the precoding matrix set 1 to the cell edge user (for example). For example, a pre-coding matrix with a wide beam, so that interference coordination between cells can be achieved.
  • Step 404 The terminal device sends the CSI to the base station.
  • the CSI includes the first rank indication, and the second rank indicates that the first precoding matrix indicates that the second precoding matrix indicates.
  • the first rank indicator is a predefined value
  • the CSI includes the second rank indication
  • the first precoding matrix indicates that the second precoding matrix indicates.
  • the first rank is a predefined value.
  • the purpose of the terminal device transmitting the first precoding matrix indication is for the base station to precode the data of the first channel by using the first precoding matrix W A .
  • the purpose of the terminal device transmitting the second precoding matrix indication is for the base station to precode the data of the second channel by using the second precoding matrix W B .
  • the CSI may include the first rank indication, where the The second rank indication and the third precoding matrix indication.
  • the first rank indicator is a predefined value, and the CSI includes the second rank indication and the third precoding matrix indication.
  • the CSI may further include a second CQI, and the second CQI is obtained according to the second precoding matrix.
  • the CSI may further include a first CQI obtained according to the first precoding matrix, and a second CQI obtained according to the second precoding matrix.
  • the user equipment feeds back the first CQI and the second CQI according to different feedback modes.
  • both the first CQI and the second CQI are fed back in the same feedback mode, and both are fed back on the PUSCH, and the CQI of each subband is fed back in the same mode.
  • the first CQI and the second CQI may also be fed back in different feedback modes, for example, the first CQI is fed back in the PUSCH, and the second CQI is fed back on the PUCCH.
  • the feedback mode and CQI indicated by the rank indication and the precoding matrix are the same. Therefore, the first rank indication and the second rank indication may also be fed back in the same mode or in different modes. The same is true for the first precoding matrix indication and the second precoding matrix indication.
  • the first CQI and the second CQI correspond to the same frequency domain resource.
  • the first CQI and the second CQI correspond to the same frequency domain resource, that is, the first CQI and the second CQI are obtained on the same frequency domain resource.
  • the system bandwidth is divided into 10 sub-bands, each of which has 5 physical resource blocks (PRBs), and each physical resource block occupies 180,000 Hz in the frequency domain.
  • the 10 sub-bands are sub-band 1, sub-band 2, sub-band 3, ..., sub-band 10.
  • the CQI for the subband is the subband CQI
  • the CQI for the entire system bandwidth is the wideband CQI.
  • the first CQI and the second CQI are CQIs on one of the same subbands, such as CQIs of subband 1. Or the first CQI and the second CQI are both wideband CQIs.
  • the channel characteristics of the first channel and the channel characteristics of the second channel may be utilized to reduce CQI feedback overhead.
  • the CSI includes the first CQI and the second CQI
  • the first CQI and the second CQI are represented in a differential manner. In this way, the feedback overhead of CQI can be saved.
  • obtaining an index of the precoding matrix set on which the first CQI is based is notified by the base station to the user equipment.
  • the index that obtains the precoding matrix set number on which the second CQI is based may also be notified by the base station to the user equipment.
  • the base station receives the terminal device to transmit CSI.
  • the base station may obtain W A according to the CSI and a method for synthesizing a precoding matrix.
  • W A may be obtained according to the CSI and a method for synthesizing a precoding matrix.
  • Step 405 The base station sends data according to the CSI.
  • step 405 when the CSI includes the first rank indication, the second rank indication, the first precoding matrix indicates that the second precoding matrix indicates; or
  • the first rank indication is a predefined value
  • the CSI includes the second rank indication
  • the first precoding matrix indicates that when the second precoding matrix indicates, the base station indicates according to the first precoding matrix Determining a first precoding matrix, and determining a second precoding matrix according to the second precoding matrix indication.
  • the rank of the first precoding matrix is the first rank
  • the rank of the second precoding matrix is the second rank.
  • the base station may pre-code the data on the first channel by using the first pre-coding matrix, or may perform transformation according to the pre-coding matrix, for example, considering a zero-forcing algorithm at the transmitting end between multi-user MIMO. Another precoding matrix precodes the data.
  • the base station may pre-code the data by using the second pre-coding matrix, or may perform transformation according to the pre-coding matrix, for example, considering a zero-forcing algorithm at the transmitting end between multi-user MIMO, The resulting precoding matrix precodes the data.
  • the base station determines the first precoding matrix and the second precoding matrix according to the third precoding matrix indication.
  • the base station determines, according to the second CQI, a modulation mode used for transmitting data on the second channel.
  • the base station determines, according to the first CQI, a modulation mode used for transmitting data on the first channel.
  • the method for transmitting CSI in the embodiment of the present invention uses different precoding matrix sets for the common channel and the traffic channel to obtain CSI.
  • the overhead of the precoding matrix indication feedback is saved in the case of meeting the requirements of the common channel and the traffic channel.
  • the embodiment of the present invention provides a terminal device 10 as shown in FIG. 1 , which may be 10A or 10B.
  • the terminal device 10 includes:
  • the processing unit 501 is configured to determine a first rank for the first channel and a second rank for the second channel, where the first rank is indicated by a first rank indication, and the second rank is indicated by a second rank It is indicated that the channel type of the first channel is different from the channel type of the second channel.
  • the processing unit 501 is further configured to determine a first precoding matrix in the first precoding matrix set, and determine a second precoding matrix in the second precoding matrix set, where the first precoding matrix set is The second precoding matrix set is different, the rank of the first precoding matrix is the first rank, the first precoding matrix is indicated by a first precoding matrix indication, and the rank of the second precoding matrix For the second rank, the second precoding matrix is indicated by a second precoding matrix indication.
  • the sending unit 502 is configured to send the first rank indication, the second rank indication, the first precoding matrix indication and the second precoding matrix indication, or to send the second rank indication,
  • the first precoding matrix indication and the second precoding matrix indicate that the first rank indication is a predefined value.
  • the first channel is a common channel
  • the second channel is a traffic channel.
  • the sending unit is further configured to send a second CQI to the base station, where the second CQI is obtained according to the second precoding matrix.
  • the sending unit is further configured to send the first CQI and the second CQI to the base station, where the first CQI is obtained according to the first precoding matrix, and the second CQI is obtained according to the second precoding matrix.
  • the first rank indication, the first rank, the second rank indication, the first rank, the first precoding matrix indication, the second precoding matrix indication, the third pre For further description of the coding matrix indication, the first precoding matrix W A , the second precoding matrix W B , etc., reference may be made to the description of the method embodiments of the present invention.
  • the processing unit of the terminal device For a specific implementation of the processing unit of the terminal device, reference may be made to the specific implementation of the terminal device in the foregoing method embodiment.
  • the CSI-enabled terminal device in the embodiment of the present invention uses different precoding matrix sets for the common channel and the traffic channel to obtain CSI.
  • the overhead of the precoding matrix indication feedback is saved in the case of meeting the requirements of the common channel and the traffic channel.
  • the embodiment of the present invention further provides a terminal device 10 as shown in FIG. 1 , which may be 10A or 10B.
  • the terminal device 10 includes:
  • the processing unit 601 is configured to determine a first rank for the first channel and a second rank for the second channel, where the first rank is indicated by a first rank indication, and the second rank is indicated by a second rank Indicates that the channel type of the first channel is different from the channel type of the second channel;
  • the processing unit is further configured to determine a first precoding matrix in the first precoding matrix set, and determine a second precoding matrix in the second precoding matrix set, where the first precoding matrix set and the first The second precoding matrix set is different, the rank of the first precoding matrix is the first rank, the rank of the second precoding matrix is the second rank, the first precoding matrix and the first The second precoding matrix is indicated by a third precoding matrix indication;
  • the sending unit 602 is configured to send the first rank indication, the second rank indication, the third precoding matrix indication; or, the first rank indication is a predefined value, and the sending unit sends the second Rank indication Three precoding matrix indications.
  • the first rank indication, the first rank, the second rank indication, the second rank, the first precoding matrix indication, the second precoding matrix indication, the third pre For further description of the coding matrix indication, the first precoding matrix W A , the second precoding matrix W B , etc., reference may be made to the description of the method embodiments of the present invention.
  • the processing unit of the terminal device For a specific implementation of the processing unit of the terminal device, reference may be made to the specific implementation of the terminal device in the foregoing method embodiment.
  • the CSI-enabled terminal device in the embodiment of the present invention uses different precoding matrix sets for the common channel and the traffic channel to obtain CSI.
  • the overhead of the precoding matrix indication feedback is saved in the case of meeting the requirements of the common channel and the traffic channel.
  • an embodiment of the present invention provides a base station 20 as shown in FIG. 1, and the base station 20 includes:
  • the obtaining unit 701 is configured to acquire a first rank indication, a second rank indication, a first precoding matrix indication, and a second precoding matrix indication, where the first precoding matrix indication, the second precoding matrix indication And the second rank indication is acquired from the terminal device.
  • the first rank indication is obtained from a terminal device or the first rank indication is a predefined value.
  • the processing unit 702 is configured to determine a first rank according to the first rank indication, determine a second rank according to the second rank indication, determine a first precoding matrix according to the first precoding matrix indication, and determine a second according to the second precoding matrix indication Precoding matrix
  • the first rank is used for a first channel
  • the second rank is used for a second channel
  • a channel type of the first channel is different from a channel type of the second channel
  • the rank of the first precoding matrix is the first rank, and the first precoding matrix is in a first precoding matrix set;
  • the rank of the second precoding matrix is the second rank, and the second precoding matrix is in the second precoding matrix set;
  • the first precoding matrix set is different from the second precoding matrix set.
  • the first rank indication, the first rank, the second rank indication, the second rank, the first precoding matrix indication, the second precoding matrix indication, the third pre For further description of the coding matrix indication, the first precoding matrix W A , the second precoding matrix W B , etc., reference may be made to the description of the method embodiments of the present invention.
  • the processing unit of the terminal device For a specific implementation of the processing unit of the terminal device, reference may be made to the specific implementation of the terminal device in the foregoing method embodiment.
  • the base station receiving CSI uses different precoding matrix sets for the common channel and the traffic channel to obtain CSI.
  • the overhead indicated by the precoding matrix is saved in the case of meeting the requirements of the common channel and the traffic channel.
  • the embodiment of the present invention further provides a base station 20 as shown in FIG. 1, the base station 20 includes:
  • An obtaining unit 801 configured to acquire a first rank indication, a second rank indication, a first precoding matrix indication, and a second precoding matrix indication, where the first precoding matrix indication, the second precoding matrix indication And the second rank indication is acquired from the terminal device.
  • the first rank indication is obtained from a terminal device or the first rank indication is a predefined value.
  • the processing unit 802 is configured to: the first rank indication is used to indicate a first rank, and the second rank indication is used to indicate a second rank, where the first rank is used for a first channel, and the second rank is used for a second channel, the channel type of the first channel is different from the channel type of the second channel;
  • the third precoding matrix indication is used to indicate a first precoding matrix and a second precoding matrix, a rank of the first precoding matrix is the first rank, and the first precoding matrix is at a first In the precoding matrix set, the rank of the second precoding matrix is the second rank, and the second precoding matrix is in the second precoding matrix set;
  • the first precoding matrix set is different from the second precoding matrix set.
  • the first rank indication, the first rank, the second rank indication, the first rank, the first precoding matrix indication, the second precoding matrix indication, the third pre For further description of the coding matrix indication, the first precoding matrix W A , the second precoding matrix W B , etc., reference may be made to the description of the method embodiments of the present invention.
  • the processing unit of the terminal device For a specific implementation of the processing unit of the terminal device, reference may be made to the specific implementation of the terminal device in the foregoing method embodiment.
  • the base station receiving CSI uses different precoding matrix sets for the common channel and the traffic channel to obtain CSI. In the case where the requirements of the common channel and the traffic channel are satisfied, the overhead of receiving the precoding matrix indication is reduced.
  • the base station obtains the rank indication from the terminal device, and the precoding matrix indication may be that the rank indication and the precoding matrix indication are received from the base station.
  • the base station acquiring the first precoding matrix indication from the terminal device may be receiving the first precoding matrix indication from the terminal device.
  • the acquiring unit of the base station acquires the rank indication, and the precoding matrix may also be that the base station receives the rank indication and the precoding matrix indication from the terminal device.
  • the terminal device 10 including the processor 901, the transmitter 902, and the receiver 903 is as shown in FIG.
  • a base station 20 including a processor 1002, a transmitter 1003, and a receiver 1001 is shown in FIG.
  • the processing units 501 and 601 may be specifically the processor 901.
  • the processing units 702 and 802 may be specifically the processor 1002.
  • the receiving unit 503, 603 may be the receiver 903; the receiving unit 703, 803 may be the receiver 1003.
  • the transmitting unit 502, 602 may be the transmitter 902; the transmitting unit 704, 804 may be the transmitter 1003.
  • the obtaining unit 701, 801 may be the receiver 1001. .
  • the acquiring unit 701, 801 It is a receiver 1001 and a processor 1002.
  • the processor 901, 1002 may be a central processing unit ("CPU"), and the processor 901, 1002 may also be other general-purpose processors, digital signal processing. (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及移动通信领域,尤其涉及无线通信***中的多天线技术。本申请给出一种信道状态信息CSI的发送方法、装置和***。在此方案中,终端设备向基站反馈用于公共信道的第一秩、第一预编码矩阵指示,以及反馈用于业务信道的第二秩、第二预编码矩阵指示。该第一预编码矩阵指示用于指示第一预编码矩阵集合中的第一预编码矩阵。该第二编码矩阵指示用于指示第二预编码矩阵集合中的第二预编码矩阵。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。由于对公共信道和业务信道使用不同的预编码矩阵集合以得到信道状态信息。在满足了***需求的情况下,节约了反馈的比特。

Description

信道状态信息的发送方法、接收方法、装置和***
本申请要求于2016年8月5日提交中国专利局、申请号为201610639121.X、申请名称为“信道状态信息的发送方法、接收方法、装置和***”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种信道状态信息的发送方法、接收方法、装置和***。
背景技术
长期演进(long term evolution,LTE)***广泛采用了多输入多输出(multiple input and multiple output,MIMO)技术,也就是多天线技术。受大气、植被等因素的影响,在有些情况下无线传播的路径损耗很大。多天线中的预编码技术,可以一定程度上补偿损耗。
为了补偿公共信道和业务信道的路径损耗,终端设备可以反馈公共信道的信道状态信息(channel state information,CSI)和业务信道的CSI给基站。基站利用反馈的CSI对发送的数据进行预编码。然而,在现有技术中,终端设备反馈公共信道的CSI和业务信道CSI时,反馈CSI的开销较大,浪费了***资源。
发明内容
本申请描述了一种CSI的发送方法、接收方法装置和***,对公共信道和业务信道使用不同的CSI集合以得到CSI。在满足公共信道和业务信道的需求的情况下,降低了CSI反馈的开销。
第一方面,本申请实施例提供一种CSI的发送方法,该方法包括:
终端设备确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示。所述第一信道的信道类型与所述第二信道的信道类型不同。
所述终端设备在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。所述第一预编码矩阵的秩为所述第一秩,所述第一预编码矩阵由第一预编码矩阵指示来指示。所述第二预编码矩阵的秩为所述第二秩,所述第二预编码矩阵由第二预编码矩阵指示来指示。
所述终端设备发送所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示,所述第二预编码矩阵指示。或者,所述终端设备发送所述第二秩指示,所述第一预编码矩阵指示,所述第二预编码矩阵指示,所述第一秩指示为预定义值。由于所述第一 信道和所述第二信道的特性可能不同,使用不同的预编码矩阵集合,且所述第一预编码矩阵集合适合所述第一信道,所述第二预编码矩阵集合适合所述第二信道时,可以在满足***需求的情况下,降低终端设备的反馈预编码矩阵指示的开销。
可选地,所述第一预编码矩阵指示由B1个比特表示,所述第二预编码矩阵指示由B2个比特表示,所述B1个比特和B2个比特有部分重叠,B1和B2都为大于1的正整数。由于所述第一预编码矩阵指示和所述第二预编码矩阵指示有共用的比特,这样可以节省终端设备反馈预编码矩阵指示的开销。
第二方面,本申请实施例提供一种CSI的发送方法,该方法包括:
终端设备确定用于第一信道的第一秩和用于第二信道的第二秩。所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示。所述第一信道的信道类型与所述第二信道的信道类型不同。
所述终端设备在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。所述第一预编码矩阵的秩为所述第一秩,所述第二预编码矩阵的秩为所述第二秩。所述第一预编码矩阵和所述第二预编码矩阵由第三预编码矩阵指示来指示。由于所述第一信道和所述第二信道的特性可能不同,使用不同的预编码矩阵集合,且所述第一预编码矩阵集合适合所述第一信道,所述第二预编码矩阵集合适合所述第二信道时,可以在满足***需求的情况下,降低终端设备的反馈预编码矩阵指示开销。由于第三预编码矩阵指示,既在第一预编码矩阵集合中指示第一预编码矩阵,又在第二预编码矩阵集合中指示第二预编码矩阵。这样可以节省终端设备反馈预编码矩阵指示的开销。
终端设备发送所述第一秩指示,所述第二秩指示和所述第三预编码矩阵指示。或者,所述第一秩指示为预定义值,用户设备发送所述第二秩指示和所述第三预编码矩阵指示。
第三方面,本申请实施例提供一种CSI的接收方法,该方法包括:
基站获取第一秩指示,第二秩指示,第一预编码矩阵指示和第二预编码矩阵指示。其中,所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取。所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值。
根据第一预编码矩阵指示确定第一预编码矩阵,根据第二预编码矩阵指示确定第二预编码矩阵。其中,所述第一秩指示用于指示第一秩,所述第二秩指示用于指示第二秩,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同。
所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中。所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中。
所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。由于所述第一信道和所述第二信道的特性可能不同,使用不同的预编码矩阵集合,且所述第一预编码矩阵集合适合所述第一信道,所述第二预编码矩阵集合适合所述第二信道时,可以在满足***需求的情况下,降低终端设备反馈预编码矩阵指示或基站接收预编码矩阵指示的 比特数。达到降低基站和终端设备复杂度及降低功耗的效果。
第四方面,本申请实施例提供一种CSI的接收方法,该方法包括:
基站获取第一秩指示,第二秩指示,第三预编码矩阵指示。其中,所述第二秩指示,所述第三预编码矩阵指示从终端设备获取。所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值。
根据第三预编码矩阵指示确定第一预编码矩阵和第二预编码矩阵。
其中,所述第一秩指示用于指示第一秩,所述第二秩指示用于指示第二秩,所述第一秩用于第一信道,所述第二秩用于第二信道。所述第一信道的信道类型与所述第二信道的信道类型不同。
所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中。所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。由于所述第一信道和所述第二信道的特性可能不同,使用不同的预编码矩阵集合,且所述第一预编码矩阵集合适合所述第一信道,所述第二预编码矩阵集合适合所述第二信道时,可以在满足***需求的情况下,降低基站接收预编码矩阵指示的比特数。达到降低基站复杂度及降低功耗的效果。
由于第三预编码矩阵指示,既在第一预编码矩阵集合中指示第一预编码矩阵,又在第二预编码矩阵集合中指示第二预编码矩阵。这样可以节省终端设备反馈预编码矩阵指示的开销。
第五方面,本申请实施例提供一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
所述终端设备包括:
处理单元,用于确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示。所述第一信道的信道类型与所述第二信道的信道类型不同;
所述处理单元,还用于在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵,所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,所述第一预编码矩阵的秩为所述第一秩,所述第一预编码矩阵由第一预编码矩阵指示来指示。所述第二预编码矩阵的秩为所述第二秩,所述第二预编码矩阵由第二预编码矩阵指示来指示;
发送单元,用于发送所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示。或者,用于发送所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示,所述第一秩指示为预定义值。
第六方面,本申请实施例提供另一种终端设备,该终端设备具有实现上述方法设 计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
所述终端设备包括:
处理单元,用于确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示。所述第一信道的信道类型与所述第二信道的信道类型不同。
所述处理单元,还用于在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。所述第一预编码矩阵的秩为所述第一秩,所述第二预编码矩阵的秩为所述第二秩,所述第一预编码矩阵和所述第二预编码矩阵由第三预编码矩阵指示来指示;
发送单元,用于发送所述第一秩指示,所述第二秩指示,所述第三预编码矩阵指示。或者,用于发送所述第二秩指示,所述第三预编码矩阵指示,且所述第一秩指示为预定义值。
第七方面,本申请实施例提供一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
所述基站包括:
获取单元,用于获取第一秩指示,第二秩指示,第一预编码矩阵指示和第二预编码矩阵指示。其中,所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取。所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值。
处理单元,用于根据第一秩指示确定第一秩,根据第二秩指示确定第二秩,根据第一预编码矩阵指示确定第一预编码矩阵,根据第二预编码矩阵指示确定第二预编码矩阵。
其中,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同。
所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中。
所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中。
所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。
第八方面,本申请实施例提供另一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
所述基站包括:
获取单元,用于第一秩指示,第二秩指示,第三预编码矩阵指示。其中,所述第 二秩指示,所述第三预编码矩阵指示从终端设备获取。所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值。
处理单元,用于根据第三预编码矩阵指示确定第一预编码矩阵和第二预编码矩阵。
其中,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同。
所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中。
所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中。
所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。
在第一方面到第二方面,还有如下可选设计。
可选地,所述第一信道是公共信道,所述第二信道是业务信道。由于公共信道和业务信道的特性可能不同,可以根据公共信道的信道特性、需求特性定义所述第一预编码矩阵集合;根据业务信道的信道特性、需求特性定义所述第二预编码矩阵集合。这样,在公共信道和业务信道使用不同的预编码矩阵集合可以在满足***需求的情况下,节省终端设备的反馈预编码矩阵指示的开销。
可选地,所述终端设备向基站发送第二CQI,所述第二CQI根据所述第二预编码矩阵得到。或者,所述终端设备向基站发送第一CQI、第二CQI,所述第一CQI根据所述第一预编码矩阵得到,所述第二CQI根据所述第二预编码矩阵得到。所述终端设备向基站发送所述第一CQI、可以使基站根据所述第一CQI确定在第一信道上合适的调制方式。所述终端设备向基站发送所述第二CQI、可以使基站根据所述第二CQI确定在第二信道上合适的调制方式。
所述终端设备向基站只发送第二CQI,不发送第一CQI时,在所述第一信道上发送的数据可以使用预定义的调制方式。这样节省通知调制方式的信令。
在第三方面到第四方面,还有如下可选设计。
可选地,所述第一信道是公共信道,所述第二信道是业务信道。由于公共信道和业务信道的特性可能不同,可以根据公共信道的信道特性、需求特性定义所述第一预编码矩阵集合;根据业务信道的信道特性、需求特性定义所述第二预编码矩阵集合。这样,在公共信道和业务信道使用不同的预编码矩阵集合可以在满足***需求的情况下,节省终端设备的反馈预编码矩阵指示的开销。
可选地,所述基站接收所述终端设备发送的第二CQI,所述第二CQI为根据所述第二预编码矩阵得到。或者,所述基站接收所述终端设备发送的第一CQI和第二CQI。所述第一CQI为根据所述第一预编码矩阵得到,所述第二CQI为根据所述第二预编码矩阵得到。所述基站接收所述第一CQI,可以根据第一CQI确定在第一信道上合适的调制方式。所述基站接收所述第二CQI,可以根据第二CQI确定在第二信道上合适的调制方式。
所述基站只接收第二CQI,不接收第一CQI时,在所述第一信道上发送的数据可 以使用预定义的调制方式。这样节省通知调制方式的信令。
在第五方面到第六方面,还有如下可选设计。
可选地,所述第一信道是公共信道,所述第二信道是业务信道。由于公共信道和业务信道的特性可能不同,可以根据公共信道的信道特性、需求特性定义所述第一预编码矩阵集合;根据业务信道的信道特性、需求特性定义所述第二预编码矩阵集合。这样,公共信道和业务信道使用不同的预编码矩阵集合可以在满足***需求的情况下,节省终端设备的反馈预编码矩阵指示的开销。
可选地,所述发送单元还用于向基站发送第二CQI,所述第二CQI根据所述第二预编码矩阵得到。或者,
所述发送单元还用于向基站发送第一CQI、第二CQI,所述第一CQI根据所述第一预编码矩阵得到,所述第二CQI根据所述第二预编码矩阵得到。
所述发送单元向基站发送所述第一CQI、可以使基站根据所述第一CQI确定在第一信道上合适的调制方式。所述发送单元向基站发送所述第二CQI、可以使基站根据所述第二CQI确定在第二信道上合适的调制方式。
所述发送单元向基站只发送第二CQI,不发送第一CQI时,在所述第一信道上发送的数据可以使用预定义的调制方式。这样节省通知调制方式的信令。
在第七方面到第八方面,还有如下可选设计。
可选地,所述第一信道是公共信道,所述第二信道是业务信道。由于公共信道和业务信道的特性可能不同,可以根据公共信道的信道特性、需求特性定义所述第一预编码矩阵集合;根据业务信道的信道特性、需求特性定义所述第二预编码矩阵集合。这样,在公共信道和业务信道使用不同的预编码矩阵集合可以在满足***需求的情况下,节省终端设备的反馈预编码矩阵指示的开销。
可选地,所述基站还包括;
接收单元,用于接收所述终端设备发送的第二CQI,所述第二CQI为根据所述第二预编码矩阵得到。或者,接收单元,用于接收所述终端设备发送的第一CQI和第二CQI。所述第一CQI为根据所述第一预编码矩阵得到,所述第二CQI为根据所述第二预编码矩阵得到。
所述接收单元接收所述第一CQI,可以根据第一CQI确定在第一信道上合适的调制方式。所述接收单元接收所述第二CQI,可以根据第二CQI确定在第二信道上合适的调制方式。
所述接收单元只接收第二CQI,不接收第一CQI时,在所述第一信道上发送的数据可以使用预定义的调制方式。这样节省通知调制方式的信令。
在第一方面到第八方面,还有如下可选设计。
可选地,所述第一预编码矩阵WA满足WA=W1 A×W2 A,其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,W2 A是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2。
所述第二预编码矩阵WB满足,WB=W1 B×W2 B,其中,WB为Nt行RB列的矩阵,RB为 所述第二秩,W1 B是Nt行2K列的矩阵,W2 B是2K行RB列的矩阵,RB,K都为正整数。
可选地,K小于或者等于M,且W1 A中的2M列包括W1 B中的每一列。由于W1 A和W1 B之间的向量有包含的关系,在终端设备发送第一预编码矩阵指示、第二预编码矩阵指示给基站时,可以减少发送预编码矩阵指示的比特数。
可选地,所述第一预编码矩阵集合中的每个预编码矩阵满足W1=W1 1×W2 1。其中,W1是Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 1是Nt行2M列的矩阵,W2 1是2M行RA列的矩阵,Nt,RA,M都为正整数,M大于等于2。
所述第二预编码矩阵集合中的每个预编码矩阵满足W2=W1 2×W2 2,其中,W2是Nt行RB列的矩阵,RB为所述第二秩,Nt大于或等于RB,W1 2是Nt行2K列的矩阵,W2 2是2K行RB列的矩阵,RB,K都为正整数。
可选地,K小于或者等于M,所述第一预编码矩阵集合中的任意一个W1 1,与所述第二预编码矩阵集合中的一个W1 2对应,其中,所述第一预编码集合中的任意一个W1 1中的2M列包括与所述第一预编码集合中的任意一个W1 1对应的所述第二预编码矩阵集合中的W1 2的每一列。由于W1 1和W1 2之间的向量有包含的关系,在终端设备发送第一预编码矩阵指示、第二预编码矩阵指示给基站时,可以减少发送预编码矩阵指示的比特数。
可选地,
Figure PCTCN2017094757-appb-000001
其中X1为Nt/2行M列的矩阵,Nt为偶数,X1=[v0 … vM-1],vd是包含Nt/2个元素的列向量,d为0到M-1的整数。W2 1的任意一列,用
Figure PCTCN2017094757-appb-000002
表示,其中φn为复数,el为是M×1的列向量,其第l个元素为1,其余的元素为0,l为1到M的整数。
可选地,
Figure PCTCN2017094757-appb-000003
其中X2为Nt/2行K列的矩阵,Nt为偶数,X2=[z0 … zk-1],zd是包含Nt/2个元素的列向量,d为0到K-1的整数。W2 2的任意一列,用
Figure PCTCN2017094757-appb-000004
表示,其中φk为复数,em为是K×1的列向量,其第m个元素为1,其余的元素为0,m为1到k的整数。
W1 1、W2 1、W2 1和W2 2采用上述的结构主要是原因是目前应用的天线阵主要是双极化的天线阵。而上述的预编码矩阵结构可以使两个极化方向的天线的波束方向相同。这与双极化的天线阵信道特性匹配的的较好,所以,使用上述的预编码矩阵结构可以获得好的性能。
可选地,所述第一CQI与所述第二CQI对应相同的频域资源。当这两个CQI对应相同的频域资源时,可以利用所述第一信道的信道特性和所述第二信道的信道特性来减少CQI反馈开销。
可选地,第一CQI和第二CQI采用差分的方式表示。采用差分的方式表示,可以节省CQI的反馈开销
可选地,所述第一预编码矩阵WA为根据W1 A或W1 B,并根据第一合成准则生成的矩 阵,所述第一合成准则为预定义的准则或基站配置的准则。通过合成的方法,终端设备不需要发送指示W2 A的预编码矩阵指示的比特,减少了终端设备反馈的开销。
可选地,所述第一信道是公共信道,所述第二信道是业务信道。
在第五方面到第八方面,发送单元可以是发送器,接收单元可以是接收器,处理单元可以是处理器,获取单元可以是处理器,也可以是处理器和接收器。
本发明实施例还提供了一种***,该***包括上述实施例中的终端设备和基站。
相较于现有技术,本申请提供的方案中,对公共信道和业务信道分别使用不同的预编码矩阵的集合。由于公共信道和业务信道的特性可能不同,可以根据公共信道的信道特性、需求特性定义所述第一预编码矩阵集合;根据业务信道的信道特性、需求特性定义所述第二预编码矩阵集合。这样,在公共信道和业务信道使用不同的预编码矩阵集合可以在满足***需求的情况下,节省终端设备的反馈预编码矩阵指示的开销。
附图说明
图1为本发明实施例的通信***的示意图。
图2为本发明实施例的基站侧合成预编码矩阵的流程示意图。
图3为本发明实施例的终端设备根据基站的配置准则合成预编码矩阵并发送预编码矩阵指示的流程示意图。
图4为本发明实施例的CSI的发送方法的流程示意图。
图5是根据本发明实施例的用户设备的示意性框图
图6是根据本发明实施例的用户设备的另一示意性框图。
图7是根据本发明实施例的基站的示意性框图。
图8是根据本发明实施例的基站的另一示意性框图。
图9是根据本发明另一实施例的用户设备的示意性框图。
图10是根据本发明另一实施例的基站的示意性框图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
应理解,本发明实施例的技术方案可以应用于各种通信***,例如:长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)通信***等。
还应理解,在本发明实施例中,终端设备(terminal equipment)可称之为终端(terminal),也可以是用户设备(user equipment,UE)、移动台(mobile station,MS),移动终端(mobile terminal),笔记本电脑等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,终端设备还 可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语音和/或数据。
在本发明实施例中,基站可以是LTE***中的演进型基站(evolved node B,简称为“eNB或e-NodeB”),也可以是其他基站,也可以是中继(relay)之类的接入网设备。本发明并不限定。
本发明实施例基于图1所示的通信***提出一种解决方案,用以提高公共信道、业务信道的性能。本发明实施例提供了一种通信***100。该通信***100至少包括至少一个基站和多个终端设备。所述多个终端设备和所述基站通信。在下行,基站至少通过公共信道和下行业务信道和终端设备通信。以图1为例,基站20与终端设备10通信,所述终端设备10包括终端设备10A和10B。在上行,终端设备通过上行控制信道和上行业务信道和基站通信。下行指的是基站向终端设备发送数据的方向,上行指的是终端设备向基站发送数据的方向。所述公共信道,可以是公共控制信道,例如物理下行控制信道(physical downlink control channel,PDCCH)。基站在PDCCH上发送控制信息,例如对终端设备的调度信息。所述下行业务信道,可以是基站给用户设备发送下行业务数据的信道,比如物理下行数据信道(physical downlink shared channel,PDSCH)。所述上行控制信道,可以是物理上行控制信道(physical uplink control channel,PUCCH)。在LTE***中,终端设备可以在PUCCH上发送秩指示(rank indication,RI),预编码矩阵指示(precoding matrix indicator,PMI),信道质量指示(channel quality indication,CQI)基站。所述上行业务信道,可以是物理上行数据信道(physical uplink control channel,PUSCH)。在LTE***中,终端设备在PUSCH上发送上行业务数据给基站。
为了补偿信道的路径损耗,终端设备反馈信道状态信息(channel state information,CSI)给基站,基站根据该CSI确定预编码矩阵并根据该预编码矩阵对数据进行预编码。在LTE***中,终端设备反馈的CSI信息可以包括RI,PMI,或CQI等。其中,RI用于指示数据空间复用的数目,同时也等于预编码矩阵列的数目。PMI用于指示预编码矩阵。基站通过终端设备反馈的RI和PMI获得预编码矩阵。在RI给定的情况下,一个PMI用于指示与该RI对应的预编码集合中的一个预编码矩阵。一个RI对应多个预编码矩阵。一个RI对应的多个的预编码矩阵是这个RI对应的预编码矩阵集合。CQI用于指示终端设备在给定的RI和PMI的条件下,接收到的数据的信道质量。
以图1为例,对下行业务信道,基站根据终端设备10B反馈的CSI对下行业务信道的数据进行预编码,例如,通过波束5给终端设备10B发送下行数据。对下行业务信道,由于基站20按照终端设备10B的反馈的CSI对下行业务信道的数据进行预编码,终端设备10B可以获得较好的接收性能。同理,基站20根据终端设备10A反馈的CSI对发送给终端设备10A的下行业务信道的数据进行预编码,终端设备10A可以获得较好的接收性能。
对公共信道,基站可以在不同的时刻使用不同的波束轮流发送的方式发送公共信道,例如4个波束轮流发送公共信道。在时刻1,基站20通过波束1发送公共信道;在时刻2,基站20通过波束2发送公共信道;在时刻3,基站20通过波束3发送公共 信道;在时刻4,基站20通过波束4发送公共信道。终端设备10A、10B都要接收公共信道的数据。对下行业务信道,基站20根据终端设备10B反馈的CSI对下行业务信道的数据进行预编码,通过波束5给终端设备10B发送下行数据。对下行业务信道,由于基站20按照终端设备10B的反馈的CSI对下行业务信道的数据进行预编码,终端设备10B可以获得较好的接收性能。但对公共信道,由于基站20是按照波束轮流发送的方式发送公共信道,终端设备10A在时刻1,接收波束1的质量较好。但当终端设备10A移动到另一个位置,接收通过波束1发送的信号的质量很差。如果此时基站还通过波束1发送公共信道,而且公共信道上的数据就是给终端设备10A,就会导致终端设备10A接收公共信道的信号质量很差。
对公共信道,基站也可以使用业务信道的预编码矩阵集合中预编码矩阵对公共信道进行预编码。但是,对业务信道,为了更好地获得自适应调制编码的增益,需要的预编码矩阵的数目比公共信道要多。当业务信道和公共信道使用同样的业务预编码矩阵集合时,对公共信道而言,增加了预编码矩阵指示的反馈开销。
由于业务信道的预编码矩阵的生成的波束较细,由于公共信道上的数据是要发给多个用户的,使用业务信道的预编码矩阵进行预编码有可能不能让每个用户接收质量都好。例如,当基站20要在公共信道上给终端设备10A和终端10B发送数据时,用波束5发公共信道终端10A接收性能差,而用波束3发公共信道,终端10B接收性能差。
为了提高公共信道的接收性能,同时考虑到公共信道和业务信道的特性,可以让终端设备发送公共信道的CSI给基站。并且基站对公共信道和业务信道使用不同的预编码矩阵集合。这样,可以针对公共信道和业务信道的需求,分别使用对公共信道、业务信道较好的预编码矩阵集合。
为了减少基站接收终端设备发送的CSI的比特数,达到降低基站复杂度及降低功耗的目的。在本发明的实施例中,在基站侧,给出一种合成预编码矩阵的方法。基站获得第一秩指示、第二秩指示、预编矩阵指示。其中,所述第二秩指示,基站可以从终端设备接收获得。所述第一秩指示,基站可以从终端设备接收获得;也可以第一秩指示为预定义值,基站根据预定义值直接获得。
所述预编矩阵指示,可以包括第一预编码矩阵指示和第二预编码矩阵指示。基站根据所述第一预编码矩阵指示确定第一预编码矩阵WA,根据所述第二预编码矩阵指示确定第二预编码矩阵WB。所述第一预编码矩阵WA的秩为所述第一秩;根据所述第二预编码矩阵指示确定第二预编码矩阵WB,所述第二预编码矩阵WB的秩为所述第二秩。
或者,所述预编码矩阵指示,包括第三预编码矩阵指示。基站根据所述第三预编码矩阵指示确定第一预编码矩阵WA和第二预编码矩阵WB,所述第一预编码矩阵WA的秩为所述第一秩;所述第二预编码矩阵WB的秩为所述第二秩。
其中,WA满足WA=W1 A×W2 A。WB满足WB=W1 B×W2 B。其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,W2 A是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2。基站可以使用WA在第一信道上向终端设备发送数据。基站可以使用WB在第二信道上向终端设备发送数据。
对第一预编码矩阵WA,也可以由W1 A合成得到;或者WA由W1 B合成得到。关于WA、 W1 A、W1 B的定义,可参见前述实施例。合成WA的准则可以通过Butler矩阵的方法合成。图2给出了在基站侧,合成WA的流程示意图。其合成的过程如下所示。图2中的基站,可以是图1中的基站20。
步骤201:基站接收预编码矩阵指示。
在步骤201中,基站接收从终端设备发送的预编码矩阵指示,所述预编码指示用于指示前述所描述的W1 B、W2 B和W1 A。例如,基站接收第一预编码矩阵指示、第二预编码矩阵指示。所述第一预编码矩阵指示用于指示W1 A。所述第二预编码矩阵指示用于指示W1 B、W2 B,或者用于指示WB,其中WB=W1 B×W2 B。或者基站接收第三预编码矩阵指示,所述第三预编码矩阵指示用于指示W1 A、W1 B和W2 B
步骤202:基站合成出第一预编码矩阵。
在步骤202中,基站根据所述预编码指示得到W1 A、W1 B
可选地,WA可以由W1 B合成。例如,
Figure PCTCN2017094757-appb-000005
其中Nm为合成预编码矩阵WA的W1 B的个数,W1 B(p)为用于合成WA的第p个预编码矩阵,ωm为实数。可选地,ωm用于保证所述合成后的WA作用到天线上,形成的主瓣方向和某个W1 B(p)作用到天线上,形成个主瓣方向尽可能一致。ωm可以通过遍历的方式得到。
可选地,WA可以由W1 A合成。在这种情况下,
Figure PCTCN2017094757-appb-000006
其中Nm为合成预编码矩阵WA的W1 A的个数,W1 A(p)为用于合成WA的第p个预编码矩阵,ωm为实数。可选地,ωm用于保证所述合成后的WA作用到天线上,形成的主瓣方向和某个W1 B(p)作用到天线上,形成个主瓣方向尽可能一致。ωm可以通过遍历的方式得到。
通过合成的方法,基站不需要接收指示W2 A的预编码矩阵指示的比特,减少了基站接收终端设备发送的CSI的比特数。达到降低基站复杂度及降低功耗的效果。
为了减少终端设备发送的CSI的比特数,在本发明的实施例中,在终端设备侧,给出一种合成预编码矩阵的方法。其中,第一预编码矩阵集合中的预编码矩阵WA为根据第一合成准则生成的矩阵,所述第一合成准则为预定义的准则或基站配置的准则。具体合成预编码矩阵的方法,参见前述在基站侧合成预编码矩阵的方法的实施例。通过合成的方法,减少了终端设备发送预编码指示的开销。图3给出了终端设备根据基站的配置准则合成预编码矩阵并发送预编码矩阵指示的流程示意图。图3中的终端,可以是图1中的终端设备10,包括终端设备10A和10B。
步骤301:终端设备接收基站配置的合成准则,并根据合成准则合成预编码矩阵。
根据该合成准则,合成预编码矩阵的方法,参见前述在基站侧合成预编码矩阵的方法的实施例。
步骤302:确定预编码矩阵及对应的预编码矩阵指示。
在步骤302中,确定预编码矩阵可以是确定WA,WB,或者确定W1 B、W2 B、W1 A
而且WA=W1 A×W2 A,WB=W1 B×W2 B。W1 A对应第一预编码矩阵指示。WB对应的第二预编码矩阵指示,或者W1 B、W2 B对应第二预编码矩阵指示。预编码矩阵对应的预编码矩阵指示可以是所述第一预编码矩阵指示和所述第二预编码矩阵指示。
步骤303:发送所述预编码矩阵指示。
在步骤303中,终端设备发送所述第一预编码矩阵指示和所述第二预编码矩阵指示。所述第一预编码矩阵指示用于指示W1 A。所述第二预编码矩阵指示用于指示W1 B、W2 B,或者用于指示WB,其中WB=W1 B×W2 B。通过合成的方法,终端设备不需要发送指示W2 A的预编码矩阵指示的比特,减少了终端设备反馈的开销。
本发明实施例中,给出一种CSI的发送方法。图4给出了根据本发明实施中的一种CSI的发送方法的示意图。图4中的基站可以是图1中的基站20;图4中的终端设备可以是图1中的终端设备10,即终端设备10A或终端设备10B。如图4所示,该方法包括:
步骤401,基站给终端设备发送配置信息,所述配置信息用于配置预编码矩阵集合。
步骤401中为可选步骤,基站给终端设备配置预编码矩阵集合。基站可以给终端设备配置多套预编码矩阵集合。一套预编码矩阵集合可以包括多个秩的预编码矩阵。对一个秩而言,有多个对应的预编码矩阵。例如,一套预编码矩阵集合,包括秩=1、秩=2、秩=3、秩=4的预编码矩阵。其中秩=1的预编码矩阵有256个;秩=2的预编码矩阵有256个;秩=3、秩=4的预编码矩阵分别有16个。由于不同类型的信道有不同的需求,例如,在公共信道上发送的数据,有的是发给多个终端设备的,有的是发给一个终端设备的。发给多个终端设备的公共信道上的数据,基站需要尽可能的使所述多个终端设备都正确的接收所述公共信道上的数据。这时,基站发送的波束的主瓣宽度较大,基站发送的波束的主瓣基本上是可以覆盖所述多个用户所在的方向。对下行数据信道,比如PDSCH,基站是发给一个终端设备。基站发送PDSCH时,发送波束的主瓣方向是尽可能指向接收此下行数据的终端设备的,以达到使该终端设备接收信号功率最大的目的。对业务信道,需要预编码矩阵生成的波束窄,以达到能量集中的效果。而公共信道,需要生成的波束宽的预编码矩阵,还可以需要生成的波束窄的预编码矩阵。但是,对公共信道,对预编码矩阵的数目的要求没有业务信道那么多。所以对公共信道和业务信道,对预编码矩阵的需求是不一样的。
考虑到公共信道和业务信道,对预编码的需求不同,可选地,基站对公共信道配置一套预编码矩阵集合;对下行数据信道配置另一套预编码矩阵集合。
可选地,基站对公共信道配置一套预编码矩阵集合;对下行数据信道配置E套预编码矩阵集合,分别记为第2套、第3套、……、第E+1套预编码矩阵集合,E为正整数。例如,在用户设备高于基站的场景,在下行数据信道,使用第2套预编码矩阵集合,该预编码矩阵集合的预编码矩阵生成的向上发送的波束;在用户设备低于于基站的场景,在下行数据信道,使用第3套预编码矩阵集合,该预编码矩阵集合的预编码矩阵生成的向下发送的波束。
可选地,所述预编码矩阵集合是预定义的,不是基站配置给终端的。与基站向终端配置预编码矩阵集合相比,预定义的方法可以减少配置信令。
步骤402,终端设备确定确定第一秩和第二秩。
在步骤402中,所述终端设备确定用于第一信道的第一秩和用于第二信道的第二 秩。秩是数据空间复用的数目,同时也等于预编码矩阵列的数目。一个秩对应一个秩指示。秩指示用于指示秩。该终端设备向基站发送秩指示来指示该终端设备期望的基站使用的预编码矩阵的列数。例如,秩的取值范围为1-8,秩指示由3个比特表示。当秩指示为000时,表示秩为1;当秩指示为001,表示秩为2,依次类推。总之,秩取某个值,就有一个秩指示和该秩对应。
所述第一信道可以是公共信道,比如公共控制信道;所述第二信道可以下行业务信道,例如PDSCH。用于第一信道的第一秩指的是所述第一秩是针对所述第一信道的。例如,所述终端设备确定了所述第一秩,目的是确定基站使用的预编码矩阵的秩或预编码矩阵的列数。当所述终端设备通过第一秩指示将第一秩通知给基站后,基站在所述第一信道上,使用预编码矩阵的秩等于第一秩的预编码矩阵对数据进行预编码。同理,可以得到用于第二信道的第二秩的作用。
可选的,终端设备可以基于CSI等信息确定秩。可选的,基站向终端设备发送小区特定参考信号(cell-specific reference signal,CRS),或发送信道状态信息参考信号(channel state information reference signal,CSI-RS)。终端设备根据CRS,或CSI-RS,得到下行的信道估计和下行的干扰估计,然后根据这两者确定下行传输时终端设备期望的秩。以终端设备接收LTE***中PDSCH为例,给出的终端设备确定秩的方法如下所示。
所述终端设备接收PDSCH和参考信号。在一个子载波上,终端设备接收PDSCH信号的数学模型为
y=HWs+n                   (1)
其中y是接收PDSCH的信号矢量,H是通过参考信号得到信道矩阵,W是预编码矩阵,s是发射的符号矢量,n是通过参考信号得到的干扰加噪声。
终端设备遍历所有秩以及每个秩所对应的所有编码矩阵,并计算每个预编码矩阵进行预编码后得到的信道容量。每个预编码矩阵,得到一个信道容量。信道容量可以是发送端能够正确发送的比特数目。得到最大的信道容量对应的预编码矩阵以及该预编码矩阵的秩。同时,也可以根据该预编码矩阵,得到了CQI。例如,根据该预编码矩阵,得到检测后的信号与干扰加噪声的比值,作为CQI。
当秩确定的情况下,确定终端设备期望的预编码矩阵的方法如下。比如,在某个子帧,终端设备需要发送预编码矩阵指示。在之前,已经发送了秩指示。则终端设备只需要遍历秩指示所指示的秩的预编码矩阵集合。比如秩指示对应的秩为1,则终端设备只需要遍历秩=1的预编码矩阵集合,得到使得信道容量最大的预编码矩阵。同时,也可以根据该预编码矩阵,得到了CQI。
终端设备遍历一个秩对应的预编码矩阵时,可以通过预编码矩阵指示来获得预编码矩阵。例如,遍历预编码矩阵指示,在遍历到某个预编码矩阵指示时,根据这个预编码矩阵指示得到预编码矩阵,并根据此预编码矩阵计算信道容量。也可以直接遍历预编码矩阵,当选择了使得信道容量最大的预编码矩阵后,根据预编码矩阵和预编码矩阵指示的一一对应关系,得到预编码矩阵指示。
以上只是给了一种确定秩的方法。应理解,终端设备可以采用本领域技术人员所 熟知的其他方法来确定秩,为了简洁,在此不再赘述。
所述第一秩对应第一信道的第一预编码矩阵的秩,且所述第一秩由第一秩指示来指示,所述第二秩对应第二信道的第二预编码矩阵的秩,且所述第二秩由第二秩指示来指示,所述第一信道的信道类型与所述第二信道的信道类型不同。所述第一信道可以是公共信道,比如公共控制信道;所述第二信道可以是下行业务信道,比如PDSCH。由于不同类型的信道有不同的需求,对某种类型的信道,使用适合它的需求的预编码矩阵集合,可以提高性能。
步骤403,终端设备确定预编码矩阵。
在步骤403中,终端设备在与所述第一秩对应的第一预编码矩阵集合中确定所述第一预编码矩阵,在与所述第二秩对应的第二预编码矩阵集合中确定所述第二预编码矩阵,所述第一预编码矩阵由第一预编码矩阵指示来指示,所述第二预编码矩阵由第二预编码矩阵指示来指示。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。这样,可以针对第一信道和第二信道的需求,使用不同的预编码矩阵集合。且第一预编码矩阵集合是针对第一信道的优化设计的,第二预编码矩阵是针对第二信道的优化设计。这样可以达到提高性能的效果。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,指的是对两个预编码矩阵集合包含的预编码矩阵不完全相同。或者,所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,指的是至少有一个秩,该秩对应的所述第一预编码矩阵集合中的预编码矩阵和该秩对应的所述第二预编码矩阵集合中的预编码矩阵不完全相同。例如,所述第一预编码矩阵集合包括秩=1的预编码矩阵有8个,所述第二预编码矩阵集合包括秩=1的预编码矩阵有8个。其中所述第一预编码矩阵集合包括的秩=1的预编码矩阵中,有4个预编码矩阵与第二预编码矩阵集合包括的秩=1的预编码矩阵中的4个预编码矩阵相同。但第一预编码矩阵集合中的另外4个秩=1的预编码矩阵不在第二预编码矩阵集合秩=1的预编码矩阵中。这种情况下,第一预编码矩阵集合和第二预编码矩阵集合是不同的。
或者,在步骤403中,所述终端设备在与所述第一秩对应的第一预编码矩阵集合中确定第一预编码矩阵,在与所述第二秩对应的第二预编码矩阵集合中确定第二预编码矩阵,所述第一预编码矩阵和所述第二预编码矩阵由第三预编码矩阵指示来指示。所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。例如,第三预编码矩阵指示包含8个比特,这8个比特既在第一预编码矩阵集合中指示第一预编码矩阵,又在第二预编码矩阵集合中指示第二预编码矩阵。这样可以节省终端设备反馈预编码矩阵指示的开销。
在第一预编码矩阵由第一预编码矩阵指示来指示,第二预编码矩阵由第二预编码矩阵指示来指示的情况下,可选地,所述第一预编码矩阵指示由B1个比特表示,所述第二预编码矩阵指示由B2个比特表示,所述B1个比特和B2个比特有部分重叠,B1和B2都为正整数。由于所述第一预编码矩阵指示和所述第二预编码矩阵指示有共用的比特,这样可以节省终端设备反馈预编码矩阵指示的开销。例如,一共有12个比特表示第一预编码矩阵指示和第二预编码矩阵指示。在这12个比特中,第1到第8个比特是第一预编码矩阵指示的;第1到第4个比特、第9到第12个比特是第二预编码矩阵指示的。由于有4个比特的预编码指示是第一 预编码矩阵和第二预编码矩阵共用的,节省终端设备反馈预编码矩阵指示的开销。
在第一预编码矩阵由第一预编码矩阵指示来指示,第二预编码矩阵由第二预编码矩阵指示来指示和在第一预编码矩阵、第二预编码矩阵由第三预编码矩阵指示来指示这两种情况下,还有如下可选设计。
可选地,所述所述第一预编码矩阵为WA,WA=W1 A×W2 A,其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,W2 A是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2。所述第二预编码矩阵为WB,WB=W1 B×W2 B,其中,WB为Nt行RB列的矩阵,RB为所述第二秩,W1 B是Nt行2K列的矩阵,W2 B是2K行RB列的矩阵,RB,K都为正整数。
可选的,K小于或者等于M,且W1 A中的2M列包括W1 B中的每一列。例如,W1 A包含16个列向量(即W1 A中有16列),W1 B包含8个列向量。W1 A中的16个列向量包含W1 B中的8个列向量。
根据所述第一信道的W1 A与所述第二信道的W1 B的关系,可以在W1 A中包含用于生成覆盖整个小区波束的向量,也可以包含生成主瓣方向指向特定方向的向量。其中,覆盖整个小区波束的向量,生成的是宽波束;主瓣方向指向特定方向的向量生成的是窄波束。以所述第一信道为公共信道,所述第二信道为下行数据信道为例,对数据信道来说,W1 A中主瓣方向指向特定方向的向量可以包含在W1 B中。由于公共信道的W1 A和下行数据信道的W1 B之间的向量有包含的关系,在满足公共信道和下行数据信道的需求的情况下,可以减少反馈预编码矩阵指示的比特数。
可选地,所述第一预编码矩阵集合中的每个预编码矩阵W1满足W1=W1 1×W2 1
其中,W1是Nt行RA列的矩阵,Nt为天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 1是Nt行2M列的矩阵,W2 1是2M行RA列的矩阵,Nt,RA,M都为正整数,M大于等于2。所述第二预编码矩阵集合中的每个预编码矩阵满足W2=W1 2×W2 2,其中,W2是Nt行RB列的矩阵,RB为所述第二秩,Nt大于或等于RB,W1 2是Nt行2K列的矩阵,W2 2是2K行RB列的矩阵,RB,K都为正整数。
可选地,K小于或者等于M,所述第一预编码矩阵集合中的任意一个W1 1,与所述第二预编码矩阵集合中的一个W1 2对应,其中,所述第一预编码集合中的任意一个W1 1中的2M列包括与所述第一预编码集合中的任意一个W1 1对应的所述第二预编码矩阵集合中的W1 2的每一列。
可选地,Nt为偶数。
可选地,
Figure PCTCN2017094757-appb-000007
其中X1为Nt/2行M列的矩阵,Nt为偶数,X1=[v0 … vM-1],vd是包含Nt/2个元素的列向量,d为0到M-1的整数。
W2 1的任意一列,用
Figure PCTCN2017094757-appb-000008
表示,其中φn为复数,el是M×1的列向量,其第l个元素为1,其余的元素为0,l为1到M的整数。el相当于列选择矩阵,选择X1中的一列。el作用是选择预编码的向量,φn作用是在两组天线(通常是两组极化天线)之间进行相位加权。比如8天线端口,分为45度极化和-45度极化两个极化方向,每个极化方向分别有4个天线端口。因为预编码矩阵W的前Nt/2行对应一个极化方向的天线端口 的预编码加权,后Nt/2行对应另一个极化方向的天线端口的预编码加权。
可选地,
Figure PCTCN2017094757-appb-000009
其中X2为Nt/2行K列的矩阵,Nt为偶数,X2=[z0 … zk-1],zd是包含Nt/2个元素的列向量,d为0到K-1的整数。
W2 2的任意一列,用
Figure PCTCN2017094757-appb-000010
表示,其中φk为复数,em为是K×1的列向量,其第m个元素为1,其余的元素为0,m为1到k的整数。el相当于列选择矩阵,选择X2中的一列。em作用是选择预编码的向量,φn作用是在两组天线(通常是两组极化天线)之间进行相位加权。
W1 1、W2 1、W2 1和W2 2采用上述的结构主要是原因是目前应用的天线阵主要是双极化的天线阵。而上述的预编码矩阵结构可以使两个极化方向的天线的波束方向相同。这与双极化的天线阵信道特性匹配的的较好,所以,使用上述的预编码矩阵结构可以获得好的性能。
以8天线端口的预编码矩阵为例,秩1到秩4的第一预编码矩阵集合如下所述。令W=WA,W1=W1 A,W2=W2 A。则秩1到秩4的第一预编码矩阵集合中任意一个预编码矩阵W=W1×W2
对W1,其适用于整个***带宽,且具有长周期特性。信道慢变/子带的特性在W2中体现。W2是可以适用于每子带的反馈,且具有短周期特性。
1)秩=1或秩=2的预编码矩阵集合如下所示。
定义矩阵B如公式(2)所述,其中矩阵B有32个列向量。
B=[b0 b1 … b31],
Figure PCTCN2017094757-appb-000011
在(2)中,bg(g=0,…,31)为B中的一个列向量。同时定义X(k)如下所示。
Figure PCTCN2017094757-appb-000012
一个X(k)(k=0,…,15)中有4个集合B中的向量。一共有16个X(k)。16个X(k)中的所有向量就是集合B中的32个向量。
对于秩1和秩2,W1表征形式为块对角矩阵,每个子块矩阵对应一个极化方向,即
Figure PCTCN2017094757-appb-000013
X1中的列向量,属于集合B中的列向量,当作用到一个极化方向的天线端口上,可以起到波束赋型的作用。W1中的一个对角块X1用于一个极化方向,另一个对角块X1用于另一个极化方向。
对于秩=1,
Figure PCTCN2017094757-appb-000014
其中
Figure PCTCN2017094757-appb-000015
对于秩=2,
Figure PCTCN2017094757-appb-000016
其中
Figure PCTCN2017094757-appb-000017
Figure PCTCN2017094757-appb-000018
表示是一个选择列向量,其第n个元素为1,其余元素为0。当秩=1或2时,
Figure PCTCN2017094757-appb-000019
为4行1列的向量,q为1到4的整数。
2)秩=3和秩=4的预编码矩阵集合如下所示。
对秩3和秩4,定义矩阵B如下所示。
B=[b0 b1 … b15],
Figure PCTCN2017094757-appb-000020
矩阵B有16个列向量,bg(g=0,…,15)为B中的一个列向量。
同时定义X(k)(k=0,…,3),每个X(k)有8个向量,X(k)如下所示。
Figure PCTCN2017094757-appb-000021
对秩=3、4,W1
Figure PCTCN2017094757-appb-000022
对于秩=3,
Figure PCTCN2017094757-appb-000023
其中
Figure PCTCN2017094757-appb-000024
对于秩=4,
Figure PCTCN2017094757-appb-000025
其中
Y∈{[e1 e5],[e2 e6],[e3 e7],[e4 e8]}       (12)
其中,ep是4×1的列向量,其第p个元素为1,其余的元素为0,p为1到8的整数。
可选地,所述第一预编码矩阵WA是一个Nt行RA列的矩阵。
可选地,所述第二预编码矩阵为WB是一个Nt行RB列的矩阵。
可选地,所述预编码矩阵集合和/或所述预编码矩阵集合的个数由基站发送的配置参数配置给所述终端设备。
基站配置多套预编码矩阵集合给用户,每套预编码矩阵集合中的每个预编码矩阵W满足W=W1×W2。例如,基站配置了3个预编码矩阵集合,记为预编码矩阵集合1、预编码矩阵集合2、预编码矩阵集合3。预编码矩阵集合1中的预编码矩阵W1满足W1=W1 1×W2 1;预编码矩阵集合2中的预编码矩阵W2满足W2=W1 2×W2 2;预编码矩阵集合3中的预编码矩阵W3满足W3=W1 3×W2 3。W1 1中包含16个列向量,W1 2中包含8个列向量,W1 3中包含4个列向量。W1 1中的16个列向量包含W1 2的8个列向量;W1 2的8个列向量包含W1 3的4个列向量。
通过基站配置不同的预编码矩阵集合给终端用户可实现小区间的干扰协调,如在覆盖满足而小区间干扰严重受限时,基站可配置预编码矩阵集合1给小区边缘用户(例 如,波束较宽的预编码矩阵),从而可实现小区间的干扰协调。
步骤404:终端设备向基站发送CSI。
在步骤404中,所述CSI包括所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示,所述第二预编码矩阵指示。
或者,在步骤404中,所述第一秩指示为预定义值,所述CSI包括所述第二秩指示,所述第一预编码矩阵指示,所述第二预编码矩阵指示。在这种情况下,第一秩为预定义的值。对于基站和终端设备,不会对秩的值有不一致的理解。这时用户设备不需要发送秩指示给基站。不需要反馈第一秩对应的秩指示。这样可以节省终端设备反馈所述第一秩的开销。所述终端设备发送第一预编码矩阵指示的目的是用于基站使用所述第一预编码矩阵WA对第一信道的数据进行预编码。终端设备发送第二预编码矩阵指示的目的是用于基站使用所述第二预编码矩阵WB对第二信道的数据进行预编码。
可选地,若所述第一预编码矩阵和所述第二预编码矩阵由第三预编码矩阵指示来指示,在步骤404中,所述CSI可以包括所述第一秩指示,所述第二秩指示和所述第三预编码矩阵指示。或者,所述第一秩指示为预定义值,所述CSI包括所述第二秩指示和所述第三预编码矩阵指示。
在本发明实施例中,所述CSI可以进一步包括第二CQI,所述第二CQI根据所述第二预编码矩阵得到。或者,所述CSI可以进一步包括第一CQI、第二CQI,所述第一CQI根据所述第一预编码矩阵得到,所述第二CQI根据所述第二预编码矩阵得到。。
当所述CSI包括所述第一CQI、所述第二CQI时,可选地,所述用户设备按照不同的反馈模式反馈所述第一CQI和所述第二CQI。
例如,第一CQI、第二CQI都以相同的反馈模式反馈,都在PUSCH上反馈,且以相同模式都是反馈每个子带的CQI。第一CQI、第二CQI也可以以不同的反馈模式反馈,例如第一CQI在PUSCH反馈,第二CQI在PUCCH上反馈。由于秩指示和预编码矩阵指示的反馈模式和CQI是一样的。所以第一秩指示和第二秩指示也可以以相同的模式或不同的模式反馈。对第一预编码矩阵指示和第二预编码矩阵指示也一样。通过上述的反馈CSI的方式,可实现不同场景下的CSI信息获取或反馈的自适应,从而提高***性能。
当所述CSI包括所述第一CQI、所述第二CQI时,可选地,所述第一CQI与所述第二CQI对应相同的频域资源。所述第一CQI与所述第二CQI对应相同的频域资源,指的是所述第一CQI和所述第二CQI都是针对同样的频域资源上得到的。比如,***带宽分为10个子带,每个子带有5个物理资源块(physical resource block,PRB),每个物理资源块在频域上占180000赫兹。10个子带分别为子带1,子带2,子带3,…,子带10。针对子带的CQI为子带CQI,针对整个***带宽的CQI为宽带CQI。所述第一CQI和所述第二CQI是其中一个相同子带上的CQI,比如都是子带1的CQI。或者所述第一CQI和所述第二CQI都是宽带CQI。当这两个CQI对应相同的频域资源时,可以利用所述第一信道的信道特性和所述第二信道的信道特性来减少CQI反馈开销。
当所述CSI包括所述第一CQI、所述第二CQI时,可选地,第一CQI和第二CQI采用差分的方式表示。这样,可以节省CQI的反馈开销。
当所述CSI包括所述第一CQI、所述第二CQI时,可选地,得到所述第一CQI和 所述第二CQI所基于的预编码矩阵集合是可配置的。例如,有T(T>2)套预编码矩阵集合。假设T=10,基站配置终端设备根据第4套预编码矩阵集合中的预编码矩阵得到所述第一CQI;基站配置终端设备根据第8套预编码矩阵集合中的预编码矩阵得到所述第二CQI。基站可以给终端设备配置T套预编码矩阵集合中的任意一套预编码矩阵集合用于得到所述第一CQI。同理,基站可以给终端设备配置T套预编码矩阵集合中的任意一套预编码矩阵集合用于得到所述第二CQI。基站可以根据信道条件配置预编码矩阵集合,获得好的性能。
可选地,得到所述第一CQI所基于的预编码矩阵集合的索引由基站通知给用户设备。
可选地,得到所述第二CQI所基于的预编码矩阵集合编号的索引也可以由基站通知给用户设备。
基站接收终端设备发送CSI。
可选地,基站可以根据所述CSI,以及一种合成预编码矩阵的方法,得到WA。具体方法参见前述实施例。
步骤405:基站根据所述CSI,发送数据。
可选地,在步骤405中,当所述CSI包括所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示,所述第二预编码矩阵指示时;或者,所述第一秩指示为预定义值,所述CSI包括所述第二秩指示,所述第一预编码矩阵指示,所述第二预编码矩阵指示时,基站根据所述第一预编码矩阵指示确定第一预编码矩阵,根据所述第二预编码矩阵指示确定第二预编码矩阵。而且,所述第一预编码矩阵的秩为所述第一秩,所述第二预编码矩阵的秩为所述第二秩。基站在所述第一信道上,可以使用第一预编码矩阵对数据进行预编码,也可以是根据此预编码矩阵经过变换,比如考虑了多用户MIMO之间的发送端的迫零算法,得到的另一个预编码矩阵对数据进行预编码。同理在所述第二信道上,基站可以使用第二预编码矩阵对数据进行预编码,也可以是根据此预编码矩阵经过变换,比如考虑了多用户MIMO之间的发送端的迫零算法,得到的另一个预编码矩阵对数据进行预编码。
当所述CSI包括所述第一秩指示,所述第二秩指示和所述第三预编码矩阵指示时;或者,所述第一秩指示为预定义值,所述CSI包括所述第二秩指示和所述第三预编码矩阵指示时,基站根据第三预编码矩阵指示确定第一预编码矩阵和第二预编码矩阵。关于如何使用所述第一预编码矩阵和所述第二预编码矩阵对数据预编码,如前面实施例所述,不再赘述。
当所述CSI进一步包括第二CQI时,基站根据可以根据所述第二CQI确定在所述第二信道上发送数据使用的调制方式。当所述CSI进一步包括第一CQI时,基站根据可以根据所述第一CQI确定在所述第一信道上发送数据使用的调制方式。
因此,本发明实施例的发送CSI的方法,对公共信道和业务信道使用不同的预编码矩阵集合以得到CSI。在满足公共信道和业务信道的需求的情况下,节省了预编码矩阵指示反馈的开销。
上文中结合图4,详细描述了根据本发明实施例的方法,下面将结合图5至图8,详细描述根据本发明实施例的终端设备和基站。
如图5所示,本发明实施例提供了一种如图1所示的终端设备10,可以是10A或10B,该终端设备10包括:
处理单元501,用于确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示,所述第一信道的信道类型与所述第二信道的信道类型不同。
所述处理单元501,还用于在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵,所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,所述第一预编码矩阵的秩为所述第一秩,所述第一预编码矩阵由第一预编码矩阵指示来指示,所述第二预编码矩阵的秩为所述第二秩,所述第二预编码矩阵由第二预编码矩阵指示来指示。
发送单元502,用于发送所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示;或者用于发送所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示,所述第一秩指示为预定义值。
可选地,所述第一信道是公共信道,所述第二信道是业务信道。所述发送单元还用于向基站发送第二CQI,所述第二CQI根据所述第二预编码矩阵得到。或者,所述发送单元还用于向基站发送第一CQI、第二CQI,所述第一CQI根据所述第一预编码矩阵得到,所述第二CQI根据所述第二预编码矩阵得到。
对所述第一秩指示、所述第一秩、所述第二秩指示、所述第一秩、所述第一预编码矩阵指示、所述第二预编码矩阵指示、所述第三预编码矩阵指示、所述第一预编码矩阵WA,第二预编码矩阵WB等的进一步描述,可以参见本发明方法实施例的描述。对于终端设备的处理单元而言,具体实现可以参照上述方法实施例中的终端设备的具体实现。
因此,本发明实施例的发送CSI的终端设备,对公共信道和业务信道使用不同的预编码矩阵集合以得到CSI。在满足公共信道和业务信道的需求的情况下,节省了预编码矩阵指示反馈的开销。
如图6所示,本发明实施例还提供了一种如图1所示的终端设备10,可以是10A或10B,,该终端设备10包括:
处理单元601,用于确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示,所述第一信道的信道类型与所述第二信道的信道类型不同;
所述处理单元,还用于在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵,所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,所述第一预编码矩阵的秩为所述第一秩,所述第二预编码矩阵的秩为所述第二秩,所述第一预编码矩阵和所述第二预编码矩阵由第三预编码矩阵指示来指示;
发送单元602,用于发送所述第一秩指示,所述第二秩指示,所述第三预编码矩阵指示;或者,所述第一秩指示为预定义值,发送单元发送所述第二秩指示,所述第 三预编码矩阵指示。
对所述第一秩指示、所述第一秩、所述第二秩指示、所述第二秩、所述第一预编码矩阵指示、所述第二预编码矩阵指示、所述第三预编码矩阵指示、所述第一预编码矩阵WA,第二预编码矩阵WB等的进一步描述,可以参见本发明方法实施例的描述。对于终端设备的处理单元而言,具体实现可以参照上述方法实施例中的终端设备的具体实现。
因此,本发明实施例的发送CSI的终端设备,对公共信道和业务信道使用不同的预编码矩阵集合以得到CSI。在满足公共信道和业务信道的需求的情况下,节省了预编码矩阵指示反馈的开销。
如图7所示,本发明实施例提供了一种如图1所示的基站20,该基站20包括:
获取单元701,用于获取第一秩指示,第二秩指示,第一预编码矩阵指示和第二预编码矩阵指示,其中,所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取。所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值。
处理单元702,用于根据第一秩指示确定第一秩,根据第二秩指示确定第二秩,根据第一预编码矩阵指示确定第一预编码矩阵,根据第二预编码矩阵指示确定第二预编码矩阵;
其中,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同;
所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中;
所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中;
所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。
对所述第一秩指示、所述第一秩、所述第二秩指示、所述第二秩、所述第一预编码矩阵指示、所述第二预编码矩阵指示、所述第三预编码矩阵指示、所述第一预编码矩阵WA,第二预编码矩阵WB等的进一步描述,可以参见本发明方法实施例的描述。对于终端设备的处理单元而言,具体实现可以参照上述方法实施例中的终端设备的具体实现。
因此,本发明实施例的接收CSI的基站,对公共信道和业务信道使用不同的预编码矩阵集合以得到CSI。在满足公共信道和业务信道的需求的情况下节省了预编码矩阵指示的开销。
如图8所示,本发明实施例还提供了一种如图1所示的基站20,该基站20包括:
获取单元801,用于获取第一秩指示,第二秩指示,第一预编码矩阵指示和第二预编码矩阵指示,其中,所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取。所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值。
处理单元802,用于所述第一秩指示用于指示第一秩,所述第二秩指示用于指示第二秩,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同;
所述第三预编码矩阵指示用于指示第一预编码矩阵和第二预编码矩阵,所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中,所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中;
所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。
对所述第一秩指示、所述第一秩、所述第二秩指示、所述第一秩、所述第一预编码矩阵指示、所述第二预编码矩阵指示、所述第三预编码矩阵指示、所述第一预编码矩阵WA,第二预编码矩阵WB等的进一步描述,可以参见本发明方法实施例的描述。对于终端设备的处理单元而言,具体实现可以参照上述方法实施例中的终端设备的具体实现。
因此,本发明实施例的接收CSI的基站,对公共信道和业务信道使用不同的预编码矩阵集合以得到CSI。在满足公共信道和业务信道的需求的情况下,降低了接收节省了预编码矩阵指示的开销。
在本发明实施例中,基站从终端设备获取秩指示、预编码矩阵指示可以是从基站接收秩指示、预编码矩阵指示。例如,基站从终端设备获取第一预编码矩阵指示可以是从终端设备接收第一预编码矩阵指示。同理,基站的获取单元获取秩指示、预编码矩阵也可以是基站从终端设备接收秩指示、预编码矩阵指示。
包括处理器901、发送器902和接收器903的终端设备10如图9所示。包括处理器1002、发送器1003和接收器1001的基站20如图10所示。
上述处理单元501、601具体可以是处理器901;处理单元702、802具体可以是处理器1002。接收单元503、603可以是接收器903;接收单元703、803可以是接收器1003。发送单元502、602可以是发送器902;发送单元704、804可以是发送器1003。在所述第一预编码矩阵指示、所述第二预编码矩阵指示、所述第一指示和所述第二秩指示从终端设备获取这种情况下,获取单元701、801可以是接收器1001。在所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取,所述第一秩指示为预定义值这种情况下,获取单元701、801是接收器1001和处理器1002。
应理解,在本发明实施例中,该处理器901、1002可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器901、1002还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (32)

  1. 一种信道状态信息CSI的发送方法,其特征在于:
    终端设备确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示,所述第一信道的信道类型与所述第二信道的信道类型不同;
    所述终端设备在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵,所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,所述第一预编码矩阵的秩为所述第一秩,所述第一预编码矩阵由第一预编码矩阵指示来指示,所述第二预编码矩阵的秩为所述第二秩,所述第二预编码矩阵由第二预编码矩阵指示来指示;
    所述终端设备向基站发送所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示;或者,所述终端设备向基站发送所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示,所述第一秩指示为预定义值。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一预编码矩阵指示由B1个比特表示,所述第二预编码矩阵指示由B2个比特表示,所述B1个比特和B2个比特有部分重叠,B1和B2都为大于1的正整数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一预编码矩阵为WA
    Figure PCTCN2017094757-appb-100001
    其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100002
    是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2;
    所述第二预编码矩阵为WB
    Figure PCTCN2017094757-appb-100003
    其中,WB为Nt行RB列的矩阵,RB为所述第二秩,W1 B是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100004
    是2K行RB列的矩阵,RB,K都为正整数。
  4. 根据权利要求3所述的方法,其特征在于,K小于或者等于M,且W1 A中的2M列包括W1 B中的每一列。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于:
    所述第一预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100005
    其中,W1是Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 1是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100006
    是2M行RA列的矩阵,Nt,RA,M都为正整数,M大于等于2;
    所述第二预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100007
    其中,W2是Nt行RB列的矩阵,RB为所述第二秩,Nt大于或等于RB,W1 2是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100008
    是2K行RB列的矩阵,RB,K都为正整数。
  6. 根据权利要求5所述的方法,其特征在于,K小于或者等于M,所述第一预编码矩阵集合中的任意一个W1 1,与所述第二预编码矩阵集合中的一个W1 2对应,其中,所述第一预编码集合中的任意一个W1 1中的2M列包括与所述第一预编码集合中的任意一个W1 1对应的所述第二预编码矩阵集合中的W1 2的每一列。
  7. 根据权利要求1至6任意一项所述的方法,其特征在于,所述第一信道是公共信道,所述第二信道是业务信道,所述方法还包括:
    所述终端设备向基站发送第二CQI,所述第二CQI根据所述第二预编码矩阵得到;或者,
    所述终端设备向基站发送第一CQI、第二CQI,所述第一CQI根据所述第一预编码矩阵得到,所述第二CQI根据所述第二预编码矩阵得到。
  8. 根据权利要求3或4所述的方法,其特征在于,所述第一预编码矩阵WA根据W1 A或W1 B合成得到。
  9. 一种信道状态信息CSI的接收方法,其特征在于:
    基站获取第一秩指示,第二秩指示,第一预编码矩阵指示和第二预编码矩阵指示,其中,所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取,所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值;
    根据第一预编码矩阵指示确定第一预编码矩阵,根据第二预编码矩阵指示确定第二预编码矩阵;
    其中,所述第一秩指示用于指示第一秩,所述第二秩指示用于指示第二秩,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同;
    所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中;
    所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中;
    所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。
  10. 根据权利要求9所述的方法,其特征在于:
    所述第一预编码矩阵指示由B1个比特表示,所述第二预编码矩阵指示由B2个比特表示,所述B1个比特和B2个比特有部分重叠,B1和B2都为大于1的正整数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第一预编码矩阵为WA
    Figure PCTCN2017094757-appb-100009
    其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100010
    是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2;
    所述第二预编码矩阵为WB
    Figure PCTCN2017094757-appb-100011
    其中,WB为Nt行RB列的矩阵,RB为所述第二秩,W1 B是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100012
    是2K行RB列的矩阵,RB,K都为正整数。
  12. 根据权利要求11所述的方法,其特征在于,K小于或者等于M,且W1 A中的2M列包括W1 B中的每一列。
  13. 根据权利要求9至12任意一项所述的方法,其特征在于:
    所述第一预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100013
    其中,W1是Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 1是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100014
    是2M行RA列的矩阵,Nt,RA,M都为正整数,M大于等于2;
    所述第二预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100015
    其中,W2是Nt行RB列的矩阵,RB为所述第二秩,Nt大于或等于RB,W1 2是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100016
    是 2K行RB列的矩阵,RB,K都为正整数。
  14. 根据权利要求13所述的方法,其特征在于,K小于或者等于M,所述第一预编码矩阵集合中的任意一个W1 1,与所述第二预编码矩阵集合中的一个W1 2对应,其中,所述第一预编码集合中的任意一个W1 1中的2M列包括与所述第一预编码集合中的任意一个W1 1对应的所述第二预编码矩阵集合中的W1 2的每一列。
  15. 根据权利要求9至14任意一项所述的方法,所述第一信道是公共信道,所述第二信道是业务信道,所述方法还包括:
    所述基站接收所述终端设备发送的第二CQI,所述第二CQI为根据所述第二预编码矩阵得到;或者,
    所述基站接收所述终端设备发送的第一CQI和第二CQI,所述第一CQI为根据所述第一预编码矩阵得到,所述第二CQI为根据所述第二预编码矩阵得到。
  16. 根据权利要求11或12所述的方法,其特征在于,所述第一预编码矩阵WA为根据W1 A或W1 B合成得到。
  17. 一种终端设备,其特征在于,包括:
    处理单元,用于确定用于第一信道的第一秩和用于第二信道的第二秩,所述第一秩由第一秩指示来指示,所述第二秩由第二秩指示来指示,所述第一信道的信道类型与所述第二信道的信道类型不同;
    所述处理单元,还用于在第一预编码矩阵集合中确定第一预编码矩阵,在第二预编码矩阵集合中确定第二预编码矩阵,所述第一预编码矩阵集合与所述第二预编码矩阵集合不同,所述第一预编码矩阵的秩为所述第一秩,所述第一预编码矩阵由第一预编码矩阵指示来指示,所述第二预编码矩阵的秩为所述第二秩,所述第二预编码矩阵由第二预编码矩阵指示来指示;
    发送单元,用于发送所述第一秩指示,所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示;或者用于发送所述第二秩指示,所述第一预编码矩阵指示和所述第二预编码矩阵指示,所述第一秩指示为预定义值。
  18. 根据权利要求17所述的终端设备,其特征在于:
    所述第一预编码矩阵指示由B1个比特表示,所述第二预编码矩阵指示由B2个比特表示,所述B1个比特和B2个比特有部分重叠,B1和B2都为大于1的正整数。
  19. 根据权利要求17或18所述的终端设备,其特征在于,所述第一预编码矩阵为WA
    Figure PCTCN2017094757-appb-100017
    其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100018
    是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2;
    所述第二预编码矩阵为WB
    Figure PCTCN2017094757-appb-100019
    其中,WB为Nt行RB列的矩阵,RB为所述第二秩,W1 B是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100020
    是2K行RB列的矩阵,RB,K都为正整数。
  20. 根据权利要求19所述的终端设备,其特征在于,K小于或者等于M,且W1 A中的2M列包括W1 B中的每一列。
  21. 根据权利要求17至20任意一项所述的终端设备,其特征在于:
    所述第一预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100021
    其中,W1是Nt 行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 1是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100022
    是2M行RA列的矩阵,Nt,RA,M都为正整数,M大于等于2;
    所述第二预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100023
    其中,W2是Nt行RB列的矩阵,RB为所述第二秩,Nt大于或等于RB,W1 2是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100024
    是2K行RB列的矩阵,RB,K都为正整数。
  22. 根据权利要求21所述的终端设备,其特征在于,K小于或者等于M,所述第一预编码矩阵集合中的任意一个W1 1,与所述第二预编码矩阵集合中的一个W1 2对应,其中,所述第一预编码集合中的任意一个W1 1中的2M列包括与所述第一预编码集合中的任意一个W1 1对应的所述第二预编码矩阵集合中的W1 2的每一列。
  23. 根据权利要求17至22任意一项所述的终端设备,其特征在于:
    所述第一信道是公共信道,所述第二信道是业务信道;
    所述发送单元还用于向基站发送第二CQI,所述第二CQI根据所述第二预编码矩阵得到;或者,
    所述发送单元还用于向基站发送第一CQI、第二CQI,所述第一CQI根据所述第一预编码矩阵得到,所述第二CQI根据所述第二预编码矩阵得到。
  24. 根据权利要求19或20所述的终端设备,其特征在于,所述第一预编码矩阵WA为根据W1 A或W1 B合成得到。
  25. 一种基站,其特征在于,包括:
    获取单元,用于获取第一秩指示,第二秩指示,第一预编码矩阵指示和第二预编码矩阵指示,其中,所述第一预编码矩阵指示、所述第二预编码矩阵指示和所述第二秩指示从终端设备获取,所述第一秩指示从终端设备获取或者所述第一秩指示为预定义值;
    处理单元,用于根据第一预编码矩阵指示确定第一预编码矩阵,根据第二预编码矩阵指示确定第二预编码矩阵;
    其中,所述第一秩指示用于指示第一秩,所述第二秩指示用于指示第二秩,所述第一秩用于第一信道,所述第二秩用于第二信道,所述第一信道的信道类型与所述第二信道的信道类型不同;
    所述第一预编码矩阵的秩为所述第一秩,且所述第一预编码矩阵在第一预编码矩阵集合中;
    所述第二预编码矩阵的秩为所述第二秩,且所述第二预编码矩阵在第二预编码矩阵集合中;
    所述第一预编码矩阵集合与所述第二预编码矩阵集合不同。
  26. 根据权利要求25所述的基站,其特征在于:
    所述第一预编码矩阵指示由B1个比特表示,所述第二预编码矩阵指示由B2个比特表示,所述B1个比特和B2个比特有部分重叠,B1和B2都为大于1的正整数。
  27. 根据权利要求25或26所述的基站,其特征在于,所述第一预编码矩阵为WA
    Figure PCTCN2017094757-appb-100025
    其中,WA为Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目, RA为所述第一秩,Nt大于或等于RA,W1 A是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100026
    是2M行RA列的矩阵,RA,M,Nt都为正整数,M大于等于2;
    所述第二预编码矩阵为WB
    Figure PCTCN2017094757-appb-100027
    其中,WB为Nt行RB列的矩阵,RB为所述第二秩,W1 B是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100028
    是2K行RB列的矩阵,RB,K都为正整数。
  28. 根据权利要求27所述的基站,其特征在于,K小于或者等于M,且W1 A中的2M列包括W1 B中的每一列。
  29. 根据权利要求25至28任意一项所述的基站,其特征在于:
    所述第一预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100029
    其中,W1是Nt行RA列的矩阵,Nt为基站发送的参考信号的天线端口数目,RA为所述第一秩,Nt大于或等于RA,W1 1是Nt行2M列的矩阵,
    Figure PCTCN2017094757-appb-100030
    是2M行RA列的矩阵,Nt,RA,M都为正整数,M大于等于2;
    所述第二预编码矩阵集合中的每个预编码矩阵满足
    Figure PCTCN2017094757-appb-100031
    其中,W2是Nt行RB列的矩阵,RB为所述第二秩,Nt大于或等于RB,W1 2是Nt行2K列的矩阵,
    Figure PCTCN2017094757-appb-100032
    是2K行RB列的矩阵,RB,K都为正整数。
  30. 根据权利要求29所述的基站,其特征在于,K小于或者等于M,所述第一预编码矩阵集合中的任意一个W1 1,与所述第二预编码矩阵集合中的一个W1 2对应,其中,所述第一预编码集合中的任意一个W1 1中的2M列包括与所述第一预编码集合中的任意一个W1 1对应的所述第二预编码矩阵集合中的W1 2的每一列。
  31. 根据权利要求25至30任意一项所述的基站,其特征在于,所述第一信道是公共信道,所述第二信道是业务信道,所述基站还包括;
    接收单元,用于接收所述终端设备发送的第二CQI,所述第二CQI为根据所述第二预编码矩阵得到;或者,
    接收单元,用于接收所述终端设备发送的第一CQI和第二CQI,所述第一CQI为根据所述第一预编码矩阵得到,所述第二CQI为根据所述第二预编码矩阵得到。
  32. 根据权利要求27或28所述的基站,其特征在于,所述第一预编码矩阵WA为根据W1 A或W1 B合成得到。
PCT/CN2017/094757 2016-08-05 2017-07-27 信道状态信息的发送方法、接收方法、装置和*** WO2018024157A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17836339.6A EP3484061B1 (en) 2016-08-05 2017-07-27 Channel state information transmitting method, receiving method, device and system
US16/266,735 US10567054B2 (en) 2016-08-05 2019-02-04 Channel state information sending method and receiving method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610639121.X 2016-08-05
CN201610639121.XA CN107707285B (zh) 2016-08-05 2016-08-05 信道状态信息的发送方法、接收方法以及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/266,735 Continuation US10567054B2 (en) 2016-08-05 2019-02-04 Channel state information sending method and receiving method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018024157A1 true WO2018024157A1 (zh) 2018-02-08

Family

ID=61072553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094757 WO2018024157A1 (zh) 2016-08-05 2017-07-27 信道状态信息的发送方法、接收方法、装置和***

Country Status (4)

Country Link
US (1) US10567054B2 (zh)
EP (1) EP3484061B1 (zh)
CN (1) CN107707285B (zh)
WO (1) WO2018024157A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234574A1 (en) * 2018-08-30 2021-07-29 Nokia Technologies Oy Frequency time domain channel hardening and overhead reduction
WO2023165458A1 (zh) * 2022-03-01 2023-09-07 华为技术有限公司 信道状态信息的反馈方法和通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111371480B (zh) * 2018-12-25 2023-04-14 中兴通讯股份有限公司 数据的预编码处理方法及装置、存储介质
WO2021237715A1 (zh) * 2020-05-29 2021-12-02 Oppo广东移动通信有限公司 一种信道状态信息处理方法、电子设备及存储介质
CN116074879A (zh) * 2021-10-30 2023-05-05 上海华为技术有限公司 一种信道质量的检测方法和基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130315189A1 (en) * 2011-04-29 2013-11-28 Lg Electronics Inc. Method and apparatus for transmitting channel status information in wireless communication system
CN104620626A (zh) * 2013-06-13 2015-05-13 华为技术有限公司 信道状态信息测量的方法及设备
CN104901733A (zh) * 2010-10-07 2015-09-09 高通股份有限公司 使用采用基于ue-rs的开环波束成形的类cdd方案的方法和装置
US9270428B2 (en) * 2009-10-05 2016-02-23 Koninklijke Philips N.V. Method for signaling a precoding in a cooperative beamforming transmission mode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237984B (zh) * 2010-05-07 2014-02-12 电信科学技术研究院 一种基于pusch上报csi的方法及装置
JP5497577B2 (ja) * 2010-08-16 2014-05-21 株式会社Nttドコモ 通信制御方法、基地局装置及び移動局装置
US8693421B2 (en) * 2010-09-02 2014-04-08 Texas Instruments Incorporated Downlink 8 TX codebook sub-sampling for CSI feedback
KR101971079B1 (ko) * 2012-09-20 2019-08-13 삼성전자 주식회사 이동통신 시스템에서 피드백 송수신 방법 및 장치
CN105165083A (zh) * 2013-07-11 2015-12-16 华为技术有限公司 反馈信道状态信息csi的方法、用户设备和基站
PT3116258T (pt) * 2014-03-06 2018-10-19 Huawei Tech Co Ltd Método para reportar informação do estado de canal, equipamento de utilizador e estação base

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9270428B2 (en) * 2009-10-05 2016-02-23 Koninklijke Philips N.V. Method for signaling a precoding in a cooperative beamforming transmission mode
CN104901733A (zh) * 2010-10-07 2015-09-09 高通股份有限公司 使用采用基于ue-rs的开环波束成形的类cdd方案的方法和装置
US20130315189A1 (en) * 2011-04-29 2013-11-28 Lg Electronics Inc. Method and apparatus for transmitting channel status information in wireless communication system
CN104620626A (zh) * 2013-06-13 2015-05-13 华为技术有限公司 信道状态信息测量的方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234574A1 (en) * 2018-08-30 2021-07-29 Nokia Technologies Oy Frequency time domain channel hardening and overhead reduction
WO2023165458A1 (zh) * 2022-03-01 2023-09-07 华为技术有限公司 信道状态信息的反馈方法和通信装置

Also Published As

Publication number Publication date
EP3484061B1 (en) 2020-04-22
US20190181930A1 (en) 2019-06-13
EP3484061A4 (en) 2019-06-12
US10567054B2 (en) 2020-02-18
EP3484061A1 (en) 2019-05-15
CN107707285A (zh) 2018-02-16
CN107707285B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP7486550B2 (ja) Lteにおける4txコードブックエンハンスメント
US10804993B2 (en) Method and apparatus for downlink and uplink CSI acquisition
KR102618282B1 (ko) Mimo 측정 기준 신호 및 피드백을 동작시키기 위한 방법 및 장치
US10063296B2 (en) Method for reporting channel state information, user equipment, and base station
JP7003111B2 (ja) 高度csiフィードバックオーバヘッド低減のための構成可能コードブック
JP2022130657A (ja) 4TxMIMOのためのPUCCHでのCSIフィードバックのためのコードブックサブサンプリング
CN110034797B (zh) 一种预编码矩阵指示的反馈方法及装置
KR102004622B1 (ko) 채널 상태 정보의 피드백 및 수신 방법 및 디바이스
WO2018024157A1 (zh) 信道状态信息的发送方法、接收方法、装置和***
KR20170091664A (ko) 부분 프리코딩 csi-rs 및 csi 피드백을 위한 다운링크 시그널링 방법 및 장치
CN112751592B (zh) 上报信道状态信息的方法和通信装置
WO2020192790A1 (en) System and method for reduced csi feedback and reporting using tensors and tensor decomposition
EP4179638A1 (en) Signaling to aid enhanced nr type ii csi feedback
WO2015184915A1 (zh) 多输入多输出***信令传输方法和装置
CN115315906B (zh) 一种信道测量方法和通信装置
CN114600384B (zh) 一种信道测量方法和通信装置
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
WO2018082622A1 (zh) 一种预编码矩阵指示方法、装置和***
CN117678163A (zh) 用于端口选择码本增强的方法和装置
KR20230094177A (ko) 무선 통신 시스템에서 시변 csi 보고 방법 및 장치
CN117203905A (zh) 为端口选择码本增强配置W1、W2和Wf的方法和装置
CN117178495A (zh) 端口选择码本增强

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836339

Country of ref document: EP

Effective date: 20190205